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Abstract

Structure, Dynamics, and Forces of Jammed Systems
By Kenneth Desmond

Soft materials are commonplace in our daily lives and are unique because they behavior
solid like in some cases and liquid like in other cases. Examples include shaving cream,
mayonnaise, peanut butter, toothpaste, cosmetic products, and paint. The solid like re-
sponse of a soft materials can be controlled by the particle concentration, By increasing the
particle concentration the system can undergo a jamming transition, where motion of the
individual particles becomes increasingly difficult due to crowding effects. This jamming
transition can occur in a variety of materials, In this dissertation, we study the jamming
transition in three different scenarios: the jamming/glass transition in colloids, influence
of boundaries on the jamming point, and the jamming transition of frictionless emulsion
droplets.

The first system we study is a concentrated binary colloidal suspensions. We use con-
focal microscopy to directly observe particle motion within dense samples with packing
fractions ranging from 0.40-0.59. To study temporal fluctuations we use the dynamic sus-
ceptibility χ4, and find that the dynamical heterogeneity of the small and larger particles
are qualitatively similar with the smaller particles undergoing slightly larger fluctuations
relative to their size. The temporal fluctuations give rise to length scales and time scales
which grow as the jamming transition is approached, although the form of this growth is
ambiguous with respect to power-law or exponential growth.

The second system we study is random packing of disks and spheres within confined
geometries. Studies of random close packing have advanced our knowledge about the struc-
ture of systems such as liquids, glasses, emulsions, granular media, and amorphous solids.
When these systems are confined, their structural properties change. To understand these
changes we study random close packing in finite-sized confined systems, in both two and
three dimensions. The presence of confining walls significantly lowers the overall maximum
area fraction (or volume fraction in three dimensions). A simple model is presented which
quantifies the reduction in packing due to wall-induced structure. This wall-induced struc-
ture decays rapidly away from the wall, with characteristic length scales comparable to the
small particle diameter.

The final system we explore is a new quasi-two-dimensional model system we have
developed to probe the jamming transition. Our system consist of confining oil-in-water
emulsion droplets between two parallel plates, so that the droplets are squeezed into quasi-
two dimensional disks, analogous to granular photoelastic disks. These droplets have no
static friction and are highly deformable. To quantify the internal forces in our experiments,
we present an experimental protocol to determine the force law for droplets in contact. We
use our model system to characterize various critical scaling phenomena associated with the
jamming transition and the force chain network. We also flow our quasi-2D emulsions in
a flow geometry analogous to pure shear to better understand the microscopic events and
stress relaxations within jammed materials.
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1

Chapter 1

Introduction

1.1 The Jamming Transition

The familiar three states of matter - gas, liquid, and solid - accurately describe the phases

of many materials, and for those that fall under these categories, their phases can be tuned

by control parameters like temperature and pressure. By tuning the phase, the structure

and mechanical properties of a material can be altered. For instance, in the liquid phase,

the molecules are structurally disordered and the material can flow, but in the solid phase

the molecules have long range structural order that provides the material with rigidity.

While the familiar three states of matter are adequate for classifying many materials,

there are many other materials called soft materials that are more difficult to classify because

they share properties common to both liquids and solids. Examples of soft materials are

colloids (tiny solid particles suspended in a liquid), emulsions (a mixture of two immiscible

liquids), foams (collection of air bubbles), and granular materials (collection of solid particles

like sand), and the commonality between these examples is that each material is comprised

from a collection of particles (either solid particles or liquid particles). The response of

these materials to external stresses consist of a liquid like response (dissipates energy by

flowing) and a solid like response (stores energy by internal elastic deformations).

Understanding the mechanical properties of soft materials is important for many appli-

cations and natural processes. Colloids are essential in many technical applications ranging

from inks and paints to lubricants and drilling fluids [1–4]. Granular materials appear in

many industrial applications and geological processes such as silo flows, pharmaceutics,
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landslides, tectonic plates, etc. [5–9]. By usage in tons, only water is manipulated more

than granular matter [10]. Foams and emulsions appear are commonly encountered in ev-

eryday lives in the household such as shaving cream, mayonnaise, and beer [11–14], and the

rheology of soft materials we eat influence the taste [15–17]. Despite the ubiquity of these

materials, we still lack the underlying mechanisms that give rise to the diverse behavior

observed in these materials, and to this day there is not a single constitutive law that can

be derived from fundamental principles to predict the fluid and solid like response of these

materials [18, 19].

Similar to traditional liquids and solids, the mechanical properties of soft matter systems

can be tuned by controlled parameters such as the packing fraction φ, where φ is the

percentage of the system’s volume occupied by particles [20]. At low φ these systems

can easily flow like liquids, but at large φ they behave more like solids. At a critical φc

the system jams into a disordered state and can no longer flow because particles are too

crowded for microscopic rearrangements to occur when external stresses are applied [21, 22].

This liquid to solid like transition for soft materials is known as the jamming transition,

and it’s analogous to the dramatic change in the mechanical response of a traditional liquid

undergoing a freezing transition [23–25]. Although there are open question as to whether the

jamming transition is the result of a true underlying phase transition or if the crossover from

liquid to solid like behavior has little universality in the physical mechanism [26]. We note

that crystalline systems can jam by forming a single structure such that the particles are too

crowded for microscopic rearrangements to occur. However, these materials are classified

as crystals and to distinguish from crystals, for which we already have successful theories

to describe their mechanical properties, jammed materials are by definition disordered.

The combination of control parameters where a system jams defines the jamming point J.

When a system is jammed it is trapped in a small region of phase space with no possibility

of escape, and while φ is a crucial parameter underlying jamming, there are also many

other parameters that control the ability of system to explore phase space. For instance, by

raising the temperature or increasing the stress a jammed system may have enough energy

to unjam by jumping to a different region of phase space. For soft matter systems, three

commonly discussed control parameters are the temperature T , interaction potential U , and
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an externally applied stress σ [27]. In the case of colloids and emulsions the particles may be

small enough to undergo Brownian motion and temperature plays a role. In other systems

the constituent particles may have electrostatic interactions where U plays a significant

role [27]. In highly attractive systems like colloidal gels the constituent particles can form

tenuous jammed structures at much lower volume fractions [28, 29], and in cohesive granular

materials (i.e. flour), the volume fractions for jamming can be as low as φc ∼ 15% [30].

However, in the case of hard sphere interactions jamming occurs around φc ∼ 64% [21, 22].

When discussing jamming, it doesn’t appear necessary to mention if the system is a

colloid, emulsion, foam, or granular material. It seems more important to consider the

state variables such as φ, T , U , and σ and maybe other parameters like deformability

and particle size. After all, these materials are distinguishable from one another by how

the constituent particles interact and how the constituent particles explore phase space.

This led Liu and Nagel [25] to propose that the jamming transition may be universal and

determined only by the state variables, but this conjecture is still unclear 14 years later [24].

Before continuing the discussion on the universality of jamming it is worth briefly dis-

cussing the origins for the solid and liquid like response of soft materials. In the presence of

an external stress the constituent particles of a soft material accommodates that stress by

pressing against one another and deforming [22, 31–33]. As the particles deform they store

mechanical energy giving rise to a solid like response. If the stress is too large, regions in the

sample become unstable, and instead of continuing to deform, groups of neighboring parti-

cles release their stored energy and locally rearrange leading to flow of the material [34–37].

As the particles rearrange, they slide past one another dissipating energy, giving rise to

a viscous like response [19, 38, 39]. The bulk mechanical properties of soft materials are

then related to how the stresses are distributed internally and how groups of particles rear-

ranged [21, 40, 41]. Understanding the links between structure, dynamics, and mechanical

properties is crucial in developing theories to predict the liquid and solid like response of

soft materials [21, 42, 43]. In this dissertation, we measure some of these links for various

experimental setups.

One aspect of the universality of the jamming transition is understanding how certain

material properties, like shear modulus or viscosity, scale as a control parameter is varied
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towards the jamming point and if these scaling laws are consistent between different soft

materials [21, 22, 24, 26]. If a particular scaling relationship is consistent for many different

soft materials, then it would suggest that this relationship is governed by a universal mecha-

nism underlying the jamming transition [24, 26]. How to probe these universal mechanisms

is not so clear, but establishing why various parameters are related is invaluable towards

developing a physical theory.

For a soft matter system, there are many ways to characterize its structure, dynamics,

and mechanical properties to establish possible universal scalings [22, 44]. As the jamming

transition is approached, many of these characteristics either diverge or tend to zero [21].

For instance, below the jamming transition (φ <φ c) in colloids, particles can rearrange with

one another on some typically time scale τ , but as the jamming transition is approached,

τ diverges as motion cease to exist [45–50]. In foams and emulsions as the jamming tran-

sition is approach from above (φ > φc), the shear modulus G vanishes and tends to zero,

since below the jamming point droplets are not in contact and there is no resistance to

motion [22]. Interestingly in simple numerical models, many of the properties characteriz-

ing the structure, dynamics, and mechanical properties show critical scaling analogous to a

true phase transition. For instance, τ ∼ (φ− φc)γ and G ∼ (φ− φc)ψ [22, 31, 51]. This has

led some to speculate that the jamming transition may be like a new phase transition [26].

In the remaining sections of this chapter we elaborate further on the various parameters

characterizing soft materials and various critical scaling laws.

In this dissertation we present work on a variety of systems related to the jamming

transition, and the rest of this chapter is broken down into sections providing background

material on each system studied. The first system we study is the colloidal glass/jamming

transition and the scaling laws associated with the diverging time and length scales as the

glass/jamming point is approached. Sec. 1.2 provides background on the glass/jamming

transition of colloids and our project. The second system we present in this dissertation

is a numerical study on the influence of boundaries on the packing of hard disks in 2D

and hard spheres in 3D. An important aspect of the jamming transition and other systems

is how the boundaries influence the packing of the constituent particles. In Sec.1.3, we

provide background on packing and the influence of boundaries. The last topic we present
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in this dissertation is a new experimental model system to probe the jamming transition

of frictionless 2D disks, and we study both the static and flow properties of this model

system. Section 1.4 discusses background material related the theoretical predictions for

the jamming properties of the frictionless particles, and Sec. 1.5 discusses theory related to

the flow of soft materials near the jamming point. The aim of the last two projects is to

verify theoretical predictions for the properties of soft materials, and therefore, we restrict

the background discussions in these sections to the untested theoretical results we intend

to test.

1.2 Ideal Glass Transition and Using Colloids as an Experi-

mental Model

As the temperature of a molecular glass-forming liquid is lowered it undergoes a liquid to

solid like transition, where the viscosity increases by many orders of magnitude until it

mechanically behaves like a solid below the glass transition temperature Tg. The ubiquity

of glasses in our everyday life and their occurrence in natural processes makes the glass

transition an essential field of study. Glasses have been used for years in the optical sciences,

many polymers used today are noncrystalline solids, and it’s been observed that the glass

transition plays a vital role in food preservation [52]. Glassy metals have been useful to

scientist and engineers since their material properties differ from the crystalline state [53].

Also, natural processes can form glasses such as volcano eruptions, and it’s thought that

most of the water in the universe is in the glassy phase [54].

In many scenarios when a traditional liquid is cooled, it undergoes a crystalline phase

transition and behaves mechanically as a solid, and so it may not be too surprising to learn

that molecular glass-forming liquids behave like solids when cooled. However, unlike a

crystalline solid, the molecules within a glass-former are not arranged periodically. Instead,

the spatial arrangement of the molecules is identical to the spatial arrangement of the

molecules within a liquid [55]. It’s this mixed behavior of a glass looking like a liquid, but

yet behaving like a solid that make the study of the glass transition fascinating [56]. How

can a material with a liquid microscopic structure behave macroscopically like a solid? The
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answer to this question has to do with jamming.

As a glass former cools, its volume and thermal energy decrease. Once the glass tran-

sition temperature is reached, the molecules are too crowded and lack the thermal energy

to relax (or rearrange) fast enough to reach an equilibrium configuration within reasonable

human time scales [56]. As the temperature is lowered further below Tg it becomes even

more difficult for the molecules to rearrange and the system becomes more rigid. The pre-

cise value of Tg is only empirically defined as the temperature below which the material

has become too viscous to flow on a reasonable timescale [52]. It’s difficult to put a precise

definition on “reasonable”, but typically the temperature where the viscosity exceeds 1013

Pa·s is defined as Tg [55]. For reference, the viscosity of water is 10−3 Pa·s.

While the overall motion of the molecules slows upon approaching the glass transition,

the dynamics become more spatially and temporally heterogeneous. Some regions of the

sample exhibit faster dynamics than the rest, and over time these mobile regions appear

and disappear throughout the sample [57]. Particles within the mobile regions move coop-

eratively, forming spatially extended clusters and strings [58–60]. The length scale of these

regions grow as the glass transition is approached, and the length scales are typically on

the order of 2-4 particle lengths [58, 61–64]. The connection between the slowing dynamics

and spatio-temporal heterogeneity is still not well understood [65, 66].

More formally, the glass transition relates to non-ergodicity, the temperature at which

the molecules can not explore all the configurations necessary to reach equilibrium [67]. To

make the glass transition temperature well defined, as oppose to the empirical definition,

Tg can be defined as the temperature where non-ergodicity sets in. The precise location of

the non-ergodicity, and the functional form governing the growth of the relaxation time as

Tg is approached, remain largely open issues [51]. Since both the glass transition and the

jamming transition relate to the slowing down of the internal dynamics, it has led some to

speculate that there is a connection between the two [24, 67]. If glasses are truly governed

by a glass transition, then the dramatic changes in the dynamics as Tg is approached are

governed by some underlying mechanism related to why non-ergodicity sets in, while a

jamming transition picture would suggest that the change in dynamics as Tg is approached

is governed by an underlying mechanism related to motion ceasing to exist at a critical
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temperature Tc (or jamming point J) and non-ergodicity at Tg is a side effect. It is still

a controversy as to whether there is a connection between Tg and point J [24]. However,

a larger contributor to the glass transition in molecular systems is the crowding of the

molecules [24, 25, 67], and so the concept of jamming is still applicable.

To simplify the picture of the glass transition, it can be modeled using a hard sphere

system, where the only contributor to the glass transition is the crowding of particles. In a

hard sphere system, particles can diffuse around, but can never overlap with one another.

The key control parameter is the volume fraction φ, and an increase in φ leads to more

crowding of particles and a longer relaxation time, analogous to a decreases in temperature

for molecular glass formers. As the volume fraction is increased, the system reaches the glass

transition φg when the system becomes non-ergodic. Similar to the study of molecular glass

formers, the location of the non-ergodicity and the functional form governing the growth of

the relaxation time as φg is approached is still unresolved [51]. Most studies report a φg ≈

0.57-0.59. Although it is believed that a truly non-ergodic state is obtained at larger φ [51].

To experimentally probe the hard sphere glass transition, a common technique is to

study the motion of colloids [68]. Colloids are small solid particles suspended in a solvent.

For the context of studying the glass transition, the colloids are small enough (roughly

10 − 5000 nm in diameter) so they can undergo Brownian motion. Like the hard sphere

model, the colloids can diffuse around, but never overlap. By coating the colloids with poly-

12-hydroxystearic acid and adding salt to the solution the interactions between the colloids

can be significantly reduced to give a hard sphere interaction between colloids [68–70].

The glass transition in colloidal samples has been studied extensively by light scattering,

microscopy, and other techniques. Colloidal samples exhibit many behaviors seen in molec-

ular glasses, such as dramatic increases in viscosity [71, 72], strongly slowing relaxation

time scales [45–51], microscopic disorder [73], spatially heterogeneous dynamics [74–77],

aging behavior for glassy samples [48, 78–83], and sensitivity to finite size effects [84, 85].

Light scattering allows careful study of the average behavior of millions of colloidal parti-

cles, while microscopy techniques observe the detailed behavior of a few thousand particles.

These complementary techniques have resulted in connections between different aspects of

glassy behavior: for example, showing that aging is temporally and spatially heterogeneous
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[45, 48, 75, 76, 78, 79, 86].

The aim of Chapter 2 in this dissertation is to quantify the dynamical heterogeneity in

colloidal glasses to test if the slowing of the dynamics are governed by an equation related

to a jamming transition or by an equation govern by non-ergodicity (a glass transition). To

quantify the dynamical heterogeneity of molecular glasses, Glotzer et al. [66] proposed using

a four-point susceptibility measure χ4 to quantify the correlation in the dynamics between

any two points in space within some time window ∆t. Glotzer et al. using numerical and

theoretical calculations show that in molecular glasses there is a growing time scale with

decreasing temperature associated with larger and larger groups of molecules needing to

cooperatively rearrange [87], and this growing time scale was shown experimentally to exist

for molecular glass formers [88]. The actual value of χ4 is a measure of the average number

of particles whose dynamics are correlated, which in turn relates back to the spatial hetero-

geneity [51, 66]. To compute χ4, the dynamics must be observed over some time window

and the value of χ4 is sensitive to this time window. There is a particular time window

where χ4 is a maximum corresponding to a relaxation time τ over which the dynamics are

most heterogeneous.

Two very popular models predict a divergence in the time scale at a critical φc. The

first model Vogel-Tammann-Fulcher (VTF) is an empirical model and obeys the form

τ = τ0 exp(E/(1− φ/φc)), (1.1)

where τ0, E, and φ0 are all fitting parameters [52, 89–92]. In the VFT law, the divergence in

the time scale takes place at φ0 which is expected to be the packing fraction at which diffusive

motion should cease [51]. This should occur at the jamming point J or φJ . However, as

pointed out by Brambilla et. al [51], there is a debate as to whether the divergence predicted

by VFT should occur at the jamming point or at a slightly different packing fraction. If

the VFT model or a similar model with a divergence in the time scale associate with φJ is

an accurate description for the divergence in τ , then it demonstrates a direct link between

the glass transition and the jamming transition. The second model, Mode Coupling Theory

(MCT), is an exact theoretical prediction for hard sphere systems using ideas related to
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non-ergodicity (there is nothing explicit pertaining to jamming in the theory). The model

predicts that the time scale should diverge as

τ = τ0(1− φ/φc)
γ , (1.2)

where τ0, γ, and φc are the fitting parameters [93]. φc in this model takes a different

meaning with the divergence predicted to occur near the glass transition volume fraction,

not at random close packing. In light scattering experiments performed by Brambilla et.

al on 10% polydisperse colloidal samples they found φc ≈ 0.59, slightly above the glass

transition volume fraction [51].

In Chapter 2, we present experimental results on the colloidal glass transition. We

characterize the dynamical heterogeneity of the colloids using χ4 to obtain a relaxation time

τ . So far χ4 has not been applied to the individual motion of colloids to characterize the

dynamical heterogeneity as the glass transition is approached. To address the open question

of the functional form that governs the growth of the relaxation time as φg is approached

we fit our data to the VFT and mode-coupling models. This question also relates to the

precise location of the critical point for the glass transition, since each model has a widely

different critical point. With the range of volume fractions presented in Chapter 2 we are

not able to conclusively show which model fits better, similar to situations that exists when

modeling molecular glasses data [94]. Both models capture and predict the time and length

scales associated with dynamic heterogeneity, and the derived fitting parameters of both

compare well to expected values.

1.3 Packing and the Influence of Boundaries

Random packings are inherent to a wide range of problems including the packing of living

cells [95], the arrangement of molecules in a liquid [96, 97], the processing of ceramics [98],

and the molecules in amorphous solids [99]. Essential to the ideal of jamming in granular

media [100–103], emulsions [104], and colloids [105] is that the constituent particles are

randomly disordered. Knowing how these systems pack is very important for understand-
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ing bulk characteristics such as their rheological response, hydrostatics, mass and energy

transport, sonic transmission, electrical properties, and optical properties [106]. To learn

how particles randomly pack in these complex systems, the jamming of disks in 2D and

spheres in 3D is often used as a simple model, making the study of the jamming transition

indirectly related to a host of other physical problems.

Interestingly the structure and jamming point φc of randomly packed disks and spheres

is sensitive to a range of external factors, giving the model some flexibility in explaining

the variability seen in more complex materials. A large contributor controlling the struc-

ture and jamming point is the protocol to initialize the packing. In numerical simulations,

random packings are generated using either rate-dependent densification algorithms, energy

minimization approaches, Monte Carlo schemes, and “drop and roll” algorithms [95]. These

different protocols give φc ∼ 0.60 - 0.68 [95]. In experiments, often tapping methods or flu-

idization methods are used giving a φc ∼ 0.55 - 0.64 [97, 103, 107, 108]. Also polydispersity

in particle diameters can influence the jamming point [109–114].

Another critical factor that can influence the jamming of disks and spheres is the con-

tainer [98, 115–124]. While most studies on random packings focus on infinite systems,

real systems have boundaries and often these boundaries are important as highlighted by

Carman in 1937 [115]. In the experiments by Carman, the packing fraction dependence on

container size was measured for spheres poured into a cylindrical container and shaken for

sufficiently long enough time to reach a very dense state. It was found that the packing

fraction decreases with decreasing container size which was attributed to the boundaries

altering the structure of the packing in the vicinity of the wall.

Since the work of Carman, there have been many other studies which have investigated

random packings in confined systems [120, 125–127]. These studies have shown that near the

boundary, particles tend to pack into layers giving rise to a fluctuating local porosity with

distance from the wall, ultimately affecting the macroscopic properties of highly confined

systems. Other studies have examined the packing of granular particles in narrow silos,

focusing on the influence of confinement on stresses between particles and the wall [128–

131]. Nearly all of these studies did not directly measure the local packing or any local

packing parameters with relation to distance from the side wall, with the exception of a few
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experiments that used x-ray imaging to view the structure of confined packings. In these

experiments the packings were monodisperse, facilitating highly ordered packing near the

boundary, with measurements carried out at only a few different container size to particle

size ratios [122, 127].

Understanding the character of random packings in confined geometries may be relevant

for other confined situations [132]. For example, when a liquid is confined, its structure

is dramatically changed; particles form layers near the wall, which ultimately affects the

properties of the liquid [133–138]. The shearing of confined dense colloidal suspensions

shows the emergence of new structures not seen before since layering near the walls greatly

alters the type of structural relaxation events [139]. The flow of granular media through

hoppers [140, 141] or suspensions through constricted micro- and nanofluidic devices [142–

145] can jam and clog, costing time and money.

Even with the history of work on the study on random packings in confined geometries,

there is little known about how sensitive the structure of the packing near the boundary

is to small changes in the confining width. For example, prior work found non-monotonic

dependence of φ on container size but only at extremely small containers with narrow

dimensions h only slightly larger than the particle diameter d, that is, h ≈ 3d or smaller

[115, 121, 123]. However, their data were not strong enough to look for such effects at

larger container sizes. Additionally, only confined monodisperse systems have received much

attention, and these systems are susceptible to crystallization near flat walls which greatly

modify the behavior [146]. (One group did study binary systems but they were unable to

directly observe the structure [120].) Furthermore, two-dimensional confined systems have

not been studied systematically, although they are relevant for a wide range of granular

experiments [147].

In Chapter 3, we numerical study the random packing of disks and spheres in various

confining geometers to understand how sensitivity the packing’s structure is to small changes

in confinement size. In the chapter, we only consider the case of random close packing (rcp)

to limit the scope of the study. Typically one loosely defines rcp as a collection of particles

randomly packed into the densest possible configuration while still remaining structurally

disordered. More rigorous definitions are available [95], but it is generally accepted that
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the rcp density of a packing of disks is φrcp ≈ 0.84 and spheres is φrcp ≈ 0.64 for an infinite

system. When the system is confined, φrcp and the structure will change, and we quantify

and model those changes in Chapter 3.

1.4 The Ideal Jamming Transition at Zero Temperature

For systems composed of large particles (grains, emulsions, and foams), the gravitational

energy of each particle is too large for thermal fluctuations to be important. In this limit only

external stresses can allow the system to explore phase space, and therefore, the temperature

can be treated as T = 0 [20, 22]. Studying the jamming transition in this limit has the

advantage of reducing the complexity of the problem by eliminating one of the control

parameters [24]. If similarities between the dynamics at T = 0 and T > 0 can be linked,

it may be possible to map the stress variable to a temperature like variable, where many

elements of thermal physics can be applied to describe stress driven systems [20, 148, 149].

Since many practical materials exist in this limit, studying the jamming transition at T = 0

can also glean valuable information related to many other problems.

To model the jamming transition in this limit a numerical model system known as the

ideal jamming transition has emerged over the last decade [22, 31]. This model system

is composed of frictionless disks in 2D or spheres in 3D that interact via a soft repulsive

potential only when particles overlap. The interaction force between two particles i and j

is typically linear Fij ∼ Θ(δrij < dij)δrij/dij or Hertzian Fij ∼ Θ(δrij < dij)(δrij/dij)3/2,

where Fij is the force between the two particles, Θ is a Heaviside function, δrij is the

distance between the two particles, and dij is the sum of the radii of the two particles [21,

22, 31, 150–152]. The only two control parameters are the external stress σ and the packing

fraction φ [22]. The advantage of this model is that it allows for a precise study of a

jamming transition. However, it is still a subject of debate whether this model will be

relevant to realistic systems that display more complexity [24]. Nevertheless, this ideal

model encompasses the key feature of jamming, the crowding of particles.

The jamming point φc for this model system is defined as the packing fraction where

the system develops a yield stress [22]. To determine φc one can monitor the pressure
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with φ. Below the jamming point particles do not overlap and the pressure is zero, while

above the jamming point particles overlap and the pressure is greater than zero. φc is the

packing fraction where the pressure is zero, but any amount of compression or shear leads

to a mechanically stable state with a non-zero pressure. For binary systems, it is generally

accepted that in 2D φc ∼ 0.84 [21, 22, 153] and in 3D φc ∼ 0.64 [21, 22, 108]. Recent work

has suggested that there is a continuous range for φc, where φc depends on the route to the

jamming point [150]. This is not surprising given our discussion on the protocol dependence

of φrcp in Sec. 1.3. While φc may vary between different samples, the mechanical properties

of this model system are thought to only depend on φ − φc. However, the origin of this

universal dependence is still unclear [21, 24].

O’Hern et al. [22] was the first to study how various microscopic and macroscopic proper-

ties changed with area fraction in the zero stress limit. In their work, they slowly compressed

various 2D and 3D packings with either a linear or Hertzian particle-particle force law, while

monitoring the pressure P , shear modulus G, and coordination number z with φ. Since the

bulk modulus B is related to the pressure via B = φdP/dφ, one can infer the bulk modulus

using P (φ) [22]. They found a critical like scaling analogous to a classical phase transition

in each variable, where P ∼ (φ − φc)γP , G ∼ (φ − φc)γG , and z − 6 ∼ (φ − φc)γz . γP and

γG depend on the dimensionality and the form of the force law, while γz = 0.5 regardless

of dimensionality and force law.

The critical scaling observed in the ideal jamming model are related to the micro-

scopic displacements particles undergo to accommodate small changes in external forces.

To provide a link between these microscopic displacements and the macroscopic properties,

Ellenbroek et al. numerically applied small point stresses to a system of frictionless disks

at various packing fractions and quantified the motion of particles as the system deformed.

They found the motion of the particles to be highly non-affine, where neighboring particles

not only press into one another to accommodate the stress, but also slide (or roll) past each

other. They found that closer to the jamming point most particles roll past each other

rather than press into one another. In their paper, they are able to relate the non-affine

motion to the critical exponents found by O’Hern et al. [22] through an energy expansion.

The results of Ellenbroek et al. provide a framework towards linking the microscopic details
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of soft materials to their bulk properties. However, their results are still not experimentally

verified, but if one can measure the forces or energy between contacting particles in real

soft matter systems, then their equations in principle can be tested.

In this dissertation we aim to test the predictions of the ideal jamming model and

characterize the jamming transition for the simplest experimental analog to the ideal model,

a 2D frictionless disks experiment. To experimentally probe the jamming transition and

test many of the results mentioned above, an experiment must be employed where both the

position of the particles and the forces between contacting particles are known. Currently

there are three known setups where this can be done. One option is photoelastic disks [154–

157]. These are elastic frictional disks that when pressed against one another rotate the light

passing through each disk. By using cross polarizers and measuring the intensity of light on

each disk the contact forces can be determined to 5% accuracy [6, 154–157]. A limitation

of this system is that the disks can not be compressed too far from the jamming point

without breaking, limiting the range of φ − φc < 0.01. Also for our aim, friction between

the disks is a problem. The second option is a 3D emulsion setup [158, 159]. In principle

we could work with a 3D setup, but we choose to work with a 2D setup because we also

intend to flow our samples (see the discuss in the next section). Currently it is not possible

to image flowing materials fast enough in 3D, and if it were possible the computation cost

of analyzing 3D data would be enormous. The third option (which did not exist when we

began our experiments) is a 2D foam setup [153]. The authors report for the 2D foam setup

that they can measure the forces to an accuracy of 80% - 100%. The advantage of the

emulsion and foam setup is that there is no static friction between the droplets. In the 3D

emulsion work the jamming transition was not studied, and in the 2D foam work only the

critical scaling of z(φ − φc) was studied, and therefore many of the critical scaling results

are untested. Experimental finding from other groups related to the jamming transition

will be given in Chapter 6.

In Chapters 6 of this dissertation we present a new experimental model system composed

of quasi-2D emulsion disks, where the disks have no static friction. We also present a

method in Chapters 4 and 5 to determine the contact forces between droplets to less than

15% accuracy. Our model system will allow us to test if the predictions and observations
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of the ideal jamming transition are valid. A second aim of this model system is study the

flow properties of soft materials. In Chapter 7, we apply our model system to verify the

Kinetic Theory of Glassy Flows model used to predict the flow of emulsions and foams. In

the next section we provide background on the Kinetic Theory of Glassy Flows model.

1.5 Flow of Disordered Matter Near Jamming

Flow is imposed on a soft material by boundary conditions where one or more of the

material’s boundaries is moved via some external conditions. Far from the boundary soft

materials tend to be solid like (i.e. very few particles ever move) and near the boundary the

particles flow at rates comparable to the boundary’s rate [7, 154, 160–165]. In many cases,

the velocity and stress profiles decay either exponentially or as a power law with distance

from the boundary, and the length scale of the decay is on the order of 5 to 15 particle

diameters [19, 166]. Since the flow is localized to a narrow region of 5-15 particle diameters,

this phenomena is known as shear banding or shear localization.

During slow steady state flow, where the strain rate and shear stress have well defined

long time averages, the shear band can exhibit an intermediate between a solid-like and

liquid-like response on shorter time scales [154, 167–171]. This mixed behavior leads to

large fluctuations in local strain rate and stress, and is due to local groups of particles

temporally jamming into disordered spatial configurations [146, 172]. To unjam one of

these local groups of particles the stress must build to the point that the local configuration

can no longer support the stress [146, 172, 173]. Once the particles unjam, the stress rapidly

decreases [174, 175]. The observed average velocity and stress profiles are the cumulative

effect of these local jamming and unjamming processes. Intermittent flow at the grain

scale has been observed in many experimental and computational soft matter systems with

local rearrangements typically involving on the order of 10 particles [34, 167–169, 176–

178]. In addition to local rearrangements, intermittent stress fluctuations have also been

observed [154, 179–182]. However, there are no experiments to date that quantify the

spatial and temporal stress build up and relaxation in the vicinity of individual particle

rearrangements.
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While there are no direct measurements of the stress build up and relaxation around

single plastic events, the details of the stress build up and relaxation have been inferred

through indirect methods of fitting data to models [37, 162, 183]. The process involves

taking data on a system where the average stress or velocity profiles can be measured.

Then a model is used where certain details about the microscopic details are either fixed

or left as unknown fitting parameters. By fitting the data one can infer these microscopic

characteristics, however, a direction verification is still needed.

Typical models for the flow of soft matter are elastoplastic theories which attempt to

explain the elastic and plastic response of soft materials to external stresses [37, 40, 172,

173, 184–190]. The approach of these models is to assume that particles move non-affinely

and press into one another when sheared, leading to a spatially heterogeneous build up

of stress. As the material is continually sheared, the stress continues to build until local

regions within the sample can no longer accommodate this stress, and yield by undergoing

plastic rearrangements. During each plastic event the rearranging particles dissipate their

stress by sliding past each other, but they also redistribute some of the stress by pressing

into their neighboring particles causing a slight change in the local configuration.

One approach of elastoplastic theories is to model the system stochastically, where stress

randomly fluctuates, similar to thermal fluctuations [40, 149, 184, 186, 189]. The essential

ingredients in these models are that local regions within the sample must cross over energy

or stress barriers for plastic events to occur and that the stress is spatially heterogeneous

due to the disordered arrangement of the particles. Some theories use energy as the state

variable and others use stress, but both are attempting to model the velocity profile. Similar

to a Boltzmann distribution for energy fluctuations in thermal systems, different models

have certain weighting distributions for either energy or stress fluctuations. In addition to

energy or stress fluctuations, there are boundary conditions for the energy or stress and

the velocity. In these models, as the system evolves with time, the energy or stress within

local regions of the sample fluctuate, where briefly the energy or stress may increase in one

region of the sample while decreasing in another region. When the energy or stress in a

local region reach a threshold, it undergoes a plastic event and the stress is both locally

dissipated and redistributed into the surrounding environment. The strain rate and stress
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profiles can be computed numerically or analytically by observing the average number of

plastic events and stress in each region of the sample.

