

Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the requirements for an advanced
degree from Emory University, I hereby grant to Emory University and its agents the non-exclusive
license to archive, make accessible, and display my thesis or dissertation in whole or in part in all
forms of media, now or hereafter known, including display on the world wide web. I understand
that I may select some access restrictions as part of the online submission of this thesis or
dissertation. I retain all ownership rights to the copyright of the thesis or dissertation. I also retain
the right to use in future works (such as articles or books) all or part of this thesis or dissertation.

Signature:

Name Date

Docusign Envelope ID: 46E3AF9D-626C-4053-936A-7BAB73E50277

4/21/2025 | 1:37 PM EDTVishwanath Seshagiri

The Whole Nine-nine Yard: Observability For The Observers

By
Vishwanath Seshagiri
Doctor of Philosophy

Computer Science and Informatics

Dr. Andreas Züfle
Advisor

Dr. Joon-Seok Kim
Committee Member

Dr. Ymir Vigfusson
Committee Member

Dr. Avani Wildani
Committee Member

Dr. Irene Zhang
Committee Member

Accepted:

Dr. Kimberly Jacob Arriola, PhD
Dean of the James T. Laney School of Graduate Studies

April 10, 2025

Date

The Whole Nine-nine Yard: Observability For The Observers

By

Vishwanath Seshagiri

Advisor: Dr. Andreas Züfle

An abstract of
A dissertation submitted to the Faculty of the

James T. Laney School of Graduate Studies of Emory University
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in Computer Science and Informatics

2025

Abstract

The Whole Nine-nine Yard: Observability For The Observers
By Vishwanath Seshagiri

The rapid adoption of microservice architectures in modern cloud computing has
exposed critical limitations in traditional performance measurement methodologies and
observability tools. This work demonstrates how the separation of development and
operational responsibilities in modern enterprises renders conventional observability
tools inadequate to modern software engineering workflows. We present a three-
pronged approach to bridge this gap: First, through systematic characterization of
industrial microservice deployments revealing critical design choice disparities with
academic testbeds. Second, via the development of NL2QL a novel natural language
interface and curated dataset that enables precise log query generation through fine-
tuned language models, achieving up to 75% improvement in accuracy. Finally, by
developing Sauron, a semantic search engine leveraging vector embeddings and
retrieval-augmented generation to overcome terminology inconsistencies in log analysis,
demonstrating 46.7-116.7% improvement in search relevance metrics.

This work establishes that next-generation observability tools must account for both
technical complexity and human factors in distributed systems. By combining domain-
specific language model fine-tuning with semantic search architectures, we show how to
democratize access to observability data to be used beyond traditional logging use cases.
The thesis contributes practical frameworks for performance analysis in microservice
environments and provides empirical evidence that closing the academia-industry
divide requires tooling adaptations mirroring real-world organizational structures and
developer workflows.

The Whole Nine-nine Yard: Observability For The Observers

By

Vishwanath Seshagiri

Advisor: Dr. Andreas Züfle

A dissertation submitted to the Faculty of the
Emory College of Arts and Sciences of Emory University
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in Computer Science and Informatics

2025

Acknowledgments

I extend my deepest gratitude to my parents and brother, whose unwavering

support has enabled me to pursue my goals and passions. Without their relentless

encouragement and belief in me, this dissertation would not have been possible.

As they say, it takes a village to raise a child – similarly, this dissertation represents

the collective effort of the academic community at Emory that nurtured my research

journey. First and foremost, I am profoundly grateful to my committee members:

Andreas, Avani, Irene, Joon, Nosayba, and Ymir. They have been pillars of strength

throughout this process, offering guidance not only on research matters but also on

navigating the challenging landscape of academia. Their steadfast support persisted

regardless of whether papers were accepted, rejected, or deadlines missed.

I am equally indebted to my colleagues in the Simbiosys Lab – Yazhuo, Pranav,

Reza, Lei, Gary, and Siand the Spatial Computing Lab – Hossein, Lance, Ruochen,

and Alex. These exceptional collaborators provided invaluable feedback on early drafts

and created a space where ideas could flourish. This research would not have been

possible without the broader support of the CS Department and LGS staff.

During my doctoral journey, I have been fortunate to learn from what I affec-

tionately call a “Consortium of Researchers”: Kostis, Amy, Simon, Pedro, Vaastav,

Jose, Prashant and Vahab. Special recognition goes to Deepti, Amanda, and Micah,

who have essentially become honorary labmates. What began as a collaboration on

building a cache blossomed into a comprehensive support network where we discuss

far more than just research. Their willingness to listen to my reflections on academia,

job searching, and research challenges was instrumental in helping me navigate the

inherent uncertainties of graduate school.

A PhD truly embodies ”the best of times and the worst of times,” with constant

oscillation between the two extremes. Throughout these fluctuations, I was blessed

with an extraordinary group of friends at Emory: Ayush, Ylli, Mumi, Julia, Leo,

Vincent, Marcelo, Kelvin, Nat, Sean, Anton, Katie, Emma, Elle, Abbey, and Ishleen.

Their presence was a constant, regardless of circumstances. Sometimes when faced

with disappointment, all one needs is someone to lighten the mood with good-natured

humor. From singing off-key renditions of Billy Joel’s ”Piano Man” to experimenting

with new recipes, they have shared in all of life’s moments with me.

Beyond Emory, I’ve connected with remarkable individuals – some adventurous

enough to join me on various, occasionally precarious hikes: Mark, Tim, Aaron, Hayley,

Francisco, Marianne, Jenny, Ashwath, Neo, Spencer, Cayden, Horizon, and Patrick.

Thank you for filling my summers with joy and adventure!

Finally, my heartfelt thanks to Shruthi. From our joint move to the US to

navigating our careers and the challenges of a long-distance relationship, you have

been my constant companion in figuring things out. You are the bestest.

Contents

1 Introduction 1

1.1 Introduction . 2

1.1.1 Bridging the gap in Microservice testbeds 4

1.1.2 Chatting with Logs . 6

1.1.3 Sauron: Full-fledged semantic search 9

2 Bridging the gap in Microservice testbeds 11

2.1 Introduction . 12

2.2 Motivation . 16

2.2.1 Microservice Testbeds . 18

2.2.2 Testbeds’ Design Choices . 22

2.3 Methodology . 30

2.3.1 Recruiting Participants . 30

2.3.2 Creating Interview Questions 31

2.3.3 Interviews & Data Analysis 33

2.3.4 Systematization & Mismatches 33

2.4 Results . 35

2.4.1 Grounding questions . 35

2.4.2 Communication . 36

2.4.3 Topology . 39

i

2.4.4 Service Reuse . 42

2.4.5 Evolvability . 44

2.4.6 Performance & Correctness 46

2.4.7 Security . 49

2.5 Analysis . 52

2.5.1 Recommendations and Analysis 52

2.5.2 Communication . 53

2.5.3 Topology . 56

2.5.4 Service Reuse . 59

2.5.5 Evolvability . 62

2.5.6 Performance Analysis Support 63

2.5.7 Security . 65

3 Chatting with Logs 67

3.1 Introduction . 67

3.2 NL Interface for Log Search . 72

3.2.1 Challenge: Querying Logs is Difficult 72

3.2.2 Background: LogQL . 73

3.2.3 Our Vision: LLM assisted query generation 75

3.3 LogQL-LM . 77

3.3.1 Dataset . 78

3.3.2 Finetuning LLMs . 81

3.3.3 Metrics . 82

3.3.4 Demonstration . 84

3.4 Evaluation . 85

3.4.1 Performance of finetuned models 86

3.4.2 Effect of number of finetuning samples 88

3.4.3 Transferability of the finetuned models 90

3.4.4 Code Quality Analysis . 92

3.5 Discussion . 93

3.5.1 Threats to Validity . 94

4 Sauron: Semantic Search Engine 100

4.1 Introduction . 100

4.2 Sauron . 105

4.2.1 System . 107

4.2.2 Indexing step . 108

4.2.3 Querying Step . 110

4.3 Evaluation . 113

4.3.1 Embedding Model Performance 114

4.3.2 End to End Log Search . 115

4.4 Discussion . 116

5 Conclusion 119

5.1 Conclusion . 119

Bibliography 122

List of Figures

2.1 Monolith vs. Microservices A monolith is a single deployable unit,

as illustrated on the left. A microservice architecture, shown on the

right, is composed of multiple deployable units that communicate with

each other. 17

2.2 The Versioning Problem: one approach to maintaining multiple

versions of a service is by using versioned APIs. 26

2.3 Methodology: The interview process starts with study design, fol-

lowed by data collection & analysis, and ends with our results. 30

2.4 Topology Approaches For the most part, participants used one of

four approaches when asked to draw a microservice dependency diagram

that would be used to explain microservices to a novice. Note that C

represents a hybrid deployment retaining some monolithic characteristics. 38

3.1 Example Grafana Dashboard . 69

3.2 Queries for analyzing 503 status codes in OpenStack Asia-Pacific across

different query languages . 96

3.3 Demonstration of the model. 97

3.4 Evaluation Pipeline . 97

3.5 Examples of logql queries generated by the models before (black color,

with errors in red) and after (green color) finetuning. 98

3.6 Model accuracy with different number of samples in finetuning phase 99

iv

4.1 Example use case for both traditional querying method, and Sauron. 105

4.2 Indexing step architecture. 108

4.3 Querying Step. 110

List of Tables

2.1 Summary of microservice testbed design choices. *Indicates partial hierarchy;

**BookInfo includes multiple versions for testing. U=Unit Testing, L=Load

Testing, E2E=End-to-End Testing. 16

2.2 Participant Demographics Each participant, which can be identified

by their ID, has their self reported skill level, years of experience YoE

with microservices, sectors worked in with respect to microservices,

and current role. Full Cycle covers all the five aspects of microservices:

design, testing, scaling, deployment, implementation. 31

2.3 Design Space for Microservice Architectures These design axes

were identified through the practitioner interviews. Rows in the table,

which are specific design axes, are grouped by design category. Each

design axis has the range of responses from the interviews as well as

specific examples of specific design choices mentioned by the interviewees. 51

vi

vii

2.4 Additional design axes for microservice testbeds These new

design axes were discovered after conducting practitioner interviews. In

some indicates that databases are included within some services, but

is not a separate services. Dedicated indicates that a separate service

interfaces with all the databases, and exposes an API for other services.

BUC=Business Use Case, STO=Single Team Ownership, Three Tiers

meant each application is just three tiers deep. TT = TrainTicket,

BI=BookInfo, TS=TeaStore. Supp=Supported 52

3.1 Example tuple from our dataset showing the NL query LogQL query

and the corresponding output. The first 2 rows represent metric queries

and the next 2 represent log queries 78

3.2 LogQL Query Types and Filters with corresponding values in our dataset 81

3.3 Results for models (B)efore and (A)fter finetuning. MQ = Metric

Queries measured by Accuracy; LQ = Log Queries measured by F-1

Score; Pplx = Perplexity . 86

3.4 Results for transferability of finetuned models across applications. . 90

3.5 Codebert score for various models and applications 92

4.1 Performance of the trained embedding model compare to the base model114

4.2 End to end system performance of Sauron 115

Chapter 1

Introduction

1

2

1.1 Introduction

Computer Science, particularly the field of Systems, is fundamentally driven by opti-

mizationa discipline where extracting even a millisecond of performance improvement

can translate into billions of dollars in profit or cost savings for organizations[136].

This relentless pursuit of efficiency has historically been motivated by the imperative

to maximize shareholder value, compelling researchers and practitioners to develop

increasingly sophisticated tools and methodologies for measuring performance and

identifying optimization opportunities[95, 96, 58, 56].

Performance measurement represents a foundational scientific endeavor with deep

historical roots. From ancient civilizations developing the Royal Cubit[145] based on

a pharaoh’s hand dimensions to the modern establishment of standardized SI units,

humanity has consistently sought to identify appropriate metrics and methodologies to

quantify and advance scientific understanding. This quest for measurement precision

has evolved dramatically in recent decades as computing paradigms have shifted

from personal computers to distributed cloud environments – colloquially referred

to as ”someone else’s computer” – introducing unprecedented complexity to perfor-

mance measurement challenges[53]. The transition to cloud computing has catalyzed

the widespread adoption of microservice architectures, wherein monolithic business

applications are decomposed into smaller, modular services managed by discrete

teams[15, 22, 13]. While this architectural approach offers significant advantages in

terms of scalability, fault isolation, and development agility, it introduces substantial

challenges for performance measurement and optimization. The distributed nature of

these systems, coupled with their inherent complexity, has fundamentally transformed

how researchers and practitioners approach performance analysis.

This architectural evolution has created a pronounced disconnect between aca-

demic research environments and industrial practice. While researchers have developed

numerous benchmarks and testbeds to serve as proxies for real-world systems, these

3

academic artifacts frequently fail to capture the nuanced design choices, operational

constraints, and organizational dynamics that characterize industry-scale deployments.

Academic testbeds typically embody simplified assumptions about service interactions,

dependency structures, and deployment patterns that may not align with the het-

erogeneity observed in production environments. The divergence between academic

benchmarks and industrial reality is further exacerbated by the proprietary nature of

many commercial microservice implementations. Organizations often develop highly

customized architectures tailored to their specific business requirements, technical con-

straints, and organizational structures. These implementations frequently incorporate

proprietary technologies, custom optimization strategies, and organization-specific

design patterns that remain inaccessible to the broader research community. This

information asymmetry limits the ability of researchers to develop truly representative

benchmarks and evaluation frameworks.

Moreover, the observability challenges inherent in microservice architectures com-

pound the difficulty of performance measurement. In traditional monolithic applica-

tions, performance bottlenecks could often be identified through relatively straight-

forward profiling and monitoring techniques. In contrast, microservice environments

require sophisticated distributed tracing, log aggregation, and metrics collection sys-

tems to provide even basic visibility into system behavior. The organizational dynamics

surrounding microservice development and operation further complicate performance

optimization efforts. Unlike monolithic applications, which might be developed and

maintained by a single team[135], microservice architectures typically involve multiple

teams with distinct responsibilities, priorities, and technical approaches[65]. This

organizational distribution can lead to inconsistent implementation patterns, varying

quality standards, and communication challenges that impact overall system perfor-

mance. Academic benchmarks rarely account for these human and organizational

factors, despite their significant influence on real-world system behavior.

4

Despite these challenges, the imperative for effective performance measurement

and optimization in microservice architectures remains paramount. As organizations

continue to invest heavily in distributed systems, the economic impact of performance

inefficiencies scales proportionally. Even modest improvements in service latency or

resource utilization can yield substantial cost savings and competitive advantages when

applied across large-scale deployments. This economic reality underscores the critical

importance of developing more representative evaluation frameworks and measurement

methodologies. Addressing this gap requires collaboration between academia and

industry to create benchmarks and testbeds that more accurately reflect the complexity

and diversity of real-world microservice deployments. Such collaboration would enable

researchers to develop more relevant optimization techniques while providing practi-

tioners with scientifically rigorous approaches to performance evaluation. By bridging

this divide, the systems research community can drive meaningful advancements in the

efficiency and reliability of modern distributed computing environments, ultimately

delivering substantial value to organizations and also researchers.

1.1.1 Bridging the gap in Microservice testbeds

In the initial work of this thesis, we investigated the differences between academic

testbeds and industrial deployments of microservices, identifying potential research

questions to guide efforts aimed at improving the performance of testbeds. Industrial

microservice architectures exhibit significant variability in characteristics such as

size, communication methods, and dependency structures, making system compar-

isons challenging and often leading to confusion or misinterpretation. For instance,

industrial systems frequently employ heterogeneous communication protocols (e.g.,

REST, gRPC) and mixed synchronous-asynchronous styles, while academic testbeds

often adopt narrower configurations. Additionally, industrial systems may feature

non-hierarchical dependency structures and even cyclic dependencies at the service or

5

endpoint levelphenomena rarely reflected in academic testbeds.

In contrast, academic testbeds used for microservices research tend to adopt a highly

constrained set of design choices, often focusing on hierarchical topologies and limited

service reuse. This lack of standardization in key design decisions when developing

microservice architectures has created uncertainty regarding the applicability of testbed

experiments to practical deployments and whether such extrapolation is appropriate.

For example, while industrial systems may integrate shared services across multiple

applications or employ diverse storage strategies (dedicated vs. shared), academic

testbeds frequently lack such flexibility.

To address this issue, we conducted semi-structured interviews with industry

professionals to evaluate the representativeness of existing testbed design choices.

Notable findings included the presence of cycles in industrial deployments and a lack

of clarity concerning hierarchical structures. Participants also emphasized challenges

related to versioning support and testing practices, such as limited adoption of

distributed tracing tools like Jaeger or Zipkin in academic environments. Based on

insights from these interviews, we systematized the range of possible design choices

and identified critical mismatches between the characteristics of industrial systems

and those reflected in current testbeds. These findings will inform the development of

future testbeds that are more representative of real-world microservice deployments.

This work was published at Journal of Systems Research in 2022[116].

Our research revealed a critical disconnect between the developer tools ecosystem

and the evolving microservice paradigm. The fundamental assumption underpinning

traditional observability tools – that software developers are simultaneously responsible

for deployment and production operations – no longer reflects organizational realities

in modern enterprises. Despite industry efforts to adapt existing tooling, observability

platforms remain largely anchored in outdated operational models that fail to address

the complexities of contemporary software delivery pipelines. In today’s microservice

6

environments, development and operations responsibilities are increasingly separated,

with dedicated Site Reliability Engineering (SRE) teams often managing production

deployments while development teams focus on feature implementation. This sepa-

ration is further complicated by significant developer turnover within organizations,

resulting in situations where those troubleshooting production issues may have limited

familiarity with the original implementation details. The conventional observability

tools, designed with monolithic architectures and stable team compositions in mind,

struggle to bridge this knowledge gap effectively. Additionally, the scale and complex-

ity of microservice architectures – characterized by distributed components, diverse

communication patterns, and intricate dependency networks – demand a fundamental

re-imagining of observability approaches. Current tools typically require deep expertise

in platform specific query languages and intimate knowledge of application internals,

creating substantial cognitive overhead for developers and operations personnel alike.

This expertise barrier becomes particularly problematic in environments with high

developer churn or organizational boundaries between development and operations

teams.

These findings underscore the urgent need for next-generation observability tools

specifically designed for the microservice eratools that can facilitate knowledge trans-

fer across team boundaries, reduce reliance on specialized expertise, and adapt to

the dynamic nature of modern software organizations. Such tools must prioritize

accessibility, knowledge preservation, and cross-functional collaboration to effectively

support the distributed nature of both microservice architectures and the teams that

build and maintain them.

1.1.2 Chatting with Logs

Building on one of the findings from the prior analysis highlights the significant

challenges developers face when analyzing observability data collected through diverse

7

tools. This insight forms the foundation for the second chapter of this thesis. Logging,

an indispensable component of modern distributed systems, suffers from a lack of

standardization in log query languages and formats, creating considerable obstacles

for developers. Developers are often required to craft ad hoc queries using platform-

specific log query languages, necessitating not only expertise in these languages but

also a deep understanding of application-specific log details. Given the diversity of

platforms and the vast volume of logs and applications, this expectation is frequently

impractical.

While large language models (LLMs) offer promise in generating such queries, our

findings reveal that existing LLMs struggle with this task due to limited exposure to

domain-specific log-related knowledge. To address these challenges, we propose a novel

natural language (NL) interface designed to mitigate inconsistencies and facilitate

query generation. This interface allows developers to create queries in a target log

query language by providing natural language inputs. Additionally, we introduce

NL2QL, a manually curated dataset comprising real-world natural language questions

paired with corresponding logQL queries, spanning three distinct log formats. NL2QL

supports the development, training, and evaluation of NL-to-query systems.

Using NL2QL, we fine-tune and evaluate several state-of-the-art LLMs, demon-

strating their improved ability to generate accurate logQL queries. Our experiments

reveal up to 75% improvement in query-generation performance for fine-tuned models

compared to non-fine-tuned counterparts. Furthermore, ablation studies assess the

impact of additional training data and explore model transferability across different log

formats. These results underscore the potential of fine-tuning LLMs for domain-specific

tasks.

The NL2QL dataset represents a pioneering effort in creating a resource specifically

tailored for NL-to-log-query systems. It includes 424 manually annotated pairs derived

from Grafana dashboards, covering diverse applications such as OpenSSH, OpenStack,

8

and HDFS. This diversity ensures that the dataset captures various use cases and

operational complexities encountered in real-world scenarios. Fine-tuning LLMs on

this dataset significantly enhances their ability to generate syntactically valid and

semantically accurate LogQL queries. Our evaluation framework employs metrics such

as exact match accuracy and execution accuracy to assess query correctness. The

fine-tuned models demonstrate substantial improvements in both syntactic precision

and semantic relevance. Notably, GPT-4o achieves up to 80% accuracy in generating

executable queries post-fine-tuning. These enhancements reduce syntax errors, improve

label matching, and enhance temporal aggregation capabilities.

In addition to quantitative improvements, our study explores qualitative aspects

such as cross-application transferability and the effect of varying training sample

sizes. Results indicate that while fine-tuned models perform well within their training

domains, generalization across applications remains challenging without additional

diverse training data. In conclusion, this work demonstrates that leveraging LLMs for

log query generation is not only feasible but also highly effective when supported by

domain-specific datasets like NL2QL. This approach has the potential to democratize

access to observability data by reducing reliance on specialized knowledge, thereby

enhancing productivity and accessibility for developers. This work was submitted to

VLDB 2025 as is now available on ArXiv[117].

While the NL2QL approach significantly improves developers’ ability to generate

log queries using natural language, it reveals certain limitations that necessitate a

more comprehensive solution. Natural language querying, as implemented in the

NL2QL system, offers developers a more intuitive interface for interacting with log

data. However, this approach can lead to an unstructured querying experience, as

the scope and effectiveness of queries are heavily influenced by individual developers’

vocabularies and contextual understanding. This variability can result in inconsistent

query formulation across different team members, potentially overlooking critical

9

information. Moreover, while developers may excel at formulating queries, they often

struggle to identify what specific information to query, especially when dealing with

unfamiliar systems or services[65]. This challenge is particularly acute in microservice

architectures, where developers may lack comprehensive knowledge of all components

and their associated logging conventions. A significant limitation of the NL2LogQL

models is their tendency to generate queries based on log lines present in the user’s

input rather than the actual log files. This mismatch can lead to LogQL queries

that fail to capture the true semantic intent of the developer’s question, resulting

in irrelevant or incomplete results. These observations underscore the need for a

fundamental redesign of log storage and querying frameworks. The goal is to create a

system capable of performing semantic search on log data, bridging the gap between

developers’ natural language inputs and the diverse, often inconsistent logging practices

across different services and teams.

1.1.3 Sauron: Full-fledged semantic search

In the final chapter of this thesis, we introduce Sauron, a semantic search engine

designed to address the challenges of querying and analyzing logs in modern microser-

vice architectures. The chapter highlights how traditional log analysis methods face

significant limitations, particularly the disconnect between developers who produce

logs and engineers who analyze them. In microservice environments, this problem

is exacerbated as teams work on isolated components and may not understand the

terminology used in logs generated by other services. When services are updated,

developers often rewrite log lines using different terminology than the original, creat-

ing inconsistencies that make searching across logs difficult. A Microsoft study[65]

revealed that 42% of engineers spend over an hour analyzing unfamiliar logs during

incidents, highlighting the real-world impact of this problem. Current log search

solutions primarily rely on full-text search capabilities that require exact keyword

10

matching rather than understanding semantic relationships. This approach is inade-

quate when developers use different phrases to log similar events (e.g., ”Authenticated

Password” vs. ”Password Accepted”). As systems grow in complexity and team sizes

increase, maintaining awareness of all logging conventions becomes unsustainable.

Sauron addresses these challenges through a sophisticated dual-phase architecture.

The indexing phase processes log data to generate vector embeddings that capture

semantic meaning, storing them in a specialized vector database. The querying phase

employs a modular Retrieval-Augmented Generation (RAG) framework that trans-

forms natural language queries into the same embedding space as indexed documents,

performing approximate nearest neighbor searches to find semantically relevant logs.

The system includes a query planner that identifies application-specific metadata

and rewrites queries to better align with log contexts. This approach significantly

reduces the computational burden by narrowing the search space before initiating

resource-intensive vector similarity operations. Retrieved logs are passed to an LLM

alongside the original query to generate comprehensive, contextually-aware responses.

Evaluation results demonstrate that Sauron significantly outperforms traditional

methods. A fine-tuned embedding model showed substantial improvements over the

base model across three different applications (HDFS, OpenStack, and OpenSSH),

with NDCG@10 scores improving by 46.7% to 116.7%. In end-to-end testing, Sauron

maintained consistent performance across both base and semantic queries, while

comparative systems experienced substantial degradation with semantic variations.

Sauron represents a paradigm shift in log analysis by enabling direct natural

language querying capabilities, eliminating technical barriers associated with tra-

ditional systems. Its modular architecture provides a flexible framework that can

be extended to address specific organizational requirements while democratizing log

analysis capabilities across varying expertise levels.

Chapter 2

Bridging the gap in Microservice

testbeds

11

12

2.1 Introduction

Microservices architectures, first developed to enable organizations to massively scale

their services [15], are quickly becoming the de facto approach for building distributed

applications in industry. Today, major organizations including Microsoft [13], Face-

book [123, 125], Google [7], and Etsy [101] are built around microservice architectures.

As microservices grow in importance and reach, the academic study of microservices

has similarly flourished. Though the basic principles of the microservice architectural

style—that applications should be designed as loosely-coupled, focused services that

each provide distinct functionality and interact via language-agnostic protocols [23, 1]—

are well-known, there are many open questions around how developers can best design,

build, and manage microservice-based applications [57]. For instance, migrating a

monolithic application to a microservice architecture is currently a complex, drawn

out process [31], as developers must decide on a multitude of factors including (but not

limited to) how to determine services’ scope and granularity, how to manage message

queue depths, and what communication protocols to use. There is no clear guidance,

in any domain, to make these choices.

Researchers have conducted a host of user studies with practitioners in the industry

to increase the community’s understanding of microservice architectures [31, 50, 28].

Independently, the systems community has developed myriad testbeds [2, 55, 138,

156] for evaluating microservices research. Although these testbeds were originally

developed to improve or evaluate specific microservice characteristics (e.g.µSuite was

developed for analyzing system calls made by OLDI Microservices), they are now

being used to evaluate a range of research on microservices [73, 55, 70, 99, 51] despite a

general understanding that the testbeds’ designs are very narrow compared to industry

practices.

Over time, the practical deployment of microservices has diverged further from

what existing microservice testbeds are able to represent [122]. This mismatch

13

extends to both testbeds developed by researchers and those developed by industrial

practitioners because microservice architectures developed at different companies are

proprietary [55, 138]. Research efforts targeted to microservice-based applications

risk being useful to only a small set of narrowly-defined (or ill-defined) microservice

designs.

The goal of this paper is to provide systematized descriptions of the design

axes academic testbeds are built around and how these axes compare to industrial

microservice designs. Our systematizations will provide better understanding of the

mismatch between testbeds and actual usage of microservices. They will allow for

better translation of research results into industry practice, create more awareness of

the diversity of microservice implementations, and enable more tailored optimizations.

Ultimately, our systematizations will aid the systems community in developing more

representative microservice testbeds.

We pair a parameterized analysis of seven popular testbeds, including topological

characteristics of the overall microservice architecture, the communication mechanisms

used, and whether individual microservices are reused across applications, with semi-

structured interviews with microservice developers in industry. Our interviews probe

how existing testbeds’ design choices are too narrow. They also explore features

missing from testbeds that are discussed in the literature to identify their importance

for future testbeds. Finally, we contrast the results of our semi-structured interview

with the microservice testbeds, culminating in a set of recommendations to guide the

designers of the next generation of microservice testbeds.

We find that existing testbeds do not represent the diversity of industrial microser-

vice designs. For example, we find that individual industry microservice architectures

use a heterogeneous blend of communication protocols (RPC, HTTP) and styles

(synchronous, asynchronous). We also find that industrial microservice architectures

vary greatly in the degree to which individual services are reused amongst different

14

applications or endpoints of the same application. In contrast, testbeds exhibit little

to sharing.

We find that participants were unsure of topological characteristics of microservice

architectures. Many claimed dependencies among microservices would always form a

hierarchy, then admitted this need not be the case. We were surprised to find that a

number of participants agreed that service-level cycles could occur, with one service

calling another and that service calling the original service. In contrast, the testbeds’

dependency diagrams are always hierarchical and do not exhibit cycles.

We present the following contributions:

1. Systematization of Design Choices: We systematize the design choices made by seven

popular microservice testbeds [55, 156, 138, 122, 2] (Table 2.1). Our systematization

provides guidance to researchers about which testbeds are best suited for their

work.

2. Systematization of Industry Microservice Designs : We expand our design table to

include design choices used in industrial microservices (Table 2.3). We use semi-

structured interviews with 12 industry participants to collect this data. We collect

quotes from our participants to gauge their attitudes about the importance of various

microservice design options. We perform our own user study to best encapsulate

the most current trends in microservice deployments, and avoid biases from studies

that do not distinguish between industrial and experimental microservices [133,

141, 128, 83]. To our knowledge, there is no existing user study that contrasts

existing microservice testbeds with industry practices.

3. Recommendations for Creating New Testbeds. We present recommendations for

improving microservice testbeds by contrasting our systematizations of testbeds

design choices with that of industry design choices.

4. Description of Future Directions : Through our conversations and analysis of various

15

academic testbeds, we provide a summary of the current state of microservice design,

the discrepancies between testbeds and practice, and recommendations for how to

reunite the academic and industry arms of microservice research.

16

Aspect DSB-SN DSB-HR DSB-MR TrainTicket BookInfo µSuite TeaStore

Protocol Thrift gRPC Thrift REST REST gRPC REST
Style Sync/Async Sync Sync Async/Sync Sync Async/Sync Sync
Languages C/C++ Go C/C++ Java, etc. Multi-lang. C++ Java
Services 26 17 30 68 4 3 5
Structure Hierarchy* Hierarchy Hierarchy* Mixed* Hierarchy* Hierarchy* Hierarchy
Versioning No No No No Yes** No No
Tracing Jaeger Jaeger Jaeger Jaeger Jaeger/Zipkin None Jaeger
Testing U,L U,L U,L U,L L L E2E,L
Security TLS TLS TLS None Istio-TLS None Istio-TLS

Table 2.1: Summary of microservice testbed design choices. *Indicates partial hierar-
chy; **BookInfo includes multiple versions for testing. U=Unit Testing, L=Load Testing,
E2E=End-to-End Testing.

