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Abstract

Parameter Tuning for SIR-Related Models With Variational and Bayesian Methods
By Hung Tan Ngo

The event of COVID-19 has put many mathematical models in competition to
capture the disease’s dynamic. The effectiveness of such a model is only possible with
a process to tune its parameters for the available dataset. This thesis presents two
methodologies — Trust Region, a variational approach, and Ensemble Kalman Filter
(EnKF), a Bayesian approach — to solve the above issue. This project deals with
the classical Susceptible, Infectious, and Recovered (SIR) epidemiology model and
its variants. We compare the efficiency of our approaches through three SIR-related
models: Epidemic SIR, Endemic SIR, and SIRW. Firstly, employing the variational
method, especially the trust region method, and the PyBOBYQA algorithm, we fine-
tune our models’ parameters under noise-free and noise-inclusive conditions. Simi-
larly, we utilize the Ensemble Kalman Filter method to explore the optimal sets for
our models when white noise is presented and not presented. The results show that
the Trust Region method performs well with the two basic SIR models under every
condition, but this approach is not capable of handling more sophisticated models
like SIRW. EnKF shows potential findings across the three models when the dataset
is absent of noise. However, when a mild amount of noise is introduced, our optimiza-
tion only shows success for the epidemic SIR and SIRW cases. With highly random
datasets, we can only tune the correct parameters for the epidemic SIR model. This
project serves as a first step in finding efficient optimization methodologies for non-
linear models under different conditions.
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Chapter 1

Introduction

In recent years, we have witnessed unprecedented public health challenges that em-

phasized the role of contagious disease modeling in understanding and managing

epidemics. The Susceptible-Infected-Recovered (SIR) model and its variants are po-

tential tools to provide insights into future outbreaks. This will be extremely helpful

in facilitating strategic public health interventions to minimize the deadly impacts as

seen in the case of COVID-19. To extract the maximal values out of these models, re-

searchers need to tune their parameters to accurately capture the disease’s dynamic.

In this paper, we approach this topic in two different ways: deterministic and prob-

abilistic. In chapter 3, we will use the variational method to tune our three studied

models, epidemic, endemic SIR, and SIRW models. Then, we will compare our result

with the Bayesian approach discussed in chapter 4 to see the effectiveness of each

method. Moreover, we will also be testing our models under noise-free and noisy

conditions in an attempt to mimic real-world cases.

The goal of this work is to offer practical tools for parameter tuning that can be

helpful to epidemiologists and public health officials in their ongoing battle against

infectious diseases. In chapter 5, we will be talking about our findings and potential

future work.
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Chapter 2

Introduction to SIR-Related

Models

2.1 Epidemic SIR Model

The infamous SIR model is widely used in predicting species’ populations and disease

spreading due to its effectiveness and simplicity. In the basic epidemic SIR model,

we have three compartments interacting with each other: Susceptible S(t), Infected

I(t), and Recovered R(t). They solve the following systems of ODEs in time:


dtS = −βIS/N

dtI = βIS/N − γI

dtR = γI

(2.1)

where β is the effective contact rate, which represents the average rate at which

infected individuals are in contact with susceptible individuals and transmit the dis-

ease, and γ is the average recovery rate, which represents the rate at which infected

individuals will recover or die, moving from group I(t) to group R(t).
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2.2 Endemic SIR Model

The endemic SIR model incorporates the demography of the populations through a

new parameter µ, which is the reproduction/death rate of the population. We assume

this rate to be constant and project that our population does not vary over time. This

specific model aims for long-term predictions of the disease.


dtS = µN − µS − βIS/N

dtI = βIS/N − γI − µI

dtR = γI − µR

(2.2)

A more complex scenario will be discussed below, but to preserve the main purpose of

our research– to accurately tune models’ parameters for presented datasets, we prefer

working with simple models first before moving on to more sophisticated systems.