The remarkable aspect of some of these models is that testable analytic solutions can be

derived for the flow and stress profiles. Three popular models that can make analytic predic-

tions are the Shear Transformation Zone Theory [184, 185], Soft Glassy Rheology [186, 187],

and the Kinetic Theory of Glassy Flows (KTGF) [37, 40]. The Shear Transformation Zone

Theory and Soft Glassy Rheology model the flow using energy barriers, and so verifying the

underlying assumptions of these two model is more difficult since local energy fluctuations

are difficult to measure in soft matter systems. The more accessible quantities for experi-

mentalist are particle-particle contact forces and local stresses. In the KTGF the system is

modeled using stress barriers.

KTGF is a generalized theory, and for simple geometries and assumptions can produce

analytic predictions. One case where the model can produce an analytic prediction is

emulsion flow in a microchannel [37, 40]. The flow is modeled on a lattice, where the

sample is divided into lattice sites of size a, where a is on the order of a particle diameter.

At each site the stress is described stochastically with probability Pi(σi, t) for lattice site i

to have a stress σi at some time t. The stress at site i evolves via three mechanisms: (1) an

elastic response where the stress increases linearly with an externally imposed shear rate

γoi , (2) a stress relaxation due to a plastic event when the stress in above a stress barrier

σc, and (3) a stress redistribution from neighboring lattice sites where a plastic event has

occurred. For a site undergoing a plastic event the model assumes that stress at that site

is completely relaxed out (σi → 0) and the stress is redistributed to the surrounding lattice

sites over some length scale ξ. The length scale ξ implies that not only is the stress at

site i modified by the globally imposed strain rate, but also by plastic events occurring at

other sites within some distance ξ. Using these assumptions, they predict the following
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relationship between the average local stress and local strain rate

f(z) = fbulk + ξ2
∂2f(z)

∂z2
(1.3)

f(z) =
σ(z)

γ̇(z)
(1.4)

fbulk =
σ(z)

γ̇(z)
, for large h and z % ξ, (1.5)

where z is the distance from the boundary, σ(z) is the average shear stress, γ̇(z) is the

average strain rate, and the fluidity f is a local quantity measuring the ratio of the shear

stress to strain rate. We note that this equation is a one parameter model, where the single

unknown is ξ.

In the work by Goyon et al., they tested the predictions of Eqn. 1.3 by flowing emulsion

samples through a microchannel and measuring γ̇(z) and σ(z) [37]. γ̇(z) was measured

using fluorescent tracer particles to map out the average flow rate and σ(z) was inferred

using Newton’s 3rd Law. Since the samples were in steady state, the time average stress

must be constant everywhere. By knowing the stress at the boundary they were able infer

the stress within each sample. Using γ̇(z) and σ(z) they fitted their data to Eqn. 1.3 and

found very good agreement. Their fits gave ξ = 0 at the jamming point φ = φc and increases

to ξ ∼ 6 particle diameters as φ approaches 1.

KTGF provides a starting point towards having a universal framework to describe the

flow of soft matter. The model has some flexibility to describe the diverse flow of different

soft materials because the three basic assumptions of the model can be tuned to match

the microscopic details of each material. For instance, ξ may depend on particle-particle

interactions, or the time evolution of stress during plastic events may vary for different

soft materials. While the Kinetic Theory of Glassy Flows is promising, the three basic

assumptions of the model used to predict the flow of emulsions are experimentally untested

(linear build up of stress, complete stress relaxation during plastic event, and a cooperative

length scale for stress redistribution). Also it is not known if the model can accurately

predict the flow when the exact microscopic details of a soft material are inputs into the

model. While there is strong evidence from the work Goyon et al. to support the theory,
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there are no experiments to date that have directly measured the time dependent stress

build up and relaxation in the vicinity around individual plastic events.

In Chapter 7, we present preliminary work using our new experimental quasi-2D fric-

tionless model system on the time dependent stress build up and relaxation on individual

particles in the vicinity around plastic events. Using our data we can compute ξ directly

as a function of φ and compare the results to that found by Goyon. Our data shows that

there exist a spatially cooperative length scale ξ on the order of 3-4 particle diameters.

However, we do not find ξ changing from 0 - 6 particle diameters with increasing φ − φc.

Also, more work is needed to test the quality of the theory to predict the observed flow

profile in our data. In addition to attempting to verify the KTGF model, our results will

be a significant step towards developing constituent equations from physical principles to

describe the flow of soft matter since we provide the foundational information needed for

any successful model.
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Chapter 2

Dynamic Heterogeneity in

Colloidal Glasses

2.1 Introduction

As the temperature of a glass-forming liquid is lowered, the viscosity rises by many orders of

magnitude, becoming experimentally difficult to measure, with little change in the structure

[52, 89, 90]. The origin of the slowing dynamics is not yet clear, despite much prior work.

One intriguing observation is that as a sample approaches the glass transition, the motion

within the sample becomes spatially heterogeneous [62, 65, 191–193]. While overall motion

within the sample slows, some regions exhibit faster dynamics than the rest, and over time

these mobile regions appear and disappear throughout the sample [57]. Particles within the

mobile region move cooperatively, forming spatially extended clusters and strings [58]. The

length scale of these regions grows as the glass transition is approached [58, 61–64].

One technique for studying the glass transition is the use of colloidal suspensions [68].

These are composed of small solid particles suspended in a solvent. The particles need to

be small enough to undergo Brownian motion, so particle diameters are typically 10− 5000

nm. The key control parameter is the volume fraction φ. For a monodisperse sample (all

particles similar in size), the sample becomes glassy for φ >φ g ≈ 0.58 [45, 68]. The glass

transition in colloidal samples has been studied extensively by light scattering, microscopy,

and other techniques. Colloidal samples exhibit many behaviors seen in molecular glasses,
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such as dramatic increases in viscosity [71, 72], strongly slowing relaxation time scales [45–

51], microscopic disorder [73], spatially heterogeneous dynamics [74–77], aging behavior for

glassy samples [48, 78–83], and sensitivity to finite size effects [84, 85]. Light scattering al-

lows careful study of the average behavior of millions of colloidal particles, while microscopy

techniques observe the detailed behavior of a few thousand particles.

In this chapter, we present results related to the glass transition of binary colloidal sus-

pensions using confocal microscopy. We use binary suspensions (mixtures of two particle

sizes) to inhibit crystallization. This allows us to take data over many hours, a time scale in

which a monodisperse sample would crystallize [194, 195]. Furthermore, this lets us inves-

tigate the role the two particle species play in the dynamics; prior work has suggested that

small particles play a lubricating role in the local dynamics [196]. The confocal microscope

enables direct visualization of the interior of the sample, and we follow the motion of several

thousand colloidal particles within each sample [197]. In Section 2.2, we discuss the specific

details of our binary colloidal system.

Colloids undergo large temporal fluctuations in mobility which are thought to responsible

for the viscous response and other macroscopic properties of glasses. In Section 2.4, we char-

acterize these temporal fluctuations for our binary samples using the dynamic susceptibility

χ4 [66, 198, 199], which has not been previously applied to colloidal data, and in Section 2.3

we present the mathematical definition of χ4. As measured by this correlation function,

the temporal heterogeneity increases as the glass transition is approached. By simultane-

ously tracking both large and small particles, we can observe the similarities and differences

between the two species’ dynamics. In section 2.6, we compare our results to the widely

used Vogel-Fulcher-Tammann (VFT) scaling law to characterize molecular glasses and the

theoretical predictions of Mode-Coupling Theory (MCT) for colloidal glasses[52, 89, 90].

Section 2.5 discusses the details of the VFT scaling law and MCT theory.

2.2 Binary Sample

The data discussed here was taken by Takayuki Narumi and Scott Franklin. For a complete

description of the sample preparations and results other than those related to the χ4 analysis
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see our paper [200]. The samples consist of poly-(methyl-methacrylate) (PMMA) colloids

stabilized sterically by a thin layer of poly-12-hydroxystearic acid [68]. We use a binary

mixture with a large particle mean radius aL = 1.55 µm and small particle mean radius aS =

1.18 µm, with a polydispersity dispersity for each species of 5%; each individual particle

species can crystallize in a monodisperse suspension. Separately from the polydispersity,

the mean particle radii each have an uncertainty of ±0.02 µm. The number ratio of small

particles to large particles is NS/NL = 1.56, resulting in a volume fraction ratio φS/φL ≈

0.70. The control parameter is the total volume fraction φ = φS + φL.

Confocal microscopy is used to record the three-dimension particle dynamics of thou-

sands of colloids at ambient temperature [197]. We use a fast confocal microscope (VT-Eye

from Visitech, International) to scan a volume 50 x 50 x 20 µm3 with a resolution of 0.05

µm in x and y (parallel to the coverslip) and a resolution of 0.1 µm in the z (parallel to the

optical axis). To avoid influences from the walls, we focus at least 25 µm away from the

coverslip. Within each three-dimensional image, we identify both large and small particles

using tracking software written by Crocker and Grier [201]. The accuracy in tracking the

centers of the colloids is 0.2 µm. We will be measuring motions that take place on length

scales of 1-3 µm which are large enough that tracking noise will not be an issue.

2.3 Four-Point Susceptibility

To quantify the dynamical heterogeneity of molecular glasses Glotzer et al. [66] proposed

using a four-point susceptibility measure χ4 to quantify the correlation in the dynamics

between any two points in space within some time window∆t. Glotzer et al. using numerical

and theoretical calculations show that in molecular glasses there is a growing time scale

with decreasing temperature associated with larger and larger groups of molecules needing

to cooperatively rearrange [87], and this growing time scale was shown experimentally to

exist for molecular glass formers [88]. The actual value of χ4 is a measure of the average

number of particles whose dynamics are correlated, which in turn relates back to the spatial

heterogeneity and a correlation length scale [51, 66]. To compute χ4 the dynamics must

be observed over some time window and the value of χ4 is sensitive to this time window.
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There is a particular time window where χ4 is a maximum corresponding to a relaxation

time τ over which the dynamics are most heterogeneous.

χ4 is computed from temporal fluctuations in particle mobility, where a particle is

defined to be mobile if its displacement over some time interval ∆t is larger than some

threshold distance ∆L [199]. Using this definition, each particle at each time can be labeled

mobile or immobile and the fraction of mobile particles Q(t) can be computed for each

frame recorded. Figure 2.1(a) shows Q(t) for a sample at φ = 0.52 at various ∆t using

∆L = 0.4aS . For ∆t = 105 seconds, the black curve in Fig 2.1(a), we see with time that

roughly 50% of the particles displace a distance greater than 0.4a and that Q fluctuates

with time. In highly dense colloidal samples particles cannot diffuse freely, but instead are

“caged” by their nearest neighbor particles. On long enough time scales particles move

cooperatively to rearrange, allowing particles to break their cage and briefly diffuse more

only to be cage by different particles [202–207]. By examining the average diffusion of

single particles, Narumi and Franklin reported in our paper [200] for this data set a cage

rearrangement length scale of ∼ 0.4a and time scale of ∼ 1000 seconds. So it is not too

surprising that we find similar results, although, a priori it is not clear if the caging time

scales and length scales correspond to when the dynamics are most heterogeneous which χ4

measures. For larger time windows closer to the cage rearrangement time scale, the average

value of Q(t) increases, since each particle has a longer time to diffuse. Also, the variations

in Q(t) increase, where the fluctuations between two consecutive frames is roughly the

same, but the long time variations are much larger. These long time variations reflect the

dynamic heterogeneity of the sample, where there are moments in time with significantly

more activity in particle motion, where near t = 0 for the blue curve ∼ 75% of the particles

are mobile, but 800 seconds later only ∼ 65% on the particles are mobile.

These temporal fluctuations in Q(t), both short and long, are quantified by the self part

to χ4 and written as

χ4 = N [〈Q(t)2〉t − 〈Q(t)〉2t ], (2.1)

where N is the number of particles. N also varies from frame to frame as particles move

in and out of the field of view; we average N over all frames and use 〈N〉 in Eqn (2.1).
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Figure 2.1: (a) Percentage of mobile particles with time using different time windows ∆t
to define mobility. The legend in (b) applies for this plot as well. (b). The distribution
of Q relative to the mean for various ∆t used to define particle mobility. The standard
deviation for the P (Q) are 0.0208, 0.0256, 0.0278, and 0.0283 for the ∆t = 105 s, 420 s, 990
s, 1305 s data respectively. Since particles are diffusing, some particles leave the field of view
after enough time, and the longer the time window used to define particle mobility, the less
particle to sample Q. For the data in this figure the average number of particles sampled is
2105, 2059, 1973, and 1640 for the ∆t = 105 s, 420 s, 990 s, 1305 s data respectively. Using
the standard deviations and the average number of particles sampled, this gives a χ4 =44.0,
52.7, 54.9, and 46.5 for the ∆t = 105 s, 420 s, 990 s, 1305 s data respectively.

The factor of N arises because the variance scales inversely with particle number. Also

by including the factor of N , χ4 is an intensive quantity. Note that χ4 measures temporal

fluctuations in mobility without regard for the spatial correlations between mobile particles.

In Fig, 2.1(b) we illustrate the meaning of χ4 for each data set shown in Fig, 2.1(a) by

plotting the histogram of Q(t) − 〈Q(t)〉t. In Fig, 2.1(b), we see that the distribution for

increasing ∆t is slightly wider since the temporal fluctuations are growing, although this

may be difficult to see and the caption in Fig, 2.1(b) gives the standard deviations of the

distributions. χ4 is the width of this distribution scaled by the number of particles in the

system. For larger ∆t the number particles sampled to compute Q is less because particles

diffuse out of the field of view, and therefore the width of P (Q) is not the only measure to

consider. When the width of the distribution is scaled by the number of particles sampled

we see that ∆t = 990 s has a larger χ4 than ∆t = 1305 s. The caption in Fig, 2.1(b) gives

the χ4 values.
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Figure 2.2: Surface plot of χ4 for large particles within a sample with φ = 0.52.

2.4 Growing Length & Time Scale

From Eqn (2.1) it’s evident that χ4 will depend on our choice of ∆L and ∆t as shown in

Fig. 2.2, where χ4 is plotted for the larger particles within a φ = 0.52 sample for various

values of ∆t and ∆L. This plot shows that χ4 is characterized by a function that has a

maximum at (∆tmax, ∆Lmax). This maximum in χ4 indicates a typical timescale ∆tmax

where the dynamics are most heterogeneous, and likewise ∆Lmax indicates a typical length

scale distinguishing caged motions from cage rearrangements.

Figure 2.3 shows plots of χ4(∆t,∆L = ∆Lmax) for the larger (a) and smaller (b) par-

ticles. The value of χ4 is larger in magnitude for the smaller particles regardless of φ,

demonstrating that the dynamics of the smaller particles are more temporally heteroge-

neous. Prior work by Lynch et al. [196] showed a similar relative mobility; our results

build upon this by showing that smaller particles also experience larger fluctuations, and

thus exhibit more anomalous spatial and temporal behavior. We also see that χ4 grows in

amplitude as φ increases, but then drops for the glassy sample (φ = 0.59).

The plots in Fig. 2.3 all show a maximum in χ4 at a well defined ∆tmax, and that ∆tmax

for the various volume fractions occur at timescales close to the timescale where caging

rearrangements become prominent. The coincidence of maxima in χ4 near the time scale

associated with cage rearrangements suggests that local cage rearrangements are the largest
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Figure 2.3: (a) is a plot of the susceptibility of large particles for various packing fractions,
and (b) is a plot of the susceptibility of small particles for various packing fractions. The
legend indicates the packing fraction of the sample.

contributor to temporal fluctuations. Since small particles show larger fluctuations, we infer

that they may be largely responsible for facilitating local rearrangements, in agreement with

the findings of Lynch et al. [196].

χmax
4 , ∆tmax, and∆Lmax all vary with φ; this dependence is shown in Fig. 2.4. Both χmax

4

and ∆tmax show an increase with φ illustrating that upon approaching the glass transition

the dynamic heterogeneity and the associated time scale increases. The increasing time scale

also suggests that local rearrangements take longer at higher φ. On the other hand, the

characteristic length scale ∆L decreases with φ which is in excellent agreement with prior

work, where displacements for cage rearrangements were shown to be smaller as the glass

transition is approached [208]. This suggest that with increasing φ smaller displacements

are required to be an anomalously mobile particle.

Using the χmax
4 data in Fig. 2.4(a) a correlation length scale can be estimated by as-

suming that the correlations χ4 measures are correlated particles forming compact clus-
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ters [199, 209]. Since χ4 is the average number of correlated particles, then χmax
4 = (4/3)πξn4 ,

where ξ4 is the radius of the cluster of correlated particles in units of particle diameters d

and n = 3 [199, 209]. Although, the particles could form sting like clusters where the length

scale is χmax
4 = ξn4 and ξ4 is characteristic length of the string and n = 1. The particles

could also form string-like and compact-like clusters where the exponent n is between 1-3.

The trends that we observe are not susceptible to the exponent we choose, however, later

when we fit the data the fitting parameters will depend on our choice of the exponent. Here

we only present results assuming that the clusters are compact (n = 3) to compare to prior

work. In the work of Weeks et al. [76], they found clusters of mobile particles to be string-

like and cluster-like implying that the exponent is probably somewhere between 1-3. The

inset in Fig. 2.4(a) shows the dependence of ξ4 on φ. Similarly as with the relaxation time,

we see a tendency in ξ4 to increase with φ. The growth in ξ4 is about a factor of 4 when

the volume fraction is increased from a liquid to a dense supercooled state. Our values of

ξ4 are roughly the same as those measured in a 2D fluidized granular bed on approaching

the jamming point [199].

2.5 Theory and Expected Results

The time scales ∆tmax associated with the temporal fluctuations measured by the four

point susceptibility are analogous to the α relaxation time scales measured in molecular

supercooled liquids. In many cases the α relaxation time scales are well described using

either a Vogel-Fulcher-Tammann (VFT) model or Mode-Coupling Theory (MCT) [52, 89,

90], although sometimes this is over a limited range of temperatures [91, 92] and it can be

hard to distinguish between different functional forms [94].

The first model, VFT, predicts that the time scales should obey the form

∆tmax = ∆t0 exp(E/(1− φ/φ0)), (2.2)

where ∆t0, E, and φ0 are all fitting parameters. In the model ∆t0 is an attempt time to

undergo relaxation events over some typical length scale. For our experiment, this length
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Figure 2.4: (a) Plot of the maximum of χ4 as a function of φ, showing how temporal
heterogeneity increases as φ → φg ≈ 0.58. The inset in (a) shows the dependence of
the dynamic heterogeneity length scale ξ4 = (χmax

4 )1/3 on φ. (b) Plot of the dynamic
heterogeneity time scale as a function of φ. (c) Plot of the length scale ∆L as a function of
φ. For all panels, the symbols are as indicated in the legend of panel (b).

scale would be on the order of a particle diameter and the attempt time would be the

time it takes a particle to diffuse over this length scale in the dilute limit. Using the Stokes-

Einstein-Sutherland formula and a viscosity of 2.18 mPa·s (measured for the fluid in absence

of colloids) we estimate that at room temperature it should take the small particles about

11 seconds and the large particles 25 seconds to diffuse their own diameter [210, 211]. The

fitting parameter φ0 is the packing fraction at which diffusive motion should cease. This

should occur at random close packing of φ ∼ 0.65 (using the value appropriate for our

binary suspension). However, as pointed out by Brambilla et. al [51], there is a debate as
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Figure 2.5: (a) Log-linear and (b) log-log plots of temporal dynamical heterogeneity time
scale, with fits to Eqn (2.2) in panel (a) and Eqn (2.3) in panel (b). (c) Log-linear and (d)
log-log plots of the χ4 length scales, with fits to Eqn (2.2) in panel (c) and Eqn (2.3) in
panel (d).

to whether the divergence predicted by VFT should occur at the jamming point or at a

slightly different packing fraction. To definitively show if this is the case one would need

very careful measurements extremely close to the jamming point which is beyond the scope

of this work. The final fitting parameter is E, the fragility, which is a material dependent

value. The fragility is a measure of how sensitive the time scale is to small changes in

temperature in molecular glasses and volume fraction colloidal glasses. E typically ranges

between ≈ 1-100 [52]. Materials with low E values are termed fragile glass formers because

their relaxation time can be easily reduced by small changes in control parameters leading

to a softening of the material. Materials with a large E are termed strong glasses because

their relaxation times are insensitive to small changes in control parameters resulting in the

material remaining stiff when the control parameter is slightly changed.
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The second model, MCT, predicts a scaling of

∆tmax = ∆t0(1− φ/φc)
γ , (2.3)

where ∆t0, γ, and φc are the fitting parameters [93]. φc in this model takes a different

meaning with the divergence predicted to occur near the glass transition volume fraction,

not at random close packing. In light scattering experiments performed by Brambilla et

al. on 10% polydisperse colloidal samples they found φc ≈ 0.59, slightly above the glass

transition volume fraction [51]. Their work also showed that near the divergence point the

dynamics deviate from the predicted form, but that in the supercooled regime the MCT

equation describes the data well. They also found a scaling exponent of γ = 2.5± 0.1.

2.6 Comparing Results to Theory

We now compare our results to the VFT scaling law and the mode coupling theory by

fitting our measured time scales using to the two models. The fit to the VFT scaling law

is shown in Fig. 2.5(a), the fit to the mode coupling theory is shown in Fig. 2.5(b), and

the corresponding fitting parameters are shown in Table 2.1. In section 2.5 reasonable

fitting values were given for some of the different fitting parameters, and these expected

values are also included in the table. The ∆t0 values are significantly larger than the

dilute concentration diffusive time scales, for both the VFT and MCT fits, although the

agreement is off by only a factor of two for the small particles (25 s for VFT, 20 s for MCT,

and τD = 11 s). For the VFT fit, φc is near φrcp as predicted. For the MCT fit φc is near

the expected glass transition volume fraction of ≈ 0.58. The MCT exponent γ is smaller

than that found by Brambilla et. al [51], who found γ = 2.5, with the exception of the small

particles for which we find γ = 2.6± 0.9.

Our data gives fragilities on the order of 0.5, consistent with fragility values from a study

of a 2D fluidized granular bed [199]. When compared to a molecular system our colloidal

system would be considered a very fragile glass former.

In the study on the motion of grains in a 2D fluidized granular bed it was shown
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VFT: ∆t0 [sec] or ξ04 [d] E φ0

All ∆tmax 70± 50 0.6± 0.3 0.64± 0.03
Big ∆tmax 200± 160 0.4± 0.2 0.6± 0.03
Small ∆tmax 25± 20 0.4± 0.35 0.67± 0.03

All ξ4 0.3± 0.2 0.4± 0.2 0.65± 0.05
Big ξ4 0.5± 0.2 0.3± 0.2 0.66± 0.07
Small ξ4 0.2± 0.15 1.0± 0.8 0.68± 0.07

Power law: ∆t0 [sec] or ξ04 [d] γ or δ φc

All ∆tmax 100± 90 1.3± 0.6 0.57± 0.02
Big ∆tmax 90± 70 1.6± 0.8 0.57± 0.02
Small ∆tmax 20± 10 2.6± 0.9 0.61± 0.01

All ξ4 0.2± 0.1 0.9± 0.4 0.59± 0.03
Big ξ4 0.5± 0.1 1.4± 0.5 0.62± 0.04
Small ξ4 0.15± 0.05 0.4± 0.2 0.57± 0.02

Table 2.1: This table displays the fitting parameters found when fitting the data to either a
VFT scaling or a power law scaling. The uncertainties of the fitting parameters are found
by adjusting the fitting parameters until they no longer provide reasonable fits.

that the length scales can also be fitted well to the models used to fit the time scales

where the VFT formula becomes ξ4 = ξ04 exp(E/(1−φ/φc)) and the MCT formula becomes

ξ4 = ξ04(1−φ/φc)δ, where δ in work by Berthier et. al is predicted to be 2/3 [212, 213]. The

work of Brambilla et. al found that δ = 2/3 fitted their light scattering data very well [51].

The fits to the length scales are shown in Fig. 2.5(c) and (d), and the fitting values are

shown in Table 2.1. The fitting values found for the VFT fits are physically feasible where

the fragilities and divergence points compare well to the fitting parameters previously found

for the VFT fits to the time scales. The MCT fits are also reasonable, although our scaling

exponents δ is only consistent with the predicted value of 2/3 due to our large error bars.

The MCT divergence at φc is close to φg, as expected.

With the range of volume fractions presented in this paper we can not conclusively show

which model fits better, similar to the situation which exists for regular glasses [94]. Both

models capture and predict the time and length scales associated with dynamic heterogene-

ity, and the derived fitting parameters of both compare well to expected values.
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2.7 Conclusion

We have used confocal microscopy to study the three-dimensional motion of particles in

binary colloidal mixture. The volume fraction φ was varied from 0.4-0.59 and the dynamical

heterogeneity of the small and larger particles were found to be qualitatively similar with the

smaller particles undergoing slightly larger fluctuations relative to there size. The temporal

fluctuations give rise to length scales and time scales which grow as the glass transition

is approached, although the form of this growth is ambiguous with respect to power-law

or exponential growth. The spatially and temporally heterogeneous dynamics are similar

to the observations of molecular glasses [57, 62, 65, 192, 193]. The coincidence of maxima

in χ4 near the time scale associated with cage rearrangements suggests that local cage

rearrangements are the largest contributor to temporal fluctuations. Since small particles

show larger fluctuations, we infer that they may be largely responsible for facilitating local

rearrangements, in agreement with the findings of Lynch et al. [196].
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Chapter 3

Packing in Confined Geometries

3.1 Introduction

Random close packing (rcp) has received considerable scientific interest for nearly a cen-

tury dating back to the work of Westman in 1930 [106, 125, 214–217] primarily due to

the relevance rcp has has to a wide range of problems including the structure of living

cells [95], liquids [96, 97], granular media [100–103], emulsions [104], glasses [105], amor-

phous solids [99], jamming [218], and the processing of ceramic materials [98]. Typically one

defines rcp as a collection of particles randomly packed into the densest possible configura-

tion. More rigorous definitions are available [95], but it is generally accepted that the rcp

density of a packing of spheres is φrcp ≈ 0.64. Packings can have other rcp densities when

the particles are polydisperse mixture of spheres [109–114], non-spherical in shape [219–

223], or confined within a container that is comparable in size to a characteristic particle

size [98, 115–124].

While most studies of rcp focus on infinite systems, real systems have boundaries and

often these boundaries are important as highlighted by Carman in 1937 [115]. In the

experiments by Carman, the packing fraction dependence on container size was measured

for spheres poured into a cylindrical container and shaken for sufficiently long enough time

to reach a very dense state. It was found that the packing fraction decreases with decreasing

container size which was attributed to the boundaries altering the structure of the packing

in the vicinity of the wall.

Since the work of Carman, there have been many other studies which have investigated
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rcp in confined systems [120, 125–127]. These studies have shown that near the boundary,

particles tend to pack into layers giving rise to a fluctuating local porosity with distance

from the wall, ultimately affecting the macroscopic properties of highly confined systems.

Other studies have examined the packing of granular particles in narrow silos, focusing on

the influence of confinement on stresses between particles and the wall [128–131]. Nearly all

of these studies did not directly measure the local packing or any local packing parameters

with relation to distance from the side wall, with the exception of a few experiments that

used x-ray imaging to view the structure of confined packings. In these experiments the

packings were monodisperse, facilitating highly ordered packing near the boundary, with

measurements carried out at only a few different container size to particle size ratios [122,

127].

Even with the history of work on the study of rcp in confined geometries, there is little

known about how sensitive the structure of the packing near the boundary is to small

changes in the confining width. For example, prior work found non-monotonic dependence

of φrcp on container size but only at extremely small containers with narrow dimensions h

only slightly larger than the particle diameter d, that is, h ≈ 3d or smaller [115, 121, 123].

However, their data were not strong enough to look for such effects at larger container sizes.

Additionally, primarily only confined monodisperse systems have received much attention,

and these systems are susceptible to crystallization near flat walls which greatly modify

the behavior [146]. (One group did study binary systems but they were unable to directly

observe the structure [120].) Furthermore, two-dimensional confined systems have not been

studied systematically, although they are relevant for a wide range of granular experiments

[147].

In this chapter we address these questions using computer simulated rcp packings in

confined geometries. In particular, we study binary mixtures to prevent wall-induced crys-

tallization [224–226]. We create two-dimensional (2D) and three-dimensional (3D) packings

with flat confining walls. In some cases the system is confined only along one dimension

(with periodic boundaries in the other directions), and in other cases we confine the sample

along all directions. Our simulations are carried out at many different and very closely

spaced confining thicknesses spanning a large range of values to elucidate the effects small
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changes in confining thickness has on the structure.

We find that confinement significantly modifies the rcp states, with lowered values for

φrcp reflecting an inefficient packing near the walls. This inefficient packing persists several

particle diameters away from the wall, although its dominant effects are only within 1-

2 diameters. The behavior of φrcp is not monotonic with increasing sample thickness,

reflecting the presence of boundary layers near the walls.

Understanding the character of random close packing in confined geometries may be rel-

evant for non-close-packed confined situations [132]. For example, when a liquid is confined,

its structure is dramatically changed; particles form layers near the wall, which ultimately

affects the properties of the liquid [133–138]. The shearing of confined dense colloidal sus-

pensions shows the emergence of new structures not seen before [139]. The flow of granular

media through hoppers [140, 141] or suspensions through constricted micro- and nanofluidic

devices [142–145] can jam and clog, costing time and money.

One of our own motivations for this work was to help us understand prior experiments

by the Weeks group which studied the confinement of colloidal particles [84]. A dense

suspension of colloidal particles behaves similarly to a glass [68]. For traditional glass-

formers, many experiments have studied how confinement modifies the glass transition;

samples which have a well-characterized glass transition in large samples show markedly

different properties when confined to small samples [132, 226–232]. In our experimental

work, the colloidal particles had much slower diffusion rates when confined between two

parallel walls [84]. However, the experiments were difficult and the authors only examined

the behavior of a dense suspension at a few specific thicknesses. As noted above, in this

current work we investigate how particles pack for a finely-spaced set of thicknesses, to look

for non-monotonic behavior of the packing that might have been missed in the experiment.

A second related question is whether confinement effects on glassy behavior are due to

boundary effects or finite size effects [233]. Our results show that boundaries significantly

modify the packing, which may in turn modify behavior of these confined molecular systems

[132].
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3.2 Algorithm

Our aim is to quantify how a confining boundary alters the structure of randomly closed

packed (rcp) disks in 2D and spheres in 3D, and in particular to study how this depends

on the narrowest dimension. This section presents our algorithm for 2D packings first, and

then briefly discusses differences for the 3D algorithm.

In 2D, our system consists of a binary mixture of disks containing an equal number N/2

large disks of diameter dl and small disks of diameter ds with size ratio σ = dl/ds = 1.4. For

each configuration, disks are packed into a box of dimensions Lx by Ly. For most simulations

we discuss, there is a periodic boundary condition along the x-direction and two fixed hard

boundaries (walls) along the y-direction, although as discussed below, in some cases we

consider periodic boundaries in all directions or fixed boundaries in all directions.

Each configuration is generated using a method adapted from Xu et al. [234] which

is an extension of a method proposed by Clarke and Wiley [235]. This method is briefly

summarized in Fig. 3.1. Infinitesimal particles are placed at random [236] in the system,

gradually expanded and moved at each step to prevent particles from overlapping. When

a final state is found such that particles can no longer be expanded without necessitating

overlap, the algorithm terminates. Near the conclusion of the algorithm, we alternate

between expansion and contraction steps to accurately determine the rcp state.

In particular, while the final state found is consistent with hard particles (no overlaps

allowed), the algorithm uses a soft potential at intermediate steps [234], given by

V (rij) =
ε

2
(1− rij/dij)

2Θ (1− rij/dij) , (3.1)

where rij is the center to center distance between two disk i and j, ε is a characteristic

energy scale (ε = 1 for our simulations), dij = (di + dj)/2, and Θ (1− rij/dij) is the

Heaviside function making V nonzero for rij < dij . Simulations begin by randomly placing

disks within a box of desired dimensions and boundary conditions with the initial diameters

chosen such that φinitial ( φrcp. In the initial state particles do not overlap and the total

energy E = 0.
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Figure 3.1: A flow chart outlining our algorithm for computing rcp configurations.

Next all disk diameters are slowly expanded subject to the fixed size ratio σ = 1.4 and φ

changing by δφ per iteration; we start with δφ = 10−3. After each expansion step, we check

if any disks overlap, by checking the condition 1−rij/dij > εr = 10−5 for each particle pair.

Below this limit, we assume the overlap is negligible. If any particles do overlap (E > 0), we

use the non-linear conjugate gradient method [237] to decrease the total energy by adjusting

the position of disks so they no longer overlap (E = 0). In practice, one energy minimization

step does not guarantee we have reached a minimum within the desired numerical precision.

