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Abstract 

Assessment of Clustering of Cutaneous T-Cell Lymphoma in Metropolitan Atlanta 
By Chenhao Lu 

Background: Cutaneous T-cell lymphoma (CTCL) is a rare type of non-Hodgkin 
lymphoma (NHL). In the United States, the overall CTCL incidence increased from the 
year 1973 to 2004 and just started stabilizing in recent decades. The cause of previous 
increase in incidence remains unknown but was believed to be related with environmental 
factors. Recent analysis found significant geographic clustering of CTCL at county level 
in Georgia. There was also correlation between the clustering and an increased 
concentration of benzene and TCE exposure at county level. 

Objective: (1) Identify the geographic clustering of CTCL in metropolitan Atlanta, 
including five counties: Fulton, DeKalb, Gwinnett, Cobb, and Clayton, at the census tract 
level. (2) Analyze the correlation of CTCL incidence with ambient benzene and TCE 
levels. 

Methods: The CTCL patients data and chemical toxins data were collected from Georgia 
Cancer Registry (GCR) and EPA’s National Air Toxics Assessment (NATA) respectively. 
Standardized incidence ratio (SIR) was estimated for each census tract to assess the 
incidence of CTCL. Global and local Moran’s I Statistics were used to assess the 
geographic clustering. Non-spatial generalized linear models were fitted to study the 
associations between CTCL incidence and chemical toxins exposures. Spatial generalized 
linear mixed model within a Bayesian setting was also performed because of the small 
sample size. 

Results: Clusters of census tracts with high CTCL incidence and high chemical toxins 
exposure were found in metropolitan Atlanta. Expected positive correlation between the 
exposures to benzene and TCE and the distribution of CTCL incidence at the census tract 
level were not identified. Majority of the results from non-spatial and spatial models were 
not statistically significant, except those in logistic regression model, where benzene 
exposures and concentration showed negative correlation with the log odds of CTCL 
cases.  

Conclusions: The results failed to support the previous finding at finer level, but the 
Bayesian setting model provided a solid theoretical base for study at small geographic 
unit level. Further CTCL incidence study should be based on larger patients sample size, 
more detailed patients information, and more environmental toxins. 
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Introduction 

 Cutaneous T-cell lymphoma (CTCL) is a rare and heterogeneous type of non-

Hodgkin lymphoma (NHL) which refers to a group of lymphoproliferative disorders 

characterized by infiltration of the neoplastic T lymphocytes to the skin at presentation. 

Mycosis fungicides (MF) and Sézary syndrome (SS) are the two most common forms, 

accounting for the majority of CTCLs.1,2 In the United States, overall annual incidence of 

CTCL from 1973 to 2009 was 7.5 per million people and overall CTCL survival was 

78.3%. However, the overall incidence increased from 2.8 per million people 

(1973-1979) to 10.5 per million people (2000-2004) and just started stabilizing in recent 

decades.3,4 There are age, racial and gender differences found in incidence of CTCL. 

Studies have shown that incidence was higher among older people, males and African 

Americans, who were specifically diagnosed at younger ages and had worse survival than 

Caucasians.5-7 

 The cause of the previous increase in incidence remains unknown and one of the 

obstacles is that the molecular pathogenesis of CTCL is only partially acknowledged.7 

Investigation demonstrated that the increase in NHL can be attributed to increased 

diagnosis and misdiagnosis of NHL as Hodgkin’s in the past, but this does not completely 

explain the trends in CTCL. Some hypotheses were made, including family factors, 

medical conditions, radiation, occupation, and environmental exposure.8 Geographic 

clustering of CTCL has been recognized across the world, including Vasternorrland 

county, Sweden9, Canada10,11, Texas7,13, Pittsburgh, Pennsylvania12, and Georgia1 
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therefore implying possible environmental and chemical exposures elicit CTCL. 

Economic development and industrial construction since last century, as well as 

association of occupational chemicals with hematologic malignancies could help to 

justify the trends of rise in CTCL.14,15  

 Benzene and trichloroethylene (TCE), among numerous occupational 

carcinogenic chemicals, are well-known carcinogens and associate closely with NHL.16,17 

Benzene (C6H6) is produced from gasoline, coal, and cigarette smoke that are all 

commonly used in daily life. In the chemical industry, benzene and its chemical 

compound are widely applied as well.18 The carcinogenic property and other toxicity of 

benzene has been studied extensively and many government agencies such as United 

States Environmental Protection Agency (EPA)19 have set regulation for benzene. 

