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Abstract

A Bayesian Hierarchical Spatial Mapping Approach to Assess Gestational Diabetes Mellitus

Risk Among Immigrant Populations in Georgia

By Kaitlin E. Schrote

Gestational diabetes mellitus (GDM) poses significant health risks for both mothers and in-
fants, making monitoring small-area GDM prevalence critical for informing targeted public health
interventions. Foreign-born women, despite generally healthier pregnancy profiles, experience
higher GDM risk than US-born women. In Georgia, nearly 1 in 4 immigrants face barriers to
comprehensive prenatal care and the burden of GDM is likely under-counted. To estimate the true
risk of GDM, we developed a Bayesian Hierarchical Immigrant GDM (BHIG) estimation model
that accounts for spatial differences and corrects for measurement error. By borrowing strength
across counties and adjusting for data sparsity, the BHIG model produces robust county-level es-
timates of GDM risk among immigrant mothers. Model results suggests that the burden of GDM
among immigrant populations in Georgia is higher than currently reported - 12.4% compared to
7.9% according to Georgia Department of Public Health records. Spatial trends reveal clusters of
elevated risk and underdiagnosis in central Georgia and the Atlanta metropolitan area. This work
demonstrates the importance of integrating spatial and measurement error models to better address

maternal health equity.
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1. Introduction

Amidst the maternal health crisis in Georgia, there is a critical need to comprehensively and ac-
curately assess the burden of gestational diabetes mellitus (GDM) across the immigrant population
to aid targeted interventions and identify high need populations. Research on GDM among im-
migrants has highlighted significant disparities and complex interactions between socioeconomic,
geographic, and racial factors. Immigrant women, who generally have healthier pregnancy out-
comes - such as lower rates of preterm birth and low birth weight - compared to US-born women,
surprisingly face a higher risk of developing GDM (OR: 1.60 compared with US-born)(Huang
et al.l [2024; |Adegoke et al., 2022; Shah et al., 2021). However, current approaches to assess-
ing the risk of GDM among immigrant populations face several limitations, including (1) large
geographic variations in GDM risk among immigrant mothers, (2) data limitations with small
population sizes and significant uncertainty, (3) multilevel socioeconomic determinants affecting
maternal outcomes, and (4) biases in reporting. GDM affects between 6% and 20% of all preg-
nancies in the United States (US) and is associated with significant maternal and neonatal health
risks(Sperling et al., 2023; Deputy, 2018; Bower et al., [2019; Kim et al., [2013)). Complications
related to GDM include increased risk of cesarean section, preterm birth, eclampsia, and associ-
ated maternal and infant birth trauma (Shah et al., 2021}; |Kim et al., 2013} [Venkatesh et al., 2022).
Furthermore, GDM can have long-lasting effects on a child’s health, contributing to childhood
obesity, metabolic syndrome, and developmental delays (Mitanchez et al., 2015} Weintrob et al.,
1996). Traditional large-scale studies often overlook geographic heterogeneity among the immi-
grant population and severely undercount GDM cases, leading to underestimated disparities and
an incomplete risk assessment for this hard to capture population. Critical to the comprehensive
assessment of immigrant maternal health disparities, small area estimation (SAE) of GDM risk
among immigrant mothers at the county level can provide a more precise understanding of ge-
ographic disparities and high-risk communities, facilitating targeted public health interventions
(Wakefield, 2007; |Waller and Gotway, [2004; Kramer and Williamson, 2013; Waller et al., |1997).

In this study, we leverage SAE methods and hierarchical measurement error modeling techniques,



to produce more reliable, localized estimates of GDM prevalence correcting for data limitations.

While studies have consistently shown that immigrant women exhibit higher risk of GDM
compared to US-born women, existing studies often lack comprehensive analyses that account for
the intersectionality of nativity, race/ethnicity, socioeconomic, and geographic factors, signaling a
need for more nuanced investigations to address these disparities effectively (Erbetta et al., [2023;
Pu et al., 2015). The US immigrant population, which accounted for 13.8% of the total US pop-
ulation in 2020, often faces barriers to accessing comprehensive prenatal care (Kim et al., 2013;
Swartz et al., |2017). Medicaid, the largest payer for obstetric care services, covers nearly 50%
of all births (Markus et al., 2013). Throughout the US, standard Medicaid provides coverage for
all pregnancy-related care, encompassing the antenatal period, childbirth, and postpartum. How-
ever, under federal law, authorized immigrants in their first 5 years in the US and unauthorized
immigrants are ineligible for standard Medicaid coverage, limiting them to Emergency Medicaid,
a federal safety net program which excludes prenatal and postpartum care, covering only obstetric
admissions(Swartz et al., 2017; DuBard and Massing, [2007; [Rodriguez et al., [2020). States may
choose to use their own funds to provide additional health services for immigrants, but coverage
remains inconsistent (Swartz et al., 2017). Georgia, with a diverse immigrant population compris-
ing 10% of the state’s population, faces a significant challenge (U.S. Census Bureau, 2023)). Over
a third of these immigrants are unauthorized, and the state has one of the highest rates of unin-
sured individuals in the US (Migration Policy Institute (MPI), 2024a,b; [Terlizzi and Cohen), 2022).
Although a policy change in January 2023 allows low income authorized pregnant immigrants to
qualify for standard Medicaid without a waiting period, undocumented pregnant Georgians remain
restricted to Emergency Medicaid only, leading to inadequate prenatal care and an undercount of

GDM cases across the state (Migration Policy Institute (MPI), 2024)).

