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Abstract!
!

Towards*the*understanding*of*Network*Information*Processing*in*Biology*
!
By!!

Vijay!Singh!
!

!
Living! organisms! perform! incredibly! well! in! detecting! a! signal! present! in! the!
environment.! This! information! processing! is! achieved! near! optimally! and! quite!
reliably,! even! though! the! sources! of! signals! are! highly! variable! and! complex.! The!
work! in! the! last! few!decades! has! given!us! a! fair! understanding! of! how! individual!
signal! processing! units! like! neurons! and! cell! receptors! process! signals,! but! the!
principles!of!collective! information!processing!on!biological!networks!are! far! from!
clear.! Information! processing! in! biological! networks,! like! the! brain,! metabolic!
circuits,!cellular;signaling!circuits,!etc.,!involves!complex!interactions!among!a!large!
number!of! units! (neurons,! receptors).! The! combinatorially! large!number!of! states!
such!a!system!can!exist!in!makes!it!impossible!to!study!these!systems!from!the!first!
principles,!starting!from!the!interactions!between!the!basic!units.!The!principles!of!
collective!information!processing!on!such!complex!networks!can!be!identified!using!
coarse! graining! approaches.! This! could!provide! insights! into! the! organization! and!
function!of!complex!biological!networks.!Here!I!study!models!of!biological!networks!
using! continuum! dynamics,! renormalization,! maximum! likelihood! estimation! and!
information! theory.! Such! coarse! graining! approaches! identify! features! that! are!
essential! for! certain! processes! performed! by! underlying! biological! networks.! We!
find!that!long;range!connections!in!the!brain!allow!for!global!scale!feature!detection!
in!a!signal.!These!also!suppress!the!noise!and!remove!any!gaps!present!in!the!signal.!
Hierarchical! organization! with! long;range! connections! leads! to! large;scale!
connectivity! at! low! synapse! numbers.! Time! delays! can! be! utilized! to! separate! a!
mixture!of!signals!with!temporal!scales.!Our!observations!indicate!that!the!rules!in!
multivariate!signal!processing!are!quite!different!from!traditional!single!unit!signal!
processing.!! !
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Chapter 1

Introduction

Sensory systems in all biological organisms perform incredibly well in processing the

information coming from the environment and identify the sources of signals reliably

[1–4] and optimally [5, 6]. The sensory systems seem to achieve this even though the

signals from the environment are noisy and corrupted by the complex interactions be-

tween multiple signal sources. Living organisms utilize a variety of signal processing

units (neurons, cell receptors, genetic networks, etc.) to perform the required informa-

tion processing. The number of such signal processing units can range from hundreds

(receptors on individual cells) [7] to about a hundred billion (human brain) [8]. Just like

the sources, these sensors interact in a complex manner among themselves through direct

and indirect physical connections. While a lot is known about information processing in

individual information processing units [9–15], the same can not be said about informa-

tion processing on complex biological networks [16]. Collective information processing

that utilizes population codes [17–21] and interaction among the sensors [22–25] has

been considered only recently. The combinatorial possibilities arising from the complex

interactions between large number of processing units and the limited knowledge of the

interactions between these units makes it di�cult to understand the rules of informa-

tion processing starting from the first principles. Employing coarse graining techniques

from physics [26, 27], one could utilize the limited experimental knowledge we have, to

identify the essential features of these systems and to understand the principles of in-

formation processing on these networks. Here we use some of these techniques to study

information processing on some biological networks and identify the features that are

relevant to perform a certain task.
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One of the most fascinating sensory systems that performs rapid information processing

is the human brain [28]. The brain processes gigantic amounts of data at a fast rate

[29, 30] with incredible accuracy [31]. This is done through the 100 billion neurons

present in the brain that are interconnected in a complex manner [32]. Object recognition

in the visual cortex is one of the many functions that are performed by the brain using

these complex interactions [33]. An understanding of object recognition can provide

insights to how sensory input is processed in the brain to make a map of the environment

[34]. Such understanding has wide scope of practical applications in computational vision

[35] and medical research [36]. In Chapter 2 we attempt to understand contour detection

in the primary visual cortex using a novel continuum dynamics approach to study the

activity of cortical neurons. The visual input coming from the retina is processed in

the visual cortex part of the brain to form a representation of the visual field [34]. This

representation in terms of the spiking activity of the neurons lasts for time scales that are

larger than that of individual spikes [37] and covers spatial extents that are much larger

than the size of individual neurons [38]. Moreover the number of neurons in the visual

cortex [39], although smaller than the whole brain, is still quite large. This suggests

that the functional aspects of the neurons in the visual cortex that are important for

tasks like object recognition might be an emergent property of interactions among large

number of cortical neurons. To study this emergent behavior of cortical neurons, we

model the dynamics of the neurons in the primary visual cortex as a continuum field.

This continuum model aims at identifying the interactions in primary visual cortex

neurons that enables the neurons in collective detection of the objects contours present

in the visual field. Our model suggests that neurons in the primary visual cortex utilize

anisotropic long range interaction patterns to identify the global scale features present

in the visual field and bind them together to detect an object contour.

The long range connections in the cortical neurons not only provide the scope to identify

the global features present in the stimulus, but also provides the ability to have long

range information transmission. Several experiments studying the spontaneous activ-

ity in a network of cortical neurons have observed bursts of action potentials [40–43],

where a single action potential initiated spontaneously at a point results in a cascade

of action potentials in the network with the size distribution of these action potential

cascades approximating a power law. The power law distribution of the size suggests

that cortical neurons organize themselves in a critical state where they can transmit in-

formation at all possible scales [44]. The observed criticality and power law distribution

[45] suggests an equivalence of these neuronal avalanches to the phenomenon of forest

fires, earthquake models and percolation in physics [46]. This criticality in the cortical
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networks could be a result of the mixture of local short range and hierarchical long range

synaptic connections present in the cortex. To what extent does the topology of the un-

derlying network dictate the rules of information transmission on cortical networks is a

question that can be studied using the standard real-space renormalization group (RG)

techniques developed to study percolation on hierarchical networks. Chapter 3 discusses

the techniques through which the self-similarity of regular hierarchical networks is uti-

lized to study percolation. We show that a mixture of long range small world bonds

and short range bonds results in novel phenomenon on complex networks, one of them

being the existence of discontinuity in cluster size distribution in ordinary percolation.

We show that this discontinuity is generic for networks with a hierarchical structure

of long range bonds. This suggest that the critical phase [45] and optimal connectiv-

ity [47] observed in cortical networks might result form the topology of the underlying

complex network. Utilizing such RG approaches on model cortical networks can provide

insights into understanding large scale communication in brain [48] and phenomenon

like synchronization in epileptic seizures [44].

The complexity in biological networks might also result from the complex structure

in the signal itself. Be it the olfactory system, the immune system, cellular signal

transduction, vision or auditory system, the signal that is received by these system is

often a combination of signals from many individual sources. Identifying the di↵erent

sources from such a combination is task that is performed very well by sensory systems.

The neural mechanism for such multi-signal identification has been an active area of

research [49, 50], but the signal estimation in molecular systems has mainly focused on

one-to-one interactions [51–57]. Research in neuroscience suggests that neurons utilize

not only the average rate of spiking but also the temporal structure of the spike timing to

represent a signal [58, 59]. In chapter 4, we explore whether these ideas from neuroscience

can be applied to cellular receptor systems. We discuss how a system of cellular receptors

could utilize the temporal structure present in the signal to infer multiple ligands present

in the environment. Here we study the e↵ect of cross-talk between multiple ligands

and receptors on the concentration estimation of ligands. In particular we ask the

question: Is it possible to utilize the sequence of precise timings of binding and unbinding

events on a receptor to estimate the concentration of multiple ligands using a single

receptor? We show that if the entire sequence of binding and unbinding on the receptor

is accessible, one could utilize this information to estimate the concentration of multiple

ligands using the statistics of bound and unbound duration of the receptor. We describe

how a complex, and yet common, cellular network can be employed for such multiple

ligand estimation.
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In chapter 5, we ask how the interaction among multiple receptors a↵ects the informa-

tion processing and concentration estimation in ligand-receptor systems. We use ideas

from information theory to study the e↵ects of interactions between receptors on the

information between the ligand concentration and the response of receptors. We present

simple biophysically realistic models of ligand-receptor systems where the receptors are

coupled through a di↵usive interaction. We show that this di↵usive interaction results

in a correlation structure in this system where the signal induced and noise induced

covariances of responses are orthogonal. An interaction with such correlation structure

is believed to result in higher information about the signal compared to a system with

independent units [17–21, 25]. This is the well-known “sign-rule of correlations” from

neuroscience literature [17, 60]. We show that this rule does not hold for a simple re-

ceptor system coupled with di↵usive interactions. Although the extrinsic signal induced

correlation and intrinsic noise induced correlations are orthogonal in this system, the

mutual information is not higher for interacting receptors compared to independent re-

ceptors. This happens because the interactions don’t just change the covariance but also

the variance of the responses, an e↵ect ignored in prior work [18, 21, 60]. These ideas

were typically developed in context of neural systems where the covariance matrix could

not be calculated but had to be imposed externally. Our analysis is a simple special

case where the interaction changes the entire covariance matrix in a such a way that the

total information remains constant with or without the interactions.



5

Chapter 2

A continuum model of primary

visual cortex for contour

detection

(This chapter is based on: Director Field Model of the Primary Visual Cortex for Con-

tour Detection. V Singh, M Tchernookov, R Butterfield, and I Nemenman, PLoS One,

2014 [61].)

2.1 Introduction

To recognize an object in a visual scene, humans and other primates process visual signals

relayed through the retina [62] in the ventral stream of the cortex. Contour detection is

a crucial part of this process (Fig. 2.1). It is carried out at early stages of the processing

in the primary visual cortex (V1) of the brain [63]. V1 consists of hundreds of millions of

neurons organized topographically into columns of ⇠ 104 . . . 105 neurons each. Neurons

in each column receive inputs from a localized part of the visual field (called classical,

or feed-forward receptive field). They are directionally selective, responding primarily

to oriented edges within their receptive fields [64, 65]. Computational vision models

that account for such receptive fields of individual neurons [66–71] typically incorporate

them within feedforward hierarchical structures similar to the cortex [34, 72, 73]. Such

feedforward models account for the visual processes on short time scales, and achieve

error rates as low as ⇠ 10� 20% on typical object detection tasks [71, 74].
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It is believed that, in vivo, the error rate is reduced by orders of magnitude by contextual

information that influences local processing, which may not be captured fully in such

models [38, 75]. These collective, recurrent dynamics span large spatiotemporal scales

and are mediated through thousands of axons laterally connecting distant columns [76].

These interactions are believed to suppress the clutter present in the visual field, while

simultaneously binding edges into contours [77].

Our goal here is to build the simplest model of the primary visual cortex that simulta-

neously achieves two contradictory tasks: clutter removal and occlusion filling. While

occlusion filling helps in binding an incomplete contour together for object recognition,

clutter removal gets rid of the parts that con not belong to the object contour. It is

believed that detecting the complete contour of an object is important in order to recog-

nize the object. Here we aim at making identifying the interactions that are important

for long range contour detection. We do not aim at the state of the art performance on

complex natural images, but rather ask what is the smallest set of computational prim-

itives that must be implemented in a model to achieve such detection and integration of

long contours in a nontrivial setting. For this, we focus on a proposal of a specific lateral

connectivity among V1 neurons [78, 79], which incorporates the Hebbian constraint that

neurons that are excited simultaneously by the same long, low-curvature contours should

activate each other [78]. However, in our model, we do not reproduce the complexity of

V1, which has ⇠ 100 million neurons, with each neuron having & 103 connections, some

extending for many millimeters. Instead, unlike most individual neuron based discrete

models, we represent the activity as a coarse-grained, continuous neural field, which we

model as a complex-valued field on the complex plane, W (z). The magnitude and the

phase of W represents the level of excitation and the orientation of the dominant contour

element at point z in 2 dimensional space, respectively. This coarse graining helps us

to identify the minimal features of the neural structure and dynamics that are essential

for contour recognition.

Importantly, our complex field approach is significantly simpler than most other coarse-

grained models, thus pushing the limits in identification of the minimal set of the required

computational primitives. Indeed, typically the neural firing rate is represented as a real

function of three variables (position in the visual plane and the directional sensitivity)

[80, 81]. In our model, the firing rate is represented as a complex function of a complex

variable (or, equivalently, two real variables), which, manifestly, has fewer degrees of

freedom. Previous approaches that used a similar complex field representation [82, 83]

have focused on development, rather than on the visual performance of the cortex. Thus
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it has been unclear if the simplified, lower-dimensional model can solve complex visual

tasks. Here we answer this question a�rmatively.

Figure 2.1: Contour Reconstruction Task

A 2d image (left top; credit: ‘Pont de Singe’, Olivier Grossetete. Photo: Thierry

Bal) is recorded as a field of contrast by the retina and the lateral geniculate nucleus (LGN)
(left bottom). V1 neurons respond to regions of contrast changes in a direction-selective man-
ner, performing edge detection (middle bottom). The information from edges is integrated to
reconstruct long contours (middle top). In this paper, we model the visual process starting from
edges in V1; sample input (bottom) and output (top) to our model are on the right.

2.2 Continuum model of contour detection

We define the dynamical variables in our coarse-grained model as the neural firing rate

s(x, y), s � 0, over the two dimensional plane R(x, y), and the orientation preference ⇥

of neurons, both averaged over a microscopic patch of the cortex, which still contains

many thousands of neurons. Such averaging is traditional in, for example, fluid dy-

namics, where continuous dynamics is sought from discrete agents. The neural activity

is invariant under parity (i. e., an edge or its ⇡ rotation results in the same activity).

Further, two equal edges at one point oriented ⇡/2 apart lead to cross orientation sup-

pression, not forming a dominant orientation at the point [84]. Thus the fields s and ⇥

are combined into a time varying complex field W (z, t) in a somewhat uncommon way,
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forming an object called a director [85]: W (z, t) = s⇥ ei2⇥. The magnitude of this field

is the average firing rate, and the argument is twice the average dominant orientation

preference of neurons at a point z = |z|ei� = x + iy [82, 83]. We similarly coarse-grain

the input images, identifying the dominant orientation at every point (see Methods).

This orientation field serves as the input to the model. Note the crucial reduction in the

number of degrees of freedom in going from a more traditional description s = s(x, y,⇥)

to W = W (z). One of the costs of the simplification is the lost ability to represent mul-

tiple di↵erent orientations at the same point, which happens when contours intersect.

Correspondingly, one of our goals is to verify that this loss does not make it impossible

to perform non-trivial visual tasks.

Neurophysiological and psychophysical experiments [38, 75, 77, 86, 87] and theoretical

considerations [78] suggest that neurons in V1 are laterally connected such that active

neurons excite nearby neurons with collinear or large-radius co-circular directional pref-

erence. Conceptually, simultaneous input from several collinear or co-circular neurons

can excite other neurons that might otherwise not be getting enough excitation from the

visual field due to occlusion or noise, cf. Fig. 2.2A. At the same time, neurons responding

to high spatial frequency clutter elements do not get su�cient lateral excitation, and

their activity decays. These collective dynamics integrate information over large spatial

scales.

We represent these phenomena in a traditional linear-nonlinear model, where the neural

field at a point z is a↵ected by a combination of lateral synaptic inputs:

dW (z, t)

dt
= F

�

th

[I(z, t)]� r(z, t) + j(z, t). (2.1)

Here F
�

th

is some sigmoidal function of the excitatory input I(z, t), r(z, t) describes the

inhibitory contribution to the field, and j(z, t) is the stimulus.