TCE(C2HCl3) is often used as a solvent in metal degreasing and an additive to the dry-

cleaning products. The EPA has characterized TCE as carcinogenic to humans.20 

 Recent analysis found significant geographic clustering of CTCL on the level of 

counties in Georgia, particularly the four most populous counties around Atlanta with 

incidence rates of CTCL that were between 1.2 and 1.9 times higher than the state 

average. There was also correlation between the clustering and an increased 

concentration of benzene and TCE exposure.1  
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 Based on the finding from previous studies, this thesis focused on the geographic 

clustering of CTCL in metropolitan Atlanta, including five counties: Fulton, DeKalb, 

Gwinnett, Cobb, and Clayton, at the census tract level instead of county level. The census 

tract level of study enables us to identify the geographic difference in CTCL risk and 

chemical exposure more comprehensively. The investigation used geocoded incidences of 

CTCL from the Georgia Cancer Registry and demographic data from the US Census 

Bureau. The aim is to evaluate clustering and to analyze the correlation of CTCL 

incidence with ambient benzene and TCE levels, obtained through the EPA’s National Air 

Toxics Assessment (NATA) database in each census tract from 1999 to 2005. Then, 

Bayesian spatial modeling was applied to estimate the correlation, because of the small 

sample size encountered in this thesis.  

Method 

CTCL Patients Data 

The CTCL patients data used in the study were collected from the Georgia Cancer 

Registry and the previous study1. We included patients age  15 years old who had a new 

diagnosis of CTCL between 1999 and 2015 in metropolitan Atlanta. Patient demographic 

and disease characteristics were also collected. Patients with missing demographic 

information (race, age, and sex) were excluded from the data. In total, 566 CTCL patients 

complying with standards were identified. 

≥
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 We also identified the count of CTCL cases in each census tract. Census tract is an 

areal unit similar to a neighborhood established by the Census Bureau. It is a small and 

relatively permanent statistical subdivision of a county. The population in census tracts is 

approximately 4000 on average. Some census tracts were updated over the years, because 

of the change in population. For example, census tracts with a population over 8000 

would be split into two or more tracts in new Census. Small boundary corrections were 

also encountered in some cases. Due to the time length of our study, our data contained 

census tracts from 2000, and 2010 Census. For consistency, we used a linkage file to 

assign a 2000 census tract to its most likely 2010 census tract. According to 2010 US 

Census data21, there were totally 632 census tracts in Fulton, DeKalb, Gwinnett, Cobb, 

and Clayton. Within those census tracts, 347 of them had at least one case of CTCL from 

1999 to 2015. Four census tracts with zero population were excluded from the analysis. 

Standardized Incidence Ratio (SIR) 

SIR is frequently used in epidemiology to indicate whether the occurrence of certain 

disease in a population is high or low. We estimated the SIR for each census tract in 

metropolitan Atlanta. An SIR > 1 showed that the number of observed CTCL cases of 

that census tract is higher than expected and indicated a greater increase in the risk of 

CTCL. 

 The SIR of each census tract could be calculated by the following formula: 
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, 

where the expected cases per year in census tract  equal to: 

, 

and  = the number of subgroups. 

 The expected number of CTCL cases per year were estimated by multiplying the 

national CTCL incidence rates for each subgroup by the number of individuals in the 

corresponding subgroup living in each census tract. Numbers of individuals within each 

subgroup at the census tract level were obtained from the 2010 US Census Data21. Then 

we multiplied the expected CTCL cases in each census tract for the year of 2010 by the 

length of study period (17 years) to get the total expected number of CTCL cases from 

1999 to 2015 in each census tract. The national CTCL incidence rates were obtained from 

the National Cancer Institute’s Surveillance, Epidemiology, and End Results (SEER) 

Program22. For the calculation, we constructed eight subgroups with combinations of age 

(ages 15-59,  60 years old), race (white, non-white), and gender (male, female).  

