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Abstract

R-equivalence and norm principles in algebraic groups
By Nivedita Bhaskhar

We start by exploring the theme of R-equivalence in algebraic groups. First
introduced by Manin to study cubic surfaces, this notion proves to be a
fundamental tool in the study of rationality of algebraic group varieties. A
k-variety is said to be rational if its function field is purely transcendental over
k. We exploit Merkurjev’s fundamental computations of the R-equivalence
classes of adjoint classical groups and give a recursive construction to pro-
duce an infinite family of non-rational adjoint groups coming from quadratic
forms living in various levels of the filtration of the Witt group. This extends
the earlier results of Merkurjev and P. Gille where the forms considered live
in the first and second level of the filtration.

In a different direction, we address Serre’s injectivity question which asks
whether a principal homogeneous space under a connected linear algebraic
group admitting a zero cycle of degree one in fact has a rational point. We
give a positive answer to this question for any smooth connected reductive
k-group whose Dynkin diagram contains connected components only of type
An, Bn or Cn. We also investigate Serre’s question for reductive k-groups
whose derived subgroups admit quasi-split simply connected covers. We do
this by relating Serre’s question to the norm principles previously proved by
Barquero and Merkurjev.

The study of norm principles are interesting in their own right and we ex-
amine in detail the case of groups of the non-trialitarian Dn type and get a
scalar obstruction defined up to spinor norms whose vanishing will imply the
norm principle for these groups. This in turn will also yield a positive answer
to Serre’s question for all connected reductive k-groups of classical type.



R-equivalence and norm principles in algebraic groups

By

Nivedita Bhaskhar
B.Sc., Chennai Mathematical Institute, 2009

M.Sc., Northeastern University, 2011

Advisor: Raman Parimala, Ph.D.

A dissertation submitted to the Faculty of the
James T. Laney School of Graduate Studies of Emory University

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

in Mathematics
2016





Acknowledgements

It is a truth universally acknowledged, that the most read section of a disser-
tation must be the one about acknowledgements. And it is with the greatest
pleasure that I put pen to paper to try and thank the beautiful people who
have made my journey thus far possible.

To Professor Parimala, I owe a debt of gratitude that can never be repayed.
There are few other people in this world apart from my parents under whom
I have felt so protected and sheltered. I had never imagined the existence of
such a joyous mathematical world before and it is entirely due to her, that I
now belong to one such. To Professor Suresh, I am indebted no less. Apart
from teaching me patiently and many times over(!), almost all of the math-
ematics that I now do, their extraordinary kindness, sheer generosity and
warm camaraderie have made each day at work a delight. I have spent many
an enjoyable hour in Parimala’s office discussing mathematics with them and
in wonder, watching them ruthlessly attack and untangle problems, mathe-
matical or otherwise and weave them back into neat solutions. Their ‘Let’s
fight it out ’ optimism has been so cheerfully contagious that no difficulty
cropping up has seemed unsurmountable. I can never thank them enough
and also Ram and Sunitha for the many delicious dinners, conversation and
companionship. For making an extremely homesick girl feel at home. For
making my life as a graduate student so pleasant that graduating and moving
out seems more bitter than sweet.

This thesis revolves around the theme of R-equivalence and norm principles
and fundamentally depends on two papers of Professor Merkurjev on the
same topic. I am extremely grateful to have had the opportunity to listen to
his spectacular talks on Suslin’s conjecture and would like to thank him for his
generous and patient help and valuable discussions which helped crystallize
my thoughts into concrete papers.



To Eva, I would like to extend my heartfelt thanks for her beautiful talks on
Hasse principles, her magnanimous and ungrudging help with my research
and kind words of encouragement which have helped me a great deal to
overcome my diffidence in the academic world. I would also like to thank her
and Monique for an enjoyable visit to EPFL, Lausanne in the Fall of 2014.

I would like to thank Fields Institute and the wonderful organizers and par-
ticipants of the thematic program on torsors and cohomological invariants in
Spring 2013. It served as the spring board for my dive into mathematical
research, equipping me with so many of the right tools in so short a time.
I would like to especially thank Professor Chernousov, Professor Karpenko
and Professor P.Gille for their beautiful foundational courses on algebraic
groups, quadratic forms and reductive group schemes. The seminar series on
cohomological invariants with Professor Chernousov has also played a vital
role in my research life and I would like to thank him for his generous help,
time and patience! I would also like to thank Professor Gille for carefully
explaining to me his paper on non-rational adjoint groups which played such
an integral part in my work.

I have learnt and benefitted immensely from various workshops on patching
from the team of Harbater-Hartmann-Krashen and would like to thank them
for some beautiful and illuminating lectures on this topic. My gratitude to
Giri Dada, Santhi Akka and Lalitha Maami for my home away from home in
Toronto and my love to Pari for brightening my weekends by being the best
baby cousin one could ever wish for.

I’ve had a wonderful time as a graduate student at Emory, attending well
thought out and satisfying courses by the faculty in all areas, algebraic and
otherwise. Grateful thanks to DZB for his courses on class field theory and
stacks and to Professor Ken Ono for making me read Cassel’s wonderful book
‘Lectures on elliptic curves ’.



I thank Professor Colliot Thélène for his beautiful lectures on Brauer-Manin
obstructions (among other things!) and patient help explaining several con-
fusing aspects about algebraic groups to me during his occasional visits to
Emory and Professor Saltman for his many exciting talks on division alge-
bras and kind help with my research. A special thank you again to Danny
for graciously including us Emory students in his fun courses on Stacks and
Brauer groups which motivated us to continue the struggle to learn the stacky
language.

My thanks to Professor Vicky for introducing me to the Math 115 team in
my first ever semester and to Bree for lots of helpful advice. I am immensely
grateful to Professor Dwight for putting up with me as a TA, for his thought-
ful and valuable opinions about teaching, for his calm and unperturbed advice
during my occasionally turbulent teaching days and for kindly laughing at
my carefully inserted and mostly unnoticed puns in conversation and in my
website. My grateful thanks to Terry for being an angel and answering and
resolving my innumerable SOS calls about administrative affairs.

A big thank you to Asher for his generous help in explaining away some of
the many mysteries of class field theory and for his many insightful lectures
and talks on Brauer groups and Azumaya algebras. My thanks to Fred for
teaching me all about Lie algebras, with pictures! And for the very many
conversations about British movies, the weather, elementary number theory
and the French language. Wu has been my mathematical comrade and co-
student in arms and I would like to thank him for all the times we spent
learning class field theory, patching and galois cohomology together. I would
also like to thank him for timely reminders about the various deadlines which
kept whooshing by, which I would have missed otherwise.



Thanks to Hernando for his valuable discussions about algebraic groups and
invariants and for helping me understand what a half-spin group is. And
to Ting-Yu for patiently answering my questions about R-equivalence and
rationality and to her and Caroline for the fun times I’ve had with them in
Toronto, Banff and other places.

A shout out to Mckenzie for putting up with me as an officemate, for her
gorgeous cookies, for insights about the Brauer group and for answering all
my queries about how to do this or that or that ; to Reed, for telling me in-
teresting things about zero cycles, not necessarily of degree one ; to Jackson,
for sharing his precise and beautifully TeXed notes with me, and to Bastian
for his beautiful lectures on étale cohomology, for exciting discussions about
what BG is exactly, for sharing the joys and sorrows about the wonderfully
weird behaviour of division algebras in bad characteristic and for his cheerful
help with proofreading my essays and papers and making encouraging com-
ments on the margins while highlighting my errors. It has been wonderful
discussing mathematics with you!

A special thanks to my tumblr friends, especially to halfwaythruthedark,
florencecraye, weeguttersnipe, memories-of-indian-cinema, dweemeister and
the south-indian squad for so many fulfulling exchanges about cinema and
literature, which kept me afloat even when sometimes research rocked the
boat a bit. A grateful thanks to the baristas of Starbucks at 1380 Oxford
Road for their coffee and their friendly greetings which always made my days
start well.

I would like to thank my teachers and friends at Northeastern University
for a wonderful two years during my Masters program. Especially Professor
Martsinkovsky from whom I learnt group cohomology, a tool which has be-
come my bread and butter so as to speak, Professor Lakshmibai who taught



me algebraic geometry and Professor Zelevinsky, who’s no longer with us,
for his wonderful courses in Algebraic combinatorics. And a special thank
you to Undine for baking some amazing bread, for sharing the daily journeys
on the Red line, insightful conversation and for some of the most beautiful
times I had in Boston.

To CMI, where my mathematical journey began in earnest, I owe a great
deal. My first taste of real mathematics could not have tasted sweeter from
elsewhere. To each and every one of my teachers, the CMI staff and my
fellow-collegemates, a grateful thanks for educating me (and not just in math-
ematics!) and for giving me an opportunity to take flight into the world of
research.

I would also like to thank CMI and ENS and especially Professor Olivier
Wittenberg for giving me an opportunity to spend three months in Paris
learning about the Riemann Hypothesis for function fields. That period
represents one of the best times I have had during my mathematical (and
cultural!) education.

I remember with joy and gratitude my wonderful formative years at P.S.
Senior Secondary School and thank all my teachers for their classroom lessons
which taught me discipline, their multiudinous exams which took away the
edge of fear while appearing for one and their kind words of encouragement
which stay with me even today, especially Mrs Indrabai, my middle school
math teacher.

My classmates, with whom I spent several wonderful years, I remember with
thanks for their friendly cheer and support. To Manas, a thank you for many
soulful conversations on what to do and how not to do it and to Gouthami,
a salute for inspiring me by being so effortlessly jovial and passionate about
academia and music.



To Madhu, a thank you for being there for me and a bigger thank you
for being .. all that’s awesome, you! From giggling about fictional heroes
to worrying about being thirty soon, it’s been a fun journey. And one, I
couldn’t have done without you.

To Nandita, who has succesfully managed the transformation from an adorably
naive little sister who believed everything I said to an independent, succesful
graduate student who now gives me self-help lessons, a thank you for being
one of the few people who seem to know me effortlessly. And for inspiring
me, though I do not often say it aloud, by pursuing academia and life with
a vigour and energy that is admirable to say the least.

To Amma, a thank you for being my first mathematics teacher. To Bapa, a
thank you for making me finish my thesis. To both of you, a thank you for
making me, moulding me and then letting me be. For knowing when to say
yes and when to say no. For worrying about what I have for dinner and for
not worrying about my future prospects. For putting family above all else
and staying together in the same boat, through both calm and storm.

And finally to Professor Sridharan who has steered me gently through the
seas like the gentle wind guiding the sailboat. His influence, seemingly in-
visible and yet so powerful has navigated me around rocky corners, ruthless
whirlpools and more importantly, kept me from stale stagnation. With him,
I have learnt to admire beauty, be it in algebra or literature or in people.
Without him, indeed, I would have quit the world of mathematics for ever
and perhaps lost the link binding me to art and hence to beauty.



Contents

1 An introduction 1

1.1 The story . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 The prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Quadratic form theory . . . . . . . . . . . . . . . . . . 6
1.3.2 Algebras with involutions . . . . . . . . . . . . . . . . 9

2 Examining Clifford’s algebras 11

2.1 Generalizing quaternions . . . . . . . . . . . . . . . . . . . . . 11
2.2 Clifford algebra of a quadratic form . . . . . . . . . . . . . . . 13

2.2.1 The even Clifford algebra C0(V, q) . . . . . . . . . . . . 15
2.2.2 Structure theorem for Clifford algebras . . . . . . . . . 16
2.2.3 Involutions on Clifford algebras . . . . . . . . . . . . . 18

2.3 Clifford algebra of an algebra with orthogonal involution . . . 20
2.4 Examples serve better than description . . . . . . . . . . . . . 25

3 A walk through the classification of linear algebraic groups 26

3.1 Some adjectives of linear algebraic groups . . . . . . . . . . . 26
3.2 Classical groups á la Weil . . . . . . . . . . . . . . . . . . . . 28
3.3 Classification of classical groups . . . . . . . . . . . . . . . . . 30

3.3.1 Case I : Simply connected . . . . . . . . . . . . . . . . 30



3.3.2 Case II : Adjoint . . . . . . . . . . . . . . . . . . . . . 31
3.4 Type Dn details . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4.1 The Clifford bimodule . . . . . . . . . . . . . . . . . . 32
3.4.2 The Clifford group . . . . . . . . . . . . . . . . . . . . 33
3.4.3 The vector representation . . . . . . . . . . . . . . . . 35
3.4.4 The Spin group . . . . . . . . . . . . . . . . . . . . . . 37
3.4.5 The extended Clifford group . . . . . . . . . . . . . . . 37

4 A crash course on group cohomology 39

4.1 The Ext functor . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.1.1 Recipes for computing cohomology . . . . . . . . . . . 41
4.1.2 Connecting maps . . . . . . . . . . . . . . . . . . . . . 44

4.2 A nice ZG projective resolution of Z . . . . . . . . . . . . . . 44
4.2.1 Rewriting the complex F ′ (Pi) . . . . . . . . . . . . . . 46

4.3 Cocycles and coboundaries in low dimensions . . . . . . . . . . 47
4.4 Special morphisms between cohomology groups . . . . . . . . 49

4.4.1 Restrictions and inflations . . . . . . . . . . . . . . . . 49
4.4.2 Coinduction and corestriction . . . . . . . . . . . . . . 51
4.4.3 Gratuities . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.5 A computation : Hilbert 90 . . . . . . . . . . . . . . . . . . . 55

5 A glimpse of Galois cohomology 58

5.1 Profinite groups . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2 Profinite group cohomology . . . . . . . . . . . . . . . . . . . 60
5.3 Non-abelian cohomology . . . . . . . . . . . . . . . . . . . . . 61

5.3.1 A principal homogeneous space . . . . . . . . . . . . . 62
5.3.2 Two long exact sequences . . . . . . . . . . . . . . . . 63
5.3.3 Three computations . . . . . . . . . . . . . . . . . . . 65



6 Reviewing R-equivalence and rationality 69

6.1 What is being rational? . . . . . . . . . . . . . . . . . . . . . . 70
6.2 Detecting non-rationality . . . . . . . . . . . . . . . . . . . . . 72
6.3 Early examples of non-rational groups . . . . . . . . . . . . . 76

6.3.1 Chevalley’s example . . . . . . . . . . . . . . . . . . . 76
6.3.2 Serre’s example . . . . . . . . . . . . . . . . . . . . . . 78

6.4 The story for simply connected groups . . . . . . . . . . . . . 79
6.4.1 The reduced Whitehead of an algebra . . . . . . . . . . 81
6.4.2 Positive rationality results for simply connected groups 83

6.5 The story for adjoint groups . . . . . . . . . . . . . . . . . . . 84
6.5.1 Merkurjev’s forumula . . . . . . . . . . . . . . . . . . . 85
6.5.2 Merkurjev’s example . . . . . . . . . . . . . . . . . . . 87

6.6 A natural question . . . . . . . . . . . . . . . . . . . . . . . . 90

7 More examples of non-rational groups 92

7.1 Notations and Conventions . . . . . . . . . . . . . . . . . . . . 93
7.2 Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.3 Lemmata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.4 Comparison of some Hyp groups . . . . . . . . . . . . . . . . . 97
7.5 A recursive procedure . . . . . . . . . . . . . . . . . . . . . . . 102
7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8 On norm principles 106

8.1 What is a norm principle? . . . . . . . . . . . . . . . . . . . . 107
8.2 Classical examples . . . . . . . . . . . . . . . . . . . . . . . . 108
8.3 More norm principles . . . . . . . . . . . . . . . . . . . . . . . 109

9 On a question of Serre 112

9.1 Serre’s question . . . . . . . . . . . . . . . . . . . . . . . . . . 112
9.1.1 Known results . . . . . . . . . . . . . . . . . . . . . . . 114



9.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
9.2.1 Reduction to characteristic 0 . . . . . . . . . . . . . . . 115
9.2.2 Lemmata . . . . . . . . . . . . . . . . . . . . . . . . . 117

9.3 Serre’s question and norm principles . . . . . . . . . . . . . . 119
9.3.1 Pushouts . . . . . . . . . . . . . . . . . . . . . . . . . . 119
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1

Chapter 1

An introduction

‘But I will begin at the beginning,’ said the Sage.

‘I see that you are all impatient to hear the full details.’
- P. G. Wodehouse, The Long Hole

1.1 The story

This dissertation explores the closely connected themes of R-equivalence and
norm principles of algebraic groups. The former is an equivalence relation on
the L points of a k-variety X for any extension L/k and was first introduced
by Manin in his study of cubic surfaces. The same notion carried over to
the varieties underlying algebraic groups provides a key obstruction to the
rationality of the same.

Recall that an irreducible k-variety is said to be k-rational if its function
field is purely transcendental over k. Basic examples consist of affine and
projective spaces. It is a theorem of Chevalley that in characteristic 0 ev-
ery connected linear algebraic group is rational over the algebraic closure of
its field of definition. However, rationality over the field of definition itself
becomes infinitely more tricky and subtle to handle as the early examples
of Chevalley and Serre of non-rational tori and semisimple neither simply
connected nor adjoint groups indicate.
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Platonov’s famous example of non-rational groups of the form SL1(D) set-
tled negatively the long standing question of whether simply-connected al-
most simple k groups were necessarily rational over k. His example does
indeed construct a group with non-trivial R-equivalence classes, the so-called
SK1(D) in this case!