The excitatory input, I(z, t), combines synaptic input from all points z0 in its interaction

region ‘Ex’

I(z, t) =

Z

Ex
d2z0 K[z � z0|W (z, t)] W ⇤(z0, t), (2.2)

where K[z � z0|W (z, t)] is the excitatory interaction kernel between the fields at point

z0 and z, when the field at z is W (z, t). The kernel for an arbitrary orientation of W (z)

can be defined by an appropriate rotation of the kernel defined for W = 1 (parallel to
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(s,Θ+ 2φ)

(s,Θ)

z

φ 2φ

A B 

Figure 2.2: Co-circularity condition

(A) Neurons send excitatory signals along approximately co-circular directions. Thus neurons
in occluded gaps may get enough excitatory input along smooth contours to get excited without
direct visual input. (B) The orientation at two points is said to be co-circular if they are tangen-
tial to the circle connecting the two points. If the orientation preference at the origin is along
the real axis, the co-circular edge at a point z = |z|ei� has the orientation 2�. Multiplication by
ei2� can be written as: ei2� = (ei�)2 = (z/|z|)2 = (z/z⇤).

the real axis):

K[z � z0|W ] = K
h

(z � z0) e�i

arg(W)

2 |1
i

. (2.3)

Co-circular excitation (Fig.2.2 B) may be represented as

K[z|1] =
⇣ z

z⇤

⌘2
⇥ exp

n

� |z|2

2�2
� µ

|Im(z)|
[Re(z)]2

o

. (2.4)

The first term, derived in Fig. 2.2, determines the field direction at z that is co-circular

to the field at z0. Since we are rotating a director by phi, the argument of z, we need to

square the term derived in Fig. 2.2. The � term in the exponent determines the spatial

range of the excitation. The µ term determines the smallest radius for which substantial

co-circular excitations still exist, giving the kernel and hence the induced dynamics their

characteristic bow-tie shapes [78], see Fig. 2.3. Note again the reduced complexity of

this model, where the kernel is defined by just two real-valued parameters, instead of

being inferred empirically from the data in a form of a multi-dimensional matrix, as in

Ref. [79] and references therein.
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Figure 2.3: Shape of the interaction kernel

(A)Schematic shape of the interaction kernel K[z � z0|1]. Arrows represent the orientation
preference and darkness and size represent the magnitude. (B) Results of dynamics with the
kernel K with the current j(z, t) = �(z)�(t). Here, as everywhere in this work, we use A =
5, �

th

= 5,� = 7.9, µ = 15, �
g

= 0.012, �
l

= 1, which optimizes the performance according to a
genetic algorithm search over the parameter space, see Methods.

We define the input nonlinearity using a complex step function:

F
�

th

(I ) =
I

|I| ⇥ A H(|I|� �th), (2.5)

where H is the Heaviside step function and A determines the maximum excitation

strength. Smoother sigmoidal nonlinearities were tried as well, but this had little e↵ect

on the results presented below. If the total excitatory input is higher than the threshold

�th, then the field W (z) gets a positive increment in the direction of the total input. For

this, the excitatory contribution from a large part of the neural field must align in the

same direction, representing coincidence detection. While importance of this coincidence

detection phenomenon in vision is unclear, it is crucial in the context of auditory signal

processing [88]. Thresholding also suppresses clutter-induced spurious excitations, as it

is unlikely that the excitatory input from short clutter elements becomes higher than

the threshold in the absence of contextual support from long contours.

The inhibition term r represents two distinct phenomena: local relaxation, which de-

pends on the local field magnitude [89], and global inhibition [90], which keeps the
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activity of the entire neural field in check (presumably through intermediate inhibitory

neurons, not modeled explicitly). In the spirit of writing the simplest possible model,

we represent inhibition as linear, resulting in:

r(z) = �
l

W (z) + �
g

H(|W (z)|) W (z)

|W (z)|

Z

In
d2z0|W (z0)|. (2.6)

Here �
l

and �
g

determine the rates of local and global inhibition, and ‘In’ stands for

the range of global inhibitory interactions. Combined with the non-linear excitation,

this linear inhibition produces bimodal asymptotic field values. Hence, neurons can be

defined as ‘active’ or not.

2.3 Methods

2.3.1 Image generation

Since our focus is not on practical image processing algorithms, we focus on synthetic

images in this work, as in [79]. This makes it easier to analyze e↵ects of various image

properties on the performance.

Targets – The “amoeba” objects (long closed contours with gaps) are generated by

choosing a center at a random point in the image, and then drawing the amoeba around

this point in polar coordinates, with the radius as a superposition of periodic functions

with di↵erent radial frequencies, ⇢(�) = ⌃n

k=0 a
k

sin(k� + �
k

). The Fourier coe�cients

a
k

are generated randomly from a normal distribution (� = 1), with k  n = 3, and

the phases �
k

are uniformly distributed between 0 and 2⇡. To create amoebas that

are about the same size, the coe�cients are further constrained such that the minimum

and the maximum radii of the resulting amoeba and their ratios obey 0.2L < Rmin <

Rmax < 0.3L, 0.4 < R

min

R

max

< 0.6, where L is the image size. The input current then is

j(z) = �(z � z
e

)ei2⇥, for every point z
e

within 1 lattice spacing away from any point

on the amoeba contour, where ⇥ is tangential to the contour at that point. While

generating an amoeba, we also determine an exclusion region around it of 8 lattice sites.

Clutter elements (see below) with orientations parallel to the closest amoeba segment

are not allowed in these regions. Without such exclusion, a nearby clutter edge could

help amoeba detection, which would artificially elevate the measured performance. We

prefer to err on the side of underestimating the performance, and hence we remove these

ambiguous cases.
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Occlusions – We simulate occlusions and noise in real-world images by removing parts

of amoebas. A random number of 2-4 segments with random angular length combining

to the total of ⇠ 25% of the amoeba length are chosen at random positions along the

amoeba contour. Within the chosen segments, the input current j(z) is then set to zero.

Clutter – We need the clutter to be indistinguishable from the targets by curvature,

brightness, and other local statistics, so that object detection is impossible without

long-range contextual contour integration a↵orded by co-circular connectivity. Thus

clutter is generated by first generating an amoeba as described above, partitioning it into

segments, and then randomly shu✏ing and rotating the segments to break long-range

contour continuity. Specifically, the model cortex (100 square lattice used for simulation)

is divided into 5 ⇥ 5 square regions, which are then randomly permuted. The center-

of-mass (CoM) of an image within each region is computed, and the dominant angular

orientation is determined. Then each region is rotated around its CoM by a random

angle, subject to a constraint that the resulting dominant orientations of neighboring

regions are di↵erent. The constraint ensures that the clutter does not form long range

target-like structures.

Combined images – One or two targets and clutter resulting from breakup of one or

two additional targets were then superimposed together to form test images, see Fig. 4,

for an example. Clutter in the exclusion zones along the amoeba contours was then

removed, as described above.

Transforming pixel images – Images used previously in psychophysics experiment

(Fig. 4) were imported into MATLAB and then converted to grey scale using rgb2grey.

The resulting matrix was then thresholded and converted into a binary matrix. A

2D Gabor filter was used to find edges in this bitmap image. For each point in the

image, we find the convolution of a Gabor filter (�smaller = 10 pixel, �longer = 100 pixel,

convolution range = 20 pixel⇥20 pixel) with the image at (360/n) angles where n = 100.

The direction with the maximum convolution is taken as the orientation of the visual

field at the point, and the result of the convolution as the field magnitude. The image

thus processed is presented as an input for simulations.

2.3.2 Simulations

The time evolution of the model is studied on a square lattice of a linear size L = 100 with

periodic boundary conditions using Euler iteration method. The lattice discretization is
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done for simulation purposes, and should not be viewed as a representation of discrete

neurons; we are not aware of numerical algorithms able to simulate our model dynamics

without discretizing the space first.

In each iteration cycle we first calculate the total input I at each point z from all other

points z0 in the excitation region ‘Ex’ using a precomputed interaction kernel K[z�z0|1]
on a 4L ⇥ 4L kernel lattice. Square discretization destroys the angular symmetry of

the kernel evaluated at an arbitrary z. The following procedure restored the symmetry.

First, to calculate the contribution from z0 to I(z), the kernel lattice is superimposed

on the image lattice with the origin of the kernel lattice at point z of the image lattice.

Next the kernel lattice is rotated by arg(W (z0))
2 with respect to the image. Then the

contribution from the point z0 to I(z) is W ⇤(z0) ⇥ K(0, z00), where z00 is the point on

kernel lattice closest to z0. The total input I(z) is then the sum of contributions from

all points z0 in the excitatory interaction region ‘Ex’. After the input is calculated,

if |I(z)| > �th, then the field is incremented W (z, t + �t)  W (z, t) + A I(z)
|I(z)|�t,

where �t is the time step. To account for degradation, we finally set W (z, t + �t)  
W (z, t+�t)⇥ exp[�r(z)⇥�t/W (z, t+�t)], where r(z) is as in Eq. (2.6). To the first

order in �t, this is equivalent to the dynamics in Eq. (2.1). However, this exponential

form removes the large fluctuations in r(z) when W (z) ⇡ 0.

In our simulations, the excitation range ‘Ex0 is 3�, where � is the e↵ective spatial range

of the kernel K[z � z0|W (z)]. For global inhibition range ‘In0 is the entire lattice. The

model is easily modified to restrict the suppression to a smaller inhibition region.

We first chose the parameter µ to be similar to the curvature of a typical amoeba. Next

� was chosen such that it was larger than the typical extent of the occluded amoeba seg-

ments. The initial values of �l and �g were determined using steady state analysis of the

model, which leads to (N�g + �l)W0 ⇠ F
�

(1), where N is the typical number of points

with non zero field, and F is the thresholding function as defined in Eq. (1). Setting

�l = 1 and W0 = 1, we thus constrain all other parameters. Using these initial values,

some coarse parameter optimization was done by simply observing the simulations while

the parameters were varied. After that genetic algorithm was used to optimize the model

for maximum simultaneous precision and recall (see Results for definitions). We used the

area under the precision-recall curve as our fitness function. Parameters were changed

by a percentage drawn from a uniform distribution (from -1% to 1%) and the fitness

function was recalculated for the new parameters. Then, the new parameters were ei-

ther accepted or rejected according to whether 1/[1+exp(new area�old area)/0.005] >

random variable drawn from uniform distribution on (0,1). The parameter 0.005 acts
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as the temperature. The final optimized values of the parameters used for simulations

presented here were: A = 5, �th = 5,� = 7.9, µ = 15, �g = 0.012, �l = 1.

The code was implemented in C, compiled with the gcc v. 4.7, and optimized with

OpenMP libraries. Simulations were performed on a computer with Intel i7 2600k (clock

speed 3.4 GHz). The simulation time for 250 iteration cycles for one image took about

10s. All model dynamics times were measured in units of 1/�l, which was set to 1 in our

simulations.

2.4 Results

Figure 2.4 (top and middle) shows the time evolution of the neural field W (z, t) in

our coarse-grained model for a sample input image, generated as described in Methods,

where a large contiguous contour with gaps (an amoeba) is superimposed on clutter.

The gaps model occlusion of contours by other objects and noise in the earlier stages

of visual processing. Similarly, Figure 2.4 (bottom) illustrates the model output for

an image previously used in psychophysics experiments with human subjects [91]. Its

simplicity notwithstanding, the model performs qualitatively similar to humans in that

long contours implied by collinearity of nearby edge segments are easily detected. The

gaps in amoeba targets get filled, while the clutter decays with time, resulting in emer-

gence of long contours. Note also that spurious activity appears around contours at

large simulation times. Even though such hallucinations rarely happen in human vision,

they are not of a big concern here since, at large times, the dynamics would be a↵ected

by feedback from higher cortical areas and eye movements, which we are not modeling.

Importantly, these observation suggests that the model performance must be evaluated

at finite, but not asymptotically large times.

We quantified the performance in terms of precision, P , and recall, R. Precision de-

termines the fraction of the total field activity integrated over the image that matches

the actual target contour (visible and occluded/invisible). Recall gives the fraction of

the target contour that has been recovered. P = 1 means that there is no clutter, and

R = 1 means that all parts of the contour have been identified. For a successful contour

detection, we must have R,P ! 1 simultaneously. Both P and R depend on the cuto↵

used to decide which neurons are considered active (larger cuto↵ degrades clutter faster,

but slows down occlusion filling), and on the time of the simulation (Fig. 2.5). Hence

di↵erent cuto↵s and times must be explored.
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Figure 2.4: Neural field dynamics

(top and middle) Time evolution of the neural field for sample images. The magnitude (line
width) and the direction of the field are plotted at every point where the strength of the field
is higher than a cuto↵ (0.35). The parameters of the dynamics are as in Fig. 2.3. Dynamics
removes the clutter and fills in the occlusion gaps. However, spurious activity (widening lines)
appears for large simulation times, so that the best performance is obtained for intermediate
times. (bottom) Performance of the model on an image used in psychophysics experiments
[91]. Like human subjects, the model can identify, complete, and bind together long punctuated
contours.

Figure 2.6A gives the variation of precision and recall at various cuto↵s at particular

times during the simulation. At t = 0, (R,P ) = (0.75, 0.5) on average, i. e., initially

about 25% of the target is invisible and the total lengths of the clutter and the target

segments are nearly equal. At t as small as 0.25 (with �t = 0.01), P,R are above 0.9

simultaneously for a large set of cuto↵ values (1%�42%). Since we present the stimulus

instantaneously only, its e↵ect eventually decreases with time. Thus there is a time that

optimizes performance, at which the precision vs. recall curve majorates the same curves

for other times. For the data-set in Fig. 2.6, this optimal time is t = 0.40 ⇥ 1/�l (40
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Figure 2.5: Neural dynamics at di↵erent cuto↵s

Time evolution of a sample image at di↵erent cuto↵ values. At a lower cuto↵ the occlusions fills
rapidly, but it takes longer to suppress the clutter. At higher cuto↵s clutter removes quickly,
while it takes longer to fill the gaps. Notice the spurious activity around the contours at longer
times. This spurious activity is dominant at lower cuto↵s.

numerical iterations), where the curve reaches R ⇡ 0.97 and P ⇡ 0.95 simultaneously.

Performance depends only weakly on the ad hoc details of the simulations and the data.

For example, defining the threshold parameter not as an absolute value, but as a fraction

of the maximum activity of the field at a given time point did not change the precision-

recall curves much (Fig. 2.7). Similarly, di↵erent amounts of initial clutter had only

a moderate e↵ect if the length of the clutter elements remained the same (Fig. 2.6B).

This is because the time scale of the clutter decay depends on the size of the segments,

and not on their number. For longer segments, the decay takes longer, and hence the

optimal processing time increases. The optimal processing time also increases with the

linear dimension of the occlusions present in the target amoebas and with the number

of occlusions (Fig. 2.6B). However, for all of these cases, the maximum precision and

recall remain simultaneously high.
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Figure 2.6: Precision vs Recall with an absolute cuto↵

(A) P vs R averaged over 500 randomly generated images at various simulation times starting
with (R,P ) = (0.75, 0.5). The numbers indicate cuto↵ values for a specific data point at the
corresponding simulation time. Note the weak dependence on the cuto↵. The simulation lengths
of t = 0.40⇥1/�

l

(black dots) produces the curve with the best precision and recall combination.
(B) P vs R with di↵erent starting values of precision and recall averaged over 100 randomly
generated images, but with the same model parameters. Legend indicates the initial (R,P ).
The black dots are the same as in the top panel. Red ⇤’s correspond to a lower initial precision
(more clutter), compared to the black dots. Blue +’s stand for the same initial (R,P ) as black,
but with the target partitioned into more shorter segments (a larger number of occlusions). Pink
⇤’s correspond to higher initial precision (less clutter), but the clutter elements are longer and
harder to suppress.