Benzene and TCE Data 

We obtained benzene and TCE exposure level data from the EPA’s National Air Toxics 

Assessment (NATA) database23, which provides assessment of outdoor air toxics and 

estimates the cancer and other health issue risks for common air pollutants. NATA 

SIRi = Observed number of CTCL cases from 1999-2015 in census tract i

Expected number of CTCL cases from 1999-2015 in census tract i

i
n

∑
j=1

Population in subgroup j in census tract i × National CTCL rate for subgroup j

n

≥
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calculated the concentration and risks for air toxics using different dispersion models at 

both county and census tract level since 1999. Based on our interest in census tract level 

data, we compiled 1999, 2002, and 2005 NATA for Benzene/TCE in Georgia, created a 

subset for census tracts in metropolitan Atlanta, and averaged across time the 

concentration and exposure data for our analysis. The exposure concentration of toxic is 

estimated by the Hazardous Air Pollutant Exposure Model (HAPEM), based on ambient 

air concentration data, indoor/outdoor environment concentration relationships, 

population data, and human activity pattern data24. The exposure level of toxic is 

estimated by the Assessment System for Population Exposure Nationwide (ASPEN), 

based on the EPA’s Industrial Source Complex Long Term model (ISCLT) which 

simulates the behavior of the pollutants after they are emitted into the atmosphere25. Both 

HAPEM and ASPEN report the estimates by microgram per cubic meter ( ). All 

census tracts in the data from 1999 to 2005 were based on the 2000 US Census Data. 

Again, we used the linkage method to assign each 2000 census tract to its most likely 

2010 census tract for the consistency of our analysis. 

Spatial Analysis 

We performed spatial analysis of SIRs and chemical toxins (benzene/TCE) at the census 

tract level using several R packages, including sf, RColorBrewer, classInt, map, ape, and 

spdep. First, we obtained the shape files of census tracts in metropolitan Atlanta from US 

Census Bureau’s 2010 TIGER/Line files26. All shape files were read into R by package sf 

with function read_sf. Then, we used packages RColorBrewer and classInt to link 

μg /m3
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variables SIRs, benzene and TCE with five color categories that showed on the maps. 

Color categories was defined using Jenks optimization method, which is a data clustering 

method created to determine the best classification of values into difference classes and to 

minimize class’s deviation from the mean. Next, we plot those variables overlaid with 

shape files to create maps at the census tract level using package maps. Finally, we 

evaluated the geographic clustering of SIRs, benzene, and TCE by both global and local 

spatial analysis to create Moran’s I and local Moran’s I statistics. 

 For global spatial analysis, we first calculated the distances among all the census 

tracts using their latitude and longitude centroid coordinates and stored the results in a 

matrix. We inverted the values in this matrix and inserted zeros to all diagonals to obtain 

a matrix of inverse distance weights, which we applied in the function Moran.I to achieve 

global Moran’s I statistic as well as pseudo P value. Global Moran’s I statistic, which is 

often called as Moran’s I statistic, is always between -1 to 1 and it measured multi-

dimensional spatial autocorrelation and indicated clustering (statistic > 0), randomness (= 

0), and dispersion (< 0) of the studied variables. The P value was based on the 

significance test with null hypothesis that our interested variables were randomly 

distributed. The detailed calculation of Moran’s I statistic is shown here: 

, 

where  = deviation of an attribute for feature  from its mean ,   = spatial 

weight between feature  and , n = total number of census tracts, and  

I = n
S0

∑n
i=1 ∑n

j=1 wi, jzizj

∑n
i=1 z2

i

zi i (xi − X ) wi, j

i j
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 .27 

 For local spatial analysis, we used package spdep to calculate the Local Moran’s I 

of SIRs at census tract level and to create the cluster map. Local Moran’s I was one kind 

of local indicators of spatial association (LISA), which allowed us to access the influence 

of each census tract and to identify clusters and outliers at each census tract. Local 

Moran’s I of each census tract was calculated by the function localmoran. We 

standardized the SIRs as observed values and calculated the spatial lagged values of each 

census tract using function lag.listw. LISA value was calculated by multiplying those two 

values. Based on LISA value, we divided the census tracts which had significant local 