2.3 SIRW Model

Long-term forecasts cannot be achieved simply through the research of the interac-

tions among the three compartments, the Susceptible (S), Infectious (I), and Re-

covered (R). The SIRW model deals with a new group called the Waning Immunity

(W ). This new compartment represents a more realistic scenario where immunity

after infection (or vaccination) wanes over time. This group consists of individuals

who move out of the Recovered compartment and will move back to the Susceptible

compartment due to the waning of immunity.



dtS = −βIS/N + χW

dtI = βIS/N − χI − γI

dtR = γI − ωR + αIW/N

dtW = ωR− αIW/N − χW

(2.3)
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In this system, β and γ are identical to the other two SIR models. ω controls how fast

recovered individuals (R) lose their immunity. The term IW
N

describes the immunity

booster action due to the contact between an infected individual and a waning one.

α is the efficiency of the boosting action.
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Chapter 3

Deterministic Approach

Our SIR-related models are nonlinear, and computing exact numerical solutions for

every new dataset received is not feasible and practical. Therefore, we turn to the

variational approach to achieve approximated solutions through the minimization of

a loss function we will later define.

3.1 Variational Method

We take the case of the epidemic SIR model with three main components — S(t),

I(t), and R(t) — and two parameters — γ, β.


dtS = −βIS/N

dtI = βIS/N − γI

dtR = γI

(3.1)

For this system, our goal is to explore the optimal set of γ and β that best fits our

system to the presented dataset. We define a loss function, which is our objective for
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minimization.

J =
1

2
(|Sdata(ti)− Scomputed(ti)|+ |Idata(ti)− Icomputed(ti)|+ |Rdata(ti)−Rcomputed(ti)|)

(3.2)

We ensure the effectiveness of our optimization by minimizing J , and the smaller J

means the more accurate our computed, or predicted, values of S, I, and R. Our

choice of to measure the absolute value error instead of the squared error sparkled

from our aim for simplicity. We note that this measure of J caused the function to

be less regular, but this did not affect our result as our method introduced later is

derivative-free. Our idea is to find β and γ, such that

β, γ = argmin
β,γ

J(S(β, γ), I(β, γ), R(β, γ)) = argmin
β,γ

J(β, γ) (3.3)

A common approach to such problems is to find the solution through the use of the

function’s gradient, we set

∇β,γJ = 0 (3.4)

Although this methodology can be highly accurate, it is computationally heavy and

time-consuming. Solving this problem requires the so-called ”adjoint” problem, which

is backward in time. So we need to solve SIR and its adjoint several times over the

entire time domain. Especially, when dealing with a complex system and the need

to perform the calculation daily, we will stumble into an ineffective process. For this

reason, we look into the trust region method that does not require the derivation

process.

3.2 Trust Region (Derivative-Free)

Trust Region methods can be applied to solve complex systems as they do not require

expensive computation power. The essential characteristic of these methods that
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contributes to this convenience is their derivative-free nature. We will use the Py-

BOBYQA algorithm [4], a built-in Python library, to solve our systems. Py-BOBYQA

is a model-based derivative-free optimization method where a local model for the

objective is constructed by interpolation and minimized on each iteration, and, more

specifically, it has its roots in Powell’s BOBYQA [7]. In this method, we construct

an interpolation-based model and minimize it on each iteration. At each iteration k,

we have a collection of points Yk, where |Yk| ∈ {n+ 1, . . . , (n+ 1)(n+ 2)/2}, and we

construct a local model for the objective

f(xk + s) ≈ mk(s) = ck + g⊤
k s+

1

2
s⊤Hks (3.5)

satisfying the interpolation conditions

mk(yt − xk) = f(yt), for all yt ∈ Yk. (3.6)

If |Yk| < (n+ 1)(n+ 2)/2, the solution to (3.6) is non-unique. We use the remaining

degrees of freedom by solving

min
ck,gk,Hk

∥Hk −Hk−1∥2F subject to (3.6), (3.7)

where ∥·∥F is the matrix Frobenius norm and the convention H−1 = 0. The value of

|Yk| is input by us, and the larger it is the more objective information is captured.

