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Abstract 

 

High throughput technologies transform the interest of single-gene and protein 

studies to the genome scale. Given the size and complexity of high-throughput data, 

dimension reduction is often used to simplify and visualize data. However, one 

obstacle to effective dimension reduction of complex gene expression matrix is the 

loss of true biological information caused by the pervasive correlation and 

interference of high measurement noise. To address these issues, we tried to 

incorporate existing knowledge as represented by known biological networks, by 

developing a new network-guided dimension reduction method. The effectiveness of 

this method was tested in both simulations and real gene expression data. The 

simulation results show the power of detecting major signal in large-scale network is 

high. The results from the real data analysis show the first few dimensions found by 

the method are dominated by meaningful biological signals. The network-guided 

dimensional reduction is an effective method that captures the main signals contained 

in the large data matrix.  

 

By Jiani Hu 
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1. Introduction 
 

Biological science today is quite different from what was performed in the past. High 

throughput technology, which has inexpensive production of large volumes of data as 

the primary advantage over conventional techniques, combined with information 

science, is regarded as a revolution in biology. (Metzker, 2010) With the 

development of high throughput technologies, the interest from single genes and 

proteins has been shifted to studying thousands of genes and proteins together. (Boris 

Kholodenko, Michael B. Yaffe, & Walter Kolch1, April 2012) 

Synergistic relations exists widely in the biological system. It arises from the 

concerted action of multiple factors producing an amplification or cancelation effect 

compared with individual actions alone. (Jean-YvesTrosset1 & and Pablo 

Carbonell2, October 2013) It appears in different levels of biological domains, for 

example the protein activity involves chemical reaction, polypharmacology, and 

metabolic pathway complementarity. (Jean-YvesTrosset1 & and Pablo Carbonell2, 

October 2013) More specifically, in higher organisms, cells differentiate for 

specialized functions, such as immune cells for disease prevention, red blood cell for 

oxygen transformation etc. Much of a cell’s activity is organized as a network of 

interactions between different functional units: such as sets of genes co-regulated to 

respond to different experimental conditions. (Jan Ihmels, 22 July 2002,) The various 

types of interactions merge together and form a biology network. The representations 

of intracellular biological network normally consider the biological molecules as 

nodes and the interactions between nodes as edges. Some examples of biological 
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networks include metabolic networks, cell signaling networks, kinases-substrate 

networks, gene regulatory networks, and protein-protein interaction networks. 

An important concept in network analysis is modularity. It is an abstract concept that 

seeks to capture the various levels and kinds of heterogeneity found in organisms, 

and it is considered a fundamental aspect of biological organization. (Günter P. 

Wagner*, December 2007)  A network of interactions is modular if it can be 

subdivided into relatively autonomous, internally highly connected 

components.(Günter P. Wagner*, December 2007) Modularity exists in different 

levels of biological networks, including protein-protein interaction networks, gene 

regulatory networks, cells networks, and so on. (Jan Ihmels, 22 July 2002,)  

Modularity has emerged as a rallying point for research in developmental and 

evolutionary biology (and specifically evo-devo), and in molecular systems biology. 

(Günter P. Wagner*, December 2007) Modularity can be used to analyze new 

experimental data in biology. Algorithms can be used to find potential direct or 

indirect connections between proteins, genes, or both, while maintaining a modular 

structure.  

The main challenge of studying biology network is to integrate theoretical properties 

and experimental data, understand and model in quantifiable terms the topological 

and dynamic properties of various networks that control the behavior of the cell. 

(Oltvai‡, FEBRUARY 2014) In order to conduct the analysis, two components are 

necessary - one is to getting the proteins and pathways organized in a network; 

another one is identifying the connections between nodes. (Boris Kholodenko et al., 

April 2012) Large amounts of existing biological knowledge are coded into 

biological networks. Such networks can be used in various ways. For example, the 

shortest path approach can be applied to predict key regulators and identify unknown 
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genes. (Günter P. Wagner*, December 2007) When the network is unknown, graph 

clustering is an often used to find related proteins, which is based on some similarity 

measure defined for the data elements. The approach of analyzing protein-protein 

network is to first identify the central nodes (hubs), which are characterized by a 

higher than average number of interactions. Then the clustering of proteins and 

classification is performed. 