Previous studies assessing GDM risk and other maternal morbidities among immigrant pop-

ulations have employed a variety of methodological approaches, including large-scale epidemio-



logical surveys, administrative health data analysis, and logistic regression models to estimate risk
differentials (Janevic et al.| 2014} Pu et al. 2015} [Bolduc et al., 2024 |Go et al., [2024). Some
studies have reported a “protective effect” of immigrant status, suggesting lower rates of adverse
pregnancy outcomes compared to US-born counterparts, often attributed to the “healthy immigrant
effect” (Acevedo-Garcia et al., 2010; Gagnon et al., 2009). However, these findings are inconsis-
tent, with more recent studies highlighting an elevated risk of GDM among immigrants, partic-
ularly those from Latin America, Southeast Asia, and East Asia (Shah et al., 2022aj Kim et al.,
2013; Shah et al.l 2022b)). Methodologically, most prior work has relied on hospital discharge
data or birth certificates, which are limited by underreporting, misclassification, and sometimes
a lack of granular geographic detail (Backes et al.l [2020). Many studies have leveraged small
area estimation (SAE) techniques to capture geographic disparities in maternal health outcomes,
but typically focus on broader populations without explicitly addressing immigrant-specific data
limitations (Waller and Gotway, 2004} Kramer and Williamson, 2013; |Yang et al., 2024} Stan-
hope et al., [2024)). A recent study by [Sun et al.| (2023) applied Bayesian spatial mapping mod-
els to examine GDM incidence across Florida, identifying spatial clusters of increased risk and
underscoring the value of hierarchical modeling in addressing geographic disparities. However,
this study did not account for systematic reporting biases that may differentially affect immigrant
populations. This gap underscores the need for refined methodological approaches that account for
both geographic heterogeneity and systematic underestimation of GDM prevalence. By integrating
Bayesian hierarchical modeling with measurement error correction, our study seeks to overcome
these limitations and provide more reliable, localized estimates of GDM burden among immigrant

populations in Georgia.

In this study, we aim to obtain small area estimates of the true risk of GDM among immigrant
communities across all 159 counties in Georgia, providing a targeted understanding of the burden
of GDM in this population. Our approach fuses Bayesian hierarchical disease mapping and mea-

surement error methodologies to not only enhance the precision and robustness of GDM estimates



in the presence of error-prone data, but also to offer actionable insights for public health inter-
ventions aimed at mitigating the disproportionate burden of GDM. We use a standard Bayesian
disease mapping model which allows for borrowing of strength of information across small areas
and thereby reducing high degrees of uncertainty associated with smaller population sizes (Waller
and Gotway, 2004} Blangiardo et al., 2020; Lawson, 2013 Wakefield, |2007; Knorr-Held, 2000;
Besag et al., |1991} Riebler et al., [2016). Reported GDM counts among immigrants are system-
ically underestimated due to lower prenatal care utilization, leading to biased estimates of GDM
risk in this population (Swartz et al., 2019; |Goldfarb et al., 2017)). However, we identified six gold
standard (GS) counties that exhibited higher crude prevalence rates and lower variance, suggesting
a sufficiently large immigrant population where we could be more confident that the sensitivity of
GDM detection was fairly high compared to others, although undercounting was likely still present.
This discrepancy is attributed to increased access to prenatal care services, such as mobile clinics
or expanded coverage programs in these counties, which facilitate greater screening for GDM and
provide more accurate and representative estimates of its prevalence among immigrant populations
(Swartz et al., 2019). We assume that all reported GDM counts in non-GS counties are subject to er-
ror and use a Bayesian hierarchical disease mapping approach that accounts for measurement error
across all 159 counties. This allows us to estimate county-level data quality measures, specifically
sensitivity—defined as the ratio of error-prone to true GDM risk—assumed within a measurement
error framework (Carroll et al., 2006; Zhang et al., 2021). We further assess the relationship be-
tween true county-level estimates of GDM prevalence and driving socio-economic and geographic
determinants of health as assessed through a latent model structure which models the probability
of true GDM risk as a function of key informative covariates consisting of race/ethnicity, adequate
prenatal care, and rurality(Erbetta et al., 2023 [Shah et al., 2021} Pu et al., 2015; |Venkatesh et al.,
2024; Go et al., 2024; Newman et al., [2022)).

Our work makes several contributions. Firstly, our methodology introduces a novel approach

to correcting reporting bias in cases where small areas have error-prone data, resulting in statistical



challenges in the development of comparative data quality metrics. By explicitly accounting for
measurement (undercounting) error, our framework not only enhances the accuracy and reliability
of small area estimates but also establishes a scalable and adaptable model that can be applied
to other geographic regions and hard-to-capture populations facing similar data limitations. Sec-
ondly, we provide comprehensive and granular estimates of GDM risk for immigrant communities
in Georgia through improving GDM surveillance to refine public health strategies targeting high-

risk, underrepresented immigrant populations.