2.2 Motivation

Microservices is an architectural style wherein a large scale application is built as

individual services (called microservices) that work together to achieve a business goal.

Figure 2.1 shows two major architectural styles used for building an E-Commerce Ap-

plication (Business Use Case). The monolithic architecture has multiple functionalities

built into a single deployment unit which interfaces with the database deployments

to retrieve data to be served. However, in a microservice application, the business

use case (E-Commerce), is realized using multiple individual parts - Authentication,

Cart, Payment, Product, and User. These individual parts are called “services”.

They are built to process specific parts of the business domain, and may have their

own storage mechanisms wherever necessary instead of depending on a centralised

database [136, 135].

The term “microservices” is credited to a 2011 presentation by Netflix [15, 159]. In

the early days, the large business case handled by an organization was combined into a

single executable and deployable entity, which is referred to as monolithic architecture.

Though the functionality of an application grew linearly with increasing business

case, each user’s access of different features were non-uniform [60]. To circumvent

17

Figure 2.1: Monolith vs. Microservices A monolith is a single deployable unit, as
illustrated on the left. A microservice architecture, shown on the right, is composed
of multiple deployable units that communicate with each other.

disadvantages of monolithic applications like single-point failure, multiple organizations

decomposed their applications into various functionalities but retained a common

communication bus to facilitate communications between different components[14].

This is called Service Oriented Architecture (SOA). Microservices evolved from SOA,

where the common communication bus was replaced by an API call from one service

to another.

Early academic research in microservices focused on the impact of domain char-

acteristics when migrating from a monolithic to a microservice paradigm [127, 50,

29, 41, 61, 139, 45, 80]. These extensive studies produced insights on how multiple

organizations handled various design choices such as service boundaries, cost of re-

architecture and infrastructure, and monitoring tools, along with challenges faced

by developers in terms of implementation of large scale distributed systems. In a

similar vein, multiple projects [87, 18, 36, 143] have examined how to decompose

18

existing monolithic architecture into microservices. All of these works focused on

static analysis, which was based on functionality, rather than the dynamic traffic

experienced by these systems.

More recently, microservice research has shifted focus from migration to a more

holistic analysis of microservices, ranging from surveys, to testbeds, to tools to better

understand the trade-offs of practical microservice design [133, 120, 35, 142, 28, 155,

156, 46, 38, 127, 128, 126, 150]. Of particular note, Wang et al. [141] produced a

large survey on post adoption problems in microservices, with questions focusing on

the benefits and pitfalls of maintaining large scale microservice deployments. We

extend the areas explored in published literature and compare it with open source

microserivce testbeds.

2.2.1 Microservice Testbeds

Following the growth of microservices in industry, the academic world has embraced

the concept by building multiple applications for multiple use-cases using microservice

architectures. In our work, we refer to the overall group of applications as testbeds,

and to an individual use-case as an application. For this work, we only selected the

testbeds whose code is Open Source, and available to be deployed on any platform

of choice. These open-source testbeds provide transparency and reproducibility to

microservice research, and enable multiple follow-up research projects.

DeathStarBench Gan et al. [55] released this testbed suite in 2019 to explore the

impact of microservices across cloud systems, hardware, and application designs. This

testbed suite has been the most widely used by researchers. The suite is built based

on the 5 core principles: Representativeness, End-to-End Operation, Heterogeneity,

Modularity and Reconfigurability. These principles were adopted to make the testbed

appropriate for evaluating multiple tools, methods and practices associated with

19

microservices. Each application has a front end webpage from which users can send

requests to an API gateway which routes it to appropriate services and compiles the

result as an HTML page. DeathStarBench consists seven applications as testbeds:

Social Network, Movie Review, Ecommerce, Banking System, Swarm Cloud, Swarm

Edge and Hotel Reservation. In this paper, we only looked into three of those: Social

Network (DSB-SN), Hotel Review (DSB-HR) and Movie Review (DSB-MR), because

their code is Open Source and has ample documentation for deployment, testing and

usage.

TrainTicket Zhou et al. [156] released this testbed in 2018 to capture long request

chains of microservice applications. To build this testbed, the developers interviewed

16 participants from the industry, asking about common industry practices. The

major motivation to build TrainTicket was the limitation of existing testbeds’ small

size and the need for a more representative testbed. The authors specifically asked

about various bugs that occur in microservice applications and replicated them in this

testbed. The authors subsequently used this testbed to test these bugs or faults and

developed debugging strategies. There are multiple requests that can be sent to the

application to login, to display train schedules, to reserve tickets and to do any other

typical functionalities for a ticket booking application. The requests enter a gateway

and are routed to the appropriate services based on the request, with results compiled

and sent as responses to the HTML frontend.

BookInfo he BookInfo benchmarking suite, as a part of the Istio Service Mesh

project, serves as a valuable resource for showcasing the prowess of deploying mi-

croservice applications using Istio. The benchmarking suite functions as a testbed

application that effectively mimics a typical single catalog entry of an online book

store. Comprising four distinct microservices, BookInfo is a practical and illustrative

example of how Istio can be leveraged in a real-world scenario.

20

• Product Page: This is the entry point of the BookInfo application. It handles

incoming user requests and serves as the user interface, displaying book informa-

tion. However, it doesn’t directly store or retrieve book data. Instead, it relies

on the other three microservices for that purpose.

• Details: The Details microservice is responsible for providing in-depth informa-

tion about a specific book. When a user accesses the product page and requests

detailed information about a book, the Product Page microservice delegates the

task to the Details microservice.

• Reviews: The Reviews microservice manages user reviews and comments for the

books in the catalog. Users can post and read reviews through this service. Like

the Details microservice, the Product Page can request reviews for a particular

book from this microservice.

• Rating: The Rating microservice is in charge of managing the book ratings,

typically in the form of star ratings. When a user views a book in the catalog

and wants to see its rating, the Product Page microservice communicates with

the Rating microservice to obtain the necessary data.

The synergy between these four microservices is a key element of the BookInfo bench-

marking suite’s architecture. The Product Page microservice acts as the orchestration

layer, coordinating requests from users and gathering information from the Details,

Reviews, and Rating microservices. This collected data is then presented to users in

the form of an HTML page, offering a seamless and unified user experience.

Overall, the BookInfo benchmarking suite not only serves as a compelling example

of microservice deployment but also as a valuable tool for understanding Istio’s features

and capabilities in managing and securing microservice applications. This practical

demonstration helps developers and system administrators grasp the power of Istio in

21

a real-world context, making it a valuable asset for those exploring microservices and

Istio’s role in orchestrating and managing them.

µSuite Sriraman et al. [122] released this testbed in 2018 to evaluate operating

system and network overheads faced by Online Data-Intensive (OLDI) microservices.

It contains 4 different applications – HDSearch, a content based search engine for

images; Router, a replication-based protocol router to scale key-value stores; SetAlge-

bra, an application to perform Set Algebra operations on Document Retrieval; and

Recommend, a user based item recommendation system to predict user rating. The

applications were built to understand the impact of microservice applications on the

system calls, and underlying hardware. This testbed was geared towards Online

Data Intensive applications, which handles processing of huge amounts of data using

complex algorithms. All the applications have an interface which allows for the users

to run them on a large scale dataset and record the observations.

TeaStore Kistowski et al. [138] released this testbed in 2018 to test the performance

characteristics of microservice applications. The testbed consists of 5 services: WebUI,

Auth, Persistence, Recommender and Image Provider along with a Registry Service

which communicates with all the other services. The Registry Service acts as the

entry point for requests and requires each service to register their presence with this

service. The testbed can also be used with any workload generation framework, and

has been tested for Performance Modeling, Cloud Resource Management and Energy

Efficiency analysis. This modular design enables researchers to add or remove services

to the testbed and customize them for specific use cases. The application caters to

multiple requests for working with a typical e-commerce application such as login,

listing products, ordering products. The requests enter using the WebUI service, which

sends a request to the registry service that routes the requests to appropriate services,

aggregates the result, and displays the result as HTML webpage.

22

Overall, while there are multiple testbeds available, most academic papers used

DeathStarBench, specifically DSB-SN, which is the Social Network Service [151, 58, 73,

84, 109, 70, 99, 39]. The next most widely used testbed is TrainTicket [109, 156, 155],

and the other testbeds are used less commonly in the academic research community.

2.2.2 Testbeds’ Design Choices

When building these testbeds developers make choices about various individual aspects

of the application. In this section, we explore the choices made by the original

developers of the testbeds and illustrate the various options used to build them. We

look at both the literature and the codebase of the testbeds for various design choices,

in matters of conflict we pick the option illustrated in the codebase as it receives

constant updates from the developers and larger community. An overview of the

design choices and the options adopted by the various testbeds are shown in Table 2.1.

Communication

Communication choices refer to the required methods and languages used for building

each of the services, as well as for interfacing between the different services. They

form the bedrock on which the application is built, as they enable the information

passing between the services to execute requests. We analyze the testbeds to identify

the communication Protocol between two internal microservices, as it impacts the

performance of applications [12, 8, 6]. We also identify whether the Style of communi-

cation is synchronous or asynchronous, and further analyze the testbeds to identify

the Programming Languages used for implementation, as microservice architectures

provide the flexibility of using multiple languages.

23

Protocol

TrainTicket, BookInfo, and TeaStore use REST APIs for communicating between

different services to complete a request, and also for communication between the

webpage and initial service. DSB-SN and DSB-MR use Apache Thrift for commu-

nication between the services, but has a REST API for communication between

the Web Interface and the gateway service. DSB-HR and all applications in µSuite

use gRPC for communication between the services. DSB-HR uses a REST API for

communicating between the webpage and gateway service whereas µSuite makes use

of gRPC for the same purpose.

Style

In microservices architectures, communication patterns can be either synchronous or

asynchronous, each serving different purposes and use cases. In synchronous com-

munication, services directly interact with each other through methods like REST

or gRPC, waiting for immediate responses before proceeding with their operations.

Asynchronous communication, on the other hand, utilizes message queues or event-

driven architectures where services can continue their operations without waiting

for responses, making it ideal for long-running tasks or scenarios where immediate

responses aren’t critical. This flexibility in communication patterns allows microser-

vices to be designed for optimal performance and reliability based on specific business

requirements.

BookInfo, TeaStore, DSB-HR, and DSB-MR only have synchronous communication

channels between the various services and do not use any data pipelines or task queues

for coordinating asynchronous requests in their applications. TrainTicket has both

synchronous and asynchronous REST communication methods between the services

across the application. DSB-SN uses synchronous Thrift channels for communication

between the services, but has a RabbitMQ task queue that is used for asynchronous

24

processing of some requests such as compiling the Home Timeline service for a user

after they create a new post. µSuite has both synchronous and asynchronous gRPC

communication channels for each of the applications built separately with no overlap

between each other.

Languages Used All the services in TeaStore and µSuite are built using only one

language: Java and C++ respectively. The services that process business logic in

DSB-SN and DSB-HR are built using C++. Lua is used for processing the incoming

request and compiling the final result sent to users, Python is used to perform unit

tests and for smaller scripts that are used to setup the testbed. DSB-MR and all the

applications in µSuite are written using Golang. BookInfo consists of 4 services, each

of which has been written in a different language: Python, Java, Ruby and Javascript

(Node.js). The services in TrainTicket are also written in 4 languages: Java, Python,

Javascript, and Golang. All testbeds except µSuite offer a user interface written using

HTML, CSS, and JS.

Topology

Topology relates to the overall structure of the application including the communication

channels between the services. We look at the ways in which different testbeds have

arranged the services to fulfill requests for a particular application. We look at the

number of services and the dependency structure of an application. The number of

services is counted as the total number of containers (services + storage) that needs to

be deployed for the application to fulfill all its requests1. In testbeds where containers

are not used, we went by the individual deployments. The topology is often represented

as a Dependency Diagram as shown in Figure 2.1, where the nodes represent services

and an edge from Service A to Service B means Service A is dependent on Service

B to complete a request. Request call graphs, determined by the overall topology,

1This count was retrieved on 29 th January, 2022

25

yield important insights, as shown in Alibaba’s large-scale traces of microservices

[92]. We analyze the testbeds to identify that the overall dependency structure of the

microservices was hierarchical, where the request entered an API gateway as the first

service and the storage layer was the last accessed service.

Number of Services µSuite [11] has 4 distinct applications, each of which have

only 3 distinct services 2. BookInfo has 4 distinct services each deployed as a container

within Istio Service Mesh [10]. TeaStore has 5 distinct services with a Registry Service

that keeps track of the total number of services in the application [19]. TrainTicket

[20] has 68 services including the databases which are deployed as separate containers.

DSB-SN[5] has 26 individual containers including the databases and caches, DSB-HR

[3] has 17 individual containers including the databases and caches, and DSB-MR [4]

has 30 individual containers including the databases and caches.

Dependency Structure µSuite was built under the assumption that the OLDI

microservices are hierarchical in nature, where the application is structured as front end,

mid-tier, and leaf microservices. BookInfo is also structured in a hierarchical structure

where the nodes at the end are storage services such as MongoDB. TrainTicket doesn’t

follow a strictly hierarchical structure, as the database isn’t the last layer accessed

for some of the requests. DSB-SN, DSB-HR and DSB-MR are strictly hierarchical as

the requests entering the API gateway go through each service before accessing the

database towards the end of the request chain, from where it is directly returned to

the user. DSB-SN has a non-hierarchical component where the Home-Timeline gets

compiled asynchronously when a user creates a new post. TeaStore has a hierarchical

dependency when processing requests, however every newly deployed service calls the

Registry Service to register itself.

2We derive this number from the installation script provided by the authors in their code [11]

26

Evolvability

As the application becomes larger, the architecture changes based on the various

modifications that each individual service undergoes. We analysed the testbeds to

check if they had already incorporated this design axes in their application. We also

looked at the support for versioning in the testbeds to gauge the support for multiple

versions of the same service [93, 9]. For example, as shown in Figure 2.2, Service A and

B are dependent on Service C to fulfill their request and they use the API apiservice c.

If Service C is modified to accommodate newer features, or code optimizations, these

changes might not be adapted by Service A or B at the same time. Thus, Service

A will be using the older version (v1) and Service B will have moved to the newer

version (v2). This would require Service C to run 2 instances with different versions

to support all their dependencies.

Figure 2.2: The Versioning Problem: one approach to maintaining multiple versions
of a service is by using versioned APIs.

Versioning Support Only BookInfo provides multiple versions of a service in its

testbed. The Reviews Service within the BookInfo application is a notable example,

as it comes in three distinct versions. Two of these versions of the Reviews Service

access the Ratings Service to fetch and display the book ratings on the webpage. This

approach of offering multiple service versions allows users to test and evaluate different

27

implementations of the Reviews Service within the same environment, providing

valuable insights into how changes to a service can affect the overall performance and

user experience.

In contrast, other testbeds typically do not explicitly provide pre-configured

multiple versions of their services. However, these testbeds often feature extensible

APIs that users can leverage to program and deploy multiple versions of a service as

needed. This flexibility grants users the freedom to experiment with various service

versions, customizations, and configurations, tailoring the testbed to their specific

requirements and research objectives. By empowering users to create and manage

multiple service versions through extensible APIs, these testbeds facilitate a more

dynamic and adaptable testing environment, where the behavior and performance of

services can be customized and fine-tuned to suit different scenarios and use cases.

In summary, while the BookInfo benchmarking suite stands out for its provision of

pre-configured service versions, other testbeds prioritize flexibility by offering extensible

APIs that allow users to program and deploy multiple service versions as desired.

Both approaches have their merits, catering to different user preferences and research

needs in the realm of microservice testing and evaluation.

Performance & Correctness

Understanding and analyzing the performance of microservices is integral to designing

microservices. We analyze the testbeds to identify the different Distributed Tracing

tools adopted by the testbeds for analyzing the performance of each service in the

request chain [111, 26].

Distributed Tracing Except µSuite all the other testbeds offer Distributed Tracing

built into the testbed. These testbeds use a framework built on OpenTracing principles,

typically with Jaeger as the default option. They instrument each of the applications

28

with various tracepoints built into each of the services to track the time spent processing

each request. Though it doesn’t use distributed tracing, µSuite uses eBPF to trace

various points of the system to get the number of system calls that were being utilized

to run various applications in the testbed.

Testing Practices Except µSuite all the other services have unit testing built

into the repository which can be used to test the individual services for correctness.

TeaStore also has an end-to-end testing module that interfaces with the WebUI service

to mimic a user clicking the UI. Load testing can be performed on all the testbeds

except µSuite using wrk2[27] since they use HTTP for receiving requests. µSuite

has an inbuilt load generator in the codebase that can be used for generating higher

request loads to test the application.

Security

Microservices architecture presents unique security challenges due to its distributed

nature and complex service interactions. Individual services are particularly vulnerable

since they often run in containers that may contain unpatched software vulnerabilities,

with studies showing over 92% of container images having such vulnerabilities. Inter-

service communication security typically employs two primary methods: encryption

(SSL/TLS) and inter-service access control mechanisms. However, a significant security

concern arises from the traditional design approach where microservices completely

trust each other, meaning a compromise of a single service could potentially compromise

the entire application. This trust model creates an attack surface where adversaries,

after compromising one service, can perceive other services in the network and their

exposed APIs, potentially initiating unauthorized requests. To mitigate these risks,

modern approaches leverage Software Defined Networking (SDN) capabilities to

monitor complex network interactions and enforce security policies. Additionally,

29

attribute-based access control (ABAC) has emerged as a prominent choice for fine-

grained authorization, though the distribution of attributes among ABAC components

remains a critical consideration for robust authorization in microservice environments.

These security measures must be implemented while maintaining the inherent loose

coupling and distributed nature of microservices.

Security Practices DSB-SN, DSB-HR, and DSB-MR have a Transport Layer

Security built-in between the services which helps in encrypting communication

between the services. TeaStore and BookInfo were deployed using Istio Service

Mesh which comes with built-in encryption channels that can be enabled by the

developer when deploying the application. MicroSuite and TrainTicket do not provide

communication encryption between the services.

30

2.3 Methodology

We conducted semi-structured interviews with industry participants to 1) better

understand the designs of industrial microservices and 2) understand how these

designs contrast with those of available testbeds. Our IRB-approved study follows the

procedure shown in Figure 2.3.

Study design

Data Collection & Analysis

2 Pilots

Interview questions

Grounding questions

Questions that explore
features discussed in other
studies but missing from

testbeds

Questions that probe
choices for testbeds’ design

axes

12
Interviews Analysis

Results

Are there any questions
about Microservice design
that we should have asked

but didn’t?

1 2

3 4

5

Systematization
of design choices

Mismatches between
testbeds’ and

participants responses

Figure 2.3: Methodology: The interview process starts with study design, followed
by data collection & analysis, and ends with our results.

2.3.1 Recruiting Participants

We recruited participants from different backgrounds, aiming to collect various per-

spectives of microservice design choices. We recruited participants by: 1) reaching

out to industry practitioners and 2) advertising our research study on social media

platforms (Twitter, Reddit, and Facebook). After the first few participants were

recruited, we used snowball sampling [132, 141] to recruit additional participants. We

31

ID Skill level YoE Sectors worked Current role

P1 Advanced 10 Government Full Cycle
P2 Intermediate 3 Finance, Tech, Government Full Cycle
P3 Advanced 5 Tech Full Cycle
P4 Beginner 1 Tech, Research Design, Testing
P5 Advanced 5 Finance, Tech, Education Full Cycle except Deployment
P6 Advanced 4 Tech Full Cycle except Deployment
P7 Advanced 10 Academia, Tech Full Cycle
P8 Intermediate 3.5 Tech Design, Testing, Implementation
P9 Intermediate 2 Tech Full Cycle except Scaling
P10 Advanced 7 Tech Deployment
P11 Advanced 7 Tech, Government, Consulting Full Cycle
P12 Intermediate 2 Tech Full Cycle except Scaling

Table 2.2: Participant Demographics Each participant, which can be identified by
their ID, has their self reported skill level, years of experience YoE with microservices,
sectors worked in with respect to microservices, and current role. Full Cycle covers all
the five aspects of microservices: design, testing, scaling, deployment, implementation.

recruited fourteen participants in total, including the two pilot studies (see below).

Table 2.2 shows demographics of the participants we recruited for our interviews.

The table shows that out of the twelve participants, seven assess their skill level with

microservices as advanced-level, four as intermediate-level, and one as beginner-level.

On average, they have five years of experience working with microservices. Sectors

that the interviewees work in include government, consulting, education, finance and

research labs. 9 of the 12 interviewees work on all aspects of microservices, (defined

as design, testing, scaling, deployment and implementation). The remaining 3 work

only on a smaller subset of those aspects.

2.3.2 Creating Interview Questions

We created 32 interview questions designed to increase the authors’ understanding of

industrial microservice architectures and to contrast microservice testbeds with them.

The questions span four categories, described below.

1 Grounding questions: These questions ask participants to define microser-

32

vices and state their advantages and disadvantages. We use these questions to

determine whether participants exhibit a common understanding of microservices, and

whether this understanding agrees with that described in previous literature [55, 156,

138, 45, 141, 38, 127, 128, 126, 150].

2 Probing questions These questions probe whether design elements present

in microservice testbeds accurately reflect or are narrower than those in industrial

microservices. For example, Table 2.1 shows that all microservice testbeds exhibit a

hierarchical topology where leaves are infrastructure services. So, we asked whether

microservice topologies can be non-hierarchical. We asked similar questions about

tooling. For example, only one out of the seven testbeds include versioning support.

So, we asked whether industrial microservices at participants’ organizations include

versioning support.

3 Exploratory questions: These questions center around microservice design

features discussed in the literature [141, 83, 133, 134]), but completely missing from

the testbeds we consider. For example, cyclic dependencies within requests—i.e.,

service A calling service B which then calls A again—occur in Alibaba traces [92],

but are not present in any of the testbeds we analyzed. This mismatch led us to

investigate if request-level cyclic dependencies occur in participants’ organizations.

Similarly, the testbeds do not make statements about application-level or per-service

SLAs (i.e., the minimum performance or availability guaranteed to caller over a

set time period [54, 131, 153]). So, we asked questions about whether microservice

architectures within participants’ organizations include SLAs.

4 Completeness check question: We ended each interview by asking if there

is anything about microservice design that we should have asked, but did not. This

question helped us gain confidence in the systematization we report on in Section 2.4.

(Though, we cannot guarantee comprehensiveness.)

5 Pilot studies: We conducted two pilot studies before the first interview. We

33

refined the interview questions based on the results of these pilots.

2.3.3 Interviews & Data Analysis

Our hour-long interviews consisted of a 5-10 minute introduction, followed by the

questions. Participants were told they could skip answering questions (e.g., due to

NDAs). We encouraged participants to respond to our questions directly and also

to think-aloud about their answers. We asked clarifying questions in cases where

participants’ responses seemed unclear and moved on to the next question if we were

unable to obtain a clear answer in a set time period. At times, we probed participants

with additional (unscripted) questions to obtain additional insights.

For data analysis, three of the co-authors analyzed participants’ responses together.

We used the labels below to categorize responses. We additionally identified themes

in the interview answers and extracted quotes about them.

1. Unable to interpret : The three co-authors’ could not come to a consensus on the

interpretation

2. Unsure: Interviewees did not know the answer

3. Yes : for a yes-or-no question

4. No: for a yes-or-no question

We report only on participants who provided answers and whose answers we can

interpret (hence the denominators for participants’ responses in Section 2.4 may not

always be 12).

2.3.4 Systematization & Mismatches

Systematization: We used the responses to our questions to expand the testbed

design axis table presented in Table 2.1 and create Table 2.3. New rows either

34

correspond to 1) exploratory questions about microservice design that elicited strong

participant support or 2) design elements a majority participants verbalized while

thinking out loud. Columns correspond to specific technologies or methods participants

discussed for the corresponding row.

Mismatches: We compared the results of our expanded design axis table to the

table specifically about testbeds, in order to identify cases where the testbeds could

provide additional support.

35

2.4 Results

Table 2.3 describes the design space for microservices based on the testbeds and

interview results. The rows are grouped into high-level design categories including

Communication, Topology, Service Reuse, Evolvability, Performance & Correctness,

and Other. Within each category, there are specific design axes along with the range of

responses from participants and specific examples, when applicable. For example, the

communication category includes specific axes for protocol, style of communication,

and languages used.

In the following sections, we discuss each row of Table 2.3. We first state the

number of participants who provided responses that were interpretable. We then

state the high-level results, which are applicable to all of our participants. We also

present specific granular breakdowns for each result where applicable. Following these

statistics, we provide quotes from the interviews, referencing participants by their ID

in Table 2.2.

2.4.1 Grounding questions

Participants’ responses were similar to results in existing user studies [141, 120] and

other academic literature [55, 156, 138]. In describing what microservices are, 7 out of

12 participants identified them as independently deployable units and 3 participants

explicitly mentioned that applications are split into microservices by different business

domains. Almost all participants noted the ease of deployment, testing, and iterating

on services as being benefits of microservices. On the other hand, a monolith was

described by most participants as a single deployable unit with all of its business logic

in one place. Participants noted that monoliths have many downfalls, such as their

inability to scale granularly, having a tight coupling of components, and being a single

point of failure.

36

While participants agreed on common benefits like isolated deployment and failures,

they disagreed on the challenges caused by using microservices. Concerns range from

high-level views, such as difficulty with seeing the big picture of the whole application,

to more specific ones like extra work (e.g. getting data from a database) caused

by strict boundaries and backwards compatibility (e.g. the versioning problem).

Regarding how shared libraries and microservices are distinct, most participants were

unsure of a true distinction, while some tied microservices to stateful entities and

shared libraries to stateless entities.

2.4.2 Communication

Protocol We have 11 interpretable responses for the communication protocols used

at participants’ organizations. 5 of the total 11 responses included HTTP, and 6

responses had a combination of both HTTP and RPCs. No participants use only

RPCs for communication. For these communication protocols, participants shared

specific mechanisms including REST APIs (6/11) and gRPC (3/6).

Of the eleven participants that mentioned using HTTP as a communication

protocol, three of them mentioned using standard HTTP without mentioning REST

specifically. Two participants shared that any communication protocol can be used,

beyond HTTP and RPCs, in appropriate scenarios.

Participants expressed differing opinions on which communication protocol is best

suited for microservice applications, with P2 saying “in the real world [use] REST...

if your team needs RPC you’re probably doing some sort of cutting edge problem”

since “the overhead for using REST is relatively negligible to RPC,” while others,

such as P9, felt more drawn to RPCs: “we use both [HTTP and RPC], but generally

we would prefer to use RPC.”

37

Style We have 5 interpretable responses for the communication styles used at par-

ticipants’ organizations. 3 of the 5 participants with interpretable responses suggested

that their organizations have a mixture of both synchronous and asynchronous com-

munication styles in their services, while the remaining 2 participants only mentioned

synchronous forms of communication.

Out of the three participants that use both forms of communication, P5 warned of

the dangers of poor design combined with only synchronous communication saying

“you certainly don’t want a scenario where somebody has to make multiple calls to

multiple services and all those calls are synchronous in a way that is hazardous and...

I think folks are mindful of this when they make broad designs. I think this starts to

break down when folks are trying to make nuanced updates within.” P3 also noted

that one benefit of asynchronous communication is that “[dependencies are] more

dotted lines than solid lines right, they’re not strictly depended on this.” Additionally,

P1 pointed out that “[logging] is completely asynchronous,” indicating a specific use

case for asynchronous communication.

Languages Used We have interpretable responses for all 12 participants regarding

the languages used at their organization. Participants’ responses included 3 restricted

to using only one language, 4 using multiple languages with restrictions on which ones

could be used, and 5 using multiple languages with no restrictions.

All three participants that only use one language at their organization are restricted

to using Java. P1 attributed this to their hiring pool: “...management will typically

look at what’s cheaper in the general market. Which technical skill sets are readily

available in case someone leaves and they need to replace [them] and so on.”

Out of the four participants who used a restricted set of languages (more than

one), P8 shared that using a small set of languages is due to “shared libraries. If

you have very good shared libraries that make things super easy in one language and

38

if you were to switch to another language, even if you like writing in that language,

there’s almost no... Look, at the end of the day, the differences between languages are

not [great enough] to be able to throw away a lot of shared libraries that you would

otherwise be able to use.”

Out of the five participants who have unrestricted language choices, P2 explained

that “some of these [services] were forced to use a [new] language because the library

is only available for this language.”

Out of the nine participants that use multiple languages, six use three to five

languages in their applications, two use more than eight languages, and one did not

know the number, saying “ I’d go to Stack Overflow and [ask] how many languages

exist?” (P4). Table 2.3 shows the most commonly used languages among our

participants’ organizations: Java, Python, C\C++, and Go.

Figure 2.4: Topology Approaches For the most part, participants used one of four
approaches when asked to draw a microservice dependency diagram that would be
used to explain microservices to a novice. Note that C represents a hybrid deployment
retaining some monolithic characteristics.

39

2.4.3 Topology

We asked participants to draw a Service Dependency Diagram to explain microservices

for a novice entering the field. This gave us a sense of the important characteristics of

microservices that participants think about most prominently. 3 of the 12 participants

drew two different diagrams, giving us 15 total diagrams. We present these results in

Figure 2.4 showing the most common approaches taken by participants.

The first common approach was to draw a monolith then completely refactor it

into a microservice architecture (1/15, A). The second approach was similar, starting

with a monolith and pulling out specific bits of functionality into microservices.

This incremental refactoring approach resulted in a monolith connected to a set of

microservices (3/15, C). The third approach was to take one service and expand the

architecture by considering its dependencies (4/15, B). The final and most popular

approach was to consider a business use case, listing all services needed to accomplish

the task, then connecting the dependencies (6/15, D). The single other approach,

which is not included in the figure, was centered on container orchestration (P4).

Number of Services We have 12 interpretable responses for the number of services

in the applications managed by participants’ organizations. As shown in Table 2.3,

the number of services ranged from 8-30 services (3/12), 50-100 services (5/12), and

over 1,000 services (1/12). The responsibility of development and maintenance of

these services is shared across multiple teams at the organizations. (3/12) participants

were unsure of the number of services at their organizations.