A challenge of analyzing a high-throughput datasets is that the dimension of dataset 

is too large. For example, in a genome-wide association (GWA) study, a million or 

more single nucleotide polymorphism (SNPs) can be profiled. (Wong, 2004) Many 

normal statistical techniques are not appropriate to use in analyzing a high 

dimensional dataset. The dimensionality of gene expressions needs to be reduced for 

visualization, as well as prior to some regression and other types of analyses. Another 

problem for genome analysis is that only a small number of genes profiled are 

expected to be associated with the response variables while the majority of the genes 

are ‘noises’. Applicable methods to solve these problems are variable selection, 

dimension reduction and hybrid approaches.(Hui ZOU, June 2006) Variable selection 

focuses on finding out the genes that can represent the whole network, while the 

dimension reduction method searches for a small number of ‘meta-genes’, which are 

often linear combinations of all genes. (Dai, January 2011) The dimension reduction 

can be used to figure out the potential relationship between genes. It also has the 

ability to generate more reliable estimates by reducing noises.(Hui ZOU, June 2006) 

Dimensionality reduction could be seen as another kind of feature extraction, which 

refers to identifying the salient aspects or properties of data. (Kramer, February 1991) 

Based on natural features of gene expression data and known biological network: (i) 

gene expression data normally has much smaller sample size compared with the 
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number of genes; (ii) the noises in gene expression need to be removed. Therefore, 

we attempt to conduct dimension reduction while utilizing existing network 

information, following the general thinking of Principle Component Analysis (PCA). 

PCA is a classic dimension reduction approach that develops linear combination of 

gene expressions, called principal components (PCs). (Dai, January 2011) PCs have 

several useful features for studying high-throughput data: (i) all the PCs are 

orthogonal to each other. They can effectively explain variation of gene expressions. 

The collinearity problem among gene expression can be solved with this property. (ii) 

The dimension of PCs is much lower than the minimum of number of genes and 

sample size. The small sample size of gene expression data makes the dimension of 

PCs low, which alleviates the high-dimensionality problem. (iii) The first few PCs 

can explain the most variation of genes expression. (iv) Any linear combination of 

genes can be written into the linear combination of PCs. (Dai, January 2011)  With 

PCA, the high-dimensional expression data can be projected into a low dimensional 

subspace, facilitating visualization. Though PCA is the most wildly used dimensional 

reduction method, it still has several shortcomings. It can only deal with linear input-

output mapping and can’t separate independent sub-signals from their linear 

mixtures. (Joutsensalo, 1994). By taking into account the network information, our 

method is more robust. We name the method Network Guided Dimension Reduction 

(NGDR).  

2 Methods 
The goal of this thesis is to find a low-dimensional matrix, which can maintain the 

main information from a high dimensional data after network guided dimensional 

reduction. A simulation process was conducted to created known protein network and 



5 
 

test the effectiveness of NGDR. Then a validation test in real yeast cell gene data was 

conducted to test the practicality of this method.  
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2014) The analysis results from 43 different organisms’ metabolic networks show 

that cellular metabolism has a scale-free topology instead of random network. (Jeong, 

October 2000), (Wanger, January 2001) For many social and biological networks, the 

number of nodes with a given degree follows a power law, which is the probability a 

chosen node with exactly k links follows P(k)~k-ᵞ. ᵞ represents the degree of exponent 

with its normal value ranging between 2 and 3 for most of biological networks. 

(Barabasi & Albert, 1999) The main property of cellular networks is that they are 

scale-free, which is created by the power law. The degree distribution of nodes in a 

scale-free network is highly non-uniform, which means most nodes have only a few 

links while a few central nodes own a very large number of links. (Barabasi & Albert, 

1999) 

The simulation in this study is to get an approximate high-dimensional gene network 

Gp×n with p genes and n conditions.  In order to make the simulated gene network 

more close to the real gene net, the gene network is required be a scale-free network, 

which means the degree distribution of this network follows a power law. The 

simulation progress is also an evolutionary of scale-free networks, which involves a 

preferential attachment mechanism. (Barabasi & Albert, 1999) The nodes with more 

connections has a higher probability to grab links with newly-added nodes and finally 

turn into hubs.  