For smooth problems, the default value |Yk| = 2n+1 is used, but for noisy problems,

we use the default value |Yk| = (n+ 1)(n+ 2)/2 [3].

The next steps are done using a trust-region method[6] to ensure global conver-

gence. We keep a parameter ∆k > 0 and calculate a new step by approximately

solving

sk ∈ argmin
∥s∥≤∆k

mk(s) (3.8)
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The solution to (3.8) can be found elsewhere (e.g.[5]) so we will not go into detail

of this matter. We continue to evaluate if our function is minimized to our favor by

looking at the objective at xk + sk through

rk =
actual decrease

expected decrease
:=

f(xk)− f(xk + sk)

mk(0)−mk(sk)
(3.9)

If rk is sufficiently large, we accept the step (xk+1 = xk + sk) and increase ∆k, if not

we decrease ∆k and reject the step (xk+1 = xk).

The following section is where we apply the PyBOBYQA library to optimize

parameters for our models. More details or explanation behind the operation or

mathematical background can be found in the two papers, [4] and [3].

3.3 Variational Procedure With PyBOBYQA

3.3.1 Epidemic SIR Model

For the SIR model, We tested the consistency of our deterministic approach by run-

ning our optimization on the dataset generated by the same SIR model. To explore

the performance of the method under noisy conditions mimicking reality, we introduce

noise later in our test.

Without Noise

Our dataset is the epidemic SIR model in (2.1) with β = 0.15 and γ = 0.06, and we

input our initial guess for the parameters to be

β = 0.01, γ = 0.01, (3.10)

and bounds

β ∈ [0.0, 1.0], γ ∈ [0.0, 0.3] (3.11)
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With the same model, the epidemic SIR, to capture the behavior of this dataset, we

have our result to be

Figure 3.1: Simulation result of the epidemic SIR model

Our optimization returns the value for the parameters to be

β = 0.15, γ = 0.06000001, (3.12)

which are highly accurate, given our data parameters, β = 0.15 and γ = 0.06.

This is just a consistency test on the data that is generated by the same model

we assume for our analysis and is also noise-free.

With Noise

In reality, it is rarely the case where the data presents its true nature without any

white noise. Therefore, we wish to test our approach under the circumstance where

noise is available. We add δS, δI , and δR such that

δS, δI , δR ∈ N (0, 50.) (3.13)
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into our system’s components, S(t), I(t), and R(t). The amount of noise introduced

into the system is high, and we first turn off the ”objfun has noise” feature from

PyBOBYQA to see the impact of noise to our optimization.

Figure 3.2: Simulation result of the epidemic SIR model under noisy data and without
noise detection feature

Our optimized parameters are

β = 0.13691506, γ = 0.04482117 (3.14)

We can visibly see the large errors accounting by the introduce of noise to our system.

Now, let’s see how these errors will change if the ”objfun has noise” feature is on.
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Figure 3.3: Simulation result of the epidemic SIR model under noisy data and with
noise detection feature

Our predicted parameters to be

β = 0.14960063, γ = 0.05920766 (3.15)

The result is improved and captures the true distribution of our generated data. We

need to analyze now what happens with more complex models.

3.3.2 Endemic SIR Model

Moving to the endemic SIR model, we have another parameter, µ, to optimize. We

will slowly increase the complexity of our system to see the capability of this trust

region method in the PyBOBYQA library.

Without Noise

We generated our dataset with the endemic SIR model in (2.2) where our parameters

β, γ, and µ are 0.15, 0.06, and 0.004 respectively. We have our initial or ”guessing”
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values of our parameters

β = 0.01, γ = 0.01, µ = 0.001 (3.16)

with bounds

β ∈ [0.0, 1.0], γ ∈ [0.0, 0.3], µ ∈ [0.0, 0.5] (3.17)

Using the endemic SIR model as a predicting model, our optimization process gener-

ated the following result for the optimal set of parameters.