Moran’s I statistic into four quadrants: “High-High” (HH), “Low-Low”(LL), “High-

Low”(HL), and “Low-High”(LH). HH and LL quadrants indicated spatial clustering of 

similar LISA value in the census tract. LH and HL quadrants indicated spatial outliers and 

spatial association of dissimilar LISA value28. More general speaking, a HH census tract 

meant this census tract had high SIRs and was surrounded by census tracts with high 

SIRs. A LL census tract was interpreted similarly, except it had low SIRs and was 

surrounded by low SIRs census tracts. HH and LL census tracts could also been seen as 

“hot spots” and “cold spots” respectively. 

Statistical Analysis 

S0 =
n

∑
i=1

n

∑
j=1

wi, j
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To study the associations between CTCL SIRs and chemicals, we used two approaches: 

(1) Non-spatial Generalized Linear Models (GLM) (Logistic and Poisson regression 

models); (2) Spatial generalized linear mixed models (GLMM) for areal unit data within 

a Bayesian setting and conditional autoregressive priors (CAR). 

Non-spatial Generalized Linear Model (GLM) 

Poisson regression is often used to model count data and rate data, for example, the count 

and SIRs of CTCL cases in our study. We directly modeled the SIRs of CTCL at census 

tract level by adding an offset variable to normalize the fitted cell means per space 

interval. Benzene / TCE concentration or exposure were the only predictors in the model 

and they were again fitted separately in four models. The basic Poisson regression model 

for SIRs is shown here: 

, 

where ,  = number of observed CTCL cases at the census tract ,  = the 

chosen benzene / TCE concentration or exposures variables, and  = number of expected 

CTCL cases the census tract.  was referred as the offset variable. The model could 

be rearranged to: 

  

, 

where  = the estimated SIR of CTCL cases at the census tract. Based on this 

regression model we could check and compare how the chemical concentrations and 

exposures associate and affect the SIRs of CTCL at the census tract. 

log(μ) = β0 + β1 * X + log(t)

μ = E(Yi) Yi i X

t

log(t)

log(μ) − log(t) = β0 + β1 * X

log(μ /t) = β0 + β1 * X

μ /t
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 Logistic regression, a part of GLM is used when the dependent or target variable 

is binary. In order to meet that, we created two indicator variables for CTCL cases (cases 

> 0 / = 0 , cases > =2 / < 2) as the target variables. Then, we modeled on the odds of 

CTCL cases instead of SIR. In order to control for tract-level covariate direction, we also 

introduced three census tract-level demographic variables: the median age of population, 

male percentage in population, and African American percentage in population given we 

did not include an expected count offset. These estimates were obtained from American 

Fact Finder29 for the 2010 US Census and 2006-2010 American Community Survey by 

US Census Bureau. They were independent and acted as the predictor variables in the 

model along with the benzene / TCE concentration and exposures, which were fitted 

separately in four models due to the close association among them. The logistic 

regression model is shown here: 

 

where  = probability of number of CTCL cases based on the chosen indicator variable 

and  = the chosen benzene / TCE concentration or exposures variables. We fitted two 

indicator variables each with four chemical variables. By this model setting, we could 

check and compare how the chemicals and selected demographic variable affect the odds 

of CTCL. All non-spatial GLMs were fitted in R with glm fucntion. 

Spatial Generalized Linear Mixed Model (GLMM) 

logit(p) = β0 + β1 * X + β2 * Median Age + β3 * Male Percentage + β4 * African American Percentage

p

X
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GLM models such as logistic and Poisson regression models usually operate under an 

independence assumption, but the data from diverse areas could be spatially correlated. 

Often, observations located closer tend to be more similar than those located far away 

from each other. For example, in our study, census tracts located closer were more likely 

to have similar concentration and exposures of chemicals. Thus, ignoring the spatial 

dependence in the data when fitting GLM models could violate the assumption and result 

in bias and incorrect statistical inference. Also, the standard models might not handle the 

small numbers of CTCL cases we faced in the study. We expected large number of census 

tracts having zero CTCL cases during the study period. The estimation from standard 

models particularly, the Poisson regression model, could be unstable and biased. 