2.5 Discussion

We developed a continuum, coarse-grained model of V1 to study contour detection in

complex images, which is substantially simpler than other models in the literature, and

yet still performs nontrivial visual computation. While borrowing heavily from previous

research, our model di↵ers from most previous approaches by forgoing individual neu-

rons and describing the neural activity as a parity-symmetric continuous director field,

which makes expressions for Hebbian connectivity and solutions of the model dynamics

expressible in the closed form. We incorporate some experimentally observed prop-

erties of the visual neural dynamics, namely non-linear excitation, thresholding, cross

orientation suppression, local relaxation, global suppression, and, crucially, co-circular

excitatory connectivity [78], which brings long-range context to local edge detection.

The model identifies long object contours in computer-generated images with simulta-

neous recall and precision of over 90% for many conditions. It happens even though
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Figure 2.7: Precision vs Recall with a relative cuto↵

P vs R averaged over 500 randomly generated images at various simulation times starting with
(R,P ) = (0.75, 0.5). The numbers indicate cuto↵ values for a specific data point in terms of the
percentage of the maximum activity of the field at the corresponding time. Note the similarity
with the results in case of absolute cuto↵ values (Figure 6A).

initially large parts of objects are invisible (potentially lowering recall), and clutter is

present (decreasing precision). The model fills in the occlusions and filters out the clut-

ter based on the presence or absence of co-circular contextual edge support. In addition

to the substantial simplification, this ability to fill in the occlusions particularly distin-

guishes our approach from the previous work on co-circular excitatory feedback [78, 79].

It remains to be seen to which extent the performance is a↵ected by more natural statis-

tics of images, and by the presence of stochasticity and synaptic plasticity in neural

dynamics.

The model performs on par or better than agent-based three-dimensional models (two

spatial dimensions and one orientation preference dimension), with complex, empirically

specified co-circular interaction kernel [79]. This illustrates that discreteness of neurons,

existence of the orientation preference as an independent variable, and intricate details

of the kernel are not crucial for the studied visual processing function. The reduced

complexity is not only conceptually appealing, but also can result in more e�cient

computational implementations. For example, it should be possible to augment practical

feedforward models of object detection, such as [71], with the laterally connected layer
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developed in this work. We expect this to lead to improvements in object recognition

performance.

The model makes predictions that can be tested experimentally, such as regarding the

amount of neural excitation in V1 as a function of the computation time and the duration

of exposure to an image. Additionally, it predicts that the neural activity localizes to

long contours with time, which can be tested with various imaging technologies. Finally,

it can be used to predict the dependence of the contour detection performance on the

statistical structure of images and on the exposure time. Testing such predictions in

psychophysics experiments [79] will be a subject of the future work.

Finally, we notice that the neural field W (z) = s(x, y)⇥ ei2⇥(x,y) can be mapped exactly

onto the Landau - de Gennes order parameter for a two-dimensional nematic liquid

crystal

Q
µ⌫

=
1

2
s

 

� sin(2⇥) cos(2⇥)

cos(2⇥) sin(2⇥)

!

. (2.7)

This may help solve a crucial di�culty in implementing an artificial laterally-interacting

neural model: the computational cost of long-range communication. Indeed, one can

think of materials with symmetry and dynamical properties such that the neural compu-

tation and the communication are performed by the intrinsic dynamics of the material

itself. Potential implementations can include polarizable liquid crystals with long-range

magnetic interactions, polar colloidal materials, or heterogenous solid state materials

with long-range connectivity. The liquid crystal analogy suggests the use of the well-

developed repertoire of theoretical physics to understand the impact of di↵erent terms

in the model neural dynamics, Eq. (2.1). In particular, one can hope that the future

renormalization group treatment of this dynamics will reveal the terms in the interaction

kernel K that are relevant for its long-time, long-range aspects.
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Chapter 3

Coarse-graining hierarchical

networks

(This chapter is based on: Scaling of Clusters near Discontinuous Percolation Transi-

tions in Hyperbolic Networks. V Singh, S Boettcher Physical Review E, 90(1):012117,

2014 [92].)

3.1 Introduction

There are two approaches to study biological information processing in large realistic

complex networks. One of them utilizes real world data to infer the structural organi-

zation of networks and builds statistical models based on the inference [93, 94]. While

such models have better predictive power for specific networks, they lack generalizability.

The second approach uses artificial hierarchical networks that resemble real networks in

only a few features, but can provide prediction about the behavior through exact results

that depend on the network topology [95–97]. In the absence of detailed experimental

knowledge of the connectivity of biological networks, the second approache can reveal

many features of biological information processing from simple rules of network orga-

nization [98–100]. As we saw in the previous chapter, for large scale networks like the

visual cortex it is possible that a lot of the details of the networks can be ignored when

one attempts to understand phenomena that take place on larger scales. Coarse grain-

ing approaches like the renormalization group can provide insights about the structural

and functional organization of such networks. Since we are quite far from knowing of
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the exact connectivity pattern of the cortical networks [101, 102], model networks that

incorporate the limited experimental knowledge we have about biological networks can

be utilized to understand the information processing through coarse graining techniques.

Cortical networks in the brain have been observed to organize themselves in structures

that allows large scale information processing [45, 48]. The spontaneous activity of neu-

rons on these networks produces “avalanches” of action potentials [40, 43] that span the

entire network and show a power law scaling in their size distribution and temporal du-

ration distribution[45]. This suggests that the cortex exists in a critical state to facilitate

large scale information transmission [103] making an optimal use of the synaptic con-

nections [47]. This power law scaling of the avalanches and the large scale connectivity

with few synapses shows a clear resemblance of these avalanches to criticality observed

in models of percolation from statistical physics. Since cortical networks resemble small

world hierarchical networks in terms of short and long range connectivity [75, 76] and

the hierarchy in structural and functional organization [62, 104, 105], model hierarchical

networks with small world properties can be utilized to study the organization principles

of cortical networks.

Small-world hierarchical networks have generated much interest as models for the preva-

lent hierarchical organization in complex networks [106–110]. The hierarchical organi-

zation in the brain and long range connectivity has attracted many models utilizing the

topology of these networks to study the brain [95, 96]. The recursive structure of hierar-

chical networks provide deeper insights into the nonlinear behavior caused by small-world

connections because they yield exact results for statistical models, compared to some pre-

sumed network ensemble that often requires approximate or numerical methods. Work

on percolation [111–115], the Ising model [107, 116–118], and the Potts model [119, 120]

have shown that critical behavior once thought to be exotic and model-specific [110]

can be universally described near the transition point [121, 122] for a large class of

hierarchical networks with hyperbolic properties. In a hyperbolic structure, sites are

typically randomly connected but possess a hierarchical organization of sites that allows

to identify a few sites harboring many small-world bonds as central while an extensive

portion of sites with less access resides on the periphery [123, 124]. Such structures are

common in disordered materials [125, 126], human organizations[106], information and

communication networks [124, 127], or neural networks [128, 129].

The topological structure that is required for long range information processing [40, 48],

synchronization [130] and sustained cortical activity [131] share similarity with that of

hierarchical small world networks. Here, we study percolation on hierarchical networks
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(b)(a) (c)

Figure 3.1: Depiction of hierarchical networks

(a) MK1, (b) HN5, and (c) HNNP. For all networks the recursive pattern that scales to the
thermodynamic limit is evident. Each network features regular geometric structures, such as
a one-dimensional backbone, and a distinct set of small-world links. While MK1 and HN5 are
planar, HNNP is non-planar.

with long range small world connections. We extend the discussion of universality on

such networks by studying the emergence of the discontinuous transition recently found

in ordinary percolation [113]. Due to the discovery of percolation transitions that first

appeared to be “explosive” [132–134], the dynamics of cluster formation at the onset

of such a transition has been the focus of much research [135–139]. While details of

the cluster size distribution ⇢(s) remain accessible only to simulations, we can use the

renormalization group (RG) to determine the exact large-N scaling of the average size

of the largest cluster,

hsmaxi ⇠ N (p), (3.1)

near the onset of the transition. Analyzing a number of di↵erent networks for site and

bond percolation, we find that the behavior observed in Ref. [113] appears to be generic

for hyperbolic networks. By “hyperbolic” we mean a hierarchical network with small-

world properties. The hierarchy ensures the distinction between an extensive set of

peripheral nodes of low centrality and ever sparser bulk nodes of increasing centrality,

while small-world bonds reduce average distances to scale logarithmically with system

size. In all cases, here or in related work [123, 140], it is found that within hyperbolic

networks the cluster size exponent  (p) defined in Eq. (3.1) depends on the percolation

parameter p in a nontrivial manner and has only quadratic or higher-order corrections in

its approach to an extensive cluster,  ! 1, at the transition, p! p
c

. This would suggest

the emergence of a dominant, albeit sub-extensive, cluster long before the transition is

reached.

Such a non-linear approach towards the transition contrasts with the behavior of the

equivalent exponent, defined via the susceptibility, on the same networks near the critical

temperature for the Ising model, and also with the predictions of the universal theory

for these transitions [121], which would obtain a linear correction generically.
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3.2 Small-world hyperbolic networks

The models we are studying here are familiar hierarchical networks that have become

popular because they provide exact results for complex processes by way of the real-space

renormalization group. MK1, depicted in Fig. 3.1(a), is the one-dimensional version of

the small-world Migdal-Kadano↵ hierarchical diamond lattice [107], which has been

used previously to prove the existence of the discontinuous transition in ordinary perco-

lation [113]. MK1 is recursively generated starting with two sites connected by a single

edge at generation n = 0. Each new generation recursively combines two sub-networks

of the previous generation and adds single edge connecting the end sites. As a result,

the nth generation contains 2n + 1 vertices, 2n backbone bonds, and 2n � 1 small-world

bonds.

To show that this discontinuity persists for more complicated but hierarchical structures,

we consider here also the Hanoi networks HN5 and HNNP, also shown in Fig. 3.1(b-c). A

similar recursive procedure as described above for MK1 is also applied to obtain each new

generation, however, due to their more complicated structure their basic building block

at n = 0 consists of a triangle of three sites. For these Hanoi networks, the existence of

a non-trivial bond-percolation transition has been demonstrated previously [112]. HN5

is similar to MK1 but requires a coupled system of RG-recursions. It also can be easily

adapted to complement previous investigations of site-percolation [141] in a non-trivial

fashion. HNNP is special in that it is a non-planar graph, and aspect that is missing

from other hierarchical networks.

Figure 3.2: Diagrammatic definition of generating functions

Diagrams of Tn(x) and Sn(x, y) in Eqs. (3.5) for MK1 in Fig. 3.1. End sites are represented
by open circles and clusters by shaded areas. Tn(x) consists of one spanning cluster, labeled x,
which connects both end-sites and Sn(x, y) consists of two non-spanning clusters, x and y, each
connected to one end-site. Isolated clusters not containing either of the end sites are ignored.
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3.3 Review of cluster renormalization in bond percolation

Before we apply it to calculate exact expressions for the scaling of the average cluster

size for HN5 and HNNP in the next section, we first review briefly the formalism needed

to analyze the average cluster size near the bond-percolation transition, as used for

MK1 in Ref. [113]. While a full understanding the dynamics of cluster formation near

the discontinuous percolation transition requires knowledge of the entire cluster-size

distribution, already the average size of the largest cluster hsmaxi
n

at generation n

provides profound insights. In particular, we will be focused on the system-size scaling

of hsmaxi
n

for p ! p
c

. In the following, we derive hsmaxi
n

using cluster generating

functions.

3.3.1 Cluster generating function for MK1

We review briefly the procedure described in Ref. [113] for MK1. There, the generating

functions were obtained by introducing merely two quantities: the probability t(n)
i

(p)

that both end-sites are connected to the same cluster of size i, and the probability

s(n)
i,j

(p) that the left end-site is connected to a cluster of size i and the right end-site to a

di↵erent cluster of size j. The generating functions, as depicted in Fig. 3.2, are defined

as

T
n

(x) =
1
X

i=0

t(n)
i

(p)xi (3.2)

S
n

(x, y) =
1
X

i=0

1
X

j=0

s(n)
i,j

(p)xi yj . (3.3)

The recursion relations for these generating functions can be obtained by considering

all possible configurations on three sites, as shown in Fig. 3.3, taking into account the

cluster sizes as described in Ref. [113]. The graphlets on three sites are assigned to the

correct two-site graphlet in the next generation, and the weights of all the graphlets

that contribute to the same higher-generation graphlet are added together to get the



Chapter 3. 25

Figure 3.3: Diagrammatic evaluation of generating functions for MK1

All graphlets contributing to Tn+1

(x) and Sn+1

(x + y) in the nth generation. Graphlets (a-e)
have end-to-end connections and contribute to Tn+1

(x) while (f-h) contribute to Sn+1

(x, y).
The contribution of each graphlet is (a) xpT 2

n(x) (b) xpTn(x)Sn(x, x) (c) xpTn(x)Sn(x, x) (d)
pSn(x, 1)Sn(1, x) (e) x(1 � p)T 2

n(x) (f) x(1 � p)Tn(x)Sn(x, y) (g) y(1 � p)Tn(y)Sn(x, y) (h)
(1� p)Sn(x, 1)Sn(1, y). The recursion can be obtained by adding weights (a-e) for Tn+1

(x) and
(f-h) for Sn+1

(x, y) resulting in Eq. (3.5). See Appendix A.1 for an algorithm to automate the
evaluation.

recursion relations,

T
n+1(x) =xT 2

n

(x)

+ p [2xT
n

(x)S
n

(x, x) + S
n

(x, 1)S
n

(1, x)] , (3.4)

S
n+1(x, y) = (1� p) [xT

n

(x)S
n

(x, y) + yT
n

(y)S
n

(x, y)

+S
n

(x, 1)S
n

(1, y)] , (3.5)

as indicated in Fig. 3.3 and discussed in more detail in Appendix A.1.1.

3.3.2 Fixed point analysis for average cluster size

The recursion equations in Eq. (3.5) can be simplified by combination them into a

vector ~V
n

(x) = [T
n

(x) , S
n

(x, x) , S
n

(x, 1)] of distinct observables, where we focus on

the largest cluster x only. The RG can now be written as

~V
n+1(x) = ~F

⇣

~V
n

(x), x
⌘

(3.6)
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for the nonlinear vector-function ~F that derives from Eqs. 3.5. As Eq. (3.2) suggest,

the average size of a spanning cluster (which dominate in the cluster-size distribution) is

generated by hsi ⇠ T 0
n

(x = 1); any form of S
n

does not a↵ect to the spanning cluster and

its contributions prove subdominant. We obtain T 0
n

(x = 1) in terms of T
n

= T
n

(x = 1)

and p by linearizing the recursion relation in Eq. 3.6

@~V
n+1

@x
=

@ ~F

@~V

⇣

~V
n

⌘

· @
~V
n

@x
+

@ ~F

@x

⇣

~V
n

⌘

, (3.7)

near x = 1. Eq. (3.6) itself at x = 1 (where S
n

= 1 � T
n

) reduces for MK1 in each

component of ~V to

T
n+1 = p+ (1� p)T 2

n

(T0 = p) (3.8)

with fixed point T1 = lim
n!1 T

n

T1 (p) =

(

p

(1�p) 0  p < 1
2

1 1
2  p  1,

(3.9)

providing the critical point p
c

= 1
2 , where any spanning cluster also becomes extensive,

see Fig. 3.4(a).