Figure 3.4: Simulation result of the endemic SIR model

The estimate values of our parameters for the above simulation are

β = 0.015000002, γ = 0.05999938, µ = 0.00400031 (3.18)

This optimized set of parameters approximately equal to the actual values of param-

eters in the generated dataset, and the result is proved to be consistent across our

numerous trials.
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With Noise

Next step, we gain insights into the practicality of our approach through the intro-

duction of white noise into the dataset. We make our data noisy by adding δS, δI ,

and δR such that

δS, δI , δR ∈ N (0, 50.) (3.19)

This makes our dataset very noisy as our whole population consists of only 1000

people. As we have seen from the epidemic SIR case, a high randomness in our

dataset did not have any significant effect on our optimization. We hope to explore

this aspect in the endemic SIR as well, since the endemic SIR model is more complex

than the epidemic one — the adding of one new parameter µ. We also test out the

role of ”objfun has noise” feature of the PyBOBYQA function. Firstly, we turn off

this feature and see how our predicted parameters behave

Figure 3.5: Simulation result of the endemic SIR model under noisy data and without
noise detection feature

The corresponding values for the above distribution’s parameters are

β = 0.129127966, γ = 0.0482208523, µ = 0.0000257470483 (3.20)
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Here, we can see that the errors for β and γ are considerately bigger than previous

attempt without noise, but the observed error for the generated µ is concerning when

our predicted µ is only 0.5% of the actual value.

Now, we turn on the ”objfun has noise” feature

Figure 3.6: Simulation result of the endemic SIR model under noisy data and with
noise detection feature

And the corresponding values for the above distribution’s parameters are

β = 0.14675407, γ = 0.05483139, µ = 0.00483611 (3.21)

This result is much improved, and given that our data is so noisy, our approach has

done a good job of isolating the noisy part.
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3.3.3 SIRW Model

The SIRW model has another compartment W (t), so our new objective function J

will be alerted to

J =
1

2
(|Sdata(ti)− Scomputed(ti)|+ |Idata(ti)− Icomputed(ti)|

+ |Rdata(ti)−Rcomputed(ti)|+ |Wdata(ti)−Wcomputed(ti)|)

(3.22)

Similar to before, we will first proceed to generate our data with a SIRW model,

where β = 0.5, χ = 4, γ = 0.2, ω = 10, and α = 50. Our initial ”guest” for our

parameters will be

β = 0.1, χ = 1.0, γ = 0.1, ω = 1, and α = 1, (3.23)

and the bounding conditions are

β ∈ [0.0, 0.5], χ ∈ [0.0, 10.0], γ ∈ [0.0, 0.5], ω ∈ [0.0, 20.0], α ∈ [0.0, 100.0] (3.24)

This gives us the following result
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Figure 3.7: Simulation result of the endemic SIRW model

with the set of parameters

β = 0.49966081, χ = 3.53983071, γ = 0.19938962, ω = 3.37446941, and α = 9.92747379,

(3.25)

while the predicted β and γ are promising, the rest of the parameters indicate the

existence of significant errors. We have foreseen this outcome since the SIRW model

is more sophisticated and the trust region method has troubles to accurately approx-

imate its true solution. Taking this in mind and acknowledging the availability of

data, we turn our approach into a probabilistic one that will be discussed in the next

chapter.

3.3.4 Mixed Models

In this section, we will not use one model to both generate and capture the dataset.

We want to explore the two cases: first, when our predicting model is more capable

to capture the data behavior itself, and second, when our predicting model is unable

to fully model the data.
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Epidemic SIR Model as The Data Generator

We generate our data with the epidemic SIR model with β = 0.15 and γ = 0.05, then

we use the endemic SIR model to explore insights about this dataset. Keeping all

bounds and initial guesses identical to those in 3.3.2. We have our result to be:

Figure 3.8: Simulation result of the endemic SIR model with the epidemic SIR model
as a data generator

and the estimated parameters turn out to be:

β = 0.15, γ = 0.05000001, µ = 0. (3.26)

We can see that our endemic SIR model perfectly captured the distribution of the

data.

Endemic SIR Model as The Data Generator

This case is more common in reality where there are infinite unobserved factors.