Of the 3 participants that were unsure, P7 explained that “I cant [estimate the

number of services] because it depends how you divide. For example, I have some

services that run multiple copies of themselves as different clusters with slightly

different configurations. Are those different services or not?... Not only could I not

even tell you the count of them, I cant tell you who calls what, because it might

40

depend on the call and it could change day to day.”

Dependency Structure We have 10 interpretable results for participants’ experi-

ences with microservice dependency structures. The responses consisted of hierarchical

(2/10), non-hierarchical (6/10), and unsure or no strong stance either way (2/10).

Most participants rejected the notion that microservice dependency structures

are strictly hierarchical. Recall that a hierarchical topology is one where services

can be organized as a tree, where the top level services are an API gateway or load

balancer and the leaves are storage. Participants often initially said yes, but then

changed their minds and thought of counterexamples. For example, P11 explained

“now that I’m evaluating microservices and and I’m recognizing that the services should

be completely independent, there’s no reason that they should always follow that

paradigm... I’m coming to an answer, no, it is not always the case.” Participants

provided different reasons for non-hierarchical topologies. For example, both P7 and

P8 described non-root entry points: “I guess the way I think about it [is], where

does work originate. And it is perfectly valid for it to originate from outside the

microservices or from inside the microservice architecture, so I think it can go both

ways”(P8).

Of the two participants that agreed microservice dependency structures are strictly

hierarchical, both attributed this belief to only having experiences with hierarchical

topologies. For example, P9 said “all the ones I’ve seen have been that way I guess. I

can’t rule out the there may be some other reason to architect [it] another way, but

yeah I would agree [that microservice dependency diagrams are strictly hierarchical].”

Cycles We have 9 interpretable responses for cyclic dependencies in microservice

dependency diagrams. Most (6/9) participants agreed that there can be cyclic

dependencies between services in microservice based applications, while the remaining

(3/9) participants were unsure.

41

Six participants expressed that cyclic dependencies should be avoided when possible.

For example, P4 explained “generally speaking... you kind of want to avoid cycles just

for keeping your designers sane so I don’t think it’s a good idea.” In a similar vein,

P6 shared “whether or not a microservice, you know, service one could hit service two

and service two could hit service one again? Yeah, I would say that it’s... I would

consider that an Anti pattern, but not- Like there still might be a good reason to do

it, but I would consider that generally is like a code smell or a stink.”

Three participants did not warn against cyclic dependencies. P8, for example,

explained that “[valid cyclic dependencies] depend on how you divide your microservices.

[For] many microservices, it just makes sense to have them contain both the front

end and kind of the business logic like back end code. And sometimes, microservices

borrow things. When a microservice is holding back end and front end code, you could

imagine service A calling service B to get, you know, some nice back end calculation

done. But then maybe service A actually has a cool widget that service B wants

to display... You could be super rigid- like this microservice just has this one really

cool widget. Well, then you would never have any cycles, because each [microservice]

only does one thing. But that’s not practical like things are going to host front end

components. And the links between the front end components and back end logic are

not always as hierarchical.”

Service Boundaries We have 9 interpretable responses for service boundaries.

Participants listed many different ways to create service boundaries: by business

use case (2/9), by single team owner(4/9), in ways that optimize performance (3/9),

in ways that reduce cost (2/9), and by distinct functionality (2/9). (Participants

provided multiple answers, so our tallies add up to more than nine.)

The most frequent answer among the participants was setting service boundaries

to have single team ownership. P2 warns of “the pain of having an improperly scoped

42

business domain where multiple teams are trying to compete basically for the same bit

of business logic. Make only one team [responsible] for that logic even if... multiple

have to co-parent, one needs to be accountable.” P3 explains, when reflecting on

refactoring one microservice into a user and enterprise service, “we had two different

teams that were going to be focusing on different things and iterating on those things

very, very quickly.”

P4 discusses how overheads could change due to service boundaries: “If I’m able to

do everything internally by just sharing memory buffers or just shooting little message

queues around, that’s one thing. If I suddenly have to communicate through a bunch

of HTTP [requests] or sockets [due to refactoring my service], am I adding additional

overhead in there that may be degrading my performance in a meaningful way?” In

addition, P4 weighs the security costs of having more, smaller services: “suddenly

let’s say we decompose [one service] into four things. Each one of these might have a

different attack surface that we need to reexamine. Is it worth the cost of looking into

that?”

2.4.4 Service Reuse

Within an Application We have 4 interpretable responses about service reuse

within a single application. All 4 participants indicated a significant amount of service

reuse within an application.

P2 explained “you always have a few [services] that everybody is dependent on.” In

addition to this, P12 shared that microservices could be reused within an application,

specifically for different endpoints. They added that when microservices are reused

within an application, they “don’t think the same request would go to the same

microservice twice, that seems like bad engineering to me. You should be able to do

everything you’re supposed to do on the first time around.”

43

Across Applications We have 9 interpretable responses about services being used in

multiple applications. (8/9) said some of their services were shared across applications

while (1/9) said none of their services were reused.

Of the participants who said services were shared across applications, P2 said it’s

“pretty common” and P12 said “that is why we made microservices.” In a similar

vein, P7 explained “that’s almost always, yeah. With the exception of maybe the very

front end of them”. P8’s organization has “some core services that are used by all

applications.” For example, they mentioned “the authentication service is used by

all.”

P4, an industry researcher, explained “we have a specific service which we have

actually containerized to test these things out and we are looking at potentially having

multiple applications ping it.” As for how many dependencies this shared service

would have, P4 said, “it’s going to depend on what we’re trying to research. In

this case, since we are doing some research on scalability, we will eventually very

deliberately go through and see how many different things can we connect to it before

it falls over sort of thing.”

As for the participant whose organization does not reuse service across applications,

P11 shared that “I don’t see that. It’s just one application and it’s just a collection

of microservices bounded by that application context that mirrors the silo that the

application is built in.” When asked if the same functionality was required for two

different applications, they shared that “they would generally be making a new

microservice to fill” the need.

Storage We have 10 interpretable responses about database reuse. The response

included dedicated database per service (3/10), shared databases (5/10), and a

combination of both (2/10).

Of the three participants that have only dedicated databases for their services,

44

P8 shared “the one thing I can say is that [our] core services will have their own

devoted data store so like authentication, [has an] authentication database.” They

could not share information about their application specific services’ databases. P11,

a consultant, said dedicated databases “is what I’m seeing most often, yes.”

Of the five the participants with databases used by multiple services, P3 said

“ideally, they don’t. In practice, they absolutely did.” Not all participants felt as

though databases shouldn’t be shared. For example, P2 explained “they always share!

Every time, they always share.” P6 said “my previous company definitely reused

databases. Microservices and teams might have their own tables within that database,

but that database was still the same.” Finally, P5 shared that “we have a legacy

database. In fact, every one of our customers has its own database. That’s necessary

for compliance reasons.”

Of the two participants whose organizations have a combination of dedicated and

shared storage. P9 initially explained “each [service] I’m aware of uses a dedicated

storage,” but later added “there is a microservice that can be used for storage that I

guess, in a sense, is a way storage can be shared.”

2.4.5 Evolvability

Versioning Support We have 11 interpretable responses about how participants

approach adding new versions of a microservice. 6/11 participants have some sort of

versioning support in place while the remaining 5/11 did not. As shown in Table 2.3,

the methods of versioning support used by the participants include versioned APIs

(2/6), explicit support like UDDI (1/6)[17] and a proxy (1/6). The remaining 2/6

participants with versioning support did not provide a specific mechanism.

Of the six participants that have a mechanism in place for adding new versions

of services, P1 shared “there’s things like UDDI that help with versioning, but we

typically don’t depend on that. We will literally just publish a new endpoint.” P7

45

explained using a proxy for versioning, where a copy of a small amount of production

traffic would be routed to the new version instead of the old one and the results of the

two versions would be compared. P3 shared the preference to “translate internally.

Right, so a request can still come to the old [version], but you’re just using the new

code.”

The two participants that did not provide a specific mechanism for versioning

explained that they use Blue/Green Deployment for verifying that new versions should

be shipped to production.

Of the five participants that did not have a mechanism in place for versioning, P9’s

approach to adding new versions is to “deploy into a different version of the cluster.

That’s how I test my services- manually configure the route headers to contact this

test cluster.” P11, shared that at the companies they consult at, they “for lack of a

better option they’re simply coding and hoping that it will say the same.”

Two of the participants shared the challenges with versioning. P2 warned “that’s

the problem with microservices that you’re coming to... that no matter what [with]

microservices you get into a dependency hell. The biggest thing I can say is [please]

version your API. If you’re going to use an API, version it and have some sort of

agreement for how many old versions you want to maintain.” P12 explained that at

their previous company, they deemed this “the versioning problem... Your change

in your one domain, when you’re updating the microservice, has to be reflected

company wide on anything that depends on it or utilizes it, and so I mean there are

ways to handle this which is like, you know bend over backwards, for the sake of

backwards compatibility.” They explained their process for versioning as “whenever a

microservice gets changed, try to determine through... regular expression code search

where all of the references in the code base to that particular stream of characters

were but that’s not enough. So what you then have to do is you’d have to actually

grunge through the abstract syntax tree of each Python program in order to determine

46

the parameters that were given [and] the types of those parameters.” They ended this

discussion with “I’ve left that job and I continue to [think] about it on a near weekly

basis because it’s such an interesting problem.”

2.4.6 Performance & Correctness

SLAs for Microservices We have 11 interpretable responses about SLAs with

respect to microservice based applications and microservices themselves. 8/11 have

SLAs with the remaining 3/11 not having SLAs. Of the 8 participants that have SLAs,

7/8 have SLAs for entire applications and 3/8 have SLAs for individual microservices.

Of the eight participants that have SLAs, P6 explained “we had SLAs with respect

to the entire product’s behavior and the product was composed of the microservices.

So as a unit the microservices had an SLA which was like, we wanted four nines

reliability like 99.99% uptime. But that was considering the product as a unit not as

the microservice. We did, internal to the company, have individual targets where... it

was just part of like your performance review as a team.” Plus, P1 shared “we have

SLAs for everything, [including individual microservices].”

The remaining three participants expressed varying sentiments on why their

organization did not have SLAs. For example, P3 explained a challenge of supporting

SLAs: “there [were] a lot of fights about it. It was one of those things I wish we did.

But I think before you can have those... like there were things we were missing to tell

what service level you’re actually offering. And before you can have agreements we

have to know how to measure if you’re actually hitting those agreements or not. That

was a rather consistent argument between the engineering teams and the infrastructure

teams.” On the other hand, P5 explained “we’re not known as high availability and

we’re not.... Nothing is transactional or urging in that particular way” as the reason

for not needing SLAs at their organization.

47

Distributed Tracing We have interpretable responses for all 12 participants on

whether they use distributed tracing. 1/12 was unfamiliar with distributed tracing,

8/12 did not use distributed tracing, and 3/12 did use distributed tracing. As shown

in Table 2.3, of the participants that use distributed tracing, one uses Zipkin, one uses

Jaeger, and one uses a homespun tracing framework. Of the participants that do not

use distributed tracing, 2/8 want to and 2/8 understand the need for tracing.

Of the three participants that use distributed tracing, P7 explained “we use

Zipkin... we rely on the features that are enabled by it so it shows things like service

dependencies, we use [it] for capacity planning, we use it for debugging. If we want

to know why there is a performance problem, my team doesn’t do a lot of this right

now because there hasn’t been a lot of pressure on that, but, other teams do look at

this and they’re like ’Why is [there] a performance problem?’ and they’ll look at the

traces and be like ’oh yeah this call is taking three times as long as you’d expect’.”

P10 shared that “we have multi-tenancy environments meaning we have multiple

customers, multiple people accessing the same services.” P10 also shared how they

use the trace data to “[get] management in place, in other words, when you step into

a cluster, by default- it’s a free for all... everything [can] talk to everything. What you

really want to start doing is...basically [build] highways/roadways inside the cluster

and [define] those roadways... and we actually apply policy for our applications so

that... We know that this namespace and this ”pod” and the services [are] talking to

the parts and services it’s exposed to, and nothing else. You want to prohibit that

kind of anomalous activity.”

Of the nine participants that don’t use distributed tracing, P1 shared “we’re not

that far yet.” P2, a consultant, explained that “normally by the time that’s really a

problem, fortunately I’m out of there... I’m more involved in the early few months of

work. If you’re into that level of debugging, you’re normally months in or years and

something’s gone really wrong somewhere and you’re trying to figure out who broke

48

it.” Finally, P3 explained “there are some places that it got set up [but] I didn’t have

too much experience with it. That was one of those [things] if we had invested more

time into it, we would have gotten more out of it. We just never really invested the

time.”

Testing Practices We have 11 interpretable responses about testing practices with

respect to microservices. The most common tests are unit tests (9/11), integration

tests (5/11), end-to-end tests (4/11), load testing (4/11), and using a CI\CD pipeline

(3/11). (Participants provided multiple answers, so our tallies add up to more than

eleven.)

Participants listed a wide variety of testing types and practices in addition to

the ones listed above including smoke tests, static code analysis, chaos testing, user

acceptance testing, and so on. Even with an abundance of available testing methods,

some participants, including P9, “stick to testing the individual functionality of the

microservice.” Other participants aim to expand their testing practices as their com-

pany grows. For example, P11, a consultant, shared “blue green canary deployments...

those are things that we talked about but it doesn’t happen there- [the companies

are] not mature enough to do that.”

Two participants expressed dissatisfaction with the testing practices at their

companies. For example, P3 shared “where we could, we would do load testing,

but I have yet to see a place that does that particularly well. It’s really hard to

mimic [production] load in any sort of staging environment. It’s really hard to mimic

[production] data in any sort of staging environment.” P5 explained that they use

“end-to-end [testing], but for the product broadly, [the tests are] incredibly flimsy. And

they’re hard to write, so a lot of our microservices that we think are tested are not

tested.” In addition, P2 shared another testing challenge: “What do I do when I’m

dependent on another thing changing? That’s a great question and [I] still do not

49

have a good answer for that.”

As a result of the challenges of testing microservice based applications, some

participants shared a different mindset about testing. For example, P3 explained, “at

some point, in some places we cared less about testing before the thing went out and

more being able to very quickly un-break it when it does break.”

2.4.7 Security

Security Practices We have 11 interpretable responses about security practices

with respect to microservices. Three themes emerged among the responses: exercising

granular control over security (4/11), encrypting communication (4/11), and having

awareness of your attack surfaces (3/11).

Since microservices have well defined endpoints and boundaries, it is possible to

have granular control over the security of each endpoint. P5 explains “you can have

really clear granular control, about which [services] can communicate with which other

[services]” and what the service is allowed to do. For example, “service A might have

some users that are only authorized for certain GET calls. And other services [are]

authorized perhaps maybe to write certain things, but it should not be able to ask

questions of that thing. And then yet another service has the right to write to a queue

that that service will eventually pick up and do something with that, but doesn’t

otherwise give any knowledge of what’s there.” P7 echoed this sentiment by saying

“you may have different trust boundaries on the different services.” P3 explained that

security efforts can be focused on certain aspects of a system, asking “do we need to

care about this? In many cases, no. Admitting logs to a log server like if you’re not

logging sensitive information, who cares? Sending billing data back and forth, like, I

care a lot. So it depends on what bits you care about.”

In addition to focusing security efforts, participants pointed out that communication

between services should be secure. For example, P7 said “you have to deal with the

50

network, so your network has to be secure.” P1 agreed that “with microservices you’re

typically having to encrypt and secure the communication between services themselves...

given the chatty-ness of them and the fact that they’re typically communicating over

REST APIs, you need to secure all of that. It’s handled typically, at least in my world,

using sidecar injections and containers and so on. ” Not all participants agreed who

should be responsible for communication encryption. P2 shared “the reality is that

nobody cares about security, they push it off to the... so I’m a security nerd. [But,]

developers don’t care about security... If your subnet can truly be trusted, [it’s] not

an issue. But if you can’t and run into issues with eavesdropping, this is something

where having a service mesh can help basically encrypting those connections.” P6

explained “I would say some organizations can probably get away with less strict

security practices, where if you’re internal to their network, they don’t have to be as

careful. They’re not encrypting the traffic. They’re not using TLS because they’re

assuming that everything’s locked down, all the hardware [it’s] running on is locked

down and no one else can access it. And if you’re in their network, you’re in their

network, so it doesn’t really matter.”

With microservices, the number of externally available end points can have an

impact on security. P8 shared “if all your microservices are publicly exposed to

the Internet, someone can enter that topology from any node” which would make

penetration testing more difficult as well as tracking down malicious actors. In addition,

P4 explained “your attack surfaces [with microservices] look fundamentally different

on some level.”

Participants shared that microservices can simplify security. For example, P9 said

“it’s a lot easier to audit your security concerns in a microservice architecture, just

because you have to define each of your individual dependencies.” Similarly, P11 said

“from a microservices standpoint you would typically expect a higher level of scrutiny

of the code, because you have better visibility, things are more discrete.”

51

Design Axes Range of Responses Examples

Communication

Protocol HTTP, RPC, both gRPC, REST, Apache Thrift

Style Synchronous, Asynchronous, Both -

Languages Used
Multiple - Restricted,
Multiple - Unrestricted,
One

Java, Python, C\C++, Go

Topology

Number of Services Varies 8-30, 50-100, 1000+

Dependency Structure Hierarchical, Non-Hierarchical -

Cycles Yes, No -

Service Boundaries
Business Use Case,
Cost,
Single Team Ownership

-

Distinct Functionality,
Performance,
Security

Service Reuse

Within an Application Yes, No -

Across Applications Yes, No -

Storage Shared, Dedicated, Both -

Evolvability

Versioning Support Yes, No Versioned API, Explicit Support (UDDI),

Proxy

Perf. & Correctness

SLAs for Microservices
Yes - Applications,
Yes - Applications and Services, No

-

Distributed Tracing Yes, No Jaeger, Zipkin, Homespun

Testing Practices
Unit,
Integration,
End-to-End, Load, CI\CD

-

Security

Security Practices
Granular Control,
Communication Encryption

-

Attack Surface Awareness

Table 2.3: Design Space for Microservice Architectures These design axes
were identified through the practitioner interviews. Rows in the table, which are
specific design axes, are grouped by design category. Each design axis has the range
of responses from the interviews as well as specific examples of specific design choices
mentioned by the interviewees.

52

2.5 Analysis

2.5.1 Recommendations and Analysis

The interview results we present in Section 2.4 illustrate that there are a series

of gulfs between the assumptions under which testbeds (§ 2.2.1) are designed and

the expectations and needs of users and architects in production-level microservice

deployments. Following the key design considerations outlined in Table 2.3, we analyze

the discrepancy between testbeds and the systems they claim to represent, as well

as providing guidance for creating a more representative microservice testbed. We

expand on the findings of newer design axes in Table 2.4.

DSB - SN DSB - HR DSB - MR TT BI MSuite TS

Comm.

Style Both Sync Sync Async Sync Both Sync

Topology

Cycles No No No No No No No

Boundaries BUC, STO BUC, STO BUC, STO DF DF 3 Tiers Perf

Service Reuse

Within App Yes Yes Yes Yes Yes No No

Across App No No No No No No No

Storage In Some In Some In Some In Some In Some None Dedic

Perf.

SLA for Supp Supp Supp Supp Supp Supp Supp

Table 2.4: Additional design axes for microservice testbeds These new design
axes were discovered after conducting practitioner interviews. In some indicates that
databases are included within some services, but is not a separate services. Dedicated
indicates that a separate service interfaces with all the databases, and exposes an API
for other services. BUC=Business Use Case, STO=Single Team Ownership, Three
Tiers meant each application is just three tiers deep. TT = TrainTicket, BI=BookInfo,
TS=TeaStore. Supp=Supported

53

2.5.2 Communication

We compare the design decisions that developers in industry make regarding commu-

nication protocol, style, or language with the choices made by the testbeds. Overall,

the testbeds encompass the wide range of options used by industry practitioners, but

diverge in the finer design aspects of communication channels in microservices.

Protocol

The first decision that developers need to make regards the way services communicate

with each other. Typically, the entry point to a service will be using a REST API, as

most microservices applications are accessed using a browser or mobile application.

REST APIs, however, lack the performance benefits offered by specific RPC frameworks

such as gRPC or Apache Thrift [12, 8, 6]. Using an RPC framework requires the

application to be more rigidly defined, reducing its resilience and adaptability.

Academic Testbeds: TrainTicket, BookInfo and TeaStore makes use of REST and

DSB-SN, DSB-HR use Apache Thrift, while µSuite, along with DSB-MR, use gRPC.

No testbed uses more than one communication protocol.

Interview Summary: Even though all participants agree that their application

contains both REST or RPC in appropriate scenarios, 7/11 participants leaned towards

REST for its robustness and ease of implementation. Participants also indicate using

a mixture of both these protocols, as some parts of the application might be more

latency sensitive.

Recommendation: There is a need for testbeds that have a mixture of REST and

RPC protocol(s) within the same application to replicate a section of the use cases

seen in the industry. Choosing a communication protocol has significant effects on

latency, resource utilization, and other characteristics of the application [24, 25]. Thus,

an application with a mixture of these protocols would help us measure and mitigate

effects of various protocols on resource utilization, latency, etc.

54

Style

The style of communication impacts the performance of the application, with asyn-

chronous services having higher throughput than synchronous services [124, 140]. This

increased performance comes with more complex faults, as the requests might arrive

out of order or get dropped in transit.

Academic Testbeds: The major communication channels between the services in

testbeds are synchronous in nature, with some testbeds having some services which

process information asynchronously. DSB-HR, DSB-MR, TeaStore, and BookInfo do

not use any asynchronous communication in their architecture.

DSB-SN is the only DSB application with an asynchronous component that helps in

populating the Write-Home-Timeline service, which constructs the home timeline

and stores in a cache. This makes use of message queues for the asynchronous calls

between services. TrainTicket is the only testbed that contains both asynchronous

REST calls and Message Queues. µSuite applications have two variants; synchronous

and asynchronous as two separate applications in the codebase.

Interview Summary: Participant studies show two ways to implement asynchronous

communication: asynchronous requests between two services and using a message

queue. The overall findings can be summarized by a quote from Participant 5: “You

certainly don’t want a scenario where somebody has to make multiple calls to multiple

services and all those calls are synchronous in a way that is hazardous and... I think

folks are mindful of this when they make broad designs, I think this starts to break

down when folks are trying to make nuanced updates within.” Asynchronous updates

can also be a part of design choices arising from the requests originating from within an

application, a design choice we discovered during our conversations with practitioners.

Recommendations: There is a gap in understanding the impact on Asynchronous

RPC calls in a synchronous setting. This presents an opportunity for expanding

the existing testbeds to include asychronity, particularly in handling message queues.

55

There is also a need for understanding the impact of periodic internal requests on the

performance and resource utilization of the application.

Majority Languages

We track the programming language used across testbeds and compare them to the

languages our participants reported for their applications.

Academic Testbeds: To make this comparison, we only look at the language that

was used to write core application logic. DSB-SN and DSB-MR are largely written in

C++ as the core language, with Python being used for testing the RPC channel, Lua

for interfacing between external requests and internal applications, and C for workload

generation. DSB-HR is completely written in Golang. TrainTicket and BookInfo

use 4 languages, Java, Javascript, and Python being the common languages, with

TrainTicket opting for Golang and BookInfo choosing Ruby as the other language. In

TrainTicket, the majority of the services are written using Java, whereas BookInfo

has 4 services, each of which is written in a different language. All the applications in

µSuite are written in C++ and do not use any other language. TeaStore is completely

written using Java, with Javascript used in parts for integration purposes.

Interview Summary: While 75% the participants indicated using multiple lan-

guages for their applications, half stuck with a few core languages for the majority

of their services, and experimented with other languages based on specific needs.

The major reason for using a limited set of languages was to leverage the power of

core libraries which are available for those particular languages. Java, Python and

C# are the most commonly used languages of development among our participants’

organizations.

Recommendations: Overall, we find that the diversity of languages is similar

across the industry and academic testbeds. While some testbeds, such as TrainTicket,

work with multiple languages using REST, there is a need for benchmarking polyglot

56

applications that make use of RPC communication mechanisms, as there is fluctuation

in performance and resource utilization between implementations of RPC mechanisms

in different languages [16]. This will help application developers make better decisions

on the choice of language used to build a specific part of an application.

2.5.3 Topology

Topology has a profound impact on individual requests’ response times and the overall

latency of the application. We compare the structure of microservice testbeds with

microservice characteristics observed in actual implementations. Overall, the large,

intricate connectivity of microservice topologies (colloquially referred to as “Death

Star graphs” due to a resemblance to certain space stations) is not reflected in the

capabilities of the benchmarks. Topology also has impacts beyond application, where

it can dictate the way in which software engineering teams are set up as well [81, 102] 3.

Number of Services

The number of services in a microservice-based application is based on the business

domain and goals of the organization. Participants had varying definitions for what

constituted a service; however, for the testbeds, we counted a single service to be a

container that is deployed in production.

Academic Testbeds: µSuite, BookInfo and TeaStore have fewer than 10 services.

DSB-SN, DSB-MR, DSB-HR have 26, 30 and 17 services respectively, with scalability

tests performed using multiple deployments of the existing services. TrainTicket has

68 services in their testbed, and in the original work [156], they mention this not being

representative of the scale at which industry operates.

Interview Summary: Half of our participants’ organizations had worked with more

than 50 services in their architecture, with the services split between multiple teams

3This is referred to as “Conway’s Law.”

57

which were responsible for development and maintenance of the services. One of the

participants also shared that it was impossible to count the number of services in

production, as the number was not static; it changed periodically due to new services

being added, breaking down existing services to manage at least one load, deploying

replicas of existing services, or deploying newer versions of existing services.

Recommendations: The number of services in testbeds do not represent the

true scale of these applications. This is evident from our survey data, as well as

published reports which state that typical microservice deployments include hundreds

of services [156, 92, 74]. There is still no single testbed that mimics the scale of

services in industry, thus presenting an opportunity for an industry scale testbed for

performing scalability and complexity studies.

Dependency Structure & Cycles

Understanding and emulating the dependency structures that define microservice

topology is critical to provisioning, tracing, and failure analysis. This is one of the

areas of strongest mismatch between testbeds and actual use, particularly in the

presence of cycles.

Academic Testbeds: All of the testbeds we studied follow a hierarchical topology,

with requests originating from outside the system. DSB-SN, DSB-HR, DSB-MR

and TrainTicket have multiple requests for testing different functionalities of the

application, but the trace graph for each of these requests shows a hierarchical

ordering of services. µSuite has only one type of request, which goes through the

three tiers of the application before returning a result. BookInfo uses 3 versions of the

Reviews service where the request might not reach ratings services in 1 version but

is required in the other 2. TeaStore also has one request type originating externally,

which goes through all the services in a linear manner before returning a response.

Because of their strict hierarchical models, we assume no cycles can be present.

58

Interview Summary: Most of our participants reported that microservice architec-

tures are not strictly hierarchical, where the root node might be an API gateway with

storage layer in the leaf node and other application logic in between. They are more

non-hierarchical, with some requests originating from within the system, and a few

have cyclic dependencies as well [92]. The participants that assumed hierarchy noted

that their assumptions were from lack of experience or exposure to non-hierarchical

systems, indicating that the limited topology in academic microservice work may be

actively limiting them.

Recommendations: Existing testbeds are universally hierarchical in request pro-

cessing, which does not represent the majority of production systems we encountered.

More accurate representation would enable researchers to study and develop tools

for a broader variety of realistic dependency structures. Moreover, there is an oppor-

tunity for testbeds to include more flexibility in storage models, such that different

caching configurations and privacy-preserving data placements are easier to analyse.

Finally, a key finding of our study is that the presence of cycles in microservice

architectures is a theme in industrial deployments (validated further in a recent study

from Alibaba [92]), but completely absent in existing testbeds. Along with hierarchy,

testbeds also need to have cyclic dependencies in order to study the effects of such

dependencies on tools revolving around deployments, tracing, and scaling.

Service Boundaries

Given the modular nature of microservice architectures, there is a need for under-

standing the motivation behind creating these service boundaries. We compare the

motivations behind creating such boundaries in industry and academic settings, and

provide recommendations on the ways in which these gaps can be bridged.

Academic Testbeds: All the DeathStarBench applications have been demarcated

using “Business Use Case” and encouraging “Single Team Ownership”. TrainTicket

59

and BookInfo have distinct functionality for each of the services in their architecture,

whereas TeaStore services are conceived to maximise the performance of the system.

In contrast to the industry practices, µSuite was built with three tiers as the basis

for all microservice applications, a design choice that is different from the industry

practitioners.

Interview Summary: While the industry practitioners provided various responses

for splitting service boundaries, the most common response was to split it based on

Single Team Ownership, where each service is owned by a single team in accordance

with Conway’s Law [81]. They also talked about the dynamic aspect of microservices

where a single service can be decomposed into multiple services based on variety of

factors specific to organizations. New services can also be added due to expanding

the feature set of a product. However, the caveat of spawning multiple new services is

that this adds communication overhead placed on the system, with new network calls

being made to various services.

Recommendations: Most of the existing testbeds are built as static communication

graphs, but the industry practitioners, and also the literature [123, 92, 74, 34, 63],

tend to look at microservices as dynamic entities. Since the testbeds are built

with extensibility as a core design pillar, researchers can extend existing testbeds to

accommodate for newer services. This can be used for comparing the performance

and resource utilization of the application before and after the changes.

2.5.4 Service Reuse

Microservice architecture literature, and the testbeds derived therein, assume each

service is built with loose coupling and high cohesion in order to maximise service

sharing and minimizing duplicate code. We compare the extent of sharing of services

between the industry implementations and academic testbeds.

60

Within an Application

Academic Testbeds: The testbeds are built with a principle of modularity, which

is a core tenet of microservice architecture. Applications in DeathStarBench (DSB-SN,

DSB-MR, DSB-HR) and TrainTicket have a modular design wherein a service can be

accessed by other services based on the needs of each request. When looking at each

request chain that emerges in the traces, there is little overlap between the different

services used for processing different kinds of request.

Interview Summary: A third of the participants pointed out some level of

sharing of existing services in their architectures, noting sharing as one of the major

benefits of the microservice architectures. Sharing of services ranges from sharing key

infrastructure services to large parts of application code.

Recommendations: Even though service sharing is portrayed in testbeds, the level

of sharing does not entirely match practices in industry. This can be fixed by creating

new features which would use the existing services as well as extending the current

functionality of the testbeds.