The focus then shifted to adjoint groups, with Platonov himself conjecturing
([PLR], pg 426) that adjoint simple algebraic k-groups were rational over
any infinite field. Some evidence of the veracity of this conjecture is found
in ([Chernousov]) where it is established that PSO(q) is a stably rational k
variety for the special quadratic form q = 〈1, 1, . . . 1〉 where k is any infinite
field of characteristic not 2.

However Merkurjev in ([Me96]) constructed a quadratic form q/k of low even
rank lying in the fundamental ideal I(k) such that the adjoint projective spe-
cial orthogonal group, PSO(q), is not a k-rational variety. This example is
obtained as a consequence of his computations of R-equivalence classes of ad-
joint classical groups which relates to rationality via the following elementary
fact :

If X is a k-rational variety, then X(K)/R is trivial for any extension K/k.

It is to be noted that in Merkurjev’s example, q has non-trivial discriminant
and therefore does not lie in I2(k), the second term in the filtration of the
Witt ring. The example uses the non-triviality of the signed discriminant of
the quadratic form in a crucial way and indeed fails as such if the discriminant
is trivial.

In the following year, P. Gille constructed a quadratic form q/k of even rank
with trivial discriminant (hence lying in I2(k)) such that the corresponding
adjoint group, PSO(q), is not a k-rational variety. It is to be noted that in
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Gille’s example, q has non-trivial Clifford invariant and therefore does not lie
in I3(k), the third term in the filtration of the Witt ring, which fact is again
crucially exploited in his paper.

One can therefore pose the obvious natural question of whether there are
examples of quadratic forms qn defined over fields kn satisfying the following
two properties :

1. qn ∈ In(kn), the n-th power of the fundamental ideal.

2. PSO(qn) is not kn-stably rational.

The answer is yes and is one of the main results of this dissertation (Thm
7.9).

In a slightly different direction, we examine the closely related subject of
norm principles for algebraic groups. Let G be a k-algebraic group, T , a
commutative k-group and let f : G → T be an algebraic homomorphism
defined over k.

G(L) T (L)

G(k) T (k)

f(L)

NL/k

f(k)

We say that the norm principle holds for f : G→ T if for all separable field
extensions L/k,

NL/k(Image f(L)) ⊆ Image f(k).

Norm principles form an interesting topic in their own right and have been
widely studied ([Gille93], [Me95], [BM] et al). They also turn out to be an
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extremely pliant and pleasant tool to handle the following question of Serre
(open in general) for many classical reductive groups.

Question 1.1 (Serre, [Serre95], Pg 233). Let G be any connected linear al-
gebraic group over a field k. Let L1, L2, . . . , Lr be finite field extensions of
k of degrees d1, d2, . . . , dr respectively such that gcdi(di) = 1. Then is the
following sequence exact?

1→ H1(k,G)→
r∏
i=1

H1(Li, G).

The classical result that the index of a central simple algebra divides the
degrees of its splitting fields answers Serre’s question affirmatively for the
group PGLn. Springer’s theorem for quadratic forms answers it affirmatively
for the (albeit sometimes disconnected) group O(q) and Bayer-Lenstra’s the-
orem ([BL]), for the groups of isometries of algebras with involutions. Jodi
Black ([Black]) answers Serre’s question positively for absolutely simple sim-
ply connected and adjoint k-groups of classical type.

In this dissertation, we are able to affirmatively answer Serre’s question for
classical reductive group of type An, Bn or Cn (Thm 9.8) and for quasi-split
reductive groups without E8 components (Thm 9.11) using Merkurjev and
Barquero’s norm principles ([BM]). We also study norm principles for groups
of type Dn and construct an obstruction to the same (Thm 10.4).
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1.2 The plan

This dissertation is shaped as follows :

In Chapter 2, we start by studying the Clifford algebras of quadratic forms
and in more generality, of central simple algebras with orthogonal involutions.

Chapter 3 is a very quick walk through the classification of linear algebraic
groups where we spend a little more time sniffing the flowers (i.e. understand-
ing some rather nice groups) of type Dn. Chapter 4 is a crash course on group
cohomology and Chapter 5 is naturally a glimpse of Galois cohomology.

Chapter 6 introduces the notion of rationality and R-equivalence and show-
cases examples of some of the well known non-rational groups present in
literature. In Chapter 7, we produce quadratic forms qn/kn in a recursive
fashion and use Merkurjev’s powerful formulae about R-equivalence to pro-
vide an infinite family of examples of non-rational adjoint groups.

Chapter 8 is a quick introduction to the idea of norm principles. In Chapter
9, we use and extend Jodi Black’s result on Serre’s question to connected re-
ductive k-groups whose Dynkin diagrams contain connected components only
of type An, Bn or Cn and also explore the question for quasi-split reductive
groups. We do this by relating Serre’s question for G with the norm princi-
ples of other closely related groups following a series of reductions previously
used by Barquero and Merkurjev.

In Chapter 10, the tantalizing missing ingredient, i.e. norm principles for
groups of type (non-trialitarian) Dn, is studied and a scalar obstruction de-
fined up to spinor norms is given whose vanishing will imply the norm prin-
ciples and also yield a positive answer to Serre’s question for all classical
connected reductive k-groups. And finally, in Chapter 11, you can find a
short summary of the main results of this thesis.
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1.3 The prerequisites

‘It is a subject on which authors frequently lie, claiming that whoever can count up

to ten and recognize a few greek letters will immensely profit from the purchase of

their books.’
- Inta Bertuccioni

This thesis is written in rather a leisurely style in the hope that it is an easy
read for anyone possessing some knowledge of commutative and homological
algebra, a smattering of algebraic geometry/algebraic groups jargon, some
basic theorems about central simple algebras and the will to chase diagrams.
We also give adequate references which we hope will fill in the missing details
sought for by the avid reader.

We also assume some familiarity with quadratic forms and involutions, which
is a topic which might or might not be covered in a first year graduate course.
So here, we give a very very rough framework with which we hope the reader,
if uninitiated, can still proceed on with the rest of this document and progress
fruitfully.

1.3.1 Quadratic form theory

An excellent reference for a quick introduction to this subject would be the
notes of ([Parimala09]). Let k be a field of characteristic not 2 and V/k, a
finite dimensional vector space. We say q : V → k is a quadratic form if

- q is a quadratic map, i.e. q (λv) = λ2q(v) for each λ ∈ k and v ∈ V .

- The associated polar form bq : V×V → k sending (v, w) q(v+w)−q(v)−q(w)
2

is bilinear. Note that bq is clearly symmetric by definition.
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Any quadratic form can be diagonalized and written as

q := 〈a1, a2, . . . , an〉.

That is there exists a basis of vectors ei ∈ V such that q (ei) = ai and
bq (ei, ej) = 0 for i 6= j.

The orthogonal sum of two quadratic forms (V, q) and (V ′, q′) over k written
(V, q) ⊥ (V ′, q′) is defined to be the qudratic form q ⊥ q′ : V × V ′ → k

sending (v, v′)  q(v) + q′(v′). For a ∈ k, the quadratic form aq : V → k

sends v  aq(v).

An isometry between quadratic spaces (V, q) and (V ′, q′) is a k-linear isomor-
phism f : V → V ′ such that q′ (f(v)) = q(v) for each v ∈ V .

A quadratic form q is said to be non-degenerate (or regular) if b̃q : V → V ∗

induced by bq is injective (and hence an isomorphism since V is finite dimen-
sional). It is called isotropic if it represents 0 non-trivially and anisotropic
otherwise.

We denote the two dimensional quadratic form 〈1,−1〉 by H and call it the
hyperbolic plane. For r ∈ N, the symbol Hr then denotes the orthogonal sum
of r hyperbolic planes which we term a hyperbolic space.

Two regular quadratic forms q1, q2 are defined to be Witt equivalent if there
exist r, s ∈ Z such that q1 ⊥ Hr ' q2 ⊥ Hs. Define W(k) to be the set of
isomorphism classes of regular quadratic forms modulo Witt equivalence.

It turns out that W(k) is an abelian group under ⊥ and can further be made
into a ring (called the Witt ring) using the tensor product operation ⊗. For
example, if q1 = 〈a1, . . . , an〉, then q1 ⊗ q2 = a1q2 ⊥ a2q2 ⊥ . . . ⊥ anq2.
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Witt’s decomposition theorem implies that each equivalence class in W(k)

has a unique anisotropic quadratic form as a representative.

Let I(k) denote the ideal of classes of even dimensional quadratic forms in
W(k). The ideal I(k) is called the fundamental ideal. Note that I(k) is
additively generated by forms of the shape 〈a, b〉. And since

〈a, b〉 = 〈1, a〉 − 〈1,−b〉 ∈W(k),

I(k) is in fact additively generated by 1-fold Pfister forms 〈〈c〉〉 := 〈1, c〉. One
can also check that W(k)

I(k)
' Z

2Z quite easily.

Define I0(k) := W(k). For n > 0, the symbol In(k) denotes the nth power
of the fundamental ideal. This is therefore additively generated by n-fold
Pfister forms

〈〈c1, c2, . . . , cn〉〉 := ⊗ni=1〈〈ci〉〉.

Note that In(k)

In+1(k)
is an elementary abelian 2-group for each n ≥ 0. Let’s check

this easy fact. It is abelian because W(k) is abelian. And since n-fold Pfister
forms generate In(k) additively, it is enough to check that

2q ∈ In+1(k) for q = 〈〈c1, c2, . . . , cn〉〉.

Let q′ = 〈〈c2, c3, . . . , cn〉〉 and by induction, assume 2q′ ∈ In(k) and hence is
a sum of n-fold Pfister forms

∑
fi. Thus
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2q = (〈〈c1〉〉 ⊗ q′) + (〈〈c1〉〉 ⊗ q′)

= 〈〈c1〉〉 ⊗ 2q′

= 〈〈c1〉〉 ⊗
(∑

fi

)
=
∑

f ′i

where f ′i = 〈〈c1〉〉 ⊗ fi is an (n+ 1)-fold Pfister form and hence in In+1(F ).

The powers of the fundamental ideal give a filtration of the Witt ring

W(k) = I0(k) ⊇ I1(k) ⊇ I2(k) ⊇ . . . ,

which is rather useful because of the following theorem :

Theorem 1.2 (Arason-Pfister-Hauptsatz, ’71).
∞⋂
n=0

In(k) = 0.

The graded Witt ring W(k) :=
⊕∞

n=0
In(k)

In+1(k)
is an oft-studied object in

quadratic form theory.

1.3.2 Algebras with involutions

We are going to be even more brief here, content with only giving the defi-
nitions and refering the interested reader to ([KMRT], Chapter I).

Let K be a field of characteristic not 2. Let A/K be a central simple algebra.
An involution σ : A → A is a morphism such that for each a, b ∈ A, the
following holds :
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1. σ(a+ b) = σ(a) + σ(b),

2. σ(ab) = σ(b)σ(a),

3. σ2(a) = a.

Set k := Kσ. If K = k, then we say σ is of the first kind and else, we say it
is of the second kind. Involutions of the first kind can further be subdivided
into types because of the following :

Theorem 1.3 ([KMRT], Page 1). Let A = Mn(k). Then there is a 1 − 1

correspondence between the set of k-linear involutions of A and equivalence
classes of symmetric or skew-symmetric nondegenerate bilinear forms on V

modulo multiplication by a factor in k∗.

Thus if σ is an involution of the first kind on A/k, then we say σ is

- orthogonal if over some splitting field L/k of A, the involution σ ⊗ L
corresponds to a symmetric bilinear form under the above correspon-
dence.

- symplectic if over some splitting field L/k of A, the involution σ ⊗ L
corresponds to a skew-symmetric bilinear form under the above corre-
spondence.

If A = Mn(k), then the transpose is an example of an orthgonal involution.
The canonical involution on the Hamiltonian quarternions H = R⊕R i ⊕
R j ⊕ R k sending x −x for x ∈ {i, j, k} is a symplectic involution.

There is a notion of hyperbolicity for an involution. IfK/k is a field extension,
σ is hyperbolic if and only if there exists an idempotent e ∈ A such that
σ(e) = 1− e. ([KMRT], Prop 6.7, Pg 74).
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Chapter 2

Examining Clifford’s algebras

‘Structures are the weapons of the mathematician.’

- Bourbaki

Clifford algebras make their presence felt throughout this thesis by either
showing up as themselves or helping define other crucial algebraic struc-
tures. Thus, we begin by examining Clifford algebras in earnest. The main
sources of references for this chapter are the seminal paper of Professor Clif-
ford ([Cliff]), the pleasant notes in ([Knus88], Chapter IV) and ([Tignol93],
Chapter II) and of course ([KMRT], Chapter II, §8).

2.1 Generalizing quaternions

Named after British mathematician William Kingdon Clifford, they were first
written down by the latter under the name geometric algebras in an attempt
to generalize the quaternions and the biquaternions to higher dimensions.

The Hamiltonian quaternions is a four dimensional real vector space H =

R⊕R i ⊕ R j ⊕ R k made into a non-commutative algebra by the relations
i2 = j2 = k2 = −1 and k = ij = −ji.

Instead imagine four points a0, x1, x2 and x3 in the three dimensional real
space so that ‘x1, x2 and x3 are at an infinite distance from a0 in three
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directions at right angles to one another’. That is, imagine a0 as the origin,
x1, x2 and x3 as the points at infinity on the X, Y and Z-axes respectively.
Let a0x1 (or more generally xy) represent a unit length placed anywhere on
the x-axis (or more generally on the line joining the points x and y) but
measured in the positive direction. Thus xy = −yx. When generalizing to
higher dimensions, the triple xyz represents a unit area on the plane through
the points x, y and z etc.

One can view the quaternions as operators on the three dimensional real space
also. For instance, view the Hamiltonian vector i ∈ H as the operator which
rotates the line segment a0x2 into the line segment a0x3. Thus, remembering
the right hand thumb rule, we have

i (a0x2) = a0x3, j (a0x3) = a0x1, k (a0x1) = a0x2

Thus i translates x2 to x3 and we write i = x2x3 and similarly j = x3x1 and
k = x1x2. Rewriting the above relations, we get some multiplicative relations
on the xi. For instance,

i (a0x2) = a0x3

=⇒ x2 (x3a0)x2 = a0x3

=⇒ x2 (−a0x3)x2 = a0x3

=⇒ x2a0 (x2x3) = a0x3

=⇒ −x2
2a0x3 = a0x3

=⇒ x2
2 = −1.

Now abusing some notation meaningfully, let x1 in fact represent x2x3 (which
is how we are viewing i also), x2 represent x3x1 (which represents j also) and
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x3 represent x1x2 (which represents k also). Then, we recover the Hamilto-
nian quaternion relations. As an example,

ij = (x2x3) (x3x1) = (x1) (x2) = x1x2 = k

Clifford’s generalization leads to the construction of the geometric n algebra
which is the real algebra generated by x1, x2, . . . , xn satisfying the relations
x2
r = −1 and xrxs = −xsxr for all s 6= r. This, we will see in the next section

is exactly the Clifford algebra defined for the quadratic form 〈−1,−1, . . . ,−1︸ ︷︷ ︸
n

〉

Note that (x1x2 . . . xm)2 = (−1)
m(m+1)

2 . Thus the Hamiltonian quaternion
algebra is simply the geometric 2 algebra on two generators i = x1 and
j = x2. Clifford goes on to determine the dimension of the n-algebra and
shows that such algebras are in fact tensor products of quaternion algebras if
n is even. And if n is odd, the even subalgebras of the n-algebras are tensor
products of quaternion algebras!

2.2 Clifford algebra of a quadratic form

For the rest of this chapter, let k be a field of characteristic not 2 and let (V, q)

be a finite dimensional regular quadratic space of dimension n over k. We
are looking for a unital k-algebra C(V, q) and a k-linear map i : V → C(V, q)

such that i(v)2 = q(v).

We define the Clifford algebra of the quadratic space (V, q) to be the one
which is universal for this property. Namely, if A is another such algebra
with j : V → A satisfying j(v)2 = q(v), then there exists a unique k-algebra
morphism f making the following diagram commute.
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V C(V, q)

A

i

j

∃!f

The universal property guarantees that the Clifford algebra is unique up to
isomorphism if it exists. Let us now give the most obvious way of constructing
an algebra which satisfies the universal property: by going modulo the tensor
algebra via the neccesary relations. More precisely, let T (V ) stand for the
tensor algebra

T (V ) = k ⊕ V ⊕ V ⊗k V ⊕ . . .

There is a natural k-linear map ĩ : V → T (V ) sending v  v. Since we want
v2 to pinch down to the scalar q(v), we set

C(V, q) :=
T (V )

J
,

where J is the two sided ideal generated by {v ⊗ v − q(v) | ∀v ∈ V }. The
map i : V → C(V, q) is the natural one induced by ĩ.

This should remind you of the construction of the exterior algebra ΛV . In
fact, it is nothing but the Clifford algebra construction if we considered the
(highly singular!) trivial quadratic form 〈0, 0, . . . , 0〉.