In this research, a Barabási-Albert model was used to generate random scale-free 

networks with the preferential attachment mechanism. A parameter m was set in this 

progress to control the connection density in each simulation. The larger m is, the 

more connections would be created in the network. 
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2.2 Gene expression simulation 

In our study, a protein network with two hubs modified with high covariance with 

neighboring nodes is simulated. Multivariate normal density and random deviates 

function are applied to generate gene expression matrix.  After this process, a 

random normal distributed protein expression matrix with no interactions was 

created. All vectors are standardized to have mean 0 and covariance 0 with each 

other. Two nodes with degree between M1 and M2 (pre-specified parameters) 

were randomly sampled and are treated as two hubs, around which two sub-graphs 

with high interactions will be created. The shortest path between these two selected 

nodes are larger than 5, which means these two nodes do not have influence on 

each other in gene expression matrix. The nodes which connect with the selected 

nodes within two steps would be found as components of the two sub-graphs 

centered at the two hubs. For each sub-graph, the gene expression matrix was 

modified with specific covariance. The parameters and their values in the 

simulation were listed in Table 1. Net density will influence the size of sampled 

groups. The higher net density will cause more edges in network and a larger 

sampled sub-group. Subnet covariance decides the strength of set signal to each 

sub group. The higher subnet covariance means stronger signal in the subgroups. 

For each set of parameters, the simulation was conducted for 10 times.  

Table 1 Parameters in simulations 

Parameters Values 

Sample size 25, 50, 100, 150, 200 

Net density parameter (influence subnet size) 1, 1.5, 1.7 

Covariance of expression within sub-graph 0.5, 0.7, 0.9 

M1 7 

M2 40 
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2.3 Network Guided Dimension Reduction 

The obstacle to reduce the dimension of complex gene expression matrix is the loss 

of main information along with the interference effect of noise. To address these 

issues, we tried to find a serious of orthonormal vectors consecutively by 

incorporating network information. 

gi is used to denote the expression vector of the ith gene, li donate the projection 

length of the ith gene.  Given B=(β1, β2, ….,βk), where the β’s  are unit vectors 

orthogonal to each other, and k is the number of dimensions of the subspace, 

li=√(𝒈𝒊 
′ 𝜷1)2 + (𝒈𝒊 

′ 𝜷2)2 + ⋯ + (𝒈𝒊 
′ 𝜷𝑘)2 

   The orthonormal vectors are such that, 

𝛽1 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝛽1
′𝐷′𝐷𝛽1 − 𝛽1

′𝐴′𝐴𝛽1), 𝑠. 𝑡. ‖𝛽1‖ = 1 

𝛽𝑖+1 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝛽𝑖+1
′ 𝐷′𝐷𝛽𝑖+1 − 𝛽𝑖+1

′ 𝐴′𝐴𝛽𝑖+1), 

𝑠. 𝑡. ‖𝛽𝑖+1‖ = 1 𝑎𝑛𝑑 𝛽𝑖+1 ⊥ 𝛽𝑘 , ∀𝑘 = 1, … , 𝑖 

Where A is the matrix of differences between vectors of linked nodes, and D is the 

matrix of difference between vectors of nodes that are far away on the network. The 

objective function means that we try to maximize the distance between unlinked 

nodes after projection, while minimizing the distance between linked nodes.    

Using the Lagrange multiplier,  

𝐿𝐷 = 𝛽1
′𝐷′𝐷𝛽1 − 𝛽1

′𝐴′𝐴𝛽1 + 𝑘(1 − 𝛽1
′𝛽1) 

Set the derivative to zero, we have  
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𝐷′𝐷𝛽1 − 𝐴′𝐴𝛽1 = 𝑘𝛽1 

(𝐷′𝐷 − 𝐴′𝐴)𝛽1 = 𝑘𝛽1 

Hence the solution is simply the PCs of the matrix 𝐷′𝐷 − 𝐴′𝐴. 