Across Application

Academic Testbeds: Only DeathStarBench and µSuite have multiple applications

which can be used for analyzing the sharing of services across applications. When

looking at their traces and the codebase, there is no overlap or reuse of services

between their applications.

Interview Summary: The participants whose organizations had multiple applica-

tions indicated that they reuse services between different applications as well. The

extent of this ranged from sharing parts of the application such as authentication to

sharing critical infrastructure services such as logging.

Recommendations: Testbeds with multiple applications can be modified to share

services among the different applications for reuse between multiple services. Since

61

the various applications have different access patterns, this would help researchers

study the effects of mixed application workloads on the performance and resource

utilization of services.

Storage

Academic Testbeds: All the testbeds currently have the storage layer in their

leaf nodes, or towards the end of the request chain. The testbeds, with the exception

of µSuite applications, use a variety of persistent storage (both SQL (MySQL) and

NoSQL (Mongo)) for storing the data. µSuite applications do not make use of any

persistent storage, as the dataset to run the testbeds were stored as CSV files. DSB-SN,

DSB-MR, DSB-HR, and µSuite use a caching layer of memcached or redis to store

the transient results for faster access. TeaStore has a specific service which acts as as

interface between the database and other services. This gives them the flexibility to

swap out the database without the application being affected.

Interview Summary: From our interviews, we did not get a consensus on a

single kind of criteria for placement of databases in Microservice architecture. Some

organizations preferred having single database per microservice for ease of maintenance,

while others preferred this design only for critical services such as authentication.

Many participants preferred having shared databases, at least in non-critical parts of

the application, with the exception of one participant who mentioned always sharing

the databases.

Recommendations: While placement of storage is subject to the design and use

case of the application, the testbeds do not have extensive sharing of databases with

each other. The testbeds can be extended to explore the design paradigm of database

sharing where multiple services access the same data store for retrieving information.

This would be useful to explore, particularly in the context of privacy regulations such

as GDPR [118, 100]. There is also literature that has explored the field of caches for

62

microservices, for example placing caches based on workloads experienced by each

service [72].

2.5.5 Evolvability

When evaluating the design in terms of production capabilities, we deployed each of

the testbeds on machines using the instructions provided in their repositories.

Versioning Support

Academic Testbeds: Only BookInfo offers a single service with multiple versions

which can be used for evaluating versioning support. Similar to Adding Services,

other testbeds provide avenues by which a researcher could edit existing services and

re-deploy as separate versions. TrainTicket, TeaStore and BookInfo use REST which

can be easily extended by writing another version of a service in any language and

modifying the request chain. The service can be deployed using Docker container and

given a new REST API endpoint which is interfaced with other services. DSB-SN and

DSB-MR use Apache Thrift, while DSB-HR and µSuite make use of gRPC as their

communication protocol. Adding or removing versions of services is more complex in

these cases as the underlying code-generation file needs to be modified with updated

dependencies, then application code must be written for the newly generated service,

which then must be deployed using Docker.

Interview Summary: The survey results indicate that managing versioning is

a problem in active microservice deployments and that there is no consensus on

how to address it. Some engineers deploy new versions as a separate service, and

systematically fix the errors that occur because of these changes. Participants used

existing methods and tools to alleviate the problems that arise when having multiple

services are running concurrently.

Recommendations: To catalyze academic research into the versioning problem,

63

we recommend that testbeds be extended to readily allow for multiple versions of the

same service in order to help understand the effects on performance.

2.5.6 Performance Analysis Support

SLA for Services

SLAs are used for comparing the necessary metrics of a service to ensure a promised

level of performance, and define a penalty if that level is not met.

Academic Testbeds: Existing testbeds can define SLAs, and resources can be

allocated based on the traffic experienced by the service. SLAs have been set on

DeathStarBench [109, 151, 56, 58] and TrainTicket [109, 155], and these papers tested

various methods to scale resources for individual services. While FIRM[109] set a fine

grained SLA for each service, other works explored SLAs for the system as a whole.

Interview Summary: A majority of pariticpants had an SLA defined for their

organization’s microservices and used it for tracking the performance of their applica-

tions. Participants did not have strict SLAs for individual services, but some used

them internally for tracking performance regression.

Recommendations: While testbeds and follow-up research can represent sys-

temwide SLAs, an ideal testbed should also include support for fine grained SLAs for

each service.

Distributed Tracing

Distributed tracing is used by developers to monitor each request or transaction as

it goes through different services in the application under observation. This enables

them to identify bottlenecks and bugs, or track performance regression in applications

in order to identify and fix the bottlenecks in them.

Academic Testbeds: All testbeds except µSuite came with a built-in distributed

tracing module, whereas µSuite used eBPF for tracing the system calls made by the

64

services. DSB-SN, DSB-HR, DSB-MR, TrainTicket and TeaStore used Jaeger as the

tool used for tracing, and BookInfo used generic OpenTracing tools for the same.

Interview Summary: Only a quarter of participants used distributed tracing in

their applications, and their techniques matched those used in the testbeds.

Recommendations: Given the fledgling adoption of distributed tracing in the

production sphere, we recommend testbed designers leave tracing modular and easy

to experiment with, and, moreover, we highly recommend this as a fruitful area for

further study.

Testing Practices

Academic Testbeds: All the DeathStarBench testbeds have provisions to perform

unit testing using a mock Python Thrift Client which is used for testing individual

services in the application. TrainTicket also has unit testing on the individual services

to check for correctness. FIRM [109] built a fault injector for DSB-SN and TrainTicket

to test fault detection algorithms on these testbeds. TeaStore has a built-in end-to-end

testing module for testing each service and the application as a whole. BookInfo and

µSuite do not use any form of testing to test the correctness of their applications. One

can use a load testing tool such as wrk2[27] to perform load test on all the testbeds

except µSuite, as it uses gRPC for interfacing a frontend with a mid-tier microservice.

Interview Summary: While participants used Unit Testing to test individual

components of the application, there was no consensus on the testing methods and

strategies to test microservice applications as a whole. Efficient strategies for testing

microservices was noted to be a pain point in various organizations, though there was

an awareness of the importance of testing.

Recommendations: There is some testing framework within existing testbeds, but

it has not led to clear, translatable policy recommendations for production systems.

The existing testbeds cover the need for performing unit tests on individual services,

65

but the tools for testing microservice applications as a whole is still lacking. Twitter’s

Diffy [21]4 allowed developers to test multiple versions of the same application in

production. Researchers could use extended versions of these testbeds to implement

and verify tooling around testing practices for microservices. We recommend that

future testbed designers build in fault injectors, which will ideally encourage more

testing-focused future work.

2.5.7 Security

Security Practices

Academic Testbeds: DSB-SN, DSB-HR, and DSB-MR have encrypted commu-

nication channels by way of offering TLS support in their deployments. TeaStore

and BookInfo can be deployed using Istio Service Mesh which can be configured to

have encrypted communication channels between the services. TrainTicket and µSuite

do not offer encrypted communication channels. None of the testbeds offer granular

control or provide avenues to analyze the awareness of attack surfaces.

Interview Summary: The participants’ responses showed 3 major themes regarding

security in microservices: granular control, communication encryption, and attack

surface awareness [134, 106]. The participants elaborated that granular control would

be realized by way of having access controls implemented for a service’s API to prevent

attackers from gaining access to the overall system even if one service is compromised.

They also cautioned about exposing too many services to the outside world, as each

one would become an attack surface for entry into the application.

Recommendations: Apart from encrypting communication, the testbeds are not

developed with security considerations as a design choice. There is a need for research

on the appropriate security practices for microservices, both in terms of policy and

the right tooling to achieve them. With the number of attack surfaces growing as

4Diffy was archived on July 1 2020.

66

the service boundaries increase, there is a need for literature on threat assessment for

microservice applications.

Chapter 3

Chatting with Logs

3.1 Introduction

As modern web and mobile applications are increasingly deployed as microservices,

observability data (e.g. Metrics, Logs, Events, Traces, etc.) are collected from various

applications during the application runtime, and the tooling used to collect and store

this data increasingly plays a critical role in modern cloud deployments of systems [52].

Observability tools are crucial for understanding how the systems work at scale as they

provide insight into key tasks including predicting resource requirements [108, 109, 95],

diagnosing faults [58, 79, 88, 157], identifying security breaches [33], and performing

regular system checks [116]. Despite the importance of observability tooling, there is

a lack of standardization of how a user interacts with the different tools [104].

Log data is typically collected and accessed through various proprietary platforms,

each of which have their own query language [104]. Querying this data is invariably

ad hoc and challenging, involving exact matches to a log format, and keywords to

search over a large database [77, 75, 119]. Moreover, there is little to no syntactical

overlap between these languages, necessitating significant developer retraining when

moving between products.

67

68

Logs are often used to power insights dashboards. For example, consider a Grafana

dashboard for the OpenSSH application shown in Figure 3.1. This dashboard comprises

multiple panels that display information about the application’s current state. The

first panel in Figure 3.1a shows the total number of open connections, while Figure

3.1b displays the LogQL query required to generate this metric. To construct the

query, developers must be familiar with label names and label values, as well

as the exact log line syntax, including elements such as “sshd[” and “: session

opened for”, with precise attention to whitespace formatting. These components

are human-generated without standardized guidelines, which makes it harder for

developers to write LogQL queries, as the developers do not have complete knowledge

of the various log formats, keywords, labels and other components required to compose

these queries.

The lack of standardization extends beyond individual log lines to the various log

line formats that developers must handle. Current log parsers, including LLMParser

[94] and Drain [64], achieve between 50% to 90% parsing accuracy across applications,

presenting an ongoing challenge in the field. The absence of a standardized approach

for log line composition results in temporal shifts in formats and syntactical elements

required for query construction. These changes in log line structure create difficulties

for developers, even those proficient in query languages, as they attempt to formulate

and maintain queries over time.

Since various developers face challenges in composing the query, there is a need

for a standard query interface that enables developers to write queries more easily.

Given the recent advancements in Large Language Models (LLMs)[152], specifically

code generation models for languages like SQL [107, 110], we propose that a Natural

Language interface will allow developers easy access to observability data by providing

a natural language interface over the underlying query language [97]. Generating

log queries with an LLM is non-trivial as there are more than 50 different platform

69

(a) Grafana Dashboard for OpenSSH logs retrieved from [137]

sum by(instance) (count_over_time ({

$label_name =~"$label_value", job=~"$job",
instance =~"$instance"} |="sshd[" |=":␣session␣opened␣for"

| __error__="" [$__interval]))

(b) LogQL Query for calculating the total number of open connections (First panel)

Figure 3.1: Example Grafana Dashboard

specific log querying languages, and each model offers varying degree of support for

them. LLMs require a fundamental understanding of the target query language to

generate effective queries. Without this knowledge, LLMs may either refuse to generate

queries or, in more problematic cases, produce semantically or syntactically incorrect

queries [68]. The LLMs often end up generating queries that are non-executable and

in situations where the LLMs know the query language, efficiently prompting them

is often not enough to generate realistic queries (as we demonstrate in §3.2.3) due

to insufficient knowledge of log lines which are too big to be fit into context window

of the application. On the other hand, finetuning the LLMs for various languages

requires rich set of natural language questions, corresponding queries and the output

from the queries to serve as ground truth to test the efficiency of the model.

70

The challenge of querying logs with natural language exhibits significant similarities

to problems encountered in data analysis, such as text-to-SQL conversion. Composing

queries for log searches frequently involves the utilization of both structured elements,

such as labels [121] and tags [47], as well as unstructured components from log entries

that need to be included or excluded. In both scenarios, there is often a disconnect

between the individuals generating the data (e.g. tables, rows, logs) and those querying

it for information extraction [65]. However, these problems diverge in terms of data

characteristics and scale. While SQL tables may have varying schemas, the diversity

in log line formats is considerably more extensive. For example, common text-to-SQL

benchmarks like SPIDER [149] contain 5 tables per database, whereas each application

in LogHub [158] contains more than 25 log formats per application.

In this work, we take the first steps towards building realistic NL interfaces for

generating log queries. To achieve this, we first create a dataset of natural language to

LogQL queries and use it to fine-tune a suite of popular LLMs creating LogQL-LM,

a system designed to convert natural language questions into LogQL queries. LogQL

is a specialized query language for searching and analyzing log data within Grafana’s

open-source log aggregation system, Loki [82]. The selection of LogQL was motivated

by its open-source nature and the extensive availability of Grafana dashboards (Fig

3.1a), which enable the formulation of realistic natural language queries, and its

support in various open source LLMs.

Through our exhaustive evaluation, we demonstrate that fine-tuning on our dataset

significantly enhances the performance of popular LLMs, including GPT-4o, Llama

3.1, and Gemini, in generating accurate LogQL queries. Our experiments reveal that

GPT-4o achieves up to 75% and 80% improvements in accuracy and F1 respectively,

with fine-tuning enhancing query outputs, reducing syntax errors, and improving label

matching and temporal aggregation. We perform further ablation studies to evaluate

the effects of the number of training examples and the potential transferability of

71

these models across applications.

Specifically, this paper makes the following contributions:

• First, we present and release a datasetNL2LogQLdesigned to facilitate the

development and benchmarking of natural language to LogQL systems, with

a particular focus on fine-tuning Large Language Models (LLMs) to generate

syntactically and semantically correct LogQL queries. NL2LogQL consists of 424

manually curated natural language to LogQL pairs. Each pair is derived from a

panel in a Grafana Community Dashboard, covering three distinct applications.

The dataset was constructed by manually describing the purpose of each panel

in natural language and crafting the corresponding LogQL query. This resource

represents the first dataset specifically designed to enable an NL-to-LogQL

interface.

• Second, we present a web-based interface that enables developers to generate

LogQL queries for the aforementioned applications. This interface serves a dual

purpose: it provides a practical tool for query generation and acts as a platform

for collecting additional natural language questions, thereby facilitating the

continuous expansion of the dataset.

• Third, utilizing this novel dataset, we fine-tune three off-the-shelf LLMs for the

task of natural language to LogQL query generation. We release these fine-tuned

NL-to-LogQL models, along with the prompts used for their evaluation and a

fine-tuned CodeBERTScore model for assessing the results.

• We establish a set of metrics to quantitatively assess both the syntactic and

semantic correctness of LogQL queries generated by LLMs, and further conduct

a comprehensive study on the efficacy of fine-tuning models, analyzing the

optimal number of samples, the impact of post-fine-tuning prompting, and the

transferability of models across various applications.

72

3.2 NL Interface for Log Search

In this section, we present the challenges associated with querying logs, highlight

specifics of an open-source log query language called LogQL, and present an initial

sketch of how we can use LLMs to translate natural language queries to LogQL.

3.2.1 Challenge: Querying Logs is Difficult

Existing tools for storing and querying log data to obtain insights present a significant

usability challenges for many reasons. We highlight these challenges below.

Steep Learning Curve. These tools require the developers to learn and use

esoteric tool-specific query languages, that have a steep learning curve [104]. Due

to the unintuitive nature of these languages, users often struggle with constructing

effective queries to find specific log entries [43]. Consequently, only a small percentage

of power users within an organization can leverage the full capabilities of log analysis

tools [42], hindering the democratization of log analysis. Recent studies [48] have

also highlighted the challenges faced by new team members in using existing tools,

requiring significant time to gain proficiency.

Insufficient Context. In the context of DevOps [144, 116], where the developer

and the operator are usually different individuals thus the person writing queries

often lacks sufficient context. To construct effective queries, the operators often

require detailed knowledge of log lines. Operators often lack appropriate context as

they’re dealing with unfamiliar logs, or context switching between multiple tools and

dashboards [65, 49].

Large and unstructured logs. The complexity of writing these queries increases

due to the high volume of application logs and their varying formats. For example,

to write the LogQL query in Fig. 3.1b, the developer must know syntax of the log

querying language (LogQL) and also the semantics the log file – such as “sshd[”,

73

“session opened for” – that are required to construct this query.

Due to these inherent complexities, log data analysis remains predominantly

within the domain of software developers who possess intricate knowledge of the

logging systems. The utilization of log data presents significant untapped potential for

informing strategic business decisions [90]. For example, insights from HTTP header

parsing can optimize marketing campaigns by understanding regional traffic patterns,

and analysis of distributed traces can reveal the most commonly used platform features.

Questions like “what is the average response time for my website?” or “what are the

most common errors being reported?” can provide a more detailed picture of system

performance and identify areas for improvement. However, similar to data analysis

domain [103], non-engineers who want to extract such information must either rely

on engineers to write queries or learn the querying language themselves, creating a

barrier to data-driven decision-making across the organization.

To write effective log search queries, developers often need to have complete syntactical

and semantic knowledge of the query language and log lines. These challenges

collectively underscore the need for more intuitive and user-friendly interfaces to log

analysis that can improve productivity, accessibility, and cross-functional utility of

log data.

3.2.2 Background: LogQL

LogQL is a query language designed for searching and analyzing log data in Grafana’s

log aggregation system, Loki [82]. Loki focuses on indexing metadata rather than full

log text. LogQL provides tools for filtering, aggregating, and extracting insights from

log streams, supporting both log and metric queries, with a structure that includes

label selectors, line filters, and time range specifications.

LogQL provides users with tools to filter, aggregate, and extract insights from log

74

streams, making it valuable for monitoring, troubleshooting, and maintaining complex

distributed systems. Operators typically write a LogQL query per panel that are then

arranged together to form a dashboard (for example, the dashboard in Figure 3.1a).

The language supports two primary query types: log queries for retrieving and filtering

log content, and metric queries for applying aggregation functions to transform log

data into numerical time series.

As Loki’s indexing strategy focuses on the metadata associated with log lines,

rather than the full log text, this indexing approach has implications for LogQL

queries, as they must include the relevant tags to search the indexed metadata

effectively. For example, given the log line [2019-12-11T10:01:02.123456789Z

{app=”nginx”,cluster=”us-west1”} GET /about], Loki will index the times-

tamp and the labels attached to the log line, such as “app” and “cluster”, but not

the actual log text starting from “GET”. Since the indexing of the logs is based on

timestamp, the queries are relative to the current system time. Thus, LogQL provides

labels to allow filtering log lines using metadata. Labels are key-value pairs associated

with log streams, providing metadata about the logs’ origin and characteristics.

Consider the human written query in Figure 3.2b (green colour) to quantify the

occurrence of authentication-related service unavailability errors in an OpenStack

deployment within the Asia-Pacific region over the past 30 days. It begins with label

selectors enclosed in curly braces: {job=“openstack”, region=“asia-pacific”}. The

job=“openstack” label identifies logs from OpenStack services, while region=”asia-

pacific” narrows the focus to the Asia-Pacific region. Following the label selectors

are two line filters: —= “503” and —= “token validation”. These filters use the

—= operator to perform case-sensitive matches, selecting log lines containing the

HTTP status code 503 (indicating a service unavailable error) and mentioning “token

validation”. The query concludes with a time range specification “[30d]”, which

defines a 30-day analysis window. The “count over time()” function wraps the entire

75

log selection criteria, counting the number of matching log lines within the specified

time range. The complete list of filters and aggregation commands can be found in

LogQL’s documentation [62].

3.2.3 Our Vision: LLM assisted query generation

The heterogeneity of log query languages necessitates enhanced query composition

interfaces. While existing “query builder” interfaces ensure syntactic correctness, they

depend on developers’ expertise in log line selection. LLMs have shown efficacy in

log-related tasks, leveraging their ability to process unstructured text. However, direct

LLM application to log search presents challenges in handling large-scale data, efficient

indexing, and real-time capabilities [43].

We propose utilizing LLMs for log query generation, balancing accessibility and

efficiency. This approach, applied successfully in SQL generation [97] and data analysis

[146], leverages LLMs’ natural language understanding to translate search intents

into optimized queries. This method bypasses complex indexing requirements while

maintaining LLM capabilities, enabling execution through existing log search systems.

It reduces the query language learning curve, facilitates faster iteration for experienced

developers, and aligns with engineers’ mental models of their systems[78].

To adapt LLMs for specific tasks, two lines of approaches have been employed in

the past: (i) In-Context Learning (ICL) [40]; and (ii) fine-tuning pre-trained models

with task-specific examples[113]. We discuss the potential and limitations of both in

generating LogQL queries below.

ICL incorporates task-specific demonstrations into the input during inference,

guiding the model without parameter retraining. However, incorporating large log

files is impractical for smaller models due to limited context windows [44], and models

with larger context windows often exhibit instability and reduced robustness [89].

Similar to SQL generation issues [67], LLMs often generate non-existent log lines. To

76

demonstrate this, we devised a prompt with documentation, examples, and instructions

for generating queries in Datadog Query Language (DQL), LogQL, and grep.

Figure 3.2 presents an example query for searching service not found errors during

token validation in the past 30 days for a specific OpenStack node. Comparison

of LLM-generated queries (red color) with human-crafted (green color) ones reveals

semantic inconsistencies across DQL, LogQL, and grep methods. In DQL, the LLM-

generated query uses non-standard attribute names (e.g., “status.code:503” instead

of “@http.status code:503”), indicating gaps in platform-specific convention compre-

hension. The LogQL LLM query erroneously employs a non-existent function (e.g.,

“calculate over time” instead of “count over time”) and misapplies operators (using

“!=” instead of “—=” for inclusion). The grep LLM query presents a generic structure,

lacking context-specific knowledge of log formats (using generic error statements like

“error” or “failed” instead of specific log patterns) and misapplying common log analysis

patterns (e.g., searching for “token validation” instead of specific token-related log

entries). These errors, combined with log lines not fitting into the context window,

demonstrate that using ICL based approaches fails to generate realistic log query

language queries.

Fine-tuning, particularly few-shot tuning, offers significant advantages for adapt-

ing pre-trained LLMs to specific tasks such as LogQL generation. This approach

involves re-training the LLM on a tailored dataset, allowing the model to adjust its

internal parameters and better align its outputs with desired outcomes. Few-shot

tuning enables LLMs to generalize from limited examples, facilitating the extraction of

relevant information across diverse log formats and applications. This is particularly

crucial given the often ad hoc nature of log files, which lack standardized logging proce-

dures. By providing more diverse log examples during the training phase, fine-tuning

enhances the model’s ability to handle varied log structures.

Prior studies [113, 148] have demonstrated that few-shot tuning offers superior

77

accuracy at lower computational costs for related tasks like text-to-SQL. Moreover, the

efficiency of few-shot tuning, requiring only a small number of data samples, results

in a rapid fine-tuning process without significant time overhead.

Importantly, few-shot tuning eliminates the need for continuous in-context demon-

strations during inference, potentially reducing overall query latencya critical bottle-

neck for log queries [77]. This reduction in query latency is especially vital in log

search systems, where rapid data retrieval and analysis are essential for real-time

monitoring and troubleshooting of complex distributed systems. Faster query times

enable IT teams to detect and respond to issues more quickly, minimizing downtime

and improving overall system performance.

Few-shot tuning offers a promising approach for adapting LLMs to log query generation

tasks. This method enables efficient generalization from limited examples, reduces

inference time, and allows for diverse log example training. Given these advantages,

we employ few-shot tuning to fine-tune LLMs for LogQL query generation in this

study.

3.3 LogQL-LM

We first define the problem of translating a natural language log-query to LogQL as

follows.

To train such a mapping NL2LogQL, and evaluate its logging efficacy, we first

require a dataset that provides us with example tuples (DB, qNL, qLOG, a) each having

a logfile DB, a natural language query qNL, a ground truth correct LogQL query qLOG,

and the output of executing the query, a. We manually create such a dataset having

424 example tuples as described in Section 3.3.1. Using this dataset, we describe our

approach to fine-tuning existing large language models to automatically map any new

natural language query for any new logfile to the intended LogQL query.

78

NL Query LogQL Query Output
How many times
did the NameSystem
allocate new
blocks in the
past minute
for hdfs-south-america?

sum(count over time(
{application=“hdfs-south-america”}—
∼“BLOCK* NameSystem\\
.allocateBlock:” [1m]))

1880

How many times
did PAM ignore
max retries in
the last 24 hours
for openssh-us-east?

sum(count over time(
{application=”openssh”,
hostname=”us-east”}
—= ”PAM service(sshd)
ignoring max retries” [24h]))

39700

Show me the
most recent successful
login for user
’fztu’ in openssh-asia-pacific,
including timestamp
and source IP?

{application=”openssh-asia
-pacific”} —= ”Accepted
password for fztu”
— regexp
”(?P<source ip>\\d+\\.\\d+
\\.\\d+\\.\\d+)”

120 Log lines with
Accepted password
for fztu

What are the
top 3 most
frequent exceptions
encountered during
writeBlock operations
in the past
24 hours for
hdfs-asia-pacific?

topk(3, sum by (exception type)
(count over time(
{component=∼”dfs.DataNode.*”,
application=”hdfs-asia-pacific”} —∼
”writeBlock .* received exception”
— regexp ”writeBlock .* received
exception (?P<exception
type>[ˆ:]+)” [24h])))

{exception type=”java.io.
EOFException”}
{exception type=”java.io.
IOException”}
{exception type=”java.io.
InterruptedIOException”}

Table 3.1: Example tuple from our dataset showing the NL query LogQL query and
the corresponding output. The first 2 rows represent metric queries and the next 2
represent log queries

3.3.1 Dataset

As defined earlier, to effectively fine-tune a model to tranform natural language

queries to their LogQL counterparts, we require a comprehensive dataset consisting

of (DB, qNL, qLOG, a) tuples. Table 3.1 shows examples of such tuples for two metric

queries and two log queries.

Data Sources. Constructing a dataset of such records necessitates both realistic

logs and natural language questions to ensure the model’s applicability for operators

writing queries on their applications. We source logs from the LogHub 2.0 dataset [158],

79

which encompasses logs from diverse applications and includes various event extraction

templates for log parsing tasks. To obtain realistic NL queries, we analyze the Grafana

Community Dashboards [112], as these dashboards are open source and publicly

available. We extract NL questions based on panel titles and displayed information.

Our analysis of these dashboards informs the dataset construction, involving the

creation of LogQL queries corresponding to the presented panels. For panels requiring

multi-step queries, such as pie charts displaying failed login attempts by users, we

decompose them into separate NL to LogQL entries in our dataset. For example,

Figure 3.1a illustrates an example dashboard for OpenSSH, publicly available and

comprising 7 metrics panels and 2 log panels, which provides valuable information for

developers to establish alerting systems or query data. (e.g., “show the total users

with failed attempts” and “how many failed login attempts for $username”). While

we utilize Grafana and LogQL for our dataset construction, our approach is extensible

to other dashboards and log query languages.

Drawing insights from the construction of analogous datasets for text-to-SQL or

data analysis tasks [148, 98, 37], we recognize that dataset diversity is crucial for

producing fine-tuned models capable of addressing a wide range of queries. To develop

models that are valuable for operators in querying their logs, we have identified three

key domains across which we ensure dataset diversity: application type, use case,

and LogQL operation complexity. We create a total of 424 individual entries in our

dataset, across 3 applications encompassing a wide range of use cases and LogQL

operations. We spent 500 hours of human labour between the authors to create and

validate the dataset.

Application Diversity Our dataset mirrors the database diversity observed in

text-to-SQL tasks, where the models are finetuned to generate queries across different

databases. This diversity is essential for log analysis, as each application generates

unique log formats, lines, and structures, which are crucial for constructing accurate

80

LogQL queries. To ensure a representative range, we have built our dataset using logs

and dashboards from three distinct applications: OpenSSH, OpenStack, and HDFS.

These applications span diverse domains of system operations: OpenSSH facilitates

secure network communications, OpenStack manages cloud computing resources, and

HDFS enables distributed storage of large data volumes across commodity hardware

clusters. For the dataset, we wanted to have at least 50 samples per application, to be

consistent with common text-to-SQL benchmarks such as Spider[149] and BIRD[86].

Our dataset comprises 155, 154, and 115 samples for OpenSSH, OpenStack, and

HDFS, respectively.

Use case Diversity For OpenSSH, we identified 7 distinct use cases: Suspicious

Activities, Brute Force Attempts, Connection Analysis, Invalid User Attempts, Sys-

tem Health and Performance, User Session Analysis, and Authentication Failures.

OpenStack presented 11 use cases, including Instance Lifecycle, Audit and Synchro-

nization, Resource Usage, System Health and Maintenance, API Performance, Instance

Lifecycle Management, Image and File Management, Network Operations, Security

and Authentication, Error Analysis, and API Performance and Requests. HDFS

contributed 7 use cases: Replication and Data Transfer, Error Analysis, Performance

Issues, Data Transfer and Replication, Performance Monitoring, Block Management,

and NameNode Operations. This variety of use cases across applications ensures that

our fine-tuned models can address a wide spectrum of log analysis scenarios, enhancing

their practical utility for operators.

LogQL Operation Diversity The composition of our dataset reflects this di-

versity in LogQL operations, as illustrated in Table 3.2. For log queries, 65.8% use

single line filters, while 34.2% employ multiple line filters. In terms of label filters,

36.5% of queries use single label filters, and 63.5% use multiple label filters. It is

important to note that these percentages are independent; a query with a single label

filter can still have multiple line filters, and vice versa. This distribution ensures a

81

Type of query Filter(s) Percentage

Log

Single Line 65.8
Multiple Line 34.2
Single Label 36.5
Multiple Label 63.5

Metric
Log RA 40.1
Unwrapped RA 7.8
Built-in RA 40.1

Table 3.2: LogQL Query Types and Filters with corresponding values in our dataset

balanced representation of both simple and complex log query structures. For metric

queries, we observe an equal distribution between log range aggregation and built-in

range aggregation, each accounting for 40.1% of the metric queries. Unwrapped range

aggregation is less common but still represented, comprising 7.8% of the metric queries.

This distribution of query types and filters in our dataset provides a robust foundation

for finetuning models capable of handling a wide array of LogQL query scenarios.

3.3.2 Finetuning LLMs

In this section, we present the models used for fine-tuning and prompting for the task

of NL2LogQL.

For finetuning, we require models that can excel at various coding and reasoning

tasks and can learn to specifically generate syntactically and semantically correct

LogQL queries. To ensure a systematic empirical evaluation across a diverse set

of models, we selected three widely recognized models that have achieved state-of-

the-art performance in various coding and natural language tasks. Specifically, we

employed LLama-3.1 [130], Gemma-2 [129], and GPT4o [105], for subsequent fine-

tuning of NL2QL. Each model has unique strengths, especially in reasoning-heavy

tasks like Measuring Massive Multitask Language Understanding (MMLU) and coding

benchmarks [66].