Using the universal property, one can check that the Clifford algebra con-
struction behaves well under field extensions. That is if L/k is a field exten-
sion, then

C(V, qL) ' C(V, q)⊗k L.
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And just like the exterior algebra, the dimension of C(V, q) as a k-vector
space is 2n. In fact, we also have the stronger

Theorem 2.1 (Poincaré - Birkhoff - Witt). If e1, e2, . . . , en form a k-basis
of V , then the following is a k-basis of C(V, q)

{1, i (ej1) i (ej2) . . . i (ejr) | 1 ≤ r ≤ n, 1 ≤ j1 < j2 . . . < jr ≤ n}.

Let us work out the case when n = 1. Let q = 〈a〉 for a ∈ k∗ and let V = ke

where e is a basis vector of V . Thus T (V ) ' k[t], the polynomial ring and we
identify e with t and in general V with monomials of degree one {βt | β ∈ k}.

Then C(V, q) ' k[t]/(t2 − a) which is a two dimensional vector space over k.
And {1, βt} for any β ∈ k \ 0 is a k-basis of C(V, q). For a complete proof,
see ([Knus88], Chapter IV, Thm 5).

Note that the above theorem implies that the map i : V → C(V, q) is injec-
tive. And therefore we identity V with i(V ) in C(V, q).

2.2.1 The even Clifford algebra C0(V, q)

The tensor algebra T (V ) is clearly Z≥0 graded, i.e. elements in V ⊗i have
degree i. Now C(V, q) is T (V ) modulo the ideal generated by {v⊗ v− q(v)}.
Note that v⊗v−q(v), though not a homogeneous element, at least is of even
degree. Thus C(V, q) is naturally Z/2Z graded.

Separating out the elements of odd and even degree, we get the following
decomposition

C(V, q) = C0(V, q)⊕ C1(V, q),



16

where C0(V, q) is a k-subalgebra consisting of elements of even degree. How-
ever C1(V, q), the subset of elements of odd degree is no longer an algebra
(squares of odd degree elements have even degree!) but simply a module
over C0(V, q). The dimensions of C0(V, q) and C1(V, q) as k-vector spaces are
both 2n−1.

Definition 2.2 ([Tignol93], Lemma 2.1). We can in fact alternatively also
construct the even Clifford algebra as a quotient of the tensor algebra of V ⊗V
as follows :

C0 (V, q) =
T (V ⊗ V )

I1 + I2

,

where

- I1 is the two-sided ideal generated by elements of the form v⊗ v− q(v)

for v ∈ V ,

- I2 is the two-sided ideal generated by elements u⊗v⊗v⊗w−q(v)u⊗w
for u, v, w ∈ V .

2.2.2 Structure theorem for Clifford algebras

Theorem 2.3. Let (V, q) be a non-singular quadratic space of dimension
equal to n over k.

1. If n = 2m, then C(V, q) is a central simple algebra of dimension 2n

over k. The center of the even Clifford algebra, Z = Z (C0(V, q)), is an
étale quadratic extension of k which matches with the discriminant of
q. And C0(V, q) is a central simple algebra of dimension 2n−2 over Z.
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2. If n = 2m + 1, then C(V, q) is a central simple algebra of dimension
2n−1 over Z ′ = Z (C(V, q)). The even Clifford algebra, C0(V, q) is a
central simple algebra of dimension 2n−1 over k. Further

C0(V, q)⊗k Z ′ ' C(V, q).

We restrict ourselves to analyzing the low dimension cases and refer the
reader to ([Knus88], Chapter IV, Section IV, Thm 8) for the complete proof.

When n = 1, we have already seen in the proof of Theorem 2.1 that C(V, q) =

k[t]/(t2 − a) when q = 〈a〉. Thus C(V, q) is itself commutative and hence
Z ′ = C(V, q). Since char k 6= 2, Z ′ is either a separable field extension
of k (if a is not a square in k∗) or k × k (if a is a square in k∗). Hence
C(V, q) ' k[t](t2− a) ' k.1⊕ k.t ' C0(V, q)⊕C1(V, q). Thus C0(V, q) is just
k which finishes the proof in this case.

Let n = 2 and let q = 〈a, b〉. Let v, w be a k-basis of V such that q (v) = a,
q (w) = b and bq(v, w) = 0. Thus in C(V, q),

(v + w)2 = q(v + w)

= q(v) + q(w) + 2bq(v, w)

= q(v) + q(w)

= v2 + w2.

This implies vw = −wv. Thus C(V, q) = k.1⊕k.v⊕k.w⊕k.vw where v2 = a,
v2 = b and vw = −wv. Thus it is the generalized quaternion algebra (a, b),
which is a central simple algebra of dimension 4 over k.
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Since (vw)2 = (vw)(vw) = −v2w2 = −ab,

C0(V, q) ' k.1⊕ k.vw ' k[t]/(t2 + ab),

which is a two dimensional commutative étale algebra over k. Note that the
discriminant of q = 〈a, b〉 is (−1)

(2)(2−1)
2 = −ab. Hence we are done.

2.2.3 Involutions on Clifford algebras

Let us put the universal property satisfied by Clifford algebras to use to
define involutions on them. Let C = C(V, q) and consider Cop, the opposite
k-algebra along with the natural k-linear map j : V → Cop. Clearly j(v)2 =

i(v)2 = q(v) and hence by the universal property of Clifford algebras, we get
a k-algebra map τ : C → Cop which sends v  v.

V C

Cop

i

j

∃!τ

Interpreting τ as a map from C to itself, it becomes an anti-homomorphism.

τ : C → C, τ(xy) = τ(y)τ(x).

Thus τ 2 = τ ◦ τ is a legitimate homomorphism from C to itself which sends
v ∈ V to itself. It is an easy check to see that τ 2 = id |C . Thus we have
manufactured an involution τ : C → C over k, which we will henceforth term
the canonical involution of C(V, q).

The involution τ preserves the Z/2Z grading of C(V, q) and hence restricts
to an involution τ0 : C0(V, q) → C0(V, q) over k which we again call the
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canonical involution of C0(V, q). It turns out that the dimension of V also
determines the type of the involution τ0 which we record below.

Theorem 2.4 ([KMRT], Prop 8.4, Pg 89). Let (V, q) be a non-singular
quadratic space of dimension n over field k which is not of characteris-
tic 2. Let τ0 denote the canonical involution on the even Clifford algebra
C0 = C0(V, q). Then

1. If n is odd, then C0 is a c.s.a over k and τ0 is

→ orthogonal if n = 8m± 1.

→ symplectic if n = 8m± 3.

2. If n is even, then C0 is a c.s.a over Z, the discriminant extension of q
and τ0 is

→ unitary if n = 4m+ 2.

→ of the first kind if n = 4m, that is τ0 fixes Z. Further τ0 is

– orthogonal if n = 8m′.

– symplectic if n = 8m′ + 4.

The involutions τ and τ0 give isomorphisms of C(V, q) and C0(V, q) with
their respective opposite algebras. Thus we immediately see that in the
appropriate Brauer groups, these algebras are in fact of order at most two,
or as we like to call it, two torsion. Of course, a little more work is needed
to show the fact that they can be broken up into quaternions.

As a satisfying corollary, we get that isotropicity of a quadratic form implies
hyperbolicity of the involutions on its Clifford and even Clifford algebra.
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Corollary 2.5. Let (V, q) be isotropic. Then τ and τ0 are hyperbolic involu-
tions.

Proof. An involution σ is hyperbolic if we can find an idempotent e such
that σ(e) = 1 − e. Since q is isotropic, there is a hyperbolic plane in V .
That is, there are two vectors v, w ∈ V such that q(v) = 1, q(w) = −1 and
bq(v, w) = 0. Thus vw = −wv and (v + w)2 = (v − w)2 = 0. Then set

e =
(v + w)(v − w)

4
=
v2 + wv − vw − w2

4
=

1 + wv

2
.

Then we have e2 = e for

(1 + wv)2

4
=

1 + (wv)2 + 2wv

4
=

1− w2v2 + 2wv

4
=

1 + wv

2
.

Now e ∈ C0(V, q) and τ(e) = τ0(e) = 1+vw
2

= 1−wv
2

= 1− e.

2.3 Clifford algebra of an algebra with orthog-

onal involution

A quadratic form or equivalently, a symmetric bilinear form b : V × V → k

induces an orthogonal involution σb : Endk(V )→ Endk(V ) by the relation

b(x, f(y)) = b(σb(f)(x), y), ∀f ∈ Endk(V ), ∀x, y ∈ V.

Note that this implies that the adjoint involutions of bilinear form b and a
scaled version λb for λ ∈ k∗ are the same. i.e σλb = σb.
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In this section, we would like to define the notion of a Clifford algebra for an
algebra with an orthogonal involution using the definition in the quadratic
form case and recover similar structure theorems about its shape and its
involutions.

The immediate stumbling block is that C(V, q) is not necessarily isomorphic
to C(V, λq) for λ ∈ k∗. For instance, compare the Clifford algebras of q1 = 〈1〉
and q2 = 〈λ〉 for λ ∈ k∗ \ k∗2. Then C (V, q1) = k × k whereas C (V, q2) is
a field extension k

(√
λ
)
. However the even Clifford algebra behaves better

and is therefore the right object to be generalized!

Before we write down the definition of a general Clifford algebra, let us trans-
late Definition 2.2 from the language of quadratic forms into the language
of algebras with involutions. If (V, q) is a non-singular quadratic space of
dimension n over k, then A = Endk(V ) is a central simple algebra of degree
n and σ = σq, the adjoint involution of q. We go further and identify A with
V ⊗ V as follows :

V ⊗ V V ⊗ V ∗ Endk(V )

v ⊗ w v ⊗ [x 7→ bq(w, x)] [x 7→ vbq(w, x)] .

' '

Under this identification, the trace map Tr : A→ k sends v ⊗ w  bq(v, w).
Thus q(v) = Tr(v ⊗ v).

Let us calculate what f = σq(v ⊗ w) is where σq is the adjoint involution.
We guess (correctly!) that it has to be g = w ⊗ v and show it as follows :
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bq(σq(v ⊗ w)(x), y) = bq(x, v ⊗ w(y))

= bq(x, vbq(w, y))

= bq(w, y)bq(x, v)

bq(w ⊗ v(x), y) = bq(wbq(v, x), y)

= bq(w, y)bq(v, x).

Thus bq(f(x), y) = bq(g(x), y) for all x, y ∈ V which implies f(x) = g(x)

for all x ∈ V which implies f = g. This is because our quadratic form is
non-singular. Also similarly one can check or at least believe with impunity
that multiplication in A behaves as follows :

(v ⊗ w)(v′ ⊗ w′) = vbq(w, v
′)⊗ w′. (∗)

We would like to imitate Definition 2.2 in as straightforward a manner as
possible. For the definition of the analogue of ideal I1, we can replace ele-
ments of the shape v⊗ v with the the elements of A fixed by the orthogonal
involution σ and use the reduced trace of A instead of the quadratic form.

However for the analogue of ideal I2, we need to work harder to understand
what the elements of the shape u⊗ v ⊗ v ⊗ w correspond to. But the other
part is easy, namely the analogue of q(v)u ⊗ w. Define the multiplication
map m : A ⊗ A → A which sends a ⊗ b  ab. Using (*) above, it is clear
that q(v)u⊗ w = m(u⊗ v ⊗ v ⊗ w).

We now proceed to give the construction of a map σ2 : A ⊗ A → A ⊗ A

(without proof) such that when σ = σq, we have
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σ2(u⊗ v ⊗ v′ ⊗ w) = u⊗ v′ ⊗ v ⊗ w. (∗∗)

Recall the Sandwich isomorphism Sand : A ⊗ A → Endk(A) which sends
a ⊗ b  [x 7→ axb]. In a manner somewhat reminiscent of defining the
adjoint involution, we define the map σ2 : A⊗ A→ A⊗ A via the following
property : For all u ∈ A⊗ A and a ∈ A

Sand(σ2(u))(a) = Sand(u)(σ(a)).

For a proof that such a σ2 satisfies (**), see ([Tignol93], Lem 2.3). We hope
that the above discussion will aid in making the following definition of the
Clifford algebra less of a mystery than it might seem at first glance.

Definition 2.6 ([Tignol93], Def 2.4). Let (A, σ) be a central simple algebra
over k with an orthogonal involution and let T (A) denote the tensor algebra
on A. We define the Clifford algebra of (A, σ) (which generalizes the even
Clifford algebra in the split case) to be

C (A, σ) =
T (A)

J1 + J2

,

where

- J1 is the ideal generated by elements of the form s− Trd(s) for s ∈ A
such that σ(s) = s.

- J2 is the ideal generated by elements of the form u−m(u) for u ∈ A⊗A
such that σ2(u) = u.
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The involution σ : T (A)→ T (A) which sends

a1 ⊗ a2 . . .⊗ ar  σ(ar)⊗ . . .⊗ σ(a2)⊗ σ(a1),

descends to an involution on C (A, σ) which we call its canonical involution.
This exactly matches with τ0 when A = Endk(V ). And the structure the-
orems 2.3 and 2.4 pertinent to the even Clifford algebra and its canonical
involution for even degree algebras (A, σ) in the split case go through in the
general case without any change. Namely,

Theorem 2.7 ([KMRT], Thm 8.10, Prop 8.12, Pg 94-95). Let (A, σ) be a
central simple algebra of degree n = 2m with orthogonal involution over field
k which is not of characteristic 2. Let τ0 denote the canonical involution on
its Clifford algebra C = C (A, σ). Then C is a c.s.a over Z of degree 2m−1

where Z is the discriminant extension of (A, σ). The canonical involution τ0

is

→ unitary if n = 4m′ + 2.

→ of the first kind if n = 4m′, that is τ0 fixes Z. Further τ0 is

– orthogonal if n = 8m′′.

– symplectic if n = 8m′′ + 4.
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2.4 Examples serve better than description

• If q = 〈a〉, then C(V, q) = k[t]/(t2 − a), the étale quadratic extension
of k. The even Clifford algebra is simply k and τ0 is the identity map
on k.

• If q = 〈a, b〉, then C(V, q) = (a, b), the generalized quaternion algebra.
The canonical involution τ of C(V, q) is the usual involution on the
quaternions sending i −i and j  −j.

The even Clifford algebra is k[t]/(t2 + ab), the discriminant extension
and τ0 is the non-trivial k-morphism of Z sending

√
−ab to −

√
−ab.

• If q = 〈−1,−1, . . . ,−1︸ ︷︷ ︸
m

〉, then C(V, q) is the geometric m-algebra as

defined by Clifford (c.f. Section 2.1).

• If q is the hyperbolic quadratic form of dimension 2n, then C(V, q) is
M2n(k).

• If A = Q1 ⊗ Q2 where each Qi is a quaternion algebra over k and
σ = γ1 ⊗ γ2 where γi is the canonical involution on Qi, then by
([Tignol93], Ex 2.10) or ([KMRT], Ex 8.19)

C (A, σ) = Q1 ×Q2.
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Chapter 3

A walk through the classification

of linear algebraic groups

‘I only went out for a walk, and finally concluded to stay out till sundown, for

going out, I found, was really going in.’
- John Muir

In this chapter, we recall very briefly what it means for a (smooth) linear
algebraic group to be reductive or semi-simple (simply connected or adjoint).
We then present, in a rather terse manner, the classification due to Weil of
classical absolutely simple simply connected and adjoint groups in terms of
algebras with involutions. We concentrate on groups of type Dn and define
some related groups like the Clifford group and the extended Clifford group
for they will prove to be of use later on in this dissertation. For a reference,
we suggest ([KMRT], Chapter VI, §26) or some parts of ([Me98], §4 - 9).

3.1 Some adjectives of linear algebraic groups

For the rest of this section, let G denote a smooth connected linear algebraic
over perfect field k. It is said to be unipotent if all its elements are unipotent.
An example would be the additive group Ga.
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G/k is said to be reductive if G×k k has no nontrivial, connected, unipotent,
normal subgroups. An example would be GLn. In general, the maximal
connected unipotent normal subgroup of G is called its unipotent radical,
denoted Ru(G). The quotient G/Ru(G) is reductive .

G/k is said to be semisimple if it is nontrivial and G ×k k has no nontriv-
ial, connected, solvable, normal subgroups. An example would be SLn. In
general, the maximal connected solvable normal subgroup of G is called its
radical, denoted R(G). The quotient G/R(G) is semisimple.

The unipotent radical Ru(G) is also just the unipotent elements of R(G) and
hence every semisimple group is immediately reductive.

A subtorus T ⊆ G is said to be maximal if it is not contained in a larger
subtorus. It is a theorem of Grothendieck that there always exists a maximal
subtorus T defined over k. A semisimple group G/k is said to be split if it
contains a maximal torus which is k-split. Every semisimple group G/k

becomes split over ksep.

For a split semisimple group G/k with split maximal torus T/k, one can
define using the adjoint representation ad : G → Lie(G), a root system
which in turn defines the root lattice Λr and the weight lattice Λ sandwiching
the character group T ∗ in between

Λr ⊆ T ∗ ⊆ Λ.