This paper is organized as follows: Section describes the data used to obtain GDM preva-
lence estimates. Section [2.3]describes the GS and error-prone data used to obtain GDM estimates.
Section describes the data models assumed for the GS and error-prone GDM counts. Section
describes the model assumptions of the underlying process with incorporated sensitivity cor-
rection. Section [2.5|describes the measurement error model approach. Section [2.6] summarizes the
process to obtain corrected GDM estimates and associated uncertainties. Lastly, Section[d]presents

results across high and low sensitivity counties.

2. Methods

2.1. Data

Cross-tabulated vital statistics data on births - stratified by county and maternal characteristics,
for Georgia residents from 2018 to 2023 were obtained from the Georgia Department of Public
Health (GADPH) (Georgia Department of Public Health, Office of Health Indicators for Planning
(OHIP), 2023). This dataset includes demographic, health, and prenatal care information for US-
born and immigrant mothers, along with GDM diagnoses. Key variables include maternal age,
race/ethnicity, nativity, insurance status, prenatal care utilization, and urban/rural residency. Ex-
ploratory findings, summarized in TableT] highlight critical demographic and health disparities
that motivate the modeling assumptions used in this study. Differences in maternal age, race/eth-

nicity composition, and prenatal care access between US-born and immigrant mothers underscore



the need to account for socio-economic and demographic differences to better understand GDM
disparities across Georgia’s 159 counties.

Figure [I] illustrates the aggregated crude prevalence of GDM among immigrants across coun-
ties in Georgia from 2018-2023. Larger population counties, such as those in Metro Atlanta,
generally show a GDM prevalence under 10%. Given that Metro Atlanta has a larger healthcare
infrastructure and the expectation that immigrant populations there have greater access to prena-
tal care, higher GDM prevalence rates might be anticipated. However, this is not reflected in the
crude prevalence estimates, suggesting that underdiagnosis or disparities in screening may still be
present. Six counties consisting of Candler, Decatur, Forsyth, Grady, Hart, and Tift counties (out-
lined in red) show higher degrees of crude prevalence. These select counties have unique charac-
teristics that likely contribute to improved GDM detection, including: (1) mobile clinics providing
care to a large proportion of the immigrant population, (2) annual free clinics in southwest Georgia
sponsored by Emory University Schools of Nursing and Medicine, and (3) immigrants with high
socioeconomic status. These factors may lead to more comprehensive screening in these counties
compared to others. As such, we refer to these as gold standard (GS) counties to which we assess
potential underestimation in other areas with less access to prenatal care services for the immigrant

population.

Figure 1: Mapped crude prevalence of gestational diabetes (GDM) among immigrants in Georgia, 2018-2023. Gold
standard counties (Candler, Decatur, Forsyth, Grady, Hart, and Tift) are outlined in red.



Variable US-Born Immigrant p-value
N 601,845 143,888
Age
< 18 years 9,221 (1.5%) 1,090 (0.8%) < 0.001
18 — 24 years 163,021 (27.1%) 21,863 (15.2%)
25 — 34 years 339,256 (56.4%) 81,247 (56.5%)
> 35 years 90,347 (15.0%) 39,688 (27.6%)
Race/Ethnicity
Non-Hispanic White 306,887 (51.3%) 14911 (10.4%) < 0.001
Non-Hispanic Black 228,101 (38.1%) 24,646 (17.2%)
Non-Hispanic Asian/Pacific Islander 5,588 (0.9%) 27,490 (19.2%)
Non-Hispanic Other 15,094 (2.5%) 2,480 (1.7%)
Hispanic 42,935 (7.2%) 73,444 (51.4%)
Insurance at Delivery
Private 298,306 (49.6%) 45,836 (31.9%) < 0.001
Medicaid 249,872 (41.6%) 53,625 (37.3%)
Self-Pay 12,591 (2.1%) 36,462 (25.4%)
Other 40,207 (6.7%) 7,740 (5.4%)
County Residency
Urban 464,767 (77.5%) 133,037 (92.5%) < 0.001
Rural 137,078 (22.5%) 10,851 (7.5%)
Mean Number of Prenatal Visits 11.30 (4.81) 10.48 (4.91) < 0.001
Prenatal Care
Inadequate Prenatal Care 98,598 (16.4%) 34,098 (23.7%) < 0.001
Late or No Prenatal Care 43,824 (7.5%) 17,571 (12.6%) < 0.001
Less than 5 Prenatal Visits 41,766 (7.0%) 15,896 (11.2%) < 0.001
Pregnancy Risk Factors
Pre-pregnancy Diabetes 6,523 (1.1%) 1,675 (1.2%) 0.009
Gestational Diabetes 33,942 (5.6%) 11,316 (7.9%) < 0.001
Pre-pregnancy Hypertension 18,997 (3.2%) 1,731 (1.2%) < 0.001
Gestational Hypertension 55,385 (9.2%) 6,722 (4.7%) < 0.001
Eclampsia 1,218 (0.2%) 193 (0.1%) < 0.001