Ignoring the subdominant inhomogeneity in Eq. (3.7), the remaining homogeneous linear

system gives the dominant contribution for V 0
1, i.e. T 0

1, S0
1. The largest eigenvalue �

of the coe�cient-matrix @

~

F

@

~

V

⇣

~V1
⌘

at the fixed point T1 (p) becomes for MK1

� =

8

<

:

1+3p�4p2

2(1�p) +
q

1�p(1�4p)2

4(1�p) 0  p < 1
2

2 1
2  p  1.

(3.10)

Finally, we obtain the order parameter P1 as

P1 =
hsmaxi
N

⇠ T 0
1
N
⇠ N (p)�1 (3.11)

with the fractal exponent(3.12)

 (p) = log2 �. (3.12)

Note that this implies that the largest cluster below the transition is already diverging

with a non-zero power of the system size, although in a sub-extensive manner,  < 1

for p < p
c

, such that P1 ! 0 for N ! 1. These spanning, sub-extensive clusters

exist, albeit with finite probability given by T1 (p) in Eq. (3.9), for all 0 < p < p
c

.
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Figure 3.4: Phase diagram for the probability of a spanning cluster

(a) T1 for MK1 in Eq. (3.9), (b) R1 for HN5 in Eq. (A.14), and (c) R1 for HNNP in Eq. (A.10)
(for x = 1), all as a function of bond probability p. Black lines mark stable fixed points, and red-
shaded lines are unstable fixed point solutions. The critical transition, at which the probability
of any site to belong to the largest cluster becomes finite and that cluster becomes extensive,
occurs exactly when the probability of a spanning cluster becomes unity, at pc = 1

2

for MK1
and pc = 2 � � = 0.38197 . . . for both, HN5 and HNNP [112]. However, in all cases, there
is a non-zero probability for a spanning cluster, albeit sub-extensive, even below pc, due to
the hyperbolic nature of these hierarchical networks. For MK1 and HN5, such a cluster can
exist for all 0 < p < pc, while for HNNP it disappears below the branch-point singularity at
pl = 0.31945 . . .. Note that in each case the transition occurs at the intersection of two lines of
stable fixed points.

This behavior for hyperbolic systems contrasts with that of regular lattices, where such

sub-extensive clusters with fractal scaling only exist for p = p
c

and  (p) ⌘ 0 for p < p
c

such that all clusters remain finite or at most diverge logarithmically in N .

In Fig. 3.5(a), we show a plot of P1(p) for MK1 evaluated after n = 10k iterations using

Eq. (3.7) displayed for k = 1, ..., 5 corresponding to system sizes up to N ' 2n ⇠ 103010

sites. P1 converges slowly to zero for p < p
c

= 1
2 . At and above p

c

, it can be shown

using Eq. (3.7) that T 0
n

is monotonically increasing with n while being bounded above by

1, thus the order parameter is positive definite for 1
2  p < 1. The order parameter P1

changes discontinuously from 0 to 0.609793... at p = p
c

and converges to 1 for p! 1. A

more detailed discussion, including a proof of the discontinuity, is provided in Ref. [113].

3.3.3 Scaling behavior near the transition

From Eqs. (3.10-3.12) it is now easy to determine the scaling behavior for the average

cluster size near the transition. By expanding the eigenvalue � in Eq. (3.10) for p !
p
c

from below, we find that the leading behavior only has quadratic corrections, and

inserting into Eq. (3.12) results in

 (p) ⇠ 1� 8

ln 2
(p� p

c

)2 , p% p
c

=
1

2
, (3.13)
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Figure 3.5: Discontinuity in the percolation order parameter P1(p)

(a) MK1, (b) HN5, and (c) HNNP, each for n = 10k iterations for some integer k. In each
case, P1 converges slowly to zero just below pc, and at pc, P1 changes discontinuously. The
discontinuity decreases left to right, and is barely visible for HNNP, see inset.

which rapidly approaches unity. This implies that the largest (spanning) cluster that

dominates the distribution is nearly extensive already much before the discontinuous

transition is reached. RG can only determine the probability T1 and average size

hsmaxi ⇠ T 0
1 of the spanning cluster. Their sub-extensive nature for p < p

c

would

allow in principle for a diverging number of such clusters. Our simulations show that

already for small systems the largest cluster is almost certainly connected to at least one

end-site near p
c

. (In fact, for MK1 we could have just as well defined hsmaxi ⇠ T 0
1+S 0

1

to account not just for spanning but all end-site connected clusters, without a↵ecting

the scaling.) However, as we will see for HNNP, the non-extensive clusters further below

p
c

may well be purely internal, with zero probability of spanning between any end-sites.

In light of the discussion regarding universal behavior in hyperbolic networks [121, 140],

it is interesting to also explore the scaling behavior of the order parameter on its approach

to the discontinuity from above the transition. Numerically, with the RG, we find that

a fit to

P1 (p) ⇠ P1 (p
c

) +A (p� p
c

)� (p& p
c

) (3.14)

is quite consistent with a simple, linear approach, i.e., � = 1, see Fig. 3.6(a).

3.4 Cluster-size scaling for hanoi networks

In the following, we will apply the formalism from Sec. 3.3 to the Hanoi networks HN5

and HNNP in Fig. 3.1(b-c). Their phase diagram, as shown in Fig. 3.4(b-c), has already

been discussed in Ref. [112]. To obtain their average cluster size requires the automated

algorithm developed in the Appendix, due to the substantial combinatorial e↵ort to
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Figure 3.6: Scaling of the order parameter P1(p)

P1(p) for p & pc according to Eq. (3.14) for (a) MK1, (b) HN5, and (c) HNNP. In each case,
taking p�pc = 1

2

j , we plot log
2

[P1 (p)� P1 (pc)] /j vs. 1/j which linearly extrapolates to � ⇠ 1
as the intercept at j !1, i.e., p! pc.

enumerate their conformations. We will focus here on the more interesting case of

HNNP first and then merely report equivalent results for HN5, without the details.

Despite of the added complexity, we find remarkably similar results near the transition

for these networks, as compared to MK1, and only some distinctly interesting features

for HNNP in the “patchy” regime below p
c

. Such robust behavior suggests universal

features [121, 140], which can be traced back to the fundamental phase diagram shared

by all three networks, as is evident from Fig. 3.4. For comparison, this bond-percolation

behavior is not shared by another hierarchical network, MK2, which mutatis mutandis

has quite a distinct phase diagram [112, 142], leading instead to a BKT transition. See

Ref. [140] for an interpolation between both cases.

In the Appendix, Sec. A.1.2, we show how to obtain the RG-recursions for the cluster

generating functions. While otherwise similar to the discussion in Sec. 3.3.1, HNNP (as

well as HN5) requires four such functions to account for all possibilities, of having clusters

linking any combination of three end-sites or remain isolated, even after accounting for

all symmetries of the network. The resulting recursions, Eqs. (A.10), are similar to those

for MK1 in Eqs. (3.5), although rather more involved. In the end, we only care for the

dominant cluster, which we label x, and consider each possible contribution from one

RG-step to the next while disregarding sub-dominant clusters by setting y = z = 1. Note

that even clusters that are disconnected from any end-site at one step could significantly

contribute at the next via the small-world bonds that are linking graphlets between

consecutive RG-steps. In the end, we can identify ten distinct observables that form a
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closed set of recursions. When combined into a single vector,

~V
n

(x) = [R
n

(x), S
n

(x, x), S
n

(x, 1), U
n

(x, x),

U
n

(x, 1), N
n

(x, x, x), N
n

(x, x, 1), (3.15)

N
n

(x, 1, x), N
n

(x, 1, 1), N
n

(1, x, 1)] ,

these satisfy the equivalent recursion in (3.6), with the nonlinear RG-flow given by

Eqs. (A.10).

To zeroth order, at x = 1, Eq. (3.6) gives the recursion relation for percolation of the

HNNP graph as derived in Ref. [112]. The coupled recursion relations in (R
n

, S
n

, U
n

, N
n

)

result in the roots of a sextic polynomial, which can be solved numerically to get the

probability of, say, the spanning cluster R1 between the end-sites. Fig. 3.4(c) gives

the phase diagram for HNNP representing the solutions of the sextic equation, which

correspond to the probability R1 for 0 < p < 1. HNNP provides a unique example of a

network in which the probability of the dominant cluster to touch any end-site vanish

below some finite value 0 < p
l

< p
c

. In Ref. [112] this was interpreted as a second, lower,

critical point, where below p
l

neither a spanning nor an extensive cluster exists while

between p
l

and p
c

at least a spanning cluster exists that does not need to be extensive,

due to the hyperbolic structure of the network. That spanning cluster becomes extensive

only above p
c

, the true critical percolation point with non-zero order parameter, P1 > 0.

However, as was shown in Ref. [114], even below the non-zero p
l

in HNNP a diverging

cluster remains and  (p) defined in Eq. (3.1) remains positive for all p > 0. At p
l

,  (p)

merely jumps discontinuously to a lower but finite value, yet, diverging clusters that

connect end-sites are almost certainly absent. Any diverging cluster is fully contained

inside HNNP.

The nature of the largest cluster can be studied by looking at the first-order term in

the Taylor expansion, Eq. 3.7, of the vector ~V
n

(x) in Eq. 3.15. For HNNP the Jacobian
@

~

F

@

~

V

⇣

~V
n

⌘

at x = 1 consists now of a 10 ⇥ 10 matrix and the inhomogeneity is a 10 ⇥ 1

matrix. For large system sizes (n!1) at x = 1, it can be shown that the inhomogeneity

is subdominant, leaving a homogeneous equations. As before, the largest eigenvalue of

the Jacobian gives the scaling exponent  (p) for the largest cluster in the network from

Eq. (3.12), as shown in Fig. 3.7. It shows that  (p) < 1 for p
l

< p < p
c

, but  (p) drops

to zero discontinuously at p
l

and vanishes for p < p
l

= 0.31945 . . ., since the cluster

measured by the RG is conditioned on being rooted at an end-site. The RG misses
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Figure 3.7: Plot of the fractal exponent  (p) for HNNP

The behavior of  (p) for pl < p < pc = 0.38197 . . . (full line) is obtained by exact evaluation of
the Jacobian matrix, which develops a branch-point singularity at pl = 0.31945 . . .. Ref. [114]
has provided a lower bound,  (p) = log

2

�

1 +
p
1 + 8p

�

� 1 for p < pl (dashed line), suggesting
a discontinuity in the scaling of the largest cluster at pl (dotted line) when spanning clusters
emerge.

diverging clusters that that do not span the network which apparently dominate below

p
l

[140]. In any case, since  (p) < 1, Eq. (3.11) ensures that P1 ⌘ 0 for all 0  p < p
c

.

Near p
c

= 2 � �, where � =
�

p
5 + 1

�

/2 is the “golden section”, we again find a

percolation transition with a discontinuous jump in the order parameter P1. By evolving

the recursion equations (3.7) for V 0
n

, the order parameter can be rigorously shown to

have monotone convergence to non-zero values at and above p
c

, see Fig. 3.5(c). For

p % p
c

, the way  (p) approaches unity can be found through considering the secular

equation

0 = det
�

V 0
1 �

�

2� a1✏+ a2✏
2 + . . .

�

⇥ I
 

, (3.16)

expanded in terms of ✏ = p
c

� p ⌧ 1, where I is the identity matrix. Note that at p
c

,

the largest eigenvalue of V 0
1 is � = 2, around which we expand. Since the percolation
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probabilities at p
c

are given by R1 = 1, S1 = U1 = N1 = 0, we assume an expansion

of the percolation probabilities as R1 = 1�⇢1✏+⇢2✏2, S1 = �1✏+�2✏2, U1 = ⌫1✏+⌫2✏2,

and N1 = ⌘1✏ + ⌘2✏2. To satisfy Eq. (3.16), each coe�cient in powers of ✏ should be

zero. As a result, we find that linear corrections to the eigenvalue � vanish, i.e., a1 = 0.

Using conservation of probability, ⇢
i

+�
i

+�
i

+⌘
i

= 0, for each i � 1 at p = p
c

, we find a

non-vanishing quadratic correction, a2 = a2(⇢1,�1, ⌫1, ⌘1) = � 5
16

�

38 + 17
p
5
�

, for which

the second-order corrections in the percolation probabilities proved irrelevant. Hence,

Eq. (3.12) yields

 HNNP(p) ⇠ 1�
5
�

38 + 17
p
5
�

32 log
e

(2)
(p

c

� p)2 + . . . , p% p
c

. (3.17)

For HN5, by using the same cluster generating functions as for HNNP in the Appendix,

we obtain their RG recursions in (A.14). Again, the resulting equations for the cluster

size are too complicated to express or solve in closed form. But it is easy to evaluate their

phase diagram in Fig. (3.4)(b) for R1, as well as the order parameter P1 in Fig. (3.5)(b)

to any desired accuracy. Here, the same local analysis near p
c

as for HNNP yields for

HN5:

 HN5(p) ⇠ 1�
5
�

677 + 304
p
5
�

484 log
e

(2)
(p

c

� p)2 + . . . , p% p
c

. (3.18)

As for MK1 and HNNP, almost extensive clusters in HN5 emerge well before the transi-

tion, with  (p) varying quadratically. It suggests that the quadratic dependence below

p
c

might be universal for hierarchical networks with discontinuous percolation transi-

tions. Above p
c

, the scaling of P1 in Eq. (3.14) for both, HN5 and HNNP, also provides

� ⇠ 1, as shown in Fig. 3.6(b-c).

3.5 Discussion

In this chapter we have shown that a hierarchical network of one-dimensional lattice with

small-world type bonds can result in an explosive percolation transition. This discontin-

uous transition found in the hierarchical lattices are unique, as alternative models based

on correlated bond additions have been proven to fail [134]. Our investigation of proper-

ties of the cluster formation near the discontinuous percolation transition in hyperbolic

networks a�rms the robustness of the observed finite-size scaling of the largest cluster

in the system. Although the precise conditions for such discontinuous behavior on these
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hierarchical networks are not clear, we observe that such behavior is quite general for

networks where small-world bonds convert an initially finitely-ramified network into an

infinitely ramified network to provide p
c

< 1. The resulting“explosive transition” indi-

cates that large scale communication is possible on such networks even at small value

of bond probability p. This suggests that large scale emergent phenomenon observed in

the brain [48], like synchronization [130], avalanches [40, 43] and sustained activity [131]

could be a result of the small-world hierarchical structure in brain connectivity [95, 97].

It would be interesting to investigate neural networks similar to the ones discussed in this

chapter with firing neurons at each node and recursively generated synaptic connections.

An RG approach, similar to one explained here, can then be utilized to understand large

scale emergent properties on such model-neural networks.
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Chapter 4

Accurate sensing of multiple

ligands with a single receptor

4.1 Introduction

Cells obtain information about their environment by capturing ligand molecules with

receptors on their surface and estimating the ligand concentration from the receptor

activity. Limits on the accuracy of such estimation have been a subject of interest since

the seminal work of Berg and Purcell [143], with several substantial extensions found

recently [51–57]. All of these assume one ligand species coupled to one receptor species.

However, cells carry many types of receptors and have many species of ligands around

them. The same ligands can bind to many receptors, albeit with di↵erent a�nities,

and vice versa. This is commonly referred to as cross-talk, and represents a complex

network of ligand-receptor interactions. Here we study signal processing on a simple

ligand-receptor network with cross-talk.