The split semisimple group G/k is called simply connected if T ∗ = Λ and
adjoint if T ∗ = Λr. Examples would be SLn and PGLn respectively. A
semisimple group G/k is said to be simply connected (resp. adjoint) if the
split group G×k ksep is so.
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A surjective morphism of algebraic groups with finite kernel is called an
isogeny of algebraic groups. An isogeny is called central if its kernel is cen-
tral. Given any semisimple group G/k, there exists up to isomorphism, a
unique simply connected group G̃ and a unique adjoint group G with central
isogenies G̃ → G and G → G. ([KMRT], Thm 26.7, Pg 364). The group G̃
is said to be the simply connected cover of G.

A semisimple group G is said to be absolutely simple if G×k ksep is simple (i.e
no nontrivial connected normal subgroups). Any simply connected (resp. ad-
joint) semisimple group is a product of Weil restrictions of absolutely simple
simply connected (resp. adjoint) groups. ([KMRT], Thm 26.8, Pg 365).

Let G/k be an absolutely simple semisimple group. Then it is of type An,
Bn, Cn, Dn, E6, E7, E8, F4 or G2. Groups of type An, Bn, Cn or (non-
trialitarian) Dn are termed classical whereas groups of the remaining types
are called exceptional.

3.2 Classical groups á la Weil

Let k be a field of characteristic not 2 and let K/k be such that K = k or a
quadratic étale extension. Let A be an Azumaya algebra over K with invo-
lution σ such that the fixed field Kσ = k. We define its group of similitudes,
Sim (A, σ) to be as follows

Sim (A, σ)(k) := {a ∈ A | σ(a)a ∈ k∗}.

The group of isometries Iso (A, σ) is defined as follows :

Iso (A, σ)(k) := {a ∈ A | σ(a)a = 1}.



29

The multiplier map is defined to be the morphism µ : Sim (A, σ) → Gm

sending a  σ(a)a. Now A is a central simple algebra over K and K∗ is
in the center of Sim (A, σ)(k)∗. Thus one can define the group of projective
similitudes

PSim (A, σ) := Sim (A, σ) /RK/kGm.

Since the torus RK/kGm is quasi-trivial, we have

PSim (A, σ)(k) = Sim (A, σ)(k)/K∗.

If f is an automorphism of A, Skolem-Noether implies f is an inner auto-
morphism, say Int(g) for some g ∈ A∗. Then we have

f ◦ σ = σ ◦ f ⇐⇒ f (σ(a)) = σ (f(a)) ∀ a ∈ A

⇐⇒ gσ(a)g−1 = σ(g)−1σ(a)σ(g) ∀ a ∈ A

⇐⇒ σ(g)g ∈ K∗

⇐⇒ σ(g)g ∈ k∗

⇐⇒ g ∈ Sim (A, σ)(k)

Thus, we have an isomorphism Int : Sim (A, σ)(k)/K∗ → AutK ((A, σ)) (k).

Denote the connected component containing the identity of Sim (A, σ) by
Sim+ (A, σ). Similarly define PSim+ (A, σ), Iso+ (A, σ) and Aut+ (A, σ). Then
PSim+ (A, σ) ' Aut+ (A, σ).

Just to make the reader feel at home, we recall what the above groups are
when A = Endk(V ) and σ = σbq , the involution adjoint to a quadratic form q.
We have Iso (A, σ) = O(q), the group of isometries and Sim (A, σ) is simply
the group GO(q) defined as follows :
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GO(q)(k) = {fλ ∈ End(V ) | q (fλ(v)) = λq(v) ∀ v ∈ V }.

If a ∈ Sim (A, σ)(k) is a similitude, then σ(a)a = λ for some λ ∈ k∗. Taking
reduced norms, we see Nrdk(a)2 = λ2n and hence Nrdk(a) = ±λn. Then a

is a proper similitude if Nrdk(a) = λn and the group of proper similitudes
coincides with Sim+ (A, σ). Thus, we have also

Iso+ (A, σ)(k) = O+ (A, σ)(k) = {a ∈ A | σ(a)a = 1 & Nrdk(a) = 1}.

The classical result due to Weil asserts that classical adjoint groups can al-
ways be phrased in the language of algebras with involutions. More precisely,

Theorem 3.1 (Weil). Any adjoint absolutely simple classical algebraic group
G/k is isomorphic to PSim+ (A, σ) for suitable (A, σ) as above.

3.3 Classification of classical groups

3.3.1 Case I : Simply connected

Let k be a field of characteristic different from 2. An absolutely simple,
simply connected, classical k-group G has one of the following forms :

Type 1An : G = SL1(A) where A/k is a central simple algebra of degree n+ 1.

Type 2An : G = SU (A, σ) where A/K is a central simple algebra of degree n+ 1

where K/k is a quadratic étale extension and σ is a unitary involution
on A with Kσ = k.
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Type Bn : G = Spin(q) where q/k is a quadratic form of dimension 2n+ 1 ≥ 3.

Type Cn : G = Sp (A, σ) := Iso (A, σ) where A/k is a central simple algebra of
degree 2n ≥ 2 and σ is a symplectic involution.

Type Dn : G = Spin (A, σ) where A/k is a central simple algebra of degree
2n ≥ 4 and σ is an orthogonal involution.

3.3.2 Case II : Adjoint

Let k be a field of characteristic different from 2. An absolutely simple,
adjoint, classical k-group G has one of the following forms :

Type 1An : G = PGL1(A) where A/k is a central simple algebra of degree n+ 1.

Type 2An : G = PGU (A, σ) := PSim (A, σ) where A/K is a central simple alge-
bra of degree n + 1 where K/k is a quadratic étale extension and σ is
a unitary involution on A with Kσ = k.

Type Bn : G = O+(q) where q/k is a quadratic form of dimension 2n+ 1 ≥ 3.

Type Cn : G = PGSp (A, σ) := PSim (A, σ) where A/k is a central simple alge-
bra of degree 2n ≥ 2 and σ is a symplectic involution.

Type Dn : G = PGO+ (A, σ) := PSim+ (A, σ) where A/k is a central simple
algebra of degree 2n ≥ 4 and σ is an orthogonal involution.
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3.4 Type Dn details

Let A be a central simple algebra of degree 2n over k with orthogonal invo-
lution σ. Let C (A, σ) denote its Clifford algebra with center Z, the discrim-
inant extension and let σ denote the canonical involution of C (A, σ).

In this section, we would like to introduce the definitions of the Spin group,
the Clifford group and the extended Clifford group which will play a very
important role in Chapter 10. They will involve the Clifford algebras C (A, σ),
the group of proper similitudes GO+ (A, σ) and the projective group of proper
similitudes PGO+ (A, σ), apart from a structure called the Clifford bimodule.

Since more than the definitions of these groups, the exact sequences into
which they fit play a crucial role in our work, we do not give many details
and only list some properties to give the reader a feel for these objects. For
a thorough treatment, we refer her to ([KMRT], Chapter II, §9 and Chapter
III).

3.4.1 The Clifford bimodule

We want to define a structure B (A, σ) called the Clifford bimodule which
should be a left A module and a bi- C (A, σ) module.

Let us only define it for the case when A = Endk(V ) and σ = σq is the
adjoint involution for a quadratic form q. Recall that the full Clifford algebra
C(q) = C0(q)⊕ C1(q). Set the Clifford bimodule to be

B (A, σ) := V ⊗k C1(q).
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Then A = Endk(V ) acts on B (A, σ) on the left by acting on V and C0(q)

acts on B (A, σ) by acting on both sides of C1(q). Notice that the left action
of Endk(V ) and the bi-action of C0(q) commute.

Identifying V ⊗ V with A = Endk(V ) by identifying v ⊗ w with the en-
domorphism [x  bq(w, x)v], we can define an injective A-module map
b : A ↪→ B (A, σ) by identifying the second copy of V as the one sitting
inside C1(q). More precisely,

b : V ⊗ V ↪→ V ⊗ C1(q)

v ⊗ w  v ⊗ w.

Let b(a) = ab for a ∈ A and let Ab denote the image of A in B (A, σ) under
the map b. Note that dimk B (A, σ) = 2n(22n−1) = degA(2degA−1).

The Clifford bimodule can be defined for a general (A, σ) ([KMRT], Chapter
II, §9B) retaining the above properties such that the definition in the split
case agrees with the one given above. We denote the left action of C (A, σ)

on B (A, σ) by ? and the right action by an invisible dot!

3.4.2 The Clifford group

We are now ready to define an interesting group Γ (A, σ) ⊆ C (A, σ) called
the Clifford group. Set

Γ (A, σ) := {c ∈ C (A, σ)∗ | c−1 ? Abc ⊆ Ab}.
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Lemma 3.2.

Γ (A, σ) := {c ∈ C (A, σ)∗ | c−1 ? 1bc ⊆ Ab}.

Proof. Clearly by definition c ∈ Γ (A, σ) implies c−1 ? 1bc ⊆ Ab since 1 ∈ A.

Conversely, let c−1?1bc = x ∈ Ab and let a ∈ A. Since b is an A module map,
we have a1b = ab. Then since the left action of A on B (A, σ) commutes with
the bi-C (A, σ) action, we have

c−1 ? abc = c−1
(
a1b
)
c = a

[
c−1 ? 1bc

]
= ax ∈ Ab.

When A = Endk(V ) and σ = σq, the group Γ (A, σ) is called the special
Clifford group Γ+(q). It has an easier description

Γ+(q) := {c ∈ C0(q)∗ | c−1V c ⊆ V }.

This is because

c ∈ Γ (A, σ) ⇐⇒ c−1 ? (V ⊗ V ) c ⊆ V ⊗ V

⇐⇒ c−1 ? (v ⊗ w) c ⊆ V ⊗ V ∀ v, w ∈ V

⇐⇒ v ⊗
(
c−1wc

)
⊆ V ⊗ V ∀ v, w ∈ V

⇐⇒ c−1wc ∈ V ∀ w ∈ V

⇐⇒ c ∈ Γ+(q).
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3.4.3 The vector representation

Since we have done all the hard work of defining Γ (A, σ) and B (A, σ), the
vector representation is easy to define. It is simply the morphism

χ : Γ (A, σ)→ Ab ' A

c c−1 ? 1bc

Note that χ makes sense because of Lemma 3.2. When A = Endk(V ) and
σ = σq, then by ([KMRT], Prop 13.12, Pg 179), χ is the representation

χ : Γ+(q)→ Endk(V )

c 
[
x 7→ cvc−1

]
It is an easy check that χ(c) ∈ O(q). This is because for each v ∈ V ,

q(cvc−1) = (cvc−1)2 = cv2c−1 = q(v).

But in fact more is true, namely χ(c) is actually in O+(q). Also we observe
that Γ+(q) ⊂ Sim (C0(q), σ). This is because if c ∈ Γ+(q), then cvc−1 = w ∈
V . Let by abuse of notation, σ also denote the canonical involution on C(q).
Thus for each v in V

w = cvc−1 = σ (w) = σ
(
cvc−1

)
= σ (c)−1 v σ (c) .

Thus σ(c)cv = v σ(c)c for each v ∈ V . Thus σ(c)c ∈ Z (C(q)) = k and hence
c ∈ Sim (C0(q), σ).
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Recall that the map Int induces an isomorphism PGO (A, σ) ' Autk (A, σ).
Every automorphism θ ∈ Autk (A, σ) induces an automorphism, which we
will call C(θ) ∈ Autk (C (A, σ), σ). Thus by composition, we get the following
map (which we will continue calling C)

C : PGO (A, σ)→ Autk (C (A, σ), σ) .

Note that C(g) needn’t be identity on Z for g ∈ PGO (A, σ). However C
restricted to PGO+ (A, σ) does land in AutZ (C (A, σ), σ). Thus we get a
morphism C : PGO+ (A, σ) → AutZ (C (A, σ), σ) ([KMRT], Prop 13.2 &
13.4) and hence one from O+ (A, σ) to AutZ (C (A, σ), σ).

All this with a little bit more work for the non-split case leads to the following
proposition

Proposition 3.3 ([KMRT], Prop 13.15, Pg 179). The Clifford group Γ (A, σ)

is contained in Sim (C (A, σ), σ). The map χ fits into the following commu-
tative diagram with exact rows :

1 k∗ Γ (A, σ) O+ (A, σ) 1

1 Z∗ Sim (C (A, σ), σ) AutZ (C (A, σ), σ) 1

χ

C

Int
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3.4.4 The Spin group

Recall that in showing that Γ (A, σ) ⊆ Sim (C (A, σ), σ), we showed (at least
in the split case) that σ(c)c ∈ k∗ for c ∈ Γ (A, σ). Thus, one can define the
Spinor norm map

Sn : Γ (A, σ)→ Gm

c σ(c)c

The spin group Spin (A, σ) is defined to be the kernel of the Spinor norm
map, namely

1→ Spin (A, σ)→ Γ (A, σ)
Sn−→ Gm → 1.

3.4.5 The extended Clifford group

Just for this subsection, we assume degA = 2n ≥ 4. Recall the morphism
C : PGO+ (A, σ)→ AutZ (C (A, σ), σ) ([KMRT], Prop 13.2 & 13.4). This is
in fact injective as we have assumed degA = 2n ≥ 4.

The group of similitudes of the Clifford algebra, Sim (C (A, σ), σ), covers
AutZ (C (A, σ), σ) and the Clifford group, Γ (A, σ) covers O+ (A, σ) by the
vector representation. We would like to define an intermediate group called
the extended Clifford group Ω (A, σ) which covers PGO+ (A, σ).
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We now define Ω (A, σ) to be the inverse image of the image of PGO+ (A, σ)

in Sim (C (A, σ), σ). More precisely,

Ω (A, σ) := {c ∈ Sim (C (A, σ), σ) | Int(c) ∈ C
(
PGO+ (A, σ)

)
}.

1 k∗ Γ (A, σ) O+ (A, σ) 1

1 Z∗ Ω (A, σ) PGO+ (A, σ) 1

1 Z∗ Sim (C (A, σ), σ) AutZ (C (A, σ), σ) 1

χ

π

χ′

C

Int

Figure 3.1: The extended Clifford group
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Chapter 4

A crash course on group

cohomology

‘Now, what I want is, Facts.’

- Charles Dickens, Hard Times

In this chapter, we introduce the language of finite group cohomology via
a quick succesion of definitions, facts and more facts mostly without proof.
For an extremely pleasant and elementary introduction to the subject via the
non-homogeneous cochains route which walks through the works of Hilbert,
Noether, Schreier, Baer et al in group theory, we refer to the excellent article
by R. Sridharan ([Sridharan05]) which convinces the reader that cohomology
theory is roughly the theory of obstructions. We redirect the reader interested
in getting to the relevant algebraic nitty-gritties in as short a time as possible
to Atiyah and Wall’s exposition on the topic in ([CF67], Chapter IV). For
the more topologically minded reader with time on her hands, we recommend
([Brown]) which covers a lot more theory and provides many more examples.
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4.1 The Ext functor

Let G be a finite group and let ZG denote the group ring on G. Thus,

ZG = ⊕g∈G Z g,

where the algebra mutliplication extends the group operation Z bilinearly.
Let A be an abelian group which is also a ZG module, which we term a G
module. The integers, Z, will always be a trivial G module unless otherwise
specified. Thus g.n = n for g ∈ G and n ∈ Z. We define the covariant left
exact functor

(−)G : (G - Modules)→ (Abelian groups)

A HomZG (Z, A)

Let us examine what the abelian group HomZG(Z, A) is. If f is an element
in this group, it is a homomorphism compatible with the action of G. Thus
f(g.1) = g.f(1) for g ∈ G. Since Z is a trivial G-module, g.1 = 1 and hence
g.f(1) = f(1) ∀ g ∈ G. Thus f(1) ∈ AG, the subgroup of elements pointwise
fixed by G. Since deciding where f takes 1 decides it completely, we can and
do identify HomZG (Z, A) with AG which justifies the name of the functor!

Left exactness simply means that if 0 → A → B → C is an exact sequence
of G-modules, then 0 → AG → BG → CG is an exact sequence of abelian
groups. Then the cohomology groups Hq (G,A) are defined to be the right
derived functors1 of (−)G which correspond to the Ext groups ExtqZG (Z, A).

1Of course for derived functors to make sense, we need our category of ZG modules to
have enough injectives (Stacks Project : Tag 01D8)

http://stacks.math.columbia.edu/tag/01D8
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4.1.1 Recipes for computing cohomology

To explain briefly what exactly a right derived functor is and how one can go
about computing it, we need the notion of injective and projective modules
which we introduce in the following propostions.

Proposition 4.1 ([Brown], Prop 8.1, 8.2). Let R be a unital ring and let
P be a (left) R-module. We say P is projective if it satisfies the following
equivalent conditions

1. If M ′ i−→ M
j−→ M ′′ is an exact sequence of R-modules and there is a

morphism φ : P →M such that j ◦φ = 0, then there exists a morphism
ψ : P →M ′ such that ψ ◦ i = φ.

P

M ′ M M ′′

φ
0

ψ
i j

2. The functor HomR(P,−) is exact.

3. If M π−→ M → 0 is an exact sequence of R-modules and there is a
morphism φ : P → M , then there exists a lift morphism ψ : P → M

such that π ◦ ψ = φ.

P

M M 0

φ
ψ

π

4. Every short exact sequence of R-modules 0 → M ′ → M → P → 0

splits.