Table 1: Births by Nativity in Georgia, 2018-2023



2.2. Summary of model approach

A Bayesian hierarchical immigrant gestational diabetes (BHIG) model framework was em-
ployed to estimate county level GDM prevalence among immigrant mothers for 159 counties in

Georgia. The complete model structure including full posterior conditional distributions are given

in The model includes four key components:

1. The data model consists of modeling observed county specific gestational diabetes mellitus
aggregated counts for 2018-2023 as binomial outcomes. For counties with error-prone data,
observed cases, y;, were modeled as the product of latent, true prevalence, 6; and sensitivity,
Ai. For counties with gold standard data, observed counts, zj, were modeled directly using

0;. Further details are provided in Section

2. The process model characterizes the latent prevalence of GDM by incorporating both sys-
tematic geographic variation and covariate effects. Additional details are provided in Section

3. The measurement error model produces county-specific sensitivity estimates (A;) and im-
proves inference. Additional details are provided in Section

4. Estimates of corrected latent GDM counts are derived using posterior predictive distribution

estimates of 6;. This is further detailed in Section 2.6

Figure [2| shows a graphical representation of the BHIG model set-up; refer to for

a summary of notation used.
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Figure 2: Bayesian hierarchical immigrant gestational diabetes mellitus (BHIG) estimation model

2.3. Data Model for Estimating Gestational Diabetes Mellitus Counts Across All Counties

The data model defines the likelihood functions that relate the observed county-level GDM
counts to our parameters of interest. We distinguish between two groups of counties based on
data quality. Gold standard (GS) counties (Candler, Decatur, Forsyth, Grady, Hart, and Tift) are
believed to have more reliable GDM reporting systems due to mobile health units, free clinics, and
socioeconomic factors. For these six counties, we assume that observed GDM counts are accurate
and directly reflect the true underlying prevalence. Thus, the number of observed GDM cases, z;

is modeled as:

zj ~ Binomial(M;,0;) € GS County j=1,...,6 (1)

where M is the number of live births among immigrant mothers in GS county j, and 0; is the true
prevalence of GDM.

In non-gold standard (non-GS) counties, GDM counts are assumed to be underreported. In
each of these counties, the observed count of immigrant GDM cases, denoted y;, is modeled using
a Binomial distribution, where N; is the total number of live births to immigrant mothers and p; is

the error-prone estimated prevalence of GDM in county i:



10

yi ~ Binomial(N;,p;) € non-GS County i =1,...,153 2)

The error-prone prevalence, p;, is modeled as the product of county-specific sensitivity estimate A;

and the true underlying prevalence 6;:

pi=Ai-6; 3)

Sensitivity measures quantify the extent of undercounting in error-prone data. This approach en-
sures that posterior estimates of true GDM prevalence 0; are adjusted for measurement error, im-
proving the robustness and interpretability of small-area estimates. This dual-likelihood framework
allows us to utilize high-quality data from GS counties while accounting for potential misclassi-

fication in the rest of the state, improving the validity of county-level risk estimates across Georgia.

2.4. Process Model for Unobserved Latent Gestational Diabetes Mellitus Logit-Probabilities

We model the latent logit probability, logit(6;), incorporating both spatially and temporally
structured and unstructured random effects shown in Eq 4. To incorporate spatial terms in our
model, we consider the Reparamertized Besag-York-Mollié (BYM2) Model, which allows us to
estimate the prevalence of GDM, weighting trends in the neighboring counties (Riebler, A. et al.,
2016; Besag et al., [1991; Knorr-Held, 2000; Waller et al., 1997). We denote v; to represent a
spatially unstructured random effect term that is independent, identically, and normally distributed
centered around zero, v; ~ N(0, 62). The spatially structured term, denoted u; is modeled assuming
an intrinsic conditional autoregressive (ICAR) prior, which assumes complete correlation between
neighboring areas. The spatial covariance matrix, W is written as a function of an N x N adjacency
matrix where entries 1,1 are zero and the off-diagonal elements are 1 if counties i and j are neigh-
bors and 0 otherwise. D is the N x N diagonal matrix where entries 1,1 are the number of neighbors
of county i and the off-diagonal entries are 0. Lastly, 7, denotes the smoothing parameter. The

parameter p is a mixing parameter that controls the contribution of the spatially structured random
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effect u; and the unstructured random effect v; in the model. Specifically, p balances the amount of
variance attributed to spatially structured effects versus unstructured effects, with higher values of
p indicating a greater reliance on spatial structure. The parameter ¢ controls the proportion of vari-
ance attributed to the spatially structured random effect u; by influencing the relative contribution

of spatial and unstructured noise to the total model variance.

logit(6;) = u+X/B+p ( %) ui+(1—p)v;, fori=1,...,159
u~N(0,1) Intercept
p ~ Beta(1,1) Structured-Unstructured Balance (4)

¢ ~ Beta(1,1) Proportion of Spatial Variance

V; ~N(0,062) Unstructured spatial noise

ui ~ N (0,[7,(D—W)]"!) ICAR prior for spatial auto-correlation
2.5. Measurement Error Model