• GPT4o is robust in both reasoning and coding, especially for complex queries,

82

but it’s closed-source and proprietary.

• Gemma-2-9B is the smallest LLM of the Gemma-2 series, released by Google,

which, despite its size, offers competitive performance due to improved paral-

lelized training. This model balances efficiency and performance, making it ideal

for scalable applications like NL2LogQL.

• LLama-3.1-8B is another notable LLM, leveraging Grouped-Query Attention

(GQA) for improved inference scalability. GQA enables more efficient handling

of large input sequences, which is critical for inference.

We fine-tune these models using LoRA [69], which introduces a small set of additional

trainable parameters while freezing the original model. By using low-rank parameteri-

zation, LoRA reduces computational and memory costs, enabling faster convergence

with minimal performance impact. Training Hyperparameters: We used the

AdamW optimizer [91] with 8-bit quantization, implemented via the bitsandbytes

library. The learning rate was set to 1e-4, following a cosine schedule with a warm-up

of 10 steps. The training was run for 4 epochs with a micro-batch size of 4 and

gradient accumulation steps of 1. To optimize memory usage, we applied gradient

checkpointing, 8-bit quantization for the base model, and flash attention. LoRA

parameters include a rank of 16, a scaling factor of 32, and a dropout rate of 0.05. All

our models were trained on 1 Nvidia A100 GPU available via Modal Labs [85]

3.3.3 Metrics

Similar to prior work in text-to-SQL [114], we evaluate the performance of the our

finetuned models using Exact Match and Execution Accuracy. To assess Execution

Accuracy, we compared the results returned by the LogQL queries generated by our

models to the results from manually written reference LogQL queries. Since there are

83

two main types of LogQL queries, Metric and Log, we used different metrics tailored

to each.

• For Metric queries, which return a numerical value, we compared the model’s

output and expected output. We find the output accurate if it is exactly the

same as the expected output, and any deviation is considered a wrong output,

for floating point outputs we compare up to two decimal places rounded up.

• For Log queries, which return a list of relevant log lines, we computed the

precision and recall of the model’s output log lines compared to the reference

log lines. We calculate the F1 score, which is the harmonic mean of precision

and recall, as a summary metric. These metrics evaluate how well the model’s

queries are filtering the logs to surface the most pertinent information. Since

LogQL results are always sorted by timestamp, we did not need to compare the

relative ranking of the model and reference outputs - the ordering is guaranteed

to be consistent as long as the same logs are returned.

Along with these metrics, we also make use of Perplexity Score [147], to assess the

language model’s ability to predict the next token in a sequence, providing a measure

of how well the generated code aligns with the model’s learned probability distribution.

A lower perplexity score indicates that the model is more confident and accurate in

its code predictions.

While comparing the output of the model is meaningful for checking the end

result, it doesn’t account for the syntax lapses causing the outputs to be dramatically

different. Relying solely on output-based evaluation methods can be misleading, as

they may fail to capture the underlying issues in the generated LogQL queries. To

address these limitations, we assess the exact match between the generated query to

ground truth query.

While Perplexity scores offers an intrinsic metric for the confidence of a model

84

in generating accurate LogQL queries, it doesn’t provide an extrinsic metric. To

mitigate this challenge, we make use of CodeBERTScore(CBS) [154]. CBS is a pre-

trained language model specifically trained for evaluating code outputs in various

programming languages. By finetuning CBS on a subset of LogQL queries from our

dataset, we evaluate the generated LogQL queries based on their semantic similarity

to reference queries and their adherence to the syntactic rules of the LogQL language.

The CBS evaluates the similarity between generated and reference LogQL queries

using cosine similarity, producing values between 0 and 1. A score of 1 indicates

perfect semantic and functional equivalence, while 0 represents complete dissimilarity.

Scores above 0.7 strongly correlate with high query quality and correctness as judged

by human evaluators, whereas scores below 0.4 typically indicate significant functional

deficiencies. The metric’s relative nature means it is most meaningful when comparing

queries within the same evaluation context.

By combining Perplexity Score and CodeBERTScore, we can obtain a more

comprehensive assessment of the generated LogQL queries. These metrics provide

insights into the model’s ability to generate syntactically correct and semantically

meaningful code, which is essential for understanding the model’s performance and

limitations.

3.3.4 Demonstration

To facilitate comprehensive model comparison and enhance user interaction, we

developed a web-based interface that enables simultaneous evaluation of multiple LLM

responses. As illustrated in Figure 3.3, the interface presents a streamlined design

with a prominent query input field at the top, where users can formulate natural

language questions about log analysis. Upon submission, the system concurrently

processes the query through three distinct fine-tuned models: GPT-4o, Llama-3.1,

and Gemma2. The responses are displayed in parallel panels, each showcasing the

85

generated LogQL query along with its response time. For example, when querying

about instance build times in OpenStack deployments, each model generates specialized

LogQL syntax incorporating regex patterns and temporal aggregations. The interface

displays response times (2.9s, 49.56s, and 67.8s respectively), enabling quantitative

performance comparison. This parallel visualization approach not only facilitates

direct comparison of query formulation strategies but also provides valuable feedback

mechanisms for continuous model improvement. The comparative layout effectively

highlights the nuanced differences in how each model interprets and translates natural

language queries into LogQL syntax, contributing to our understanding of model

behavior and performance characteristics. The demo is hosted on https://llm-res

ponse-simulator-alt-glitch.replit.app

3.4 Evaluation

To validate our natural language interface for LogQL query generation, we established

a comprehensive evaluation framework focusing on the models’ capability to generate

executable queries that yield accurate results. The evaluation framework covered

several key areas: first, a comparison between fine-tuned and baseline models; second,

an analysis of how the size of the fine-tuning dataset affects model performance; third,

an exploration of how well the model transfers across different application domains; and

finally, a qualitative review of the generated LogQL queries, using CodeBERTScore as

an objective measure. This comprehensive approach allowed for a detailed assessment

of LogQL-LM’s robustness and its ability to generalize to different use cases.

Figure 3.4 contains the complete pipeline of our evaluation. To ensure compatibility

with Loki’s indexing system (§3.2.2), we preprocessed the logs by converting them

to Loki format using the log parsing templates provided in the LogHub dataset.

Key-value pairs for the various labels were derived from the keys in the log templates,

https://llm-response-simulator-alt-glitch.replit.app
https://llm-response-simulator-alt-glitch.replit.app

86

with corresponding values parsed from each log line using existing parsers. Since Loki

performs relative-time querying and indexes data based on timestamp, we converted

timestamps in logs to to reflect more recent dates, while maintaining relative ordering

of the log lines. Since most log queries are for searching through the logs in the last 7

days [77], this pre-processing step proved crucial for facilitating efficient querying and

analysis of the log data.

Natural language questions from our test set are processed through different

infrastructures: vLLM for LLama and Gemma models, and OpenAI API for GPT-4o.

The generated LogQL queries are then executed on a locally deployed Loki instance,

ensuring consistent execution conditions and eliminating network-related variabilities.

The responses undergo comparative analysis, measuring various performance metrics

as detailed in Section 3.3.3.

3.4.1 Performance of finetuned models

Model App MQ (B) MQ (A) LQ (B) LQ (A) Pplx (↓)
Llama OSSH 0.03 0.50 0.05 0.42 15.2

OSTK 0.05 0.45 0.06 0.42 19.8
HDFS 0.02 0.48 0.1 0.59 22.5

Gemma OSSH 0.06 0.25 0.11 0.31 38.0
OSTK 0.02 0.27 0.12 0.47 36.7
HDFS 0.07 0.35 0.14 0.39 27.7

GPT4-o OSSH 0.21 0.74 0.16 0.62 9.8
OSTK 0.28 0.82 0.18 0.68 10.2
HDFS 0.23 0.79 0.19 0.74 10.7

Table 3.3: Results for models (B)efore and (A)fter finetuning. MQ = Metric Queries
measured by Accuracy; LQ = Log Queries measured by F-1 Score; Pplx = Perplexity

In this experiment, we wanted to test the effeciency of the finetuned models

in generating LogQL queries compared to the base model. We used 50% of the

samples from each application for finetuning the models using the method described

in Section 3.3.2. Our experimental evaluation of the NL2LogQL translation models

87

reveals significant improvements in accuracy and F-1 score through finetuning, as

illustrated in Table 3.3. Most of the queries generated were executable, except for

10% of the queries that had wrong syntax such as no log lines after filters or had

ill-formed regular expressiones. Among the finetuned models, GPT-4o exhibited the

strongest performance, achieving remarkable post-finetuning accuracy scores ranging

from 0.74 to 0.82 and F1 scores between 0.62 and 0.74, up from pre-finetuning metrics

of 0.21-0.28 for accuracy and 0.16-0.19 for F1 scores. Llama-3.1 showed significant

enhancement, with accuracy improving from below 0.05 to approximately 0.50 across

applications, alongside F1 scores rising from around 0.05 to the 0.42-0.59 range. While

Gemma-2 demonstrated more modest gains, it still showed meaningful improvements,

with accuracy increasing from below 0.07 to 0.25-0.35 and F1 scores improving from

0.11-0.14 to 0.31-0.47. The perplexity scores further support these findings, with GPT-

4o achieving the lowest perplexity (9.8-10.7), followed by Llama-3.1 (15.2-22.5), and

Gemma-2 (27.7-38.0), indicating superior model coherence and predictive capability.

Most of the correct responses from the models before finetuning came from providing

a lot of context to the model for generating the LogQL query.

Figure 3.5 contains samples of LogQL queries generated by the LLM before and

after finetuning the model using our dataset. Before finetuning, the LLM generated

queries exhibited several common errors: incorrect label usage (e.g., “app” instead

of “application”), syntax errors in timestamp placements, wrong filter specifications,

invalid grouping syntax, and improper matching operators. For instance, in Figure

3.5a, the pre-finetuning query for GPT-4 showed incorrect label usage and timestamp

placement. Similarly, Figure 3.5b demonstrates Llama’s incorrect use of negative

matching operators, while Figure 3.5c shows Gemma’s invalid grouping syntax in

count over time operations.

The fine-tuned models exhibited substantial enhancement in query generation

capabilities, producing syntactically valid and executable LogQL queries. For example,

88

in Figure 3.5a, the corrected query properly implements regexp capture groups

((?P<source_ip>[\\d\\.]+)) for IP extraction and uses correct sum aggregation

with proper label matchers. In Figure 3.5b, the finetuned model correctly uses positive

matching operators (—=) and proper application labeling (application=“openssh”).

Figure 3.5c shows the correct implementation of count over time with proper time

window specification [1h] and appropriate temporal aggregation. These improvements

resulted in queries that could accurately capture and format the desired log data while

maintaining proper syntax and execution capability.

The experimental results demonstrate that finetuning significantly enhanced the

performance of all three LLM models in generating LogQL queries, with GPT-4o

showing the most impressive improvements in Accuracy and F1 scores by up to 75%

and 80% respectively. Post-finetuning, the models produced 20% more executable

queries with fewer syntax errors, improved label matching, and better temporal

aggregation, highlighting the effectiveness of the finetuning process in enhancing the

models’ ability to generate accurate and functional LogQL queries.

3.4.2 Effect of number of finetuning samples

In the previous experiment, we looked into the effect of finetuning for enhancing

the ability of the models to generate LogQL queries compared to the base model.

Previous works from other log related tasks [94], and text2sql [97] have shown that

the performance of models change based on the number of samples used for finetuning.

Constructing the dataset for finetuning these models is an arduous task as detailed

in the previous section (§3.3.1), thus we explore the effect of varying the number of

samples used for finetuning the model. To perform this experiment, we allocated 20%

of samples from each application as a “test set”, and remaining dataset for training

the finetuned models. The number of finetuning samples were to be 20%, 40%, 60%

89

and 80% of the overall sample, and the models were tested on the “test set” to obtain

the metrics.

Figure 3.6 contains the analysis of model performance across varying finetuning

sample sizes reveals a consistent pattern of improvement followed by plateau across

all three models - Gemma, Llama 3.1, and GPT-4o. For metric queries, GPT-4o

demonstrates superior performance, with accuracy increasing from 0.23-0.37 at 20%

samples to 0.74-0.79 at 80% samples across applications. Similarly for log queries,

GPT-4o achieves F1-scores ranging from 0.26-0.38 with 20% samples, improving

to 0.66-0.76 with 80% samples. The performance gains are most pronounced when

increasing from 20% to 60% of the training data, after which the improvements become

marginal. For instance, GPT-4o’s accuracy on HDFS metrics increases substantially

from 0.28 (20%) to 0.78 (60%) but only marginally to 0.79 (80%). This plateau

effect is consistent across models and applications, suggesting that around 60% of the

training data captures most of the log formats and lines that are present in the logs

for a particular application.

Looking at individual models, Gemma shows the most modest improvements,

with metric accuracy increasing from 0.12-0.18 at 20% to 0.39-0.55 at 80% across

applications. Its F1-scores follow a similar trend, rising from 0.18-0.24 to 0.37-0.47.

Llama 3.1 demonstrates slightly better scaling, achieving accuracies of 0.52-0.57 and

F1-scores of 0.45-0.58 at 80% samples, up from 0.10-0.14 and 0.10-0.17 respectively

at 20%. GPT-4o consistently outperforms both models across all sample sizes and

applications. The HDFS application generally sees better performance compared to

OSTK and OSSH across all models, particularly in the higher sample percentage

ranges. The consistent plateauing behavior across all models and applications suggests

an inherent limit to how much performance can be improved simply by increasing

the amount of finetuning data. The difference in the results as more samples can

be attributed to the LLMs understanding more information from the logs, which

90

was a common problem in models pre-finetuning. Since each LLM learns the log

patterns differently, there is a need for understanding the amount of samples required

to finetune the LLMs, and future studies need to be conducted on understanding the

interactions between the LLM, log query language and the amount of data required

to finetune these models.

Increasing the number of finetuning samples generally improves model performance in

generating LogQL queries, with most gains achieved by 60% of the training data, after

which returns diminish significantly. While GPT-4o consistently outperforms Llama

3.1 and Gemma across all sample sizes, all models exhibit similar plateauing behavior,

suggesting an inherent limit to performance improvements through increased training

data alone.

3.4.3 Transferability of the finetuned models

To evaluate the models’ generalization capabilities across different applications, we

conducted cross-application experiments where models were finetuned on two applica-

tions and subsequently tested on a third, previously unseen application. For instance,

to assess query generation capabilities for OSSH logs, the models underwent finetuning

using query datasets from OSTK and HDFS applications, thereby testing their ability

to transfer learned patterns to a novel application context.

Model Name
OSSH OSTK HDFS

Metric Log Metric Log Metric Log
Llama 0.13 0.14 0.11 0.07 0.05 0.1
Gemma 0.09 0.07 0.12 0.18 0.09 0.16
GPT-4o 0.32 0.33 0.22 0.47 0.27 0.29

Table 3.4: Results for transferability of finetuned models across applications.

Table 3.4 presents the performance metrics of models after finetuning on two

applications and evaluating on a third application. The results reveal that while cross-

91

application fine-tuned models are inferior to application-specific fine-tuned models in

most cases, they generally outperform their non-finetuned counterparts.

For example, GPT-4o demonstrates strong performance across all applications,

achieving metric accuracy between 0.22 and 0.32 and log query F1-scores ranging

from 0.29 to 0.47. Importantly, fine-tuning GPT-4o on OSTK and HDFC leads to

significant relative improvements as compared to the non-fine-tuned counterparts,

with performance gains of 52% (from 0.21 to 0.31) and 106% (from 0.16 to 0.33) in

OSSH metric accuracy and log queries, respectively.

Moreover, smaller models like Llama and Gemma show minor improvements with

respect to their non-fine-tuned versions. Llama’s metric accuracy ranges from 0.13 on

OSSH to 0.05 on HDFS, while Gemma shows inconsistent metric accuracy, ranging

between 0.09 and 0.12. These marginal improvements in accuracy and F1-scores can

be attributed to the models ability to capture syntactic patterns from the fine-tuning

dataset.

However, the overall limited performance of these models stems from insufficient

exposure to application-specific log patterns and their corresponding log query labels

during training. Consequently, the errors observed in these models mirror those of

their non-finetuned versions, particularly in their inability to effectively incorporate

application-specific log information.

Evaluation of cross-application transferability revealed that models finetuned on

two applications demonstrate limited performance when tested on a third, unseen

application. Despite GPT-4o showing relatively better performance with metric

accuracy up to 0.32, all models exhibited performance levels closer to their non-

finetuned versions, primarily due to insufficient exposure to application-specific log

patterns and corresponding query labels.

92

Model OSSH OSTK HDFS
Llama 0.57 0.58 0.59
Gemma 0.43 0.39 0.46
GPT-4o 0.78 0.86 0.77

Table 3.5: Codebert score for various models and applications

3.4.4 Code Quality Analysis

For analyzing the quality of the code produced by various finetuned models, we make

use of CodeBertScore[154] (CBS) to evaluate the quality of the LogQL query generated

by the finetuned models.

Finetuning CBS Since the current CBS model doesn’t support LogQL, we

finetuned the CBS model to be able to score the outputs for the model. We used 50%

of application specific LogQL queries to finetune the CBS model, and used 30% of

the dataset to finetune the LLMs, and tested it on 20% of the dataset by comparing

the output of the finetuned models with the correctly written LogQL queries in the

dataset. Table 3.5 shows the CBS for the queries generated by the finetuned models.

GPT-4o consistently achieves the highest CodeBERTScore across all applications, with

scores of 0.78 for OpenSSH (OSSH), 0.86 for OpenStack (OSTK), and 0.77 for HDFS.

These high scores indicate that GPT-4o generates LogQL queries that are highly

similar to the reference queries, both semantically and functionally. In contrast, the

Gemma model exhibits significantly lower scores, ranging from 0.39 to 0.46, suggesting

that its generated queries are less aligned with the reference queries and may require

substantial refinement to achieve functional correctness. The Llama model performs

moderately, with scores between 0.57 and 0.59, indicating partial similarity but room

for improvement in terms of query accuracy and efficiency. Overall, these results

highlight the importance of selecting models with higher CodeBERTScores to ensure

the generation of high-quality LogQL queries that are both syntactically correct and

functionally reliable.

93

The evaluation demonstrates that finetuned LLM models can successfully generate

LogQL queries, with varying degrees of accuracy across different models. GPT-4o

emerged as the top performer, whereas other models showed moderate to lower

performance, with Llama achieving scores between 0.57-0.59 and Gemma scoring

between 0.39-0.46, suggesting their generated queries require more refinement to

achieve full functional reliability.

3.5 Discussion

This work showed that there is a necessity for enhanced interfaces in observability data

query generation. To our knowledge, this research presents the first comprehensive data

collection effort for fine-tuning models to generate log query language. Our evaluations

demonstrate that while base LLMs exhibit limitations in generating LogQL queries,

fine-tuning these models significantly enhances their query generation capabilities.

Although we present a proof of concept across various applications, practitioners

seeking to implement our methodology would need to develop a corpus of natural

language to LogQL queries specific to their applications, as accurate query generation

necessitates understanding application-specific log semantics. Additionally, the model

must generate syntactically valid queries compatible with their internal system’s query

language. These considerations directly influence the selection of base models for

fine-tuning purposes. For instance, organizations utilizing Datadog for observability

data storage would need to develop a dataset mapping Natural Language to DQL

queries, and select base models capable of DQL query generation. This dataset must

encompass diverse query types addressing the three domains outlined in Section 3.3.1.

This research aims to serve as a framework for organizations developing observability

data queries within their specific contexts.

94

3.5.1 Threats to Validity

The fine-tuned LogQL-LM models demonstrate superior performance metrics across

both metric and log queries compared to the baseline model. However, as this research

represents one of the initial endeavors in LogQL query generation, several limitations,

and opportunities for improvement warrant discussion.

A significant limitation observed in the current implementation is the models’

reduced efficacy in generating LogQL queries when there exists semantic divergence

between the natural language (NL) query and the corresponding log entries. To

illustrate, consider the example in Table 3.1-row 3, where the objective is to identify

recent successful authentication events for user “fztu”. While the NL query employs

the phrase “successful login,” the actual log entries utilize “accepted password” to

denote such events. Consequently, the model frequently generates queries containing

“successful login,” resulting in null result sets. This limitation can be attributed to two

primary factors. First, the methodology of reverse-engineering natural language (NL)

questions from existing dashboards inherently limits the diversity of NL queries that

can map to a specific LogQL query. Contemporary Text-to-SQL benchmarks attempt

to address this limitation by manually writing multiple natural language questions

for a SQL query, which can easily get cumbersome. One potential ancillary direction

is to design automated paraphrasing techniques to generate semantically equivalent

and useful NL queries. Second, current log aggregation systems, including Loki,

lack semantic search capabilities within log data. The implementation of semantic

similarity matching in search systems would enable LogQL queries containing phrases

like “successful login” to successfully retrieve log entries containing semantically

equivalent terms such as “accepted password.”

An interesting direction for future research is exploring how to achieve additional

performance gains in generating viable LogQL queries for application logs absent

from the fine-tuning dataset. As demonstrated in Section 3.4.3, while fine-tuning

95

successfully addresses certain syntactical challenges, enhancing model transferabil-

ity necessitates the incorporation of diverse application logs during the fine-tuning

process. This diversity spans across logging frameworks, application domains, and

implementation patterns, creating substantial complexity in sampling representative

log entries. Although utilizing application logs for fine-tuning could reduce depen-

dence on manually created NL-to-LogQL pairs, the challenge of sampling a sufficiently

diverse and representative set of logs remains an open research problem [94].

Our work focuses on generating LogQL queries directly from natural language,

presenting an alternative to the widely used practice of constructing LogQL queries

through Grafana dashboards. The existing workflow, which requires users to migrate

queries between our interface and Grafana, introduces significant cognitive overhead

due to constant context switching and hampers developer productivity. To address

this, we envision an intelligent interface, akin to GitHub Copilot, that provides

contextual suggestions for query entities, labels, and log lines during composition.

However, realizing this vision involves several technical challenges: (a) the need for

extensive training data mapping natural language to LogQL queries, (b) meeting

stringent latency requirements for real-time autocompletion, and (c) supporting

bidirectional context processing, which diverges from the conventional left-to-right

generation approach in NL-to-LogQL systems. Overcoming these challenges would

require restructuring our dataset to focus on LogQL queries and adopting a Fill in

the Middle (FIM) architecture to facilitate the predictive completion of query prefixes

and suffixes during interactive development.

96

How many times did we receive a 503 status

code while validating tokens in the past

30 days for openstack -asia -pacific?

(a) Summarized NL Query, complete NL query in our code repository

count_over_time ({job="openstack", region

="asia -pacific"} |= "503" |= "token

validation" [30d])

calculate_over_time ({job="openstack",

region="asia -pacific"} |= "503" !=

"token" [30d])

(b) LogQL Query (Green: Correct, Red: LLM Generated)

@http.status_code :503 service:openstack

-asia -pacific "validate" @timestamp:>now -30d

status.code :503 service_name:openstack -asia -pacific

↪→ "validate" @timestamp:>now -30d

(c) Datadog Query (Green: Correct, Red: LLM Generated)

grep -E "status:␣503.* validate_token" OpenStack_2k.log |

↪→ grep "openstack -asia -pacific" | wc -l

grep "ERROR␣503" OpenStack.log | awk ’{print␣$4}’ | sort |

↪→ uniq -c

(d) grep-Based Query (Green: Correct, Red: LLM Generated)

Figure 3.2: Queries for analyzing 503 status codes in OpenStack Asia-Pacific across
different query languages

97

Figure 3.3: Demonstration of the model.

Figure 3.4: Evaluation Pipeline

98

topk(1, sum by (source_ip)(count_over_time(

{application="hdfs -us-east", component=

"dfs.DataNode$DataTransfer"} \|~ "Transmitted

block␣.*␣to␣.*" \| regexp "(?P<source_ip >[\\d\\.]+)

:\\d+: Transmitted␣block␣.*␣to␣.*" [12h])))

topk(1, sum (source_ip) (count_over_time(

{app="hdfs -us-east", component=

"dfs.DataNode$DataTransfer"} |~ /*[12h]*/

"Transmitted␣block␣.*␣to␣.*" |))

(a) LogQL query for NL Query to find the node with most number of successfull block
transmissions. The wrong query contains time aggregration in the middle of the query.
[GPT-4o]

{application="openssh"} |= "Did␣not␣receive

identification␣string␣from" | hostname="LabSZ

-tenant -5" | line_format " ‘{{ __timestamp__ }}

‘-␣Failed␣to␣receive␣identification␣string

from␣{{. content }}"

{hostname !="LabSZ -tenant -5", /*app ="ssh"*/}

!= "Did␣not␣receive␣identification␣string

from" | line_format "{{/* timestamp */}}␣-␣No

identification␣from␣{{. message }}"/*[1m]*/

(b) List of all instances where there was a failure in receiving an identification string from
host ’LabSZ-tenant-5’. The wrong query contains wrong label (app), wrong timestamp
format and improper time aggregation. [Llama]

sum by (component) (count_over_time(

{application="openstack -eu-west", component

="nova.virt.libvirt.imagecache"}|~ "Active

base␣files:␣(?P<file_path >/.*)"[1h]))

sum by (component) (count_over_time /*by*/

(file_path)({ application="openstack -eu-west",

component="nova.virt.libvirt.imagecache"}

|~ "Active␣base␣files:␣(?P<file_path >/.*)"))

(c) LogQL query for retrieving the total size of all base files in openstack-eu-west. This
query lacks time aggregation ([1h]) block, wrong syntax of using “by” which is present in
the correct query. [Gemma]

Figure 3.5: Examples of logql queries generated by the models before (black color,
with errors in red) and after (green color) finetuning.

99

20 30 40 50 60 70 800.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Metric Queries

20 30 40 50 60 70 80

F-
1

Sc
or

e

Log Queries

Percentage of samples used

gpt4o
gemma
llama 3.1

(a) OSTK

20 30 40 50 60 70 800.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Metric Queries

20 30 40 50 60 70 80

F-
1

Sc
or

e

Log queries

Percentage of samples used

gpt4o
gemma
llama 3.1

(b) OSSH

20 30 40 50 60 70 800.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Metric Queries

20 30 40 50 60 70 80

F-
1

Sc
or

e

Log Queries

Percentage of samples used

gpt4o
gemma
llama 3.1

(c) HDFS

Figure 3.6: Model accuracy with different number of samples in finetuning phase

Chapter 4

Sauron: Semantic Search Engine

4.1 Introduction

Logs are a cornerstone of system observability, providing critical insights into the

runtime behavior of software systems. However, traditional methods of querying

and analyzing logs face significant challenges, especially in the context of modern

microservice architectures. As observed in the previous chapter, the NL2LogQL model

struggled to generate accurate queries when natural language (NL) questions did not

contain specific keywords used in log query languages. This limitation highlights a

broader issue: the disconnect between those producing logs (developers) and those

analyzing them (e.g., Site Reliability Engineers, or SREs). Developers often design logs

based on their own understanding of the system, while SREs or other engineers tasked

with troubleshooting may lack familiarity with the terminology and structure of these

logs. The complexity of modern software systems is further compounded by the growing

adoption of microservices architecture, where developers frequently work on isolated

components and may not fully understand the vocabulary embedded in logs generated

by other teams or services. This architectural paradigm, while offering benefits in

terms of scalability and deployment flexibility, introduces significant challenges in log

100

101

comprehension and analysis during debugging scenarios.

Considering a typical microservice architecture shown in Figure 2.1, each service is

owned by a different team and other teams access the service using a typical request-

response model. This organizational structure creates natural boundaries between

development units, with each team developing expertise in their specific domain while

potentially remaining unfamiliar with the internal workings of services maintained

by other teams. The communication between these services occurs primarily through

well-defined APIs, with the implementation details of each service remaining largely

opaque to consumers.

When newer versions of the downstream service are deployed, a subsequent change

on the upstream service has to be made to accommodate these modifications. These

changes may involve adapting to new API signatures, handling different response

formats, or adjusting to altered behavior patterns. Due to the nature of modular

teams in software organizations, these changes may not be implemented by the

same developer who deployed the previous iteration of the upstream service. This

discontinuity in developer involvement creates a knowledge gap, where the contextual

understanding that informed the original implementation is not fully transferred to

subsequent maintainers.

While changing the codebase, developers typically also rewrite the log lines that

are present in the codebase, and might not use the original words that were in the

previous log line. This divergence in logging vocabulary occurs for various reasons:

different developers have distinct writing styles, terminology preferences, and mental

models of the system. Additionally, as requirements evolve and implementations

change, the logging needs and focus areas shift accordingly. This leads to a situation

where the current log text typically contains similar information to the previous log

text, while being expressed using different terminologies.

The terminologies are often system-specific; for example, in the case of HDFS logs,

102

the various blocks in the log files could be indicated as “block id” or “blk id”. Such

variations, while seemingly minor, create significant challenges when attempting to

search across logs to identify patterns or troubleshoot issues. Using shorthand versions

of variable names is a common strategy for reducing the size of the log files, which can

often grow into hundreds of terabytes of data. While this practice is justified from a

storage efficiency perspective, it further exacerbates the problem of log comprehension,

especially for developers who did not author the original code. The heterogeneity

in logging practices extends beyond variable naming to include message structures,

verbosity levels, and contextual information inclusion. Some developers might prefer

concise logs that capture only essential information, while others might opt for more

verbose logs that provide comprehensive context. This lack of standardization makes

it challenging to develop universal tools for log analysis and search.

A recent study at Microsoft[65] revealed that engineers often analyze logs they are

unfamiliar with, leading to significant delays in diagnosing failures. Approximately

42% of surveyed engineers reported spending over an hour analyzing logs during

incidents, underscoring the inefficiency of existing processes. This statistic highlights

the real-world impact of the log comprehension problem, translating directly into

extended downtime, delayed issue resolution, and increased operational costs. More-

over, correlating logs from various sources remains a challenge due to inconsistent

terminology and heterogeneous formats, further complicating the troubleshooting

process in distributed systems.

When searching within observability data, specifically logs or traces, it is common

to rely on “wildcard queries” to perform approximate searches in order to retrieve

relevant log lines [77]. These queries typically involve pattern matching with wildcards

(e.g., “*password*”) to capture variations in phrasing. However, this approach

is fundamentally limited by its reliance on lexical matching rather than semantic

understanding. The lack of standardized language in these files, often application or

103

context-specific, poses challenges for standardization efforts that require substantial

resources for enforcement. Even with organizational guidelines in place, achieving

perfect consistency in logging practices across large development teams remains an

elusive goal.