Thus this step can be repeated to further reduce the energy if E > 0. We judge that we

have reached a nonzero local minimum if the condition ||∇E||/(2N) < εE = 10−7 is found,

where ||∇E|| is the magnitude of the gradient of E. Physically speaking this is the average
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(a)

(b)

(c)

(d)

Figure 3.2: Illustrations of 2D and 3D configurations generated using the algorithm de-
scribed in Sec. 3.2. (a) 2D configuration for h = 10. (b) 2D configuration with h = 20.
(c) 3D configuration with h = 5 where blue (dark gray) represents big particles and green
(light gray) represents small particles. (d) 3D configuration with h = 10.

force per particle, and the threshold value (10−7) leads to consistent results.

If we have such a state with E > 0, this is not an rcp state as particles overlap. Thus we

switch and now slowly contract the particles until we find a state where particles again no

longer overlap (within the allowed tolerance). At that point, we once again begin expansion.

Each time we switch between expansion and contraction, we decrease δφ by a factor of 2.

Thus, these alternating cycles allow us to find an rcp state of non-overlapping particles

(within the specified tolerance) and determine φrcp to high accuracy. We terminate our

algorithm when δφ < δφmin = 10−6. In practice, we have tested a variety of values for

the thresholds εr, εE , and δφmin and find that our values guarantee reproducible results as

well as reasonably fast computations. Our algorithm gives an average packing fraction of

φrcp = 0.8420± 0.0005 for 40 simulated rcp states containing 10,000 particles with periodic

boundary conditions along both directions. Our value of φrcp is in agreement with that

found by Xu et al. [234].

The above procedure is essentially the same as Ref. [234]; we modify this to include the

influence of the boundaries. To add in the wall, we create image particles reflected about the

position of the wall; thus particles interact with the wall using the same potential, Eqn. 3.1.

Additionally, we wish to generate packings with pre-specified values for the final confin-

ing height h = Ly/ds. (This allows us to create multiple rcp configurations with the same
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Figure 3.3: (a) Average φrcp for periodic packings of different N . The standard error in
the average value is roughly the size of the data symbol. (b) Average φrcp for confined
packings of different N . The standard error in the average value is roughly the size of the
data symbol. The dashed black line indicates packings with a Lx/ds = 40. To the left of
the dashed line are packings with Lx/ds < 40 and to the right are packings with Lx/ds > 40

h.) We impose h by affinely scaling the system after each step, so that the upper boundary

is adjusted by Ly = hds and each disk’s y-coordinate is multiplied by the ratio Ly,i+1/Ly,i,

where Ly,i and Ly,i+1 are the confining widths between two consecutive iterations. Thus

while ds gradually increases over the course of the simulation, Ly increases proportionally

so that the nondimensional ratio h is specified and constant. Some examples of our final

rcp states are shown in Fig. 3.2.

To ensure we will have no finite size effects in the periodic direction, we examined how

φrcp depends on system size to determine for which Lx there are no finite size effects. In

Fig. 3.3(a) we plot the dependence of φrcp on N for a periodic square boundary condition

(Lx = Ly). In the plot, φrcp is the average φrcp found for multiple runs with the same N .

We see that φrcp rapidly increases for small N and levels off to a constant value independent

of N once N > 1500. For N = 1500 this give a box size of roughly Lx = 40 by Ly = 40.

Therefore, we should be able to simulate confined packings of Lx > 40 without any finite

size effects in the periodic direction. To check this, we simulate highly confined packings

of h =4, 5, and 7 for various N , and the results are shown in Fig. 3.3(b). We have also

included in the figure, a dashed black line indicating packings with a Lx/ds = 40. To the

left of the dashed line are packings with Lx/ds < 40 and to the right are packings with

Lx/ds > 40. The figure shows for packings with Lx/ds > 40 (to the right of the black
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dashed line), φrcp is independent of the number of particles, confirming that packings with

Lx > 40 will not have any finite size effects in the periodic direction. Thus, to ensure no

finite size effects in the periodic direction we have chosen N for each simulation such that

Lx/ds ≈ 50.

In 3D, our system consists of a binary mixture of spheres containing an equal number

N/2 large spheres of diameter dl and small spheres of diameter ds with a size ratio σ =

dl/ds = 1.4. Spheres are packed into a box of dimensions Lx by Ly by Lz, with periodic

boundaries along the x- and z-directions and a fixed hard boundary along the y-direction.

Each configuration is generated using the same particle expansion and contraction method

described above and the same initial values for δφ and the terminating conditions. For each

configuration Lx = Lz, h = Ly/ds, and N is chosen so that Lx/ds > 10. Our choice of

Lx/ds > 10 is not large enough to avoid finite effects. However, in order to acquire the large

amount of data needed in a reasonable amount of time we intentionally choose a value of

Lx/ds below the finite size threshold. Trends observed in the 2D analysis will be used to

support that any similar trends seen in 3D are real and not the result of the finite periodic

dimensions. Note that in 3D we will show cases where h > Lx/ds resulting in the confining

direction being larger than the periodic direction, and this may affect the structure of final

configurations; however, we will not draw significant conclusions from those data.

Overall, it is not known if this algorithm produces mathematically rigorously defined

random close packed states [95, 218, 234, 238]. However, the goal of this chapter is to

determine empirically the properties of close-packed states in confinement, and we are not

attempting to extract mathematically rigorous results. For example, we are not as interested

in the specific numerical values of φrcp that we obtain, but rather the qualitative dependence

on h. As noted in the introduction, different computational and experimental methods for

creating rcp systems have different outcomes, and so it is our qualitative results we expect

will have the most relevance.

Note that for the remainder of this chapter, we will drop the subscript rcp, and it should

be understood that discussions of φ refer to the final state found in each simulation run,

φrcp(h).
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Figure 3.4: The black curve is the average packing fraction φ found by averaging at least
10 2D configurations together for various confining widths h; recall that h has been nondi-
mensionalized by ds, the small particle diameter. The red curve (dark gray) is a fit using
Eqn. 3.5 which finds φrcp = 0.842 in the limit h → ∞; the value for φrcp is indicated by
the black dashed line. The green (light gray) data points are φ(h) computed for many
configurations with the confining wall replaced by a periodic boundary. The inset is a mag-
nified view of the region for h ≤ 6 to better show the large variations within this range.
The vertical lines in the inset are located at “special” h values where peaks and plateaus
appear.

3.3 Results on 2D Packing

We begin by generating many 2D configurations with h between 3 - 30 and computing the

packing fraction for each, as shown by the black curve in Fig. 3.4. This plot shows that

confinement lowers φ, with the influence of the walls being increasingly important at lower

h. The lowering of φ with confinement is most likely due to structural changes in the packing

near the confining boundary. We know that any alteration in particle structure from a rcp

state must be “near” the wall because as h → ∞ we expect to recover a packing fraction of

φrcp, implying that in the infinite system the “middle” of the sample is composed of an rcp

region. Extrapolating the data in Fig. 3.4 to h → ∞ we find φh→∞ = φrcp = 0.842 which is

essentially a test of our method. The extrapolation (red curve in Fig. 3.4) was carried out
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by assuming that to first order φ ∼ φh→∞ −C/h for large h, where φh→∞ = φrcp (the bulk

value for the rcp packing) and C is a fitting parameter.

The data in Fig. 3.4 begin to deviate from the fit for h ! 6, and furthermore φ(h) is

not monotonic. While some of the variability is simply noise due to the finite number of

disks N used in each simulation, some of the variability is real. The inset in Fig. 3.4 shows

a magnified view of the region 3 ≤ h ≤ 6. The vertical lines in this inset are located at

specific values of h that can be expressed as the integer sums of the two particle diameters.

For instance, the first vertical line near the y-axis is located at h = 2ds + dl. These lines

are placed at some h values where φ(h) has notable spikes or plateaus. These lines suggest

that there exist special values of h where the confining thickness is the right width so that

particles can pack either much more efficiently or much less efficiently than nearby values

of h. Intriguingly, these special h values do not appear to be as pronounced at all possible

integer sums, but instead only the selected few drawn in the figure. However, given the

apparent noisy fluctuations (despite averaging over a very large number of simulations), we

cannot completely rule out that local maxima and minima might also exist at other combi-

nations of ds and dl. Somewhat surprisingly, we do not observe large peaks corresponding

to integer combinations of (
√
3/2)ds or (

√
3/s)dl which would suggest hexagonal packing,

the easiest packing of monodisperse disks in 2D; whereas the observed peaks of φ(h) suggest

square-like packing.

To measure structural changes in particle packing as a result of confinement we start by

examining the variations in the local number density ρ with distance y from the confining

wall. We define ρ to be the average number of particles per unit of area along the unconfined

direction. For a given location y, we count the number of particles in a region of area Lx∆y

and divide by this area, choosing ∆y to be of a size such that the results do not depend

sensitively on the choice, but also so that we can get reasonably localized information.

Figure 3.5 is a plot of ρ(y) for 100 configurations averaged together at h = 30. This plot

shows oscillations in particle density which decay to a plateau. The oscillations near the wall

are indicative of particles layering in bands. Above y " 6ds, noise masks these oscillations.

This supports our interpretation, that confinement modifies the structure near the walls but

not in the interior. Furthermore, the rapidity of the decay to the plateau seen in Fig. 3.5
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Figure 3.5: A plot of the number density ρ(y) for 100 2D configurations at h = 30 averaged
together. The plot is constructed by treating the small and big particles separately and
using bins along the confining direction of width ∆y = 0.1ds.

suggests that confinement is only a slight perturbation to systems with overall size h " 6.

The details of the density profiles in Fig. 3.5 also suggest how particles pack near the

wall. The small particle density (solid line) has an initial peak at y = 0.5ds, indicating many

small particles in contact with the wall, as their centers are one radius away from y = 0.

Likewise, the large particle density (dashed line) has its initial peak at y = 0.7ds = 0.5dl,

indicating that those particles are also in contact with the wall. This is consistent with the

pictures shown in Fig. 3.2(a,b), where it is clear that particles pack closely against the walls.

Examining again the small particle number density in Fig. 3.5 (solid line), the secondary

peaks occur at y = 1.5ds and y = 1.9ds = 0.5ds + 1.0dl, which is to say either one small

particle diameter or one large particle diameter further away from the first density peak at

y = 0.5ds. This again is consistent with particles packing diameter-to-diameter, rather than

“nesting” into hexagonally packed regions. Similar results are seen for the large particles

(dashed line) which have secondary peaks at y = 1.0ds + 0.5dl and y = 2.1ds = 1.5dl.

To confirm that these density profile results apply for a variety of thicknesses h, and

more importantly to see how these results are modified for very small h, we use an image

representation shown in Fig. 3.6. To create this image, density distributions of different

h are each separately rescaled to a maximum value of 1. Every data point within each

distribution is then made into a gray scale pixel indicating its relative value; black is a
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Figure 3.6: An image representation constructed for the purpose of comparing 2D ρ(y)
distributions at many different h. The intensities have been logarithmically scaled. The
vertical pixel width is 0.1, the left plot horizontal pixel width is 0.2, and the right plot
horizontal pixel width is 0.14. The inset include data for y > h/2, unlike the entire plot
which only shows data for y < h/2.

relative value of 1, and white is a relative value of 0. The vertical axis is the confining

width and the horizontal axis is the distance y from the bottom wall. Each horizontal

slice (constant h) is essentially the same type of distribution shown in Fig. 3.5. The white

space on the right side of Fig. 3.6 arises because the distribution is only plotted for the

range 0 ≤ y ≤ h/2. The distributions are symmetric about y = h/2, and by averaging

the distribution found for the range 0 ≤ y ≤ h/2 with the distribution found for the range

h/2 ≤ y ≤ h, the statistics are doubled. The areas shown in the insets are magnified views

where the full range 0 ≤ y ≤ h is being shown.

In Fig. 3.6 there are vertical strips of dark areas, once again indicating that particles

are forming layers. The width of these strips widens and the intensity lessens farther from
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the wall. In each plot, the first vertical black strip is sharply defined and located at one

particle radius, illustrating that small and big particles are in contact with the wall. Finally,

the location and width of each layer remains essentially the same for different h, suggesting

that layering arises from a constraint imposed by the closest boundary. Given that the

first layer of particles always packs against the wall, this imposes a further constraint on

how particles pack in the nearby vicinity. The consistency in the location and width of the

second layer for all h demonstrates that the constraint of the first layer always produces a

similar packing in the second layer, essentially independent of h. Continuing this argument,

each layer imposes a weaker constraint on the formation of a successive layer, allowing for

the local packing to approach rcp far from the wall.

In the magnified views of Fig. 3.6, the vertical dark lines show the layering of particles

induced by the left boundary and the angled dark lines show the layering of particles induced

by the right boundary. We see that for small h these sets of lines overlap and intersect,

meaning that there is a strong influence from one boundary on the packing within the layers

produced by the other boundary. This may explain the variations seen in φ(h) for small

h in Fig. 3.4. In particular, it is clear that at certain values of h, the layers due to one

wall are coincident with the layers due to the other wall, and this suggests why φ(h) has

a higher value for that particular h. Given that the layer spacings correspond to integer

combinations of ds and dl, the coincidence of layers from both walls will correspond to

integer combinations of ds and dl, and this thus gives insight into the peak positions shown

in the inset of Fig. 3.4.

As described above, the influence of the walls diminishes rapidly with distance y away

from the wall. In particular, for the local number density ρ(y), we observe that the asymp-

totic limit ρ(y → ∞) = 0.362 for the curves shown in Fig. 3.5 is in agreement with the

theoretical number density of an rcp configuration ρrcp = 4φrcp/π(1 + σ). To quantify the

approach to the asymptotic limit, we define a length scale from a spatially varying function

f(y) using:

λ =

∫
y [f(y)− f(y → ∞)]2 dy
∫
[f(y)− f(y → ∞)]2 dy

. (3.2)

In this equation f(y) is an arbitrary function where the value of λ quantifies the weighting
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Figure 3.7: Drawings illustrating the conceptual meaning of (a) ψ5, (b) ψ6, and (c) ψ7.
Darker colored particles have neighbors that are packed more like an ideal regular n-sided
polygon as compared to lighter drawn particles. The configuration of particles is the same
for all panels, and are drawn from a simulation with h = 10. Note in (b) that there are no
large patches of high ψ6, demonstrating that there are no large crystalline domains.

of f(y). For simple exponential decay f(y) = Ae(−y/λ′), Eqn. 3.2 gives λ = λ′/2. Using

f(y) = ρ(y) we find λ = 0.85ds and λ = 0.72ds for the small particle curve and big particle

curve in Fig. 3.5 respectively, suggesting that the transition from wall-influenced behavior

to bulk rcp packing happens extremely rapidly.

To further investigate the convergence of the local packing to rcpmore closely we analyze

the local bond order parameters ψn, which for a disk with center of mass ri are defined as

ψn(ri) =
1

nb

∑

j

eniθ(rij). (3.3)

The sum is taken over all j particles that are neighbors of the ith particle, θ(rij) is the

angle between the bond connecting particles i and j and an arbitrary fixed reference axis,

and nb is the total number of i - j bonds [239]. (These are not physical bonds, but indicate
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that two particles are nearest neighbors, where the definition of nearest neighbor is set by

the first minimum of the pair correlation function.) The square magnitude ψ2
n = ψ∗

nψn is

bounded between zero and one; the closer ψ2
n is to 1, the closer the local arrangement of

neighboring particles are to an ideal n-sided polygon. Here ψ∗
n is the complex conjugate of

ψn. Figures 3.7(a-c) are drawings illustrating the concept of ψ2
n using a 2D configuration

with h = 10. Particles with larger ψ2
n are drawn darker. These figures have no large

clusters of dark colored particles, demonstrating that there are no large crystalline domains

(i.e. particles are randomly packed).

For a highly ordered monodisperse packing 〈ψ2
6〉 would be the most appropriate choice

for measuring order because of the ability for monodisperse packings to form hexagonal

packing. However for a bidisperse packing with size ratio σ = 1.4, the average number of

neighbors a small particle will have is 5.5 and the average number of neighbors big particles

will have is 6.5. Therefore, a bidisperse packing of this kind will have a propensity to form

local pentagonal, hexagonal, and heptagonal packing, and to properly investigate how the

local packing varies we examine 〈ψ2
5〉, 〈ψ2

6〉, and 〈ψ2
7〉. We compute the average values 〈ψ2

5〉,

〈ψ2
6〉, and 〈ψ2

7〉 for all configurations as a function of y, and averaging together all 〈ψ2
n〉

distributions for configurations with h ≥ 16 to improve statistics. This averaging can be

justified by considering that oscillations in ρ(y) in Fig. 3.5 for y/ds > 10 are quite small.

Thus this averaging improves our statistics for the range 0 < y/ds < 5 where the largest

oscillations occur, without skewing the data. In the end nearly 10,000 configurations are

averaged together, producing the curves shown in Fig. 3.8(b-d). This figure shows the

spatial variations of 〈ψ2
5〉, 〈ψ2

6〉, and 〈ψ2
7〉 for small and big particles separately and both

particles combined. All curves show fluctuations that decay with distance from the wall, and

show local order within and between layers. Figure 3.8(a) has been added so comparisons

between the location of the oscillations in ρ(y) and 〈ψ2
n〉(y) can be made.

Each successive layer has less orientational order than the previous layer with 〈ψn〉

eventually decaying to an asymptotic limit. To characterize a length scale for these curves

we compute λ using Eqn. 3.2 for each curve shown in Fig 3.8(b-d). From the nine curves,

we find that the mean value of λ = (1.00 ± 0.24)ds. The length scales found for these

curves are once again less than the largest particle diameter. No striking difference is found
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Figure 3.8: (a) is a plot of the local number density ρ(y) for 2D configurations of big and
small particles separately. (b) - (d) are plots of 〈ψ2

n〉(y) for small (green/light gray) and
big particles (blue/dark gray) separately, and both sizes together (light purple/medium
gray) where (b) is 〈ψ2

5〉, (c) is 〈ψ2
6〉, and (d) is 〈ψ2

7〉. The length scales determined from
these curves for small, large, and both species are λ5,s = 1.2,λ5,l = 1.1,λ5,b = 1.4,λ6,s =
0.8,λ6,l = 0.9,λ6,b = 0.8,λ7,s = 1.1,λ7,l = 0.7, and λ7,b = 1.0 (all in terms of ds).

between the different order parameters or between the different particle sizes; specific values

of λ are given in the figure caption. (Note that the asymptotic limits of all 〈ψn〉 plots are

in agreement with the average values found for 40 unconfined 10,000 particle simulations

averaged together, confirming that the local packing converges to an rcp arrangement far

from the walls.)

Next, we wish to distinguish the structural influence of the flat wall from the finite size

effects. We perform simulations where the confining wall is replaced by a periodic boundary

with periodicity h; thus particles cannot form layers. In this case, the packing fraction still

decreases as h is decreased, as shown by the green curve (light gray) in Fig. 3.4, although

the effect is less striking than for the case with walls (black curve). A likely explanation
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for the decrease in φ with confinement is the long range structural correlations imposed

along the constricted direction; in other words, if there is a particle located at (x, y) that

particle is mirrored at (x, y − h) and (x, y + h) by the periodic boundary. We know from

the pair correlation function [109, 111] of rcp configurations that structural correlations

exist over distances of many particle diameters, although of course these are weak at larger

distances. Thus the periodicity forces a deviation from the ideal rcp packing, that becomes

more significant as h decreases. By definition rcp is the most random densely packed

state, and thus any perturbations away from this state must have lower packing fractions.

However, this is not nearly as significant as the constraint imposed by the flat wall, as is

clear comparing the green (light gray) data and the black data in Fig. 3.4.

3.4 Results on 3D Packing

For the 3D packings we start by investigating φ(h), shown as the black points in Fig. 3.9.

As observed in the 2D case, φ is reduced as a result of confinement. However, unlike the 2D

system, there does not appear to be a series of “special values” of h that give rise to peaks

and plateaus, other than a hump near h = 3.75. The lack of substructure may be due to

the smaller size in x and z, in contrast with the 2D simulations which had large sizes in the

unconfined direction.

Next we investigate the local number density ρ(y) (the average number of particles per

unit area along the unconfined directions) for h = 25, shown in Fig. 3.10(a). The data are

constructed by averaging together 100 configurations. The curve shows fluctuations that

decay with distance from the wall, eventually reaching a plateau. Using Eqn. 3.2, we obtain

decay lengths λ3D = 0.77ds and 0.73ds for the small and large particle curves respectively.

These length scales are similar to the length scales obtained in the 2D case (λ2D = 0.85ds

and 0.72ds for small and large particles).

To compare all 3D ρ(y) distributions for different h we construct the image represen-

tation used to compare 2D configurations in Fig. 3.6. The data for the 3D configurations

are shown in Fig. 3.11. Again there are dark vertical strips arising from particles forming

layers near the wall. Like in 2D, the density approaches the “bulk” rcp value far from the
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Figure 3.9: The black data points are the average packing fractions of 3D configurations at
various h. The red (dark gray) curve is a fit from our model Eqn. 3.5. For each h at least
10 configurations were averaged together.

wall.

In 2D, we also noted that the structure is modified near the wall, as measured by the

ψn order parameters. To investigate structural ordering in 3D, we use a local structural

parameter sensitive to ordering [195, 240]. We start by defining

q̂i,6 =
1

njK

∑

j

Y6m(θij ,φij). (3.4)

In the above equation m = {−6, ..., 0, ..., 6}, and thus q̂i,6 is a 13 element complex vector

which is assigned to every particle i in the system. The sum in Eqn. 3.4 is taken over the

j nearest neighbors of the ith particle, nj is the total number of neighbors, and K is a

normalization constant so that q̂i,6 · q̂i,6 = 1. For two particles i and j that are nearest

neighbors, Y6m(θij ,φij) is the spherical harmonic associated with the vector pointing from

particle i to particle j, using the angles θij and φij of this vector relative to a fixed axis.

Next, any two particles m and n are considered “ordered neighbors” if q̂m,6 · q̂n,6 > 0.5

[195, 240]. Finally, we quantify the local order within the system by the number of ordered

neighbors Nb a particle has.

Figure 3.10(b) is a plot of the average number of ordered neighbors particles have 〈Nb〉

as a function of distance y from the wall. In comparison with Fig. 3.10(a), this plot shows
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Figure 3.10: (a) is plot of ρ(y) for 3D configurations for small and big particles separately.
The plot is constructed using bins of width δy = 0.1ds along the confining directions. (b)
is a plot of the average number of ordered bonds 〈Nb〉(y).

that local order is mostly seen within layers, not between layers. Also we see that 〈Nb〉

converges to an asymptotic value of ≈ 1.3, confirming that the system is disordered. (Values

of Nb ≥ 8 are considered crystalline [195].) We use Eqn. 3.2 to characterize a length scale for

the decay in 〈Nb〉, giving λ = 1.3ds. The asymptotic limit of 〈Nb〉(y) in Fig. 3.10(b) agrees

with the average value of Nb found for 15 large simulations with 2,500 particles and periodic

boundary conditions, confirming that the local structure in the confined case converges to

the bulk rcp state far from the walls.

Our results show that in both 2D and 3D, confinement induces changes in structural

quantities near the walls, with a decay towards the “bulk” values characterized by length

scales no larger than dl. The only prior work we are aware of with related results are a

computational study [126] and an experimental study [127] of collections of monodisperse

particles confined in a large silo. The simulation by Landry et al. primarily focused on

the force network within the silo. They show one plot of the local packing fraction as a

function of distance from the silo wall. Similar to our results, this local packing fraction

showed fluctuations that decayed monotonically. In their paper they state a decay length

of ≈ 4dl; however, it appears that they drew this conclusion by estimating the value by



52

Figure 3.11: An image representation comparing the number density distributions of 3D
configurations for many different h. Black pixels represents a relative value of 1 and white
represent a relative value of 0. A gray scale is used to represent relative values between 0
and 1. The pixel widths are 0.1ds horizontally and 0.2 vertically.

eye. Applying Eqn. 3.2 to their data we find λ on the order of dl, close to the value found

in our simulations. The experimental study by Seidler et al. reported on the local bond

orientational order parameter which showed oscillation that decayed with distance from the

wall. They reported a decay length of λ ≈ dl using an exponential fit. The length scales

from these two studies are slightly larger than those found in our work.

3.5 Modeling the Effects of Confinement on Volume Fraction

Our results for φ(h) can be understood with a simple model incorporating an effective

boundary layer and a bulk like region. This model is an extension of one proposed by Ver-

man, Banerjee, Brown and Hawsley in 1946 [116, 117]. In Fig. 3.12 we show a configuration

of particles confined between two plates and divided into two boundary layers and a bulk
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Figure 3.12: Illustration of our model for φ(h). Our model breaks a configuration with
confining width h into three regions. The boundary layers are approximated to have a
packing fraction φl and persist a distance δL into the sample, and the middle “bulk” region
is approximated to have a packing fraction φrcp.

region. The model of Refs. [116, 117] approximates the effect of the walls by assuming a

lower effective volume fraction, φl, to the boundary layers. The central region is assumed to

have a volume fraction φrcp, equal to the volume fraction for an infinite system. Of course,

this model is an over-simplification that coarse-grains the density near the walls, which in

reality varies smoothly and non-monotonically in space as Sec. 3.3 and 3.4 demonstrates.

Furthermore, this model will not capture the non-monotonic behavior of Figs. 3.4 and 3.9,

but it should capture the overall trend with h. In the original model of Refs. [116, 117], it

was conjectured that the thickness of the boundary layer is δL = 1d for monotonic parti-

cles of diameter d. The experimental data they tested the model with were too limited to

carefully check this assumption; here, we extend their model by allowing δL to be a free

parameter. (Clearly, our results such as Fig. 3.8 confirm that δL ≈ 1ds is a reasonable order

of magnitude.)

Using this simple model, φ can be approximated by the weighted average φ = h−2δL
h φrcp+

2δL
h φl (in either 2D or 3D, with different values of the parameters depending on the dimen-

sion). Reducing this equation further we obtain

φ = φrcp −
C

h
, (3.5)

where we define the boundary packing parameter C = 2δL(φrcp−φl), which quantifies how

the wall influences the packing fraction near the boundary. Note that this is the same form

for φ(h) obtained from considering a 1st order correction in terms of 1/h and is the same

empirical form assumed by Scott [217].



54

Figure 3.13: The upper black curve is a plot of φ(1/h) for 2D configurations, and the red
(dark gray) line going through the curve, is a fit from our model. Likewise, the lower black
curve is a plot of φ(1/h) for 3D configurations with the red (dark gray) line going through
the curve being another fit from our model.

We investigate the merit of this model by fitting the data to Eqn. 3.5 which only contains

two fitting parameters, φrcp and C. The data in both Fig. 3.4 and Fig. 3.9 are fitted to

Eqn. 3.5. The fits are shown as the red lines in these earlier figures, and also in Fig. 3.13,

where the data are plotted as functions of 1/h to better illustrate the success of this model.

The fits give for 2D φrcp = 0.844 and C = 0.317 and for 3D φrcp = 0.646 and C = 0.233.

Both fits give values for φrcp that are slightly larger, but not by much, than φrcp reported

earlier in the paper. In Fig. 3.13 it can be seen that the packing fraction for large 1/h

dip significantly below the fitting line, due to the fluctuations in φ(h) for small h; this is

responsible for the over estimate in φrcp. When the data for both curves are fitted for

h ≥ 8 (1/h < 0.125) the actual values for φrcp are obtained. The dipping of the φ(h) curve

below the line for large 1/h is perhaps due to the layering each wall produces affecting the

layering produced by the opposite wall (see Figs. 3.6 and 3.11). Another possibility is that

this reflects the breakdown of the model when h ≈ 2δL. That is, when the thickness of

the sample is such that the two boundary layers begin to overlap, the model would not be

expected to work.

To provide further credence to the model we also perform 2D rcp simulations with

a fixed circular boundary or a fixed square boundary. Figure 3.14 shows a plot of φ(h)
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Figure 3.14: The black curve is the packing fraction dependence of random close packed 2D
disk enclosed within a circular boundary on the diameter of the enclosure. The red (light
gray) curve is a fit from our model, and the image on the lower right is an rcp configuration
confined in a circular boundary with h = 21. Small particles are rendered as green (medium
gray) and large particles are rendered as blue (dark gray).

for both the circular boundary (green points) and the square boundary (blue points). In

analogy with our prior results, h is the wall-to-wall distance: for the circular boundary,

h is the diameter normalized by ds, and for the square boundary h is the side length L

normalized by ds. As before with two parallel flat boundaries, we see that φ increases to an

asymptotic limit. Note that the data are noisier for two reasons. First, given our algorithm

(Sec. 3.2, for samples that are confined in all directions, we can only choose the number

of particles we start with; we have no control over the final system size when the particles

jam. Due to random fluctuations, we can run the simulations many times with the same

number of particles and each time find different final value for h (and φrcp). This limits

our ability to sample enough data at a particular h to reduce the noise and/or look for

non-monotonic effects. Second, there are many fewer particles in these simulations, thus

reducing the statistics. Normally this could be compensated by increasing the number of

simulation runs, but the first problem (lack of precise control over h) frustrates this.

Adapting the model to a circular boundary with diameter h or to a square boundary
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Figure 3.15: φ(1/h) for disks confined within a circular boundary or square boundary, as
indicated; the data are the same as Fig. 3.14 along with the definitions of h. The red (light
gray) curves are fits to the data using our model. The black dashed lines are linear fits
to the data. The image at the upper right is an rcp configuration confined in a square
boundary with h = 15.5. Small particles are rendered as green (medium gray) and large
particles are rendered as blue (dark gray).

with side length h, we find that both situations give

φ(h) = φrcp − 2C
h + 2CδL

h2 , (3.6)

where C = 2δL(φrcp − φl) as before.

Fig. 3.14 is fitted to this model and is shown as the red lines. For the circular boundary

the fit gives φrcp = 0.846, C = 0.371, and δL = 1.51, and for the square boundary the fit

gives φrcp = 0.848, C = 0.340, δL = 1.14. These fits give φrcp values close to the φrcp values

reported earlier in the chapter and C values similar, but slightly different, than that found

for one fixed flat boundary. Interestingly the fits give values of δL commensurate to the λ

values previously computed, demonstrating that the boundary produces a thin boundary

layer of about 1-2 characteristic particle sizes thick that is primarily responsible for lowering

the global packing fraction.

Finally, to demonstrate the quality of the fits we show a plot of φ(1/h) in Fig. 3.15. In

this figure the red line is the fit from Eqn. 3.6 while the black dashed line is a linear fit

in 1/h. Both fits are reasonable, and the data are not strong enough to determine which
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is better. We thus note only that the model suggests we should use the quadratic fit for

these cases, and that the values of δL obtained are reasonable ones. δL is a third parameter

for the fit; fortunately, extending the model to a 3D case where all directions are confined

would predict a cubic fit but without introducing a fourth parameter.

3.6 Conclusion

In this chapter, we have shown how a confining boundary alters the structure of random

close packing by investigating simulated rcp configurations confined between rigid walls in

2D and 3D. We find that confinement lowers the packing fraction, and induces heterogeneity

in particle density where particles layer in bands near the wall. The structure of the local

packing decays from a more ordered packing near the wall to a less ordered packing in the

bulk. All measures of local order and local density decay rapidly to their bulk values with

characteristic length scales on the order of particle diameters. Thus, the influence of the

walls is rapidly forgotten in the interior of the sample, with confinement having the most

notable effects when the confining dimension is quite small, perhaps less than 10 particle

diameters across.

The results are well-fit by a three-parameter model dating back to 1946 [116, 117],

with our results suggesting that the third parameter (an effective boundary layer thickness)

should be a free parameter rather than constrained. To first order, this model suggests

that the primary influence of the boundary is quantified by one parameter, C, which is the

product of a length scale and a volume fraction reduction. This parameter, the boundary

packing parameter, thus quantifies the overall influence of a boundary, near that boundary.

Since the model assumes nothing about container shape, this model should equally apply

to other geometries as well.

These findings have implications for experiments investigating the dynamics of densely

packed confined systems (i.e. colloidal suspensions or granular materials). For example,

our work shows that for small h the packing fraction has significant variations at small h

(most clearly seen in 2D, for example Fig. 3.4). For dense particulate suspensions with

φ < φrcp, flow is already difficult. By choosing a value of h with a local maximum in
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φrcp(h), a suspension may be better able to flow, as there will be more free volume available.

Likewise, a poor choice of hmay lead to poor packing and enhanced clogging. A microfluidic

system with a tunable size h may be able to vary the flow properties significantly with small

changes of h, but our work implies that control over h needs to be fairly careful to observe

these effects. Of course, these effects will be obscured by polydispersity in many systems

of practical interest; however, our work certainly has implications for microfluidic flows of

these sorts of materials, once the minimum length scales approach the mean particle size.