We model A; on the logit-transformed scale to extend the parameter space from (0,1) to the

real line. We model the logit-transformed A; as a spatially structured ICAR random term which
allows for county-specific deviations but also allows for sharing of information across counties,
such that counties closer to gold-standard counties have higher levels of sensitivity as the benefit

from expanded prenatal care access in neighboring counties. The measurement error model is

given in Eq. 3]
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1
T +exp(—w;)

; ~ N (e + Bgs - Indicator (i in GS) + ugp + Ve, 1)
~ N(0,0.01) Intercept
Hao ( ) P )
Bgs ~ Truncated N(1,1;]0,5])
Ve ~ N(0, szw) Unstructured spatial noise
e ~ N (0,[To(D—W)]~ l) ICAR prior for spatial auto-correlation

2.6. Derivation of Corrected GDM Counts and Associated Uncertainty

To estimate the true prevalence of GDM among immigrant populations, we obtain posterior
median estimates of 6;, which account for measurement error due to imperfect sensitivity A;. The

full conditional posterior distribution for 6; is given by:

P(6; | data) o< P(y;,z; | Ni,M;, 6;)P(6; | u,Xi,u;i, Vi, p, 9, A:), (6)

where P(y;,zj | N;,M;, 6;) follows a Binomial likelihood:

Vi | ]V,', Qi ~ Binomial(N,-, 9,'), (7)

and P(6; | u,B,u,v,p,9,A;) represents the prior distribution for 6;, incorporating spatial smooth-
ing and measurement error adjustments through A;.
From this full conditional posterior distribution, we obtain posterior median estimates of 6;,

denoted as:

6; = median <6i(s)> , (®)

)

where 6, are posterior samples from P(6; | data). These posterior median estimates provide
corrected GDM rates for immigrant populations, addressing undercounting biases and improving

the robustness of small-area prevalence estimation while incorporating spatial correlations across
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counties.

2.7. Simulation Study: Evaluating Measurement Error Correction

To assess the ability of our BHIG model to recover the true prevalence of GDM while ac-
counting for undercounting, we conducted a simulation study. The simulation generates synthetic
county-level immigrant GDM data under varying degrees of underreporting, applying the two-

stage model to determine whether the posterior estimates correctly adjust for measurement error.

Data Generation We generate simulated county-level immigrant GDM counts across N = 159
counties in Georgia. For ease of readability, we denote generated samples with (s) and fixed preset
values with *. The true GDM prevalence Gl.(s) in each county i follows a logistic regression model

incorporating covariate information and spatial dependence:

1ogit(9i(s>):u*+xi*’ﬁ*+p*( 1f¢*)u§s)+(1—p*)v}”, i=1,...,159 (9

where U is a fixed intercept term, X; represents known county-level covariates, B* are regres-
(s)

sion coefficients, ul.s is a spatially structured random effect (modeled using an intrinsic conditional

(s)

autoregressive (ICAR) prior), and v;"’ is an independent Gaussian noise term. The prevalence of

(s)

;. 1s systematically lower than Gl.(s), following the sensitivity relationship

)

1

GDM prone to errors p

() _ 360 g

D; .- 0;", where 4. represents the county-specific sensitivity parameter, controlling the

(s)

degree of undercounting in all counties. The error-prone counts y;” are then simulated as:

yi ~ Binomial(N;, p;) (10)

Simulation Scenarios: We impose increasing degrees of measurement error across three sce-
narios shown below. Scenario 1 imposes a small degree of error, scenario 2 imposes a moderate

degree of error, and scenario 3 imposes the highest degree of error.
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Scenario 1: Ai(s) ~ Unif(0.8,1)
Scenario 2: 2" ~ Unif(0.5,1)

Scenario 3: A" ~ Unif(0.2,0.8)

For each scenario, we generate s = 1, ...,200 Monte Carlo datasets and fit the full BHIG model

approach outlined in Eqs

Evaluation Metrics The ability of the model to recover the true prevalence 6; is assessed using
summary metrics of mean error, mean absolute error, mean relative error, median error, median

absolute error, median relative error, and 95% inside coverage probabilities.

3. Computation

We used GADPH-reported births for 159 counties in Georgia from years 2018-2023. For model
processing and output, a Markov Chain Monte Carlo (MCMC) algorithm samples from the poste-
rior distribution of the parameters via the software Nimble (de Valpine et al., 2017). Ten parallel
chains were run with a total of 60,000 iterations in each chain. Of these, the first 10,000 iterations
in each chain were discarded as burn-in, leaving 50,000 samples per chain. To reduce autocorre-
lation, we thinned the samples by retaining every 10th iteration after burn-in. Standard diagnostic
checks, including traceplots were used to assess convergence (Plummer, 2017} Gelman and Rubin,

1992; |Vehtari et al.,|2021; Su and Yajima, |2020; Rue and Held, 2005; de Valpine et al.,|[2017).
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4. Results

4.1. Simulation Results

The results demonstrate that the BHIG model with measurement error correction successfully
recovers the true prevalence 6; across counties, particularly under mild and moderate undercount-
ing scenarios. Severe undercounting (A; < 0.6) leads to increased uncertainty, though the model
still provides reasonable coverage probabilities. Across all scenarios, incorporating gold-standard
data improves the precision of prevalence estimates, highlighting the importance of leveraging
high-quality data sources in disease mapping.