Existing products primarily offer full-text search capabilities [76], where users must

have prior knowledge of at least a portion of the stored text, limiting their ability to

search files based on contextual meaning. These systems typically employ inverted

indices that map terms to documents, enabling efficient retrieval based on keyword

matches. However, they fail to capture the semantic relationships between terms or

the contextual meaning of phrases. For instance, if a developer wishes to log successful

password authentication, they might use phrases such as “Authenticated Password”

or “Password Accepted”, making it difficult to query the data without knowing the

exact phrase. A search for “successful login” would fail to retrieve these logs despite

their semantic relevance to the query.

Most large-scale applications are created by multiple developers, and not all of

them can be expected to remember all the specific phrases or text conventions within

these files. As systems grow in complexity and team sizes increase, the cognitive

load of maintaining awareness of all logging conventions becomes unsustainable. This

predicament highlights the need for semantic search on observability data. Semantic

search goes beyond keyword matching by understanding the contextual meaning of

search queries and documents, harnessing natural language processing to analyze the

semantics of the query and the underlying data, thus providing more precise and

relevant search results based on the intended meaning rather than just the literal

matching of terms.

Currently, observability data is used by developers for various tasks like capacity

planning, debugging and other activities required to build and maintain these global

scale systems. Yet the potential insights from the collected log data can have high

104

utility in other business-related decisions. For instance, the insights from HTTP header

parsing can be used for understanding the regions from where the site is receiving

traffic to optimize marketing campaigns, or the distributed traces can be analyzed to

get the most commonly used features of a platform. By asking questions like “what

is the average response time for my website?” or “what are the most common errors

being reported?” organizations can paint a more detailed picture of how their systems

are performing and identify areas that need improvement.

Log analytics serves as a powerful tool for business intelligence, enabling data-

driven decision-making that can provide competitive advantages and drive business

growth. Through analyzing user behavior, transaction logs, and application usage

patterns, organizations can gain deeper understanding of customer preferences and

market trends. For example, e-commerce companies can leverage logs to track product

popularity, customer interactions, payment trends, and inventory levelstransforming

raw data into actionable intelligence for strategic decisions. These insights can help

businesses optimize marketing strategies, improve user experiences, and personalize

recommendations based on actual customer behavior rather than assumptions.

Furthermore, log data can reveal operational efficiencies and inefficiencies, helping

businesses streamline processes and reduce costs. Historical log analysis enables

organizations to identify trends and patterns that might indicate potential future

issues, allowing for proactive rather than reactive approaches to business challenges.

However, if a non-engineer wants to extract information from this data, they need to

rely on an engineer to write queries, or learn the querying language themselves. This

limitation highlights the need for semantic search capabilities that would democratize

access to valuable log insights across the organization, allowing business leaders to

make informed decisions without technical barriers.

Given these challenges, there is a pressing need for a “semantic search system”

tailored for log data. This system would enable intuitive and efficient querying by

105

Dec 12 23:54:44 reverse mapping checking getaddrinfo for 191-210-223-
172.user.vivozap.com.br [191.210.223.172] failed - POSSIBLE BREAK-IN AT-
TEMPT!

(a) Example log line from OpenSSH Server Logs [30]

> cat sshlogs.log | grep \BREAK-IN" | uniq

(b) Example grep command for searching the break in attempts.

List all the IP addresses trying to hack?

(c) NL Query

51.15.196.223, 191.210.223.172, 51.15.203.45.

(d) Response from Sauron

Figure 4.1: Example use case for both traditional querying method, and Sauron.

understanding the intent behind user queries rather than relying solely on keyword

matching. This approach could significantly reduce the time required to locate relevant

information, streamline cross-team collaboration, and improve failure diagnosis. By

bridging the gap between log producers and consumers, semantic search systems have

the potential to transform log analysis workflows in modern software environments.

4.2 Sauron

Inspired by the problems in 4.1, and leveraging the recent advances in Natural Language

Processing and Information Retrieval, the main issue with log search systems stems

from their reliance on inverted indexes as the fundamental search mechanism. Inverted

indexes map words to the documents that contain them, creating an efficient data

structure for retrieving exact or very similar variants of given words. While highly

effective for lexical matching, this approach significantly constrains user queries to

contain the exact text from log linesan unrealistic expectation given both the massive

scale of generated logs and the number of developers working on these systems.

106

Traditional inverted indexing operates by processing documents to create a list

of all unique terms and their corresponding document identifiers. When a query is

submitted, the search engine looks up these terms in the inverted index to quickly

identify and retrieve relevant documents. This process, while computationally efficient,

fundamentally limits search capabilities to lexical matching rather than semantic

understanding. For instance, when a user searches for ”accepted,” an inverted index will

only identify documents containing that exact word, missing semantically equivalent

terms like ”authenticated”, which relies on the contextual information.

In contrast, embedding models transform text into dense vector representations that

capture semantic meaning and contextual relationships. These embeddings position

semantically similar items close to each other in high-dimensional vector spaces,

enabling more nuanced and accurate processing of textual data. Mathematically,

contextual embeddings can be represented as a function that maps a sequence of words,

denoted as x = [x1, x2, . . . , xn], to their corresponding embeddings, denoted as h =

[h1, h2, . . . , hd] ∈ Rd where d is the dimensionality of the embedding vector. The key

characteristic of contextual embeddings is their sensitivity to the context of input words

– the embedding of a word depends not only on the word itself but also on its surrounding

words. These models employ self-attention mechanisms to capture dependencies

between words in the input sequence, effectively encoding contextual information

and generating meaningful embeddings. This semantic capability makes embedding

models particularly valuable for log search systems, where technical terminology

and system-specific language often require contextual understanding beyond simple

keyword matching.

However, off-the-shelf embedding models are not always optimized for specific

domains like log data[115]. This is where fine-tuning becomes crucial. Fine-tuning an

embedding model on domain-specific data enhances its ability to capture contextual

nuances particular to log formats and technical terminology. The process involves

107

starting with a pre-trained model that already performs well on general tasks, then

re-training it on domain-specific datasets. This adjustment allows the model to better

reflect the unique vocabulary and semantics of log data, significantly improving search

relevance and accuracy.

4.2.1 System

Sauron employs a sophisticated dual-phase architecture designed for efficient semantic

analysis of observability data. The system architecture is methodically bifurcated into

the Indexing phase and the Querying phase, each serving distinct yet complementary

functions within the overall workflow.

The Indexing phase details the data processing pipeline by ingesting log files through

multiple input vectors – either via direct file upload mechanisms or through integration

with distributed streaming platforms such as Apache Kafka. Upon ingestion, the system

applies advanced natural language processing techniques to generate high-dimensional

vector embeddings that capture the semantic essence of the textual data. These

embeddings are subsequently persisted in a specialized vector database optimized for

high-throughput storage and retrieval operations, creating a comprehensive searchable

index of the observability corpus.

The querying phase consists of a modular RAG framework[59], where a user

submits a query, the system first splits the user query into metadata information

and the actual query text. The query text is transformed into the same embedding

space as the indexed documents. This query embedding is then utilized to perform

approximate nearest neighbor (ANN) search operations against the vector database,

employing algorithms that balance search accuracy with computational efficiency. The

ANN search identifies semantically relevant documents based on vector similarity

metrics, effectively retrieving contextually appropriate information regardless of exact

keyword matching.

108

The retrieved documents, representing the most semantically relevant context for

the query, are subsequently passed to a Large Language Model (LLM) alongside the

original query. The LLM leverages this enriched context to generate comprehensive,

contextually-aware responses that address the user’s information needs with high

precision and relevance, effectively bridging the gap between raw observability data

and actionable insights.

Logfile 1

Logfile 2

Indexer

Doc 1

Doc 2

Doc 1

Doc 2

Doc 3

Embedding
Generator

Logfile 2

Vector data store

⋮

Logfile 1

Figure 4.2: Indexing step architecture.

4.2.2 Indexing step

Figure 4.2 illustrates the indexing step in our semantic search system for log data.

The process begins with the aggregation of data from various sources, followed by

chunkingsplitting the data into smaller documents. This chunking strategy is crucial

for maintaining appropriate granularity in the embeddings and ensuring optimal con-

text size for the LLM. The diagram shows how these chunks then undergo embedding

generation, where each document is transformed into a high-dimensional vector repre-

sentation that captures its semantic meaning. These embeddings are subsequently

stored in a specialized vector database optimized for Approximate Nearest Neighbor

(ANN) search. Vector databases like Weaviate and Pinecone are purpose-built for

this task, offering efficient storage and retrieval mechanisms specifically designed

for high-dimensional vector data, enabling rapid similarity-based retrieval that tran-

scends simple keyword matching. The ingestion pipeline depicted in the diagram

demonstrates how raw log data flows through these sequential processing stages, each

109

contributing to the transformation of unstructured text into structured, searchable

vector representations. This transformation is fundamental to enabling semantic

search capabilities that understand the meaning behind queries rather than merely

matching keywords. The embedding models employed in this process are trained on

vast corpora of text, allowing them to capture complex semantic relationships and

contextual nuances within the log data, which is particularly valuable when dealing

with the technical and often domain-specific language found in system logs.

While ANN search provides efficient retrieval, it’s important to acknowledge that

the chunk with the highest similarity score may not always be the most relevant to a

user’s query. To address this limitation, our system retrieves the top-K most similar

chunks (typically K=50 or 100) and combines them to form a comprehensive con-

text. The diagram illustrates this multi-retrieval approach, highlighting how multiple

chunks are combined to provide richer context for subsequent processing. Empirical

benchmarks have demonstrated that increasing the value of K improves recall scores,

approaching 1 as K grows, indicating that the truly relevant information is almost

always present within the retrieved set, even if not ranked first[32]. This carefully

designed ingestion pipeline creates the foundation for our semantic search system,

enabling efficient and meaningful exploration of log data beyond the capabilities of

traditional keyword-based approaches, while ensuring that the most relevant informa-

tion is included in the context provided to the LLM. The vector database’s indexing

structures, as shown in the diagram, are optimized to handle the high-dimensional

nature of embeddings, employing hierarchical navigable small worlds (HNSW) to

partition the vector space and enable logarithmic-time search complexity instead of

linear scanning. This optimization is critical when dealing with large volumes of log

data, where response time requirements may be stringent. Additionally, the system

supports incremental updates to the vector database, allowing new log entries to

be processed and made searchable without requiring a complete re-indexing of the

110

Figure 4.3: Querying Step.

entire dataset, thus maintaining the freshness of searchable content while minimizing

computational overhead.

4.2.3 Querying Step

Querying step consists of a modular RAG framework[59] where the sophisticated

processing pipeline enables efficient extraction of valuable insights from massive log

datasets distributed across complex systems. In the querying step, the user’s natural

language (NL) query first goes to a query planner module, that is used as a pre-retrieval

step to identify the application(s) or services required to run a particular query, the

various indexes, timestamps and other application specific metadata. This critical

pre-processing phase significantly reduces the computational burden by narrowing the

search space before initiating resource-intensive vector similarity operations across

terabytes of log data generated daily in enterprise environments. Along with this

metadata, the model rewrites the incoming user query such that it aligns more with

the application specific context from the logs. This query rewriting process incorpo-

rates domain-specific knowledge about log formats and system architecture, enabling

more accurate information retrieval by transforming ambiguous natural language

111

into structured queries that better match the underlying data representations. For

eg, if the incoming user query is “List all the blocks that started between 10 AM

to 12 PM on node 1 yesterday”, the information about the start and end times,

and the specific node is metadata whereas the actual user query is requesting the

blocks that started during that time. In this query for the HDFS logs, the query

planner recognizes temporal constraints, node identification, and the entity of interest

(blocks), separating these components for specialized processing while preserving the

fundamental information need. The query planner layer separates the metadata and

rewrites the query for internal representation, transforming natural language into a

hybrid query format that leverages both traditional SQL capabilities for metadata

filtering and vector-based semantic matching for content relevance. This separation

enables a dual-path processing architecture where computationally efficient meta-

data filtering occurs before more resource-intensive semantic similarity operations,

dramatically improving response times compared to naive approaches. Sauron uses

postgres database for storing both the raw logs, and also the pgvector extension for

storing the embeddings, leveraging the enterprise-grade reliability of PostgreSQL while

extending its capabilities with specialized vector search functionality essential for

semantic matching of unstructured log content. In the log files, these blocks could

be represented using “blk id” which is captured by the embeddings that is stored in

the vector store, allowing for contextual understanding of technical identifiers that

would be opaque to traditional keyword-based search methods. These embeddings

are generated through specialized encoding models that transform raw log text into

high-dimensional vectors that preserve semantic relationships while accommodating

the unique characteristics of system logs, including their terse syntax, domain-specific

abbreviations, and structured format. The vector store is partitioned based on appli-

cation, and each embedding has the metadata information about the node from which

it was collected, and also the timestamp as well, enabling efficient multi-dimensional

112

filtering before executing computationally expensive similarity searches. This par-

titioning strategy reflects real-world system architectures where logs from diverse

applications exhibit significantly different formats, vocabulary, and semantic structures,

necessitating specialized processing pipelines for optimal retrieval performance. The

modified user query’s metadata component is used to filter the embeddings which fall

within the time range and are from the relevant node, leveraging PostgreSQL’s highly

optimized indexing mechanisms to rapidly eliminate vast portions of the log corpus

from consideration. In production environments processing petabytes of log data,

these metadata filters routinely reduce the candidate set by 99.9% or more before

vector similarity calculations begin, transforming potentially hour-long searches into

operations completing in seconds.

As shown in previous chapter (§3.2.2), these labels when stored using loki are more

deterministic and can be queried easily, whereas the actual log lines are often un-

indexed, presenting significant challenges for traditional text-based search approaches

that rely on exact pattern matching. The integration with Grafana Loki enhances our

system with established log aggregation capabilities while our vector-based approach

addresses Loki’s limitations in semantic understanding of log content. Once the

relevant embeddings are filtered using the metadata, similarity search is run using the

embeddings of the modified query to identify the top-k relevant log lines, implementing

approximate nearest neighbor algorithms optimized for high-dimensional vector spaces.

These algorithms balance search efficiency against result quality through sophisticated

index structures that avoid exhaustive comparison while maintaining high recall rates,

critical for production deployments where both performance and accuracy are non-

negotiable requirements. In this case, we use a large value for k to increase the recall

score closer to 1, acknowledging the practical reality that downstream processing can

refine results but cannot recover relevant items missed during initial retrieval. The

empirically determined optimal value for k varies based on log characteristics and

113

query complexity, typically ranging from several hundred to a few thousand candidates

in production deployments processing billions of log entries. These top-k log lines and

the original query are passed to the LLM as context, and the LLM further filters out

the log lines that are not relevant, while also re-ranking the logs based on relevance

metrics, effectively performing a second-stage retrieval refinement that leverages the

deeper semantic understanding capabilities of large language models. This two-stage

retrieval architecture combines the computational efficiency of traditional information

retrieval with the sophisticated reasoning capabilities of foundation models, addressing

fundamental limitations inherent to either approach used in isolation. It also provides

a concise summary of the actual entity that was requested, transforming raw technical

data into human-readable insights through abstractive summarization techniques

that preserve critical information while eliminating extraneous details. As shown

in Figure 4.1, it provides the IP addresses as output along with the relevant log

lines, demonstrating the system’s practical utility in security operations where rapid

identification of suspicious network activity across massive log volumes can mean the

difference between preventing an intrusion and detecting a breach after significant

damage has occurred.

4.3 Evaluation

In §4.2, we proposed the system, and implemented it using Python. For the logs,

we made use of the logs from the previous chapter, and used the log templates from

LogHub dataset[158]. The semantically related questions were human generated

using the natural language questions from the previous chapter. Since the existing

embedding models do not have context on log specific vocabulary, a lot of which is

not traditional english language, we finetuned existing base model “multi-qa-mpnet-

base-cos-v1” to generate embeddings. Using the finetuned embedding model, and the

114

Embedding model Application NDCG@10 NDCG@50 NDCG@100

Base Model
HDFS 0.12 0.32 0.87
OSTK 0.18 0.31 0.85
OSSH 0.15 0.35 0.84

Finetuned Model
HDFS 0.26 0.64 0.91
OSTK 0.28 0.63 0.92
OSSH 0.22 0.61 0.91

Table 4.1: Performance of the trained embedding model compare to the base model

system described in §4.2, we answer the two research questions.

1. How effective is the finetuned embedding model compared to the base model?

2. How effective is Sauron compared to NL2LogQL?

4.3.1 Embedding Model Performance

The experimental results demonstrate the substantial benefits of fine-tuning embedding

models for log search applications. Across three distinct datasets (HDFS, OSTK, and

OSSH), the fine-tuned model consistently outperforms the base model by significant

margins. Most notably, NDCG@10 scores improved by 116.7%, 55.6%, and 46.7%

for HDFS, OSTK, and OSSH respectively, indicating dramatically better precision at

the top of search results. Similarly, NDCG@50 scores doubled across all applications,

with improvements ranging from 74.3% to 103.2%. While both models perform

well at NDCG@100, the fine-tuned model still maintains a consistent advantage of

approximately 5-8% improvement. These results clearly indicate that domain-specific

fine-tuning creates embedding spaces that better capture the semantic relationships

within log data. By adapting the vector representations to the unique vocabulary,

syntax, and contextual patterns of system logs, fine-tuned models enable more accurate

semantic search. The most significant improvements occur at lower NDCG thresholds

(10 and 50), which are particularly important as they represent the most relevant

results that users typically encounter first. This pattern suggests that fine-tuning

115

Application Model Log queries (Base) Log Queries (Semantic)

HDFS
NL2LogQL 0.72 0.57
SAURON 0.83 0.84

OSSH
NL2LogQL 0.64 0.59
SAURON 0.89 0.86

OSTK
NL2LogQL 0.69 0.58
SAURON 0.84 0.83

Table 4.2: End to end system performance of Sauron

particularly enhances precision for the most relevant matches, making it an essential

technique for practical log search applications where users rarely examine results

beyond the first few log lines.

4.3.2 End to End Log Search

Our experimental results demonstrate that Sauron, a modular RAG-based semantic

search system, significantly outperforms NL2LogQL across all tested applications. In

the case of HDFS, Sauron achieves F1 scores of 0.83 and 0.84 for base and semantic

queries respectively, compared to NL2LogQL’s 0.72 and 0.57. This performance

gap is even more pronounced in OpenSSH, where Sauron reaches 0.89 and 0.86

F1 scores against NL2LogQL’s 0.64 and 0.59. Similarly, for OpenStack, Sauron

performs better with 0.84 and 0.83 F1 scores versus NL2LogQL’s 0.69 and 0.58.

Notably, while NL2LogQL experiences a substantial performance degradation when

transitioning from base to semantic queries (averaging a 15.7% decrease), Sauron

maintains consistent performance across both query types, with minimal variation

(averaging only a 1% difference). This consistency reveals a fundamental limitation in

NL2LogQL’s approachdespite being fine-tuned on GPT-4O, it struggles with semantic

variations that deviate from the exact log text patterns. In contrast, Sauron’s RAG

architecture effectively leverages vector embeddings to capture semantic similarities

between query terms and log content, enabling it to recognize semantic differences such

as “authentication failed” and “failed password attempt” refer to the same underlying

116

event.

The performance disparity is particularly significant in real-world observability

scenarios where developers querying logs often use different terminology than those

who wrote the log statements. Sauron’s architecture addresses this vocabulary mis-

match through its modular RAG design that separates embedding generation from

retrieval mechanisms, allowing for specialized handling of domain-specific terminology.

Furthermore, Sauron’s consistent performance across both query types suggests it has

developed a more robust internal representation of the relationship between natural

language expressions and log semantics. These findings have important implications

for observability systems in large-scale distributed environments like OpenSSH, where

the ability to accurately retrieve relevant logs despite semantic variations can signifi-

cantly reduce debugging time and improve system reliability. The modular nature of

Sauron also provides greater flexibility for future enhancements, allowing individual

components to be optimized independently as requirements evolve. These results

confirm that Sauron provides a more reliable and adaptable solution for log analysis

in complex distributed systems, especially when dealing with semantic variations in

query formulation.

4.4 Discussion

In this chapter, we presented Sauron, a pioneering semantic search system specifically

designed for log data analysis. This novel approach represents a significant advancement

in the field by enabling direct natural language querying capabilities for log data,

thereby eliminating the technical barriers traditionally associated with log interrogation

systems.

Unlike existing approaches such as NL2LogQL, which necessitate an intermediary

translation layer to convert natural language into structured query languages, Sauron

117

fundamentally reimagines the indexing paradigm for log data. By leveraging vector

embeddings rather than conventional inverted indexes, our system establishes a

semantic foundation that facilitates more intuitive and effective search operations

within log repositories. This approach aligns with recent advances in semantic parsing

for logs, as demonstrated by systems like SemParser[71], but extends beyond template

extraction to enable comprehensive semantic understanding of log content.

The cornerstone of our system is a domain-specific embedding model fine-tuned

to capture the syntactic peculiarities and semantic nuances inherent in diverse log

formats. This specialized model demonstrates remarkable adaptability across het-

erogeneous logging systems, accommodating variations in structure, verbosity, and

domain-specific terminology. Through rigorous evaluation, we have demonstrated that

this embedding approach significantly outperforms traditional keyword-based search

methods in retrieval metrics.

Sauron’s modular RAG architecture provides a flexible framework that can be

readily extended or customized to address specific organizational requirements. This

architectural design ensures seamless integration with existing logging infrastructures

while maintaining robust performance characteristics even when processing high-

volume log streams. The decoupled nature of the retrieval and generation components

allows for independent optimization of each subsystem, enhancing both efficiency and

accuracy in log analysis tasks.

A particularly noteworthy contribution of Sauron is its democratization of log

analysis capabilities. By providing an intuitive natural language interface, our system

empowers not only specialized DevOps engineers but also developers across varying

expertise levels to extract actionable insights from log data without requiring exten-

sive knowledge of specialized query languages or log schemas[65]. This accessibility

effectively reduces the cognitive overhead associated with troubleshooting and system

analysis workflows. Our comprehensive evaluation experiments, conducted across three

118

different applications: HDFS, OpenStack and OpenSSH demonstrates Sauron’s efficacy

across multiple dimensions, including query processing latency, semantic matching

accuracy, and user experience metrics. The results consistently indicate that Sauron

achieves superior performance compared to existing solutions, particularly in scenarios

involving complex query intentions or when analyzing logs with implicit semantic

relationships.

While Sauron represents a significant advancement in semantic log analysis, we

acknowledge several avenues for future research, including refinement of the embedding

model to accommodate emerging log formats, integration of additional contextual

information sources, and optimization strategies for ultra-large-scale log repositories.

In conclusion, Sauron establishes a new paradigm for semantic log analysis that

bridges the gap between human-centric query intentions and machine-interpretable

log structures, ultimately transforming how organizations interact with and derive

value from their log data.

Chapter 5

Conclusion

5.1 Conclusion

Recent changes in software development paradigms have sparked innovation across the

computing stack. The advancement of communication mechanisms and deployment

tools has accelerated the adoption of small modular services (microservices) that can

be reused across organizational products. While this architectural shift enhances

development velocity, it simultaneously decentralizes ownership and understanding of

the software ecosystem. This decentralization, compounded by substantial developer

turnover in large organizations, creates a knowledge gap where few developers possess

comprehensive understanding of the systems they interact with daily.

To address this disparity, we first conducted a systematic investigation into industry-

standard microservice implementation practices, examining developers’ design con-

siderations and comparing them with academic testbeds. This investigation revealed

several key insights. Most significantly, we discovered that no existing benchmarks

accurately represent the production services described by our study participants.

Though unsurprising – given that each testbed was designed to investigate specific,

narrowly defined questions – this limitation has inadvertently allowed researchers to

119

120

draw broad conclusions about increasingly complex systems without full acknowl-

edgment of testbed constraints. While our work highlights these mismatches, we

encourage researchers to consult the extensive microservice literature that addresses

the individual topics we explore [141, 133, 83].

Our user studies revealed several unexpected characteristics of operational microser-

vice systems. The presence of cycles in non-faulty production systems contradicted

common assumptions and indicated that the topologies studied by the research com-

munity have been unnecessarily constrained. Additionally, we observed a striking

lack of consensus among survey participants on fundamental questions such as “how

would you describe microservices?”, revealing confusion between microservices and

shared libraries. This indicates a need for more precise characterization and defi-

nitions. Furthermore, hybrid and transitional monolith-microservice architectures

were remarkably prevalent among our interview participants, further complicating

established definitions and roles in this domain.

Based on these findings, we identified that observability tools require significant recon-

ceptualization, as their foundational assumptions no longer align with microservice

environments.

Our approach advances the state of the art by eliminating two critical prereq-

uisites: expertise in LogQL query language and detailed understanding of log file

structure and syntax. To facilitate this advancement, we developed a comprehensive

dataset of 424 natural language queries, their corresponding LogQL implementations,

and expected query results across extensive log files. Our methodology leverages

fine-tuned large language models selected for their dual capabilities: understanding

programming languages and query syntax to generate valid LogQL queries, and effi-

ciently processing log files to interpret structural patterns. Empirical evaluation of our

LogQL-LMdemonstrates substantial performance improvements post-fine-tuning,

achieving success rates exceeding 75% in generating syntactically and semantically

121

correct LogQL queries comparable to those crafted by human experts.

While LogQL-LMaddresses LogQL query generation, advances in embedding

technology suggest we might transcend intermediate query languages entirely. L

everaging embeddings as fundamental building blocks enables powerful semantic

search capabilities.

To this end, we developed Sauron, a RAG-based semantic search engine for log data

that processes natural language queries directly.

By fine-tuning embedding models, we demonstrated the system’s efficacy across

three distinct applications. Notably, Sauron maintains consistent performance

regardless of whether query text appears verbatim in log files, with only minimal

performance degradation for novel queries.

This thesis contributes to the evolving landscape of distributed systems observability

by building tools that address the real challenges faced by practitioners. By focusing

on the needs of observers themselvesrather than assuming deep technical expertisewe

hope to open new research avenues in log analysis and inspire the development of

more accessible, powerful observability tools for increasingly complex distributed

architectures.

Bibliography

[1] Apache Thrift Website. https://thrift.apache.org/.

[2] Bookinfo Application. https://istio.io/latest/docs/examples/bookinfo

/.

[3] DeathStarBench - Hotel Researvation - GitHub YAML. https://github.com

/delimitrou/DeathStarBench/blob/676a3b37811f580e39e50e17066af642

ef895aa4/hotelReservation/docker-compose.yml, .

[4] DeathStarBench - Movie Recommendation - GitHub YAML. https://github

.com/delimitrou/DeathStarBench/blob/676a3b37811f580e39e50e17066a

f642ef895aa4/mediaMicroservices/docker-compose.yml, .

[5] DeathStarBench - Social Network - GitHub YAML. https://github.com/del

imitrou/DeathStarBench/blob/676a3b37811f580e39e50e17066af642ef89

5aa4/socialNetwork/docker-compose.yml, .

[6] gRPC vs. REST: How Does gRPC Compare with Traditional REST APIs?

https://blog.dreamfactory.com/grpc-vs-rest-how-does-grpc-compare

-with-traditional-rest-apis/#:~:text=%E2%80%9CgRPC%20is%20roughl

y%207%20times,HTTP%2F2%20by%20gRPC.%E2%80%9D.

[7] Lessons From the Birth of Microservices at Google. https://dzone.com/arti

cles/lessons-from-the-birth-of-microservices-at-google, .

122

https://thrift.apache.org/
https://istio.io/latest/docs/examples/bookinfo/
https://istio.io/latest/docs/examples/bookinfo/
https://github.com/delimitrou/DeathStarBench/blob/676a3b37811f580e39e50e17066af642ef895aa4/hotelReservation/docker-compose.yml
https://github.com/delimitrou/DeathStarBench/blob/676a3b37811f580e39e50e17066af642ef895aa4/hotelReservation/docker-compose.yml
https://github.com/delimitrou/DeathStarBench/blob/676a3b37811f580e39e50e17066af642ef895aa4/hotelReservation/docker-compose.yml
https://github.com/delimitrou/DeathStarBench/blob/676a3b37811f580e39e50e17066af642ef895aa4/mediaMicroservices/docker-compose.yml
https://github.com/delimitrou/DeathStarBench/blob/676a3b37811f580e39e50e17066af642ef895aa4/mediaMicroservices/docker-compose.yml
https://github.com/delimitrou/DeathStarBench/blob/676a3b37811f580e39e50e17066af642ef895aa4/mediaMicroservices/docker-compose.yml
https://github.com/delimitrou/DeathStarBench/blob/676a3b37811f580e39e50e17066af642ef895aa4/socialNetwork/docker-compose.yml
https://github.com/delimitrou/DeathStarBench/blob/676a3b37811f580e39e50e17066af642ef895aa4/socialNetwork/docker-compose.yml
https://github.com/delimitrou/DeathStarBench/blob/676a3b37811f580e39e50e17066af642ef895aa4/socialNetwork/docker-compose.yml
https://blog.dreamfactory.com/grpc-vs-rest-how-does-grpc-compare-with-traditional-rest-apis/#:~:text=%E2%80%9CgRPC%20is%20roughly%207%20times,HTTP%2F2%20by%20gRPC.%E2%80%9D
https://blog.dreamfactory.com/grpc-vs-rest-how-does-grpc-compare-with-traditional-rest-apis/#:~:text=%E2%80%9CgRPC%20is%20roughly%207%20times,HTTP%2F2%20by%20gRPC.%E2%80%9D
https://blog.dreamfactory.com/grpc-vs-rest-how-does-grpc-compare-with-traditional-rest-apis/#:~:text=%E2%80%9CgRPC%20is%20roughly%207%20times,HTTP%2F2%20by%20gRPC.%E2%80%9D
https://dzone.com/articles/lessons-from-the-birth-of-microservices-at-google
https://dzone.com/articles/lessons-from-the-birth-of-microservices-at-google

123

[8] Google’s GRPC vs REST Blog. https://cloud.google.com/blog/products

/application-development/rest-vs-rpc-what-problems-are-you-tryin

g-to-solve-with-your-apis, .