 Therefore, we used spatial GLMMs for areal unit data within a Bayesian setting 

and conditional autoregressive priors (CAR). Areal unit data is one type of spatial data, 

where observations were obtained from regions with well-defined boundaries, such as the 

census tracts in our study. We assumed CAR with the random effects which allowed the 

estimation of each census tract to borrow strength from its neighbors. So, the effect of 

“zero case” in census tracts could be lightened and the estimates could be more stable and 

accurate. The spatial structure underlying the CTCL cases and chemicals at census tract 

level was summarized through an adjacency matrix , which stores the neighborhood 

structure of each areal unit. The matrix connecting units  and  is as following: 

W

i j
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 ,  

where  represents the strength of neighborhood between areal units  and .27 

 Spatial GLMM is a kind of hierarchical spatial model where normal maximum 

likelihood estimation could be difficult to apply. Instead, we used a Bayesian setting 

approach by computing a posterior distribution of unknowns and making inference in 

terms of probability statements conditional on the observed data. The Bayesian approach 

provided some advantages over the frequentist statistical approach. The Bayesian method 

allowed us to include spatial correlation among the random effects and to acknowledge 

other uncertainties in our model caused by the low number of CTCL cases in our study. 

To compute and estimate the Bayesian posterior distribution, we applied the Markov 

Chain Monte Carlo (MCMC) simulation, which is a numeric algorithm sampling from 

high dimensional probability distributions.30 The basic Poisson GLMM took the 

following form: 

 , 

 | , 

, 

where ,  = number of observed CTCL cases at the census tract ,  = the 

chosen benzene / TCE concentration or exposures variables,  = number of expected 

Wij =
0 if i = j
0 if i and j are not neighbors
cij if i and j are neighbors

cij i j

log(μi) = β0 + β1 * X + log(ti) + θi

Yi μi ∼ Poisson(μi)

θi ∼ CAR(σ2)

μi = E(Yi) Yi i X

ti
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CTCL cases the census tract , and  is the vector of random effects assumed to have 

conditional autoregressive priors. R package CARBayes was used for fitting the spatial 

GLMM.  

Results 

Descriptive Statistics  

 In total, 566 new cases of CTCL in the time period of 1999 to 2015 were included 

in our study. The median and maximum SIR for all census tracts was 1.053 and 12.456, 

with mean equal to 1.374.  

 The ASPEN concentration and HAPEM exposure levels of benzene (in ) 

per census tract, averaged from 1999 through 2005, were both 2.11. The ASPEN 

concentration and HAPEM exposure levels of TCE were 0.090 and 0.077.  

Spatial Analysis 

Figure 1 and Figure 2 are maps of SIRs, benzene, and TCE in metropolitan Atlanta at 

census tract level. Areas of high SIRs were distributed randomly and did not have a 

straight look of geographic clustering pattern. Areas of high concentration and exposures 

of benzene and TCE were concentrated in the center of metropolitan Atlanta. The 

Moran’s I statistic and p-values for SIRs, benzene concentration and exposure levels, and 

TCE concentration and exposure levels are 0.003 (0.046), 0.166 (p < 0.001), 0.182 (p < 

0.001), 0.140 (p < 0.001), and 0.144 (p < 0.001), respectively. For SIRs, the Moran’s I 

statistic is significant but close to zero, which indicated spatial randomness and almost no 

i θi

μg /m3
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geographic clustering existing. For other variables, clustering exists in metropolitan 

Atlanta. 

 The Local Moran’s I map for the SIRs (Figure 3) identified hot spots and cold 

spots through out the metropolitan Atlanta. Majority of “High-High” census tracts were 

located in Fulton and DeKalb Counties. Those census tracts also had high estimates of 

concentration and exposures of benzene and TCE. “High-High” census tracts in Clayton 

and Cobb counties contained lower estimates of benzene and TCE. “Low-Low” census 

tracts of SIRs were located in the downtown Atlanta. However, those census tracts had 

high estimates of benzene and TCE.  