Table [2] presents summary error metrics, including the median absolute error across under-

counting scenarios, showing improved estimation accuracy as A; approaches 1.

Scenario Mean Error Median Error Median Abs Error MSE 95% Inside Coverage
Low Bias 0.005 0.015 0.019 0.022 95.20%
Moderate Bias -0.024 -0.043 0.033 0.027 94.10%
High Bias -0.062 -0.075 0.069 0.054 91.11%

Table 2: Summary of model performance across 100 simulated county-level datasets under varying levels of bias
imposed on error-prone counties.

These findings underscore the necessity of correcting for systematic undercounting in small-
area disease prevalence estimates. By integrating spatial smoothing and measurement error mod-
eling, our Bayesian approach provides a more robust framework for understanding maternal health

disparities in immigrant populations.

4.2. Global Parameter Estimates

Global parameters consist of the global variance terms 63 and Gg,, the global scaling param-
eters ¢ and p, and the global intercepts u and . Tablg3| shows posterior model-estimates and

credible intervals for the global parameters.
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Parameters Estimate 95% CI Lower Bound 95% CI Upper Bound
Fixed Effects (Odds Ratios)

u 0.151 0.111 0.210
Prenatal Care 0.850 0.350 2.128
Hispanic Ethnicity ~ 0.987 0.524 1.982
Rurality 1.058 0.844 1.316
Sensitivity Components

U 0.320 0.134 0.505
Bos 1.214 0.081 3.024
o2 0.011 0.001 0.243
Spatial and Variance Components

ol 0.332 0.220 1.028
[0} 0.244 0.008 0.863
p 0.177 0.006 0.742

Table 3: Global parameter estimates included in the BHIG model

4.3. Estimated GDM Sensitivity Across Georgia

The estimated sensitivity 2i of GDM case detection varied across Georgia, with distinct spatial
patterns emerging. As shown in Figure 3] sensitivity estimates ranged from 0.26 to 0.85, and were
generally highest in the southwest region of the state, which is an expected result. Among the
gold standard counties, Hart County had the highest estimated sensitivity at 0.848 (95% CI: 0.284
- 0.989), followed closely by Grady County at 0.845 (95% CI: 0.295 - 0.988), Candler County at
0.835 (95% CI: 0.267 - 0.988), Forsyth County at 0.818 (95% CI: 0.251 - 0.987), and Tift County at
0.812 (95% CI: 0.234 - 0.987). Decatur County had a slightly lower estimate with sensitivity value
of 0.782 (95% CI: 0.195 - 0.0.984). In contrast, Fayette County exhibited the lowest estimated
sensitivity at 0.263 (95% CI: 0.141 - 0.486), substantially lower than any of the gold standard
counties. The overall spatial distribution of sensitivity estimates suggests regional differences
in GDM case detection across the state. Additionally, the findings highlight the importance of
localized adjustments when estimating GDM prevalence, particularly in areas with limited gold

standard data.
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Figure 3: Mapped posterior median sensitivity estimates for gestational diabetes in Georgia, 2018-2023.

4.4. Posterior Probability and Variance Estimates

The spatial distribution of the posterior median probability estimates (Figure [ left) indicates
notable regional variation in the estimated probability of GDM. Higher probability estimates are
observed in the southwestern regions of Georgia, as well as in Hart County in northeast Geor-
gia. The posterior median variance estimates (Figure [} right) reveal lower uncertainly in the gold
standard counties, as expected. Counties with the highest variance estimates tend to correspond to
areas with smaller immigrant populations and thus fewer observed births and GDM cases. Together
these maps highlight the spatial heterogeneity in both the probability of GDM and the confidence

in these estimates.

To further assess the impact of sensitivity, Figure [3 presents the posterior median probabil-
ity estimates of GDM prevalence under two modeling approaches: without incorporation of the
Measurement Error Model (left) and with this additional sensitivity adjustment (middle). The
rightmost panel displays the difference between these models, highlighting areas where preva-
lence estimates increased the most, following the incorporation of sensitivity. In the unadjusted
model (left panel), the GDM prevalence estimates exhibit spatial heterogeneity throughout Geor-

gia, with much higher estimates observed in the north Atlanta suburbs and southwestern counties.
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After incorporating sensitivity (middle panel), overall prevalence estimates increased, with more
pronounced increases where sensitivity was previously lower. The difference map (right panel)
indicates the magnitude of these changes, with the largest increases in estimated GDM prevalence
occurring in dark blue counties, primarily south of the Atlanta metropolitan region. Counties in
red, concentrated in southwestern Georgia where several gold standard counties are located, ex-
hibit the smallest increases in estimated GDM prevalence. These results suggest that incorporating

sensitivity refines spatial estimates, particularly in regions where case ascertainment is less certain.