5. P is a direct summand of a free R-module.
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Proposition 4.2. Let R be a unital ring and let Q be a (left) R-module. We
say Q is injective if it satisfies the following equivalent conditions

1. The functor HomR(−, Q) is exact.

2. If 0 → M ′ i−→ M is an exact sequence of R-modules and there is a
morphism φ : M ′ → Q, then there exists a extension morphism ψ :

M → Q such that ψ ◦ i = φ.

0 M ′ M

Q

i

φ
ψ

3. Every short exact sequence of R-modules 0 → Q → M → M ′′ → 0

splits.

Now we are ready to define right derived functors and hence the cohomology
or the Ext groups. Let R = ZG, let A be an R-module and let F be our
left exact functor (−)G. Pick an injective resolution2 of A in the category of
R-modules.

0→ A→ Q0
d1−→ Q1

d2−→ Q2 → . . .

Applying F to the above sequence and deleting the term F (A), we get a
complex which need no longer be exact.

0→ F (Q0)
F (d1)−−−→ F (Q1)

F (d2)−−−→ F (Q3) . . .

2There always exists one in this category and the cohomology groups don’t depend on
the choice of the injective resolution.
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However, since it is still a complex, the images are contained in their neigh-
bouring kernels and one can compute the homology groups which we call
right derived functors of F . More precisely,

RF q(A) :=
Kernel F (dq+1)

Image F (dq)
.

For this particular functor F = (−)G, the right derived functors define the
cohomology groups.

ExtqZG (Z, A) = Hq (G,A) := RF q(A).

Another recipe for computing Hq(G,A)

Step I : Pick a projective resolution3 of Z as a ZG module.

. . .→ P2
d2−→ P1

d1−→ P0 → Z→ 0.

Step II : Apply the contravariant functor F ′(−) = HomZG(−, A) and delete
the term F ′(Z) to get the following complex

0→ F ′ (P0)
F ′(d1)−−−→ F ′ (P1)

F ′(d2)−−−→ F ′ (P2)→ . . .

Step III : Take homology to get

Hq (G,A) =
Kernel F ′ (dq+1)

Image F ′ (dq)
.

3This process doesn’t depend on the choice of the projective resolution
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4.1.2 Connecting maps

An important part of cohomology theory is the existence of functorial con-
necting maps which we summarize in the following proposition.

Proposition 4.3 ([CF67], Chapter IV, Thm 1). Let G be a finite group and
let A,B be G-modules.

1. If f : A → B is a map of G-modules, then we get a canonical map
Hq(G,A) → Hq(G,B) for each q ≥ 0. The map at the zero-th level is
simply the restriction of f to AG, namely f |AG : AG → BG.

2. For a short exact sequence of 0 → A → B → C → 0 of G-modules,
there exist functorial connecting maps δq : Hq(G,C)→ Hq+1(G,A) such
that the following (very) long sequence is exact

. . .→ Hq(G,A)→ Hq(G,B)→ Hq(G,C)
δq−→ Hq+1(G,A)→ . . .

4.2 A nice ZG projective resolution of Z

In this section we define the standard resolution of Z as a ZG module which is
extremely helpful in defining cochains and actually computing cohomologies.
Let Gi := G×G× . . .×G︸ ︷︷ ︸

i

, the direct product of i-copies of G and let ZGi

denote the free abelian group on Gi. This is a ZG module as follows :

g (g0, g1, . . . , gi−1) = (gg0, gg1, . . . , ggi−1) .

In fact, it is a free ZG module. We have just found the terms of our nice
projective resolution of Z. Just set Pi−1 = ZGi. Now we only need to find
maps between them.
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The easiest map to define is probably the augmentation morphism ε : P0 =

ZG→ Z which sends g  1 for each g ∈ G. Define di : Pi → Pi−1 for i ≥ 1

to be the familiar map from algebraic topology as follows :

Pi = ZGi+1 Pi−1 = ZGi

(g0, g1, . . . , gi)
∑i

j=0(−1)j (g0, g1, . . . , ĝj, . . . , gi)

di

It is an exercise in unravelling definitions (which everyone claims everyone
else must do once in life!) that the following is a complex

P := . . . . . . . . .→ P2
d2−→ P1

d1−→ P0
ε−→ Z→ 0. (∗ ∗ ∗)

Proposition 4.4. The complex P defined above (***) is in fact a resolution.

Proof. We use a nice trick from homology ([Brown], Prop 0.1), namely that
of constructing a homotopy between the identity map id |P on the complex
P and the zero map 0|P . This in turn forces that the homology groups of P
are trivial and therefore, that P is in fact a resolution.

More explicitly, we would like to construct maps hi : Pi → Pi+1 such that
di+1 ◦ hi + hi−1 ◦ di = id |Pi

.

. . . Pi+1 Pi Pi−1 . . .

. . . Pi+1 Pi Pi−1 . . .

di+1 di

hi hi−1

di+1 di
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Pretend that we have done so. Then let x ∈ Kernel di ⊆ Pi, i.e. di(x) = 0.
Then x = id(x) = (di+1 ◦ hi + hi−1 ◦ di) (x) = di+1 (hi(x)), which shows that
x ∈ Image di+1.

Fix an element g ∈ G. We leave you to check that the maps hi : Pi → Pi+1

defined below do indeed work.

hi (g0, g1, . . . , gi) = (g, g0, g1, . . . , gi)

4.2.1 Rewriting the complex F ′ (Pi)

The ith term Pi of the standard resolution P of Z is ZGi+1. Applying the
functor F ′(−) = HomZG (−, A), we get

F ′ (Pi) = HomZG

(
ZGi+1, A

)
.

We can replace F ′ (Pi) by Maps (Gi, A) which we will call P ∗i by the following
identification

HomZG

(
ZGi+1, A

) ∼= Maps
(
Gi, A

)
f : ZGi+1 → A f̃ : Gi → A

where f̃ (g1, . . . , gi) := f (1, g1, g1g2, . . . , g1g2 . . . gi).

Thus the new maps in the complex are

P ∗i = Maps
(
Gi, A

) d′i−→ P ∗i+1 = Maps
(
Gi+1, A

)
where d′i(f̃) : Gi+1 → A sends
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(g1, g2, . . . , gi+1) g1f̃(g2, . . . , gi+1)

+
i∑

j=1

(−1)j f̃ (g1, g2, . . . , gj−1, gjgj+1, gj+2, . . . , gi+1)

+ (−1)i+1f̃ (g1, g2, . . . , gi) .

4.3 Cocycles and coboundaries in low dimen-

sions

In this section, we give explicit formulae for low dimension cocycles and
coboundaries (kernels and images of the d′i) for ease of reference later on.
But first, let us write down the first few terms of the complex P ∗i .

0 P ∗0 P ∗1 P ∗2 P ∗3 . . .

0 Maps(G0, A) Maps(G1, A) Maps(G2, A) Maps(G3, A) . . .

d′0 d′1 d′2

d′0 d′1 d′2

Level zero

P ∗0 = Maps(G0, A) is simply the set A. And for a ∈ A, d′0(a) : G→ A is the
map sending g  ga− a. The elements of the kernel of d′0 called 0-cocycles
are thus simply elements a ∈ AG. And finally

H0(G,A) =
{0− cocyles}

0
= AG.
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Level one

P ∗1 = Maps(G,A) and for f : G→ A ∈ P ∗1 , we have

d′1(f)(g, h) = gf(h)− f(gh) + f(g).

The elements of the kernel of d′1 called 1-cocycles are therefore functions
f : G → A such that f(gh) = gf(h) + f(g). They are also sometimes
referred to as twisted or crossed homomorphisms.

The elements of the image of d′0 called 1-coboundaries are simply functions
f ′ : G→ A such that there exists a ∈ A and f ′(g) = ga− a for each g ∈ G.
Clearly 1-coboundaries are also 1-cocycles. And finally

H1(G,A) =
{1− cocyles}

{1− coboundaries}
.

Level two

P ∗2 = Maps(G×G,A) and for f : G×G→ A ∈ P ∗1 , we have

d′1(f)(x, y, z) = xf(y, z)− f(xy, z) + f(x, yz)− f(x, y).

The elements of the kernel of d′2 called 2-cocycles are therefore functions f :

G×G→ A such that xf(y, z)−f(xy, z)+f(x, yz)−f(x, y) = 0 ∀ x, y, z ∈ G.

The elements of the image of d′1 called 2-coboundaries are simply functions
f ′ : G × G → A such that there exists a function f̃ : G → H such that
f ′(g, h) = gf̃(h)− f(gh) + f(g). One can check that 2-coboundaries are also
2-cocycles directly. And finally
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H2(G,A) =
{2− cocyles}

{2− coboundaries}
.

There is a beautiful correspondence between group extensions of G by A and
the second cohomology group H2(G,A) and we refer to ([Sridharan05]) for
more details.

4.4 Special morphisms between cohomology groups

4.4.1 Restrictions and inflations

Let f : H → G be a group homomorphism and let A be a G-module. We
can also consider A as an H-module by setting h.a = f(h)a for h ∈ H

and a ∈ A. The morphism f clearly induces a homomorphism between the
standard ZH resolution of Z and the standard ZG resolution of Z. Thus
we get a map of complexes HomZG

(
ZGi, A

)
→ HomZH

(
ZHi, A

)
and hence

between P ∗H → P ∗G as defined in Section 4.2.1. Thus f induces a morphism
between the cohomology groups

f ∗ : Hq(G,A)→ Hq(H,A).

If f : H → G is the inclusion map of a subgroup H into G, then we call
f ∗ to be the restriction morphism. This terminology is apt because at the
cocycle level, f ∗ simply takes a function j : Gi → A in PG∗i to its restriction
j|Hi : H i → A in PH∗i .

Res : Hq (G,A)→ Hq (H,A) .
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Let H be a normal subgroup of G and f : G→ G/H, the canonical quotient
map. Let A be a G module. Now A needn’t of course be a G/H module.
However consider AH ⊆ A. Firstly, it is a G-module (and hence also a G/H-
module). This is because for g ∈ G and h ∈ H, we have hg = gh′ for some
h′ ∈ H and hence h(ga) = g(h′a) = ga ∀ a ∈ AH .

Thus we get f ∗ : Hq
(
G/H,AH

)
→ Hq

(
G,AH

)
. Using the G-module homo-

morphism AH → A and part (1) of Prop 4.3, we get our inflation morphisms

Inf : Hq
(
G/H,AH

)
→ Hq (G,A) .

There is a really nice proposition connecting the inflation and restriction
morphisms which we state below in case it is of use later on.

Proposition 4.5 ([CF67], Chapter IV, Prop 4 & 5). Let H be a normal
subgroup of G and let A be a G-module. Then

1. The sequence

0→ H1
(
G/H,AH

) Inf−→ H1 (G,A)
Res−−→ H1 (H,A)

is exact.

2. Let q > 1 and suppose that Hi (H,A) = 0 for 1 ≤ i ≤ q − 1. Then

0→ Hq
(
G/H,AH

) Inf−→ Hq (G,A)
Res−−→ Hq (H,A)

is exact and Hi
(
G/H,AH

)
' Hi (G,A) for 1 ≤ i ≤ q − 1.
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4.4.2 Coinduction and corestriction

Let H be a subgroup of G and let A be an H-module. We would like to
construct a G-module out of A. If we were working with homology, the obvi-
ous candidate ZG⊗ZHA called the induced module would be right. However,
since we are dealing with co-homology, we need the coinduced module

MH
G (A) := HomZH (ZG, A) .

This has a G-module structure via the following G-action : For g ∈ G and
f ∈MH

G (A),

gf : ZG→ A, g′  f(g′g) ∀g′ ∈ G.

The incredibly useful Shapiro’s Lemma ([CF67], Chapter IV, Prop 2) relates
the cohomology of A and its coinduced module MH

G (A).

Lemma 4.6 (Shapiro).

Hq
(
G,MH

G (A)
)
' Hq (H,A) ∀ q ≥ 0.

We are now ready to define the corestriction morphism. Let H be a subgroup
of finite index4 of G and let A be a G-module. We want to define the
corestriction to be a map Cores : Hq(H,A)→ Hq(G,A).

We will use Shapiro’s Lemma and define it via Hq
(
G,MH

G (A)
)
as follows :

Hq(H,A) Hq(G,A)

Hq
(
G,MH

G (A)
)

Cores

Shapiro

4Of course ifG is finite, this is always true, but we emphasize this condition to remember
to be careful while applying it to infinite groups later
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The only thing left to do is to define the map Hq
(
G,MH

G (A)
)
→ Hq(G,A).

We do this by defining a G-module morphism X : MH
G (A) → A and using

Part (1) of Proposition 4.3. Recall thatMH
G (A) := HomZH(ZG, A) and define

the G-module map X by sending

X : HomZH(ZG, A) A

f
∑

y∈G/H yf(y−1)

This definition also tells us why we need to restrict ourselves to subgroups
H of finite index.

An example

Let us see what Cores is explicitly at the zero-th level. H0(H,A) = AH .

Let us first calculate what H0(G,MH
G (A)) = MH

G (A)G is. If f ∈ MH
G (A)G,

then gf = f for all g ∈ G. Thus gf(g′) = f(g′) for each g′ ∈ G. This implies
that f(g′g) = f(g′) for all g, g′ ∈ G and hence f(g) = a ∀ g ∈ G. Since f
should also be a ZH morphism, we see that a ∈ AH .

Thus Shapiro’s isomorphism simply sends a ∈ AH to the constant function
f(g) = a ∀ g ∈ G in

(
MH

G (A)
)G. The map X sends f to

∑
g∈G/H ga. Thus

Cores : H0(H,A)→ H0(G,A)

a 
∑

g∈G/H

ga

Let L/k be a finite Galois extension and let G = Gal(L/k). Let E/k be a
sub Galois-extension of L/k and H = Gal(L/E). Thus G/H ' Gal(E/k).
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Let A = L and G acts on L via the Galois automorphisms. Thus AH = E

and

Cores : H0(H,A)→ H0(G,A)

e 
∏

σ∈G/H

σ(a) = NE/k(e)

Thus Cores is simply the Norm map in this case! What is the composition
Cores ◦Res in this case?

H0(G,A) H0(H,A) H0(G,A)

k E k

λ λ λ[G:H]

Res Cores

This is a more general and incredibly powerful phenomenon termed restriction-
corestriction.

Proposition 4.7 ([CF67], Chapter IV, Prop 8).

Cores ◦Res = [G : H] .

4.4.3 Gratuities

The restriction-corestriction phenomenon yields immediately and almost for
free several useful corollaries about the cardinality and torsion of the coho-
mology groups.
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Corollary 4.8. Let G be a group of size n. Then nHq (G,A) = 0 for each
q ≥ 1.

Proof. Let H = {e}, the subgroup of order 1. Then Hq (H,B) is trivial for
each q ≥ 1 and abelian group B. This is because 0 → Z → Z → 0 is a
projective ZH resolution of Z. Thus Res(x) = 0 for each x ∈ Hq (G,A) and
hence so is Cores ◦Res(x).

Now since [G : H] = |G| = n, Prop 4.7 gives us that nx = Cores ◦Res(x) =

0.

Corollary 4.9. If A is a finitely generated ZG module, then Hq (G,A) is a
finite abelian group for q ≥ 1.

Proof. The second recipe for calculating cohomology using the standard pro-
jective resolution of Z immediately implies that each Hq (G,A) is a quotient
of a subgroup of HomZG (ZGq, A) and hence abelian and finitely generated.
By the above Corollary 4.8, it has to be n-torsion and hence finite.

Corollary 4.10. Let H be a subgroup of G of index n and let A be a G-
module. Let m be a positive integer coprime to n and let X[m] denote the
m-torsion subgroup of an abelian group X. Then for q ≥ 1, the following
restriction map restricted to the m-torsion of Hq (G,A) is injective

Res : Hq(G,A)[m] ↪→ Hq (H,A) .

Proof. Let x ∈ Hq(G,A)[m] and in the kernel of Res. Thus mx = 0 and
Res(x) = 0. Now by Prop 4.7, Cores ◦Res(x) = nx. Thus, we see that
nx = 0 too. Since gcd(m,n) = 1, this implies x = 0.
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Corollary 4.11. Let S be a p-Sylow subgroup of G and let A be a G-module.
Then for q ≥ 1, the following restriction map restricted to the p-primary
component of Hq (G,A) is injective

Res : Hq(G,A)[p∞] ↪→ Hq (S,A) .

Proof. Let |G| = pbm where m is coprime to p. Let x ∈ Hq(G,A)[p∞] and
in the kernel of Res. Thus Res(x) = 0. By Corollary 4.9, Hq(G,A) is finite
and hence pdx = 0 for some finite d . Now by Prop 4.7, Cores ◦Res(x) = nx.
Thus, we see that mx = 0 too. Since gcd(pd, n) = 1, this implies x = 0.

Corollary 4.12. Let q ≥ 1. If x ∈ Hq(G,A) restricts to 0 in Hq (S,A) for
all Sylow subgroups S of G, then x = 0.

Proof. By Corollary 4.9, x =
∑

p xp ∈ Hq(G,A) where xp ∈ Hq(G,A)[p∞]. If
possible, let xp 6= 0 for some prime p and let S be a p-Sylow subgroup of G.