In traditional deterministic chemical kinetics, one cannot estimate concentrations of

more ligands than there are receptor types. Further, even a weak cross-talk prevents

determination of concentrations of individual chemical species since activity of a recep-

tor is a function of a weighted sum of concentrations of all ligands that can bind to

it. In contrast, here we argue that, with cross-talk, concentration of more than one

chemical species can be inferred from the activity of one receptor, provided that the en-

tire stochastic temporal sequence of receptor binding and unbinding events is accessible

instead of its mean occupancy. This surprising result can be understood by noting that
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Figure 4.1: Model of ligand-receptor cross-talk

(a). Two lignads, cognate and non-cognate, bind to a receptor R with binding rates k
c

and k
nc

,
respectively. The cognate unbinding rate is defined as lower than the non-cognate one
(r

c

< r
nc

). (b) Time series of receptor occupancy is used to determine both on-rates.

a typical duration of time that a ligand remains bound to the receptors depends on its

unbinding rate. Thus observing the statistics of the receptor’s unbound time durations

allows estimation of a weighted average of all chemical species that interact with it [54],

and then observing the statistics of the bound time durations allows to tell how common

each ligand is.

Here, we derive these results for the simplest problem of the class, namely one receptor

interacting with two ligand species. While the exact solution of the inference problem

for finding both ligand concentrations is hard to implement using common biochemical

machinery, we show that an accurate approximation is possible using the familiar kinetic

proofreading mechanism [144, 145].

4.2 Model of ligand-receptor cross-talk

Consider a single receptor estimating concentrations of a cognate and a non-cognate

ligand, Fig. 4.1. The ligands bind to the receptor with on-rates kc and knc. These

are proportional to the ligand concentrations with known coe�cients of proportionality.

Thus estimating kc,nc is equivalent to estimating the concentrations themselves. The

unbinding, or o↵-rates, rc and rnc, distinguish the two ligands: rnc > rc, and a cognate

molecule typically stays bound for longer. Following Ref. [54], we estimate kc and knc

from the time-series of binding, {tb
i

}, and unbinding, {tu
i

} events of a total duration T

using Maximum Likelihood techniques. The numbers of binding and unbinding events

are di↵erent by, at most, one, which is insignificant since we consider T ! 1. Thus

without loss of generality, we assume that the first event was a binding event at tb1 , and

the last one was the unbinding at tu
n

. We write the probability distribution of observing

the sequence {tb1 , tu1 , . . . , tbn, tun}, or alternatively the sequence of binding and unbinding
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intervals ⌧b
i

= tu
i

� tb
i

, and ⌧u
i

= tb
i+1 � tu

i

:

P ⌘ P ({⌧b
i

, ⌧u
i

}|kc, knc) =
1

Z

n

Y

i=1

h

e�⌧

u

i (kc+k

nc

)
⇣

kc rc e
�⌧

b

i rc + knc rnc e
�⌧

b

i rnc

⌘i

. (4.1)

Here the first term under the product sign is the probability of the receptor staying

unbound for ⌧u
i

. The second term, which we from now on denote by D(kc, knc, ⌧b
i

), is

proportional to the probability of staying bound for ⌧b
i

, which has contributions from

being bound to the cognate and the noncognate ligands, with odds of kc/knc. Finally,

Z is the normalization. Note that here we define ⌧u
n

= tb1 + (T � tu
n

), so that the n’th

unbound interval includes the “incomplete” unbound intervals before the first binding

and after the last unbinding.

4.3 Maximum Likelihood estimate of concentrations

The log-likelihood of kc,nc is the logarithm of P , Eq. (4.1). Taking the derivatives of the

log-likelihood w. r. t. kc and knc and setting them to zero gives the Maximum Likelihood

(ML) equations for the two concentrations. This approach is similar to minimizing the

action to get the classical path in Lagrangian mechanics. Denoting by T u =
P

n

i=1 ⌧
u
i

the total time the receptor is unbound, these are

�T u +
n

X

i=1

rce�⌧

b

i rc

D(k⇤c , k
⇤
nc, ⌧

b
i

)
= 0, (4.2)

�T u +
n

X

i=1

rnce�⌧

b

i rnc

D(k⇤c , k
⇤
nc, ⌧

b
i

)
= 0, (4.3)

where ⇤ denotes the ML solution. Multiplying Eqs. (4.2, 4.3) by k⇤c and k⇤nc, respectively,

and adding them gives

k⇤c + k⇤nc =
n

T u
, (4.4)

which determines the sum of the two concentrations, showing that the estimates are

negatively correlated. As in Ref. [54], the total on-rate (the weighted average of the

external concentrations) is determined only by the average duration of the unbound

interval, (n/T u)�1, because no binding is possible when the receptor is already bound.

In general, the ML equations cannot be solved analytically, requiring numerical ap-

proaches. However, as all ML estimators, they are unbiased to the leading order in

n. The standard errors of the ML estimates can be obtained by inverting the Hessian
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matrix,

@2 logP

@k·@k·

�

�

�

�

k

⇤
c

,k

⇤
nc

=
n

X

i=1

"

�1
D(kc, knc, ⌧b

i

)2

 

r2ce
�2⌧bi rc rcrnce�⌧

b

i (rc+r

nc

)

rcrnce�⌧

b

i (rc+r

nc

) r2nce
�2⌧bi rnc

!#

, (4.5)

where · stands for {c, nc}. The inverse of @

2 logP
@k·@k·

, which scales as / 1/n, sets the

minimum variance of any unbiased estimator according to the Cramer-Rao bound. It

has straightforward analytical approximations in various regimes. For example, for

kc/knc � 1 and rc/rnc ⌧ 1, when the noncognate ligand is almost absent, and its few

molecules do not bind for long, one gets �2(k⇤c ) ⇡
�

@2 logP/@k2c
��1

k

c

=k

⇤
c

⇡ 1/n, matching

the accuracy of sensing one ligand with one receptor [54]. A regime relevant for detection

of a rare, but highly specific ligand [146, 147]) can be investigated as well. Instead, we

focus on how the receptor estimates (rather than detects) concentrations of both ligands

simultaneously, which requires us to investigate the full range of on-rates.

To study the variability of the ML estimator, we define its error as Ec,nc = n�2(k⇤c,nc)/k
2
c,nc,

the squared coe�cient of variation, multiplied by n, which has a finite limit at n!1.

E = 1 corresponds to the accuracy that a receptor measuring a single ligand would ob-

tain [54]. We show log10E for di↵erent on- and o↵-rates in Fig. (4.2). If the two ligands

are readily distinguishable, rc ⌧ rnc, then the ligand with the dominant k has E ⇠ 1.

When kc ⇠ knc, E· ⇠ 4 . . . 5, and it grows to 10 . . . 30 for a ligand with a very small

relative on-rate. Emphasizing the importance of the time scale separation, E > 100 if

the ligands are hard to distinguish, rc ⇠ rnc. Here, in addition, the correlation coe�cient

⇢ of the two estimates reaches �1 because the same binding event can be attributed to

either ligand. Finally, the asymmetry of the plots w. r. t. the exchange of kc and knc

is because the cognate ligand can generate short binding events, while long events from

the noncognate ligand are exponentially unlikely. In summary, it is possible to infer two

ligand concentrations from one receptor, with the error of only 1 . . . 10 times larger than

for ligand-receptor pairs with no cross talk, as long as the two o↵-rates are substantially

di↵erent.

4.4 Approximate solution

Solving Eqs. (4.2, 4.3) to find the ML on-rates would be hard for the cell. Luckily, an

approximate solution exists. To find it, we notice that most of the long binding events

come from the cognate ligand since the noncognate one dissociates faster. Defining long
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Figure 4.2: Variability of the ML estimators

Variability represented by log
10

E
c

(left), log
10

E
nc

(center), and the correlation coe�cient ⇢
between k⇤

c

and k⇤
nc

(right) as functions of k· and r·. Here we use r
nc

= k
c

+ k
nc

= 1. The
plotted quantities are estimated as averages over 30, 000 randomly generated

binding/unbinding sequences for each combination of the rates. Each sequence consists of
n = 30, 000 binding events, simulated using the Gillespie algorithm. Standard errors are too

small to be represented.

events as ⌧b
i

� T c, we rewrite Eqs. (4.2, 4.4) as

n

k⇤c + k⇤nc
=

0

@

X

⌧

b

i �T

c

+
X

⌧

b

i <T

c

1

A

rce�⌧

b

i rc

D(k⇤c , k
⇤
nc, ⌧

b
i

)
(4.6)

Assuming that almost all long events are cognate, T c � 1/rnc, this gives

n

kac + kanc
=

nl

kac
+

X

⌧

b

i <T

c

rce�⌧

b

i rc

D(kac , k
a
nc, ⌧

b
i

)
, (4.7)

where nl is the number of long events, and the superscript “a” stands for the approximate

solution. If further T is long enough so that there are many short events, and a single

binding duration hardly a↵ects k⇤c , then the sum in Eq. (4.7) can be approximated by

the expectation value:

n

kac + kanc
=

nl

kac
+ (n� n

l

)

Z

Tc

0

rce�⌧

b

r

cP (⌧b|kac , kanc)d⌧b

D(kac , k
a
nc, ⌧

b)
, (4.8)
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where P (⌧b|kac , kanc) is the probability of observing a binding event of the duration ⌧b

for the given binding rates,

P (⌧b|kac , kanc) =
D(kac , k

a
nc, ⌧

b)

kac + kanc
. (4.9)

Plugging Eq. (4.9) into Eq. (4.8), we obtain

1

kac + kanc
=

nl

nkac
+
⇣

1� nl

n

⌘ 1� e�r

c

T

c

kac + kanc
. (4.10)

Finally, since nl ⌧ n, using Eq. (4.4), we get:

kac =
nl

T u
erc T

c

, (4.11)

kanc =
n

T u
� nl

T u
erc T

c

. (4.12)

In other words, the approximate cognate ligand concentration is proportional to the

number of long events.

We can estimate the bias and the variance of kac,nc in a limiting case. If rc and rnc are not

very di↵erent from each other, then T c must be much larger than the inverse of either

of them, T c � {r�1
nc , r

�1
c }, and nl ⌧ n. Then most of the variance of kac,nc in Eqs. (4.11,

4.12) comes from variability of nl, but not T u. Thus we write hkac i ⇡
hn

l

i
hTuie

r

c

T

c

. Further,

the individual unbound periods are independent, so that hT ui = nh⌧ui = n/(kc + knc)

(notice the use of k rather than ka in this relation). Further, hnli = nP (⌧b > T c) =
n

k

c

+k

nc

�

kce�r

c

T

c

+ knce�r

nc

T

c

�

. Combining these expressions, we get

hkac i ⇡ kc + knce
�(r

nc

�r

c

)T c

. (4.13)

Thus for large T c, the bias of the approximate estimator, knce�(r
nc

�r

c

)T c

, grows with the

relative number of noncognate long bindings events. In turn, the latter is proportional

to knc, but decreases exponentially with T c.

Within the same approximation, the variance of the estimator is �2(kac ) ⇡
�

2(n
l

)
hTui2 e

2r
c

T

c

.

But long binding events are rare, independent of each other, and hence obey the Poisson

statistics. Thus �2(nl) = hnli, so that

�2(kac ) ⇡ hkac i
kc + knc

n
ercT

c

. (4.14)

The variance obviously grows with T c.



Chapter 4. 40

1

� �
� �

�

0.5

�����

�
��

��
���

�

0-1
���

��

�
�
�

�
��

�
0

1

4

3

2

1

0
1

� �
� �

�

0.5

�����

�
���

��
����

�

0-1
���

��

�
�
�

�
��

�
0

1

4

3

2

1

0
1

� �
� �

�

0.5

0

��

-1
���

��

�
�
�

�
��

�
0

1

0

-0.2

-0.4

-0.6

-0.8

-1

Figure 4.3: Comparison of errors of the approximate and the ML solutions

We plot log
10

(L
c

(T
0

)/�2

k

⇤
c
) (left), log

10

(L
nc

(T
0

)/�2

k

⇤
nc
) (center) and the covariance of the

approximate estimates (right) as functions of on- and o↵-rates. Simulations are performed in
the same way as in Fig. 4.2.

Knowing that the bias and the variance of the approximation change in opposite direc-

tions with T c, we can find the optimal cuto↵ by minimizing the overall error, or, in other

words, solving the bias-variance tradeo↵:

T c
⇤ = argmin

T

c

L = argmin
T

c

h

(kc � hkac i)
2 + �2(kac )

i

, (4.15)

where L is the sum of the squared bias and the variance of the estimator. Near the

optimal cuto↵, the bias is small, and we use kc instead of kac for the variance of the

estimator, Eq. (4.14). Then solving Eq. (4.15) gives:

T c
⇤ =

1

(2rnc � rc)
log



2T u

✓

rnc
rc
� 1

◆

k2nc
kc

�

. (4.16)

Plugging this into Eqs. (4.13, 4.14), we can get the minimal error of the estimator, which

we omit here for brevity.

The optimal cuto↵ is / 1/rnc if rnc � rc, and it grows with rc, allowing for better

disambiguation of cognate and noncognate events. Crucially, the o↵-rates are specified

with the ligand identities. In contrast, the on-rates, kc,nc, are what the receptors mea-

sures. Therefore, it is encouraging that T c depends only logarithmically on the on-rates

(and also on the duration of the measurement, T u): fixing T c as T c
⇤ at some fixed values

of kc,nc remains near-optimal for a broad range of on-rates. To illustrate this, we use
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T c = T c
⇤ (kc = knc = 1/2) ⌘ T0 and analyze the quality of the approximation in Fig. 4.3,

where we plot the ratio Lc,nc(T0)/�2
k

c,nc
. Since the ratio approaches 1 when rc/rnc ! 0

(specifically, for rc/rnc = 0.1, Lc(T0)/�2
k

c

⇡ 1.47, and Lnc(T0)/�2
k

nc

⇡ 1.21), we conclude

that the approximation is accurate even at fixed T c = T0 when its assumptions are sat-

isfied. In contrast, when the ligands are nearly indistinguishable, Lc,nc(T0)/�2
k

c,nc
⇠ 100,

but here one would not use one receptor to estimate two concentrations since even the

ML solution is bad (cf. Fig. 4.2). Note also that both Lc and Lnc are smaller for rc ⇠ rnc

if kc � knc. This is because our main assumption (that almost all long events are cog-

nate) holds better when cognate ligands dominate. Finally, the correlation coe�cient

between the approximate estimates, ⇢a (right panel) reaches -1 earlier than in Fig. 4.2.

This is a direct consequence of Eqs. (4.11, 4.12).

4.5 Kinetic Proofreading Mechanism for approximate es-

timation

The approximate solution can be computed by cells using the well-known kinetic proof-

reading (KPR) mechanism [144, 145, 148, 149]. In the simplest model of KPR [150],

intermediate states between an inactive and an active state of a receptor delay the acti-

vation. Thus bound ligands can dissociate before the receptor activates, at which point

it quickly reverts to the inactive state. Since rc > rnc, cognate ligands dominate among

bindings that actually lead to activation. The resulting increase in specificity in various

KPR schemes has led to their exploration in the context of detection of rare ligands

[146, 147, 149], and here we extend them to measurement of concentration of cognate

and noncognate ligands simultaneously.