Estimated True Risk Estimated Variance

Variance
0.06

I 0.05
0.04

0.03

Figure 4: Mapped true posterior median probability (left) and true posterior median variance (right) estimates

Estimated Error-Prone Risk Estimated True Risk Estimated Risk Difference

Difference

I 0.08
0.06

0.04

Figure 5: Mapped comparison of posterior median model estimates without and with incorporation of sensitivity.
(Left) Posterior median probability estimates for the model without incorporation of sensitivity; (Middle) Posterior
median probability estimates for the model with sensitivity adjustment; (Right) Difference between the two models,
highlighting areas of change.
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4.5. Estimated Additional GDM Cases Across Georgia

Tabled] compares the GADPH-reported number of GDM cases among immigrants in Georgia
from 2018 to 2023 along with estimates from the BHIG model. GADPH reported 11,316 cases of
GDM during this period of time, with a state-wide risk of 7.9% among immigrants. In contrast, the
BHIG model estimates a 12.4% GDM risk during the same time period, suggesting approximately

6,600 missed cases of GDM among immigrant mothers.

Cases 2018-2023 95% CI Additional Cases GDM Risk
GADPH Reported 11,316 - - 7.9%
BHIG Estimates 17,905 (12,079-28,908) 6,589 12.4%

Table 4: Comparison of GDM cases reported by GADPH and estimated by the BHIG model, 2018-2023

5. Discussion

This study demonstrates substantial underreporting of GDM cases among immigrant mothers in
Georgia. Estimates from our BHIG model, which incorporates measurement error suggests a “true”
GDM prevalence of 12.4% among immigrants, compared to the 7.9% reported in GADPH records.
This discrepancy - amounting to almost 6,600 missed cases between 2018 and 2023 - confirms
prior research indicating that GDM is frequently underestimated in immigrant populations due to

inconsistent screening and barriers to healthcare access (Janevic et al., [2022; Swartz et al., [2017).

Geographic variation in the extent of underreporting is notable. Contrary to our expectations, urban
counties, particularly those in the Metro Atlanta region, exhibited more pronounced underestima-
tion than rural counties. While these areas typically have more robust prenatal care infrastructure,
our model indicates gaps in diagnosis or documentation such that the reported GDM prevalence
in the Metro Atlanta region remains below what should be expected based on existing literature
(Pu et al., 2015; [Shah et al., 2022a). Factors likely contributing to this including delayed initiation
of prenatal care, which is commonly associated with financial, legal, and language barriers among

immigrant communities (Bustamante et al., [2022; |Korinek and Smith, 2011}; Shi et al., [2009).
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Additionally, exclusion of certain immigrant groups from Medicaid and other related programs re-
duces opportunities for early and consistent screening, perpetuating disparities in maternal health

outcomes.

In contrast to urban counties, GADPH-reported GDM prevalence in rural counties, particularly
those in Southwest Georgia, more closely aligns with estimates from the literature, and our model’s
estimates show only a modest increases in cases. This pattern suggests more complete GDM re-
porting in these areas, potentially due to higher rates of screening facilitaed by Georgia Farmworker
Health Program (GFHP) clinics, several of which deploy mobile units that provide point-of-care
testing for underserved populations (Georgia Department of Community Health, 2025)). Because
GDM is typically recorded on birth certificates based on clinical diagnoses documented in pre-
natal records, increased screening and diagnostic care may directly contribute to improved case
ascertainment. However, despite this more comprehensive GDM reporting, these regions still face
significant barriers to prenatal care access, which may contribute to worse maternal and neonatal
health outcomes. One key challenge is the high proportion of Medicaid-eligible individuals who
do not enroll, instead relying on self-pay for prenatal care, which greatly limits their ability access
comprehensive services (Bustamante et al.,|[2022; Luque et al., 2018]). This phenomenon is partic-
ularly common among Latina and Asian immigrant populations, where concerns about Medicaid
enrollment persist due to fear surrounding immigration status (Daudi, 2020). The 2019 changes to
the “public charge” rule made it more difficult for immigrants to obtain a green card or permanent
residence if they used public benefits such as Medicaid or SNAP (Bernstein et al., 2020). Although
these changes were reversed in 2021, fear and misinformation continue to deter many immigrants
from enrolling in Medicaid (White House| 2021} |Bustamante et al., 2022; Wang et al., 2022)). This
reluctance to seek publicly funded healthcare may lead to delays in prenatal care initiation and re-
duced access to GDM screening, ultimately exacerbating disparities in maternal and infant health
outcomes. Addressing these barriers requires targeted outreach to immigrant communities, clear

communication about Medicaid eligibility policies, and assurances that using prenatal care ser-
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vices will not negatively impact immigration status.

This study has several limitations that should be considered when interpreting the findings. First,
our model relies on assumptions about spatial patterns and reporting mechanisms, which may in-
troduce biases if the true distribution of GDM cases does not align with these assumptions. For
example, if reporting errors are not spatially structured or sensitivity varies in a way not captured
by the model, the sensitivity estimates may be systemically biased, either over- or underestimating
sensitivity in certain counties. Another key limitation is the lack of individual-level data on immi-
gration status, healthcare utilization, and gestational diabetes screening practices. Without these
data, our model primarily captures geographic trends rather than person risk factors, potentially

obscuring important sociodemographic determinants of GDM underreporting and prevalence.