We generate our data with the endemic SIR model with β = 0.15, γ = 0.05, and

µ = 0.004. Next step, we use the epidemic SIR model as the predicting tool with all

bounds and initial guesses identical to those in 3.3.1.
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Figure 3.9: Simulation result of the epidemic SIR model with the endemic SIR model
as a data generator

our estimated parameters are:

β = 0.0.14163136, γ = 0.050564961 (3.27)

The epidemic SIR model somewhat forecasted the behavior of the endemic SIR model,

and it is normal to have our estimated β and γ different than the actual values, since

our predicting model lacks the sophistication to model the movement determined by

µ.
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Chapter 4

Bayesian Approach

With a probabilistic approach, we update our parameter estimation based on the new

recorded data points. Using this methodology, we overcome the expensive computa-

tion required for complex, nonlinear systems. Taking into account new data, we also

hope to capture the true nature of datasets generated by the SIR, SIRE, and SIRW

models.

4.1 Kalman Filter Method

One of the probabilistic approaches is the Kalman Filter Method. We will first look

at the foundational idea behind the KF method for linear problems, then we will

extend our scope to nonlinear systems with the use of the Ensemble Kalman Filter

(EnKF). We acquire our knowledge about the topic through the two books [1] and

[2]. More details about each step and mathematical explanations can be found in

there.

For KF, we have two main states: prediction and correction. Our goal is to find

the optimal set of parameters for the systems we believe capture the true nature of the

phenomenon, COVID-19 in this case. For the prediction step, we utilize the tuned set

of parameters that best describe the historical data to forecast the value of the next
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observation. After the revelation of the actual value for our predicted observation,

we account for this disparity, or error, by re-tuning our set of parameters accordingly.

We now walk into the details of these two steps.

Prediction Step

At the time index, k.

u(k) = Ak−1u
(k−1) + b(k−1) (4.1)

where b(k−1) is a Gaussian white noise in time representing the model error, i.e.,

b(k) ∼ γ(0, Qk), and the errors are not correlated in time, i.e.,

ξ(b(k)b(l),T ) = Qkδkl (4.2)

Here δkl is the Kronecker delta (it equals 1 if k = l and 0 elsewhere). The measurement

process is denoted by

z(k) = Hku
(k) + v(k) (4.3)

Where v(·) is a Gaussian white noise with variance matrix Rk and assumed uncorre-

lated with b(·).

What we have is the true state, u(·), and we will first perform our predicting with

the deterministic estimate based on the model

u(k)
p = Ak−1u

(k−1)
∗ (4.4)

Where u
(k−1)
∗ is the ”true” state u(k−1).

The next step, the correction step, is where it involves the adjustment for the

error between the predicted and actual value.
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Correction Step

u(k)
c = Lku

(k)
p +Kkz

(k) (4.5)

Estimation error:

e
(k)
p = u

(k)
p − u(k)

e
(k)
c = u

(k)
c − u(k)

(4.6)

By noticing that e
(k)
p = −b(k−1) by construction and ξ(e

(k)
c ) = 0 by unbiased correction,

we can drive that

u(k)
c = u(k)

p +Kk(z
(k) −Hku

(k)
p ) (4.7)

where z(k)−Hku
(k)
p is the innovation, i.e., what is new in z(k) and that is not predictable

by u
(k)
p , and Kk is called the gain matrix, since it weighs the improvement brought to

the deterministic estimate by the measures.

As we do not know the true state, so we replace u
(k−1)
∗ with u

(k)
c (best estimation)

u(k)
p = Ak−1u

(k−1)
c (4.8)

With this equation, we can have

e(k)p = u(k)
p −u(k) = Ak−1u

(k−1)
c −u(k) = Ak−1(u

(k−1)
c −u(k−1))−b(k−1) = Ak−1e

(k−1)
c −b(k−1)

(4.9)

As our research only concerned with one-step prediction, the variance matrix of e
(k)
p

and e
(k)
c are

Λ
(k)
p = ξ(e

(k)
p e

(k,T )
p )