[9] How to design and version APIs for microservices (part 6). https://www.ibm.

com/cloud/blog/rapidly-developing-applications-part-6-exposing-a

nd-versioning-apis.

[10] Istio BookInfo GitHub Repo. https://github.com/istio/istio/blob/mast

er/samples/bookinfo/src/build-services.sh.

[11] MicroSuite GitHub Repo. https://github.com/wenischlab/MicroSuite/b

lob/master/install.py, .

[12] Compare gRPC services with HTTP APIs. https://docs.microsoft.com/e

n-us/aspnet/core/grpc/comparison?view=aspnetcore-5.0, .

[13] Microsoft Microservice Evolution. https://www.slideshare.net/adriancoc

kcroft/evolution-of-microservices-craft-conference, .

[14] The Great Migration: from Monolith to Service-Oriented. https://www.infoq.

com/presentations/airbnb-soa-migration/.

[15] Microservices at Netflix Scale - First Principles, Tradeoffs & Lessons Learned.

https://gotocon.com/amsterdam-2016/presentation/Microservices%20a

t%20Netflix%20Scale%20-%20First%20Principles,%20Tradeoffs%20&%20

Lessons%20Learned.

[16] Comparing gRPC Performance. https://www.nexthink.com/blog/comparin

g-grpc-performance/.

[17] Universal Description, Discovery and Integration (UDDI) Registry. https:

//access.redhat.com/documentation/en-us/jboss_enterprise_soa_pla

https://cloud.google.com/blog/products/application-development/rest-vs-rpc-what-problems-are-you-trying-to-solve-with-your-apis
https://cloud.google.com/blog/products/application-development/rest-vs-rpc-what-problems-are-you-trying-to-solve-with-your-apis
https://cloud.google.com/blog/products/application-development/rest-vs-rpc-what-problems-are-you-trying-to-solve-with-your-apis
https://www.ibm.com/cloud/blog/rapidly-developing-applications-part-6-exposing-and-versioning-apis
https://www.ibm.com/cloud/blog/rapidly-developing-applications-part-6-exposing-and-versioning-apis
https://www.ibm.com/cloud/blog/rapidly-developing-applications-part-6-exposing-and-versioning-apis
https://github.com/istio/istio/blob/master/samples/bookinfo/src/build-services.sh
https://github.com/istio/istio/blob/master/samples/bookinfo/src/build-services.sh
https://github.com/wenischlab/MicroSuite/blob/master/install.py
https://github.com/wenischlab/MicroSuite/blob/master/install.py
https://docs.microsoft.com/en-us/aspnet/core/grpc/comparison?view=aspnetcore-5.0
https://docs.microsoft.com/en-us/aspnet/core/grpc/comparison?view=aspnetcore-5.0
https://www.slideshare.net/adriancockcroft/evolution-of-microservices-craft-conference
https://www.slideshare.net/adriancockcroft/evolution-of-microservices-craft-conference
https://www.infoq.com/presentations/airbnb-soa-migration/
https://www.infoq.com/presentations/airbnb-soa-migration/
https://gotocon.com/amsterdam-2016/presentation/Microservices%20at%20Netflix%20Scale%20-%20First%20Principles,%20Tradeoffs%20&%20Lessons%20Learned
https://gotocon.com/amsterdam-2016/presentation/Microservices%20at%20Netflix%20Scale%20-%20First%20Principles,%20Tradeoffs%20&%20Lessons%20Learned
https://gotocon.com/amsterdam-2016/presentation/Microservices%20at%20Netflix%20Scale%20-%20First%20Principles,%20Tradeoffs%20&%20Lessons%20Learned
https://www.nexthink.com/blog/comparing-grpc-performance/
https://www.nexthink.com/blog/comparing-grpc-performance/
https://access.redhat.com/documentation/en-us/jboss_enterprise_soa_platform/5/html/esb_services_guide/universal_description_discovery_and_integration_uddi_registry
https://access.redhat.com/documentation/en-us/jboss_enterprise_soa_platform/5/html/esb_services_guide/universal_description_discovery_and_integration_uddi_registry

124

tform/5/html/esb_services_guide/universal_description_discovery_

and_integration_uddi_registry.

[18] ServiceCutter: A Structured Way to Service Decomposition. https://servic

ecutter.github.io/.

[19] TeaStore GitHub Repo. https://github.com/DescartesResearch/TeaStor

e/tree/e189dff4d5cf3681a9b0b83f90b69c681dfd11da/services.

[20] TrainTicket GitHub YAML. https://github.com/FudanSELab/train-ticke

t/blob/350f62000e6658e0e543730580c599d8558253e7/docker-compose.y

ml.

[21] Twitter Diffy GitHub. https://github.com/twitter-archive/diffy, .

[22] Twitter Infrastructure. https://www.slideshare.net/InfoQ/decomposing

-twitter-adventures-in-serviceoriented-architecture, .

[23] gRPC Website. https://grpc.io/, .

[24] gRPC vs. REST: Performance Simplified. https://medium.com/@bimeshde/g

rpc-vs-rest-performance-simplified-fd35d01bbd4, .

[25] gRPC vs REST performance comparison. https://medium.com/analytics-v

idhya/grpc-vs-rest-performance-comparison-1fe5fb14a01c, .

[26] OpenTelemetry Website. https://opentelemetry.io/.

[27] WRK2 Workload Generator. https://github.com/giltene/wrk2.

[28] Nuha Alshuqayran, Nour Ali, and Roger Evans. A systematic mapping study

in microservice architecture. In 2016 IEEE 9th International Conference on

Service-Oriented Computing and Applications (SOCA), pages 44–51. IEEE, 2016.

https://access.redhat.com/documentation/en-us/jboss_enterprise_soa_platform/5/html/esb_services_guide/universal_description_discovery_and_integration_uddi_registry
https://access.redhat.com/documentation/en-us/jboss_enterprise_soa_platform/5/html/esb_services_guide/universal_description_discovery_and_integration_uddi_registry
https://access.redhat.com/documentation/en-us/jboss_enterprise_soa_platform/5/html/esb_services_guide/universal_description_discovery_and_integration_uddi_registry
https://access.redhat.com/documentation/en-us/jboss_enterprise_soa_platform/5/html/esb_services_guide/universal_description_discovery_and_integration_uddi_registry
https://servicecutter.github.io/
https://servicecutter.github.io/
https://github.com/DescartesResearch/TeaStore/tree/e189dff4d5cf3681a9b0b83f90b69c681dfd11da/services
https://github.com/DescartesResearch/TeaStore/tree/e189dff4d5cf3681a9b0b83f90b69c681dfd11da/services
https://github.com/FudanSELab/train-ticket/blob/350f62000e6658e0e543730580c599d8558253e7/docker-compose.yml
https://github.com/FudanSELab/train-ticket/blob/350f62000e6658e0e543730580c599d8558253e7/docker-compose.yml
https://github.com/FudanSELab/train-ticket/blob/350f62000e6658e0e543730580c599d8558253e7/docker-compose.yml
https://github.com/twitter-archive/diffy
https://www.slideshare.net/InfoQ/decomposing-twitter-adventures-in-serviceoriented-architecture
https://www.slideshare.net/InfoQ/decomposing-twitter-adventures-in-serviceoriented-architecture
https://grpc.io/
https://medium.com/@bimeshde/grpc-vs-rest-performance-simplified-fd35d01bbd4
https://medium.com/@bimeshde/grpc-vs-rest-performance-simplified-fd35d01bbd4
https://medium.com/analytics-vidhya/grpc-vs-rest-performance-comparison-1fe5fb14a01c
https://medium.com/analytics-vidhya/grpc-vs-rest-performance-comparison-1fe5fb14a01c
https://opentelemetry.io/
https://github.com/giltene/wrk2

125

[29] Nuha Alshuqayran, Nour Ali, and Roger Evans. Towards micro service

architecture recovery: An empirical study. In 2018 IEEE International

Conference on Software Architecture (ICSA), pages 47–4709, 2018. doi:

10.1109/ICSA.2018.00014.

[30] Anonymous. Loghub, September 2021. URL https://doi.org/10.5281/zeno

do.3227177.

[31] Florian Auer, Valentina Lenarduzzi, Michael Felderer, and Davide Taibi. From

monolithic systems to microservices: An assessment framework. Information

and Software Technology, 137:106600, 2021. ISSN 0950-5849. doi: https:

//doi.org/10.1016/j.infsof.2021.106600. URL https://www.sciencedirect.co

m/science/article/pii/S0950584921000793.

[32] Martin Aumller, Erik Bernhardsson, and Alexander Faithfull. Ann-benchmarks:

A benchmarking tool for approximate nearest neighbor algorithms. Information

Systems, 87:101374, 2020. ISSN 0306-4379. doi: https://doi.org/10.1016/j.is.201

9.02.006. URL https://www.sciencedirect.com/science/article/pii/S0

306437918303685.

[33] Ricardo Ávila, Raphaël Khoury, Richard Khoury, and Fábio Petrillo. Use of

security logs for data leak detection: A systematic literature review. Security

and Communication Networks, 2021:6615899, Mar 2021. ISSN 1939-0114. doi:

10.1155/2021/6615899. URL https://doi.org/10.1155/2021/6615899.

[34] Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi. Microservices

architecture enables devops: Migration to a cloud-native architecture. IEEE

Software, 33(3):42–52, 2016. doi: 10.1109/MS.2016.64.

[35] Alan Bandeira, Carlos Alberto Medeiros, Matheus Paixao, and Paulo Henrique

Maia. We need to talk about microservices: An analysis from the discussions on

https://doi.org/10.5281/zenodo.3227177
https://doi.org/10.5281/zenodo.3227177
https://www.sciencedirect.com/science/article/pii/S0950584921000793
https://www.sciencedirect.com/science/article/pii/S0950584921000793
https://www.sciencedirect.com/science/article/pii/S0306437918303685
https://www.sciencedirect.com/science/article/pii/S0306437918303685
https://doi.org/10.1155/2021/6615899

126

stackoverflow. In Proceedings of the 16th International Conference on Mining

Software Repositories, MSR ’19, page 255259. IEEE Press, 2019. doi: 10.1109/

MSR.2019.00051. URL https://doi.org/10.1109/MSR.2019.00051.

[36] Luciano Baresi, Martin Garriga, and Alan De Renzis. Microservices identification

through interface analysis. In Flavio De Paoli, Stefan Schulte, and Einar

Broch Johnsen, editors, Service-Oriented and Cloud Computing, pages 19–33,

Cham, 2017. Springer International Publishing. ISBN 978-3-319-67262-5.

[37] Shraddha Barke, Christian Poelitz, Carina Negreanu, Benjamin Zorn, José

Cambronero, Andrew Gordon, Vu Le, Elnaz Nouri, Nadia Polikarpova, Advait

Sarkar, Brian Slininger, Neil Toronto, and Jack Williams. Solving data-centric

tasks using large language models. In Kevin Duh, Helena Gomez, and Steven

Bethard, editors, Findings of the Association for Computational Linguistics:

NAACL 2024, pages 626–638, Mexico City, Mexico, June 2024. Association for

Computational Linguistics. doi: 10.18653/v1/2024.findings-naacl.41. URL

https://aclanthology.org/2024.findings-naacl.41.

[38] Justus Bogner, Jonas Fritzsch, Stefan Wagner, and Alfred Zimmermann. As-

suring the evolvability of microservices: Insights into industry practices and

challenges. CoRR, abs/1906.05013, 2019. URL http://arxiv.org/abs/1906

.05013.

[39] Rolando Brondolin and Marco D. Santambrogio. A black-box monitoring

approach to measure microservices runtime performance. ACM Trans. Archit.

Code Optim., 17(4), nov 2020. ISSN 1544-3566. doi: 10.1145/3418899. URL

https://doi.org/10.1145/3418899.

[40] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda

https://doi.org/10.1109/MSR.2019.00051
https://aclanthology.org/2024.findings-naacl.41
http://arxiv.org/abs/1906.05013
http://arxiv.org/abs/1906.05013
https://doi.org/10.1145/3418899

127

Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,

Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,

Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Ben-

jamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,

Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.

URL https://arxiv.org/abs/2005.14165.

[41] Antonio Bucchiarone, Nicola Dragoni, Schahram Dustdar, Stephan T. Larsen,

and Manuel Mazzara. From monolithic to microservices: An experience report

from the banking domain. IEEE Software, 35(3):50–55, 2018. doi: 10.1109/MS

.2018.2141026.

[42] Phillip Carter. Observability, Meet Natural Language Querying with Query

Assistant, May 2023. https://www.honeycomb.io/blog/introducing-query

-assistant.

[43] Phillip Carter. All the Hard Stuff Nobody Talks About when Building Products

with LLMs, May 2023. https://www.honeycomb.io/blog/hard-stuff-nobod

y-talks-about-llm.

[44] Phillip Carter. Improving LLMs in Production With Observability, May 2023.

https://www.honeycomb.io/blog/improving-llms-production-observabi

lity.

[45] Luiz Carvalho, Alessandro Garcia, Wesley K. G. Assuno, Rafael de Mello,

and Maria Julia de Lima. Analysis of the criteria adopted in industry to

extract microservices. In 2019 IEEE/ACM Joint 7th International Workshop

on Conducting Empirical Studies in Industry (CESI) and 6th International

Workshop on Software Engineering Research and Industrial Practice (SER IP),

pages 22–29, 2019. doi: 10.1109/CESSER-IP.2019.00012.

https://arxiv.org/abs/2005.14165
https://www.honeycomb.io/blog/introducing-query-assistant
https://www.honeycomb.io/blog/introducing-query-assistant
https://www.honeycomb.io/blog/hard-stuff-nobody-talks-about-llm
https://www.honeycomb.io/blog/hard-stuff-nobody-talks-about-llm
https://www.honeycomb.io/blog/improving-llms-production-observability
https://www.honeycomb.io/blog/improving-llms-production-observability

128

[46] Lianping Chen. Microservices: Architecting for continuous delivery and devops.

03 2018. doi: 10.1109/ICSA.2018.00013.

[47] Datadog. Datadog Index, May 2023. https://docs.datadoghq.com/logs/lo

g_configuration/indexes/.

[48] Thomas Davidson and Jonathan Mace. See it to believe it? the role of visual-

isation in systems research. In Proceedings of the 13th Symposium on Cloud

Computing, SoCC ’22, page 419428, New York, NY, USA, 2022. Association for

Computing Machinery. ISBN 9781450394147. doi: 10.1145/3542929.3563488.

URL https://doi.org/10.1145/3542929.3563488.

[49] Thomas Davidson, Emily Wall, and Jonathan Mace. A qualitative interview

study of distributed tracing visualisation: A characterisation of challenges and

opportunities. IEEE Transactions on Visualization and Computer Graphics,

pages 1–12, 2023. doi: 10.1109/TVCG.2023.3241596.

[50] Paolo Di Francesco, Patricia Lago, and Ivano Malavolta. Migrating towards

microservice architectures: An industrial survey. In 2018 IEEE International

Conference on Software Architecture (ICSA), pages 29–2909, 2018. doi: 10.110

9/ICSA.2018.00012.

[51] Pradeep Dogga, Karthik Narasimhan, Anirudh Sivaraman, Shiv Kumar Saini,

George Varghese, and Ravi Netravali. Revelio: Ml-generated debugging queries

for distributed systems. CoRR, abs/2106.14347, 2021. URL https://arxiv.or

g/abs/2106.14347.

[52] Dynatrace. Observability and Security Convergence: Enabling Faster, More

Secure Innovation in the Cloud, December 2022. https://www.dynatrace.co

m/info/reports/cio-observability-security/.

https://docs.datadoghq.com/logs/log_configuration/indexes/
https://docs.datadoghq.com/logs/log_configuration/indexes/
https://doi.org/10.1145/3542929.3563488
https://arxiv.org/abs/2106.14347
https://arxiv.org/abs/2106.14347
https://www.dynatrace.com/info/reports/cio-observability-security/
https://www.dynatrace.com/info/reports/cio-observability-security/

129

[53] Simon Eismann, Cor-Paul Bezemer, Weiyi Shang, Dušan Okanović, and André

van Hoorn. Microservices: A performance tester’s dream or nightmare? In

Proceedings of the ACM/SPEC International Conference on Performance En-

gineering, ICPE ’20, page 138149, New York, NY, USA, 2020. Association for

Computing Machinery. ISBN 9781450369916. doi: 10.1145/3358960.3379124.

URL https://doi.org/10.1145/3358960.3379124.

[54] Silvia Esparrachiari, Tanya Reilly, and Ashleigh Rentz. Tracking and controlling

microservice dependencies: Dependency management is a crucial part of system

and software design. Queue, 16(4):4465, August 2018. ISSN 1542-7730. doi: 10

.1145/3277539.3277541. URL https://doi.org/10.1145/3277539.3277541.

[55] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan

Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, Kelvin Hu,

Meghna Pancholi, Yuan He, Brett Clancy, Chris Colen, Fukang Wen, Catherine

Leung, Siyuan Wang, Leon Zaruvinsky, Mateo Espinosa, Rick Lin, Zhongling

Liu, Jake Padilla, and Christina Delimitrou. An open-source benchmark suite for

microservices and their hardware-software implications for cloud edge systems.

In Proceedings of the Twenty-Fourth International Conference on Architectural

Support for Programming Languages and Operating Systems, ASPLOS ’19, page

318, New York, NY, USA, 2019. Association for Computing Machinery. ISBN

9781450362405. doi: 10.1145/3297858.3304013. URL https://doi.org/10.1

145/3297858.3304013.

[56] Yu Gan, Yanqi Zhang, Kelvin Hu, Dailun Cheng, Yuan He, Meghna Pancholi,

and Christina Delimitrou. Seer: Leveraging big data to navigate the complexity

of performance debugging in cloud microservices. In Proceedings of the Twenty-

Fourth International Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS ’19, page 1933, New York, NY,

https://doi.org/10.1145/3358960.3379124
https://doi.org/10.1145/3277539.3277541
https://doi.org/10.1145/3297858.3304013
https://doi.org/10.1145/3297858.3304013

130

USA, 2019. Association for Computing Machinery. ISBN 9781450362405. doi:

10.1145/3297858.3304004. URL https://doi.org/10.1145/3297858.330400

4.

[57] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayantara

Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, Kelvin Hu,

Meghna Pancholi, Brett Clancy, Chris Colen, Fukang Wen, Catherine Leung,

Siyuan Wang, Leon Zaruvinsky, Mateo Espinosa, Yuan He, and Christina

Delimitrou. Unveiling the Hardware and Software Implications of Microservices

in Cloud and Edge Systems. In IEEE Micro Special Issue on Top Picks from

the Computer Architecture Conferences, May/June 2020.

[58] Yu Gan, Mingyu Liang, Sundar Dev, David Lo, and Christina Delimitrou.

Sage: Practical and scalable ml-driven performance debugging in microservices.

In Proceedings of the 26th ACM International Conference on Architectural

Support for Programming Languages and Operating Systems, ASPLOS 2021,

page 135151, New York, NY, USA, 2021. Association for Computing Machinery.

ISBN 9781450383172. doi: 10.1145/3445814.3446700. URL https://doi.org/

10.1145/3445814.3446700.

[59] Yunfan Gao, Yun Xiong, Meng Wang, and Haofen Wang. Modular rag: Trans-

forming rag systems into lego-like reconfigurable frameworks, 2024. URL

https://arxiv.org/abs/2407.21059.

[60] Lalit Kale Gaurav Aroraa and Kanwar Manish. Building Microservices with

.NET Core. Packtpub, USA, 2017.

[61] Javad Ghofrani and Daniel Lbke. Challenges of microservices architecture: A

survey on the state of the practice. 05 2018.

https://doi.org/10.1145/3297858.3304004
https://doi.org/10.1145/3297858.3304004
https://doi.org/10.1145/3445814.3446700
https://doi.org/10.1145/3445814.3446700
https://arxiv.org/abs/2407.21059

131

[62] Grafana Labs. Logql documentation, 2024. URL https://grafana.com/docs

/loki/latest/query/. Accessed: October 16, 2024.

[63] Sara Hassan, Rami Bahsoon, and Rick Kazman. Microservice transition and its

granularity problem: A systematic mapping study. 50(9):1651–1681, June 2020.

doi: 10.1002/spe.2869. URL https://doi.org/10.1002/spe.2869.

[64] Pinjia He, Jieming Zhu, Zibin Zheng, and Michael R. Lyu. Drain: An online log

parsing approach with fixed depth tree. In 2017 IEEE International Conference

on Web Services (ICWS), pages 33–40, 2017. doi: 10.1109/ICWS.2017.13.

[65] Shilin He, Xu Zhang, Pinjia He, Yong Xu, Liqun Li, Yu Kang, Minghua Ma,

Yining Wei, Yingnong Dang, Saravanakumar Rajmohan, et al. An empirical

study of log analysis at microsoft. In Proceedings of the 30th ACM Joint European

Software Engineering Conference and Symposium on the Foundations of Software

Engineering, pages 1465–1476, 2022.

[66] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika,

Dawn Song, and Jacob Steinhardt. Measuring massive multitask language

understanding. In International Conference on Learning Representations.

[67] Zijin Hong, Zheng Yuan, Qinggang Zhang, Hao Chen, Junnan Dong, Feiran

Huang, and Xiao Huang. Next-generation database interfaces: A survey of

llm-based text-to-sql, 2024. URL https://arxiv.org/abs/2406.08426.

[68] Wenpin Hou and Zhicheng Ji. Comparing large language models and human

programmers for generating programming code, 2024. URL https://arxiv.or

g/abs/2403.00894.

[69] Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,

Lu Wang, Weizhu Chen, et al. Lora: Low-rank adaptation of large language

models. In International Conference on Learning Representations.

https://grafana.com/docs/loki/latest/query/
https://grafana.com/docs/loki/latest/query/
https://doi.org/10.1002/spe.2869
https://arxiv.org/abs/2406.08426
https://arxiv.org/abs/2403.00894
https://arxiv.org/abs/2403.00894

132

[70] Lexiang Huang and Timothy Zhu. tprof: Performance profiling via structural

aggregation and automated analysis of distributed systems traces. In Proceedings

of the ACM Symposium on Cloud Computing, SoCC ’21, page 7691, New York,

NY, USA, 2021. Association for Computing Machinery. ISBN 9781450386388.

doi: 10.1145/3472883.3486994. URL https://doi.org/10.1145/3472883.34

86994.

[71] Yintong Huo, Yuxin Su, Cheryl Lee, and Michael R. Lyu. Semparser: A

semantic parser for log analytics. In Proceedings of the 45th International

Conference on Software Engineering, ICSE ’23, page 881893. IEEE Press, 2023.

ISBN 9781665457019. doi: 10.1109/ICSE48619.2023.00082. URL https:

//doi.org/10.1109/ICSE48619.2023.00082.

[72] John Jenkins, Galen Shipman, Jamaludin Mohd-Yusof, Kipton Barros, Philip

Carns, and Robert Ross. A case study in computational caching microservices for

hpc. In 2017 IEEE International Parallel and Distributed Processing Symposium

Workshops (IPDPSW), pages 1309–1316, 2017. doi: 10.1109/IPDPSW.2017.40.

[73] Zhipeng Jia and Emmett Witchel. Nightcore: Efficient and scalable serverless

computing for latency-sensitive, interactive microservices. In Proceedings of the

26th ACM International Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS 2021, page 152166, New York, NY,

USA, 2021. Association for Computing Machinery. ISBN 9781450383172. doi:

10.1145/3445814.3446701. URL https://doi.org/10.1145/3445814.344670

1.

[74] Gopal Kakivaya, Lu Xun, Richard Hasha, Shegufta Bakht Ahsan, Todd Pfleiger,

Rishi Sinha, Anurag Gupta, Mihail Tarta, Mark Fussell, Vipul Modi, Mansoor

Mohsin, Ray Kong, Anmol Ahuja, Oana Platon, Alex Wun, Matthew Snider,

Chacko Daniel, Dan Mastrian, Yang Li, Aprameya Rao, Vaishnav Kidambi,

https://doi.org/10.1145/3472883.3486994
https://doi.org/10.1145/3472883.3486994
https://doi.org/10.1109/ICSE48619.2023.00082
https://doi.org/10.1109/ICSE48619.2023.00082
https://doi.org/10.1145/3445814.3446701
https://doi.org/10.1145/3445814.3446701

133

Randy Wang, Abhishek Ram, Sumukh Shivaprakash, Rajeet Nair, Alan Warwick,

Bharat S. Narasimman, Meng Lin, Jeffrey Chen, Abhay Balkrishna Mhatre,

Preetha Subbarayalu, Mert Coskun, and Indranil Gupta. Service fabric: A

distributed platform for building microservices in the cloud. In Proceedings of

the Thirteenth EuroSys Conference, EuroSys ’18, New York, NY, USA, 2018.

Association for Computing Machinery. ISBN 9781450355841. doi: 10.1145/3190

508.3190546. URL https://doi.org/10.1145/3190508.3190546.

[75] Jonathan Kaldor, Jonathan Mace, Micha l Bejda, Edison Gao, Wiktor Kuropatwa,

Joe O’Neill, Kian Win Ong, Bill Schaller, Pingjia Shan, Brendan Viscomi, Vinod

Venkataraman, Kaushik Veeraraghavan, and Yee Jiun Song. Canopy: An end-

to-end performance tracing and analysis system. In Proceedings of the 26th

Symposium on Operating Systems Principles, SOSP ’17, page 3450, New York,

NY, USA, 2017. Association for Computing Machinery. ISBN 9781450350853.

doi: 10.1145/3132747.3132749. URL https://doi.org/10.1145/3132747.31

32749.

[76] Suman Karumuri. Taming spiky log volumes: Maintaining Real-Time log

accessibility with kaldb. Singapore, June 2023. USENIX Association.

[77] Suman Karumuri, Franco Solleza, Stan Zdonik, and Nesime Tatbul. Towards

observability data management at scale. SIGMOD Rec., 49(4):1823, mar 2021.

ISSN 0163-5808. doi: 10.1145/3456859.3456863. URL https://doi.org/10.1

145/3456859.3456863.

[78] Joon-Seok Kim, Hamdi Kavak, Chris Ovi Rouly, Hyunjee Jin, Andrew Crooks,

Dieter Pfoser, Carola Wenk, and Andreas Züfle. Location-based social simulation

for prescriptive analytics of disease spread. SIGSPATIAL Special, 12(1):5361,

July 2020. doi: 10.1145/3404820.3404828. URL https://doi.org/10.1145/34

04820.3404828.

https://doi.org/10.1145/3190508.3190546
https://doi.org/10.1145/3132747.3132749
https://doi.org/10.1145/3132747.3132749
https://doi.org/10.1145/3456859.3456863
https://doi.org/10.1145/3456859.3456863
https://doi.org/10.1145/3404820.3404828
https://doi.org/10.1145/3404820.3404828

134

[79] Myunghwan Kim, Roshan Sumbaly, and Sam Shah. Root cause detection in

a service-oriented architecture. ACM SIGMETRICS Performance Evaluation

Review, 41(1):93–104, 2013.

[80] Holger Knoche and Wilhelm Hasselbring. Drivers and barriers for microservice

adoption - a survey among professionals in germany. 14:1–35, 01 2019. doi:

10.18417/emisa.14.1.

[81] Irwin Kwan, Marcelo Cataldo, and Daniela Damian. Conway’s law revisited:

The evidence for a task-based perspective. IEEE Software, 29(1):90–93, 2012.

doi: 10.1109/MS.2012.3.

[82] Grafana Labs. Loki. Grafana Labs, 2024. URL https://github.com/grafana

/loki. Accessed: October 21, 2024.

[83] Rodrigo Laigner, Yongluan Zhou, Marcos Antonio Vaz Salles, Yijian Liu, and

Marcos Kalinowski. Data management in microservices: State of the practice,

challenges, and research directions. CoRR, abs/2103.00170, 2021. URL https:

//arxiv.org/abs/2103.00170.

[84] Nikita Lazarev, Shaojie Xiang, Neil Adit, Zhiru Zhang, and Christina Delim-

itrou. Dagger: Efficient and fast rpcs in cloud microservices with near-memory

reconfigurable nics. In Proceedings of the 26th ACM International Conference

on Architectural Support for Programming Languages and Operating Systems,

ASPLOS 2021, page 3651, New York, NY, USA, 2021. Association for Com-

puting Machinery. ISBN 9781450383172. doi: 10.1145/3445814.3446696. URL

https://doi.org/10.1145/3445814.3446696.

[85] Modal Lbas. Modal Labs, 2024. https://modal.com/.

[86] Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang,

Bowen Qin, Ruiying Geng, Nan Huo, et al. Can llm already serve as a database

https://github.com/grafana/loki
https://github.com/grafana/loki
https://arxiv.org/abs/2103.00170
https://arxiv.org/abs/2103.00170
https://doi.org/10.1145/3445814.3446696
https://modal.com/

135

interface? a big bench for large-scale database grounded text-to-sqls. Advances

in Neural Information Processing Systems, 36, 2024.

[87] Shanshan Li, He Zhang, Zijia Jia, Zheng Li, Cheng Zhang, Jiaqi Li, Qiuya

Gao, Jidong Ge, and Zhihao Shan. A dataflow-driven approach to identifying

microservices from monolithic applications. Journal of Systems and Software, 157:

110380, 2019. ISSN 0164-1212. doi: https://doi.org/10.1016/j.jss.2019.07.008.

URL https://www.sciencedirect.com/science/article/pii/S016412121

9301475.

[88] JinJin Lin, Pengfei Chen, and Zibin Zheng. Microscope: Pinpoint performance

issues with causal graphs in micro-service environments. In Service-Oriented

Computing: 16th International Conference, ICSOC 2018, Hangzhou, China,

November 12-15, 2018, Proceedings 16, pages 3–20. Springer, 2018.

[89] Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua,

Fabio Petroni, and Percy Liang. Lost in the middle: How language models use

long contexts. Transactions of the Association for Computational Linguistics,

12:157–173, 2024. doi: 10.1162/tacl a 00638. URL https://aclanthology.o

rg/2024.tacl-1.9.

[90] Logz.io. Leveraging log management for business intelligence, 2024. URL https:

//logz.io/blog/log-management-business-intelligence/. Accessed:

October 15, 2024.

[91] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In

International Conference on Learning Representations, 2019. URL https:

//openreview.net/forum?id=Bkg6RiCqY7.