In order to get the A matrix, the difference between connected nodes were calculated 

and merged into one matrix. The D matrix was formed by sampling 1,000 pairs 

unconnected gene nodes and calculating the difference of these paired gene nodes. 

2.4 Sparse Principal component analysis (SPCA) and 

canonical correlation calculation 

After getting matrix 𝐸 = 𝐷′𝐷 − 𝐴′𝐴, the sparse principal component analysis was 

conducted to get PCs of matrix E. SPCA is built on PCA using the lasso (elastic net) 

to produce modified principal components with sparse loadings. (Hui ZOU, June 

2006) SPCA gives exact PCA results when its sparsity (lasso) penalty term vanishes. 

The canonical correlation between the first three PCs of E and the first eigenvector of 

sub-graph is calculated to describe how well the first three PCs can capture the 

information of the sub-graph. (Weenink, 2003). 

For each set of parameters (Table 1), the simulation analysis was repeated for 10 

times.  The mean canonical correlation between two sub-graphs’ first eigenvectors 

and the first three PCs were calculated and record for each set of parameters 

simulations. 

2.5 Test on yeast cycle data 

The Spellman yeast cell cycle data was used to test our method. The real data contains 

four time-series, each covering roughly two cell cycles. The gene array has 73 
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conditions and 6178 genes. A number of cell-cycle related genes have strong 

periodicity in expression. Due to the difference in phase, the cell cycle related genes 

cannot be easily summarized by clusters. 

NGDR was applied to get the cell cycle related genes expression and filter out noises 

information from other genes. Gene expression data may or may not satisfy the 

normality assumption of PCA.  First of all, the gene expression array was standardized 

to achieve mean 0 and standard deviation 1 for each gene. The difference of gene 

expression between all connected genes were calculated and used to form matrix A. 

The unconnected genes were defined as the two nodes with the shortest path between 

them larger than 5. One thousand pairs of unconnected genes were randomly sampled. 

The gene expression difference between each pair of unconnected genes were 

calculated and used to form matrix D. 𝐷′𝐷 − 𝐴′𝐴  was calculated as described in 

section 2.4. The PCs matrix of 𝐷′𝐷 − 𝐴′𝐴  was calculated by sparse principal 

component analysis. The loading for each gene on the first few PCs was conducted. 

The ones with loading larger than 0.6 were selected and regarded as the ones whose 

information was captured by the corresponding PCs. These captured genes were 

classified by Gene Ontology (GO) categories by GOstats, a Bioconductor package in 

R. The structured description of known biological information at different levels of 

granularity greatly facilitate the interpretation of high-throughput technologies output. 

(Maere, Heymans, & Kuiper, 2005) GO consists of three hierarchically structured 

vocabularies to describe gene products in terms of their associated biological 

processes, molecular functions and cellular components. (Maere et al., 2005) Gene 

products are annotated to one or several nodes in each hierarchy. (Maere et al., 2005) 

Each gene is classified by whether or not it has been selected and whether or not 

annotated at a particular term. (Falcon & Gentleman, 2007) 
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3 Results 

3.1 Simulation results 

The simulation results show the mean detected canonical correlation between the first 

three PCs of matrix E and the first eigenvectors of the selected sub-networks’ 

expression matrix.   

Figure 1 and Figure 2 shows the detected mean correlation of two selected sub-

networks from 10 repeated simulations with the same set of simulation parameter. 

The networks parameters were set as described in section 2.2. Each sub graph 

illustrates the canonical correlation result of networks with the same net density and 

hubs covariance, but different sub-network size. Each column contains the simulated 

networks with the same set correlation but different net density (range from 1 to 1.5 

and 1.7).  Each row contains the graphs with the same net density but different set 

correlation. In general, all the mean detected correlation of 10 repeats are high. 

(Figure 1 & Figure 2) 

 In Figure 1, for each sub graph, the range of detected correlation is small. The sub-

networks with higher set correlation have smaller range of detected correlation 

compared with the ones with lower correlation. No matter the set correlation is high 

or not, the increase of sample size will make the mean detected correlation higher and 

the standard deviation smaller. 