Our work has additional implications for experiments on confined glasses [84, 132, 226–

232]. As mentioned in the Sec. 3.1, confinement changes the properties of glassy samples,

but it is unclear if this is due to finite size effects or due to interfacial influences from the

confining boundaries [233]. Our results show that dense packings have significant structural

changes near the flat walls, suggesting that indeed interfacial influences on materials can

be quite strong at very short distances, assuming that the structural changes couple with

dynamical behavior. Furthermore, the non-monotonic behavior of φrcp that we see suggests

that experiments studying confined glassy materials could see interesting non-monotonic

effects, if the sample thickness can be carefully controlled.
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Chapter 4

Imaging and Image Analysis for 2D

Experimental Model System

In the work presented in Chapters 6 and 7, our aim is to study the jamming transition and

flow of 2D frictionless droplets using a new experimental model system we have developed.

Our sample chamber for these experiments is designed to create a system of quasi-2D

frictionless emulsion droplets, analogous to 2D granular systems of photoelastic disks, but

without static friction [155]. The sample chamber consists of two microscope glass slides

separated by a spacer (see Fig. 4.1). The chamber is filled with an oil in water emulsion,

where the diameters of the emulsion droplets are larger than the gap distance between the

microscope slides.

For the experiments we present in Chapters 6 and 7, it is essential to know the location of

each droplet and the contact forces between droplets. In this chapter, we describe various

Figure 4.1: The above image is a schematic of our sample chamber where emulsion droplets
are confined to a 2D plane by two microscope slides separated by either a ∼ 100 µm spacer
(transparency film) or ∼ 180 µm spacer (glass coverslip).
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aspects related to imaging our droplets and our algorithms to determine each droplet’s

perimeter and the contacts shared between neighboring droplets. Our algorithms were

written in the Interactive Data Language (IDL), and at the end of each section the names

of our IDL functions are listed. In the next chapter, Chapter 5, we discuss our method to

determine the contact forces between droplets.

4.1 Imaging Droplets

To image our samples we use a Leica DM IRB bright field microscope with a MightTex 5

megapixel monochrome CMOS camera (model BCN-B050). For this particular microscope,

we have many different objective lenses to control the magnification, and we typically use

a 5× or 1.6× lens to image the samples. There is also an eye piece in front of the camera

to separately adjust the magnification again, and we use either a 1× and 0.55× eye piece

is commonly used.

Depending on our choice of the objective lens, eye piece, and oil phase the boundary of

the droplets may look thicker. In Fig. 4.2, we show hexane and mineral oil droplets in water

using different objective lenses and eye pieces. In all the images, the droplets are motionless

and we imaged the same region within the sample. One obvious difference between the

images is that the boundary is much thicker for the mineral oil droplets than the hexane

droplets because the mineral oil has a larger index of refraction difference with water than

hexane. When light from the microscope is incident on a droplet, the surface of the droplet

refracts the light away. The larger the index of refraction difference between the water and

oil phase, the larger the refraction. Since light is refracted away from a droplet’s surface,

the boundary of the droplet appears dark in the image. For hexane droplets in water, the

index of refraction difference between the two phases is ≈ 0.04, and for mineral oil droplets

in water, the index of refraction difference between the two phases is ≈ 0.13.

While the oil phase can dramatically change the thickness of the boundary, changing

optical setups does not appear to have nearly as strong an effect. However, when changing

optical setups, the intensity of the microscope lamp, the positioning of the condenser, and

the optical resolution may all play a role in changing the thickness of the boundary. When
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Hexane 

Mineral Oil 

5x Objective 

1x Eye Piece 

5x Objective 

0.55x Eye Piece 

1.6x Objective 

1x Eye Piece 

Resolution 1.35 µm/pixel 0.42 µm/pixel 0.77 µm/pixel 

Figure 4.2: This figure shows hexane in water and mineral oil in water droplets imaged at
different magnifications. Above the figures, are the magnifications and pixel size for the
object lens and eye pieces used to image the droplets. Each image was taken over a larger
region of the sample then seen in the figure. Each image was cropped to roughly the same
field of view for easy comparison of any optical effects. Therefore, going left to right the
images consist of less pixels per square inch. The scale bar in each image is 200 µm.

determining an empirical force law data is taken at a smaller pixel sizes than the pixel size

we intend to use in studying the physics of jammed system. By using data taken at smaller

pixel sizes we can obtain a more accurate force law, and therefore, the optical configuration

is different between determining an empirical force law and studying the physics. Also

depending on the experiment we may desire to take data at different pixel sizes. If possible,

we would like not to have to determine an empirical force law for each optical configuration.

An important variable in the empirical force law is a relative contact length∆l (see Sec. 5.2).

Even if the contact length changes between two optical configurations, as long as the change

in contact length is uniform, then ∆l is independent of the optical configuration. Another

parameter in the empirical force law is the radius of curvature. Unfortunately the thickness

of the boundary does change the radius of curvature by a few microns between optical
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configurations. This will introduce a systematic error to the radii of curvatures, in that all

the radii will increase or decrease by a constant amount.

To quantify how the contact length changes with optical setup we measure the contact

lengths of common droplets in contact in the images shown in Fig. 4.2. In addition to the

images shown, we have also taken images of some of the contacts using a 20× objective lens

with a 1× eye piece. This gives a pixel size of 0.11 µm. In Table 4.1 we show the contact

lengths for various hexane droplets in contact. Above the table on the left is an image of

hexane droplets taken with a 5× objective and a 0.55× eye piece. The right image is a close

up of one of the contacts taken with a 20× object lens and 1× eye piece. In the left image

we have numbered the different contacts to provide each contact with an identifier. The

top table list the contact lengths for each contact. The contacts we measured individually

by hand by looking closely at each contact and identifying the endpoints. We have ordered

the contacts by their contact length to make it easier to spot any possible trends in how

the contact lengths change with optical setups for larger contacts.

The values in the table show that as the pixel size increases (going right across the

top table), the contact lengths increase. While we expect the contact lengths to change

it is more important to know if the contact lengths change uniformly for all droplets. To

quantify if the contact lengths change uniformly we show in the bottom table the difference

δ in the contact lengths relative to the 20× optical setup. Just below the δ values are the the

mean and standard deviation in δ for all the data. We see that the mean in δL grows with

increasing pixel size, but that the standard deviation in δL is fairly small. When measuring

the contacts there is some noise. Judging by eye, the measurement errors are ± 11 pixel (1.1

µm) noise in the 20×/1× setup, ± 2.8 pixel (1.2 µm) noise in the 5×/1× setup, ± 1.4 pixel

(1.1 µm) noise in the 5×/0.55× setup, and ± 1.4 pixel (1.9 µm) noise in the ± 1.6×/1×

setup. This gives a measurement error of ± 2.3 µm for δ5×,1×, ± 2.2 µm for δ5×,0.55×, ±

3 µm for δ1.6×,1×. Two standard deviations in δ is roughly the measurement error for the

data and the range (Max - Min)/2 is close to the measurement error as well. Therefore, we

can conclude that all the contact lengths change uniformly with optical setup.

Similar to hexane droplets, we quantified how the different optical setups change the

contact lengths for mineral oil droplets. In the case of hexane droplets all the contacts were
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6 

5 

4 
9 

8 

7 

2 

3 
1 

Contact 20× Obj/ 1× eye 5× Obj/1× eye 5× Obj/0.55× eye 1.6× Obj/ 1× eye
Number L [µm] L [µm] L [µm] L [µm]

4 32.6 35.6 39.2 41.3
8 34.2 34.2 36.6 42.3
1 35.5 35.7 39.4 45.9
9 37.4 41.2 44.2 48.7
3 39.2 41.3 46.0 50.9
2 40.0 42.0 45.4 48.6
7 42.8 42.3 44.1 49.6
5 48.0 47.5 49.9 55.4
6 48.2 48.8 52.2 55.8

Contact δ [µm] δ5×,1× [µm] δ5×,0.55× [µm] δ1.6×,1× [µm]
4 2.97 6.58 8.63
8 -0.04 2.42 8.11
1 0.249 3.90 10.4
9 3.83 6.79 11.3
3 2.13 6.74 11.7
2 2.04 5.41 8.67
7 -0.46 1.33 6.84
5 -0.45 1.96 7.45
6 0.62 3.98 7.62

Mean - 1.21 4.35 8.97
Std - 1.49 2.02 1.65

(Max - Min)/2 - 2.14 2.73 2.43

Table 4.1: Table showing the dependence of contact length on different optical setups for
hexane droplets. The contacts used to compute a contact length are shown in the left
image above the table. In the image various contacts have been labeled with an identifier
to distinguish the contacts. The left image was taken with a 5× objective and a 0.55× eye
piece. The right image is a close up of one of the contacts taken with a 20× object lens and
1× eye piece. The upper table gives the contact lengths for each optical setup and contact.
The lower table gives the contact lengths δ relative to the contact length measured using
the 20× objective lens. The final set of numbers at the bottom are the average, standard
deviation, and range of minimum to maximum values in δ for each optical setup. When
measuring the contacts there is some noise. Judging by eye, there appears to be ∼ 11 pixel
(1.1 µm) noise in the 20×/1× setup, 2.8 pixel (1.2 µm) noise in the 5×/1× setup, 1.4 pixel
(1.1 µm) noise in the 5×/0.55× setup, and 1.4 pixel (1.9 µm) noise in the 1.6×/1× setup.
This gives a measurement error of 2.3 µm for δ5×,1×, 2.2 µm for δ5×,0.55×, and 3 µm for
δ1.6×,1×.



64

7 6 

5 

10 

9 
8 

3 

4 

1 11 

2 

Contact 20× Obj/ 1× eye 5× Obj/1× eye 5× Obj/0.55× eye 1.6× Obj/ 1× eye
Number L [µm] L [µm] L [µm] L [µm]

8 16.5 20.4 21.6 23.3
3 26.0 26.0 28.7 32.3
9 27.6 31.8 33.2 33.5
10 28.4 33.0 35.2 34.5
7 33.1 36.8 38.8 40.5
2 42.0 44.2 47.8 51.1
11 46.8 51.1 53.9 55.4
4 56.9 60.1 61.9 64.3
6 61.5 66.4 66.1 69.1
5 71.3 73.3 73.6 76.1
1 72.2 75.3 77.8 79.8

Contact δ [µm] δ5×,1× [µm] δ5×,0.55× [µm] δ1.6×,1× [µm]
8 3.86 5.09 6.80
3 0.07 2.75 6.38
9 4.14 5.52 5.86
10 4.65 6.83 6.17
7 3.68 5.68 7.44
2 2.13 5.72 9.06
11 4.31 7.09 8.58
4 3.18 5.02 7.36
6 4.83 4.61 7.61
5 1.97 2.36 4.84
1 3.14 5.64 7.63

Mean - 3.27 5.12 7.06
Std - 1.35 1.40 1.22

(Max - Min)/2 - 2.38 2.37 2.11

Table 4.2: Table showing the dependence of contact length on different optical setups for
mineral oil droplets. The contacts used to compute a contact length are shown in the left
image above the table. In the image various contacts have been labeled with an identifier
to distinguish the contacts. The left image was taken with a 5× objective and a 0.55× eye
piece. The right image is a close up of one of the contacts taken with a 20× object lens and
1× eye piece. The upper table gives the contact lengths for each optical setup and contact.
The lower table gives the contact lengths δ relative to the contact length measured using
the 20× objective lens. The final set of numbers at the bottom are the average, standard
deviation, and range of minimum to maximum values in δ for each optical setup. When
measuring the contacts there is some noise. Judging by eye, there appears to be ∼ 11 pixel
(1.1 µm) noise in the 20×/1× setup, 2.8 pixel (1.2 µm) noise in the 5×/1× setup, 1.4 pixel
(1.1 µm) noise in the 5×/0.55× setup, and 1.4 pixel (1.9 µm) noise in the 1.6×/1× setup.
This gives a measurement error of 2.3 µm for δ5×,1×, 2.2 µm for δ5×,0.55×, and 3 µm for
δ1.6×,1×.
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roughly the same in size, and we can not conclude if contact lengths change by different

amount for different contact sizes. To ensure that we have good variability in contact

lengths, for the mineral data we took images of highly polydisperse data as shown in Fig. 4.2.

In Table 4.2 we show how the contact lengths change for mineral oil. Similar to the

hexane data, two standard deviations in δ is roughly the measurement error and the range

(Max - Min)/2 is close to the measurement error. Also, δ does not show any dependence

on the contact size, and therefore we can conclude that the optics uniformly adjust the

contacts regardless of length.

4.2 Choosing an Oil Phase and Surfactant

We would prefer to use an optical setup with a water-oil mixture that gives images with

droplet boundaries as thin as possible. However, there are several practical constraints we

must consider. The first and most important constraint is that we must have a water-oil

mixture with a large enough density difference between the two liquid phases to determine a

force law. To calibrate the forces, we will incline the microscope to allow the droplets to rise

up, press into one another, and deform (see Chapter 5). If the density difference between the

two phases is too small, then the droplets will not significantly deform under the influence

of gravity. The second constraint is that the oil phase cannot be harmful. When imaging

the flow of these samples, we must leave the samples open to the atmosphere. Since we

are not going to put the microscope and image apparatus in a fume hood and we do not

want to expose the microscope to harmful solutions, this eliminates many organic liquids

that could be used as an oil phase. Based on the first two constraints, this left us with a

few possibilities, and the one we choose is mineral oil because it has a fairly large density

difference with water, it’s relatively cheap, and safe to use. At first we tried working with

hexane droplets in a closed sample chamber since it has such a large density difference with

water, but we found it hard to work with hexane because it is so volatile and we had to use

a closed chamber.

In our first attempt to determine an empirical force law using mineral oil droplets,

we used sodium dodecyl sulfate (SDS) as the surfactant to stabilize the droplets. We used
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SDS because it is commonly used in the literature. We found that when the microscope was

inclined the droplets were not deformed enough to determine an empirical force law over the

range of deformations we are interested in studying. To get the droplets to deform more we

changed the surfactant to lower the surface tension of the droplets. Since the deformability

of an emulsion droplet is directly proportional to the surface tension, reducing the surface

tension will make droplets more deformable under the same weight. We found that Fairy

soap, a polymeric surfactant soap commonly used in Britain, gives the droplets a suitable

surface tension so that they deform by an appropriate amount when the microscope is

inclined.

4.3 Stitching Images Together

When studying a static system we can acquire very large high resolution images by taking a

series of high resolution images of neighboring regions within the sample and later stitching

the images together to form a single large image. To stitch the images together, we tried

using freely available stitching software, but found that none of the software could accurately

stitch the images together. The reason the auto stitching software fails for our images is

because these algorithms try to identify and overlap distinct unique features shared between

pairs of images. In our images, the type of features these stitching softwares look for are

not present. Therefore, we had to write our own software. Typically we stitch anywhere

from 100-400 images together.

To make it easier to write an in-house stitching software specific for this project, we

acquire the images in a manner so that we know which images neighbor each other as shown

in Fig. 4.3, and therefore our stitching algorithm does not need to determine which images

neighbor each other. Our stitching software is designed to sequentially stitch neighboring

images together by first stitching images 1 and 2 together, then stitching image 3 to images

1-2, then stitching image 4 to images 1-2-3 and so on. Therefore, our stitching software

only ever needs to stitch two images together.

To stitch two neighboring images together, we overlap one image on top of the other

image and shift the overlapping image around to find the best overlap. The algorithm
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Figure 4.3: This figure illustrates the order in which we image neighboring regions in the
sample. We start by taking an image at the left bottom corner. This image is labeled 1.
Then we image a region in the sample to the right such that it overlaps with image 1. The
second image is labeled 2. We then continue to image more regions in the sample as shown
in the diagram.

works by shifting the overlapping image up, down, left, and right in increments of 16 pixels

until it finds the best overlap, then shifts the overlapping image in increments of 8 pixels

until it finds the best overlap, then shifts in increments of 4 pixels, then in increments

of 2 pixels, and finally in increments of 1 pixel. To test how well two images overlap

we calculate the cross correlation between the overlapping parts of the two images. If I1

is the pixel intensities of the overlapping portion of the first image and I2 is the pixel

intensities of the overlapping portion of the second image, the cross correlation is C =

1/(n− 1)
∑

k

(Ik1 − 〈I1〉)((Ik2 − 〈I2〉)/(σI1σI2), where n is the number of pixels in I1 and I2,

k indexes all the pixels within I1 and I2, σI1 is the standard deviation in pixel values in

I1, and σI2 is the standard deviation in pixel values in I2. When two overlapping images

match well, they will be well correlated and have a value of C close to 1. For two completely

different overlapping images, the correlation will be small and close to 0. We define the

best overlap between the two images as the shift that maximizes C. In Fig. 4.4 we show

our algorithms ability to automatically stitch neighboring images together.

List Of IDL Functions

• kautoimage align.pro: Automatically determines the shift values for each image.
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(a) (b) 

Figure 4.4: This figure shows the stitching of four images to produce a larger image. (a)
shows four images of neighboring regions in the sample and (b) shows the four images
stitched together to form one large image of a larger image.

• kimage merge.pro: Uses shift values from kautoimage align.pro to merge images into

one single image.

4.4 Identifying Droplets and Their Center of Mass

After imaging a sample with the microscope, and possibly stitching together images, we

start with a raw 8-bit image as shown in Fig. 4.5(a). We see in the figure that each droplet

is defined by a black boundary that enclose a region of white pixels. To simplify the process

of identifying the droplets we threshold the image by assigning all pixels below a threshold

c equal to 0 and all other pixels are assigned a value of 1. The value of c will depend on how

much the sample has been illuminated when the image was taken, but c is chosen so that the

1-bit image looks very similar to the 8-bit image as shown in Fig 4.5(c). By thresholding the

image we can use label region (a built IDL function) to easily locate enclosed clusters of

pixels with value 1. These clusters are the pixels belonging to each droplet. In Fig. 4.5(d),

we show each cluster found by label region as separate regions with different shades of

gray.

For each enclosed white region we can easily compute its center of mass from the location

of the pixels within that region. The centers for each enclosed white region is shown in Fig.

4.5(d). In the image we see that some of the enclosed regions belong to droplets and others
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(a) (b) (c) (d) 

(e) (f) (g) 

Figure 4.5: A scale bar has not been added, but for a sense of scale, the average droplet
size is 210 µm in diameter. (a) raw 8-bit image of sample. (b) raw 8-bit image in (a)
converted to a 1-bit image. (c) an image showing all the enclosed white regions found by
the label region function. Each enclosed white region has been given a unique id with
each id shown as a unique shade of gray. (d) raw image with the center of mass of each
enclosed white region shown as a red dot. (e) demonstrates how the perimeter of a droplet is
found by radially looking outward from the center. (f) shows the perimeter of each droplet
and void using different colors. (g) shows which enclosed white regions obey certain criteria
defining a droplet.

belong to voids, and we must distinguish the two if we wish to only study the droplets.

Before we distinguish the droplets and voids, we first locate the boundaries of each enclosed

white region.

To identify the boundary, we look radially outward from the center of mass until we see

the pixel value change from 1 to 0. This is shown in Fig. 4.5(e). The blue lines indicate the

radial outward search from the center of mass, and the red dots indicate the pixels where

the value changes from 0 to 1. After repeating this search on all the enclosed regions, we

find the boundaries for each droplet and void, and the boundaries are shown in Fig. 4.5(f).

Two different metrics are used to distinguish between droplets and voids. First, there

is a minimum droplet area threshold. For very dense packings as shown in Fig. 4.5, the

droplets have an area much larger than the voids, and therefore we can easily distinguish

between the two by area. More precisely, for an enclosed region with area A we define it

to be a droplet if A > Athres, where Athres is the smallest area we expect to find for a
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droplet. However, for binary packings near the jamming point, this criterion may not be

suitable since the voids can be roughly the same size as a droplet. The second metric uses

the convex hull of the perimeters. If a perimeter is convex, such as a droplet, then many

of the points belonging to the perimeter will also belong to the convex hull. On the other

hand, if the perimeter is concave, such as a void, then many of the points belonging to

the perimeter will not belong to the convex hull. For a boundary consisting of n points,

the convex hull will return nh points that defines the largest convex polygon that can be

formed using the n points on the boundary, where nh ≤ n. For a boundary that is mostly

convex, nh ≈ n, while a boundary that is concave nh ( n. We define a boundary to be

convex if nh > nthres, where nthres is a user defined threshold. We compute the convex

hull using qhull, a freely available software. To properly distinguish between droplets and

voids, Athres and nthres are chosen by adjusting the values until all the droplets and voids

are properly distinguished. Fig. 4.5(f) shows the centers of all enclosed regions satisfying

the two criterion.

List Of IDL Functions

• kfind emulsions.pro: Detects center and perimeter of each droplet in an image.

4.5 Describing the Perimeter with a Continuous Function

In this section, we discuss how to describe the perimeter of a droplet as a continuous function

using a Fourier series. Once all the droplets have been found, we store each droplet’s center

of mass and the perimeter. We also fit the perimeter to a Fourier series and store the

coefficients for later use. We fit the perimeter so that it can be described by an analytic

function and to smooth out the noise present in the raw data. To fit the perimeter of a

droplet to a Fourier series we first calculate the polar coordinations of the droplet’s perimeter

as ri =
√
(xi − xcm)2 + (yi − ycm)2 and θi = tan−1((yi − ycm)/(xi − xcm)), where (xi, yi)

are the cartesian coordinates of the perimeter and (xcm, ycm) is the center of mass of the
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droplet. We fit the perimeter to Fourier series as

r =
nc−1∑

n=0

(an cos(nθ) + bn sin(nθ)) , (4.1)

where an and bn are the fitting parameters and 2nc − 1 is the number of fitting coefficients.

Using the following orthogonality relationships the perimeter can be analytically computed

for a given nc as.

if n = 0






a0 = (1/π)
∑

i

(ri+1 − ri) cos(nθi −∆θ/2)

b0 = 0

(4.2)

if n > 0






an = (2/π)
∑

i

(ri+1 − ri) cos(nθi −∆θ/2)

bn = (2/π)
∑

i

(ri+1 − ri) sin(nθi −∆θ/2),
(4.3)

where ∆θ is the increment in θ in the polar coordinate. In the previous section, we discuss

that the perimeter of the droplet is identified by doing radially outward searches from

the center. The radially search is done in uniform increments of either ∆θ = 2π/201 or

∆θ = 2π/401. For low resolution images the perimeter is defined by 200 pixels and for high

resolution images the perimeter is defined by 400 pixels. These number are chosen because

these are roughly the number of actual pixels the boundary of a droplet occupies.

Before fitting the perimeter we must choose a value for nc. The number of fitting

coefficients has to be large enough such that the shape of the perimeter is well represented,

but not too large such that a significant amount of the noise is also captured. In Figure 4.6

we show r(θ) for a droplet as the black data points, and fit r(θ) to a Fourier series using

nc = 2, 6, and 10. As nc increases the fits improve, and for nc = 10, the fit sufficiently

describes the perimeter. The actual image of the droplet represented in Fig. 4.6 is shown

in Fig. 4.7, with the various nc =2, 6, and 10 Fourier fits drawn over the perimeter. For

nc = 10, the actual image shows that the perimeter is well described by a Fourier series.

Using the Fourier series fits we can easily calculate many quantities related to a droplet

defined not by the experimental data points, but instead by the Fourier series fit. We have
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Figure 4.6: The black data points represent the perimeter in polar coordinates of the droplet
shown Fig. 4.7. The perimeter is fitted to a Fourier series using different nc.
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Figure 4.7: (a) droplet boundary fitted to a Fourier series using nc = 2. (a) droplet boundary
fitted to a Fourier series using nc = 6. (c) droplet boundary fitted to a Fourier series using
nc = 10.

included a few quantities that below are used to define each droplet’s center of mass and

area.

Center of Mass: For a droplet defined by the Fourier series, the center of mass will be

x′cm = xcm +

∫ 2π

0
cos(θ)r3dθ/

∫ 2π

0
r2dθ

y′cm = ycm +

∫ 2π

0
sin(θ)r3dθ/

∫ 2π

0
r2dθ,

where (x′cm, y′cm) is the center of mass of a droplet defined by the Fourier series and r is
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defined in Eqn. 4.1. When computing the center of mass we could try to simplify the above

equations, but since the computational cost is so low we numerically integrate the equations.

Compared to the experimental data, the center of mass differs by less than a pixel. In most

cases this difference is negligible, but when computing the deformation D (shown below)

using this center of mass can significantly improve the signal in the data.

Area of droplet: For a droplet defined by the Fourier series the area of the droplet is

Adroplet =
1

2

∫ 2π

0
r2dθ (4.4)

which reduces to

Adroplet = πa20 +
π

2

nc−1∑

n=1

a2n +
π

2

nc−1∑

n=1

b2n (4.5)

List Of IDL Functions

• kfourier fit.pro: Fits perimeter to Fourier series.

• krepair perimeter.pro: In some cases a few pixels on the boundary of a droplet may

be obscured or not correctly found. This code uses the Fourier series to test if pixels

on the boundary deviate too far from the fit. For those pixels that deviate more than

a user defined threshold, the program interpolates new pixels on the boundary using

the Fourier fit.

• adjust center of mass.pro: Adjust the center mass of each droplet to be the center of

mass defined by the Fourier fit.

• kget deformation.pro: Computes the deformation D for each droplet.

4.6 Radical Voronoi Tessellation

The radical Voronoi tessellation is a decomposition of the entire space into non-overlapping

polygons, where each droplet is assigned its own unique polygonal cell. An example of a

Voronoi tessellation for one of our samples is shown in Fig 4.8, where the green lines indicate

the boundaries of the polygonal or Voronoi cells. These Voronoi cells are computed using
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Figure 4.8: Radical Voronoi diagram. The green lines define the Voronoi cells around each
droplets.

the power distance pow(ri, v) = (xi−vx)2+(yi−vy)2−R2
i , where ri is the center of a droplet

of interest, v is an arbitrary point in space, Ri =
√

Ai/π, and Ai is the area of the droplet

using the Fourier fit to the perimeter [241, 242]. For the power distance to be meaningful, it

must be used in conjunction with the coordinates of three neighboring droplets r1, r2, and

r3, where the Voronoi coordinate for this pairing of three droplets is defined as the point in

space v that satisfies the equations pow(r1, v) = pow(r2, v) = pow(r3, v). The Voronoi cell

is then the polygon formed around a droplet by the Voronoi coordinates. While there are

many possible combinations for the triplet r1, r2, and r3 that could be used to compute the

Voronoi coordinates, there are rules restricting which triplets to use for the tessellation. It

was shown by Aurenhammer that the set of triplets can be found by computing the lower

convex hull of the droplet coordinates projected into a parabolic space, where the extra

parabolic coordinates for the ith droplet is x2i +y2j −R2
i such that the parabolic coordinates

is (xi, yj , x2i +y2j −R2
i ) [241]. To compute the lower convex hull we use qhull. Once we have

all the triplets, we can easily compute the Voronoi vertices and subsequently the Voronoi

cells.

List Of IDL Functions

• poly voronoi.pro: Computes the radical Voronoi tessellation.
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• kemulsion volfrac2.pro: Computes the packing fraction of a sample using an image of

the droplets, the droplet outlines, and the poly voronoi.pro function.

4.7 Identifying Contacts

For two droplets in contact, they will share a common boundary, and in this section, we

discuss our method for determining this common boundary. It is a necessary condition

that any two droplets in contact share a common edge between their Voronoi cells, and

therefore, we use the Voronoi diagram to generate a list of neighboring droplets that may

be in contact. However, it is also possible for two droplets to share an edge between their

Voronoi cells even though they are not in contact as can be seen in Fig. 4.8. Once we

apply the Voronoi tessellation, we then check each pair of droplets in our neighbor list, first

determining if a contact exists, and if the contact exists then we identify the entire contact

between the droplets.

To determine if a contact exists between two neighboring droplets, we look at the inten-

sity of pixels along a line that joins the center of the two neighboring droplets as shown in

Fig. 4.9(a) and (d). In Fig. 4.9(b), we show the intensity profile between two droplets not

in contact, and in Fig. 4.9(e), we show the intensity profile between two droplets in contact.

For droplets not in contact, the intensity profile shows two valleys in the intensity, where

each valley represents the boundary of each droplet. However, for droplets in contact, they

share a single boundary as indicated in the intensity profile by only one valley. Therefore,

we can determine whether two droplets are in contact by determining if there is only one

valley in the intensity profile.

To locate the valleys in the intensity profile [like those shown in Fig. 4.9(b) and (e)] we

use a Schmidtt trigger to reassign each pixel a value of 0 or 1, where 0 represents a pixel not

in the valley and 1 represents a pixel in the valley. The Schmidtt trigger works by starting

at the center of one droplet and assigning that pixel a value of 0 or 1 based on one of two

rules listed below. Then moving pixel by pixel along the intensity profile towards the other

droplet, each pixel is evaluated and reassigned a 0 or 1 using the rules.

Rule 1: If the pixel intensity is greater than Ic, then we assign that pixel a new value
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Figure 4.9: (a) [(d)] Image of droplets. The red arrow [green arrow] joins the center of
two droplets not in contact [in contact]. In (b) and (c) [(e) and (f)] the pixel intensity is
considered along the red [green] arrow starting at the tail and going to the head. (b) [(c)]
The red [green] data points with a line going through them represent the pixel intensity
along the red [green] arrow. The dashed lines represent the upper and lower thresholds used
in the Schmidtt trigger. (c) [(d)] The result of applying the Schmidtt trigger to (b) [(e)],
where 1 indicates a pixel within the valley.

0. Also, if the pixel intensity is greater than Ic and Ic = Iupper, then we change Ic to

Ic = Ilower. When the algorithm starts Ic = Ilower.

Rule 2: If the pixel intensity is less than Ic, then we assign that pixel a new value 1. Also,

if the pixel intensity is less than Ic and Ic = Ilower, then we change Ic to Ic = Iupper.

After applying these rules to the two the intensity profiles in Fig. 4.9, we have the valley

curves in Fig. 4.9(c) and (f). In Fig. 4.9(c), the pixels are isolated into two clusters of pixels

with value 1, and in Fig. 4.9(f), the pixels are isolated into one cluster of pixels with value

1. Using label region we quickly identify the number of clusters. If label region returns

only one cluster of 1’s, then we know that the two droplets of interest share a contact.

The idea behind using a Schmidtt trigger is that it should trigger when we are confident
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Figure 4.10: Flow chart illustrating how the endpoint of a contact is found.

a pixel belongs to a droplet boundary and turn off when we are confident a pixel is outside

the boundary. Since the boundary of a droplet has a very low intensity values, while the

other regions in the image have large intensity values we use a low Ilower and a high Iupper.

By using a Schmidtt trigger in this manner will avoid issues that may arise due to small

noise in the pixel values.

Once we have determined that a pair of droplets share a contact, we then identify the

entire contact. The aim here is to identify the endpoints where the two droplets share a

common boundary, and in Fig. 4.10, we show a flow chart outlining our algorithm to find

the endpoints. We know if we draw a line joining the center of two droplets in contact the

line will intersect the contact, dividing the contact into two. Once the contact is divided in
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two, we only need to focus on determining the endpoint for one side of the contact. Once

we find the endpoint for one side, we repeat the algorithm for the other side. In Step 1 on

the flow chart (top left large box), we have drawn a box around the contact of interest and

drawn a red dashed center line that divides the contact in two.

After dividing the contact in two, we only focus on the upper half of the contact and

move to Step 2 in the flow chart (middle large box). In this step, we look to estimate how

far away from the center line does the single boundary shared between the two droplets

begin to separate into two boundaries. This is done by looking at the intensity profile along

lines joining the inner boundary of one droplet to the inner boundary of the other droplet.

In the flow chart, we indicate the pixels on the inner boundary of each droplet using green

dots, where the location of the green dots were already known because we had to locate

them in Section 4.4 to identify each droplet. We start with the intensity profile along the

pixels joining the inner boundary closest to the center line as indicated in the small left

most box in Step 2 of the flow chart, where the intensity if checked along the green line

joining the inner perimeters. For the first intensity profile, we see that each pixel value

along the green line is in the valley, as indicated in the valley curve below the image, and

therefore, the boundary for the two droplets has not split. Since the boundary has not yet

split, we increment one pixel away from the center line as shown in the small middle box

in Step 2. Once again, we look at the intensity profile across the boundary and find that

all pixels belong to the valley. We continue to increment away from the center line until

we reach the small right box in step (b) where the intensity across the boundary shows a

disappearance of the valley.

After estimating where the two boundaries begin to separate, we then move to Step 3

to finally identify the endpoint of the contact. In Step 3 (bottom large box), we start by

enclosing the region of space where the endpoint of the contact must exist. This region of

space is defined by the center line, the inner boundary of the two droplets, and the last line

segment examined in Step 2. We have indicated this region of space as the green shaded

box. Within in this box, we can uniquely define the location of the contact’s endpoint as

the pixel C that satisfies the following criteria.
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1. C must have an intensity greater than a threshold Ic .

2. C must have a neighboring pixel with intensity less than Ic .

3. C must be closer to the center line than any other pixel that satisfy other two criteria.

We have indicated the endpoint C in the flow chart. Once we have found C for one side

of the center line, the algorithm is repeated to find the endpoint for the other side of the

algorithm.