Statistical Analysis 

Non-spatial Poisson Regression Model 

The resulting parameter estimates are presented in Table 1. The  estimates and P value 

for SIR and benzene concentration (in ) was 0.080 (  = 0.299), for SIR and 

benzene exposure (in )  was 0.096 (  = 0.237), for SIR and TCE concentration (in 

) was 0.902 (  = 0.466), and for SIR and TCE exposure (in ) was 1.255 (  

= 0.438). All estimates were not statistically significant (  > 0.05). Therefore, 

concentration and exposure of both chemical toxins were not associated with SIR at 

census tract level with the data we had. 

Non-spatial Logistic Regression Model 

β

μg /m3 P

μg /m3 P

μg /m3 P μg /m3 P

P
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We had two indicator variables corresponding to two different  for the logistic 

regression models. Figure 4 illustrates the map of census tract based on these indicator 

variables. First, we fitted the indicator variable (CTCL cases = 0 / > 0 ) with chemical 

toxins and other three demographic factors we chose (median age, male population 

percentage, and African American population percentage). The results are presented in 

Table 2. The signs of parameter estimates for Benzene and TCE were all negative, which 

means that those chemical toxins influenced the number of CTCL cases negatively. For 

example, the  estimate and P value for Benzene concentration (in ) in logistic 

regression model was -0.228 (  = 0.466). It indicates that, for a 1-unit increase in , 

there is a decreased in CTCL log odds. But, again none of the estimates for predictors and 

intercepts were statistically significant. The results of logistic regression models based on 

the second indicator variable (CTCL cases < 2 / > =2) are shown in Table 3. This time,  

estimates concentration and exposures of chemical toxins indicated greater negative 

impacts on the log odds of CTCL cases. Also, the  estimates for benzene concentration 

and exposures were statistically significant. However, all other  estimates in those 

models were still non-significant. 

Spatial Poisson regression Model with Bayesian setting 

Table 4 illustrates the resulting posterior parameter estimates of spatial Poisson 

regression model within a Bayesian setting. We performed the model based on 5,000 post 

burn-in and thinned MCMC situation samples, which were obtained following a burn-in 

period of 50,000 and thinning remained samples by 10 to reduce their autocorrelation. 

p

β μg /m3

P μg /m3

β

β

β



16

The estimates of median represented the  estimate in standard Poisson model. Bayesian 

model smoothed SIR map is illustrated in Figure 5. The estimated median for benzene 

concentration (in ) was 0.076, for benzene exposure (in ) was 0.092, for 

TCE concentration (in ) was 0.808, and for TCE exposure (in ) was 1.088. 

The results were close to those from non-spatial Poisson regression model. Deviation 

information criterion (DIC) for each model was 1505.94, 1505.59, 1506.32, and 1506.39 

respectively. Typically, smaller DIC value indicates better fit of the model.  

Discussion 

In this thesis, we performed spatial and statistical analysis for the CTCL incidence and 

the environmental risk factors including benzene and TCE in five counties in 

metropolitan Atlanta at the census tract level. We developed non-spatial Logistic and 

Poisson regression models and spatial Poisson regression model within a Bayesian 

setting. Clusters of census tracts with high CTCL incidence and high chemical toxins 

exposure were identified, but we failed to find an expected positive correlation between 

the exposures to benzene and TCE and the distribution of CTCL incidence at the census 

tract level. 

  

 The geographic clustering of CTCL has been identified in Georgia and several 

other regions nationally and internationally1,7-12. More specifically, a correlation between 

increased exposures to benzene and TCE and increased incidence of CTCL was observed 

in Georgia at county level1. Our study at the census tract level did not support this 

β

μg /m3 μg /m3

μg /m3 μg /m3
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previous analysis. In addition, the majority of the prior studies included over 2000 

patients, with the exception of a smaller study analyzing 274 patients with CTCL in 

Pittsburgh which also failed to find a correlation between environmental toxins and 

CTCL incidence because of the biased in patient selection12. Also, most studies were 

based on county or city level. The Canadian analysis of 6685 patients from 1992 to 2010 

was the only study that apply analysis by postal code and street level. Deeper analysis 

showed that high incidence regions were linked to industrial sites. 