Future research should explore barriers to prenatal care and GDM diagnoses in both urban and
rural immigrant populations to better understand disparities in screening and management. Ad-
ditionally, with the recent Medicaid postpartum expansion to 12 months in Georgia, it would be
valuable to investigate how many individuals diagnosed with GDM receive postpartum diabetes
screening and subsequently are diagnosed with Type 2 diabetes mellitus. Estimating the propor-
tion of GDM cases that represent undiagnosed pre-pregnancy pre-diabetes could provide critical

insights into early intervention strategies for improving long-term health outcomes.

This study highlights significant underreporting of GDM cases among immigrant mothers in Geor-
gia, underscoring the need for more accurate data collection and reporting. To better understand
these disparities, we employed a Bayesian spatial mapping approach which adjusts for measure-
ment error, which allows for the estimation of GDM prevalence while accounting for spatial de-
pendencies and variations in data quality across counties. This method enables more precise preva-
lence estimates by borrowing strength from neighboring regions and incorporating sensitivity ad-

justments, particularly in areas where data may be error-prone. By using this approach, we can
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more effectively identify high-risk areas and inform targeted interventions. Addressing gaps in
screening and reporting remains essential for improving maternal health outcomes in immigrant

communities and reducing the complications associated with untreated GDM.
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Appendix A. Notation Table

Parameter Notation Description

N; Population of immigrant mothers who gave birth in error-prone
county i

M; Population of immigrant mothers who gave birth in gold stan-
dard county j

Vi GDM counts for error-prone county i

zZj GDM counts for gold standard county j

Di Error-prone probability of GDM for county i

0, True probability for GDM in county i

u Global intercept

p Global mixing parameter for spatially structured (;) and un-
structured (Vv;) random effects

[0} Global parameter for proportion of total variance attributed to
spatially structured effects

X; Population at risk for county i

B Covariate coefficients

Vi Spatially unstructured random effect term for county i

ol Variance of spatially unstructured random effect for county i

u; Spatially structured random effect (ICAR prior) for county i

T Smoothing parameter of the ICAR prior

Ai Sensitivity in county i

; Latent linear sensitivity predictor in county i

Bo Fixed effect for the average difference in the latent linear pre-
dictor w; for counties designated as gold standard (GS) com-
pared to non-GS counties

Vo Spatially unstructured random effect term in @; across counties

ol Variance of spatially unstructured random effect v,

u; Spatially structured random effect (ICAR prior) in @; across
counties

D Diagonal matrix containing the number of neighbors of each
area on the diagonal

w Adjacency matrix containing 1 for neighboring and O for non-
neighboring counties
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Appendix B. Full Model Specification and Conditional Distributions

Appendix B.l1. Data Model

Appendix B.1.1. Observed True Counts

The observed true GDM counts are modeled using a binomial likelihood:

zj ~ Binomial (M}, 6;) (B.1)

where 6; represents the true prevalence of GDM.

Appendix B.1.2. Observed Error-Prone Counts

The observed error-prone GDM counts are modeled using a binomial likelihood:

yi ~ Binomial(N;, p;) (B.2)

where p; represents the error-prone prevalence of GDM and 6; is the true prevalence, modeled

as:

piZAi-Qi, 0<A <1 (B.3)



Appendix B.2. Process Model

Appendix B.2.1. True GDM Risk

logit(6;) = u+X/B +p ( %) ui+(1—p)v, i=1,...,159

s~ N(O,1)

B ~N(0,03)

Vi ~N(0,07)

ui ~N (0,[z,(D—W)]™")
p ~ Beta(1,1)

¢ ~ Beta(1,1)

Appendix B.2.2. Measurement Error Model

1
T T texp—w)

@; ~ N (o + Bgs - Indicator (i in GS) + ugp + Ve, 1)
Lo ~ N(0,0.01)
Bgs ~ Truncated N(1,1;]0,5])

Vo ~N(0,0;,)

o ~ N (0, [to(D—W)] )
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(B.4)

(B.5)
(B.6)
(B.7)
(B.8)
(B.9)
(B.10)

(B.11)

(B.12)

(B.13)
(B.14)
(B.15)
(B.16)
(B.17)

(B.18)
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Appendix B.3. Full Conditional Distributions

Appendix B.3.1. Posterior of 6; (True GDM Risk)

P(6; | data) o< P(y;,z; | Ni, 6;)P(6; | W, Xi,ui, Vi,p, 9, A;) (B.19)

Appendix B.3.2. Posterior of A; (Sensitivity Parameter)
P(4; | data) o< P(y; | pi)P(Ai | @;) (B.20)
Ai | ; ~ Beta(a,l,b)b) (B.21)
Appendix B.3.3. Posterior of p; (Error-Prone Risk)

P(pi| data) o< P(y; | pi;)P(pi | Ai, 6i) (B.22)

Appendix B.3.4. Posterior of Spatial Effects (u; and ®;)
P(u; | neighbors) e« MVN(ii;, 62) (B.23)
P(w; | neighbors) o« MVN(@;, T, ") (B.24)

Appendix B.3.5. Posterior of Regression Coefficients 3

B | data ~ MVN(B, Vj) (B.25)
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