Consider a biochemical network in Fig. 4.4: the receptor (R) activates two messenger

molecules (A) and (B). The first one is activated with the rate kA whenever the receptor

is bound. The second one is activated only if the receptor stays bound for longer than a

certain T c (with the delay achieved using the KPR intermediate states). The activation

rate after the delay is kB. The molecules deactivate with the rates rA and rB, respectively,

and all activations/deactivations are first-order reactions. Then the mean concentrations
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R 

kc knc 

B (kc) A (kc+knc) 

C 
(knc) 

Delay 

Figure 4.4: Kinetic Proofreading for estimating multiple concentrations.

Molecules A and B are produced when the receptor is bound, but A is produced only for long
bindings. Another chemical species C subtracts A from B, so that A approximates k

c

and C
approxiates k

nc

.

of the messenger molecules are:

Ā =
kc/rc + knc/rnc

1 + kc/rc + knc/rnc

kA
rA

(4.17)

B̄ =
kc/rce�r

c

T

c

+ knc/rnce�r

nc

T

c

1 + kc/rc + knc/rnc

kB
rB

, (4.18)

Assuming again that most bindings longer than T c are cognate, we solve Eqs. (4.17,

4.18) for the on-rates

kc =
B̄ercT

c

rcrB
kB

✓

1 +
Ā

kA/rA � Ā

◆

, (4.19)

knc =



Ā

kA/rA � Ā
� B̄ercT

c

rB
kB

✓

1 +
Ā

kA/rA � Ā

◆�

rnc. (4.20)

The corrections of the form Ā/(kA/rA � Ā) appear because bindings only happen to

unbound receptors, as emphasized in Ref. [54]. However, these nonlinear relations are

still hard to implement with simple biochemical components. We solve this by further

assuming ✏ = Ā/(kA/rA) ⌧ 1, which is true if the receptor is mostly unbound (both

on-rates are small compared to the respective o↵-rates). This gives

kKPR
c ⇡ B̄ercT

c

rcrB
kB

, (4.21)

kKPR
nc ⇡

✓

rAĀ

kA
� B̄ercT

c

rB
kB

◆

rnc. (4.22)

These equations are analogous to Eqs. (4.11, 4.12). They are easy to realize biochemically

(cf. Fig. 4.4): kc is related to the concentration of the proofread species B by a rescaling,

and knc comes from subtracting rescaled versions of A and B from each other. The
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subtraction can be done by the third species C, activated by A and suppressed by B.

Since ✏ ⌧ 1, then Ā and B̄ are small, and many such activation-suppression schemes

are linearized as the subtraction [57].

The bias of kac,nc due to long, but noncognate binding events, Eq. (4.13), carries over

to kKPR
c,nc . However, there is an additional contribution since the time to traverse the

intermediate states is random. Thus T c has some variance �2
T

c

[150, 151]. This variabil-

ity changes the rate of occurence of long biding events, but they are still rare, nearly

independent, and Poisson-distributed. Denoting by h·i the averaging at a fixed T c, and

by · the averaging over T c, we get

hnli
kc
⇡ n

kc + knc
e�r

c

T̄

c+ 1

2

r

2

c

�

2

Tc . (4.23)

Thus �2
T

c

e↵ectively renormalizes the cuto↵ to T̄ c� 1
2rc�

2
T

c

, which is independent of the

on-rates. Replacing T c in Eqs. (4.21, 4.22) by its renormalized value, which is an easy

change in the scaling factors, removes this additional bias due to the random T c in the

KPR scheme.

Since long bindings are rare, the variance of the KPR estimator is dominated again

generally by B̄, but not Ā. The intrinsic stochasticity in production of molecules of B

contributes to the variance. However, this contribution can be made arbitrarily small

by increasing kB, and we neglect it here. A larger contribution comes from the random

number of long bound intervals and a random duration of each of them. To calculate

this, in the limit of rare long binding events, we use well-known results in the theory of

noise propagation in chemical networks [152]

�2
B

B̄2
⇡ (1 + kc/rc + knc/rnc) e

r

c

T

c� 1

2

r

2

c

�

2

Tc

kc(1/rc + 1/rB)
=

ercT
c� 1

2

r

2

c

�

2

Tc

kc(1/rc + 1/rB)
+O(✏). (4.24)

This is a direct analog of Eq. (4.14).

4.6 Discussion

The realization of Refs. [54, 153] and others that the detailed temporal sequence of bind-

ing and unbinding events carries more information about the ligand concentration than

the mean receptor occupancy is a conceptual breakthrough. It parallels the realization

in the computational neuroscience community that precise timing of spikes carries more
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information about the stimulus than the mean neural firing rate [11, 154–158], and it has

a potential to be equally impactful. This extra information when measuring one ligand

concentration with one receptor [54] amounted to increasing the sensing accuracy by a

constant prefactor, or, equivalently, getting only a finite number of additional bits from

even a very long measurement [159]. In contrast, here we show that two concentrations

can be measured with one receptor with the variance that decreases inversely propor-

tionally to the number of observations, n, Eq. (4.14), or to the integration time, 1/rB,

Eq. (4.24), so that the accuracy is only a (small) prefactor lower than would be possi-

ble with one receptor per ligand species. Asymptotically, this doubles the information

obtained by the receptor [159].

In principle, one can measure more than two concentrations similarly, as long as all

species have su�ciently distinct o↵-rates. While the error (the variance for the ML

estimator, and both the bias and the variance for the approximate and the KPR esti-

mators) would grow with a larger number of ligand species, this would still represent

a dramatic increase in the information gained by the receptor that keeps track of its

precise temporal dynamics, rather than just the average binding state.

Crucially, such improvement would not be possible without the cross-talk, or bind-

ing among noncognate ligands and receptors. Normally, the cross-talk is considered a

nuisance that must be suppressed [160, 161]. Instead we argue that cross-talk can be

beneficial by recruiting more receptor types to measure concentration of the same ligand.

In particular, this allows having fewer receptor than ligand species, potentially illumi-

nating how cells function reliably in chemically complex environments with few receptor

types. Further, the cross-talk can increase the dynamic range of the entire system: a

ligand may saturate its cognate receptor, preventing accurate measurement of its (high)

concentration, but it may be in the sensitive range of non-cognate receptors at the same

time. Finally, the increased bandwidth may lead to improvements in sensing a time-

dependent ligand concentration [146, 153]. We will explore such many-to-many sensory

schemes, extending ideas of Ref. [162] to tracking temporal sequences of activation of

receptor and to varying environments in forthcoming publications.

While the exact maximum likelihood inference of multiple concentrations from a tempo-

ral binding-unbinding sequence is rather complex, we showed that when the cognate and

the non-cognate o↵-rates are substantially di↵erent, there is a simpler, approximate, but

accurate inference procedure. In various immune system problems, rnc/rc ⇠ 5, which

would allow the approximation to work. Moreover, when the receptor is not saturated
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and spends most of its time unbound, this inference can be performed by biochemi-

cal motifs readily available to the cell. Namely, one needs two branches of activation

downstream of the receptor, with one of them having a kinetic proofreading (KPR) time

delay, and then an estimate of the di↵erence of activities of the branches. This suggests

a possible signal estimation role for the KPR scheme in addition to the more traditional

signal detection one [146, 147, 153]. Such branching and merging of signaling pathways

downstream of a receptor is common in signaling [14, 161, 163, 164]. Thus exploring the

function of such complex organization in the context of estimation of multiple signals

with cross-talk is in order.

In summary, monitoring precise temporal sequences of receptor activation/deactivation

opens up new and exciting possibilities for environment sensing by cells.



46

Chapter 5

Extrinsic and intrinsic

correlations in molecular

information transmission

5.1 Introduction

The concentration estimation of external ligand molecules through cell surface receptor

has been an active area of research for a long time. Starting with Berg and Purcell [143],

a lot of work has been done to estimate how well cell receptors can perform in estimating

the ligand concentration both individually[52–56] and collectively [51, 165]. However,

little is known about the e↵ects of interactions between receptors on the information that

the receptors contain about the ligands. Similar questions about representing signals

using activity of multiple response units have been explored in details under the name of

“population coding” [17–25, 60]. Transplanting the accumulated knowledge to molecular

sensing domain is bound to be fruitful. Here we focus on the simplest problem of the

kind and analyze the ability of two identical receptors to measure the concentration of

an external ligand to understand the e↵ects of interactions among receptors and the

corresponding correlations on the information processing by the receptors. We quantify

how useful it is to keep track of which receptor absorbed a ligand molecule, rather

than counting the total number of captured ligands. We analyze the nonlinear coupling

between the receptors, which emerges because a molecule absorbed on one receptor

cannot be absorbed on the other. Where naive expectations suggest a synergy, we show a
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reduction of the information gathered about the stimulus compared to the noninteracting

receptors case.

5.2 Background

The following simple, and yet instructive model, borrowed from the computational neu-

roscience literature [17, 60], serves as a starting point for our analysis. Imagine a Gaus-

sian signal s with the mean s̄ and the variance �2
s

. It is read out and represented by

two responses, r1 and r2 (firing rates of neurons in neuroscience, or receptor activity

here). For simplicity, these are assumed linearly and equivalently dependent on s (or

the response to small fluctuations is linearized), such that

r1 = as+ ⌘1, (5.1)

r2 = as+ ⌘2, (5.2)

where a is the gain, and ⌘1,2 are Gaussian noises with h⌘
i

i = 0, and var ⌘
i

⌘ h⌘2
i

i = �2
⌘

.

One can estimate the signal from the two responses as sest = (r1 + r2)/(2a). Then the

variance of the estimate is

var (sest � s) ⌘ �2
err =

�2
⌘

(1 + ⇢
⌘

)

2a2
. (5.3)

Here ⇢
⌘

�2
⌘

= cov (⌘1, ⌘2) stands for the covariance of the two noises, or the noise-induced

covariance [17], and ⇢
⌘

is the corresponding correlation coe�cient. By analogy with the

intrinsic noise in cell biology literature [166], ⇢
⌘

can also be called the intrinsic noise

correlation. When ⇢
⌘

= 0, Eq. (5.3) reduces to the usual decrease of the error variance

by a factor of two for two independent measurements. However, when ⇢
⌘

< 0, the

error variance is smaller. In particular, if ⇢
⌘

! �1, the signal can be estimated with no

error. Generalizing this simple observation, one can define the stimulus-induced response

covariance [17] or the extrinsic noise covariance [166], as the covariance between mean

responses to stimuli, averaged over all stimuli, cov (r̄1, r̄2) ⌘ ⇢
s

a2�2
s

. Then our simple

example illustrates the well-known sign rule [60]: if ⇢
s

and ⇢
⌘

are of opposite signs, then

the stimulus can be inferred from the two responses with a smaller error compared to the

(conditionally) independent responses, ⇢
⌘

= 0. The same result can also be written in

terms of the mutual information between the pair of responses (r1, r2) and the stimulus
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s [15, 167]

I[r1, r2; s] =
1

2
log



1 +
a2�2

s

(1 + ⇢
⌘

)�2
⌘

�

. (5.4)

For Eqs. (5.1, 5.2), ⇢
s

= 1 > 0, and then ⇢
⌘

< 0 corresponds to increase in the informa-

tion.

In the case of a chemical ligand being absorbed by two identical receptors, the mean

values of r1 and r2 change in the same way with the ligand concentration, so that

⇢s = 1 > 0. At the same time, a molecule absorbed at one receptor cannot be absorbed

at the other, which should give ⇢
⌘

< 0, and hence will increase the measured information

according to the sign-rule. However, in computational neuroscience, where these ideas

originated, noise (co)-variances are inferred empirically and are, in principle, uncon-

strained. In contrast, in cell biology, intrinsic noises are generated from the discreteness

and stochasticity of individual chemical reaction events [152, 168, 169], which constrains

relations among these quantities. In particular, ⇢
⌘

may depend on �
⌘

, and then it is

unclear if the sign rule would hold in Eq. (5.4). Indeed, the main goal of this work is to

show that, in contrast to neurobiology and to a molecular setup where negative intrinsic

correlations are a result of an explicit mutual inhibition [25], measuring concentration

with two identical receptors does not obey the sign rule.

5.3 Model of two di↵usively coupled receptors

We consider two identical receptors that can bind ligand molecules with a rate kin,

cf. Fig. 5.1. No more than one molecule can be bound to each receptor at the same time.

The bound molecule can be absorbed/deactivated with the rate kabs, freeing the receptor

(such absorbing receptors collect more information about the stimulus compared to the

receptors where the ligand can unbind and rebind [53]). Alternatively, it can unbind and

leave the vicinity of receptors with the rate ko↵ . Finally, it can leave one receptor and

di↵use to the other. We model this as a transition between the receptors with the rate

khop, which in reality would depend on the di↵usion constant, the distance between the

receptors, and the binding rate. The number of molecules absorbed on both receptors

over time t, {Q1(t), Q2(t)}, carries information about the binding rate kin. In its turn,

kin is proportional to the ligand concentration, so that counting absorbed molecules

measures the concentration.
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Figure 5.1: Model of two di↵usively coupled receptors

Receptors 1 and 2 can bind ligands with rate k
in

, and the bound molecules can detach and
di↵use away to infinity with the rate k

o↵

. The bound ligand also can be absorbed with the rate
k
abs

, or they can dissociate and di↵use to the other receptor (hop) with the rate k
hop

. Q
1/2 is

the number of ligands absorbed through the receptor 1 or 2.

Within this setup, we aim to understand how the hopping coupling between the two

receptors a↵ects the information about the concentration, I[Q1, Q2; kin]. Note that the

hopping can change the conditional distribution P (Q1, Q2|kin), which could a↵ect the

information, but it cannot change the conditional distribution of the total number of

captured molecules Q+ = Q1+Q2. Thus the change in the information, if any, can come

only from the dependence between Q� = Q1 �Q2 and kin. This is in contrast to much

of the molecular sensing literature [52, 53, 143], where one estimates kin based only on

the integrated number of observed ligands. Therefore, together with our main question,

we need to quantify if the set of individual responses of all receptors is more informative

about the concentration than the integrated response.

5.4 Solution

5.4.1 Linear Interactions

We first analyze the case where there is no restriction on the number of molecules that

can occupy the receptor at a time. If n and m are the occupancies of receptors 1 and 2

respectively, then the master equation for the occupancy of each receptor (1, 2) can be
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written as

Ṗ
n,m

(t) =kin [Pn�1,m + P
n,m�1 � 2P

n,m

] + khop [(m+ 1)P
n�1,m+1 + (n+ 1)P

n+1,m�1

�(m+ n)P
n,m

] + kabs [(n+ 1)P
n+1,m + (m+ 1)P

n,m+1 � (m+ n)P
n,m

]

(5.5)

where n and m are the number of ligand molecules on receptor 1 and 2, respectively.

To find the distribution of (Q1, Q2) the master equation is modified by multiplying the

terms corresponding to absorption with e�n and e�m :

@P̃
n,m

(t)

@t
= kin

⇣

P̃
n�1,m + P̃

n,m�1 � 2P̃
n,m

⌘

+ khop
⇣

(m+ 1)P̃
n�1,m+1 + (n+ 1)P̃

n+1,m�1

�(m+ n)P̃
n,m

⌘

+ kabs
h

(n+ 1)P̃
n+1,me�n + (m+ 1)P̃

n,m+1e
�m � (m+ n)P̃

n,m

i

.

(5.6)

P̃ ({�
n

,�
m

}), gives the cumulant generating function for the distribution of molecules

absorbed through each receptor. To solve Eq. (S5.6) we define the generating function

as f(x, y) =
P

n,m

ymxnP̃
n,m

.