Let Res : Hq(G,A)→ Hq(S,A). Thus 0 = Res(x) = Res (xp)+
∑

q 6=p Res (xq).
Note for q 6= p, qnqxq = 0 by definition of xq and by Corollary 4.8 pmq Res(xq) =

0. This implies Res(xq) = 0.

Thus 0 = Res(x) = Res (xp). By Corollary 4.11, this implies xp = 0, a
contradiction.

4.5 A computation : Hilbert 90

Hilbert’s theorem 90 gives a precise description of norm one elements of cyclic
extensions.

Theorem 4.13 (Hilbert 90). Let K/F be a cyclic Galois extension with
Gal(K/F ) = 〈σ〉. Then NK/F (x) = 1 if and only if x = b−1σ(b) for some
b ∈ K∗.
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As NK/F (b) =
∏[K:F ]−1

i=0 σi(b) and σ[K:F ] = idK , it is clear that NK/F (b−1σ(b)) =

1. To see some evidence for the converse implication, let us look at the
simplest non-trivial case, namely C /R, the degree two cyclic extension.
N(x) = xx where x is the complex conjugate of x. Thus if N(x) = 1, then
xx = |x|2 = 1 and hence x lies on the unit circle and is cos θ + i sin θ for
0 ≤ θ < 2π.

Now, for θ 6= π, some trignometric identities from a long time ago(!) give

cos θ =
1− tan2 (θ/2)

1 + tan2 (θ/2)
,

sin θ =
2 tan (θ/2)

1 + tan2 (θ/2)
.

Then set b = 1− i tan (θ/2) and x = b−1b. If θ = π, set b = i and x = −1 =

b−1b.

We will prove a more general form of Theorem 90 due to Emmy Noether
which is expressed in terms of vanishing of certain cohomology groups.

Theorem 4.14 (Emmy Noether). Let K/F be a finite cyclic Galois exten-
sion and let G = Gal(L/K). Then H1 (G,K∗) is trivial

Proof. Here G acts on K∗ via Galois automorphisms. Let f : G→ K∗ be a
1-cocycle, that is f(gh) = gf(h)f(h) for g, h ∈ G. We would like to prove f
is a 1-coboundary.

Now, look at
∑

g∈G f(g)g. By Dedekind’s lemma, the set {g | g ∈ G} is
a K-independent set. So the map

∑
g∈G f(g)g is not the zero map. Hence

there is a b ∈ K∗ such that
∑

g∈G f(g)g(b) = a 6= 0.

For any h ∈ G, we have
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h(a) = h

(∑
g∈G

f(g)g(b)

)
=
∑
g∈G

h(f(g))hg(b)

=
∑
g∈G

f(hg)

f(h)
hg(b)

=
1

f(h)

∑
hg∈G

f(hg)hg(b)

=
a

f(h)
.

This means f(h) = h(a)−1a. Now let c = a−1. Thus h(c) = h (a−1) = h(a)−1

and c−1 = a. So f(h) = c−1h(c) and hence f is a 1-coboundary.

Why does the above theorem imply Hilbert 90? Let Gal(K/F ) = 〈σ〉 have
order n and let NK/F (a) = 1. Define the function f : Gal(K/F )→ K∗ which
sends σi  aσ(a)σ2(a) . . . σi−1(a) for i ≥ 1. Note that f(id) = f(σn) =

NK/F (a).

A little pleasant computation shows that f is a 1-cocycle. Thus by Noether’s
theorem, f is a 1-coboundary and hence there exists b ∈ K∗ such that
f (σi) = b−1σi(b) for 1 ≤ i ≤ n. Thus f(σ) = a = b−1σ(b).
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Chapter 5

A glimpse of Galois cohomology

‘Thus, the task is ... not so much to see what no one has yet seen; but to think

what nobody has yet thought, about that which everybody sees.’
- Erwin Schrödinger

In this chapter, we understand what a profinite group is and its cohomology
theory. We finally dive into non-abelian cohomology and end with three
computations of the first cohomology group. For this chapter, of course we
refer to the bible ([Serre97]). Another excellent reference is ([GS]).

5.1 Profinite groups

We would like to understand the cohomology of modules with a Gal (ksep/k)

action. The absolute Galois group is no longer a finite group and so the
theory from the last chapter needs to be tweaked. However Gal (ksep/k) has
only finite quotients. This should bring to mind the notion (which we now
recall) of a profinite group which is the inverse limit of discrete finite groups.

Let I be a directed set, i.e. a set with a partial order ≤ with the additional
property that given i, j ∈ I, there exists k ∈ I such that i ≤ k and j ≤ k.
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Given the following inverse system :

1. A finite group Gi with the discrete topology for each i ∈ I.

2. A (continuous) group homomorphism πij : Gj → Gi every i ≤ j in I

such that

- πii = id |Gi
.

- For i ≤ j ≤ k, we have πij ◦ π
j
k = πik.

let G = lim←−i∈I Gi be the inverse limit. One can either define it via a universal
property or more prosaically as the following subgroup of

∏
i∈I Gi, namely

G =
{

(gi) ∈
∏

Gi | πij(gj) = gi ∀ i ≤ j
}
.

Equip
∏
Gi with the product topology and G, with the subspace topology

to make G a profinite group. One can check G is closed in
∏
Gi. Since

∏
Gi

is compact by Tychonoff’s theorem, we see that G is also compact.

Examples

- If p is a prime, then the p-adic integers Zp is isomorphic to the inverse
limit of Z /pn Z.

- The absolute Galois group Gal (ksep/k) is the inverse limit of the Galois
groups Gal(L/k) for finite sub-Galois extensions L/k.

- More generally, let F/k be any (possibly infinite) Galois extension.
Then Gal (F/k) is the inverse limit of the Galois groups Gal(L/k) for
finite sub-Galois extensions L/k.
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5.2 Profinite group cohomology

Let Γ be a profinite group and let A be an abelian group with the discrete
topology. We term A to be a discrete Γ module if it is equipped with a
continuous left action η : Γ× A→ A.

If A is any ZΓ module and U ⊂ Γ, the symbol AU stands for the set {a ∈
A | ua = a ∀ u ∈ U}. A useful characterization of a continuous module
is that A is continuous if and only if A =

⋃
U A

U where U runs over open
subsets of Γ.

Let A denote the category of ZΓ modules and let B denote the category of
discrete Γ modules. Clearly the forgetful functor f : B → A which forgets
the topology of the Γ module is fully faithful.

One can define a functor g : A → B sending A  ∪AU where U runs over
all open subsets of G. Then since A has enough injectives, so does B (Stacks
Project : Tag 015Y, Tag 04JF).

The functor (−)Γ : B → (Abelian groups) sending A AΓ is still left exact
and we can then define the cohomology groups Hq (Γ, A) to be the right
derived functors of (−)Γ.

On the other hand, we could also look at open normal subgroups U of Γ.
Since Γ is profinite, the quotient Γ/U is a finite group and AU is a Γ/U

module. Therefore Hq
(
Γ/U,AU

)
makes sense for each such U . Varying over

U , these in fact form an inverse system using inflation maps.

It is then a theorem that ([Shatz], Thm 7, Pg 24)

lim−→
U

Hq
(
Γ/U,AU

)
' Hq (Γ, A) .

http://stacks.math.columbia.edu/tag/015Y
http://stacks.math.columbia.edu/tag/04JF
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We will always be interested in the case that Γ = Gal (ksep/k) and A =

G (ksep) where G is a linear algebraic group over k. However, then A is no
longer abelian, which brings us to ...

5.3 Non-abelian cohomology

Let Γ be a profinite group and let A be a discrete (not necessarily abelian)
group with a left Γ action. That is A (under the discrete topology) has a
continuous left Γ action such that for each γ ∈ Γ and a, b ∈ A, we have

γ(ab) = γa γb.

We define the set of 1-cocycles to be the set

Z1 (Γ, A) = {f ∈ Mapscont (Γ, A) | f (γ1γ2) = f (γ1) γ1f (γ2) .}

Two 1-cocycles f and g are said to be cohomologous (denoted f ∼ g) if there
exists a ∈ A such that for every γ ∈ Γ,

f (γ) = a−1g (γ) γa.

Then we define the 0th and 1st cohomology groups as follows :

H0 (Γ, A) := AΓ.

H1 (Γ, A) := Z1 (Γ, A) / ∼ .
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Note that H1 (Γ, A) is just a pointed set where the special point corresponds
to the equivalence class of the trivial cocycle [γ 7→ 1].

Further one can check that H1 (Γ, A) = lim−→U
H1
(
Γ/U,AU

)
for U runing over

the set of open normal subgroups of Γ. Moreover, the maps H1
(
Γ/U,AU

)
→

H1 (Γ, A) are in fact injective.

In the case when A is abelian, A is a discrete Γ module and these cohomol-
ogy groups coincide with the profinite cohomology groups discussed before.
Further, higher profinite cohomology groups for A can be defined.

5.3.1 A principal homogeneous space

Let Γ be a profinite group and let A be a discrete group with a left Γ action.
A non-empty set P is called a (Γ, A) set if it is a discrete left Γ set with a
compatible right A-action. That is for each p ∈ P, a ∈ A and γ ∈ Γ, we have

γ (pa) = γp γa.

We say a (Γ, A) set P is a principal homogeneous space under A if the action
of A is simply transitive. That is given p, q ∈ P , there is a unique a ∈ A such
that pa = q. The first Galois cohomology set turns out to classify principal
homogeneous spaces!

Theorem 5.1 ( [Serre97], Chapter I, Proposition 33). There is a one to one
correspondence of pointed sets between the first cohomology group H1 (Γ, A)

and isomorphism classes of principal homogeneous spaces under A.

Under this bijection, the trivial class in H1 (Γ, A) corresponds to the class of
principal homogeneous spaces with a Γ-invariant point.
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Proof. We ony give the recipe to go from cocycles to principal homogeneous
spaces and vice-versa and leave the checking of the other details to the reader.

Given a 1-cocycle f : Γ→ A, let us construct a principal homogeneous space
Pf associated to it. Take Pf as a right A module to be just A itself (with
the right action given by right multiplication). We vary the left Γ-action by
twisting it by the cocycle f as follows :

? : Γ× Pf → Pf

γ ? a = f (γ) γa

Note that if you start with the trivial cocycle [γ → 1], you get back A as a
principal homogeneous space under itself and it clearly has the Γ-invariant
point 1.

Conversely, given a principal homogeneous space P under A, let us manufac-
ture a 1-cocycle. Fix a point p ∈ P . Since A acts on P simply transitively, for
each γ ∈ Γ, there exists a unique f(γ) ∈ A such that γp = pf(γ). Thus we
have a map f : Γ→ A depending on the base point p ∈ P . This is in fact a
1-cocycle. If you vary your base point, you will end up with a cohomologous
1-cocycle.

Note that if P has a Γ-invariant point p, then this process gives the trivial
cocycle.

5.3.2 Two long exact sequences

If f : A→ B is a Γ-morphism of discrete Γ groups A and B, then for i = 0, 1,
we have canonical maps Hi (Γ, A)

f−→ Hi (Γ, B).
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If 1→ A→ B → C → 1 is a short exact sequence in the category of discrete
Γ groups, then we get a long exact sequence which becomes a little longer
when A is central in B. These are listed in the propositions below and will
be repeatedly used without mention in the final chapters of this dissertation.

Proposition 5.2 ([Serre97], Chapter I, §5, Prop 38 ). Let 1 → A
f−→ B

g−→
C → 1 be a short exact sequence in the category of discrete Γ groups. Then
there exists a connecting map of sets δ0 : H0 (Γ, C)→ H1 (Γ, A) such that the
following is an exact sequence of pointed sets.

1→ H0 (Γ, A) H0 (Γ, B) H0 (Γ, C)

H1 (Γ, A) H1 (Γ, B, ”g”) H1 (Γ, C)

f g

δ0
f

Proposition 5.3 ([Serre97], Chapter I, §5, Prop 43). Let 1 → A
f−→ B

g−→
C → 1 be a short exact sequence in the category of discrete Γ groups such
that A ⊆ Z(B). Then there exists a connecting map of sets δ1 : H1 (Γ, C)→
H2 (Γ, A) which extends the previous long exact sequence.

1→ H0 (Γ, A) H0 (Γ, B) H0 (Γ, C)

H1 (Γ, A) H1 (Γ, B) H1 (Γ, C) H2 (Γ, A)

f g

δ0
f g δ1

We mention in passing how δ0 and δ1 are defined and leave the rest of the
details to the tenacious reader.
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δ0 : Given c ∈ H0 (Γ, C) = CΓ, pick some lift b ∈ B such that g(b) = c.
Define δ0(c) : Γ→ A to be the 1-cocycle which measures the failure of
b from being a 0-cocycle. More precisely

δ0(c) : Γ→ A

γ  b−1 γb

δ1 : Let h ∈ Z1 (Γ, C). Thus h : Γ→ C. Pick some set map lift h̃ : Γ→ B

such that g ◦ h̃ = h.

Define δ1(h) : Γ×Γ→ A to be the 2-cocycle which measures the failure
of h̃ from being a 1-cocycle. More precisely,

δ1(h) : Γ× Γ→ A

(s, t) h̃(s) s
(
h̃(t)

)
h̃(st)−1

5.3.3 Three computations

Let us compute the Galois cohomology of the following groups. The first
two are the immensely useful but usual pedagogical examples but the last
example is in fact one we will use in Chapter 10.

Example GLn

Theorem 5.4 (Hilbert 90 for GLn).

H1 (k,GLn (ksep)) = 1.
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Proof. It is enough to check that H1 (G,GLn(L)) is trivial for finite Galois
extensions L/k where G = Gal (L/K). Let f : G→ GLn(L) be a 1-cocycle,
that is f(gh) = gf(h)f(h) for g, h ∈ G. We would like to prove f is coho-
mologous to the trivial cocycle [g 7→ id].

We try to imitate the proof of Theorem 4.14 by looking at B :=
∑

g∈G f(g)g :

Mn(L)→ Mn(L). If we can find a b ∈ Mn(L) such that B(b) = a ∈ GLn(L),
then as before we see that for any h ∈ G, we have

h(a) = h

(∑
g∈G

f(g)g(b)

)
=
∑
g∈G

h(f(g))hg(b)

= f(h)−1
∑
g∈G

f(hg)hg(b)

= f(h)−1
∑
hg∈G

f(hg)hg(b)

= f(h)−1a.

This means f(h) = ah(a)−1 for each h ∈ G and hence f is cohomologous to
the trivial cocycle. So the problem reduces to finding a b ∈ Mn(L) such that
B(b) ∈ GLn(L)

Look at the k-linear map D : Ln → Ln sending x  
∑

g∈G f(g) ◦ g(x). Let
the L-span of {D(x) | x ∈ Ln} = V . We claim that V = Ln. This can be
checked showing that every L-functional u ∈ HomL (Ln, L) vanishing on V

is actually zero. We leave this checking as an exercise.

Let us grant the claim and proceed by picking vectors x1,x2, . . . ,xn ∈ Ln

such that {D (xi)} is an L-basis for Ln.
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Define b ∈ EndL (Ln) ' Mn(L) by sending the standard basis ei  xi. We
claim that B(b) ∈ GLn(L) because B(b) : Ln → Ln sends L-basis ei to
another L-basis D (xi).

Let us finally check that B(b)(ei) = D (xi). Note that g(bei) = g(b)g(ei) =

g(b)(ei) as ei ∈ kn in fact. Thus we have

B(b)(ei) =
∑
g∈G

f(g)g(b)(ei)

=
∑
g∈G

f(g)g (bei)

=
∑
g∈G

f(g)g (xi)

= D(xi).

Example µn

Let n ∈ N be such that it is not divisible by the characteristic of k. The long
exact sequence of cohomology for the Kummer sequence

1→ µn → Gm
x xn−−−→ Gm → 1,

along with Hilbert 90 for Gm (c.f. Thm 4.14) yields the fact that

H1 (k, µn) ' k∗/k∗n.
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Example µn[Z]

Let Z/k be an etale quadratic extension and n ∈ N which is not divisible by
the characteristic of k. Define the group µn[Z] via the exact sequence :

1→ µn[Z] → RZ/k (µn,Z)
NZ/k−−−→ µn.

Proposition 5.5 ([KMRT], Prop 30.13, Pg 418).

H1
(
k, µn[Z]

)
'
{(x, y) ∈ k∗ × Z∗ | xn = NZ/k(y)}
{
(
NZ/k(z), zn

)
|z ∈ Z∗ }

.

Proof. If Z = k × k, then H1
(
k, µn[Z]

)
= H1 (k, µn) ' k∗/k∗n. The group on

the right side of the equation becomes

{(a, anc−1, c) ∈ k∗ × k∗ × k∗}
{(de, dn, en)}

.

Projection on the last coordinate gives the isomorphism to k∗/k∗n.

Assume now that Z is a field. Construct a k-group scheme T ⊂ Gm×RZ/kGm

defined by T (k) = {(x, y) ∈ k∗ × Z∗ | xn = NZ/k(y)}.

Define the map θ : RZ/kGm → T sending z  
(
NZ/k(z), zn

)
. The kernel of θ

is precisely µn[Z] and hence we get the exact sequence

1→ µn[Z] → RZ/k (Gm,Z)
θ−→ T → 1.