For each column, when the set correlation is high (0.9), the increase of net density 

will cause the detected correlation to be more concentrated. That is to say each trial 

has the trend to get the same detected correlation. For the networks with lower set 

correlation, the increase of sample size still caused an obvious decrease in the 
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standard deviation. But there is one exception in the network with set correlation 0.5, 

net density 1.7 and sample size 100. Each row represents the simulated protein 

network with the same net density but different set correlations. For each row, the 

increase of set correlation caused the detected correlation to be higher and with 

smaller spread. 

Figure 2 displays the detected correlation of another selected sub-graph. These two 

sub-graphs are from the same simulated network, but they are independent with each 

other. In general, the mean detected correlations of are still high.  The detected 

correlation in Figure 2 has the same trend with the one in Figure 1.  

3.2 Testing the method on yeast cycle data 

Result from the real data shows the genes whose information was captured by the 

first three PCs of matrix E that is generated from the real yeast cycle data using 

NGDR. Figure 3 shows the factor score captured by the first PC. There is a slightly 

periodical signal in the first time zone (alpha factor). This signal is not strong enough 

to be counted as a periodic signal in the gene expression during the first time period. 

The factor score captured by the first PC during the second period (cdc15) shows 

strong oscillation, which is known in advance to be caused by experimental artifacts.  

And the factor score of the third time period (cdc28) and the fourth time period (elu) 

are weak and around 0. The oscillation of cdc15 gene expression is noise, which is 

too strong to let the first PC capture the main information of this gene network. Since 

the artifact dominated the first PC, the factor score captured by the second PC was 

reported in Figure 4. The periodical signal during the whole time zones illustrates 

there is a cell cycle module, which has periodical expression feature, which 

dominated the second PC. Through the signal repeats in different time zones were not 
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exactly the same, the result is strong enough to lead a conclusion that there were a 

specific set of genes involved in cell cycle and captured by PC2.  

There were 82 genes in total that had loadings larger than 0.6 on the second PC. 

These 82 genes were treated as one module. The GOHyperGParams result shows 59 

out of 82 genes are cell cycle genes who have the periodical repeat during each cell 

cycle with p-value 1.5 × 10-32. The classification GOBPID of these 59 genes are GO: 

0007049. Other kinds of biosynthetic and catalytic processing gene were also related 

in this module. (Table 2) 

The third PC was also taken into consideration. Figure 5 shows the factor score 

captured by the third PC. The signal also displayed periodicity. There were 78 genes 

in total had loading larger than 0.6 on the second PC. The GOHyperGParams result 

shows 49 out of 78 genes are cell cycle genes who have the periodical repeat during 

each cell cycle with p-value 2.096077×10-24. (Table 3) 

4 Discussion 

Further Explanation of result 

The simulation analysis result shows the mean detected correlations are all close to or 

above 0.9. This proves the 𝐷′𝐷 − 𝐴′𝐴 transformation can help re-capture the main 

signal from original network. The first three PCs efficiently captured the main 

information from the expression matrix. The reason of higher net density can 

improve detected correlation is that the high density network with more edges will 

make the selected sub-network larger than the lower density network. Larger sub-

networks make the signal stronger and easier to be detected. Meanwhile, the higher 
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set correlation makes the given signal in sub-network higher and also end up with 

higher detected correlations. 

The analysis of the yeast cell data illustrates that NGDR captures important 

information from real data. For the result from the second PC, fifty-nine genes out of 

eighty-two genes whose signal were captured by the second PC were classified as 

cell cycle related genes.  For the result of the third PC, 49 genes out of 79 genes were 

cell cycle genes. Both percentages are high, which proved the efficiency of this 

method is high. The reason why the cell cycle signal was captured by the second PC 

instead of the first PC is that the oscillation signal is too strong and therefore 

dominated the first PC. The signal result captured in this study are exactly the same 

as the one captured in a precious study finished by Tianwei Yu. (Yu, 2010) The 

consistence of these two studies clearly prove the method in this study is valid. 