Multiplying both sides of Eq. (S5.6) by xnym and summing over all values of n and m

from 0 to 1, we get:

@f

@t
� [kabse

�n + ykhop � (kabs + khop)x]@xf � [kabse
�m + xkhop � (kabs + khop)y]@yf

= kin(x+ y � 2)f (5.7)

To solve Eq. (S5.7), we use the method of characteristics and set the coe�cients of the

terms corresponding to @
x

f and @
x

f as @
t

x and @
t

y respectively,

�[kabse�n + ykhop � (kabs + khop)x] = @
t

x

�[kabse�m + xkhop � (kabs + khop)y] = @
t

y (5.8)

which give x and y as,

(x+ y) = (e�n + e�m) + (x0 + y0 � (e�n + e�m))ekabst (5.9)

(x� y) =

✓

x0 � y0 �
kabs(e�n � e�m)

(2khop + kabs)

◆

e(2khop+k

abs

)t +
kabs(e�n � e�m)

(2khop + kabs)
(5.10)
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Now, along the plane defined by these x and y, the equation for the generator can be

written as a total derivative df/dt = kin(x+ y � 2)f , which has the solution:

f(t) = f(0) exp



kin

Z

(x+ y � 2)dt

�

= f(0) exp



kin

Z

(x0 + y0 � 2)e�k

abs

tdt

�

= f(0) exp
h

kin(x0 + y0 � 2)/kabs(1� e�k

abs

t)
i

(5.11)

In steady state the occupancy of each receptor is Poisson and hence

f(0) =
X

n,m

xnymP
n,m

=
X

n,m

xnym�n

1�
m

2

exp[��1 � �2]

(n!m!)
(5.12)

The generating function becomes:

f(x, y, t) =
1
X

m,n=0

"

exp (��1 � �2)�m
2 �

n
1

n!m!
exp

 

kin(x + y � 2)
�

1� et(�k
abs

)
�

kabs

!

xnym
#

(5.13)

where x, y are given by Eq.[5.9-5.10]. The mean occupancy at the two sites and the

total number of molecules absorbed through each receptor are given as:

n̄ =
@f(x, y, t)

@x
|
x,y!1,�

+

,��!0 (5.14)

m̄ =
@f(x, y, t)

@y
|
x,y!1,�

+

,��!0 (5.15)

Q̄N =
@Log[f(x, y, t)]

@�+
|
x,y!1,�

+

,��!0 (5.16)

Q̄M =
@Log[f(x, y, t)]

@��
|
x,y!1,�

+

,��!0 (5.17)

which are obtained as (�1 = �2 = �):

n̄ = m̄ =
kin
kabs

+

✓

�� kin
kabs

◆

e�tk

abs (5.18)

Q̄N = Q̄M = k
in

t+

✓

�� k
in

kabs

◆

(1� e�tk

abs) (5.19)

The covariance hQ
n

Q
m

i � hQ
n

ihQ
m

i can be obtained as

@2Log[f(x, y, t)]

@�+@��
|
x,y!1,�

+

,��!0 (5.20)
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which is zero for this case. Similarly it can be shown that (hnmi � hnihmi) = 0 at all

times.

In case of linear interactions the covariance between the number of ligand molecules

absorbed through the receptors is zero at all times, as if these receptors were independent.

What this means is that the identity of the ligand in terms of whether it got absorbed

at receptor 1 or receptor 2 does not provide any more information compared to just

the total. Naively one would expect that the information about the total concentration

would get contribution from both the sum and the di↵erence of the molecules absorbed

through each receptor. Surprisingly, in case of linear interactions the di↵erence does not

contribute to the information about the ligand concentration.

5.4.2 Non-Linear Interactions

Now we analyze a biophysically realistic situation where the number of ligand molecules

that can occupy the receptor at a time is finite. Such a restriction results in a non-

linear interaction between the receptors. To understand the e↵ects of such non-linear

interactions we consider here the simplest possible case that only one ligand can occupy

the receptor at a time.

To calculate the distribution P (Q1, Q2|kin), we start with the master equation describing

the dynamics of the vector of probabilities of having 0 or 1 molecules bound to each of

the receptors, P = {P
nm

; n,m = 0, 1}T = {P00, P01, P10, P11}T ,

Ṗ(t) = �H P(t). (5.21)

Here the generator matrix is

H =

2

6

6

6

6

6

4

2kin �ko↵ � kabs �ko↵ � kabs 0

�kin ktot �khop �kabs � ko↵

�kin �khop ktot �kabs � ko↵

0 �kin �kin 2ko↵ + 2kabs

3

7

7

7

7

7

5

, (5.22)

with ktot = kin + ko↵ + kabs + khop.

To find the probability distribution of the numbers of molecules absorbed by both re-

ceptors, we use the standard generating functional technique [170–174]. Namely, we
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separate out the parts of H that correspond to the absorption events

H ⌘ H0 +Habs,1 +Habs,2, (5.23)

Habs,1 =

2

6

6

6

6

6

4

0 �kabs 0 0

0 0 0 0

0 0 0 �kabs
0 0 0 0

3

7

7

7

7

7

5

, (5.24)

Habs,2 =

2

6

6

6

6

6

4

0 0 �kabs 0

0 0 0 �kabs
0 0 0 0

0 0 0 0

3

7

7

7

7

7

5

. (5.25)

Then we tag the terms corresponding to the absorption reactions by counting fields e�1

and e�2 , forming the tagged generator matrix,

H̃(�1,�2) ⌘ H0 +Habs,1e
�

1 +Habs,2e
�

2 . (5.26)

Finally we realize that the vector of moment generating functions (or the Laplace trans-

forms) of P (Q1, Q2|kin, n,m), denoted as Z(�1,�2, t) = {Z00, Z01, Z10, Z11}, satisfies the
tagged master equation

Ż(�1,�2, t) = �H̃(�1,�2)Z(�1,�2, t). (5.27)

We are interested in the long-time asymptotic, where each receptor has had many ab-

sorption events, Q1, Q2 � 1. Then the solution of Eq. (5.27) can be approximated

as

Z(�1,�2, t) ⇡ Z(0) exp[��̃min(�1,�2) t], (5.28)

where �̃min is the smallest real part eigenvalue of H̃. From here, one can read o↵ the

cumulant generating functions conditional on the occupancy of the receptors, to the

leading order in t, F
mn

(�1,�2, t) ⇡ ��̃min(�1,�2) t. As expected, the leading order

behavior is the same for any value of m,n. Thus the mean values and the (co)variances

of the numbers of absorbed molecules, conditional on kin all scale linearly with time.

They can be obtained by di↵erentiating �̃min(�1,�2) with respect to �1 and �2. Denoting
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by h. . . |kini expectations conditional on kin, we write:

hQ
m

|kini = t
@�̃min(�1,�2, t)

@�
m

�

�

�

�

�

�

1

,�

2

=0

, (5.29)

h�Q
m

�Q
n

|kini = t
@2�̃min(�1,�2, t)

@�
m

@�
n

�

�

�

�

�

�

1

,�

2

=0

. (5.30)

In its turn, the eigenvalue �̃min can be obtained using standard non-Hermitian per-

turbation theory considering �
m

as the perturbation parameters around the eignevalue

�min = 0 of the unperturbed Hamiltonian. For compactness of notation, we define

kioa = kin + ko↵ + kabs. This allows us to write:

hQ
n

|kini =
kinkabs t

kioa
, (5.31)

h�Q
n

�Q
n

|kini = hQn

|kini

⇥
✓

1� 2kinkabs
k2ioa

+
2khopkinkabs

k2ioa(ktot + khop)

◆

, (5.32)

h�Q1�Q2|kini = �2 hQn

|kini
khopkinkabs

k2ioa(ktot + khop)
. (5.33)

These expressions fully define the conditional distribution P (Q1, Q2|kin) to the leading,

Gaussian order. Notice that h�Q1�Q2|kini < 0 as long as khop 6= 0, and thus, according

to the sign rule, we expect more information from the two correlated receptors than the

two independent ones (i. e., khop = 0).

In the basis of Q± = Q1 ±Q2, the covariance matrix diagonalizes, and we get

hQ+|kini =
2 kinkabs t

kioa
, (5.34)

hQ�|kini = 0, (5.35)

⌦

�Q2
+|kin

↵

= hQ+|kini
[k2ioa � 2kinkabs]

k2ioa
, (5.36)

⌦

�Q2
�|kin

↵

= hQ+|kini
⇥

k2ioa � 2kinkabs + 2khopkioa
⇤

kioa(ktot + khop)
, (5.37)

h�Q+�Q�|kini = 0. (5.38)

Since neither hQ+|kini nor
⌦

�Q2
+|kin

↵

depend on khop, these expressions clearly show

that the total number of molecules absorbed by the two receptors is not a↵ected by

the interaction parameter khop, as we alluded to previously. The coupling between the
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receptors only a↵ects the variance of the di↵erence of the number of molecules coming

from each receptor.

We now define the absorption currents J± = Q±/t, so that hJ±|kini = hQ±|kini /t, and
⌦

�J2
±|kin

↵

=
⌦

�Q2
±|kin

↵

/t. Now assuming a Gaussian marginal distribution of kin, with

the mean k̄in and the variance �2
k

in

, we can write down the marginal distribution of

absorption currents averaged over all possible external signal concentrations

P (J+, J�) =

Z

dkinp
2⇡�

k

in

exp

"

�(kin � k̄in)2

2�2
k

in

# t exp



� t(J
+

�hJ
+

|k
in

i)2
2h�J2

+

|k
in

i � tJ

2

�
2h�J2

�|k
in

i

�

2⇡
q

⌦

�J2
+|kin

↵ ⌦

�J2
�|kin

↵

.

(5.39)

Note that
⌦

�J2
±|kin

↵

/ 1/t for large t. This is the usual manifestation of the law of

large numbers, so that the ratio of the standard deviation of the currents to their means

decreases as / 1/t1/2.

Both hJ+|kini and
⌦

�J2
±|kin

↵

depend on kin. We assume that �2
k

in

is small, so that this

dependences can be written to the first order in �kin = kin � k̄in. Then the dependence

of the mean currents on kin still preserves the Gaussian form of Eq. (5.39), while the

dependence of the variance manifests itself in sub-Gaussian orders. To the leading order

in small �2
k

in

, the marginal distribution of the currents is still a product of two Gaussians,

P (J+, J�) =
exp

h

� (J
+

�hJ
+

i)2
2�2

+

� J

2

�
2�2

�

i

2⇡�+��
(5.40)

with

hJ+i =
2 k̄inkabs

k̄ioa
, (5.41)

�2
+ =

⌦

�J2
+|k̄in

↵

t

0

B

@

1 +

⇣

@hJ
+

i
@k

in

⌘2
�2
k

in

⌦

�J2
+|k̄in

↵

/t

1

C

A

, (5.42)

�2
� =

⌦

�J2
�|kin

↵

t
. (5.43)

The mutual information we are seeking is I[Q1, Q2; kin] = S(Q1, Q2)�hS(Q1, Q2|kin)i
k

in

,

where S are the marginal and the conditional entropies. In the limit of small �2
k

we



Chapter 5. 56

obtain:

I({Q1, Q2}; kin) =
1

2
ln

2

6

4

1 +

⇣

@hJ
+

i
@k

in

⌘2
�2
k

⌦

�J2
+|kin

↵

/t

3

7

5

k̄

, (5.44)

which is independent of khop. Thus, to the leading order in �kin = kin � k̄in, the mutual

information is independent of the interaction between the receptors. In terms of Eq.(5.4),

although the covariance coe�cient (⇢) is negative, the quantity (1+⇢)�2 (=
⌦

�J2
+|kin

↵

/t)

is independent of khop and so is the mutual information. To see the e↵ect of interactions,

one needs to take into account the higher order corrections.

Before we go further, it is instructive to notice that the total absorption current J+

is bounded by 2 ⇥ kabs. This bound (J+ = 2kabs) would be attained when both the

receptors are saturated (kin =1) and in such a situation hopping would have no e↵ect.

The e↵ect of hopping can only be seen at values of kin lower than or comparable to kabs.

To compare the e↵ects of coupling to independent receptors we look at the quantity

�I(kin, kabs, khop) = I(kin, kabs, khop) � I(kin, kabs, 0). Our Gillispie simulations (Fig.

5.2) shows that this quantity is less than zero, which means that di↵usive coupling

reduces the mutual information. In Fig. 5.2, we plot the di↵erence �I(kin, kabs, khop)

for di↵erent values of hopping rate khop. As can be seen, the di↵erence in mutual

information goes to zero at long times indicating that the di↵usive coupling does not

provide any extra information compared to independent receptors at long times. At

t = 0, the mutual information is zero. This makes sense, since at t = 0 no ligand

molecule has been absorbed.

At intermediate times the di↵erence in mutual information is small but negative, mean-

ing that di↵usive coupling reduces mutual information between the signal and the re-

sponse. As we proved above the interactions only a↵ect the di↵erence between the

number of molecules absorbed through each receptor. The di↵usive coupling adds an

extra noise to this di↵erence and “washes-out” any spatial informations the molecules

carry about each individual receptor. This extra noise reduces the mutual information

compared to the case where the receptors are independent and there is no “wash-out”

e↵ect.
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Figure 5.2: Di↵erence between Mutual Information for coupled and inde-
pendent receptors

The di↵erence between the mutual information of two independent receptors and the mutual
information of two receptors coupled through di↵usion. We use Gillispie algorithm to simulate
the model and NSB entropy estimator to calculate the mutual information and error-bars.

Here k
in

= k
abs

= 10, k
o↵

= 0. The di↵erence in information �I is negative, which means that
di↵usively coupled receptors have lower information compared to independent receptors.

5.5 Discussion

In this chapter we have analyzed a simple model of two identical receptors that are

coupled through a di↵usive interaction. We study the e↵ect of the coupling between the

receptors on the concentration estimation of an external ligand. We find that, in the

steady state, the di↵usive coupling has no e↵ect on the mutual information between the

ligand concentration and the number of molecule absorbed through the receptors. This

means that the interactions amongst receptors do not improve the concentration estima-

tion apart from the 1/N reduction in the variance of the estimation of concentration by

having multiple receptors. This is true even though the extrinsic signal correlations and

the intrinsic noise correlations resulting from the interactions between receptors are or-

thogonal suggesting a higher mutual information according to the well known “sign-rule”

[17].

Our analysis also shows that in the transient period the mutual information between the

interacting receptors is lower than that of independent receptors. Although non intuitive

at first, this makes sense as the di↵usive interactions between the receptors add another

source of randomness in the estimation and hence reduce the accuracy. This suggest
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that unbinding and rebinding of ligands results in lower accuracy, as has been noted

previously [54].

In the model of cellular receptors discussed here, the correlation structure between the

response of the receptors emerges out from biophysically plausible interactions. We show

that such interactions e↵ect both the variance in the response of the receptors and their

covariances. In previous work, analyzing the e↵ects of correlations between decoding

units on the informations the variance in the estimates is assumed to be independent

of the interactions between the units [17–21]. Our model clearly shows that biophysical

interactions do not necessarily obey such restrictions. This observation opens up new

avenues in the understanding of e↵ects of interactions in multivariate complex systems

on the mutual information between signal and response.
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Chapter 6

Conclusion

Biological systems are complex. They are made of a large number of individual func-

tional units that interact among themselves in a complex manner. Understanding the

design and functional aspects of these systems from the first principle presents chal-

lenges, both experimental and theoretical. Coarse graining approaches that identify the

important features of these complex systems and leave out the details, reveal interesting

properties of these networks. Here we attempted to identify some of these features using

various approaches such as continuum modeling, real space renormalization, maximum

likelihood inference and information theory. These approaches revealed the essential

features that are required in biological networks for large scale emergent phenomena.