Looking at the long exact sequence and using that H1
(
k,RZ/kGm,Z

)
= 1, we

see H1
(
k, µn[Z]

)
is just T (k)/θ(Z∗) which is precisely the group on the right

hand side in the proposition.
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Chapter 6

Reviewing R-equivalence and

rationality

‘There are many questions which fools can ask that wise men cannot answer.’

- George Polya

In this chapter, we recall what it means for the underlying variety of an alge-
braic group to be rational. We then review the notion of R-equivalence which
serves as an extremely useful tool to detect non-rationality of group-varieties
and proceed to present several important examples of non-rational group va-
rieties collected from literature in this area. The discussion on adjoint groups
will prompt a natural question which is explored in the next chapter leading
to one of the principal results of this disseration.

For this chapter, we draw both material and inspiration from Gille’s Bourbaki
Seminar on the Kneser-Tits problem ([Gille07]), the notes from his lecture
series onR-equivalence on linear algebraic groups ([Gille10]) and the first part
of ([Me98]). The main technical references for this chapter are the powerful
computations of R-equivalence classes of various algebraic groups in ([CTS],
[Platonov76], [Me96], [CP], [Gille97] et al). Our base field for this chapter
will be an infinite field k of characteristic not 2. By a k-variety, we will mean
a geometrically integral k-variety and by a k-group, we will mean a smooth
connected linear algebraic group over k unless mentioned otherwise.
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6.1 What is being rational?

Let X, Y be k-varieties. They are said to be k-birational if there are dense
open sets U ⊆ X and V ⊆ Y such that U 'k V . Equivalently, their function
fields k(X) and k(Y ) are isomorphic over k.

X is said to be k-rational if it is k-birational to some projective space Pnk (or
affine space An

k). Equivalently, its function field k(X) is purely transcendental
over k.

Consider the real unit circle S = Spec
(

R[x,y]
〈x2+y2−1〉

)
. Note that x2 + y2 − 1 is

an irreducible polynomial in R[x, y]. For if not, it has a linear factor which
will mean a straight line lying on the circle! Thus the coordinate ring R[S]

is in fact a domain and S is an irreducible real variety. It is in fact also
rational. The stereographic projection immediately gives an isomorphism
between S \ {(0,−1)} and the affine line.

(0,-1)

(t,0)

Figure 6.1: Stereographic projection
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In coordinates, this gives a a nice parametrization of the circle with which
we can check R(S) ' R(t)

R[x, y]

〈x2 + y2 − 1〉
→ R(t)

x 
2t

1 + t2

y  
1− t2

1 + t2

Consider the similar looking variety T = Spec
(

R[x,y]
〈x2+y2+1〉

)
. Note that x2 +

y2 + 1 is an irreducible polynomial in R[x, y] too. In fact, it has no zeroes
over R. Hence it cannot be birational to any affine space An

R which has lots
of R-rational points.

The rationality question depends very fundamentally on the base field. For
instance, the varieties S and T over C become isomorphic (and C-rational).

C[x, y]

〈x2 + y2 − 1〉
' C

[
t, t−1

]
' C[x, y]

〈x2 + y2 + 1〉
.

This example generalizes to any anisotropic conic over k. It is a non-rational
k-variety which becomes k-rational.

A k-variety X is said to be k-stably rational if X ×k An
k is k-rational for

some n ∈ N. Stable rationality is a strictly weaker notion than rationality
([BCTSSD]).

We are interested in rationality questions about the varieties underlying lin-
ear algebraic groups. Thus for G, a (smooth) connected linear algebraic
group defined over k, we say G is k-(stably) rational if its underlying variety
is k-(stably) rational.
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It is a theorem of Chevalley from the 1950s that when characteristic of k is 0,
G is always k-rational ([Chevalley]). Though the original proof was couched
in the language of Lie algebras, we give a sketch below using the Bruhat
decomposition machinery. Note that one can prove the rationality of smooth
split groups over a more general field similarly.

Proposition 6.1 ([CT07], Prop 4.2). Let G be a connected algebraic group
over an algebraically closed field k of char 0. Then G is k-rational.

Proof. Let U be the unipotent radical of G. This is isomorphic to Gr
a for

some r and hence rational. The quotient variety G/U is a reductive group
and in fact G ' U ×k G/U as varieties. Thus we are reduced to looking at
the case when G is reductive.

Let T be a maximal torus. Note that it is Gn
m and hence rational. Then

there is an associated Borel subgroup B+ with unipotent radical U+. Let
B−1 denote the opposite Borel subgroup and let its unipotent radical be U−.
The unipotent groups U+ and U− are rational being products of copies of
Ga.

The product map m : U+ × T × U− → G identifies the rational variety
U+ × T × U− with a non-empty dense open set V in G called the big open
cell. Hence G is rational.

6.2 Detecting non-rationality

The notion of R-equivalence, first introduced by Manin in the 70s to study
cubic hypersurfaces, is defined as follows :

Definition 6.2. Let X be a k-variety and F/k, a field extension. Then
x, y ∈ X(F ) = HomSpec k (SpecF,X) are defined to be strictly R-equivalent
if there exists an F -rational map f : A1

F 99K X defined at 0 and 1 sending
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0 x,

1 y.

Strict R-equivalence is reflexive and symmetric, but not neccesarily tran-
sitive and hence R-equivalence is defined to be the equivalence relation on
X(F ) generated by strict R-equivalence. We let X(F )/R denote the set of
R-equivalence classes of X(F ).

Strict R-equivalence behaves well for algebraic groups. We expand on this
in the following lemma.

Lemma 6.3. Let G be a connected linear algebaic group over k and let F/k
be a field extension of k. Then

1. R-equivalence is the same as strict R-equivalence for G(F ).

2. Let RG(F ) denote the subset of elements x ∈ G(F ) which are R-
equivalent to the identity e. Then RG(F ) is a normal subgroup of
G(F ).

3. There is a bijection of sets between G(F )/R and G(F )/RG(F ).

Proof.

1. We have to show strict R-equivalence is transitive. Let us denote x ∼SR
y if x, y ∈ G(F ) are strictly R-equivalent. Let x ∼SR y and y ∼SR z.
We would like to show x ∼SR z.

Let f : A1
F 99K G such that f(0) = x, f(1) = y. Let h be the rational

function got by composing f with right translation by y−1.
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That is h : A1
F 99K G

∗y−1

−−→ G. Thus h(0) = xy−1 and h(1) = e. Since
y ∼SR z, let g : A1

F 99K G be such that g(0) = y and g(1) = z.

Let m : G×G→ G denote the multiplication map. Define the rational
function w : A1

F 99K
(h,g) G × G m−→ G. Thus w(0) = m(xy−1, y) = x

and w(1) = m(e, z) = z. Hence x ∼SR z.

2. We leave the proof that RG(F ) is a subgroup as an exercise to the
interested reader and only check normality. Let g ∈ G(F ) and let
x ∈ RG(F ). Thus e ∼SR x and let f : A1

F 99K G such that f(0) = e,
f(1) = x.

Let h be the rational function got by composing f with the conjugation
map by Int(g). That is h : A1

F 99K G
g−g−1

−−−→ G. Thus h(0) = geg−1 = e

and h(1) = gxg−1. Hence e ∼SR gxg−1 and hence gxg−1 ∈ RG(F ).

3. For x ∈ G(F ), let [x] denote the subset of elements R-equivalent to x.
We claim that [x] = x.RG(F ).

To show the inclusion one way, let z ∈ [x]. That is x 'SR z. Let
f : A1

F 99K G be such that f(0) = x and f(1) = z. Let h be the
rational function got by composing f with the left translation by x−1.
That is h : A1

F 99K G
x−1∗−−−→ G. Thus h(0) = e and h(1) = x−1z. Hence

e ∼SR x−1z and hence x−1z ∈ RG(F ). This implies z = x(x−1z) ∈
xRG(F ).

Conversely, let z = xy ∈ xRG(F ) where y ∈ RG(F ). Thus e 'SR y
and let f : A1

F 99K G be such that f(0) = e and f(1) = y. Let h be
the rational function got by composing f with the left transation by x.
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That is h : A1
F 99K G

x∗−→ G. Thus h(0) = x and h(1) = xy = z. Hence
x ∼SR xy = z and hence z ∈ [x].

The bijection between G(F )/R↔ G(F )
RG(F )

induces a group structure on the set
of R-equivalence classes of G(F ). Thus, hereafter we shall consider G(F )/R

along with this transported group structure. There are many basic questions
which have been asked (and remain unanswered!) about this group G(F )/R.
For instance, the following question is still open.

Question 6.4. Is G(F )/R abelian?

We pause to introduce a new terminology at this point. A k-algebraic group
G is said to be R-trivial if G(F )/R = {0} for all F/k. Our interest in G(F )/R

stems from the more or less immediate link to (non) stable rationality as
evinced by the following lemma.

Lemma 6.5. Any k-stably rational algebraic group G is R-trivial.

Proof. If G is k-stably rational, then it is stably rational over any field. Thus
it sufffices to show that G(k)/R is trivial.

Let us first show that for the affine space G = An
k . If x = (x1, . . . , xn) ∈ G(k),

then define f : A1
k 99K G to be the function sending t (x1t, . . . , xnt).

(0, 0, . . . , 0)

(x1, x2, . . . , xn)

Figure 6.2: R-triviality of An
k
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Now if G were k-rational, it contains an open dense subset U which is k-
isomorphic to a non-empty open set V ⊆ An

k . Since k is an infinite field,
V (k) 6= ∅ and hence U(k) 6= ∅ too. Let u ∈ U(k) say. Let x ∈ G(k) be an
arbitrary rational point. Consider the open sets U1 = u−1U and U2 = xu−1U

defined over k. Thus e ∈ U1(k) and x ∈ U2(k).

Now U1 ∩U2 is again open and defined over k and U1 ∩U2(k) 6= ∅ again. Let
y ∈ U1 ∩ U2(k). Now we can connect e and y by a k-line in U1 and y and x
by a k-line in U2. This shows that e ∼SR x in G(k).

Finally if G is k-stably rational, then H = G ×k An
k is k-rational. R-

equivalence behaves well with respect to products and hence

0 = H(k)/R ' G(k)/R× An(k)/R ' G(k)/R.

The lemma is incredibly useful in its contrapositive form, namely

Lemma 6.6. If there exists an F/k such that G(F )/R 6= {0}, then G is not
k-stably rational.

This will be the strategy mostly adopted to show the non-rationality of the
various groups discussed in the following section.

6.3 Early examples of non-rational groups

6.3.1 Chevalley’s example

Let us begin our search for non-rational groups by revisiting Chevalley’s
example of a non-rational torus in ([Chevalley]).
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Let p be an odd prime and let k be the p-adic field Qp. Let F/k be the
unique unramified extension of degree p − 1. This is simply a lift of the
cyclic extension Fpp−1/Fp of finite fields and hence F/k is cyclic as well with
Gal(F/k) = Z /(p− 1)Z.

Let K = Qp(ζp) where ζp is a primitive pth root of unity. This is a totally
ramified extension of degree p−1. To see this, note thatK = Qp[t]/(f) where
f(t) = tp−1 + tp−2 + . . .+ t+ 1. Let η = ζp − 1 whose minimal polynomial is
the Eisenstein polynomial

g(t) = f(t+ 1)

=
(t+ 1)p − 1

(t+ 1)− 1

= tp−1 +

(
p−2∑
i=1

C(p, i)tp−i−1

)
+ p.

Thus K = Qp(η) = Qp[t]/(g) is a totally ramified extension of degree p − 1

being obtained by attaching a root of an Eisenstein polynomial. Clearly
K/k is cyclic Galois since it is the splitting field of tp − 1 and Gal(K/k) =

Z /(p− 1)Z.

F L

k K

Thus K and F are disjoint over k. Let L denote their compositum. Thus
L/k is a Galois extension with Gal(L/k) ∼= Z

(p−1)Z ×
Z

(p−1)Z .

The Weil restriction RL/k Gm is a rational torus over k of rank (p − 1)2.
However the normic k-torus T of rank (p− 1)2 − 1 defined by the following
exact sequence
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1→ T → RL/k Gm
Norm−−−→ Gm → 1,

is our candidate! Note that T (k) is simply the norm one elements of L/k.
Again, Chevalley’s proof of the non-rationality is written down in the lan-
guage of Lie algebras etc but a modern proof using R-equivalence is immedi-
ate if one appeals to the R-equivalence computations of Colliot-Thélène and
Sansuc for tori.

Theorem 6.7 ([CTS], Prop 15 ; [Gille10], §2.1). Let L/k be a finite Galois
extension and T , the kernel of RL/k Gm

Norm−−−→ Gm. Then T is R-trivial if and
only if every Sylow subgroup of Gal(L/k) is cyclic.

Clearly Chevalley’s torus is not R-trivial and hence not even k-stably ratio-
nal. We note that taking p = 3 in the above discussion gives us a k-non
rational torus of rank (3 − 1)2 − 1 = 3. It turns out that tori of lesser rank
are in fact rational!

6.3.2 Serre’s example

The next example of a semisimple non-rational group comes from Serre.
However, the strategy to showing non-rationality in this case is via failure of
the Hasse principle for a certain algebraic group over a number field k. If Ωk

denotes the places of k, then,

Theorem 6.8 ([Serre97], Thm 8). There exists a connected semisimple al-
gebraic group G defined over an algebraic number field k such that the kernel
of the following canonical map of pointed sets is non-trivial

H1 (k,G)→
∏
v∈Ω

H1 (kv, G) .

For more details, the reader is encouraged to look at ([PLR], § 6.4).
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Non-rationality of G

It is a deep theorem that both simply connected and adjoint groups over
number fields satisfy the Hasse principle ([PLR], Thms 6.6 & 6.22). Thus
G/k is necessarily neither simply connected nor adjoint.

A theorem of Sansuc and Voskresenskii ([Sansuc81], Corollary 9.7) asserts
that if G/k is a rational group without an E8 factor where k is a number
field, then Hasse principle holds for principal homogeneous spaces under G
over k. We note that the group G/k in Theorem 6.8 can be constructed
to be a quotient of the semisimple group G̃ = RL/k SLn for a suitable field
extension L/k. Since G is a principal homogeneous space under itself over
trivially, it would satisfy the Hasse principle if it were rational.

Thus the semisimple group G under consideration is non-rational.

6.4 The story for simply connected groups

Let us first look at G of type 1An−1. Thus if A/k is a central simple algebra,
then G = SL1(A), the group of reduced norm one elements.1 The group of
R-equivalence classes of SL1(A)(k) has another neat description which the
following lemma due to Voskresenskii gives.

Lemma 6.9 ([Vo77]). Let A be a central simple algebra over k and let [A∗, A∗]

denote the commutator subgroup of A. Then

SL1(A)(k)/R ' SL1(A)/[A∗, A∗].

Proof. We only give a sketch of the proof. Firstly, it can be shown by using
Dieudonne determinants that one can without loss of generality assume A is
a central division algebra over k. Thus, let A = D be division over k.

1When the context is clear, by abuse of notation, sometimes we let SL1(A) also denote
its k-points, SL1(A)(k).
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Now base change to a purely transcendental extension behaves well. More
precisely, let k(t) be a purely transcendental extension of k in one variable
and let X = D ⊗k k(t). Then the following two statements hold :

1. X is still division.

2. SL1(X)/[X∗, X∗] ' SL1(D)/[D∗, D∗].

Granting these, let us show the lemma. Let [1D] = R SL1(D)(k). It is easy
to see that the identity 1D is R-equivalent to any element in the commutator
subgroup. That is, it is (almost) clear that [D∗, D∗] ⊆ [1D].

Conversely, let b ∈ SL1(D)(k) ∈ [1D]. So there exists f : A1
k 99K SL1(D)

sending 0  1D and 1  b. That is f ∈ SL1(D)(k(t)) is a geometric point
such that f(0) = 1D and f(1) = b. We would like to show b ∈ [D∗, D∗].

Since SL1(X)/[X∗, X∗] ' SL1(D)/[D∗, D∗], we see that f(t) = gu(t) where
g ∈ SL1(D) and u(t) ∈ [X∗, X∗]. Evaluating both sides at 0, we get

1D = f(0) = gu(0).

Thus g = u(0)−1 ∈ [D∗, D∗] since u(t) ∈ [X∗, X∗]. Now evaluating both sides
at 1, we get

b = f(1) = gu(1) = u(0)−1u(1) ∈ [D∗, D∗].

Thus one way of showing the simply connected algebraic group SL1(A) is
not k-stably rational would be by finding some extension F/k such that
SL1(A⊗k F )/[(A⊗k F )∗, (A⊗k F )∗] 6= 1.
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6.4.1 The reduced Whitehead of an algebra

The abstract group SL1(A)/[A∗, A∗], called the reduced Whitehead group of
A or SK1(A) has been an object of great interest since the early 40s after
Tannaka and Artin independently questioned whether it was always trivial.

Question 6.10 (Tannaka-Artin,1943). Is SK1(A) = {1}?

The theorems of Nakayamma and Wang proven in the 50s answering this
question positively over local and global fields respectively, and also for alge-
bras of square-free index, in general generated belief that SK1(A) was always
trivial. Thus, it came as quite a surprise when in 1976, Platonov gave his fa-
mous example of a biquarternion algebra D over a cohomological dimension
4 field2 such that SK1(D) 6= {1}.