Advantages and Limitations  

PCA is a commonly used technique in high-dimensional data visualization. The 

result of PCA is straight-forward to interpret. It can be summarized by a few 

parameters. Beside the straight-forward interpretability and computational efficiency, 

the linear PCA is robust against outliers. (Hill, September 1973) Though the use of 

PCA is widespread, PCA limited by its reliance on second-order statistics. The 

Principal components can be highly statistically dependent, in which case, PCA will 

fail to find the most compact description of the data. PCA needs larger-dimensional 

representation than the nonlinear alternatives when there is nonlinear dependencies in 

PCA. (Leen, 1997) Another limitation of PCA is that PCA doesn’t have the ability to 

separate highly correlated signals.  

A limitation of this study is that the difference between net density group is small, 

which makes its influence to detected correlation not as obvious as expected. But the 
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challenge of increasing net density is that the difficulty of sampling two unconnected 

nodes with specific degree will increase while the net density increase. This is 

decided by the property of scale-free network- when the density increases, the nodes 

with high degree tend to be connected with each other. Further work can focus on 

simulating network closer to the real protein network with appropriate net density.  

Final conclusion 

This new network-guided dimension reduction method is efficient to capture hidden 

signals based on the knowledge encoded in existing networks. 
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5 Appendices 

A Figures & Tables 

Figure 1 Detected Correlation of hub one  

 

Figure2 Detected Correlation of hub two
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Figure 3 Factor score of real yeast cell cycle data captured by the first PC 

 

 

Figure 4 Factor score of real yeast cell cycle data captured by the second PC 

 

 

 



19 
 

Table 2 Gene Ontology Classification result of Gene signal captured by the second 

PC 
 GOBPID P-value Odds Ratio Exp Count Count Size Term 

1 GO:0007049 1.498046e-32 15.102239 11.40906638 59 729 cell cycle 

2 GO:0022402 1.355541e-30 14.183746 9.70318403 54 620 cell cycle process 

3 GO:0006259 1.675567e-24 11.644744 7.60604425 44 486 DNA metabolic process 

4 GO:0000280 3.136578e-23 12.893939 5.22719914 37 334 nuclear division 

5 GO:0048285 9.059438e-23 12.449837 5.38370210 37 344 organelle fission 

6 GO:0006974 1.104280e-22 12.799671 5.03939557 36 322 cellular response to DNA 

damage stimulus 

7 GO:0051276 1.158718e-22 10.523021 7.95035078 43 508 chromosome organization 

8 GO:0000278 1.474303e-21 11.347403 5.82191042 37 372 mitotic cell cycle 

9 GO:0006281 1.727456e-21 13.037868 4.35078251 33 278 DNA repair 

10 GO:1903047 5.328173e-21 11.215686 5.63410685 36 360 mitotic cell cycle process 

11 GO:0007067 1.740318e-19 13.794003 3.28656233 28 210 mitotic nuclear division 

12 GO:0006302 3.041175e-19 20.707692 1.72153265 22 110 double-strand break repair 

13 GO:0006260 3.192123e-19 15.122623 2.75445224 26 176 DNA replication 

14 GO:0007059 1.343441e-18 14.150820 2.91095521 26 186 chromosome segregation 

15 GO:1902589 4.820637e-17 6.582763 15.36859147 50 982 single-organism organelle 

organization 

16 GO:0006996 2.866868e-16 6.158295 22.75553157 59 1454 organelle organization 

17 GO:0006310 7.386962e-16 11.809524 3.05180788 24 195 DNA recombination 

18 GO:0006261 8.176217e-16 15.874095 1.89368591 20 121 DNA-dependent DNA 

replication 

19 GO:0000819 9.823798e-16 17.294625 1.65893146 19 106 sister chromatid 

segregation 

20 GO:0051301 1.615679e-15 8.558858 5.43065300 30 347 cell division 

21 GO:0007064 5.290247e-15 38.276216 0.59471128 13 38 mitotic sister chromatid 

cohesion 

22 GO:0043570 8.372386e-15 65.855263 0.35995683 11 23 maintenance of DNA 

repeat elements 

23 GO:0033554 8.557408e-15 6.478493 9.75013492 38 623 cellular response to stress 

24 GO:0000003 3.530032e-14 6.869873 7.51214247 33 480 reproduction 

25 GO:0000070 5.614367e-14 16.368571 1.51807879 17 97 mitotic sister chromatid 

segregation 

*Table 2 lists the top 25 gene classifications sorted by p-value. 
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Figure 5 Factor score of real yeast cell cycle data captured by the third PC 