 CTCL is a rare cancer. In our study, we only identified 566 patients from 1999 to 

2015. The sample size was small compared to the 632 census tracts in metropolitan 

Atlanta (2010 U.S. Census). 285 (49%) of the census tracts in our study did not have 

cases in 16 years of period. The challenge of small sample size brought bias and 

underpowered our analysis. For small geographic units, like census tracts in our study, 

they were more easily to be affected by unstable rates. A small change in the number of 

CTCL cases could cause a large impact on the SIR estimation of the census tract, 

especially for those with low population sizes. Therefore, it is crucial to make sure the 

count of CTCL cases is accurate. But it was possible that not all the CTCL cases was 

captured, because CTCL could be misclassified as other peripheral T-cell lymphoma or T-

cell lymphoma NOS1. Another limitation is the absence of confounders in our patients 

data, such as income, education level, job type, and so on. Patients could possibly work at 

an area with high chemical toxins exposure, but live in the suburbs, where the case was 

identified. In addition, the molecular pathogenesis of CTCL still remained unknown. We 
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do not know the exact chemicals or risk factors that caused CTCL. Except benzene and 

TCE, other risk factors and chemical toxins should be included in future studies. 

 Overall, the thesis demonstrated that there is small sign of geographic clustering 

of CTCL in the metropolitan Atlanta at census tract level. We identified census tracts with 

high CTCL incidence and surrounded by other census tracts with high CTCL incidence. 

But both standard models and spatial model within a Bayesian setting showed that the 

CTCL incidence was not correlated or negatively correlated with the benzene and TCE 

exposures. For further study, there should be larger number of CTCL cases. The study 

could be focused on areas with more CTCL cases or extend the study period of time. 

More detailed information on patients could be collected, for example, the income, 

education level, job type, and working location of the patients. Location of factories, 

industrial facilities, gas station, and other faculties that generated chemical toxins could 

be included in the spatial analysis. Meanwhile, more environmental toxins should be 

included in the study. Both standard Poisson regression and logistic regression models 

showed their advantages of fitting count and binary data, but they could not completely 

justify the spatial dependence and small sample size issue we faced in the analysis. 

Spatial Poisson regression model within a Bayesian setting showed its advantages in this 

circumstance. Even though the Bayesian setting model did not provide statistically 

significant results in our study, it still provided a solid theoretical base for future study at 

small geographic unit level. Similar methods should be applied in other areas to help 

identify the specific etiologic triggers for CTCL.  
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Tables and Figures 

Figure 1. Standardized incidence ratios (SIR) of cutaneous T-cell lymphoma are illustrated for 
each census tract in metropolitan Atlanta, aggregating cases from 1999 through 2015. 
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Figure 2. Image illustration (A) Assessment System for Population Exposure Nationwide 
(ASPEN) concentrations (in ) and (B) Hazards Air Pollutant Exposure Model (HAPEM) 
exposure (in ) for benzene, and (C) ASPEN concentrations (in ) and (D) HAPEM 
exposure (in  )for trichloroethylene (TCE) for each census tract in metropolitan Atlanta. 

μg /m3

μg /m3 μg /m3

μg /m3
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Figure 3. Local Moran’s I statistic results are illustrated by census tract in metropolitan Atlanta. 
Dark red indicates “high-high” area and dark blue indicates “low-low” area. 
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Table 1. Parameter Estimates Summaries of Poisson Regression Models 

Variable Standard Error Z P

Model 1

Intercept 0.172 0.160 1.074 0.283

Benzene    
Concentration 
(ASPEN)

0.080 0.076 1.039 0.299

Model 2

Intercept 0.138 0.170 0.809 0.418

Benzene          
Exposure (HAPEM)

0.096 0.081 1.182 0.237

Model 3

Intercept 0.255 0.114 2.240 0.025

TCE          
Concentration 
(ASPEN)

0.902 1.236 0.729 0.466

Model 4

Intercept 0.240 0.126 1.903 0.057

TCE                 
Exposure (HAPEM)

1.255 1.619 0.775 0.438

 Estimateβ
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Table 2. Parameter Estimates Summaries of Logistic Regression Models (cases = 0 / > 0) 

Variable Standard Error Z P

Model 1

Intercept 0.555 0.991 0.569 0.576

Benzene    
Concentration 
(ASPEN)