[92] Shutian Luo, Huanle Xu, Chengzhi Lu, Kejiang Ye, Guoyao Xu, Liping Zhang,

Yu Ding, Jian He, and Chengzhong Xu. Characterizing Microservice Depen-

https://www.sciencedirect.com/science/article/pii/S0164121219301475
https://www.sciencedirect.com/science/article/pii/S0164121219301475
https://aclanthology.org/2024.tacl-1.9
https://aclanthology.org/2024.tacl-1.9
https://logz.io/blog/log-management-business-intelligence/
https://logz.io/blog/log-management-business-intelligence/
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7

136

dency and Performance: Alibaba Trace Analysis, page 412426. Association for

Computing Machinery, New York, NY, USA, 2021. ISBN 9781450386388. URL

https://doi.org/10.1145/3472883.3487003.

[93] Shang-Pin Ma, I-Hsiu Liu, Chun-Yu Chen, Jiun-Ting Lin, and Nien-Lin Hsueh.

Version-based microservice analysis, monitoring, and visualization. In 2019 26th

Asia-Pacific Software Engineering Conference (APSEC), pages 165–172, 2019.

doi: 10.1109/APSEC48747.2019.00031.

[94] Zeyang Ma, An Ran Chen, Dong Jae Kim, Tse-Hsun Chen, and Shaowei Wang.

Llmparser: An exploratory study on using large language models for log parsing.

In Proceedings of the IEEE/ACM 46th International Conference on Software

Engineering, ICSE ’24, New York, NY, USA, 2024. Association for Computing

Machinery. ISBN 9798400702174. doi: 10.1145/3597503.3639150. URL

https://doi.org/10.1145/3597503.3639150.

[95] Jonathan Mace, Peter Bodik, Rodrigo Fonseca, and Madanlal Musuvathi. Retro:

Targeted resource management in multi-tenant distributed systems. In 12th

USENIX Symposium on Networked Systems Design and Implementation (NSDI

15), pages 589–603, Oakland, CA, May 2015. USENIX Association. ISBN 978-1-

931971-218. URL https://www.usenix.org/conference/nsdi15/technical

-sessions/presentation/mace.

[96] Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca. Pivot tracing: Dynamic

causal monitoring for distributed systems. Commun. ACM, 63(3):94102, feb

2020. ISSN 0001-0782. doi: 10.1145/3378933. URL https://doi.org/10.114

5/3378933.

[97] Chandra Maddila, Negar Ghorbani, Kosay Jabre, Vijayaraghavan Murali, Edwin

Kim, Parth Thakkar, Nikolay Pavlovich Laptev, Olivia Harman, Diana Hsu, Rui

https://doi.org/10.1145/3472883.3487003
https://doi.org/10.1145/3597503.3639150
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/mace
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/mace
https://doi.org/10.1145/3378933
https://doi.org/10.1145/3378933

137

Abreu, and Peter C. Rigby. Ai-assisted sql authoring at industry scale, 2024.

URL https://arxiv.org/abs/2407.13280.

[98] Yev Meyer, Marjan Emadi, Dhruv Nathawani, Lipika Ramaswamy, Kendrick

Boyd, Maarten Van Segbroeck, Matthew Grossman, Piotr Mlocek, and Drew

Newberry. Synthetic-Text-To-SQL: A synthetic dataset for training language

models to generate sql queries from natural language prompts, April 2024. URL

https://huggingface.co/datasets/gretelai/synthetic-text-to-sql.

[99] Amirhossein Mirhosseini, Sameh Elnikety, and Thomas F. Wenisch. Parslo: A

Gradient Descent-Based Approach for Near-Optimal Partial SLO Allotment in

Microservices, page 442457. Association for Computing Machinery, New York,

NY, USA, 2021. ISBN 9781450386388. URL https://doi.org/10.1145/3472

883.3486985.

[100] Ghulam Murtaza, Amir R Ilkhechi, and Saim Salman. Impact of gdpr on service

meshes. URL http://cs.brown.edu/courses/csci2390/2019/assign/proj

ect/report/gdpr-service-meshes.pdf.

[101] Irakli Nadareishvili, Ronnie Mitra, Matt McLarty, and Mike Amundsen. Mi-

croservice architecture: aligning principles, practices, and culture. ” O’Reilly

Media, Inc.”, 2016.

[102] Nachiappan Nagappan, Brendan Murphy, and Victor Basili. The influence

of organizational structure on software quality: An empirical case study. In

Proceedings of the 30th International Conference on Software Engineering, ICSE

’08, page 521530, New York, NY, USA, 2008. Association for Computing

Machinery. ISBN 9781605580791. doi: 10.1145/1368088.1368160. URL

https://doi.org/10.1145/1368088.1368160.

[103] Arpit Narechania, Arjun Srinivasan, and John Stasko. Nl4dv: A toolkit for

https://arxiv.org/abs/2407.13280
https://huggingface.co/datasets/gretelai/synthetic-text-to-sql
https://doi.org/10.1145/3472883.3486985
https://doi.org/10.1145/3472883.3486985
http://cs.brown.edu/courses/csci2390/2019/assign/project/report/gdpr-service-meshes.pdf
http://cs.brown.edu/courses/csci2390/2019/assign/project/report/gdpr-service-meshes.pdf
https://doi.org/10.1145/1368088.1368160

138

generating analytic specifications for data visualization from natural language

queries. IEEE Transactions on Visualization and Computer Graphics, 27(2):

369379, February 2021. ISSN 2160-9306. doi: 10.1109/tvcg.2020.3030378. URL

http://dx.doi.org/10.1109/TVCG.2020.3030378.

[104] CNCF TAG Observability. CNCF TAG Observability - DSLs YAML, September

2024. https://github.com/cncf/tag-observability/blob/main/working

-groups/query-standardization/dsls/dsls.yaml.

[105] OpenAI. GPT-4 API, May 2023. https://platform.openai.com/docs/mod

els/gpt-4.

[106] Anelis Pereira-Vale, Eduardo B. Fernandez, Ral Monge, Hernn Astudillo, and

Gastn Mrquez. Security in microservice-based systems: A multivocal literature

review. Computers & Security, 103:102200, 2021. ISSN 0167-4048. doi: https:

//doi.org/10.1016/j.cose.2021.102200. URL https://www.sciencedirect.co

m/science/article/pii/S0167404821000249.

[107] Xinyu Pi, Bing Wang, Yan Gao, Jiaqi Guo, Zhoujun Li, and Jian-Guang

Lou. Towards robustness of text-to-SQL models against natural and realistic

adversarial table perturbation. In Proceedings of the 60th Annual Meeting of the

Association for Computational Linguistics (Volume 1: Long Papers), pages 2007–

2022, Dublin, Ireland, May 2022. Association for Computational Linguistics.

doi: 10.18653/v1/2022.acl-long.142. URL https://aclanthology.org/2022.

acl-long.142.

[108] Rodolfo Picoreti, Alexandre Pereira do Carmo, Felippe Mendona de Queiroz,

Anilton Salles Garcia, Raquel Frizera Vassallo, and Dimitra Simeonidou. Multi-

level observability in cloud orchestration. In 2018 IEEE 16th Intl Conf on Depend-

able, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence

http://dx.doi.org/10.1109/TVCG.2020.3030378
https://github.com/cncf/tag-observability/blob/main/working-groups/query-standardization/dsls/dsls.yaml
https://github.com/cncf/tag-observability/blob/main/working-groups/query-standardization/dsls/dsls.yaml
https://platform.openai.com/docs/models/gpt-4
https://platform.openai.com/docs/models/gpt-4
https://www.sciencedirect.com/science/article/pii/S0167404821000249
https://www.sciencedirect.com/science/article/pii/S0167404821000249
https://aclanthology.org/2022.acl-long.142
https://aclanthology.org/2022.acl-long.142

139

and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cy-

ber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech),

pages 776–784, 2018. doi: 10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.

00134.

[109] Haoran Qiu, Subho S. Banerjee, Saurabh Jha, Zbigniew T. Kalbarczyk, and

Ravishankar K. Iyer. FIRM: An intelligent fine-grained resource manage-

ment framework for slo-oriented microservices. In 14th USENIX Symposium

on Operating Systems Design and Implementation (OSDI 20), pages 805–

825. USENIX Association, November 2020. ISBN 978-1-939133-19-9. URL

https://www.usenix.org/conference/osdi20/presentation/qiu.

[110] Nitarshan Rajkumar, Raymond Li, and Dzmitry Bahdanau. Evaluating the

text-to-sql capabilities of large language models, 2022. URL https://arxiv.

org/abs/2204.00498.

[111] Raja R. Sambasivan, Ilari Shafer, Jonathan Mace, Benjamin H. Sigelman,

Rodrigo Fonseca, and Gregory R. Ganger. Principled workflow-centric tracing of

distributed systems. In ACM Symposium on Cloud Computing, pages 401–414.

ACM, October 2016.

[112] Aaron Sanders. Grafana Community Dashboards Dataset, June 2023. https:

//huggingface.co/datasets/sandersaarond/Grafana-Community-Dashboa

rds.

[113] Shouvon Sarker, Xishuang Dong, Xiangfang Li, and Lijun Qian. Enhancing

llm fine-tuning for text-to-sqls by sql quality measurement, 2024. URL https:

//arxiv.org/abs/2410.01869.

[114] Torsten Scholak, Nathan Schucher, and Dzmitry Bahdanau. PICARD: Parsing

incrementally for constrained auto-regressive decoding from language models. In

https://www.usenix.org/conference/osdi20/presentation/qiu
https://arxiv.org/abs/2204.00498
https://arxiv.org/abs/2204.00498
https://huggingface.co/datasets/sandersaarond/Grafana-Community-Dashboards
https://huggingface.co/datasets/sandersaarond/Grafana-Community-Dashboards
https://huggingface.co/datasets/sandersaarond/Grafana-Community-Dashboards
https://arxiv.org/abs/2410.01869
https://arxiv.org/abs/2410.01869

140

Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih,

editors, Proceedings of the 2021 Conference on Empirical Methods in Natural

Language Processing, pages 9895–9901, Online and Punta Cana, Dominican

Republic, November 2021. Association for Computational Linguistics. doi:

10.18653/v1/2021.emnlp-main.779. URL https://aclanthology.org/2021.

emnlp-main.779.

[115] Tim Schopf, Dennis N. Schneider, and Florian Matthes. Efficient domain

adaptation of sentence embeddings using adapters. In Ruslan Mitkov and

Galia Angelova, editors, Proceedings of the 14th International Conference on

Recent Advances in Natural Language Processing, pages 1046–1053, Varna,

Bulgaria, September 2023. INCOMA Ltd., Shoumen, Bulgaria. URL https:

//aclanthology.org/2023.ranlp-1.112/.

[116] Vishwanath* Seshagiri, Darby* Huye, Lan Liu, Avani Wildani, and Raja R

Sambasivan. [sok] identifying mismatches between microservice testbeds and

industrial perceptions of microservices. Journal of Systems Research, 2(1), 2022.

[117] Vishwanath Seshagiri, Siddharth Balyan, Vaastav Anand, Kaustubh Dhole,

Ishan Sharma, Avani Wildani, Jos Cambronero, and Andreas Zfle. Chatting

with logs: An exploratory study on finetuning llms for logql, 2024. URL

https://arxiv.org/abs/2412.03612.

[118] Supreeth Shastri, Vinay Banakar, Melissa Wasserman, Arun Kumar, and Vijay

Chidambaram. Understanding and benchmarking the impact of GDPR on

database systems. PVLDB, 13(7):1064–1077, 2020. URL http://www.vldb.o

rg/pvldb/vol13/p1064-shastri.pdf.

[119] Yuri Shkuro, Benjamin Renard, and Atul Singh. Positional paper: Schema-first

application telemetry. SIGOPS Oper. Syst. Rev., 56(1):817, jun 2022. ISSN

https://aclanthology.org/2021.emnlp-main.779
https://aclanthology.org/2021.emnlp-main.779
https://aclanthology.org/2023.ranlp-1.112/
https://aclanthology.org/2023.ranlp-1.112/
https://arxiv.org/abs/2412.03612
http://www.vldb.org/pvldb/vol13/p1064-shastri.pdf
http://www.vldb.org/pvldb/vol13/p1064-shastri.pdf

141

0163-5980. doi: 10.1145/3544497.3544500. URL https://doi.org/10.1145/

3544497.3544500.

[120] Jacopo Soldani, Damian Andrew Tamburri, and Willem-Jan Van Den Heuvel.

The pains and gains of microservices: A systematic grey literature review.

Journal of Systems and Software, 146:215–232, 2018. ISSN 0164-1212. doi:

https://doi.org/10.1016/j.jss.2018.09.082. URL https://www.sciencedirect.

com/science/article/pii/S0164121218302139.

[121] Splunk. Indexes, indexers, and indexer clusters, May 2023. https://docs.splun

k.com/Documentation/Splunk/9.0.4/Indexer/Aboutindexesandindexers.

[122] A. Sriraman and T. F. Wenisch. µsuite: A benchmark suite for microservices.

In 2018 IEEE International Symposium on Workload Characterization (IISWC),

pages 1–12, 2018. doi: 10.1109/IISWC.2018.8573515.

[123] Akshitha Sriraman and Abhishek Dhanotia. Accelerometer: Understand-

ing acceleration opportunities for data center overheads at hyperscale. In

Proceedings of the Twenty-Fifth International Conference on Architectural

Support for Programming Languages and Operating Systems, ASPLOS ’20,

page 733750, New York, NY, USA, 2020. Association for Computing Ma-

chinery. ISBN 9781450371025. doi: 10.1145/3373376.3378450. URL

https://doi.org/10.1145/3373376.3378450.

[124] Akshitha Sriraman and Thomas F. Wenisch. µtune: Auto-tuned threading for

OLDI microservices. In 13th USENIX Symposium on Operating Systems Design

and Implementation (OSDI 18), pages 177–194, Carlsbad, CA, October 2018.

USENIX Association. ISBN 978-1-939133-08-3. URL https://www.usenix.o

rg/conference/osdi18/presentation/sriraman.

[125] Akshitha Sriraman, Abhishek Dhanotia, and Thomas F. Wenisch. Softsku:

https://doi.org/10.1145/3544497.3544500
https://doi.org/10.1145/3544497.3544500
https://www.sciencedirect.com/science/article/pii/S0164121218302139
https://www.sciencedirect.com/science/article/pii/S0164121218302139
https://docs.splunk.com/Documentation/Splunk/9.0.4/Indexer/Aboutindexesandindexers
https://docs.splunk.com/Documentation/Splunk/9.0.4/Indexer/Aboutindexesandindexers
https://doi.org/10.1145/3373376.3378450
https://www.usenix.org/conference/osdi18/presentation/sriraman
https://www.usenix.org/conference/osdi18/presentation/sriraman

142

Optimizing server architectures for microservice diversity @scale. In Proceedings

of the 46th International Symposium on Computer Architecture, ISCA ’19, page

513526, New York, NY, USA, 2019. Association for Computing Machinery. ISBN

9781450366694. doi: 10.1145/3307650.3322227. URL https://doi.org/10.1

145/3307650.3322227.

[126] Davide Taibi and Valentina Lenarduzzi. On the definition of microservice bad

smells. IEEE software, 35(3):56–62, 2018.

[127] Davide Taibi, Valentina Lenarduzzi, and Claus Pahl. Processes, motivations, and

issues for migrating to microservices architectures: An empirical investigation.

IEEE Cloud Computing, 4(5):22–32, 2017. doi: 10.1109/MCC.2017.4250931.

[128] Davide Taibi, Valentina Lenarduzzi, and Claus Pahl. Microservices Anti-patterns:

A Taxonomy, pages 111–128. Springer International Publishing, Cham, 2020.

ISBN 978-3-030-31646-4. doi: 10.1007/978-3-030-31646-4 5. URL https:

//doi.org/10.1007/978-3-030-31646-4_5.

[129] Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy

Hardin, Surya Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahri-

ari, Alexandre Ramé, et al. Gemma 2: Improving open language models at a

practical size. arXiv preprint arXiv:2408.00118, 2024.

[130] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne

Lachaux, Timothe Lacroix, Baptiste Rozire, Naman Goyal, Eric Hambro, Faisal

Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume

Lample. Llama: Open and efficient foundation language models, 2023.

[131] Ben Treynor, Mike Dahlin, Vivek Rau, and Betsy Beyer. The calculus of

service availability. Commun. ACM, 60(9):4247, aug 2017. ISSN 0001-0782. doi:

10.1145/3080202. URL https://doi.org/10.1145/3080202.

https://doi.org/10.1145/3307650.3322227
https://doi.org/10.1145/3307650.3322227
https://doi.org/10.1007/978-3-030-31646-4_5
https://doi.org/10.1007/978-3-030-31646-4_5
https://doi.org/10.1145/3080202

143

[132] Aditya Vashistha, Edward Cutrell, and William Thies. Increasing the reach of

snowball sampling: The impact of fixed versus lottery incentives. In Proceedings

of the 18th ACM Conference on Computer Supported Cooperative Work & Social

Computing, CSCW ’15, page 13591363, New York, NY, USA, 2015. Association

for Computing Machinery. ISBN 9781450329224. doi: 10.1145/2675133.2675148.

URL https://doi.org/10.1145/2675133.2675148.

[133] Markos Viggiato, Ricardo Terra, Henrique Rocha, Marco Tulio Valente, and

Eduardo Figueiredo. Microservices in practice: A survey study. CoRR,

abs/1808.04836, 2018. URL http://arxiv.org/abs/1808.04836.

[134] William Viktorsson, Cristian Klein, and Johan Tordsson. Security-performance

trade-offs of kubernetes container runtimes. In 2020 28th International Sympo-

sium on Modeling, Analysis, and Simulation of Computer and Telecommunication

Systems (MASCOTS), pages 1–4, 2020. doi: 10.1109/MASCOTS50786.2020.92

85946.

[135] Mario Villamizar, Oscar Garcs, Harold Castro, Mauricio Verano, Lorena Sala-

manca, Rubby Casallas, and Santiago Gil. Evaluating the monolithic and the

microservice architecture pattern to deploy web applications in the cloud. In

2015 10th Computing Colombian Conference (10CCC), pages 583–590, 2015.

doi: 10.1109/ColumbianCC.2015.7333476.

[136] Mario Villamizar, Oscar Garcés, Lina Ochoa, Harold Castro, Lorena Salamanca,

Mauricio Verano, Rubby Casallas, Santiago Gil, Carlos Valencia, Angee Zam-

brano, and Mery Lang. Cost comparison of running web applications in the

cloud using monolithic, microservice, and AWS lambda architectures. Service

Oriented Computing and Applications, 11(2):233–247, April 2017. doi: 10.1007/

s11761-017-0208-y. URL https://doi.org/10.1007/s11761-017-0208-y.

https://doi.org/10.1145/2675133.2675148
http://arxiv.org/abs/1808.04836
https://doi.org/10.1007/s11761-017-0208-y

144

[137] VoidQuark. Parsing SSH Logs with Grafana Loki, 2024. https://voidquark.

com/blog/parsing-ssh-logs-with-grafana-loki/.

[138] Jóakim von Kistowski, Simon Eismann, Norbert Schmitt, André Bauer, Johannes

Grohmann, and Samuel Kounev. TeaStore: A Micro-Service Reference Appli-

cation for Benchmarking, Modeling and Resource Management Research. In

Proceedings of the 26th IEEE International Symposium on the Modelling, Anal-

ysis, and Simulation of Computer and Telecommunication Systems, MASCOTS

’18, September 2018.

[139] Hulya Vural, Murat Koyuncu, and Sinem Guney. A systematic literature

review on microservices. In Osvaldo Gervasi, Beniamino Murgante, Sanjay

Misra, Giuseppe Borruso, Carmelo M. Torre, Ana Maria A.C. Rocha, David

Taniar, Bernady O. Apduhan, Elena Stankova, and Alfredo Cuzzocrea, editors,

Computational Science and Its Applications – ICCSA 2017, pages 203–217,

Cham, 2017. Springer International Publishing. ISBN 978-3-319-62407-5.

[140] Qingyang Wang, Chien-An Lai, Yasuhiko Kanemasa, Shungeng Zhang, and

Calton Pu. A study of long-tail latency in n-tier systems: Rpc vs. asynchronous

invocations. In 2017 IEEE 37th International Conference on Distributed Com-

puting Systems (ICDCS), pages 207–217, 2017. doi: 10.1109/ICDCS.2017.32.

[141] Yingying Wang, Harshavardhan Kadiyala, and Julia Rubin. Promises and chal-

lenges of microservices: an exploratory study. Empirical Software Engineering,

26(4):63, May 2021. ISSN 1573-7616. doi: 10.1007/s10664-020-09910-y. URL

https://doi.org/10.1007/s10664-020-09910-y.

[142] Muhammad Waseem, Peng Liang, and Mojtaba Shahin. A systematic mapping

study on microservices architecture in devops. Journal of Systems and Software,

170:110798, 2020. ISSN 0164-1212. doi: https://doi.org/10.1016/j.jss.2020.110

https://voidquark.com/blog/parsing-ssh-logs-with-grafana-loki/
https://voidquark.com/blog/parsing-ssh-logs-with-grafana-loki/
https://doi.org/10.1007/s10664-020-09910-y

145

798. URL https://www.sciencedirect.com/science/article/pii/S01641

21220302053.

[143] Yuyang Wei, Yijun Yu, Minxue Pan, and Tian Zhang. A feature table approach

to decomposing monolithic applications into microservices. In 12th Asia-Pacific

Symposium on Internetware, Internetware’20, page 2130, New York, NY, USA,

2020. Association for Computing Machinery. ISBN 9781450388191. doi: 10.114

5/3457913.3457939. URL https://doi.org/10.1145/3457913.3457939.

[144] Anna Wiedemann, Nicole Forsgren, Manuel Wiesche, Heiko Gewald, and Helmut

Krcmar. The devops phenomenon. Communications of the ACM, 62:8, 2019.

URL https://cacm.acm.org/magazines/2019/8/238341-research-for-p

ractice-the-devops-phenomenon/fulltext.

[145] Wikipedia. Cubit — Wikipedia, the free encyclopedia. http://en.wikipedia

.org/w/index.php?title=Cubit&oldid=1274375061, 2025. [Online; accessed

25-March-2025].

[146] Yang Wu, Yao Wan, Hongyu Zhang, Yulei Sui, Wucai Wei, Wei Zhao, Guandong

Xu, and Hai Jin. Automated data visualization from natural language via large

language models: An exploratory study. Proc. ACM Manag. Data, 2(3), May

2024. doi: 10.1145/3654992. URL https://doi.org/10.1145/3654992.

[147] Zhenyu Xu and Victor S. Sheng. Detecting ai-generated code assignments using

perplexity of large language models. In Proceedings of the AAAI Conference on

Artificial Intelligence, volume 38, pages 23155–23162, 2024. doi: 10.1609/aaai.v

38i21.30361.

[148] Jiaxi Yang, Binyuan Hui, Min Yang, Jian Yang, Junyang Lin, and Chang

Zhou. Synthesizing text-to-SQL data from weak and strong LLMs. In Lun-

Wei Ku, Andre Martins, and Vivek Srikumar, editors, Proceedings of the 62nd

https://www.sciencedirect.com/science/article/pii/S0164121220302053
https://www.sciencedirect.com/science/article/pii/S0164121220302053
https://doi.org/10.1145/3457913.3457939
https://cacm.acm.org/magazines/2019/8/238341-research-for-practice-the-devops-phenomenon/fulltext
https://cacm.acm.org/magazines/2019/8/238341-research-for-practice-the-devops-phenomenon/fulltext
http://en.wikipedia.org/w/index.php?title=Cubit&oldid=1274375061
http://en.wikipedia.org/w/index.php?title=Cubit&oldid=1274375061
https://doi.org/10.1145/3654992

146

Annual Meeting of the Association for Computational Linguistics (Volume 1:

Long Papers), pages 7864–7875, Bangkok, Thailand, August 2024. Association

for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.425. URL

https://aclanthology.org/2024.acl-long.425.

[149] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan

Li, James Ma, Irene Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and

Dragomir Radev. Spider: A large-scale human-labeled dataset for complex and

cross-domain semantic parsing and text-to-sql task. In Proceedings of the 2018

Conference on Empirical Methods in Natural Language Processing, Brussels,

Belgium, 2018. Association for Computational Linguistics.

[150] H. Zhang, S. Li, Z. Jia, C. Zhong, and C. Zhang. Microservice architecture

in reality: An industrial inquiry. In 2019 IEEE International Conference on

Software Architecture (ICSA), pages 51–60, Los Alamitos, CA, USA, mar 2019.

IEEE Computer Society. doi: 10.1109/ICSA.2019.00014. URL https:

//doi.ieeecomputersociety.org/10.1109/ICSA.2019.00014.

[151] Yanqi Zhang, Weizhe Hua, Zhuangzhuang Zhou, G. Edward Suh, and Christina

Delimitrou. Sinan: Ml-based and qos-aware resource management for cloud

microservices. In Proceedings of the 26th ACM International Conference on

Architectural Support for Programming Languages and Operating Systems, ASP-

LOS 2021, page 167181, New York, NY, USA, 2021. Association for Computing

Machinery. ISBN 9781450383172. doi: 10.1145/3445814.3446693. URL

https://doi.org/10.1145/3445814.3446693.

[152] Zheng Zhang, Hossein Amiri, Zhenke Liu, Liang Zhao, and Andreas Zuefle.

Large language models for spatial trajectory patterns mining. In Proceedings

of the 1st ACM SIGSPATIAL International Workshop on Geospatial Anomaly

Detection, GeoAnomalies ’24, page 5255, New York, NY, USA, 2024. Association

https://aclanthology.org/2024.acl-long.425
https://doi.ieeecomputersociety.org/10.1109/ICSA.2019.00014
https://doi.ieeecomputersociety.org/10.1109/ICSA.2019.00014
https://doi.org/10.1145/3445814.3446693

147

for Computing Machinery. ISBN 9798400711442. doi: 10.1145/3681765.3698467.

URL https://doi.org/10.1145/3681765.3698467.

[153] Hao Zhou, Ming Chen, Qian Lin, Yong Wang, Xiaobin She, Sifan Liu, Rui

Gu, Beng Chin Ooi, and Junfeng Yang. Overload control for scaling wechat

microservices. In Proceedings of the ACM Symposium on Cloud Computing,

SoCC ’18, page 149161, New York, NY, USA, 2018. Association for Computing

Machinery. ISBN 9781450360111. doi: 10.1145/3267809.3267823. URL

https://doi.org/10.1145/3267809.3267823.

[154] Shuyan Zhou, Uri Alon, Sumit Agarwal, and Graham Neubig. CodeBERTScore:

Evaluating code generation with pretrained models of code. In Houda Bouamor,

Juan Pino, and Kalika Bali, editors, Proceedings of the 2023 Conference on Em-

pirical Methods in Natural Language Processing, pages 13921–13937, Singapore,

December 2023. Association for Computational Linguistics. doi: 10.18653/v1/20

23.emnlp-main.859. URL https://aclanthology.org/2023.emnlp-main.859.

[155] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, Wenhai Li, and Dan Ding.

Fault analysis and debugging of microservice systems: Industrial survey, bench-

mark system, and empirical study. IEEE Transactions on Software Engineering,

2018.

[156] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chenjie Xu, Chao Ji, and Wenyun

Zhao. Benchmarking microservice systems for software engineering research.

In Michel Chaudron, Ivica Crnkovic, Marsha Chechik, and Mark Harman, edi-

tors, Proceedings of the 40th International Conference on Software Engineering:

Companion Proceeedings, ICSE 2018, Gothenburg, Sweden, May 27 - June

03, 2018, pages 323–324. ACM, 2018. doi: 10.1145/3183440.3194991. URL

https://doi.org/10.1145/3183440.3194991.

https://doi.org/10.1145/3681765.3698467
https://doi.org/10.1145/3267809.3267823
https://aclanthology.org/2023.emnlp-main.859
https://doi.org/10.1145/3183440.3194991

148

[157] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, Dewei Liu, Qilin Xiang,

and Chuan He. Latent error prediction and fault localization for microservice

applications by learning from system trace logs. In Proceedings of the 2019

27th ACM Joint Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering, pages 683–694, 2019.

[158] Jieming Zhu, Shilin He, Pinjia He, Jinyang Liu, and Michael R. Lyu. Loghub: A

large collection of system log datasets for ai-driven log analytics. In 2023 IEEE

34th International Symposium on Software Reliability Engineering (ISSRE),

pages 355–366, 2023. doi: 10.1109/ISSRE59848.2023.00071.

[159] Olaf Zimmermann. Microservices tenets. Computer Science - Research and

Development, 32(3):301–310, Jul 2017. ISSN 1865-2042. doi: 10.1007/s00450-0

16-0337-0. URL https://doi.org/10.1007/s00450-016-0337-0.

https://doi.org/10.1007/s00450-016-0337-0

	622af39f42a7d475f04e9ec642d2fe3c79bb76b4463d0840798518ebd6f43c86.pdf
	Distribution Agreement

	1ff8d842ea523efc441afee992722326094afb7d155a2b4fcf64b1c7704b7e57.pdf
	Introduction
	Introduction
	Bridging the gap in Microservice testbeds
	Chatting with Logs
	Sauron: Full-fledged semantic search

	Bridging the gap in Microservice testbeds
	Introduction
	Motivation
	Microservice Testbeds
	Testbeds' Design Choices

	Methodology
	Recruiting Participants
	Creating Interview Questions
	Interviews & Data Analysis
	Systematization & Mismatches

	Results
	Grounding questions
	Communication
	Topology
	Service Reuse
	Evolvability
	Performance & Correctness
	Security

	Analysis
	Recommendations and Analysis
	Communication
	Topology
	Service Reuse
	Evolvability
	Performance Analysis Support
	Security

	Chatting with Logs
	Introduction
	NL Interface for Log Search
	Challenge: Querying Logs is Difficult
	Background: LogQL
	Our Vision: LLM assisted query generation

	LogQL-LM
	Dataset
	Finetuning LLMs
	Metrics
	Demonstration

	Evaluation
	Performance of finetuned models
	Effect of number of finetuning samples
	Transferability of the finetuned models
	Code Quality Analysis

	Discussion
	Threats to Validity

	Sauron: Semantic Search Engine
	Introduction
	Sauron
	System
	Indexing step
	Querying Step

	Evaluation
	Embedding Model Performance
	End to End Log Search

	Discussion

	Conclusion
	Conclusion

	Bibliography