Λ
(k)
c = ξ(e

(k)
c e

(k,T )
c )

(4.10)

From (4.9), we can derive that

e(k)p e(k),Tp = Ak−1e
(k−1)
c e(k−1),T

c AT
k−1+b(k−1)b(k−1),T+Ak−1e

(k−1)
c b(k−1),T+b(k−1)e(k−1),T

c AT
k−1

(4.11)
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Since b(k−1) has no correlation with e
(k−1)
c , this leads to

Λ(k)
p = Ak−1Λ

(k−1)
c AT

k−1 +Qk−1 (4.12)

From the above equation, we can derive the Joseph formula.

Λ(k)
c = (I −KkHk)Λ

(k)
p (I −KkHk)

T +KkRkK
T
k (4.13)

This leads to our Kalman gain matrix

Kk = Λ(k)
p HT

k (HkΛ
(k)
p HT

k +Rk)
−1 (4.14)

4.1.1 Ensemble Kalman Filter

The goal of the research was to deal with nonlinear epidemic systems such as SIR,

SIRE, and SIRWmodels, and the linear Kalman Filter method is not a feasible option.

Therefore, the focus shifts to the Ensemble Kalman Filter(EnKF) method that while

maintaining the beauty of the Kalman Filter method can solve nonlinear systems.

EnKF integrates observational data with models to estimate the state of a dynamic

system and is designed to handle non-linear systems more effectively by using a Monte

Carlo approach to represent the probability distributions of state estimates [1].

Initialization

We start with an ensemble of state estimates that can be generated by adding random

perturbations to the initial condition.

xf
i,0 = x̄0 + δi,0, (4.15)
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where xf
i,0 is the ith ensemble member at time t = 0, x̄0 is the mean initial state

estimate, and δi,0 represents the perturbation added to the mean state to generate

the ith ensemble member.

Forecast Step

We have an observation set:

yi,k = yk + ui, (4.16)

with ui ∼ N (0, R), where R is the observation error covariance matrix. yi,k is the

observable variable, number of infections, for the ith ensemble at time k. Let’s assume

we havem ensembles, and at each iteration k, we compute the ensemble means, where

H is the observation model,

x̄f
k = 1

m

∑m
i=1 x

f
i,k

ū = 1
m

∑m
i=1 ui

ȳfk = 1
m

∑m
i=1 H(xf

i,k)

(4.17)

and the normalized anomalies

[Xf ]i,k =
xf
i,k−x̄f

√
m−1

[Yf ]i,k =
H(xf

i,k)−ui−ȳfk+ū
√
m−1

(4.18)

From this, we can now compute the Kalman gain matrix:

Kk = Xf
k (Y

f
k )

T{Y f
k (Y

f
k )

T}−1 (4.19)

where Xf
k is the forecasted state estimate of the system at time k and Y f

k is the

predicted measurement at time k.
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Update Step

For i = 1, . . . ,m

xa
i,k = xf

i,k +Kk(yi,k −H(xf
i,k))

xf
i,k+1 = M(xa

i,k)
(4.20)

This is the basic idea behind the operation of EnKF, now we will go into the testing.

4.2 Results

As we have gone over the procedure behind the Kalman Filter and Ensemble Kalman

Filter methods, we now utilize the built-in function EsembleKalmanFIlter from the

filterpy.kalman library in Python. More information about the library and the func-

tion can be found in the Jupiter notebook published at [github].

Before diving into any specific model, we need to set up the general program that

will be used across the three cases. We have the initial conditions for the total number

of population, N = 10000, while S(t) = 9999, I(t) = 1 at time t = 0. We also adjust

our prediction model daily in the first hundred days

tmax = 100 and dt = 1 (4.21)

The number of ensembles refers to the number of individual forecasts or simulations

that are run in parallel, each representing a possible state of the system being studied.