-0.228 0.149 -1.537 0.124

Median Age -0.150 0.262 -0.574 0.566

Male Population % -0.780 1.465 -0.532 0.594

African American 
Population %

0.017 0.015 1.111 0.266

Model 2

Intercept 0.582 0.992 0.587 0.557

Benzene          
Exposure (HAPEM)

-0.257 0.158 -1.624 0.104

Median Age -0.136 0.261 -0.521 0.602

Male Population % -0.735 1.467 -0.501 0.616

African American 
Population %

0.017 0.015 1.128 0.259

Model 3

Intercept 0.374 0.983 0.380 0.704

TCE          
Concentration 
(ASPEN)

-2.227 2.292 -0.972 0.331

Median Age -0.166 0.263 -0.629 0.529

Male Population % -1.068 1.45 -0.736 0.462

African American 
Population %

0.018 0.015 1.199 0.230

Model 4

Intercept 0.410 0.987 0.415 0.678

TCE                 
Exposure (HAPEM)

-3.171 3.024 -1.049 0.294

Median Age -0.167 0.263 -0.633 0.527

Male Population % -1.049 1.451 -0.723 0.470

African American 
Population %

0.018 0.015 1.197 0.231

 Estimateβ
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Table 3. Parameter Estimates Summaries of Logistic Regression Models (cases < 2 / >=  2)

Variable Standard Error Z P

Model 1

Intercept 0.449 1.326 0.339 0.735

Benzene    
Concentration 
(ASPEN)

-0.410 0.298 -2.072 0.038

Median Age 0.111 0.313 0.355 0.723

Male Population % -2.860 2.084 -1.372 0.170

African American 
Population %

0.014 0.018 0.794 0.427

Model 2

Intercept 0.448 1.324 0.339 0.735

Benzene          
Exposure (HAPEM)

-0.432 0.208 -2.078 0.038

Median Age 0.137 0.313 0.439 0.661

Male Population % -2.826 2.077 -1.360 0.174

African American 
Population %

0.015 0.018 0.834 0.404

Model 3

Intercept 0.400 1.347 0.297 0.767

TCE          
Concentration 
(ASPEN)

-7.140 4.055 -1.761 0.078

Median Age 0.028 0.318 0.089 0.929

Male Population % -3.103 2.138 -1.452 0.147

African American 
Population %

0.013 0.018 0.756 0.450

Model 4

Intercept 0.508 1.359 0.374 0.708

TCE                 
Exposure (HAPEM)

-10.000 5.331 -1.876 0.061

Median Age 0.029 0.317 0.091 0.928

Male Population % -3.077 2.139 -1.439 0.150

African American 
Population %

0.014 0.018 0.760 0.447

 Estimateβ
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Figure 4. Image Illustration (A) census tracts with >= 1 or = 0 CTCL cases and (B) census tracts 
with >= 2 or < 2 CTCL cases in metropolitan Atlanta. 

A

B



30

Table 4. Posterior Parameter Estimates Summaries of Spatial Poisson Generalized Linear Mixed 
Models 

Variable 95% Credible Interval

Model 1

Intercept 0.203 (-0.049, 0.447)

Benzene Concentration (ASPEN) 0.076 (-0.076, 0.222)

0.005 (0.002, 0.034)

0.456 (0.028, 0.939) 

DIC = 1505.94

Model 2

Intercept 0.143 (-0.191, 0.475)

Benzene Exposure (HAPEM) 0.092 (-0.070, 0.252)

0.007 (0.002, 0.034)

0.448 (0.026, 0.936)

DIC = 1505.59

Model 3

Intercept 0.259 (0.052, 0.493)

TCE Concentration (ASPEN) 0.808 (-1.950, 3.003)

0.007 (0.002, 0.0976)

0.451 (0.030, 0.935)

DIC = 1506.32

Model 4

Intercept 0.247 (0.004, 0.512)

TCE Exposure (HAPEM) 1.088 (-2.501, 4.098)

0.009 (0.002, 0.092)

0.369 (0.014, 0.923)

DIC = 1506.39

τ

 Estimateβ

σ2

τ

σ2

σ2

τ

σ2

τ
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Figure 5. Bayesian smoothed SIR of cutaneous T-cell lymphoma generated from Spatial Poisson 
Model within a Bayesian setting. 