 

 

Table 3 Gene Ontology Classification result of Gene signal captured by the third PC 
 GOBPID P-value Odds Ratio Exp Count Count Size Term 

1 GO:0022402 3.561553e-28 16.122723 8.03022126 47 620 cell cycle process 

2 GO:0007049 2.787728e-27 15.060294 9.44198597 49 729 cell cycle 

3 GO:0006259 3.732426e-22 12.571035 6.29465731 38 486 DNA metabolic process 

4 GO:0000280 6.305652e-21 13.735099 4.32595791 32 334 nuclear division 

5 GO:0048285 1.575634e-20 13.269231 4.45547760 32 344 organelle fission 

6 GO:0006974 2.820312e-20 13.500629 4.17053427 31 322 cellular response to DNA 

damage stimulus 

7 GO:0006281 7.466613e-20 14.187167 3.60064760 29 278 DNA repair 

8 GO:0000278 1.755652e-19 12.110588 4.81813276 32 372 mitotic cell cycle 

9 GO:1903047 7.889684e-19 11.853955 4.66270912 31 360 mitotic cell cycle process 

10 GO:0006260 7.876908e-18 16.364146 2.27954668 23 176 DNA replication 

11 GO:0007067 3.136509e-17 14.250000 2.71991365 24 210 mitotic nuclear division 

12 GO:0006302 4.326067e-17 21.257309 1.42471668 19 110 double-strand break repair 
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13 GO:0051276 2.234277e-16 8.928259 6.57960065 33 508 chromosome organization 

14 GO:0006261 2.800019e-16 18.926193 1.56718834 19 121 DNA-dependent DNA 

replication 

15 GO:0006310 1.166447e-15 13.515376 2.52563411 22 195 DNA recombination 

16 GO:0051301 3.968619e-15 9.688125 4.49433351 27 347 cell division 

17 GO:0007059 5.875512e-15 13.281283 2.40906638 21 186 chromosome segregation 

18 GO:1902589 7.977718e-15 6.772128 12.71883432 42 982 single-organism organelle 

organization 

19 GO:0043570 6.973224e-14 67.915633 0.29789530 10 23 maintenance of DNA repeat 

elements 

20 GO:0033554 9.620977e-14 7.023077 8.06907717 33 623 cellular response to stress 

21 GO:0000003 2.144971e-13 7.530759 6.21694549 29 480 reproduction 

22 GO:0051716 4.912989e-13 5.999396 12.20075553 39 942 cellular response to stimulus 

23 GO:0000819 2.749665e-12 15.604396 1.37290880 15 106 sister chromatid segregation 

24 GO:0006950 6.079443e-12 5.911992 9.32541824 33 720 response to stress 

25 GO:0006996 1.477236e-11 5.125492 18.83216406 46 1454 organelle organization 

*Table 3 lists the top 25 gene classifications sorted by p-value. 

 

 

B R Code 

 Real data analysis 

 conn<-read.table("Scere20160114CR.txt", sep="\t", header=T) 

for(i in 1:ncol(conn)) conn[,i]<-as.character(conn[,i]) 

load("spellman_73_filled.bin") 

source("https://bioconductor.org/biocLite.R") 

biocLite("org.Sc.sgd.db") 

library("org.Sc.sgd.db") 

arrayrowname<-c() 
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for(ii in 1:nrow(array)){ 

arrayrowname[ii]<-mget(rownames(array)[ii], org.Sc.sgdUNIPROT, 

ifnotfound=NA)[[1]][1]} 

array.rename1<-array 

for(ii in 1:nrow(array.rename1)){ 

  if(!is.na(arrayrowname[ii])){ 

     row.names(array.rename1)[ii]<-arrayrowname[ii] 