The ability of our algorithm to identify the contacts is shown in Fig. 4.11, where green

lines joining the endpoints of the contacts are drawn over the image. Using the endpoints

we can calculate the end to end distance lij of a contact, where i and j index two droplets

in contact. Since we can determine the location of each endpoint of a contact to 1 pixel

accuracy, this gives a measurement error of 1.4 pixels in lij . Also, we note that our choice

of Ic will also change the length of the contact, however, the force law depends on ∆lij =

lij − lo, where lo is constant to be discussed later. lo also depends on our choice for Ic,

and systematically increases or decreases by the same amount as lij given the choice for Ic.

Therefore, there is no additional measurement error in ∆lij due to our choice of Ic.

List Of IDL Functions

• klocate contacts.pro: Determines which pair of droplets are in contact and finds the

endpoints of each contact.

4.8 Measuring Radius of Curvature

In this section, we discuss how the mean radius of curvature along the water-oil interface

of a droplet. For a droplet in contact with other droplets only a parts of the perimeter has

a water-oil interface, and these parts are the portions of the outer boundary between the

two contacts (see Fig. 4.12). To identify these portions of the perimeter, we use the same

method discussed in Section 4.4 used to search for the inner perimeter, only this time we use

the algorithm to find the outer perimeter between two contacts. Once the outer perimeter

is located, we then fit each portion of the perimeter to a circle to obtain a local radius of

curvature rik for each portion, where k indexes each portion and i indexes the droplets. In
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250 µm 250 µm 

Figure 4.11: The green lines represent the contacts found using our contact finding algo-
rithm. We have shorten the contacts by 6 pixels to expose the tip or endpoint of the contact.
This tip will appear as a slight dark pixel at the edge of each green line. Had we covered
the entire contact with a green line, we could not argue that our algorithm is working since
it would have obscured the endpoints.

Fig. 4.12, we show a droplet with 5 different portions of the outer perimeter fitted to a

circle. The average of these radii of curvatures ri = 〈rik〉k define the mean curvature ri used

in the empirical force law.

In Fig. 4.12, we see that the radius of curvature for each portion varies, and to quantify

this variation for all our droplets, we plot in Fig. 4.13(a) the variation in rik relative to

the mean curvature for 4 different monodisperse data sets. In Chapter 5.4 we discuss how

our monodisperse samples are prepared and provide more details on the samples. For this

discussion, the relevant information is that we are using four data sets, where each data

set consists of a collection of monodisperse droplets compressed by various amounts (some

droplets are highly compressed and others are barely compressed). In Fig. 4.13(a), we are

showing the statistics for all droplets in each data set. For all our data sets we see that the

variations are fairly large, with the largest variations around 40% and an average variation

near 13%. While the variations in the local radii of curvature are fairly significant, it is

more important to understand the deviations in the measured mean curvature relative to

the actual mean curvature. However, we don’t know the true mean curvature for our data,
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(a) (b) 

Figure 4.12: The mean curvature r for a droplet is measured by averaging the radius of
curvature for each portion of the oil-water interface. In this figure we show a two droplets,
each with 5 portions of the oil-water interface fitted to a circle of constant radius of curva-
ture. In (a) the radii of curvature for the portions are 113 µm for the red fit, 74.6 µm for
the orange fit, 89.6 µm for the green fit, 107 µm for the green fit, and 96.4 µm for the blue
fit. Averaging the radii from these fits gives r = (96 ± 7) µm for the droplet. In (b) the
radii of curvature for the portions are 102 µm for the red fit, 109 µm for the orange fit, 114
µm for the green fit, 109 µm for the green fit, and 89 µm for the blue fit. Averaging the
radii from these fits gives r = (104± 4) µm for the droplet

but we can estimate measurement error in the mean curvature by adding noise of 1 pixel

to the outer perimeter and refitting the data. For each droplet we fit the outer perimeter

with added noise 20 times to improve statistics, and we label the new radii fits as rnoise.

In Fig. 4.13(b), we plot the distribution in ri − rnoise. We see that the variation in ri are

much smaller than in rik, and the distribution is Gaussian like with a standard deviation of

roughly 3%. To one standard deviation this gives a measurement error of ∼ 3% in ri.

To check if the estimated measurement errors above are reasonable given our noise in

the perimeter, we numerically generate data of a circles with constant radius of curvature

ri = 125 µm and test how r varies when noise is added to the perimeter. Each test circle

consist of 400 discrete points (or pixels) defining the perimeter and the perimeter is divided

into 5 small portions representing the regions of the perimeter to be fit to small arcs such

that the arcs are commensurate in length to the segments fitted in our experimental data.

We add 1 pixel noise to each point on the perimeter and then fit them to obtain an rik. In

Fig. 4.12(c), we show the variations in rik for the test data, and find that the test data gives
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Figure 4.13: (a) Variation in local radii of curvature rk relative to the mean radii of curva-
ture. (b) Distribution of measurement error in mean radii of curvature.

a narrower distribution than the measured data. The difference in the test and measured

data is not understood, but the test data does explain to a large degree the variations in

the measured rik. In Fig. 4.12(d), we show the variations in the fitted mean curvature rnoise

relative to the known mean curvature. Comparing the test data to the experimental data

we see that they agree fairly well. The test data gives a distribution that is slightly more

skewed to larger values, but the shape and width of the test data and experimental data are

very close. Therefore, we find that the pixel noise can explain the variations of ri relative

to the true mean and that the noise in ri is about 3%.

List Of IDL Functions

• kget radii5.pro: Computes the average radius of curvature for each droplet.
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Figure 4.14: The inset is an experimental image of a mineral oil droplet squeezed between
two glass slides, where the gap thickness is 1 mm, Ri,‖ = 0.88 mm and Ri,,⊥ = 0.56 mm.
The orange dashed line is a fit to the perimeter of the droplet to obtain an Ri,‖ and Ri,⊥.
The plot is a scatter plot of Ri,⊥ and Ri,‖ for various size droplets squeezed between two
glass plates separated by 1 mm, and both Ri,‖ and Ri,⊥ are normalized by the gap thickness.
The red line is the expected relationship between Ri,⊥ and Ri,‖ if the droplet has a contact
angle of 180◦ − 19◦ = 161◦ with the glass plate. The dashed line box encloses the range of
Ri,‖ values we use in our typical 2D experiments.

4.9 Mean 3D radius of curvature

The last measurable quantity to consider is R which is the mean three dimensional curvature

of a compressed emulsion droplet. For scenarios where droplets are asymmetrically deformed

in 3D, the local curvature at any point along the water-oil interface has two principle radii,

the maximum radius of curvature Ri,1 and the minimum radius of curvature Ri,2. For

compressed droplets the mean curvature 1/Ri = 1/2(1/R1,i + 1/Ri,2) is constant anywhere

on the surface since the pressure must be constant across the interface. Laplace’s law states

that the pressure anywhere on the interface is inversely proportional to the mean curvature,

and since the interface of the droplet is not flowing, the pressure on the interface is constant.

In this section we discuss the 3D mean curvature for our droplets.

To measure R for different droplets we take side view images of isolated droplets in a

sample chamber of gap thickness h = 1 mm (see inset of Fig. 4.14). Since there is rotational
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symmetry in these cross section images, we can fit the outline of the droplets to surfaces of

mean curvature Ri, where i indexes different droplets. An example of such a fit is shown

in the inset of Fig. 4.14 as an orange dashed line overlaid on the outline of the droplet.

To fit the outline of each droplet to a surfaces of mean curvature Ri we first generate a

look up table of 100,000 different surfaces with constant mean curvature using the method

of Caboussat and Glowinski [243]. We then fit the outline of each droplet by finding the

best surface in the lookup table that matches the droplet’s outline. Once an Ri is obtained

for each droplet, it can be decomposed into two principle radii of curvatures Ri,1 and Ri,2.

For our geometry, one of the two principle radii Ri,1 which we label Ri,|| is the radius of

curvature ri previously discussed. The other principle radius of curvature Ri,2 which we

label Ri,⊥ is the radius of curvature in the direction perpendicular to the glass. From our

side view images, Ri,|| is trivial to measure (see inset of Fig. 4.14). Once Ri,|| is measured,

Ri,⊥ can be calculated from 1/Ri,⊥ = 2/Ri −Ri,||.

In Fig. 4.14, we plot Ri,⊥/h for various Ri,||/h as the black data points. The data shows

an increase and then slight decrease in Ri,⊥/h with increasing Ri,||/h. For droplets of any

size in contact with the glass, they will always be constrained to meet the glass at the same

contact angle. We find that the data is well described by a contact angle of 161◦, and in

the figure the red curve shows the predicted relationship between the curvatures for this

contact angle. The box region in the figure show the range of Ri,||/h values that we use in

our experiments, and we see that over this range Ri,⊥/h varies by roughly 2%. Therefore,

for simplicity, we treat Ri,⊥ in our analysis as a constant equal to 0.552h for any ri (since

Ri,|| = ri) while accepting that there is roughly a 2% error in the value. In our 2D images,

once we measure ri, we can immediately calculate Ri using Ri,⊥ = 0.552h.

List Of IDL Functions

• kget R2.pro: Fit perimeter of droplet imaged from side view to surface of mean cur-

vature.

List Of MATLAB Functions

• SqueezeDroplet.pro: Numerically creates surfaces of 3D droplets squeezed between to

glass plates.
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Chapter 5

Empirical Force Law for 2D Model

System

In the last chapter we discussed how to determine ri, rj , and lij for each droplet and contact

in an image, but not how to determine the contact force fij , where i and j index the particles

in contact, r is the radius of curvature for each droplet, and lij is the contact length. The

objective of this chapter is to determine the empirical force law fij(lij , ri, rj) between two

droplets in contact. To accomplish this task we image droplets in mechanical equilibrium

within a sample chamber that has been inclined to an angle of 28◦. As a result of the

sample being inclined, gravity applies an upward buoyant force on each droplet. Using our

incline setup we are able to span a large range in droplet deformations and contact forces

due to hydrostatics, where droplets further up the incline feel larger forces and deform more

because they must support the buoyant weight of the droplets below. This can be seen in

Fig. 5.1, where droplets further up the incline are more compressed.

From our image we can measure an ri, rj , and lij for each droplet and contact, but the

contact force fij is unknown. While the individual forces between droplets in contact are

unknown, the collective contribution of the forces to the mechanical stability of sample is

known from Newton’s Laws of motion. Newton’s 2nd law states that for each droplet (1)

the sum of the forces in the direction up the incline equals the droplet’s buoyant weight

and (2) in the perpendicular direction the sum of the forces is zero. (3) Newton’s 3rd law

says that the forces acting between two touching droplets are equal and opposite. These
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Figure 5.1: Illustration of our experimental approach to determine an empirical force law.
The oil droplets rise to the top of the sample chamber due to buoyancy. At the bottom of
the droplet “pile,” droplets barely touch and are not deformed. At the top, droplets are
compressed due to the buoyant weight of the droplets below them. The scale bar is 200 µm.

three statements using Newton’s Laws establish constraints on the collective behavior of

the individual contact forces.

To find an empirical force law, we test many different force laws to find the force law

that predicts contact forces that best match the constraints set by Netwon’s Laws of motion.

In the next section we discuss the various force laws we will test. Since there is a slight

adhesion between our droplets, we discuss in Sec. 5.2 how to account for this in our model.

In Sec. 5.3, we develop an expression to quantify how well an assumed force law predicts

a set of contact forces that match the constraints from Newton’s Laws of motion, and in

the last two sections, we test various force laws using experimental data to find the best

empirical force law.

5.1 Various Force Laws to be Tested

To find an empirical force law we must decide on which functions to test, and to determine

these force laws we need to understand how the ri, rj , and lij relate to force. We can gain
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insight into how ri, rj , and lij contribute to the forces between droplets by considering two

ideal cases where the force law can be written explicitly. The first case is for two ideal 2D

disks in contact, and the second case is for two ideal 3D spheres in contact. A system is

considered ideal, if the contact between two droplets has a contact angle of zero and there

is no adhesion between droplets, which in most cases is not true due to interaction between

the surfactant molecules at the contacting interface [244, 245]. For the ideal 2D or 3D

case, the force between two droplets in contact can be modeled using Princen’s 2D model

[246–248] or Zhou’s 3D model [249]. We use lower case to indicate 2D variables and upper

case to indicate 3D variables. In 2D, the contact between two droplets has a contact length

lij , and in 3D, the contact has contact area Aij . The force law for the two models are

2D Model: fij = γ2D
lij
rij

, where rij =
ri + rj
rirj

(5.1)

3D Model: Fij = γ3D
Aij

Rij
, where Rij =

Ri +Rj

RiRj
(5.2)

In the above equations, γ2D is a 2D line tension and γ3D is a 3D surface tension. For

scenarios where droplets are asymmetrically deformed in 3D, the radius of curvature Rij in

the 3D model must be replaced by the mean curvatures Rij = (Ri +Rj)/(RiRj).

From the two ideal models, we learn that if the forces between our droplets is best

described by a 2D force law, the relevant parameters are lij and rij , both of which we can

measure for each pair of droplets in contact. If our force law is best described by a 3D force

law, then the relevant parameters are Aij and Rij . Since the contact area is related to the

contact length, we can write that the relevant parameters for a 3D force law are lij and

Rij . As of yet, we do not know if the forces between our droplets are better described by

2D variables or 3D variables, and therefore we will test force laws consisting of 2D variables

and force laws consisting of 3D variables.

Generalizing the ideal models to be arbitrary function of the relevant measurable quan-

tities, we write the empirical force laws to be tested of the form f (2D)
ij (lij , 1/rij ; 0α) for 2D

or f (3D)
ij (lij , 1/Rij ; 0α) for 3D. We take the approach of using generalized functions since we

only know that the forces increase monotonically with lij and 1/rij . As to the functional

form for how the force depends on these two quantities, we have no acceptable model to
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Figure 5.2: Experimental image of a rattler droplet being held in contact with two neigh-
boring droplets due to a slight adhesion. In this image the droplet are motionless and the
system is not inclined.

use, and since the scope of the work is to have an adequate force law, we take the approach

of assuming any possible function. For the generalized expressions, 0α = α1,α2, ... are the

nα adjustable parameters associated with the functional form. In all, we will test a total

of 86 various 2D and 3D force laws of different functional forms that include exponentials,

hertzians, power laws, and polynomials in lij , 1/rij , and 1/Rij , and combinations of these

forms, and we restrict the number of adjustable to parameters to nα ≤ 4. To give an

example, one of the force laws we will test is f2D
ij = α1(lij/rij)α2 , where α1 and α2 are

the parameters and nα = 2. In the Sec. 5.4 and Sec. 5.5 we test these different force laws

using experimental data, and at the end of this section we provide a table listing all the

functions we test along with a measure quantifying how well they model the forces between

our droplets. We find a simple polynomial function with nα = 2 works well.

5.2 Adhesion Length lo

In our system, we have observed a slight adhesive interaction between our droplets as shown

in Fig. 5.2, where the central droplet is held in contact with two neighboring droplets due

to adhesion. In the configuration shown in the image, the droplets are motionless, and

therefore the net force on each droplet is zero. Since the central droplet shares a contact

with adhesion length l0 with the two neighbors, then there should be a repulsive force
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Figure 5.3: (a) Distribution showing the variation in the adhesion contact lengths lko between
droplets in contact, where the distribution has been centered around zero. The distribution
is normalized by the droplet size r0. (b) Distribution of contact lengths for droplets pressed
into one another. These contact lengths are the contact lengths due to adhesion and a
compressive force at the contact and l0 = 〈lko〉k. The distribution has been normalized by
the droplet size r0. The legend in (b) applies to (a) as well.

fij(l0) pushing the central droplet away, however, this is not the case. Therefore, to balance

the repulsive force there must be an adhesive force. In addition to the adhesion, some of

the finite contact length is due to optical resolution limits (see Chapter 4.1), but most of

the contact length seen is due to the adhesion and not optical resolution. While there is

some adhesion between the droplets, the strength of the interaction does not appear to be

significant, given that there is no noticeable deformation in droplets being held together

by adhesion. Taking into account the attraction and optical resolution limit, we recognize

that our force law must be constrained to satisfy fij(l0) = 0. To apply this constraint

to our force law, we rewrite the generalized 2D and 3D force laws as f (2D)
ij (∆lij , 1/rij ; 0α)

and f (3D)
ij (∆lij , 1/Rij ; 0α), where ∆lij = lij − l0. Using the variable ∆lij , the constraint on

the force laws are f (2D)
ij (∆lij = 0) = 0 and f (3D)

ij (∆lij = 0) = 0. For our data, l0 can

be determined by measuring the average contact length for droplets in contact at the very

bottom of the sample chamber.

To quantify the consistency in l0 between actual droplets in contact we measure inves-

tigate l0 using four different monodisperse data sets. In Chapter 5.4 we discuss how our

monodisperse samples are prepared and provide more details on the samples. For this dis-

cussion, the relevant information is that we are using four different mondisperse samples.
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Each sample contain different size droplets, the samples are inclined on a microscope, and

the droplets imaged. At the bottom of the sample chamber droplets are circle and unde-

formed since the forces between droplets are small, and at the top of the chamber droplets

are highly compressed. Each sample contains hundreds to thousands of droplets. Using our

algorithm to determine contact lengths, we measure the contact length lk0 for roughly 25-50

droplet contacts at the bottom of the sample chamber, where k indexes the contacts. In

Fig. 5.3(a), we show the distribution of lk0 for our four monodisperse data sets. To compare

the data between different samples we have centered the data around zero, and normalized

the distribution by the average droplet size since we expect the contact lengths should grow

in proportion to the droplet radius. The distribution of lk0 is fairly narrow with a standard

deviation of roughly 2%. While these variations are fairly small, they are larger that the

measurement error in computing a contact length, indicating that l0 is not a single number,

but varies for different droplets in contact. In the experiments, we intend to measure the

forces between droplets with contacts lengths lij > l0. To understand if the variation is l0

will be an issue we compare lij to l0 in Fig. 5.3(b) for each monodisperse data set, where

l0 = 〈lk0〉k. Comparing the distribution in Fig. 5.3(a) to the distribution in Fig. 5.3(b) we see

that the variations in lk0 is 1 to 2 orders of magnitude less that the size of lij relative to l0.

While the variations in lo is an unfortunate byproduct of the system, these variations can

be ignored because they are significantly smaller than the contact lengths we are interested

in studying.

5.3 Testing the Quality of an Assumed Force Law

Each force law tested has a set of adjustable parameters 0α and the goal is to determine

an 0α that gives the best agreement between the set of contact forces given by the force

law and Newton’s Laws. To determine 0α we minimize a goodness of comparison χ2 with a

smaller minimal χ2 indicating the function better models the forces on each droplet. Once

a minimal χ2 has been found for each force law to be tested, we can then compare χ2

between all the forces laws to find the best empirical force law. In this section, we develop

an expression for χ2 using Newton’s Laws of motion. We start by considering the constraints
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in the y-direction and then in x-direction. Lastly, we combine these constraints to have one

equation for the goodness of comparison

In the y-direction, the sum of the forces on any given droplet is equal to the buoyant

weight WD = 4π∆ρg/3R3
0 sin(θ), and since the oil phase is less dense than water, the

droplets will rise to the top of the chamber compressing one another as shown in Fig. 5.1.

In the equation R0 is the radius of the droplets before placing them into the sample chamber,

∆ρ is the density difference between the water and the oil phase (for water and mineral

oil ∆ρ = 0.17 g/cm3). For our inclined configuration we use θ = 28◦. This gives WD =

3280(N/m3)R3
0, where R0 ranges from 75 µm to 200 µm giving a range of WD = 1.38 nN−

26.2 nN.

When the droplets rise up the sample chamber, they must slide pass the glass microscope

slides and there is a slight dynamic friction between the droplets and the glass plates.

When the droplets come to rest there is still a slight static friction between the droplets

and the glass slide. To quantify the static friction, the slide is tilted until the droplets

begin to rise upward. The angle at which the droplets start to rise varies from droplet to

droplet and slide to slide and is between 4 - 5◦, giving an average friction force on each

droplet of ffriction = 4π∆ρg/3R3
0 sin(4.5

◦) = 548(N/m3)R3
0. For our range of R0 values

this gives ffriction = 0.231 nN − 4.38 nN. Since droplets float to the top of the sample

chamber, the friction force will point in the downward direction to oppose the motion. To

account for this friction force we can define an effective buoyant weight on each droplet

W ′
D = c(sin(28◦) − sin(4.5◦)) = 0.391c, where c = 4π∆ρg/3R3

0 = 3280(N/m3)R3
0 and the

friction force is subtracted from the buoyant force. While this seems like a reasonable

approach, the situation is a little more complicated. Once droplets start to reach the top of

the sample chamber, they begin to make slight adjustments as they settle into mechanical

equilibrium. Sometimes groups of droplets rearrange with some droplets moving up and

down the sample chamber and others moving horizontal. In many cases, the last direction

a droplet moves before coming to rest is not always directly upward and therefore the

direction of the friction force on any droplet is unknown. Since the direction of the friction

force is unknown, we must make some simple assumption that only consider the average

effect the friction force has on the buoyant weight of each droplet. First, we assume that
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the friction force on each droplet is ffriction = c sin(4.5◦), and second, we assume that the

last motion taken by a droplet before resting into mechanical equilibrium is always up the

incline and any amount of motion left and right is equally probable. These are reasonable

assumptions since in granular compaction experiments the trajectory of individual grains

resemble Brownian like motion [250]. Using this assumption, the average friction force in

the x-direction is zero and the average friction force in the y-direction is downward with

magnitude ffriction = c sin(4.5◦)/2. This gives an effective buoyant weight on each droplet

of W ′
D = c(sin(28◦)− sin(4.5◦/2)) = 0.430c.

Using our effective buoyant weight, we look to write down a constraint using Newton’s

2nd Law. We could write as a constraint that our force law must give the sum of the forces

in the y-direction on each droplet as close as possible to W ′
D. However, we don’t know the

actual values of W ′
D, only the average. Also W ′

D is small compared to the contact forces

further up the incline, and therefore we need to take a slightly different approach to writing

down a constraint. While the average net upward force on a droplet is independent of its

location up the incline, droplets are more compressed with increasing y due to hydrostatic

effects. For droplets located at a given y they must support the collective effective buoy-

ant weight Wbelow of droplets below them. The way in which these droplets support this

buoyant weight is through contact forces, and for an assumed force law fij(∆lij , rij ; 0α) we

can determine these contact forces by substituting our measured values for ∆lij and rij

into the function. If the assumed force law accurately predicts the forces, then the sum

of these contact forces
∑

F down
y at a given y will correctly predict Wbelow, where F down

y is

the y-component of only those forces pointed in the downward directions. The reason we

only consider the downward facing forces is because the collective buoyant weight is pushing

upward, and to satisfy Netwon’s 3rd law, the balancing forces must be facing downward.

Therefore, we have the constraint that Wbelow =
∑

F down
y which can also be written as a

force per unit length λobs = λmod, where λobs = Wbelow/w, λmod =
∑

F down
y /w, and w is

the width of the chamber. Since we know the location of each droplet and their size, we

can calculate Wbelow for any given y without knowing individual contact forces. To quantify

how well an assumed force law predicts the forces we define a goodness of comparison in
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the y-direction as

χ2
y =

∑

y

[(λ(y)obs − λ(y)mod) /〈λ(y)obs〉]2 , (5.3)

where smaller values of χ2
y indicate a better match between the assumed force law and the

actual forces. In the equation, y indexes discrete evenly spaced distances up the incline

where λ(y)mod and λ(y)obs are sampled and the angle brackets are an average over y. To

make χ2
y dimensionless, we normalize by 〈λ(y)obs〉 which is independent of the assumed force

law. We sample λ at intervals of 5r0 up the incline. At each y sampled, λmod is calculated

using the contact lengths and droplet radii for all droplets found between a distance y−5r0

and y+5r0 up the incline, and λobs is calculated using the position and radii of all droplets

below a distance y up the incline.

Similar to the y-direction, we can construct a goodness of comparison for how well an

assumed force law models the forces in the x-direction. However, unlike the y-direction,

there are no gravitational forces or any other external forces, and therefore, the sum of

the forces on each droplet in the x-direction is zero. Using Newton’s second law we can

construct the following goodness of comparison

χ2
x =

∑

i








∑

j

fx,ij



 /〈|0fi|〉




2

, (5.4)

where the fx,ij is the x component of the force at a contact between droplet i and droplet

j and 〈|0fi|〉 is the average net contact force exerted on droplet i. In the equation, fx,ij are

the forces predicted by the assumed force law. Due to measurement error, forces will not

sum to zero, and the deviation from zero grows with 〈|0fi|〉. We assume that the deviation

will grow linearly with 〈|0fi|〉 and to fairly weight the contributions of each droplet to χ2
x,

we normalize the sum of the forces by 〈|0fi|〉.

Finally, we can combine the goodness of comparisons in the y and x directions to define

a net goodness of comparison χ2 = χ2
xχ

2
y which indicates how well an assumed force law

models the forces in both the x and y directions. When testing an assumed force law, χ2

will be minimized to obtain the best adjustable parameters 0α. Since we know the buoyant

weight of our droplets in units of µN, this will allow us to find a force law in units of µN. To
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R0 [µm] r0 [µm] h [µm] poly (%) l0 [µm]
164 183 186 5.5 50.8
143 156 180 1.6 48.8
105 128 96 1.9 36.6
84 89 96 2.5 30.3

Table 5.1: In the above table we provide various parameters characterizing the droplets
in our 4 different monodisperse samples. R0 is the 3D radius of the droplets, r0 is the 2D
radius, h is the gap thickness of the chamber, poly is the polydispersity of the sample, and l0
is the length of contact for two droplets just in contact. The polydispersity is the standard
deviation in droplet radii normalized by the mean droplet radius. Our uncertainties for the
various measures are ± 1 µm in R0, ± 2 µm in r0, ± 2 µm in h. The variability in l0 grows
with droplet size and the measurement uncertainty can be expressed as ± 0.04r0 in l0.

minimize χ2 we use the default built in fminsearch in MATLAB which applies a simplex

method developed by Lagarias et al. [251].

5.4 Empirical Force Law for Same Size Droplets in Contact

We now apply our method to experimental data to find an empirical force law. We start by

determining the force law for same size droplets in contact using data taken on four different

monodisperse samples. The samples are prepared by placing droplets with 3D radius R0

into a sample chamber with gap thickness of either ∼ 100 µm or ∼ 180 µm, and once in the

chamber, the droplets have a 2D radius of r0. After the sample chambers are filled, they

are sealed to prevent evaporation, and then placed on a microscope inclined to an angle of

28◦. Initially droplets rise to the top of the chamber and finally come to rest in mechanical

equilibrium, at which point we acquire high resolution images of the sample, where each

droplet occupies 100,00 - 200,000 pixels depending on the droplet size. Various parameters

characterizing each sample are shown in Table 5.1.

To determine the best force law we apply our routine to test and obtain a χ2 for various

assumed force laws, and we compare χ2 for the different functions by plotting their values

in Fig. 5.4. In the figure, χ2 has been plotted in a sorted format, where χ2 is first separated

based on nα (or number of terms in 0α) and then sorted in order from smallest to largest.

The x-axis indicates the number of parameters and the vertical dashed lines separate the

regions between different nα. Each triangle represents a χ2 for an assumed force law.
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Figure 5.4: (a)-(d): The mean goodness of comparison χ2 are plotted for all force laws
for each data set in a sorted format. χ2 are sorted in order from smallest to biggest and
separated by nα, as labeled on the horizontal axis. Plot (a) is data for R0 = 164 µm, (b) is
for R0 = 142 µm, (c) is for R0 = 105 µm, and (d) is for R0 = 84.1 µm. The green circles
indicate the function that we will use to compute the forces between droplets in future
experiments.

The functions of interest in Fig. 5.4 are those with the lowest χ2, since these force laws

better model the contact forces. The first observation of the data is that the lowest values

of χ2 for nα = 2, 3, and 4 are roughly the same in magnitude, which indicates that adding

more parameters does not significantly improve the accuracy in modeling the forces. The

second observation is that, except for Fig. 5.4(d), there are many small χ2 values that are

all roughly the same in magnitude. This second observation implies two possible scenarios;

one, that all the force laws with “small” χ2 are converging to the same contact forces, but

because they are constrained by different functional forms they can not converge to the

exact same contact forces, or two, that these different force laws are returning significantly

different contact forces. Recall, to obtain a χ2 we apply the assumed force law to compute

a contact force for each contact giving a list of contact forces 0f . If two different assumed

force laws give the same contact forces, then 0f will be the same for the two force laws.

We will consider the likely force laws to be the 10 smallest χ2 nα = 2 functions, 10

smallest χ2 nα = 3 functions, or 10 smallest χ2 nα = 4 functions. To test if the contact

forces are the same or vary between the best force laws, we will compute the variation in
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Figure 5.5: Histogram of σ∆F for each data set, where σ∆F quantifies the variation in forces
between two force laws. The solid lines are samples with a gap thickness of approximately
h ≈ 180 µm and the dashed lines are samples with a gap thickness of approximately h ≈ 110
µm. The legend indicates R0.

the contact forces between any two force laws a and b as the standard deviation σ∆f in ∆0f ,

where ∆0f = (0fa − 0fb)/(0fa + 0fb). Since there are 30 likely force laws, comparing any two of

these functions gives 435 different comparisons. If all the likely force laws are giving roughly

the same contact forces, then the distribution in σ∆f will be narrow and small, however,

if the force laws are giving different contact forces, then the distribution in σ∆f will have

multiple peaks or be broad. In Fig. 5.5, the distribution of σ∆f is shown for all four data

sets, and in all the data, except (d), σ∆f is typically less than 5%. Although in (d), most

of the values are less than 8%. Therefore, we can conclude that all the likely force laws are

converging to one solution with about 5% variation, and that we can pick any likely force

law, as long as we recognize that in addition to measurement error, we have an additional

5% error in the forces due to how well we know the force law.

Since there are 30 likely forces laws to choose from, we apply Occam’s razor, and choose

the one simplest in form. We start by noting that measuring rij is simpler than measuring

Rij , and that 2 parameter functions are simpler than higher order ones. Second, having

a function that treats ∆lij and rij as a single variable, such as ∆lij/rij , as oppose to the

two separable variables, is simpler because in the first case the force law is a 1D curve

while in the second case it’s a 2D surface. Finally, of those functions that meet the two

previous conditions, we choose the function that closely resembles the ideal 2D force model
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Figure 5.6: A plot of the universal empirical force law for each data set. The solid lines are
samples with a gap thickness of approximately 180 µm and the dashed lines are samples
with a gap thickness of approximately 110 µm. The legend indicates R0.

(Eqn. 5.2), giving Fij = α1∆lij/rij + α2(∆lij/rij)2. This function is indicated in Fig. 5.4

as the green circular data points. We also choose this function because we find that we can

easily rescale it for all four data sets to give a universal force law. The rescaled force law is

Fij = α1R0∆lij/rij + α2(R0∆lij/rij)
2. (5.5)

where α1 = 4.18 dynes/cm and α2 = (0.0909 dynes1/2/cm)2, and is shown in Fig. 5.6. The

rescaled force law shows that all the data nearly collapse onto a single universal curve, and

that these curves only slightly deviate between each other at larger ∆lij/rij . We note that

for these larger values in ∆lij/rij , the area fraction is close to 96% which is the upper limit

where we can still confidently measure rij because few pixels occupy the water-oil interface

and the radius of curvature becomes difficult to measure. Intriguingly, α1 has units of

surface tension and the value of α1 is the correct order of magnitude for the surface tension

of most water-oil interfaces.

To show the quality of the universal force law in a little more detail, we show in Fig. 5.7(a)

the sum of the forces in the x-direction with distance up the incline for the R0 = 84.1 µm
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Figure 5.7: (a) is a scatter plot for the sum of the forces in the x-direction and (b) is a
scatter plot for the sum of the forces in the y-direction relative to the effective buoyant
weight with distance up the incline. Both (a) and (b) are data for the R0 = 84.1 µm
sample. In (a) and (b) the blue solid line is the standard deviation in the scatter of the data
points, the red dashed line is the expected standard deviation in the scatter based on our
measurement errors, and the green line is the mean in the scatter of the data. In (a) and
(b) the sum of the forces have been normalized by the average contact force on the droplet.
In (c) λmod is plotted against the known λobs at various points up the incline. The dashed
lines in (c) are samples with a gap thickness of ≈ 100 µm and the solid lines are samples
with a gap thickness of ≈ 180 µm. The legend indicates R0.

data set, which is representative of the other data sets. The figure shows the net force is

very close to zero, only deviating by about 5% on average. This deviation arises because

of measurements errors. Since we know the form of the force law and the size of the

measurement errors, we can predict the deviation from zero. In the figure, the blue line is

the standard deviation of the data points and the red dashed line is the standard deviation

expected based on the known measurement errors. The red dashed line is computed in

the following way. For each droplet i we compute the average 〈∆lij〉j and 〈rij〉j for all the

contacts. Then we assume each droplet has 6 neighbors arranged in a hexagonal packing

and we assign each contact a contact length equal to 〈∆lij〉j and a radius of curvature equal

to 〈rij〉j . Since the packing is hexagonal, assigning each contact the same contact length
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and radius of curvature gives the sum of the forces equal to zero. Next, we randomly add

noise within the experimental uncertainty to each contact length and radius of curvature,

and then recompute the sum of the forces in the x-axis. Repeating this processes thousands

of times for different orientations of the hexagonal packing and for each droplet gives a

new set of values for the sum of forces in the x-direction. Using these new values we can

compute the standard deviation shown as the red dashed line in the figure. We see that

the red dashed line agrees very well with the blue line. We would only achieve this level

of agreement if our force law is significantly more precise than our measurement error.