Global information present in the signal can be identified through long range anisotropic

connections. Long range connections also fill-in the missing parts of noisy signal for a

complete reconstruction of the signal. Hierarchical small-world type connections provide

large scale end-to-end connectivity even at low connection probability. Time delays in-

troduced through signaling networks can be employed to utilize the temporal structure

in a mixture of multiple signals to estimate each one of them accurately. These emergent

properties of biological networks provides clues to the general rule of their structural and

functional organization.

Although we were able to identify some of the design principles of sensing and informa-

tion processing on biological networks, our work reveals new question in the structure

of biological systems and opens new areas of research. The renormalization approach of

chapter 3 gives insight to how the hierarchical small world type long range connections

might provide large scale e�cient connectivity and criticality in the cortex. It would

be interesting to see how such connections might give rise to persistent activity and
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dynamical switching between di↵erent states [175] by studying a model neural network

with spiking neurons with a hierarchy of synaptic connections.

The existence of temporal codes in neural systems has been an active area of research

[2–4, 58, 59], but not much work has been done to understand the how the tempo-

ral structure receptor-ligand systems can be utilized to estimate concentrations. The

realization of Enders and Wingreen [54] that recording a temporal sequence of recep-

tor binding provide more information has farther reaching consequences than originally

thought. We show that an access to such sequence not only improves the accuracy of

estimation, but also allows for a greater information as one can estimate the concentra-

tion of multiple ligands using just one receptor. This observation provides an insight

into the questions related to olfaction, immunology and cellular signaling where each of

these systems perform discrimination of signals much more than the number of receptors

available in the system.

The observation of chapter 5 that a biophysically realistic model of receptor coupled

through di↵usive interaction does not follow the “sign-rule” has posed more question

than answers about the e↵ects of correlations on information. Most of the theoretical

work in neuroscience has focused on the basic assumption that interactions do not a↵ect

the variance of decoding units (neurons) [17–21, 25]. It would be interesting to revisit

the ideas about e↵ects of correlations on population coding and discover new rules of

information transduction on complex biological networks.

Our approach to identify the important features of biological information processing on

complex networks that are essential to perform a certain task has not just helped in

understanding particular phenomena, but also provided insights into broad classes of

similar tasks. We have made some small steps towards building an understanding of

multivariate information processing in biological systems, but we are still far from a

complete understanding of the design principles of information processing on biological

networks. It will take a long time to reveal Nature’s complete code, an this thesis shows

just few of my first steps.
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Appendix A

Appendix

A.1 Automated graph counting

The recursion relations (3.5) for MK1 are obtained by a process of graph counting

depicted in Fig. (3.3). As the number of possible graphlets increases exponentially for

more complicated hierarchical networks (e.g. HN5 and HNNP), automating the graph

enumeration process insilico makes it easier to obtain their recursion equations. Key to

this process is the adjacency matrix Aij, which gives the information about the presence

of single bonds between two sites in a graph.

A.1.1 Counting MK1 graphlets

In the MK1-graphlet in Fig. 3.3a,

A
a

=

2

6

6

4

0 1 1

1 0 1

1 1 0

3

7

7

5

(A.1)

is an example of an adjacency matrix when all possible bonds are present. The bonds

are bi-directional, which results in a symmetric matrix, and the diagonal elements are

zero, since there are no bonds that loop back to a site. In the case where two ends are

not connected by a single bond, the adjacency matrix e↵ectively searches for alternate

paths to connect the two end-sites. In Fig 3.3e, for example, the small-world bond is

missing, and sites 1 and 3 are not connected via a single bond. The adjacency matrix is
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thus,

A
e

=

2

6

6

4

0 1 0

1 0 1

0 1 0

3

7

7

5

. (A.2)

By itself, the adjacency matrix gives the number of one-step end-site connections. To

find the number of two-step end-site connections for a graphlet, the adjacency matrix

must be squared. The o↵-diagonal elements of A2 give the number of possible paths

between two sites that are exactly two hops long. Squaring the adjacency matrix in

Fig. 3.3a (Eq. A.1) gives

A2
e

=

2

6

6

4

1 0 1

0 2 0

1 0 1

3

7

7

5

. (A.3)

Since matrix element A2
e,13 = 1, there exists only one possible path in which two-steps

can be made to connect the end-sites. Since the maximum path length for the simple

case of MK1 is two, only A
e,13 (one step) and A2

e,13 (two steps) need to be checked for

finding end-to-end connections.

The graphlets are classified as contributing to T
n+1(x) or S

n+1(x, y) depending on

whether an end-to-end connection exists. The weights of the graphlets are calculated by

first labeling the end-sites as x and y. Both end-sites are labeled x in fully-connected

graphs contributing to T
n+1(x), and unconnected graphs contributing to S

n+1(x, y) con-

tain the left end-site labeled x and the right end-site labeled y.

For each graphlet in the nth generation, x or y is assigned to each site and T
n

(x)

or S
n

(x, y) to each bond, depending on whether the end sites are attached. Isolated

sites/clusters are assigned a weight of 1. The contribution of each graphlet in the (n+1)th

generation is set as the product of the value assigned to the bonds and intermediate sites.

For example, the two shaded backbone bonds of Fig. 3.3a indicate that the graphlet has

two bonds of type T
n

(x). The small-world bond exists with probability p, and all the

sites are connected to the same cluster. Therefore, the graphlet contributes to T
n+1(x)

in the next generation with weight p xT 2
n

(x). Similarly, for the graphlet in Fig. 3.3f,

the backbone bonds are of the types T
n

(x) and S
n

(x, y). The small-world bond is

absent with probability 1 � p, and the end-sites are connected to separate clusters, x
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a b c 

a b c 

a b c 

a b c 

a b c 

Rn(x) 

Sn(x,y) 

Tn(x,y) 

Un(x,y) 

Nn(x,y,z) 

Figure A.1: Diagrammatic definition of generating functions for HNNP
and HN5

Sites a, b and c represent the end-sites of the network. Rn(x) consist of one cluster spanning all
three end-sites, Sn(x, y), Tn(x, y) and Un(x, y) two clusters, one of which spanning two end-sites,
and Nn(x, y, z) represents non-spanning clusters which connect to at most one end-site.

and y. Hence, this graphlet contributes to S
n+1(x, y) in the next generation with weight

(1� p)xT
n

(x)S
n

(x, y).

A.1.2 Cluster generating function for HNNP:

The generating functions for the Hanoi network HNNP in Fig. 3.1 can be calculated

using the same principles described for MK1. As in Sec. 3.3.1, we define the generating
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Figure A.2: Example graphlet for HNNP

By looking at the elements of A2

13

& A2

13

of A2, one can see that all the three end-sites are con-
nected. So this graph contributes to Rn+1

(x) in the next generation. In fact all the sites are con-
nected to the same cluster in this case, which can be verified by looking other element of A,A2, A3

& A4. Since all sites are connected to the same cluster (say of size x) and there is only one long
range small world bond is present, the weight of the graphlet is p(1� p)x2Rn(x)Sn(x, x)/4.

functions for HNNP depicted in Fig. A.1:

R
n

(x) =
1
X

k=0

r(n)
k

(p)xk, (A.4)

S
n

(x, y) =
1
X

k=0

1
X

l=0

s(n)
k,l

(p)xkyl, (A.5)

U
n

(x, y) =
1
X

k=0

1
X

l=0

u(n)
k,l

(p)xkyl, (A.6)

N
n

(x, y, z) =
1
X

k=0

n(n)
k,l,m

(p)xkylzm, (A.7)

where we introduce the probabilities

• rn
k

(p) that sites a, b and c are all connected within the same cluster of size k;

• sn
k,l

(p) that a and b are mutually connected within a cluster of size k, and c is

connected to a separate cluster of size l;

• tn
k,l

(p) that a is connected to a separate cluster of size k, and b and c are mutually

connected within cluster of size l;

• un
k,l

(p) that a and c are mutually connected within a cluster of size k, and b is

connected to a separate cluster of size l;

• nn

k,l,m

(p) that a is connected to a cluster of size k, b is connected to a cluster of

size l, and c is connected to a cluster of size m, but all mutually disconnected.

The symmetry of sn
k,l

and tn
k,l

are included in the definition of S
n

(x, y) [112]. As for

MK1, the three end-notes themselves are not counted in the cluster size.



Appendix 65

We want to obtain the system of RG recursions for generating functions, where

(R
n+1, Sn+1, Un+1, Nn+1) are functions of (R

n

, S
n

, U
n

, N
n

; p). The algorithm first gen-

erates the adjacency matrices corresponding to all possible (28 = 256) graphlets for the

HNNP network. For each one of these graphlets the possibility of their contribution to

one of (R
n+1, Sn+1, Un+1, Nn+1) in the next generation is checked using the adjacency

matrices.

As an example of our graph counting algorithm for HNNP, we consider the graphlet in

Fig. A.2. At first glance it appears that there are two separate clusters of sizes k and l.

The adjacency matrix for this graphlet is

A =

Node a b c b0 a0

a

b

c

b0

a0

2

6

6

6

6

6

6

6

4

0 1 0 0 0

1 0 1 0 1

0 1 0 1 0

0 0 1 0 0

0 1 0 0 0

3

7

7

7

7

7

7

7

5

(A.8)

where the disconnect between sites a0 and b0 is indicated by A4,5 = A5,4 = 0. After

the sites b and b0 in Fig. A.2 are decimated in the RG step, the remainder is matched

with one of the graphlets in the generating function diagram in Fig. A.1. Thus, only the

matrix elements in Eq. A.8 that connect end sites a to c, a to a0, and c to a0 contribute

to the recursion equations for the generating functions. In general, the matrix elements

for A4 must be checked for a five-point HNNP graphlet, since the maximum number of

steps required to connect all end-sites is four. In our example,

A4 =

2

6

6

6

6

6

6

6

4

3 0 4 0 3

0 10 0 4 0

4 0 6 0 4

0 4 0 2 0

3 0 4 0 3

3

7

7

7

7

7

7

7

5

. (A.9)

Elements A4
13, A

4
15, and A4

53 are non-zero, indicating that the end sites (a, c, and a0) form

a contiguous cluster, where a0 becomes connected by way of the small-world bond. The

graphlet therefore renormalizes into an R-type bond. To determine its weight, we note

that the sites a, b, and c are connected via an R
n

-type bond and the sites c, b0, and a0 form

an S
n

-type bond. Only the right-hand one of the small-world bonds is present. Hence,

the total weight of this graphlet in the next generation is p(1 � p) x2 R
n

(x)S
n

(x, x)/4.
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Here, S
n

becomes a function of x in both arguments, since the small-world bond merges

the previously disconnected clusters x and y. The factor 1/4 is due to the symmetry

explained in Ref. [112].

This process is repeated for all 256 graphlets with our automated counting algorithm,

where each graphlet is attributed to its appropriate next-generation graphlet. After

adding the weights, the generating function recursion relations are found to be:1

R0(x) = {xR (x) + pxU (x, x) + (1� p)U (x, 1)}2 + 3

4
p2x2S (x, x)2

+ 2pxR (x) {pxN (x, x, x) + (1� p)N (x, 1, x)}

+ pxS (x, x) {(1� p) [xR (x) + U (x, 1)] + 2xR (x) + pxU (x, x)} , (A.10)

S0(x, y) =
1� p

2
S (x, y)

�

px2S (x, x) + py2S (y, y) + x2R (x) + y2R (y)+

(1� p)xy [R (x) +R (y)] + [x+ (1� p) y]U (x, 1) + [y + (1� p)x]U (y, 1)

+p (x+ y)2 U (x, y) + pxN (x, 1, x) + pyN (y, 1, y)
o

+
p2

2
xyS (x, y) {2U (x, y) +N (x, y, x) +N (y, x, y)}

+ (1� p)N (x, 1, y) {p [x+ y]U (x, y)

+ (1� p) [xR (x) + yR (y) + U (x, 1) + U (y, 1)]}

+ pxN (x, x, y) {(1� p) [xR (x) + U (x, 1)] + pyU (x, y)}

+ pyN (x, y, y) {(1� p) [yR (y) + U (y, 1)] + pxU (x, y)} (A.11)

U 0(x, y) =
1

4
px [(2� p)x+ 2 (1� p) y]S(x, y)2

+ pxS(x, y)2 {(1� p)N (x, 1, y) + pxN (x, x, y)} (A.12)

N 0 (x, y, z) =
1

4
(1� p)2 [x+ y] [y + z]S (x, y)S (y, z)

+
1� p

2
[x+ y]S (x, y) {(1� p)N (x, 1, z) + pxN (y, x, z)}

+ {(1� p)N (x, 1, y) + pzN (x, z, y)} {(1� p)N (x, 1, z) + pxN (y, x, z)}

+
1� p

2
[y + z]S (y, z) {(1� p)N (x, 1, y) + pzN (x, z, y)} (A.13)

Note that for x = y = z = 1, i.e., when graphlets are counted irrespective of cluster

sizes, these equations revert back to those previously listed in Ref. [112].

1

Primed quantities correspond to index n+ 1 and unprimed to n.
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A.1.2.1 Cluster generating function for HN5:

The discussion on how to obtain the RG recursion equations for the cluster generating

functions of HN5 parallels that for HNNP above. The definition of the generating

functions in Eqs. A.4, as illustrated in Fig. A.1, equally apply to HN5. The main

di↵erence originates with the structure of small-world bonds, which leads to a planar

graph for HN5 and a non-planar graph for HNNP. Then, our graph counting algorithm

results in the following RG recursions:

R0(x) = {U(x, 1) + xR(x)}2 + 1

2
p2x2S(x, x)2 + 2p {N(x, 1, x)U(x, 1)

+xS(x, x) [(1� p)U(x, 1) + pxU(x, x)]}+ pxR(x) {2(1� p)N(x, 1, x)

+2pxN(x, x, x) + (3� p)xS(x, x)� 2U(x, 1) + 2xU(x, x)} (A.14)

S0(x, y) =(1� p)N(x, 1, y) {U(x, 1) + U(y, 1) + (1� p) [xR(x) + yR(y)]}

+ p(1� p)
�

x2R(x)N(x, x, y) + y2R(y)N(x, y, y)
 

+
1� p

4
S(x, y)

�

px2S(x, x) + py2S(y, y)
 

+
p(1� p)

2

�

x2 [U(x, y) + U(x, x)] + y2 [U(x, y) + U(y, y)]
 

+
(1� p)2

2
[x+ y] {U(x, 1) + U(y, 1)}

+
1� p

2
{xR(x) [�py + x+ y] + yR(y) [�px+ x+ y]} (A.15)

U 0(x, y) =p

⇢

N(x, 1, y) +
1

2
(1� p) [x+ y]S(x, y)

�2

+ p2S(x, y)
�

x2N(x, x, y) + y2N(x, y, y)
 

+
p

4
S(x, y)2

��

1 + p� p2
�

x2 + 2p(1� p)xy + (2� p)py2
 

(A.16)

N 0(x, y, z) =
p(1� p)

2

�

S(x, y)
⇥

x2N(y, x, z) + y2N(y, y, z)
⇤

+S(y, z)
⇥

y2N(x, y, y) + z2N(x, z, y)
⇤ 

+
(1� p)2

2
{[x+ y]N(y, 1, z)S(x, y) + [y + z]N(x, 1, y)S(y, z)}

+
(1� p)

4
S(x, y)S(y, z)

�

(1� p) [xy + xz + yz] + y2
 

+ (1� p)N(x, 1, y)N(y, 1, z) (A.17)

Again, these equations revert back to those previously listed in Ref. [112] for x = y =

z = 1.
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