} 

} 

connid<-matrix(nrow=nrow(conn),ncol=ncol(conn)) 

connid[1,1] 

for(i in 1:nrow(conn) ){ 

   for (j in 1:ncol(conn)){ 

     if(!is.na(strsplit(conn[i,j], "uniprotkb:")[[1]][2])){ 

     connid[i,j]<-strsplit(conn[i,j], "uniprotkb:")[[1]][2] 

       } 

    } 

} 

connid.na<-na.omit(connid) 

#find the overlap between the network and connetciton   
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library('igraph') 

connid.overlap1<-connid.na[which(connid.na[,1] %in% row.names(array.rename1)),] 

connid.overlap<-connid.overlap1[which(connid.overlap1[,2] %in% 

row.names(array.rename1)),] 

array.overlap<-array.rename1[which(row.names(array.rename1) %in% connid.overlap),] 

g<-graph.data.frame(connid.overlap, directed=TRUE, vertices=NULL) 

x<-array.overlap[,c(-1,-2,-3,-4)] 

xrowmean<-rowMeans(x) 

xrowsd<-apply(x,1,sd) 

#######make the array matrix standard###### 

st_x<-(x-xrowmean)/xrowsd 

rowMeans(st_x) 

   A2<-matrix(ncol=ncol(st_x)) 

    for(ii in 1:nrow(connid.overlap)){ 

sample.data<-st_x[which(rownames(st_x)==connid.overlap[ii,1]),]-  

st_x[which(rownames(st_x)==connid.overlap[ii,2]),] 

    A2<-rbind(A2,sample.data) 

   } 

 A3<-A2[c(-1,-2),] 

   N<-t(A3)%*%(A3)   
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   #A is the matrix that with the information of difference between connected protein 

  #N is the A'A matrix of  related protine 

  flag=1 

   D<-matrix(ncol=ncol(st_x),nrow=1000) 

   while(flag<1001){ 

     sample.node2<-sample(rownames(st_x),2) 

   count2<-shortest.paths(g,v=sample.node2[1],to=sample.node2[2]) 

     if(count2>5){ 

       D[flag,]<-st_x[sample.node2[1],]-st_x[sample.node2[2],] 

       flag<-flag+1 

     } 

   } 

  #D is the matrix that with the information of difference between unconnected protein 

   M<-t(D)%*%D 

   #m is the D'D matrix of un related protine  

   E<-M-N 

########This function returns the matrix which I need to caltulate its eign vector 

  my.prc1<-prcomp(E,scale=TRUE) 

   plot(my.prc1$rotation[,3],type='l',xlab='',ylab='') 

   mtext("Factor score captured by the third PC", side=2, line=3, cex=1.5) 
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   mtext("Index", side=1, line=3, cex=1.5) 

 abline(v=18) 

   abline(v=59) 

   abline(v=42) 

   text(x=8,y=0.23,label='alpha factor',cex=1.5) 

   text(x=30,y=0.23,label='cdc15',cex=1.5) 

   text(x=50,y=0.23,label='cdc28',cex=1.5) 

   text(x=70,y=0.23,label='elu',cex=1.5) 

   x_loading1<-(st_x)%*%(my.prc1$rotation[,c(1,2,3,4,5,73)]) 

   PC1_x1<-x_loading1[,3] 

   PC1_cx1<-PC1_x1[which(abs(PC1_x1)>=(0.6*sqrt(72)))] 

  source("https://bioconductor.org/biocLite.R") 

   biocLite("GOstats") 

   library(GOstats) 

   sel<-c() 

  sel<-row.names(array[which(row.names(array.rename1)%in%names(PC1_cx1)),]) 

   uni<-unique(rownames(array)) 

  params=new("GOHyperGParams",geneIds=sel,universeGeneIds=uni,annotation= 

"org.Sc.sgd.db",ontology="BP",pvalueCutoff=0.01,conditional=FALSE,testDirection="o

ver") 
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   over=hyperGTest(params) 

   summary(over) 

   ov<-summary(over) 

   

  