Therefore, the agreement between the measured and predicted variations indicates that our

method is returning a very precise force law.

In the y-direction, the forces should sum to the effective buoyant weight of the droplets,

but due to measurement errors the sum of the forces will vary around a mean W ′
D. We

have verified that the mean in the sum of force in the y-direction is WD. We repeat the

above analysis shown Fig. 5.7(a) for the forces in the y-direction, and the data is shown in

Fig. 5.7(b). The data is scattered around W ′
D as expected. However, the variations around

W ′
D are larger than expected, probably due to the distribution of friction forces.

In Fig. 5.7(c), λmod is plotted against λobs for all four data sets. If the force law is a

good model of the contact force, then we expect the data to fall along the λmod = λobs line,

and in all four cases the lines are linear, falling along the line λmod = λobs with only small

deviations.

When we minimize χ2 to find the adjustable parameters 0α for an assumed force we had

a finite number of droplets and there was noise in each measurement. Even if we tested

the correct force law, these two factors may give slight errors in 0α. To quantify the error

in the adjustable parameters 0α, we create two test data sets of 1000 droplets with a known

force law, and each droplet is assigned a ri and each contact is assigned lij such that the

forces sum to W ′
D in the y-direction and zero in the x-direction. The number of droplets

chosen and the values of ri and rj are commensurate to our experiments. The force law

for the first test case is fij = α1(lij/rij)α2 and for the other test case the force law is

fij = (α1lij + α2l2ij)(1/rij + α3/r2ij). For different values of 0α, different values of rij and lij

are assigned to satisfy force balance. For each test case, different values of 0α are chosen and
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σ nr R(b)
0 R(s)

0 r(b)0 P (b) r(s)0 P (s) h l(ss)0 l(sb)0 l(bb)0
[µm] [µm] [µm] % [µm] % [µm] [µm] [µm] [µm]

1.25 0.684 102 86.5 126 3.4 102 3.1 104 52.0 56.0 63.0
1.42 0.849 91.8 80.0 130 3.0 105 3.4 106 46.8 50.9 58.5
1.52 0.806 108 79.2 137 3.3 90.1 3.1 104 45.0 51.0 58.7

Table 5.2: This table provides various parameters characterizing the droplets in our 3 binary

samples. The first column σ = r(b)0 /r(s)0 is the size ratio and the second column is the number
ratio nr (number of big droplets to number of small droplets). In the table a superscript
(s) indicates a value representing small droplets and a superscript (b) indicates a value
representing big droplets. P indicates the polydispersity in droplet size. The polydispersity
is the standard deviation in droplet radii normalized by the mean droplet radius. There
are also three contact types small-small contacts (ss), small-big contacts (sb), and big-big
contacts (bb), and therefore there are three l0 values. Our uncertainties are ∼ 0.1% in σ, ±
1 µm in R0, ∼ 2 µm in r0, < 0.1% in polydispersity, and ± 2 µm in h. The variability in l0
grows with droplet size and the measurement uncertainty can be expressed as ± 0.04〈r0〉.
Since we can observe every single droplet there is no measurement error in nr.

χ2 minimized. We choose values of 0α close to the values we found for the experiments. We

find that minimizing χ2 gives 0α to floating point precision. Now we add noise to ri and lij

commensurate to the data, and minimize χ2 for different 0α. In the case of noise, we find

that minimizing χ2 gives a force law close to the true force law, but each time the force law

is a little different. The variation from the true force law is 1.4% (2 standard deviations).

Therefore, when we compare the forces laws in Fig. 5.6 to each other we expect to find

∼ 3% variation between any two curves, which is in agreement with the data in the figure.

5.5 Empirical Force Law for Different Size Droplets in Con-

tact

So far, we have discussed the force law between droplets of the same size in contact, however,

in many cases we are interested in the forces between droplets of different sizes. To obtain a

force law between droplets of different sizes, we apply our method to find an empirical force

law using data taken on three different binary samples. The binary samples are prepared

in the same manner as the monodisperse case, however, this time we use a mixture of two

different droplet sizes. Table 5.2 summarizes the various parameters of our binary systems.

For the case of a binary sample, there are 3 possible contact types to consider; a small
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Figure 5.8: Binary force law for the experimental data. The legend indicates the size ratio.
The triangle data points is the force law Eqn. 5.5 for same size droplets in contact.

droplet in contact with a small droplet (small-small contact), a small droplet in contact

with a big droplet (small-big contact), and a big droplet in contact with a big droplet

(big-big contact). Using our previous results, we know the forces between small-small

contacts and big-big contacts while the forces between small-big contacts are unknown.

We will assume for the small-big contacts that the force law obeys the same functional

form as as that found for the monodisperse case (Eqn. 5.5), where α1 and α2 are different

and are considered as unknowns to be found by minimizing χ2
x. Recall that Eqn. 5.5

contains a term R0 that rescales the force law and makes it universal. For the small-big

contacts there are two different radii or Ro values, one for the small droplets and one for

the big droplets. To account for these two radii we assume that we need to substitute R0

with the arithmetic mean of the two radii 〈R0〉 giving as our binary empirical force law

Fij = α1〈R0〉∆lij/rij +α2(〈R0〉∆lij/rij)2, where α1 and α2 are unknown. To obtain α1 and

α2 for our binary samples we minimize χ2
x, and find that α1 and α2 are very close to that

found for the monondisperse case. The binary force laws are shown in Fig. 5.8, along with

the monodisperse force law. We see that the binary force law is in very good agreement with

the same size force law. There are slight variations between the curves, however, there is no
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trend in the data. This binary data was taken at half the resolution as the monodisperse

data sets, giving twice as much error in 0α when minimizing χ2
x. Therefore we expect the

variations between any two curves to be ∼ 5% which is consistent with the results in the

figure. We can conclude that for our experimental setup, the universal force law is

Fij = α1〈R0〉∆lij/rij + α2(〈R0〉∆lij/rij)
2, (5.6)

where α1 = 4.18 dynes/cm and α2 = (0.0909 dynes/cm)2.
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5.6 Table of Fitting Functions

The table below have been provided for completeness and does not need to be read in full.

The table list the minimal χ2 values found for each function tested for each data set. The

first column list the number of adjustable parameters, the second column list the tested

force laws, and the last column list the minimized χ2 value for each data set. The table has

been sorted first by nα and then by the minimal χ2 for the R0 = 164 µm data set.The force

law written in green indicates the force law we chose as the best.

minimal χ2

R0 R0 R0 R0

nα Function 164 µm 143 µm 105 µm 84.1 µm

1 α1∆lij/rij 0.17 0.09 3.03 40.30

1 α1∆lij/Rij 0.67 0.27 4.61 55.83

2 α1∆lij/Rij + α2(∆lij/Rij)2 0.14 0.04 1.44 19.16

2 α1(1− e−α2∆lij/rij ) 0.14 0.06 1.09 26.39

2 α1∆lij/rij + α2(∆lij/rij)2 0.14 0.06 1.08 26.39

2 α1(1− e−α2∆lij )/rij 0.14 0.06 189.02 123.30

2 α1(∆lij/rij)α2 0.14 0.07 0.96 30.19

2 (α1∆lij + α2∆l2ij)/rij 0.14 0.06 1.86 122.41

2 α1∆lα2
ij /rij 0.16 0.07 1.78 125.40

2 α1(∆lij/Rij)α2 0.16 0.05 1.53 24.59

2 α1(1− e−α2∆lij/Rij ) 0.16 0.04 1.62 20.49

2 α1∆lijeα2/rij 0.18 0.06 2.89 59.20

2 α1(∆lij/Rij)3/2 + α2(∆lij/Rij)5/2 0.19 0.07 1.57 29.51

2 α1∆lijeα2/Rij 0.20 0.04 3.08 58.01

2 α1∆lij(1/rij + α2/r2ij) 0.20 0.06 2.13 51.44

2 α1∆lij/r
α2
ij 0.21 0.06 2.09 54.77

2 α1∆lij(1/R
3/2
ij + α2/R

5/2
ij ) 0.22 0.05 2.80 61.07

2 α1∆lij/R
α2

ij 0.22 0.65 26.82 59.64

2 α1∆lij(1/Rij + α2/R
2
ij) 0.22 0.05 2.74 59.75



104

minimal χ2

R0 R0 R0 R0

nα Function 164 µm 143 µm 105 µm 84.1 µm

2 α1∆lij(1/r
3/2
ij + α2/r

5/2
ij ) 0.23 0.07 2.09 52.22

2 α1(1− e−α2∆lij )/Rij 0.23 0.07 115.70 52.46

2 (α1∆lij + α2∆l2ij)/Rij 0.23 0.08 2.23 52.23

2 (α1∆l3/2ij + α2∆l5/2ij )/rij 0.27 0.12 1.69 151.60

2 (α1∆l3/2ij + α2∆l5/2ij )/Rij 0.29 0.10 2.33 58.07

2 α1∆lα2
ij /Rij 0.30 0.10 2.35 52.56

2 α1(∆lij/rij)3/2 + α2(∆lij/rij)5/2 0.55 0.18 3.46 109.71

3 (α1∆lij + α2∆l2ij)e
α3/rij 0.12 0.24 5.62 36.39

3 α1(1− e−α2∆lij )eα3/rij 0.12 0.05 51.20 37.63

3 α1(1− e−α2∆lij )/rα3
ij 0.13 0.06 43.54 35.80

3 α1∆lα2
ij e

α3/rij 0.13 0.05 1.50 39.76

3 (α1∆lij + α2∆l2ij)/r
α3
ij 0.13 0.06 1.67 34.82

3 α1∆lij/Rij + α2(∆lij/Rij)2 +

α3(∆lij/Rij)3

0.13 0.04 1.44 19.15

3 α1∆lij/rij +α2(∆lij/rij)2 +α3(∆lij/rij)3 0.14 0.06 1.03 25.35

3 α1(1− e−α2∆lij )eα3/Rij 0.14 0.04 51.24 37.55

3 (α1∆lij + α2∆l2ij + α3∆l3ij)/rij 0.14 0.05 1.62 122.13

3 α1(1− e−α2∆lij )(1/rij + α3/r2ij) 0.14 0.06 34.21 123.32

3 (α1∆lij + α2∆l2ij)(1/rij + α3/r2ij) 0.14 0.06 1.86 89.20

3 (α1∆lij + α2∆l2ij)/R
α3

ij 0.15 0.04 1.86 36.12

3 α1∆lα2
ij /r

α3
ij 0.15 0.06 1.62 38.08

3 α1∆lα2
ij e

α3/Rij 0.15 0.04 1.64 39.54

3 (α1∆lij + α2∆l2ij)(1/R
3/2
ij + α3/R

5/2
ij ) 0.15 0.05 1.87 72.14

3 α1(1− e−α2∆lij )(1/R
3/2
ij + α3/R

5/2
ij ) 0.16 0.05 54.97 84.27

3 α1∆lα2
ij (1/rij + α3/r2ij) 0.16 0.07 1.78 125.40

3 α1∆lα2
ij /R

α3

ij 0.16 0.05 1.76 39.52
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minimal χ2

R0 R0 R0 R0

nα Function 164 µm 143 µm 105 µm 84.1 µm

3 (α1∆l3/2ij + α2∆l5/2ij )eα3/rij 0.18 0.09 1.42 42.43

3 α1∆lα2
ij (1/R

3/2
ij + α3/R

5/2
ij ) 0.18 0.06 1.81 84.84

3 (α1∆l3/2ij + α2∆l5/2ij )eα3/Rij 0.20 0.07 2.66 42.13

3 α1∆lij(1/rij + α2/r2ij + α3/r3ij) 0.20 0.11 1.65 41.10

3 (α1∆l3/2ij + α2∆l5/2ij )/rα3
ij 0.21 0.08 1.70 42.03

3 (α1∆l3/2ij + α2∆l5/2ij )/R
α3

ij 0.22 0.08 1.68 80.18

3 (α1∆l3/2ij + α2∆l5/2ij )(1/R
3/2
ij + α3/R

5/2
ij ) 0.22 0.08 1.68 80.18

3 α1∆lij(1/Rij + α2/R
2
ij + α3/R

3
ij) 0.22 0.05 2.74 58.17

3 (α1∆lij + α2∆l2ij + α3∆l3ij)/Rij 0.23 0.06 2.23 51.12

3 α1(1− e−α2∆lij )(1/Rij + α3/R
2
ij) 0.23 0.07 52.67 52.47

3 (α1∆lij + α2∆l2ij)(1/Rij + α3/R
2
ij) 0.23 0.07 2.23 35.83

3 (α1∆l3/2ij + α2∆l5/2ij )(1/rij + α3/r2ij) 0.27 0.12 1.69 38.99

3 (α1∆l3/2ij + α2∆l5/2ij )(1/Rij + α3/R
2
ij) 0.28 0.10 2.06 58.07

3 α1∆lα2
ij (1/Rij + α3/R

2
ij) 0.30 0.10 2.35 39.67

3 α1∆lα2
ij (1/r

3/2
ij + α3/r

5/2
ij ) 0.40 0.08 4.77 333.36

3 (α1∆lij + α2∆l2ij)(1/r
3/2
ij + α3/r

5/2
ij ) 0.40 0.11 3.47 307.26

3 α1(1− e−α2∆lij )(1/r3/2ij + α3/r
5/2
ij ) 0.44 0.10 156.15 308.29

3 (α1∆l3/2ij + α2∆l5/2ij )(1/r3/2ij + α3/r
5/2
ij ) 0.74 0.30 3.16 331.52

3 (α1∆lij + α2∆l2ij)e
α3/Rij 0.83 0.04 2.28 37.39

3 α1(1− e−α2∆lij )/R
α3

ij 2.19 0.04 1.98 37.38

4 (α1∆lij + α2∆l2ij + α3∆l3ij)e
α4/rij 0.12 0.23 5.57 36.38

4 α1∆lij/Rij + α2(∆lij/Rij)2 +

α3(∆lij/Rij)3 + α4(∆lij/Rij)4

0.13 0.04 1.44 18.67

4 (α1∆lij + α2∆l2ij + α3∆l3ij)/r
α4
ij 0.13 0.05 1.67 34.81

4 (α1∆lij +α2∆l2ij +α3∆l3ij)(1/rij +α4/r2ij) 0.13 0.05 1.74 30.80
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minimal χ2

R0 R0 R0 R0

nα Function 164 µm 143 µm 105 µm 84.1 µm

4 α1∆lij/rij + α2(∆lij/rij)2 +

α3(∆lij/rij)3 + α4(∆lij/rij)4

0.14 0.06 0.61 21.62

4 (α1∆lij + α2∆l2ij + α3∆l3ij + α4∆l4ij)/rij 0.14 0.05 1.62 120.16

4 α1(1− e−α2∆lij )(1/rij + α3/r2ij + α4/r3ij) 0.14 0.06 1.88 123.29

4 (α1∆lij +α2∆l2ij)(1/rij +α3/r2ij +α4/r3ij) 0.14 0.06 1.74 122.38

4 (α1∆lij + α2∆l2ij + α3∆l3ij)(1/R
3/2
ij +

α4/R
5/2
ij )

0.14 0.04 1.64 38.64

4 (α1∆lij + α2∆l2ij + α3∆l3ij)/R
α4

ij 0.15 0.04 1.66 36.11

4 α1∆lα2
ij (1/rij + α3/r2ij + α4/r3ij) 0.15 0.07 1.78 125.35

4 (α1∆lij + α2∆l2ij + α3∆l3ij)(1/r
3/2
ij +

α4/r
5/2
ij )

0.16 0.09 2.04 243.95

4 α1∆lij(1/rij + α2/r2ij + α3/r3ij + α4/r4ij) 0.20 0.06 2.13 50.61

4 (α1∆l3/2ij + α2∆l5/2ij )(1/Rij + α3/R
2
ij +

α4/R
3
ij)

0.22 0.10 2.15 58.06

4 α1∆lij(1/Rij+α2/R
2
ij+α3/R

3
ij+α4/R

4
ij) 0.22 0.05 2.74 58.17

4 (α1∆lij + α2∆l2ij + α3∆l3ij + α4∆l4ij)/Rij 0.22 0.06 2.17 51.08

4 (α1∆lij+α2∆l2ij+α3∆l3ij)(1/Rij+α4/R
2
ij) 0.23 0.04 2.23 35.80

4 α1(1−e−α2∆lij )(1/Rij +α3/R
2
ij +α4/R

3
ij) 0.23 0.07 52.65 52.46

4 (α1∆lij+α2∆l2ij)(1/Rij+α3/R
2
ij+α4/R

3
ij) 0.23 0.08 2.23 45.85

4 (α1∆l3/2ij + α2∆l5/2ij )(1/rij + α3/r2ij +

α4/r3ij)

0.27 0.12 1.69 151.60

4 α1∆lα2
ij (1/Rij + α3/R

2
ij + α4/R

3
ij) 0.30 0.10 2.35 39.68

4 (α1∆lij + α2∆l2ij + α3∆l3ij)e
α4/Rij 0.80 0.04 1.51 39.03

Table 5.3: This table provides a list of all the force laws tested

and the minimum χ2 for each data set.
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Chapter 6

Experimental Frictionless 2D

Model of Jamming

6.1 Introduction

A wide variety of materials, from those composed of small scale particles, like colloids,

to larger scale particles like emulsions, foams, and sand, all exhibit a liquid to solid like

transition when the particle concentration is increased. This transition arises from the

crowding of the particles to the point that microscopic rearrangements are unable to occur

when external stresses are applied. This phenomena has been termed jamming and has

been observed in a wide range of materials and scenarios [24, 27, 252]. Working from the

premise that all jammed materials share many common features, Cates et al. [23] and Liu

and Nagel [25] propose the idea that jammed systems can be viewed as a new class of

materials that can be described using a universal conceptual and mathematical framework.

Over the last decade, an ideal model for the jamming transition has emerged to explain

many of the characteristics observed in all jammed materials [22, 24, 31, 95, 253]. This

ideal model system is composed of frictionless disks in 2D or spheres in 3D and the particles

only interact through a soft repulsive potential when overlapping. There is a single control

parameter, the volume fraction φ, and the system jams when φ is increased to a critical

volume fraction φc. φc is thought to coincide with previous ideas of ‘random close packing’

of hard spheres, although a clear definition is in debate; see [22, 95, 218, 238]. Above
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φc, this model system shows critical-like behavior. For example, the pressure increases as

P ∼ (φ− φc)α, with α depending on the details of the inter-particle interaction [156, 253],

and the coordination number z also shows power law growth with φ − φc [22, 31]. The

advantage of this model is it allows for a precise study of a jamming transition, however, it

is still a subject of debate whether this model will be relevant to more realistic systems [24].

To have a full understanding of the jamming transition in an experiment both the

particle-particle forces and the particle positions must been known, and currently the role

of friction and deformability in jammed systems is unclear since experimental efforts have

mostly been limited to 2D frictional disks. A primary tool for experimentalists to study

the jamming transition and verify numerical and theoretical results has been photoelastic

disks [154–157]. These are frictional elastic disks that allow for direct visualization of

the internal forces [6, 154–157]. Some experimental behaviors of frictional particles [156]

agree with simulations of frictionless particles [253]; in particular, several of the critical-like

behaviors match. Other simulations where friction is varied find that some behaviors change

as friction tends to zero [21, 254, 255]; for example, the coordination number at jamming

changes smoothly from z ≈ 4 for frictionless particles to z ≈ 3 for particles with a large

friction coefficient (in 2D). This difference may be important if the contact number is the

crucial quantity governing much of the critical behavior, rather than φ−φc [21]. In addition

to friction, deformability presents an essential difference between how grains and emulsions

or foams flow. Since grains can not significantly deform they must dilate to flow, while

bubbles can easily deform and rearrange with no dilatation [38]. In granular studies, the

inability for grains to significantly deform without breaking limits the study of the jamming

transition to near φc, and it is unclear if the scaling laws found for granular materials apply

at larger φ− φc.

There have been other experimental techniques to study jamming and granular physics

that include emulsions [158, 159], bubble rafts [169, 256, 257], plastic bead rafts [258, 259],

and 2D foams [162, 163, 183], but only in two emulsion studies [158, 159] and one 2D foam

study were the forces measured [153]. In the two emulsion studies the jamming transition

was not probed. In the 2D foam study, the authors only investigate the distribution of

forces at different φ and the critical scaling in z, leaving much to be studied. In Sec. 6.4 and
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6.6, we discuss the jamming properties and critical scaling laws explored in the numerical

study of O’Hern et al. [22], the photoelastic study of Majmudar et al. [156], and foam study

of Katgert et al. [153] in more detail. We will also study the jamming transition using an

experimental setup analogous to photoelastic disks, but without static friction, and we will

compare our results to the previous numerical and experimental studies of [22, 153, 156].

Another important aspect of jammed materials are the emergence of force chains, chain

like structures of large forces that bear the majority of the load [154, 155, 159, 260–263].

Force chains are responsible for mechanical rigidity and are related to many bulk material

properties [23, 260, 261, 264]. There have been many theoretical attempts to understand

force chains, such as the q-model of Coppersmith et al. [265], directed-force chain networks

of Socolar’s group [266], and simulations [267–269]. Some of these ideas assume friction is

present, and others ignore friction. Others have taken an ensemble approach to describe

force chains, where each approach has its own meaning for an ensemble and how the en-

semble is sampled [148, 158, 270–275]. While some of these models can successfully predict

certain properties of the force network, they can not explain the physical origins of force

chains. A model recently proposed by Bruijic et al. [158, 276] and extended by Zhou et

al. [159, 272] provides a physical description for the origin of force chains and can accurately

predict the statistics of the force chain network. An essential untested assumption of the

model is that the forces on neighboring droplets are uncorrelated.

In this chapter, we introduce a new experimental tool for studying the jamming transi-

tion of frictionless soft deformable droplets using a quasi-2D emulsion setup. We outline a

method to determine the force law between droplets in contact. Our method can determine

forces to an accuracy of about 10% - 15% which is a factor of 5-10 in improvement from

the forces reported for a similar system [153]. We use this model system to characterize

the critical scaling of the jamming transition and compare our results to other numerical

and experimental models of the jamming transition. We also characterize the statistics and

randomness of the force network and compare our results to the Brujić-Zhou model.
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(a) 

(d) 

(b) 

250 µm 

(c) 

200 µm 

Figure 6.1: (a) is a schematic of our co-flow apparatus where oil is pumped at a constant
rate through a micropipet centered within a capillary tube of larger diameter. Around the
inner micropipet, a 5 g/mL water Fairy soap mixture is pumped through the capillary tube,
and as oil leaves the micropipet it forms spherical droplets that repeatedly break off with
the same diameter. (b) is a schematic of our sample chamber where emulsion droplets are
confined to a 2D plane by two microscope slides separated by either a ∼ 100 µm spacer
(transparency film) or ∼ 180 µm spacer (glass coverslip).

6.2 Sample Preparation

Our sample chamber is designed to create a system of quasi-2D frictionless emulsion droplets,

analogous to 2D granular systems of photoelastic disks but without static friction [155]. The

sample chamber consist of two microscope glass slides of dimensions 25 mm × 75 mm (Corn-

ing) separated by ∼ 100 µm spacer (transparency film) or ∼ 180 µm spacer (Corning No.

1 glass coverslip) placed along the two longer edges (see Fig. 6.1(b)). The chamber is filled

with an oil in water emulsion, where the diameters of the emulsion droplets are larger than

the gap distance between the microscope slides. The emulsion droplets are produced using

a standard co-flow micro-fluidic technique [277], see Fig. 6.1(a). The inner diameter is ∼ 35

µm and the outer diameter is ∼ 500 µm. The flow rate of the water Fairy soap mixture is

∼ 1 mL/min and the flow rate of the oil is ∼ 0.5 µL/hr. After the sample chambers are

loaded, they are placed on a microscope for imaging. To acquire very accurate measure-

ments of each droplets deformation we take high resolution images on the order of 10,000

by 50,000 pixels2. We achieve this resolution by taking a series of images with resolution

2000 × 2400 pixels of neighboring regions within the sample and later merge all the images

together to form a single high resolution image. Each high resolution image has about 1,000

to 5,000 droplets in the field of view depending on the droplet radius.

To study the jamming transition, we use data taken in Chapter 5.5 on three separate

binary samples. In Fig. 6.2, we show an image within a small region of each sample, and

in Table 6.1, we list the droplet sizes and polydispersity for each data set. In Fig. 6.3,
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Figure 6.2: Close up view of regions within our three binary samples. The scale bar in each
image is 250 µm. (a) is an image for our sample with size ratio 1.25. (b) is an image for
our sample with size ratio 1.42. (c) is an image for our sample with size ratio 1.52.

σ nr r(big)0 poly(big) r(small)
0 poly(small)

1.25 0.684 126 µm 3.4% 102 µm 3.1%
1.42 0.849 130 µm 3.0% 105 µm 3.4%
1.52 0.806 137 µm 3.3% 90.1 µm 3.1%

Table 6.1: This table provides various parameters characterizing the droplets in our 3 binary

samples. The first column σ = r(big)0 /r(small)
0 is the size ratio and the second column is the

number ratio nr (number of big droplets to number of small droplets). The polydispersity
in droplet sizes for the big droplets is indicated by poly(big) and for the small droplets
by poly(small). The polydispersity is defined as the standard deviation in droplet sizes
normalized by the mean size. Our uncertainties for the various measures are ∼ 2 µm in r0,
∼ 0.1% in σ, and < 0.1% in polydispersity. Since we can count every single droplet there
is no measurement error in nr.

we show an experimental image for one of the samples over a larger field of view. The

samples were prepared by loading droplets of two different sizes into a chamber, and then

placing this sample onto a microscope inclined to an angle 28◦. The droplets rise to the

top of the chamber and rest into a jammed state. The advantage of this system is that

the area fraction increases with distance up the incline, and therefore, we can easily study

how various jamming properties depend on area fraction. Also by inclining the samples, we

were able to use the data in Chapter 5.5 to determine an empirical force law. To identify

the center and outline of the droplets from our images we use the algorithms discussed in

Chapter 4, and to determine the contact forces we use the force law determined in Chapter

5.5.
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Figure 6.3: Image of an inclined sample with size ratio 1.52. This image only shows 1/3 of
the sample in the vertical direction. When analyzing data, we only consider droplets that
are at least 4 particles diameters from the wall. The scale bar at the bottom left is 2 mm.
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6.3 Jamming Point

To characterize various critical scaling laws with φ− φc we must first identify the jamming

point φc for each data set. We can treat the area fraction at the bottom of the droplet

pile y = 0 (see Fig. 5.1) in our data as the jamming point since the forces between droplets

at y = 0 are nearly zero, and for any small increase in area fraction (which is like a small

increase in y) leads to an increase in the forces between droplets. To compute the area

fraction, we must determine how much of the system’s area is occupied by droplets. If we

only consider droplets at y = 0 in computing the area fraction, the statistics will be poor.

If we include more droplets near y = 0 in the calculation of the area fraction to improve

the statistics, the center of mass of the droplets is greater than y = 0 and the area fraction

does not represent φ(y = 0). Therefore, to determine φc we will compute the area fraction

for a collection of droplets at various y and extrapolate the area fraction to y = 0. We

calculate the area fraction directly from our images of the droplets in four steps. First,

using the centers and radii of the droplets we compute the radical voronoi cells [241, 242]

for each droplet (see Chapter 4.6). Second, we locate the pixels in the image that are

within each droplet’s voronoi cell and the pixels that belong to each droplet. Third, we

compute the voronoi area Av and the droplet area Ad for each droplet using the pixels

identified in step two. Finally, the area fraction φ(y) at some distance y is computed as

φ(y) = ΣkAd,k/ΣkAv,k, where k indexes all droplets with a center of mass within y−∆y/2

and y + ∆y/2. We choose ∆y = 6r0, giving roughly 150 droplets per y sampled. In

Fig. 6.4, we illustrate how φ is computed on a set of droplets. Using the computed φ(y),

we find for the three data sets φc =0.855, 0.861, and 0.858 for the σ = 1.25, 1.42, and 1.52

data, respectively, where σ is the big to small size ratio of the droplets. In simulations

on frictionless disk and experiments on 2D foams it has been reported that φc ∼ 0.84 for

binary systems [153, 253, 278], which is a little lower that the values we found.

We note that our measured area fractions depend on our choice for where we define

the outer perimeter of a droplet. From the images our choice of the outer perimeter has

an uncertainty of 2-3 pixels which leads to a systematic uncertainty in the area fraction of

roughly 1%. Since this is a systematic uncertainty our choice in defining the boundary also
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Figure 6.4: These two figures illustrate how the area fraction around a certain group of
droplets is computed. In the above images, we show a close up view of a region where
the area fraction is to be computed. The first step in computing the area fraction is to
compute the radical Voronoi tessellation. In (a) we show the radical Voronoi tessellation
as the red polygonal cells (see Chapter 4.6 for how the Voronoi tessellation is computed).
To compute the area fraction around only certain droplets of interest, the other Voronoi
cells are ignored. This can be seen in (b) where the pixels belonging to the Voronoi cells
not of interest have been turned to black. For those droplets of interest, the pixels inside of
the droplet have been turned to white and the pixels outside the droplets have been turned
to grey. The area fraction is simply the total number of white pixels divided by the total
number of grey and white pixels.

shifts φc by the same amount, and therefore, the control parameter φ− φc is insensitive to

this systematic error.

6.4 Critical Scaling

The first critical scaling we investigate is the coordination number z for each packing. In the

inset of Fig. 6.5(a), we plot the average coordination number z as a function of area fraction

for the 3 separate packings, where z and φ are found at various points up the incline. The

data show a linear relationship between z and φ for all three packings, and we have added a

line to highlight the linearity. We see that this line extrapolates to a coordination number

of zc = 4.8 at φ = φc = 0.86. In prior numerical studies on jamming in frictionless systems,

it has been shown that the coordination number and area fraction obey a power law scaling

of z − zc = (φ− φc)βz , where zc = 4 and βz = 1/2, which is inconsistent with the results in

the inset of Fig. 6.5(a) [253].
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Figure 6.5: (a) Scatter plot of coordination number and the equivalent theoretical area
fraction. All data were fit together to z − zc = A(φ − φc)βz , where the fit is shown as the
black dashed line with fit parameters zc = 4.57±0.03, A = 2.73±0.06, and βz = 0.46±0.01.
Fitting the different data sets separately gives slightly different fit values, and the fit values
are shown in Table 6.2. Inset of (a): Scatter plot of coordination number and area fraction.
The dashed line is a linear fit to all the data with slope 8.22 with zc = 4.8 at φ = φc =
0.86. (b) A scatter plot between pressure and the equivalent theoretical area fraction. The
pressure has been scaled by a prefactor c = 1, 3.5, and 10 for the σ = 1.25, 1.42, and 1.52
data respectively. Each data set is fitted to P = A(φtheory − φc)βP , and the fits are shown
as the black dashed lines. The fit values are shown in Table 6.2.

However, as pointed out by Katgert et al. [153], the definition of area fraction is different

between numerical and experimental studies. In numerical studies, the area fraction is

defined as φtheory = Adisks/Ac, and in experiments, φ = Atotal/Ac, where Adisks is the sum

of all the disk areas, Atotal is the total area of the container occupied by droplets, and Ac

is the area of the container. The difference in the definitions is subtle and has to do with

disks being allowed to overlap in the simulations, but in experiments the droplets are not

allowed to overlap and instead deform. In experiments and numerical studies, the total

area of the container occupied by disks is Atotal = Adisks− 2Aover, where Aover is total area

of all overlapping disks. For numerical studies, Aover > 0 when the system is compressed
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Figure 6.6: This plot shows the relationship between φexp and φtheory for simulations of
randomly packed disks for three different size ratios indicated in the legend. The data
was generated by swelling packings of 1000 disks to different area fractions. The size and
number ratio for each packing was chosen to match the parameters given in Table 6.1. The
dashed black line represents φexp = φtheory.

since disks overlap, and in experiments, Aover = 0 for all compressions since disks can

not overlap. In the numerical studies where the critical scaling was observed, they used

φtheory as their area fraction, and therefore, to properly compare our results to theory we

can convert our experimentally measured φexp into the appropriate numerical φtheory by

accounting for any overlap area of neighboring disks. By computing how Aover/Ac depends

on φexp we can convert our area fraction using φtheory = φexp + 2Aover/Ac. We compute

Aover/Ac by swelling random packings of 1000 disks to different values of φexp using our

method in Chapter 3.2, where each packing had the appropriate size ratio and number ratio

to match the parameters as given in Table 6.1. In Fig. 6.6, we show the relationship between

φexp and φtheory for the different samples, and find that this relationship is the same for all

the data.