Then, these ensembles will be used to study the approximate probability distribution

of the system’s state at a given time. While a high number of ensembles can capture

the full range of possible system states or uncertainty, this increases computational

demands. Therefore, it is essential to choose an optimal number of ensembles, and in

our case, we fix the number of ensembles to be 40 for the endemic and epidemic SIR

models and will increase this number when dealing with a more complex system like
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SIRW.

The setup for the initial covariance matrix, R, and process noise matrix, Q, is

tricky as it depends on prior knowledge we have for our case. Moreover, our case,

for example, the epidemic SIR model, will be running our program for the system in

(2.1) plus

dtβ = 0

dtγ = 0
(4.22)

covcompartment = 100, covparamter = 0.01 (4.23)

The high covariance values for the S, I, and R reflect a high degree of initial

uncertainty in thee counts of susceptible, infectious, and recovered individuals due to

under-reporting, asymptomatic cases, and delays in data collection. We set the initial

covariance of β and γ to be low because we are confident with our initial guess for the

parameters due to the previous estimates we have conducted above. However, these

values can always be adjusted from case to case, and we will not go deeper into this

topic in this paper. More information about the sensibility of the initial covariance

matrix can be found elsewhere in other research.

Q =



0.01 0 0 0 0

0 0.01 0 0 0

0 0 0.01 0 0

0 0 0 0.001 0

0 0 0 0 0.001


(4.24)

0.01 represents the variance accounting for the random fluctuations in the number of

each compartment, and 0.001 is the value of the variance for that of the parameters.

For the sake of simplicity, we will keep these two values constant throughout our

paper.
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4.2.1 Endemic SIR Model

Without Noise

We generate our dataset with the endemic SIR system in (2.1) with β = 0.3 and

γ = 0.1. Our initial guesses of β and γ are 0.1 and 0.5 respectively. Lastly, we will

proceed to run our approach

Figure 4.1: Simulation result of the endemic SIR model with the Ensemble Kalman
Filter method

The second plot shows how the parameters are tuned, and in less than twenty

days, the two parameters start to converge to the true values. In the first plot, our

model forecasted the S, I, and R compartments perfectly, but this is not always a

good sign, and we will see later why this is the case.
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With Noise

The noise is introduced to our data:

zS ∼ N (Strue[i], 10), (4.25)

zI ∼ N (Itrue[i], 10), (4.26)

zR ∼ N (Rtrue[i], 10), (4.27)

and our optimization gives the following result

Figure 4.2: Simulation result of the endemic SIR model with the Ensemble Kalman
Filter method with noise

Our approximation for parameters still holds regardless of some fluctuations within

our first hundred days.
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4.2.2 Epidemic SIR Model

For the epidemic SIR Model, our dataset is generated by the epidemic SIR system in

(2.2) with β = 0.3, γ = 0.1, and µ = 0.001. Our initial guess for the three parameters

are

β = 0.2, γ = 0.01, µ = 0.005 (4.28)

Due to the sensibility of β, we also change our covariance for β in the initial covariance

matrix to 9.

Without Noise

Figure 4.3: Simulation result of the epidemic SIR model with the Ensemble Kalman
Filter method

In the second plot, the estimated value for β varied a lot at first then converged to

its true value. As the number of optimized targets increases, our approach begins to

give out more fluctuating results. This will be shown more clearly in the case of the
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SIRW model.

With Noise

We now add noise into our data following:

zS ∼ N (Strue[i], 1), (4.29)

zI ∼ N (Itrue[i], 1), (4.30)

zR ∼ N (Rtrue[i], 1). (4.31)

With such noise, our result turns out to be

Figure 4.4: Simulation result of the epidemic SIR model with the Ensemble Kalman
Filter method with noise

Although the introduction of even small white noise leads to an inaccurate ap-

proximation of our parameters, this can be controlled by adjusting the Q matrix.

However, this is beyond the scope of this paper, and hopefully, we can address this
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issue in another paper.

4.2.3 SIRW Model

The SIRW model is the most complicated system in our paper, but surprisingly,

although we keep everything about the initial covariance and Q matrix identical to

what we mentioned in (4.23) and (4.24), the outcome is promising. The only thing

we changed in our testing for the SIRW model that differs from that of the endemic

SIR model is that we increased the number of ensembles from 40 to 400. This action

is necessary, given the complexity of the SIRW model.