For each data set, we determine the equivalent φtheory at each y using our simulations to

convert φexp to φtheory. In Fig. 6.5(a) we plot z as function of distances to the jamming point

φtheory − φc. Using φtheory we find that the relationship is no longer linear and looks more

like the scaling z − zc = (φtheory − φc)βz with βz < 1. Since all the data overlap well, we fit

all the data together to this critical scaling law to improve statistics, and find an exponent
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z − z0 = Az(φ− φtheory)βz

σ Az βz zc
1.25 3.22 ± 0.06 0.45 ± 0.05 4.3 ± 0.2
1.42 3.25 ± 0.07 0.43 ± 0.05 4.3 ± 0.2
1.52 3.21 ± 0.14 0.34 ± 0.07 4.0 ± 0.3

P = A(φ− φtheory)βP

σ AP [dynes/cm] βP
1.25 18.5 ± 0.3 1.41 ± 0.01
1.42 15.4 ± 0.3 1.30 ± 0.01
1.52 13.4 ± 0.4 1.26 ± 0.01

fij = F0(δrij/dij)βf

σ F0 [µN] βf
1.25 3.30 ± 0.05 1.40 ± 0.01
1.42 2.34 ± 0.06 1.29 ± 0.01
1.52 2.02 ± 0.03 1.25 ± 0.01

Table 6.2: This table shows the fitting parameters for data fitted to various critical scaling
laws. The first column indicates the size ratio and the other columns indicate the fit values.
The uncertainties in the fit values were obtained by adding noise commensurate with the
measurement errors and refitting the data. The uncertainties are the standard deviation in
the fit values after refitting the data 100 times.

of βz = 0.44 which is close to the previously found βz = 1/2 [153, 253]. The fit also gave

zc = 4.2. Fitting the data separately gives different fit parameters, and the fit parameters

are shown in Table 6.2. For σ = 1.25 and σ = 1.42, βz is 1/2 within the uncertainty, but for

σ = 1.52, βz is less than 1/2. We also find that β decreases with increasing σ. Interestingly,

in 2D photoelastic disk experiments, they found z− zc = (φ− φc)βz with βz = 1/2 without

needing to convert their experimental φ to φtheory [156].

The second critical scaling we investigate is the dependence of pressure with distance

to the jamming point. To determine the 2D pressure at various φ, we consider the pressure

at various distances up the incline. For k droplets located a distance y − ∆y/2 and y +

∆y/2 up the incline, the 2D pressure, which has units of force/length, can be computed

from the contact forces using the expression P =
(∑

i

∑
j>i Fijrij

)
/ΣkAk,v, where i and

j index all contacts on the k droplets and ΣkAk,v is the sum of the voronoi areas of all k

droplets [22, 279]. Here we use ∆y = 5r0. In Fig 6.5(b), we plot the pressure for all three

packings against φtheory − φc at various y. We scaled the pressure by a prefactor c in the

figure to separate the curves. In previous studies it was found that the pressure should obey
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Figure 6.7: The average force between droplets in contact is plotted against the amount
compression between the droplets. The average force has been scaled by a prefactor of
c = 1, 3.5, and 10 for the σ =1.25, 1.42, and 1.52 data respectively. Each data is fitted to
〈fij〉 = ε(δrij/dij)βf and the fits are shown as the black dashed lines. The fits are shown in
Table 6.2.

the critical scaling P = (φtheory − φc)βP [22, 156]. To see how well our data is described

by this scaling, we fit each data set to P = A(φtheory − φc)βP . The fit values are shown in

Table 6.2 and each fit is shown in Fig 6.5(b) as the dashed lines. In the figure, we see that

the data is well fitted by the critical scaling law, where the exponents for the critical scaling

are between 1.25-1.41. In 2D photoelastic disk experiments, βP was found to be 1.1 [156].

In the numerical study by O’Hern et al. [22], where the scaling P = (φtheory−φc)βP was

observed, they used frictionless disks that interacted via the force law fij = F0(δrij/dij)βf ,

where F0 is a scale, δrij is the distance between two particles in contact, and dij is the sum

of the radii of the particles in contact. In their paper, they showed that βP = βf . To see

if this relationship is consistent with our data, we computed an effective force law 〈fij〉 for

various δrij/dij between droplets in contact. We obtain this effective force law by computing

a δrij/dij for each contact force, and then we average together all the contact forces with

roughly the same δrij/dij . In Fig. 6.7, we plot 〈fij〉 for each binary sample and fit each

data to 〈fij〉 = F0(δrij/dij)βf to obtain a βf . Since all the effective force laws overlap fairly

well with each other, we have scaled each force law by a prefactor c to separate the data.

In the figure, the fits are shown as the red dashed lines and we see that the data are well

described by the fits. The fit values for each data set are given in Table 6.2. Confirming
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Figure 6.8: (a) A scatter plot between pressure and the equivalent theoretical area fraction
for our monodisperse data sets. The legend indicates the size of the droplets. The black
dashed line is a guide to eye and indicates a linear relationship. (b) The dependence of
the average force on compression is shown for our monodisperse data sets. Each data has
been fitted to a power law as indicated by the black dashed lines. The fit values are give in
Table 6.3. The legend in (a) applies to (b) as well.

the results of O’Hern [22], the fits gave exponents for βf that are in agreement with βP .

6.5 Pressure and Effective Force Law for Monodisperse Data

In addition to the binary force calibration data presented in the last chapter, we also have

incline data on four different monodisperse packings presented in Chapter 5.4. Each packing

consists of droplets with radius R0 = 164 µm, 143 µm, 105 µm, or 84.1 µm, where R0 is

the 3D radius of the droplets before placing them in the sample chamber. Repeating the

above analysis on our monodisperse data, we can test if crystalline packings also give a

critical scaling in the pressure and if the effective force law obeys a power law scaling. By

measuring the area fraction with distance up the incline, we determine φc = 0.910, 0.900,

0.903, 0.905 for the R0 = 164 µm, 143 µm, 105 µm, or 84.1 µm packings respectively. For

a crystalline packing we expect φc =
√
3π/6 ≈ 0.906, which is close to the measured values.

We start by measuring the pressure and area fraction with distance up the incline. In

Fig. 6.8(a), we plot the dependence of the pressure with distance to the jamming point

φtheory − φc, and find that the pressure scales linearly with distance to the jamming point,

where the black dashed line illustrates a linear scaling relationship. Fitting each data

set separately to a power law gives exponents that are given in Table 6.3. The fits gave
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P = A(φ− φtheory)βP

R0 [µm] AP [dynes/cm] βP
164 14.8 ± 0.3 0.94 ± 0.01
143 16.7 ± 0.4 0.99 ± 0.01
105 18.5 ± 0.5 1.05 ± 0.01
84.1 13.5 ± 0.5 0.95 ± 0.01

fij = F0(δrij/dij)βf

R0 [µm] F0 [µN] βf
164 2.93 ± 0.03 0.99 ± 0.01
143 2.33 ± 0.04 0.97 ± 0.01
105 1.59 ± 0.06 0.91 ± 0.01
84.1 1.81 ± 0.05 1.03 ± 0.01

Table 6.3: This table shows the fitting parameters for our monodisperse data fitted to
two scaling laws. The first column indicates the droplet radius and the other columns
indicate the fit values. The uncertainties in the fit values were obtained by adding noise
commensurate with the measurement errors and refitting the data. The uncertainties are
the standard deviation in the fit values after refitting the data 100 times.

exponents of nearly unity, ± 0.05. These exponents are smaller than the exponents found

for the bidisperse case in the previous section.

Using the repulsive forces and relative distances between contacts, we show in Fig. 6.8(b)

the relationship between the average force and compression δrij/dij for each data set. The

dashed lines in the figure are power law fits to the data. The power law fits gave exponents of

roughly unity, where the fitting parameters are shown in Table 6.3. In the previous section,

it was shown that the exponents βP from fitting the pressure data and the exponents βF

from fitting the effective force law data agreed very well. For the monodisperse data, we

see that the exponents are close, but do not agree as well as before.

Our monodisperse force data in Fig. 6.8(b) indicates that the effective force law is

Hookean, in contrast to the non-Hookean effective force law observed for our binary samples.

Using the simple examples shown in Fig. 6.9, we will reason why the effective force law for

the monodisperse and bidisperse packings may differ. Although, from these examples it will

not be clear if we should expect an effective force law that is Hookean, non-Hookean, or

Hertzian. First, we note that the force between two droplets is not determined by the center

to center distance δrij . Instead, as we have shown in the last chapter, the force is determined

by the contact length and the curvature of the droplets. In our above analysis, we have
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Figure 6.9: (a) A crystalline packing of droplets pressed together. In this example, the force
at the contacts goes to infinity while the center to center distance δrij is finite. (b) A chain
of droplets pressed together. In this example, the force at the contacts goes to infinity as
the center to center distance δrij goes to zero.

computed an “effective” force law between droplets. This “effective” force law is the average,

not actual, force between two droplets separated by a common center to center distance δrij .

In Fig. 6.9(a) and (b), we show two examples illustrating how the force between droplets

can be greatly different for the same δrij . In Fig. 6.9(a), we show a crystalline packing of

droplets pressed together so tightly that the force at the contact goes to infinity. Regardless

of how much force is acting on the droplets, the center to center distance is always finite. In

Fig. 6.9(b), we show a chain of droplets being pressed together. In this example, as the force

on the droplets increase, the center to center distance between the droplets goes to zero.

Comparing both examples, we can conclude that for the same δrij the force at the contacts

will differ and be highly depended on the local packing geometry. For our monodisperse

data, the packing will be analogous to Fig. 6.9(a), while for our bidisperse data, the packing

will be somewhere between Fig. 6.9(a) and (b). Therefore, from this simple example we

can understand why the effective force law between monodisperse packings and bidisperse

packings is different. Also, since the local packing geometry can vary between different

bidisperse packings, it also hints as to why in the last section βF differed between the three

binary packings.
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Figure 6.10: (a) Distribution of contact forces relative to the mean contact force at different
φ for the σ = 1.25 packing, 〈f〉 = 0.011 µN, 0.045 µN, and 0.13 µN for the φ = 0.88, 0.92,
and 0.96 distributions respectively. The distribution of forces for a 2D photoelastic system
at φ− φc ∼ 0.016 performed by Majmudar et al. is shown as well [155]. (b) The standard
deviation if the P (f/〈f〉) distributions for each packing at different φ are shown.

6.6 Force Distribution

We now consider the distribution of contact forces for each packing at different area frac-

tions. Like before, we sample the contacts forces at various points up the incline using a

window of y − ∆y/2 and y + ∆y/2. However, we need many contacts to obtain a good

distribution of contact forces, and therefore, we use ∆y = 30r0. This gives roughly 2500

contacts for each y sampled. In Fig. 6.10(a), we show the distribution of contact forces

normalized by the mean contact force at 3 distances up the incline for the σ = 1.25 packing,

where the values of φ at each y are reported. We have also included in the figure the distri-
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bution of normal forces from Majmudar et al. [155] on frictional 2D photoelastic disks. In

their photoelastic disks experiment, the particles were isotropically compressed to an area

fraction ∼ 0.016 above the critical area fraction. We see that in all our data most forces are

near or less than the mean force 〈f〉 and that the maximum force is about 3〈f〉. We also find

that the shape and magnitude of all the curves are roughly the same. These distributions

are also similar to simulations and experiments on 2D and 3D frictionless systems on foams

and emulsions [153, 159, 253, 276]. This suggest that the distribution of forces is a fairly

universal property of all jammed systems.

As observed by Katgert et al. [153], our force distributions slightly narrow with area

fraction in Fig. 6.10(a). To see how the width of the distributions depend on area fraction

for each packing, we plot the standard deviation of each force distribution in Fig. 6.10(b).

For the σ = 1.25 and σ = 1.42 packings, the width of the force distributions decrease

quickly near the jamming point and saturates to a constant width of ∼ 0.5 further from

the jamming point. However, the σ = 1.52 packing has a broader distribution of forces at

larger φ− φc compared to the other two packings, and the decrease in the width as φ− φc

increases is more subtle. It’s not clear why the σ = 1.52 data does not show the same decay

in width of the force distribution as the other two packings.

6.7 Force Chains

We now investigate the characteristics of the force chain network for each binary packing

and test the randomness of each network. Having established in the previous section that

our model system shares many common features with other numerical and experimental

model systems, this analysis will serve to provide a broad conceptual understanding of force

chains in jammed systems.

In Fig. 6.11(a) we show an experimental image with the contact forces between droplets

drawn as lines. The forces are heterogeneous in magnitude, with the large forces organized

along chain like structures (termed force chains) that bear most of the load. This type of

forces network is common in many jammed systems [6, 154–157]. To characterize the force

chains of our jammed systems we need to provide a precise definition for a force chain.
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Figure 6.11: (a) shows the forces between droplets within a region of our σ = 1.25 sample.
(b) The same image and forces as in (a) with only the forces that are larger than 1.4〈f〉
being shown. (c) Using our definition for a force chain only the forces in (a) belonging to a
force chain (solid lines) and the merging/branching forces (dashed lines) are shown.

A common definition for force chains are those force segments within the force network

that are larger than some threshold c〈f〉 [154, 159, 262, 263]. In Fig. 6.11(b) we show such

a force chain network for our data using c = 1.4, where the forces above 1.4〈f〉 form chain

like structures that branch and merge. The branching and merging of the force network

makes it difficult, but not impossible to describe the statistics of the network. To simplify

the network we propose a new alternative definition that divides the network into isolated

force chains.

Staying consistent with the meaning of a force chain, we define a force segment to belong

to a force chain if it is one of the two largest forces on both droplets joined by the force

segment. Under this definition, each droplet can only have a maximum of two force segments

that belong to a force chain, and therefore, no force chain can branch or merge because that

would require at least three force chain segments on a single droplet. However, we do know

that the network of large forces does indeed branch and merge and therefore we also define

another type of force segment, the branching/merging force segments which are those force

segments that are one of the two largest forces on one of the droplets joined by the force

segment, but not one of the two largest forces on the other droplet. The essential idea of
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these definitions are that the force segments belonging to a force chain are “locally” the

largest forces being transmitted through a sequence of droplets, and that at certain points

along the chain there are secondary large forces that branch off and can merge two chains

together.

To see how our new definitions compare to the previous definition we show in Fig. 6.11(c)

the force chain segments as the solid lines and the branching/merging force segments as the

dashed lines. Comparing the force structure Fig. 6.11(b) to Fig. 6.11(c) we see that our

definition is consistent with the old definition, where now the force chain structure has been

isolated into individual chains (the solid lines in Fig. 6.11(c)). Figure 6.12 show force chains

using our definition for a larger region in the sample. The image shows force chains that

are fairly linear and heterogenous in length with some force chains spanning more than 10

droplets while others only span 1 or 2 droplets.

In this section we consider various statistical measurements on the randomness of the

force chain network, and then we apply the Brujić-Zhou model [158, 159, 272, 276] to

compare to our data. The branching/merging force segments will not be considered. When

analyzing data in this section we consider all droplets and contacts between 40 ≤ y/2ro ≤ 80

unless otherwise specified, and over this range φ increases from ∼ 0.93 to 0.96. We found

that many of the statistical measures we discuss do not depend on φ at larger area fractions.

Such a large window size is necessary to provide the best statistics.

Due to the protocol for how the system was initialized we may expect there to be

anisotropies in the force chain network. We measured the distribution in the orientation of

force segments and found there to be a slight bias for force chain segments to be orientated in

the direction of the incline. This is not too surprising giving the protocol for initializing the

packing was to allow the droplets to flow up the chamber until they settled into mechanical

equilibrium. It’s been shown that force chains tend to align in the flowing direction [23,

155, 280]. Also, since there is a small buoyant force in the y-direction, this will result in

slightly larger vertical forces.

Given that force chains form linear like structures and that there is a slight anisotropy

for the force chains to align along the incline we may expect there to be correlations in the

orientation of neighboring force chain segments. To quantify such correlations we define
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Figure 6.12: This image shows only the forces belonging to a force chain within a region of
the σ = 1.25 sample. The thick red lines indicate large forces and the thinner green lines
indicate forces closer to the mean. See the scale bar in Fig. 6.11. On average, the forces are
larger further up the image because the sample is inclined, and this can be observed in the
image by the increasing redness of the force segments.

two relative angles θ1 and θ2 between joining force segments, where the definition of θ1

and θ2 are shown in the inset of Fig. 6.13. Using this definition, if there is a correlation

in the relative orientations that tend to make the chains linear, then θ1 and θ2 would be

positively correlated. We compute the correlation C of θ1 and θ2 at various distances up

the incline and the data are shown in Fig. 6.13. Surprisingly, for all the data C is very small

or zero, indicating that there is no correlation between the orientation of neighboring force

segments.

To further explore the tendency for force chains to be linear without exhibiting any

correlation between the orientation of neighboring force chain segments, we consider the

distribution of θ, where θ1 and θ2 are treated as a single variable θ. In Fig. 6.14 we plot

the distribution in θ for all three packings. The distribution shows that most force chain

segments form at an angle |θ| < 60◦, indicating that two force segments tend to form a

linear chain because it’s more probable. The analysis of both the correlation in θ1 and θ2

and the distribution P (θ) leads to the conclusion that the orientation θ of any given force

chain segment is independent of the orientation of a neighboring segment and that θ is
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Figure 6.13: Plot of the correlation between θ1 and θ2 for the three different binary packings.
Inset: Definitions of the relative orientations θ1 and θ2 between joining force segment. In
the image both θ1 and θ2 are positive. θ1 is defined to be positive if the extended dashed
line is a counter clockwise rotation relative to the center force segment, and θ2 is positive
if the third force segment is a counter clockwise rotation relative to center force segment.
If there is a correlation between θ1 and θ2 that tends to make force chains linear, then the
correlation between θ1 and θ2 is positive.

randomly chosen from a distribution that is biased towards forming linear chains.

To understand from physical origins why force chains are biased towards being linear

we apply a model proposed by Brujić et al. [158, 276] and extended by Zhou et al. [159,

272] to our data. The Brujić-Zhou model is a method for generating ensembles of local

particle configurations (a central particle and contacting first neighbors) and the forces

acting on a central particle by its first neighbors. Each local configuration is generated by

randomly placing zi contacting neighbors such that any two neighboring particles do not

overlap. Next, the contact forces between the central particle and zi−2 neighboring particles

are chosen at random from a distribution P (f), leaving two unknown contact forces. By

invoking force balance, the two remaining contact forces are found algebraically. In the work

of Zhou et al. they used P (f) ∼ f exp(−(f/2σ)2), where f > 0, since it closely matched

the force distribution in experiments. Once a sufficient number of local configurations are

generated the distribution of force chains orientations can be studied. The basic assumptions

of this model is force balance, randomness in the magnitude of forces, and randomness in

the orientation of forces. For our data the first assumption applies because the system is in

mechanical equilibrium and in the previous paragraphs we have shown that the other two
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assumptions reasonably apply.

One issue in using the Brujić-Zhou model to predict P (θ) is that the model only gives

the forces between a central particle and first neighbors. In order to define a force chain

segment we also need to know all the forces acting on each first neighbor as well. On the

central particle there are only two forces that could potentially be a force chain segment; the

two largest forces f1 and f2 between the central particle and the first neighbors and we label

these first neighbors as j1 and j2. To determine if both of these large force segments are force

chain segments we add onto our local configuration the first neighbors around j1 and j2.

Fixing all the forces previously generated on the central particle we now randomly generate

forces on j1 and j2 such that force balance is satisfied. With these new forces we determine

if f1 and f2 are force chain segments, and if both are force chain segments we calculate the

angles θ between these two segments. We repeat of the process of generating these local

configurations and only keep those configurations that return a force chain segment for both

j1 and j2.

Clearly, the distribution for P (θ) returned by our modified Brujić-Zhou model depends

on the choice of P (f) and the protocol for generating local configurations. To make the

inputs into the Brujić-Zhou model as consistent as possible with our experimental data

we use the experimentally measured P (f) (Fig. 6.10) and instead of randomly generating

local configurations we randomly select local configurations from our experimental data.

Applying our modified Brujić-Zhou and using our data as inputs, we obtain a distribution

for each of our three packings, and the distributions are shown Fig. 6.14(b), (c), and (d) for

the σ = 1.25, 1.42, and 1.52 data respectively. In each figure, the experimentally measured

P (θ) is shown as the black line and the P (θ) found from the model is shown as the red line.

We see that quantitatively the model is in good agreement with the experiment, but there

is some discrepancy in the magnitude of the peaks. The model is able to capture significant

changes between the data. For instants, the peak around θ = 0 is much different between

Fig. 6.14(b) and Fig. 6.14(d), and the model is able to capture this difference.

The discrepancy between the model and data may be the result of slight correlations

in the forces and orientations between neighboring droplets. While the correlations in

Fig. 6.13 are nearly zero, there is still some correlation. Also, we did not consider all the
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Figure 6.14: (a) Distribution of θ for each packing, where both θ1 and θ2 are treated as a
single variable θ. The red solid line is the distribution for the σ = 1.25 packing, the green
dashed line is the distribution for the σ = 1.42 packing, and the blue dashed-dot line is the
distribution for the σ = 1.52 packing. (b) is a comparison between the distribution for σ =
1.25 and the Brujić-Zhou model. (c) is a comparison between the distribution for σ = 1.42
and the Brujić-Zhou model. (d) is a comparison between the distribution for σ = 1.52 and
the Brujić-Zhou model.

second neighbors in our modified Brujić-Zhou model, we only considered a select few. Also

to define a θ1 and θ2 we would need to consider out to the third nearest neighbors. It may

be possible that structural constraints in the packing out to the second and third nearest

neighbors constrain the allowable distributions in forces for which the force balance can be

satisfied. However, adding these complexity into the model starts to make the model less

computationally feasible and less appealing.

From the prior analysis it suggest that the force chain network can be thought of as

a random network, and therefore, we may also expect the distribution of chain lengths to

obey a random process. If there is a probability p for a force chain segment to have a

neighboring force chain segment, then the distribution of chain lengths should obey the

scaling P (n) = (1 − p)pn for a random process, where n is the length of a force chain (or

number of force segments that belongs to an isolated force chain). In Fig. 6.15 we plot the

distribution of chain lengths for each packing. The data decay exponentially over 3 orders of
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Figure 6.15: Distribution of the number of force segments making up distinct force chains.
The data points are experimental observed values and the dashed lines are fits to the data
of the form P (n) = (1 − p)pn, where p is found to be 0.722, 0.758, and 0.717 for the σ =
1.25, 1.42, and 1.52 packings, respectively.

magnitude. To obtain the probability p for our packings, we fit the data to P (n) = (1−p)pn,

which is a one parameter fit, and find p =0.722, 0.758, and 0.717 for the σ = 1.25, 1.42,

and 1.52 packings, respectively. The fits are shown as the dashed lines and show good

agreement with the data other than at n = 1. The discrepancy at n = 1 may suggest that

this distribution is only valid when there is a least 2 force segments because for n = 1 the

force chain has not spanned an entire droplet and the meaning of a force chain is nebulous.

To check how our P (n) results compare to a simple model system, we simulated the

isotropic compression of a binary mixture of 10,000 2D disks with size ratio 1.4 and a

particle-particle force law fij = Fo(δrij/dij) (same as O’Hern’s model [22] previously dis-

cussed). In the simulation, we start with a packing of disks below the jamming point and

compress the container in small increments until the area fraction is 0.98. At each incre-

ment, we allow the disks to rearrange until they settle into mechanical equilibrium before

compressing the container again. At various area fractions above the jamming point we ap-

ply our force chain analysis, and found the same distribution as in Fig. 6.15 with p ∼ 0.75,

regardless of φ. We also note that Peters et al., using a much more sophisticated 11 step

process for defining and breaking up force chains into countable lengths, also found an

exponential distribution in chain lengths [281]. In their work, they simulated an intruder

penetrating a sample of polydisperse 2D frictional disks and recorded the distribution in
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force chain lengths during the intruding process. From their reported data on P (n), we

estimate a value of p = 0.65 regardless of how far the intruder had penetrated the sample.

For our compression experiments and the penetration experiment of Peters et al., we expect

to find different force networks due to grain rearrangements upon further compression or

penetration, and therefore, we may expect to find different P (n). However this is not the

case, and it appears that statistically the “formation” of a force chain can be thought of as

a random process with probability p for the force chain to propagate.

6.8 Conclusions

In this work, we have introduced a new model system composed of quasi-2D emulsions

droplets to experimentally probe the jamming transition. We have introduced a method

for determining a empirical force law that is not limited to our setup, and could be used to

determine forces in 2D foams, 3D emulsions, and 3D foams. For our system, we have found

a universal force law that works for any droplet size and gap thickness. Our model system

is an additional tool for studying internal forces in jammed systems with its own unique

advantages. Compared to photoelastic disks our droplets can be compressed to a larger area

fraction to probe properties farther from the jamming point, our droplets are significantly

cheaper and easier to make (thousands of any size can be made in minutes), our droplets

are highly monodisperse, and there is no static friction between droplets. Compared to 2D

foam experiments, foam droplets coarsen quickly while our emulsions are stable over several

days, and we can easily make controlled sizes down to very small droplets which is difficult

for foams because coarsening is even more troublesome. Also with our calibration technique

we are able to obtain internal forces to an accuracy of 5-10 times better than reported for

the 2D foam setup [153]. An advantage of our 2D setup over 3D setups is for the case of

flowing droplets. We can image our system quickly, limited only by the camera’s frame

rate while 3D imaging is limited by the technique to roughly 1 image per second [84, 282].

Also 3D image analysis to determine droplet locations and forces is very computationally

expensive, while 2D image analysis is much less expensive allowing for analysis of very long

movies.



132

In our first work with this new model system, we have probed the jamming transition

and found that various critical scaling relationships agree well with other numerical and

experimental model systems. This demonstrates that 2D deformable droplets serve as a

good ideal model system to study the jamming transition. In this work, we have also

characterized the force chain network by applying various statistical measures. We found

that the relative orientation in force chain segments are random, but the distribution in

orientations is biased toward force chains being linear. Other statistical measures on chain

lengths and correlations between the orientation of neighboring force chain segments also

demonstrated that the network is random. To explain the bias in the relative orientations

using a physical description, we applied the Brujić-Zhou model with a few modifications to

include second neighbors, and found that the model predicts the distribution fairly well.
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Chapter 7

Spatial Cooperativity of Stress

Relaxation Around Plastic Events

in Quasi-Static 2D Flow

Soft materials like colloids, foams, and emulsions are a collection of discrete particles, and

when the particle concentration is above a critical point, these materials can behave like

solids in some cases, but can easily flow in other cases. For instance, shaving cream (a

foam) will rest in your hand like a solid, but will flow like a liquid when squeezed. There are

many applications of health care products, pastes, coatings, and foods where understanding

and optimizing the flow properties are important. When soft materials are flowing, many

microscopic plastic changes take place, involving groups of particles rearranging with one

another. While steady state flow of a soft material may have well defined time averages in

strain rate and stress, on shorter time scales the flow is intermediate between a solid and a

liquid with large fluctuations in local strain rate and stress.

At shorter time and length scales the discrete nature of soft materials is important

since individual plastic events are the only characteristic feature of the flow. The flow

is punctuated by local groups of particles temporally jamming into disordered configu-

rations [168, 171, 172, 256, 283] and unjamming by plastically rearranging with one an-

other [172]. The observed average velocity and stress profiles are the cumulative effect

of these local jamming and unjamming processes. Intermittent flow at the particle scale
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has been observed in many experimental and computational studies with local rearrange-

ments typically involving on the order of 10 particles [34, 167–169, 176–178]. In addition

to local rearrangements, intermittent macroscopic stress fluctuations have also been ob-

served [154, 179–182]. However, there are no experiments that quantify the spatial and

temporal stress build up and relaxation in the vicinity of individual particle rearrange-

ments.

The flow of soft materials is typically modeled using elastoplastic theories [188]. Our

current understanding within the elastoplastic framework is that plastic events occur when

the local stress on a group of particles is too large for the particles to support and some of

the stress on the particles is dissipated or redistributed through a plastic event [40, 284].

Bocquet et al. recently proposed an elastoplastic model that can accurately predict the

spatial stress and velocity profiles observed in 3D microchannel flow [37, 40]. Essential to

their model is that during a plastic event the stress on the rearranging particles completely

relaxes to zero and that the relaxation process is spread over neighboring particles with a

cooperative length scale ξ.

In this Chapter, we apply our 2D experimental model system developed in Chapters 4,

5, and 6 to study the evolution and relaxation of stress near a plastic event, and to confirm if

there exist a cooperative length scale. We show for our system that the only dominant term

to the stress is the repulsive force between droplets (viscous forces are negligible), and that

our results represent the most idealized example of flow, the flow of 2D frictionless droplets

where the only contributor to the rheology is the crowding or jamming of the droplets. We

measure a spatial length scale ξ ∼ 3 − 4 particle diameters which is roughly that found

by Goyon et al. [37], however, we do not observe the area fraction dependence they had

measured. The work presented in this chapter is ongoing and the results are preliminary.

7.1 Flow Geometry

Our sample chamber for this study is nearly the same as the one described in Chapter 6,

where droplets are squeezed between two glass microscope slides. The droplets are a binary

mixture of mineral oil in water stabilized using Fairy soap. The droplets are produced using
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Figure 7.1: Schematic of our 2D flow geometry. The sample chamber consists of droplets
squeezed between two glass slides. The sample chamber rests on top of a microscope with
gravity pointing into the page. To offset some of the friction between the glass slides and
the droplets, the microscope is inclined by 4.5◦ such that a component of gravity points in
the flowing direction of the vertical chambger. Using a syringe pump droplets are pushed
down the channel. The red box overlaid on the schematic indicates the region where the
droplets are imaged. The viewing region is offset from the corner by 0.63 mm to the right
and 0.48 mm down. The image in the upper right is an image of the sample taken with a
microscope. On the image the largest contact forces have been drawn as lines. The more
red and thicker the line, the larger the force.

the same co-flow setup discussed in Chapter 6. For this study, the sample chamber consists

of two channels that meet at a right angle. In Fig. 7.1, we present a schematic of the setup.

Droplets are driven through the channel using a syringe pump, and at the bend droplets will

rearrange due to the change in direction. There are eight data sets ranging in area fraction

φ = 0.881− 0.956, where the jamming point is φc ∼ 0.86 (see Chapter 6.3). The size ratio

of big droplets to small droplets is 1.28 ± 0.01 and the number ratio of big droplets to small

droplets is 0.65 ± 0.05. The diameters of the small droplets are 171 µm with polydispersity

4.4% and the diameters of the big droplets are 218 µm with 5.2% polydispersity, where the

polydispersity is defined as the ratio of the standard deviation in droplet diameters to the

mean droplet diameter. The average particle diameter is 〈d〉 = 188 µm. Droplets are driven

through the channel at an average speed of ∼ 3.5 particle diameters per minute, and for

each data set and between the data sets the average velocity fluctuates by ∼ 0.5 particle

diameters per minute. Each sample is imaged at a frame rate of 2 frames/second over a
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duration of ∼ 20 minutes.

7.2 Droplet-Droplet Forces and Viscous Forces

There are three possible forces acting on each droplet as shown in Fig. 7.2. There is a

repulsive force f c
ij between the two particles i and j in contact, a viscous drag force fdw on

droplets from the two glass microscope slides, and a viscous drag fdd as one droplet slides

past another droplet. To properly characterize the stress around rearranging droplets we

must quantify each of these forces. The analysis in this section will be on each of these

forces for a single data set at φ = 0.93. The analysis still needs to be repeated for the other

data sets to check for consistency in the results. Although a priori, we may expect fdw to

be independent of φ, since the contacting interface between the droplets and the glass slides

should not change much with φ. However, fdd may depend on φ, since the interfacial area

between droplets in contact will change with φ.

The repulsive force f c
ij is found for each pair of droplets i and j in contact using the

methods discussed in Chapters 4, 5, and 6. These forces can be computed using the curva-

tures and the contact length of droplets in contact. In pure shear experiments on granular

materials using photoelastic disks, it was shown that large forces tend to be linear forming

chain like structures [155]. Pure shear is a process where a sample is slowly compressed

in one direction, while simultaneously expanded in the orthogonal direction such that the

area of the sample remains fixed. In the granular pure shear experiments, it was also found

that the force chains align along the compression direction. The flow geometry used in this

study was chosen since it is analogous to pure shear and will result in force chains aligning

with the vertical direction. Force chains are known to provide a sample with mechanical

rigidity by resisting flow and are thought to be related to many other bulk material prop-

erties [23, 260, 261, 264]. By establishing a preferred direction for the force chains in our

samples it will make it easier to spot any trends in droplet motion relative to the force

chain direction. Using our algorithm to compute contact forces and using our definition of

a force chain presented in Chapter 6.7, we show in Fig. 7.1 the force chain structure for a

snapshot in time of our φ = 0.93 data set. We see that the forces chains tend to align with
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Figure 7.2: (a) The image shows two droplets sliding past each other. One droplet is
moving with velocity vi and the other with velocity vj . There is a repulsive contact force
f c
ij between the droplets and a viscosity force fdd that depends on the velocity difference of
the two droplets. (b) The image shows a droplet moving with velocity v between two glass
slides. As the droplet slides past the glass, there is a velocity dependent viscous friction
force fdw/2 on each wall. This gives a total friction force of fdw on the droplet.

the vertical direction. Other images were also inspected to ensure that the forces chains are

on average aligned along the vertical direction, but a more quantitative analysis is needed.