As before, we generate our dataset with the SIRW model in (2.3) with

β = 0.3, γ = 0.05, θ = 0.1, ω = 0.01, α = 0.02. (4.32)

Our initial guess is

β = 0.2, γ = 0.03, θ = 0.12, ω = 0.02, α = 0.01. (4.33)

Without Noise

Finally, we run our program:
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Figure 4.5: Simulation result of the epidemic SIRW model with the Ensemble Kalman
Filter method

After the sixtieth day, all of our parameters converged to the true values presented

in our generated dataset. This outcome gives hope to what the Ensemble Kalman

Filter method can do when dealing with sophisticated, nonlinear models.

With Noise

Next step, we add some noise to our data:

zS ∼ N (Strue[i], 1), (4.34)

zI ∼ N (Itrue[i], 1), (4.35)

zR ∼ N (Rtrue[i], 1), (4.36)

zW ∼ N (Wtrue[i], 1). (4.37)
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We first introduce a little bit of noise to see how the optimization process deals with

this

Figure 4.6: Simulation result of the epidemic SIRW model with the Ensemble Kalman
Filter method with noise

Our parameter tuning seems fine with a small amount of white noise, but what if

the data is noisier?

zS ∼ N (Strue[i], 10), (4.38)

zI ∼ N (Itrue[i], 10), (4.39)

zR ∼ N (Rtrue[i], 10), (4.40)

zW ∼ N (Wtrue[i], 10). (4.41)
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Figure 4.7: Simulation result of the epidemic SIRW model with the Ensemble Kalman
Filter method with more noise

As the uncertainty increased, our parameter optimization did not perform well.

However, keep in mind that the matrix Q that we have kept constant throughout our

paper can potentially help with this situation.
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Chapter 5

Conclusion

5.1 Discussion

5.1.1 Trust Region Method

Our deterministic approach with PyBOBYQA proves its practicality for basic models

like epidemic and endemic SIR. This approach also showcases the capability to deal

with noisy data. However, our derivative-free method failed to solve the SIRW model.

The reason for this can be due to the complexity of the model. Another interesting

result from this chapter 3 is about the multiple model case. The epidemic SIR model

is less sophisticated than the endemic SIR model, and the endemic one was able to

capture the behavior of the data generated by the epidemic SIR accurately. In other

cases, the epidemic SIR model also performed well when attempting to model data

that has an unknown variable to it — the role of parameter µ. Although this is an

exciting finding, its practicality is still debatable. We have to answer the question of

how accurate the estimated model by the epidemic SIR is and if it has any predicting

power, how its precision will change over time.
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5.1.2 Ensemble Kalman Filter

Our probabilistic approach with the Ensemble Kalman Filter is useful for the cases

of the epidemic SIR model and the SIRW model but not the endemic SIR. Unlike our

deterministic approach, the complexity of a model does not seem to have a significant

impact on EnKF. Although producing excellent results for all three cases under the

noise-free condition, our EnKF approach is sensitive to noise. Introducing a small

amount of white noise to the endemic SIR, we saw its incapability to optimize β.

However, the noise test with the SIRW model turned out to be quite precise for the

case of adding little noise. Another noticeable result is that EnKF took longer to

have the parameters converge to the actual values as the complexity of the model

rises.

5.2 Future Perspective

We will investigate other features in the EnKF as the initial covariance or noise process

matrix. We believe that these features affect the approach’s sensitivity to noise. For

example, if we have knowledge of how random our datasets are, we can alert our

approach so that the updating will be less influenced by new information since it can

be likely caused by noise. Moreover, we want to understand the reason behind the

difference in performance under noisy datasets between the case of epidemic SIR and

SIRW. It is not very intuitive to see the model performing better with more complex

systems. Lastly, we want to see how the change in initial conditions will impact

our prediction as a bad guess may result in a completely wrong or time consuming

solution.
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