The second force we quantify is the viscous force fdw which is exerted on a droplet as it

slides past the two glass microscope slides. This force will depend on the velocity vi of the

droplet, and can be deduced using Newton’s 2nd Law. Since our system is in steady state,

the long time average of the sum of the forces on each droplet must be zero. In this analysis,

we will ignore the other viscous force fdd, and we will determine fdw by considering the net

force on each droplet along the direction of motion v̂i of the droplet. We will assume that

the viscous drag force fdd is randomly distributed about v̂i, and therefore, the contribution

of fdd from all contacts to the net force along v̂i is zero. More analysis is needed to verify

this assumption, but we can still learn to first order the magnitude of the drag forces. As

we will show, these drag forces are small enough to ignore, and currently more sophisticated

analysis is not needed. We start our analysis by considering the net force on each droplet

which can be written as
∑

j
0f c
ij − fdw(vi)v̂i = 0, where the left term is the sum of the

repulsive forces f c
ij on each droplet and the right term is the viscous force on droplet i with

magnitude fbw(vi) pointing in the opposite direction of v̂i. Here v̂i is a unit vector pointing

in the direction of motion of droplet i. In the net force equation, fdw(vi) is collinear to the

motion of the droplet and only contributes to the net force along the direction vi. Therefore,

to deduce fdw(vi) we only need to consider the net force along the direction v̂i. To consider

the net force along this direction, we take the dot product of the net force equation with v̂i,
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and then rearrange the terms to have a new equation (
∑

j
0f c
ij) · v̂i = fdw(vi). To determine

fdw(vi), we plot in Fig. 7.3(a) the average of (
∑

j
0f c
ij) · v̂i for all droplets at all times with

roughly the same velocities. We have rescaled the y-axis by the average repulsive force to

illustrate how the magnitude of fdw(vi) compares to the average repulsive force. The figure

shows that (
∑

j
0f c
ij) · v̂i increases linearly with velocity, where velocity is measured in units

of particle diameters per minute. At most we find that the friction from the glass plate is

0.4% of the repulsive force and is on average 2% of the repulsive force. We fit the data to

a line to obtain the expression

fdw(vi) = (6.72× 10−4µN/(〈d〉/min))vi + 1.13× 10−5µN. (7.1)

In the figure, the fit is shown as the red dashed line, and we see that the data agrees well with

the fit. The fit has a slight y-intercept, but this y-intercept is small and only 0.0001〈f c
ij〉,

where 〈f c
ij〉 is mean repulsive force acting on all the droplets. Recall, that these droplets

have a yield force to flow (see Chapter 5.3), and that the microscope has been inclined to an

angle of 4.5◦ to offset this yield force. The small y-intercept in the above equation indicates

that the sample was inclined to the appropriate angle.

The third force we compute is the viscous force fdd which arises when one droplet

slides past another droplet. This force will depend on the velocity difference ∆vij,â (see

Fig. 7.3(d) for a definition of ∆vij,â). Similar to the above analysis, fdd(∆vij,â) can be

determined using Newton’s 2nd Law, where the sum of the forces on droplet i is fbw(vi)v̂i+
∑

j
0f c
ij −

∑
jfdd(∆vij,â)âij = 0. In the equation, the first term is the viscous force from the

glass plate on droplet i which we know from Eqn. 7.1, the second term is the net repulsive

force exerted on droplet i by its neighbors, and the last term is the net viscous drag forces

exerted on droplet i by its neighbors. To simplify the net force equation, we define two new

variables 0F (glass,rep)
net = fbw(vi)v̂i +

∑
j
0f c
ij and 0F dd

net =
∑

jfdd(∆vij,â)âij . Using these new

variables we can rewrite Newton’s 2nd Law for each droplet as 0F (glass,rep)
net = 0F dd

net. Similar

to before, we can make the net force vector equation into a scalar equation by taking a dot

product of both sides with F̂ dd
net giving 0F (glass,rep)

net · F̂ dd
net = 0F dd

net · F̂ dd
net, where F̂ dd

net is a unit

vector in the direction of 0F dd
net. However, unlike before, the direction of F̂ dd

net is unknown



139

  

! 

! 
v 

i
" ˆ v 

i
 [ d /minute]

  

! 

! 
f net

(glass,rep )
" ˆ f net

dd
 [µN]

! 

(" j f ij

c
) # ˆ v i/ f ij

c

! 

fij
viscous

/ f ij
c

! 

P

  

! 

! 
f net

dd
" ˆ f net

dd
 [µN]

(a) 

(c) (d) 

! 

ˆ a 

  

! 

! 
v 

i

  

! 

! 
v j

  

! 

v
j, ˆ a 

=
! 
v j " ˆ a 

  

! 

v
i, ˆ a 

=
! 
v 

i
" ˆ a 

! 

"v
ij, ˆ a 

= v
i, ˆ a 
# v

j, ˆ a 

(b) 

Figure 7.3: (a) Plot of the average net repulsive force on a droplet traveling with velocity
vi, where the data has been normalized by the mean repulsive 〈fijc〉. The red dashed line
is a linear fit to the data, and the error bars in the data are significantly smaller than
the diameter of the data points. (b) Two droplets are shown moving with velocity 0vi and
0vj . The vector â is defined to be parallel to the contact such that 0vi · â > 0. (c) Plot
demonstrating how well force balance on a droplet is satisfied when assuming a viscous
force law between droplets of fdd = b∆v1.5ij . If the assumed force law is correct, then the
data will fall along a line of slope 1. The red dashed line has a slope of 1. (d) Probability
distribution to find a contact with a ratio of viscous force fviscous

ij to repulsive force f c
ij .

and will depend on the magnitude of fdd(∆vij,â) at each contact. Therefore, to determine

fdd(∆vij,â) we guess different functional forms until we find one that reasonably satisfies

the previous scalar equation. We find

fdd(∆vij,â) = b∆v1.5ij,â (7.2)

can adequately satisfy the scalar force balance equation, where b = 5.97×10−5 µN/(〈d〉/min)1.5.

In Fig. 7.3(b) we plot the data on the average value of 0F (glass,rep)
net · F̂ dd

net for droplets with

different values of 0F dd
net · F̂ dd

net. If the correct function for fdd(∆vij,â) was chosen, then the
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data in this figure would fall along a straight line with slope 1. The data falls along this line,

but there is some variations in the data. A better function could be chosen for fdd(∆vij,â)

to get the data in Fig. 7.3(b) to be more linear, but as we will show, the magnitude of the

viscous force is so small that it can be neglected. Therefore, the effort to determine the

exact form is not necessary.

Using Eqn. 7.2, we can compute the magnitude of the viscous force f (viscous)
ij for each

pair of droplets in contact and compare it to the repulsive forces f c
ij . In Fig. 7.3(c), we

plot the probability distribution to find the ratio of the viscous force to the repulsive force

at each contact. First we note that 96% of the contacts have a viscous force less than

0.1% of the repulsive force, and second, the mean of f (viscous)
ij /f c

ij is 0.0002. Therefore, in

comparison to the repulsive forces, the viscous force can be considered small enough to be

neglected. Even though we did not have the best possible function describing fdd(∆vij,â),

improving on the exact functional form would not have much effect of the distribution seen

in Fig. 7.3(c).

7.3 Determining When Plastic Events Occur

In prior studies, plastic events have traditionally been defined as a loss of contact between

neighboring droplets. Two examples are shown in Fig. 7.4(b) and (c), where a contact

breaks. However, there are two other types of structural changes that can take place which

we show in Fig. 7.4(d) and (e). In the first example, no contact is broken or formed, but two

droplets move closer together while the other two move apart. In the second example, no

contact is broken, but two droplets move apart, while the other two form a contact. Clearly,

the size of the structural changes in the four examples in Fig. 7.4(b)-(e) are different, but

topologically these four examples involve a structural change. In this section, we present a

looser definition for a plastic event based on topology that captures the four examples in

Fig. 7.4(b)-(e) and a deformation parameter to characterize the size of the structural change

associated with a plastic event. An advantage of this deformation parameter is that it can

be used to define the size and duration of a plastic event. We also note, that in this section

we only discuss the position and rearrangement of droplets, and not the forces acting on
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the droplets.

We define a plastic event to be any structural change that leads to an altering in the

Delaunay triangulation. The Delaunay triangulation is a tessellation of the entire space

into triangles, where the triangulation provides a precise definition for which droplets are

neighbors based on the topology or position and diameters of the droplets. In Fig. 7.4(a),

we show the Delaunay triangulation as the green lines at different times for our φ = 0.93

sample. The red lines in the figure indicate the pair of droplets where the Delaunay network

will change. At t = 0 one of the red bonds is broken and a new red bond is formed as two

droplets move towards each other and become neighbors. We see in the figure that when

a bond is broken there are two triangles in the Delaunay network that are destroyed. A

constraint of the Delaunay network is that the space must be tiled with triangles, and

therefore, the destruction of two triangles leads to two new triangles. A refined definition

of a plastic event is any grouping of four droplets involved in the altering of the Delaunay

network.

To characterize the size of the plastic event we adapt the deformation parameter intro-

duced by Utter and Behringer to characterize shear transformation zones, where a larger

deformation parameter indicates a larger structural change [185]. The deformation param-

eter of Utter and Behringer characterizes the change in shape of a grouping of particles.

Here shape refers to the shape formed by the centers of the particles and not the shape

of individual particles. In our case, a plastic event involves four droplets and the shape

formed by these four droplets is a diamond. In Fig. 7.5, we show the variables defining

the local deformation parameter. At some time t − tw/2, the center of mass of the four

droplets constituent a diamond shape illustrated as the green lines. A little time tw later,

the center of mass of the droplets have moved and potentially the shape of the diamond

has changed as well. At each time a bond length lAB, l′AB, lCD, and l′CD can be defined.

The strain in each bond length over the time period tw is εAB = (lAB − l′AB)/lAB and

εCD = (lCD − l′CD)/lCD. Using Utter and Behringer’s definition, the deformation parame-

ter is defined as D = |εAB − εCD| = |lAB/l′AB − lCD/l′CD|. One issue with this parameter is

that it is not time symmetric. To make our expression for the deformation parameter time
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Figure 7.4: (a) Delaunay network at different times, where the green lines indicate neighbors
defined by the Delaunay triangulation. The red lines show four droplets involved in a change
of neighbors. (b), (c), (d), and (e) are various examples of Delaunay neighbor changes with
various amounts of structure change. (b) involves a neighbor change with a contact breaking
and no new contact forming. (c) involves a neighbor change where a contact breaks and
forms. (d) involves a neighbor change with no contacts breaking and forming. (e) involves a
neighbor change with a contact not breaking and a new contact forming. The deformation
parameter for the four examples are D = 1.04 for (b), D = 1.15 for (c), D = 0.29 for (d),
and D = 0.89 for (e).

symmetric, we introduce logarithms in the following manner

D(t, tw) =

∣∣∣∣ln
(
lAB

l′AB

)
− ln

(
lCD

l′CD

)∣∣∣∣ . (7.3)

With this definition, if the shape of the diamond does not change during a plastic event

then D = 0, but if it does change D > 0. For instance, if the diamond shape undergoes a

pure dilation or compression D = 0, since lAB/l′AB = lCD/l′CD. However, if droplets A and

B move apart and C and D move together, then D > 0, since lAB/l′AB > lCD/l′CD. The

more A and B move apart and the more C and D move together the larger D.

By investigating the deformation parameter with time for a plastic event, the duration
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Figure 7.5: A structural change is defined by the relative motion of four neighbors. The
centers of these neighbors produce a diamond shape characterizing the structure of the
neighbors. To quantify the change in structure of the diamond we use the bond lengths lAB

and lCD at two points in time. The deformation parameter for this example is D = 0.90.

time of the event can easily be determined. In Fig. 7.6(a), we show D as a function of

time for a plastic event in our φ = 0.93 sample. To compute D we used a time window of

tw = 0.5td, where tw is measured in the time td it takes for the rearranging droplets to move

a droplet diameter. The data shows two humps in the figure, where there is a slight change

in the structure at t ∼ −12 seconds and a larger structural change around t ∼ 0. The

peak defines the origin of the plastic event and the width of the larger structural change

defines the duration of the event. For this particular group of droplets, the duration of the

plastic event is roughly 10 seconds, where this duration time measures the time over which

the droplets are physically moving. In this work, we do not investigate smaller structural

changes immediately next to large structural changes. We only consider the dynamics of

the stress centered in time around the large hump. We also note that smaller secondary

peaks before and after a plastic event are not consistently reproduced between events.

Using D(t, tw) for all plastic events, an average duration time τpl can be determined for

each sample. τpl can also be viewed as an average structural relaxation time since it measures

the average time it takes droplets to transition between two configurations. To determine

τpl we start by normalizing each D(t, tw) by the maximum deformation D(t = 0, tw). Then

we average all deformation curves D(t, tw)/D(t = 0, tw) together. In Fig. 7.6(b), we plot

the average D(t, tw)/D(t = 0, tw) curve for all plastic events for our φ = 0.93 sample. The
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Figure 7.6: (a)D with time for a single plastic event, where the maximum inD defines t = 0.
To compute D(t) a time window of tw = 0.5td is used. (b) The average 〈D/Dt=0〉pl for all
plastic events is plotted against time, where D(t) for a single plastic event is normalized by
the peak D(t = 0) before taking an averaging over all plastic events. The data is shown for
different tw and the black dashed lines are gaussian fits to the data with standard deviation
λ. tw is in units of td. (c) The dependence of 2λ on tw is shown as the black data points.
The red dashed line is a linear fit with y-intercept of τpl = 3.23 seconds. (d) Dependence
of the duration time τpl with area fraction.

data show a center peak around t = 0 and the width of the central peak increases with tw.

The peak is wider with larger tw because using a larger time window coarse grains the data

causing it to be smoothed out. Ideally, the best measure of the deformation parameter is

in the limit tw tends to zero, since this would give an instantaneous measure of D(t). To

determine the average duration time in the limit tw tends to zero, we start by fitting the

central peak in each D(t, tw)/D(t = 0, tw) curve to a Gaussian with standard deviation λ.

For each D(t, tw)/D(t = 0, tw) we define the average duration time as 2λ. In Fig. 7.6(c),

we plot the average duration time 2λ as a function of tw. 2λ has a linear dependence on tw,

and to extrapolate to the tw → 0 limit we fit the data to a line. The fit gives an x-intercept

of τpl = 3.23 seconds.

We repeat the analysis to determine τpl for all our other data sets and the results are

shown in Fig. 7.6(d). We see τpl decreases by about a factor of 2 with increasing area
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fraction. This indicates that the average time it takes for droplets to transition between

configurations decreases with area fraction. Since packings at higher area fractions are under

more stress and have little space for voids during rearrangements, it seems reasonable that

droplets will transition between configurations quicker.

For our samples, the channel width is ∼ 20 particle diameters and the average flow

rate is ∼ 3.5 particle diameters per minute giving a strain rate γ̇ ∼ 0.2 1/min. From

the strain rate we can define a time scale tγ = 1/γ̇ ∼ 300 seconds as the time it takes

for the sample to strain by 1. Microscopically, this time scale quantifies the time it takes

for one droplet to slide past a neighboring droplet it the motion of the droplets followed

the superimposed strain. The ratio of the two time scales gives tpl/tγ̇ ∼ 0.01, indicating

that droplets rearrange much faster than the superimposed strain. Since droplets rearrange

much faster than required by the flow rate, this implies that the system may be quasi-

static and that the external flow is not superimposing secondary effects on the behavior

of individual rearrangements. To confirm that the system is quasi-static, we will need to

perform experiments to test if the results are the same at different flow rates .

7.4 Stress Tensor

The stress acting on a 2D body can be written as a 2×2 tensor σ. The diagonal terms

σxx and σyy are the pressure on the body in the x and y-directions respectively. The off

diagonal terms σxy and σyx are the shear stress in the x and y-directions respectively. Note

that in 2D the stress is force per unit length and not force per unit area. The stress tensor

for a 2D body can be computed directly by knowing the forces acting on the boundary.

However, the stress tensor can also be computed using the internal forces, as is the case

with our data where the individual contact forces are known. For a sample of size Asystem

the stress can be computed from the internal forces using the expression

σ =
∑

i

σ̂i/Asystem (7.4)

σ̂i =
∑

j

0r c
ij ⊗ 0f c

ij , (7.5)
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where σ̂i is defined as the force moment tensor of a droplet, 0r c
ij is a vector from the center

of droplet i to contact ij, 0f c
ij is the repulsive force at the contact, and ⊗ is an outer

product [22, 279, 285]. Asystem is the area occupied by the i droplets the sum is performed

over in the top expression. In the bottom expression, the force moment tensor quantifies

the contribution of the forces acting on a droplet to the stress tensor. By observing changes

in the force moment tensor for droplets undergoing rearrangements, we can understand how

the macroscopic stress is influenced by rearranging droplets.

In pure shear, which our system is analogous to, the sample is compressed in one di-

rection and expansed in the other direction such that the area of the sample remains fixed.

In such an experiment, there are only two body forces. One body force is along the com-

pression direction, and this force is responsible for compressing the sample. The second

body force is along the expansion direction, and this force is responsible for maintaining

constant area. When computing the stress tensor using a coordinate system aligned with

the compression and expansion directions, these two body forces only contribute to the

pressure term, and therefore, the shear stress or off diagonal components of σ are zero.

By rotating the coordinate system by 45◦ the shear stress or off diagonal components of σ

are maximal. This rotated coordinate system defines the shear direction for a pure shear

experiment. In our flow geometry (see Fig. 7.1), the compression direction is the y-axis

and the expansion direction is the x-axis. Since our setup is not identical to pure shear,

we may expect the shear direction to be slightly different than 45◦ to the vertical direction

(compression direction). To determine the shear direction in our setup, we first compute the

stress tensor in an arbitrary coordinate system. Then we diagonalize σ to find the principle

coordinate directions associated with pure shear. We find that this direction is roughly 1.5◦

± 1◦ relative to the lab frame for all samples. By rotating the principle coordinate system

by 45◦ this establishes the shear direction. We define the off diagonal term of σ̂i in the shear

direction as Γi. In this work, we are interested in understanding how the contribution of

individual particles to the shear stress of the system evolves with time. This only requires

studying the evolution of Γi. Note that Γi/Ai is the actual stress on droplet i, where Ai

is the Voronoi area around a droplet [148]. Therefore, we can treat Γi as analogous to the

stress on droplet i, however, we do not use Γi/Ai since
∑

i Γi/Ai 0=
∑

i σ̂i/Asystem.
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7.5 Evolution of Stress Around Plastic Event

In this section, we discuss the average stress build up and relaxation in the vicinity of a

plastic event. We start by apply our definition in Sec. 7.3 to identify all plastic events in

each sample, and we find roughly 500 plastic events for each sample. To determine the size

of each plastic event we use D(t = 0, tw = 0.5td). In Fig. 7.7(a), we show the distribution

in D(t = 0, tw = 0.5td) for our φ = 0.93. D(t = 0, tw = 0.5td) is broadly distributed with a

peak around 0.4. To restrict the analysis in this section to plastic events undergoing larger

structural changes we only consider those events with D(t = 0, tw = 0.5td) > 0.4 for all

samples. This gives roughly 300 plastic events for each sample.

During a plastic event the stress on the rearranging droplets and their neighboring

droplets are expected to change. To characterize this change, we investigate the average

dependence of Γ with time t in the vicinity of the plastic event. As in Sec. 7.3, t = 0 defines

the midpoint in time when the droplets are rearranging and tpl defines the average duration

time droplets take to rearrange. To understand the spatial spreading of Γ(t) around a

plastic event, we bin the space into rings of width 0.5〈d〉 at distances ∆R to the center of

the plastic event. See Fig. 7.7(b) for a diagram defining each bin. At each time and each

spatial bin, there are n∆R,t droplets, and the average force moment within one of these bins

is Γ∆R,t = (
∑

k Γk)/n∆R,t, where the average is over all droplets k within bin ∆R at time

t. We also define the average force moment for all the droplets within td before and after a

plastic event as Γall.

In Fig. 7.7(c) and (d), we plot the average stress build up and relaxation for all plastic

events for our φ = 0.93 sample. Since there is a natural asymmetry in the plastic event

with two of the droplets coming closer together and the other two droplets moving farther

apart, the data is divided along two axes. We may expect the evolution of the stress near

the expanding droplets to be different than near the compressing droplets. In each plot, the

average behavior is computed by first determining the temporal and spatial dependence of

Γ∆R,t/Γall for each plastic event, and then averaging Γ∆R,t/Γall over all plastic events. To

compare the stress build up and relaxation to the motion of the droplets, time t has been nor-

malized by τpl. Therefore, t/τpl = −0.5 indicates when droplets start moving/rearranging



148

! 

" #R

" all pl

$1

! 

t /" pl

(c) 

! 

t /" pl

(d) 

Compression 

Axes 

Compression 

Axes 

!"

(b) 

! 

"R

! 

P

! 

D(t = 0,t
w

= 0.5t
v
)

(a) 

Figure 7.7: (a) Distribution in the size of plastic events for our φ = 0.93 sample. (b) In the
left image ∆R is defined as the distance from the plastic event, where the four rearranging
droplets are marked with black dots. The center of mass of those four droplets is marked
with an asterisks. Each ring around the center of the droplets indicates a bin where the
average stress is computed, and the colors correspond to the curves shown in the other plots.
The right illustrations demonstrates how the droplets move. Two droplets move towards
each other and two move away from each other. Using these two directions of motion, the
space is broken into 4 quadrants. (c) The average stress for all plastic events along the
compression axes. (d) The average stress for all plastic events along the expansion axes.

on average and t/τpl = 0.5 indicates when droplets stop moving/rearranging on average.

In Fig. 7.7(c), we show the average stress for all the plastic events as a function of

time along the compression axes for different distances to the plastic event. The data

show that before the droplets start to rearrange the stress builds for all ∆R, where the

largest ∆R = 5〈d〉. Around t/τpl = −1, the stress starts to relax, where the relaxation

begins first for the droplets constituting the plastic event. At each subsequent distance, the

stress begins relaxing at slightly different times, indicating a propagating stress relaxation.

At larger distances, the stress slowly relaxes to the sample’s mean stress. However, at

∆R = 1〈d〉, the stress relaxes far below the sample’s mean stress and quickly recovers.
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Figure 7.8: (a) is the compression direction and (b) is the expanding direction. The data
in both plots show the stress in the vicinity of a plastic event immediately before a plastic
event and immediately after a plastic event. The time immediately before a plastic events is
defined as t/τpl = −1 and the time immediately after a plastic event is defined as t/τpl = 1.
Both plots include data for samples at different φ. The legends in (a) and (b) apply to both
plots.

In Fig. 7.7(d), we plot the average stress for all the plastic events as a function of time

along the expanding axes for different distances to the plastic event. Similar to the com-

pression direction, the data show a stress build up before the particles rearrange. Although,

unlike the compression direction, the stress build up for smaller ∆R is much quicker and

is slightly larger. Similar to the compression direction, the stress starts to relax around

t/τpl = −1 for all ∆R. The recovery of the stress at ∆R = 1〈d〉 is longer than the the stress

recovery in the compression direction. The data also show that before the plastic event

there is more stress in the expanding direction.

To elucidate the spatial dependence of the stress build and relaxation, we show in

Fig. 7.8(a) and (b) the stress as a function of ∆R for both the compression and expansion

axes immediately before the plastic event and immediately after the plastic event. Since

the stress is maximum around t/τ = −1 and minimum around t/τ = 1 we define the time

immediately before the plastic event as t/τpl = −1 and the time immediately after the

plastic event as t/τpl = 1. Right before the plastic event, we see that the stress in both the

compression and expansion axes are roughly the same and decay with distance from the

center of the event. We have included data for different φ, and the data show no trend in

φ. Immediately after the plastic event, the stress increases with distance, converging to the

mean stress at larger ∆R. Likewise, the data immediately after the plastic event show no
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Figure 7.9: Length scale for stress decay with distance to plastic event immediately before
the event and after the event. (a) is the length scale along the compression axis and (b) is
the length scale along the expansion axis. The time immediately before a plastic events is
defined as t/τpl = −1 and the time immediately after a plastic event is defined as t/τpl = 1.
We estimate an uncertainty of ∼ 0.5 particle diameters in ξ.

trend in φ.

The data in Fig. 7.8 indicate a spatial spreading in the stress during a plastic event.

Since there is no conclusive theory to describe how the stress should decay, we avoid fitting

the data to an empirical function to obtain a length scale and instead use

ξ =
2
∫∞
0 x[f(x)− f(x → ∞)]2dx∫∞
0 [f(x)− f(x → ∞)]2dx

(7.6)

which characterizes the decay in the stress with distance from the center of the plastic

event. In the expression, x = ∆R and f = 〈Γ∆R,t/Γall〉pl − 1. This function was introduced

as Eqn. 3.2 in Chapter 3.3 to characterize boundary effects in our confinement work. For

simple exponential decay, f(z) = Ae(−z/λ), Eqn (7.6) gives the appropriate length scale of

ξ = λ.

In Fig. 7.9(a) and (b) we show the ξ for our different samples immediately before and

after the plastic event along the expansion and compression axis. The length scale is roughly

3− 4.5 particle diameters with no dependence on φ. In the work of Goyon et al. [37], they

observed for microchannel flow a length scale of 0 − 6 particle diameters, where ξ was

obtained indirectly by fitting the average stress and velocity profile. In their work, they

observed an φ dependence, where ξ increased with volume fraction and was 0 particle
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diameters at the jamming point. For reasons we do not understand, we have not observed

an area fraction dependence.

7.6 Conclusion

In this chapter, we have provided a new insight into the evolution of the stress in the vicinity

of a plastic event. We have introduced a deformation parameter to precisely define the size,

location in time, and duration of a plastic event. Analyzing the larger plastic events, we

have shown that particle rearrangements are driven by an asymmetric process involving a

compression and expansion mode. Right before droplets undergo a plastic rearrangement,

the stress increases significantly and extends 4 particle diameters from the center of the

plastic event. Once the rearrangement occurs, the stress drops precipitately by a factor of

3 in both directions. The stress recovery in the expansion direction is slow taking a time

scale of 4τpl while in the compression direction the stress recovery is much quicker.

In the Bocquet et al. model, an essential aspect of the model is a flow cooperativity

length scale ξ characterizing “how the plastic activity spreads spatially over the system

due to non-local elastic relaxation” [40]. Clearly in our data we see a stress build up and

relaxation that spreads roughly four particle diameters from the center of a plastic event,

and is solely the result of an elastic response. In the work of Goyon, where this length scale

was measured indirectly by fitting average stress and velocities profiles predicted by the

Bocquet et al. model, they found length scales on the order of ξ ∼ 0 - 6 particle diameters.

They found the length scale to depend on volume fraction, where at the jamming point

ξ = 0 and near a volume fraction 1 they found ξ ∼ 5 particle diameters. In our work, we

do not see a trend in the length scale with φ, but our length scale is within the length scale

observed by Goyon. Even though we see no trend in φ, we have confirmed the hypothesis

of a flow cooperativity length scale. Our results stand as an important step in developing

a quantitative and conceptual understanding for the evolution of the stress near a plastic

event.
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Chapter 8

Summary

Soft materials are well suited for a variety of applications because their mechanical response

is an intermediate between a solid and a liquid. For instance, shaving cream is useful because

it easily spreads onto the face like a liquid, but once applied, it’s solid enough to hold to

the face. Likewise, peanut butter easily spreads onto bread, but doesn’t run off. Similar

reasons apply to the use of toothpaste, cosmetic products, paints, plasters, drilling fluids,

and firefighting agents to name a few others. By controlling the degree of the solid like

and liquid like response, a soft material can be tuned for a particular application, and

understanding the origins of this mixed solid and liquid like response is very important

for designing soft materials to be useful in our everyday experience. In addition to the

industrial applications, soft materials pose rich and difficult scientific questions such as the

nature of the jamming transition which was the topic of this dissertation.

Changing the particle concentration is the simplest approach to tune the response of

a soft material from behaving more liquid like to behaving more solid like. By increasing

the particle concentration, the system can undergo a jamming transition, where motion

of the individual particles becomes increasingly difficult because of crowding effects. This

jamming transition can occur in a variety of materials composed of discrete particles such

as colloids, granular materials, emulsions, and foams. At first glance, materials like colloids,

granular materials, emulsions, and foams may seem vastly different, but under the umbrella

of jamming, the physics of these materials can be linked to a singular concept, the crowding

of particles.
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In this dissertation, we studied this crowding effect in a wide range of scenarios that

include colloids, packing of disks and spheres into small spaces, static emulsion packings, and

the flow of emulsions. We found many trends in the scaling of microscopic parameters with

particle concentration that confirm existing models. We found that boundaries can alter the

structure of soft materials and shift the jamming transition to lower particle concentrations.

Most importantly, we introduced a new model system to study the internal forces within a

soft material, and using this model system, we verified a hypothesis that there is a spatial

cooperative length scale for stress relaxation.

In our colloidal studies, we applied an analytic tool χ4, commonly used to characterize

the dynamical heterogeneity of molecules in molecular glass formers, to quantify the dynam-

ical heterogeneity as the particle concentration increases. Empirical and theoretical models

predict for colloidal systems a divergence in the dynamical heterogeneity with increasing

concentration. Verifying which models correctly predict the dynamical heterogeneity can

elucidate if the properties of dense colloids are completely governed by a jamming transi-

tion or by an analogous glass transition. Using our measurements, we tested two models,

however, we were unable to conclusively show which model is better, and if the growing

dynamical heterogeneity is governed solely by a jamming transition. Both models capture

and predict the time and length scales associated with dynamical heterogeneity, and fitting

our data to the models gave fitting parameters that agreed well to derived fitting values.

In our confinement studies, we investigated how boundaries alter the packing of hard

disks and spheres to learn how boundaries affect the microstructure of real soft materials.

Knowing the structure of soft materials is very important for understanding many bulk

characteristics such as their rheological response, hydrostatics, mass and energy transport,

sonic transmission, electrical properties, and optical properties. In molecular, colloidal, and

granular systems, as a material is confined the internal dynamics and structure are modified

leading to changes in many material properties. If we want to understand how confinement

alters the behavior of soft materials, it is essential to understand how confinement alters

the internal structure. To first order, we modeled the structure of soft materials using disks

in 2D and spheres in 3D. We found that the boundaries can alter how particles pack near

the walls and that the jamming transition is shifted to lower particle concentrations with
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increasing confinement. We also presented and verified a model predicting how boundaries

shift the jamming point to lower particle concentrations. Another important aspect of this

work relates to how one studies packing in general. How big does an experiment need to be

before confinement effects are important, and how far do perturbation in the packing extend

from the wall? We found that the boundaries have a pronounced effect on the packing up to

4 particle diameters from the boundary. Therefore, if one wishes to conduct an experiment

where boundary effects are less important, the system must be at least 8 particle diameters

wide and the properties of the system must be quantified using particles at least 4 particle

diameters away from the boundary.

For our last two experiments we introduced a new model system to study the jamming

behavior and flow properties of deformable 2D emulsion droplets. We also introduced a

method to determine the repulsive forces between droplets in contact and the viscous drag

force between droplets. The advantage of our system is that the position of the particles and

forces are known, we can easily tune the droplet size to create monodisperse, bidisperse, and

polydisperse packings, it’s cheap, and there is no static friction between droplets. Therefore,

we can apply our model system to easily probe various jamming properties related to forces,

polydispersity, and friction.

For static systems composed of frictionless disks or spheres, the jamming transition

is expected to obey many critical scaling relationships analogous to a true phase transi-

tion. Experimentally, many of these critical scaling relationships have not been tested for

frictionless particles. Taking advantage of the fact that our system has no static friction

between droplets, we used our new model system to verify these critical scaling laws. Also

an important property of soft matter systems is the formation of force chains since they are

thought to provide mechanical rigidity, and therefore, it is highly valuable to have a model

that can accurately predict the statistics of these force chains. Using our model system, we

also quantified the force chains in our static experiments, and verified the assumptions of a

model that can accurately predict the statistics of force chains using physical principles.

Using our model system we also explored the quasi-static flow of our 2D deformable

droplets. In general, the flow of soft matter is the result of microscopic events taking place

at the grain scale. To elucidate the physics of these microscopic events, we used our 2D
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model system to explore the local stresses acting on groups of particles rearranging. Our

results are preliminary, but we have found that before a group of droplets rearrange there

is a large build up of stress, and that this stress is quickly dissipated when these droplets

rearrange. We find that the stress build up is spatially spread out over a cooperativity

length scale, and that this length scale is on the order of 4 particle diameters independent

of droplet concentration. This observation is in contrast to a model that predicts a spatial

cooperativity length scale that grows with area fraction. Currently it is not understood why

the length scale in our data is independent of droplet concentration, but nonetheless, our

results are beginning to illuminate the physical aspects of the stress build up and relaxation

of microscopic events in soft materials.
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