Due to Voskresenskii’s observation (c.f. Lemma 6.9), this also served as
the first ever example of a non-stably rational simply connected group. Be-
fore we discuss Platonov’s example, we would like to point out that reduced
Whitehead groups W (k,G) can be defined not just for SL1(A) but for any
semisimple simply connected isotropic3 k-group G. And a generalization of
the Tannaka-Artin problem, namely the Kneser-Tits conjecture asks whether
reduced Whitehead groups are always trivial ([Tits78]).

Over global fields k, the Kneser Tits conjecture holds ([Gille07]). The iso-
morphism W (k,G) ' G(k)/R proven in the same (ibid. Thm 7.2) therefore
justifies terming the group of R-equivalence classes of G(k), the correct ana-
logue of the reduced Whitehead groups for non-isotropic groups.

2twice iterated Laurent series field over a global field
3contains a split torus
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Platonov’s example

Let k be a field and `1 and `2, two cyclic extensions of k such that ` = `1⊗k `2

is again a field. Let Gal(`i/k) = 〈σi〉 for i = 1, 2.

Set K = k ((t1)) ((t2)) and Li = `i ((t1)) ((t2)) for indeterminates t1 and t2.
The automorphisms σi extend to Li by acting trivially on ti. Construct
K-cyclic division algebras D1 = (L1/K, σ1, t1) and D2 = (L2/K, σ1, t2).

Platonov shows that D = D1⊗KD2 is division still and calculates SK1(D) as
a quotient of Br(`/k). Now if [`1 : k] = [`2 : k] = q, a prime and k is a p-adic
field, then SK1(D) turns out to be Z /q Z and hence is certainly non-trivial.

A similar example

To reiterate the importance the iterated Laurent series are going to play in
this thesis, we present a similar example as above of a biquaternion algebra
with non-trivial SK1 ([Draxl], §24, Thm 1).

Let k be a field with a primitive 4th root of unity ζ. Let t1, t2, t3 and t4

be indeterminates and let K = k ((t1)) ((t2)) ((t3)) ((t4)). Set D to be the
(division) biquaternion algebra (t1, t2)⊗K (t3, t4).

Let N = Z4
≥0 denote the set of all non-negative integral 4-tuples with the

usual lexicographic order. Then

D =
∑

(i1,i2,i3,i4)∈N

kxi11 x
i2
2 x

i3
2 x

i4
4 =

∑
i∈N

kxi,

where x2
i = ti, x1x2 = −x2x1, x3x4 = −x4x3 and xi and xj commute if

i ∈ {1, 2} and j ∈ {3, 4}.

Define the function v : D \ 0→ N such that if d =
∑

i∈N aix
i, then

v(d) = min{ j | aj 6= 0 }.
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This in fact is a valuation and hence v(dd′) = v(d) + v(d′). Since v(1) = 0,
we have v(d−1) = −v(d). Thus if c = d1d2d

−1
1 d−1

2 is a commutator, then
v(c) = 0. In fact due to the relations on xi, we see that

[D∗, D∗] ⊆

±1 +
∑
i∈N\0

aix
i

 (∗).

Now ζ ∈ k ⊆ D and NrdD(ζ) = ζ4 = 1. Hence ζ ∈ SL1(D). By (*), it is not
in [D∗, D∗] and hence SK1(D) 6= 1.

6.4.2 Positive rationality results for simply connected

groups

We end the discussion on simply connected groups by listing some positive
results about R-equivalence and rationality from ([Me98]). In the following,
A is a central simple algebra over k, K/k is a quadratic étale field exten-
sion, B is a central simple algebra over K with unitary involution τ , q is a
quadratic form over k, A′ is a central simple algebra of even degree over k
with symplectic involution σ′. Then,

- If index A is square-free, then SL1(A) is R-trivial.

- If index B is square-free, then SU (B, τ) is R-trivial.

- If q is isotropic, then Spin(q) is rational.

- If dim q ≤ 5, then Spin(q) is rational.

- Type C simply connected groups Sp(A′, σ′) are always rational due to
Cayley parametrization.
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6.5 The story for adjoint groups

After Platonov’s example, it was still hoped for that semisimple adjoint
groups were rational. Platonov himself conjectured ([PLR], pg 426) that
adjoint simple algebraic k-groups were rational over any infinite field. Some
evidence of the veracity of this conjecture is found in ([Chernousov]) where
Chernousov establishes that PSO(q) is a stably rational k-variety for the
special quadratic form q = 〈1, 1, . . . 1〉 where k is any infinite field of char-
acteristic not 2. Note that the signed discriminant of the quadratic form in
question is ±1.

Here are some more positive results about rationality of absolutely simple
adjoint groups from ([Me98]). In the following, A is a central simple algebra
over k, K/k is a quadratic étale field extension, B is a central simple algebra
over K with unitary involution τ , q is a quadratic form over k, A′ is a central
simple algebra of even degree over k with symplectic involution σ′. Then,

- PGL1(A) is rational.

- If degree B = 2, then PGU(B, τ) is rational.

- If degree B is odd, then PGU(B, τ) is rational.

- Type B adjoint groups O+(q) where dim q is odd are always rational
due to Cayley parametrization.

- If degree A′ = 2, then PGSp(A′, σ′) is rational.

- If degree A′ = 4, then PGSp(A′, σ′) is rational.

- If degree A′ = 2(2n+ 1), then PGSp(A′, σ′) is stably rational.
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6.5.1 Merkurjev’s forumula

In 1996, Merkurjev in [Me96] computed the group of R-equivalence classes
for adjoint semisimple classical groups. His powerful formula allowed him to
find the first non-stably rational adjoint group of type Dn! In this section, we
present the formula and examine it in detail in the case when G = PSO(q)

which is of special importance to us and crucial for the next chapter.

Let K = k or a quadratic étale extension of k and let A/K be a central
simple algebra with an involution σ such that Kσ = k. Thus, if K = k, σ is
of the first kind and if K 6= k, it is of the second kind.

Recall the group of similitudes Sim (A, σ) which was defined as Sim (A, σ)(k) =

{a ∈ A∗|σ(a)a ∈ k∗}. The similarity map µ : Sim (A, σ) → Gm sends
a  σ(a)(a). Let Sim+ (A, σ) be the connected component of Sim (A, σ).
Let PSim+ (A, σ) denotes the connected component of the group of pro-
jective similitudes. Merkurjev’s formula involves two subgroups G+ (A, σ)

and Hyp (A, σ) of k∗. Let us first define what they are. The subgroup
G+ (A, σ) ⊂ k∗ is defined as follows :

G+ (A, σ) := µ(k) (Sim+ (A, σ)(k)) .

The subgroup Hyp (A, σ) ⊆ k∗ is defined to be the subgroup generated by
certain norms, namely look at all finite extensions E/k and set

Hyp (A, σ) := 〈NE/k (E∗) | σE hyperbolic〉.

Let NK∗ = {σ(λ)λ | λ ∈ K∗}. Thus if σ is of the first kind, NK∗ = k∗2.

By the fundamental work of Weil, any adjoint absolutely simple classical
algebraic group over k is isomorphic to PSim+ (A, σ) for a suitable (A, σ) as
above. Then Merkurjev’s formula for PSim+ (A, σ) /R is the following
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Theorem 6.11 (Merkurjev, [Me98]). There is a natural isomorphism

PSim+ (A, σ)(k)/R ' G+ (A, σ) /NK∗Hyp (A, σ) .

We are interested in the Dn case when A is a matrix algebra. Let (V, q)

be a quadratic space of dimension 2n. Then K = k, A = Endk(V ) is the
matrix algebra of degree 2n and σ = σq, the orthogonal involution adjoint to
q. Then, we have

- Sim (A, σ) = GO(q), the group of similitudes which is defined by the
equation GO(q)(k) = {f ∈ End(V ) | q(f(v)) = αq(v) ∀ v ∈ V }.

- µ : Sim (A, σ)→ Gm is the multiplier map sending f  α.

- Sim+ (A, σ) = GO+(q), the group of proper similitudes which is defined
by the equation GO+(q)(k) = {f ∈ GO(q)| det(f) = µ(f)n}.

- PSim+ (A, σ) = PGO+(q) = PSO(q), the adjoint group of interest.

- G+ (A, σ) = G(q), the group of similarities which is defined by the
equation G(q) = {α ∈ k∗ | αq ' q}.

- The subgroup Hyp (A, σ) = Hyp(q) which is 〈NE/k (E∗) | qE ' Hr〉.

- Finally NK∗ = k∗2.

Thus, the formula for PSO(q)/R is given by the following theorem.

Theorem 6.12 (Merkurjev, [Me98]). Let q be a non-degenerate form of dim
2n. Then there is a natural isomorphism

PSO(q)(k)/R ' G(q)/k∗2 Hyp(q).
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We do not present the proof here but offer a few lines of explanation about
what induces the natural isomorphism in the formula in this case.

1 1

1 µ2 SO(q) PSO(q) 1

1 Gm GO+(q) PSO(q) 1

Gm Gm

1 1

'

×2 µ

Figure 6.3: Relating PSO(q)/R and G(q)

Look at the exact sequence 1 → Gm → GO+(q) → PSO(q) → 1. Since Gm

is H1 trivial, GO+(q) and PSO(q) are stably birational ([Me98], Lemma 1.1).
Thus

PSO(q)(k)/R ' GO+(q)(k)/R.

Now the multiplier map µ : GO+(q)(k) → k∗ induces the natural isomor-
phism in the formula.

6.5.2 Merkurjev’s example

As one of the consequences of Theorem 6.12, the rationality of the absolutely
simple adjoint group PSO (A, σ) of type D3 is investigated completely in
([Me96]). We only look at the case when A is split, namely when G = PSO(q)



88

where q is a non-degenerate quadratic form of dim 6. By Theorem 2.4, its
even Clifford algebra C0(q) is a central simple algebra of degree 4 over Z, the
discriminant extension of q.

Theorem 6.13 ([Me96], Thm 3). Let G = PSO(q) for q as above. Then

1. If disc(q) is trivial, PSO(q) is k-rational and hence R-trivial.

2. If disc(q) is not trivial,

(a) If C0(q) is not division, PSO(q) is k-stably rational and hence
R-trivial.

(b) If C0(q) is division, PSO(q) is not R-trivial and hence not stably-
rational.

As this theorem indicates, the discriminant being non-trivial is a crucial
assumption in manufacturing the non-rational adjoint group. Note that q ∈
I(k) as it has even dimension. Since q has non-trivial discriminant, we need
q ∈ I \ I2 to construct the non-rational group. And finally, the example is as
follows :

- Let k be a field4 such that it admits a quaternion algebra Q = (a, b)

which doesn’t split over the bi-quadratic extension L = k
(√

c,
√
d
)
.

- Let F = k(t).

- Define the quadratic form q over F to be 〈ad, b,−ab,−c,−t, ct〉.

- Then PSO(q) is not R-trivial and hence not F -stably rational.

A quick check shows that disc(q) = d is non-trivial. The Clifford algebra
computation is less straight-forward but goes through and C0(q) is indeed
division.

4k could be a number field for instance
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Gille’s example

The next year, P. Gille in his paper ([Gille97]) investigated whether the
triviality of discriminant was indeed necessary. And using Theorem 6.12, he
produced a quadratic form q of dimension 8 and trivial discriminant over a
characteristic 0 field k (of cohomological dimension 3) such that PSO(q) is
not k-stably rational.

More precisely, he constructs a dimension 8, trivial discriminant quadatic
form q as follows :

- D is a central division biquarternion algebra over k.

- φ is its associated Albert form5 which represents −1.

- a ∈ k∗ \ k∗2.

- q is the anisotropic part of φ ⊥ 〈〈−a, t〉〉 over the field k((t)).

He proved that PSO(q) is not R-trivial provided that C(V, q), the full Clifford
algebra of q, is still division. Note that q ∈ I2 as it has trivial discriminant.
Since the Clifford invariant of q is not trivial, q ∈ I2 \ I3.

We should also mention that questions about minimality of the dimension
of q and cohomological dimension of k used in constructing the example are
investigated thoroughly. For instance in the paper, Gille also showed that
the dimension of the quadratic form has to be at least 8 and that the base
field should have cohomological dimension at least 2 to be able to construct
such an example.

5An Albert form associated to the biquaternion (x, y)⊗(z, w) is 〈x, y,−xy,−z,−w, zw〉
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Year Credits Non-stably rational group

1954 Chevalley Torus

1960s Serre Semisimple group
(neither adjoint nor simply connected)

1976 Platonov Simply connected group

1996 Merkurjev Adjoint group
PSO(q), q ∈ I \ I2

1997 Gille Adjoint group
PSO(q), q ∈ I2 \ I3

Figure 6.4: A timeline

6.6 A natural question

The examples of non-rational adjoint groups discussed above yield quadratic
forms q1/k1 and q2/k2 such that

Merkurjev : dim (q1) is even (i.e q1 ∈ I (k1)) and PSO (q1) is not k1-
stably rational.

Gille : dim (q2) is even, disc (q2) is trivial (i.e q2 ∈ I2 (k2)) and PSO (q2)

is not k2-stably rational.

Recall that the dimension and discriminant are some of the classical in-
variants of quadratic forms taking values in the Galois cohomology groups
Hi(k, Z

2Z) for 0 ≤ i ≤ 2. The Milnor conjectures give successive higher
invariants for quadratic forms which determine the isomorphism class of a
quadratic form in the Witt ring.
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Thus one may be prompted to ask the following natural question.

Question 6.14. For each n ∈ N, is there a quadratic form qn defined over a
field kn such that qn ∈ In (kn), the nth power of the fundamental ideal and
PSO(qn) is not kn-stably rational?
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Chapter 7

More examples of non-rational

groups

‘The central idea of poetry is the idea of guessing right, like a child.’

- G. K Chesterton, The Victorian Age in Literature

In this chapter we answer Question 6.14 and manufacture for each n ∈ N, a
quadratic form qn defined over a field kn (Theorem 7.9) such that

- qn ∈ In (kn), the nth power of the fundamental ideal,

- PSO (qn) is not kn-stably rational.

In fact, we give a recursive construction to build qn+1/kn+1 from qn/kn using
Merkurjev’s computations of the R-equivalence classes of adjoint classical
groups (c.f. Theorem 6.12). Iterated Laurent-series fields come naturally
into play and the fields kn become very large in terms of cohomological di-
mension. The main reference is of course ([N1]) and ([Scharlau]) for facts
from quadratic form theory.
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7.1 Notations and Conventions

All fields considered in this chapter are assumed to have characteristic 0. Let
W(k) denote the Witt ring of quadratic forms defined over k and I(k), the
fundamental ideal of even dimensional forms. Pn(k) is the set of isomorphism
classes of anisotropic n-fold Pfister forms and In(k) denotes the nth power
of the fundamental ideal. Let us fix the convention that 〈〈a〉〉 denotes the
1-fold Pfister form 〈1, a〉. A generalized Pfister form is any scalar multiple of
a Pfister form.

7.2 Strategy

We will in fact construct qn/kn such that PSO (qn) (kn) /R 6= {1}. This will
imply that these adjoint groups are not R-trivial and hence not kn-stably
rational. The recursive construction repeatedly uses Merkurjev’s formula
and is broadly as follows :

- Assume qn ∈ In (kn) and that PSO (qn) (kn) /R is non-trivial.

- Thus Theorem 6.12 implies there exists a λ ∈ G (qn) \ Hyp (qn) k×2
n .

- Construct kn+1 to be a suitable iterated field of kn.

- Construct qn+1 ∈ In+1 (kn+1).

- Show λ ∈ G (qn+1).

- Show λ 6∈ Hyp (qn+1) k×2
n+1.

- Conclude by Theorem 6.12 again that PSO (qn+1) (kn+1) /R

is non-trivial.
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7.3 Lemmata

This section collects a list of lemmata which come in handy whilst construct-
ing non-rational adjoint groups.

Lemma 7.1 (Odd extensions). Let q be a quadratic form over k. Let k′/k
be an odd degree extension. Then,

PSO (qk′) (k′)/R = {1} =⇒ PSO(q)(k)/R = {1}.

Proof. Suppose that x ∈ G(q).

Clearly G(q) ⊆ G (qk′) = Hyp (qk′) k
′×2 as PSO (qk′) (k′)/R = {1}.

The definition of Hyp groups and the transitivity of norms immediately yield
the fact that Nk′/k (Hyp (qk′) k

′×2) ⊆ Hyp(q)k×2.

If 2n + 1 is the degree of k′ over k, it follows that x2n+1 = Nk′/k(x) ∈
Hyp(q)k×2. Hence x ∈ Hyp(q)k×2.

Let p be a Pfister form over k. Its pure-subform p̃ is defined uniquely up
to isometry via the property that p̃ ⊥ 〈1〉 ' p. The following useful result
connects the values of pure-subforms and Pfister forms :

Lemma 7.2 ([Scharlau], Chap 4, Thm 1.4). If D(q) denotes the set of non-
zero values represented by the quadratic form q, then, for p ∈ Pn(k),

b ∈ D(p̃) ⇐⇒ p ' 〈〈b, b2, . . . , bn〉〉,

for some b2, . . . , bn ∈ k×.
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The next lemma is a useful tool for converting an element which is a norm
from two different quadratic extensions into a norm from a biquadratic ex-
tension of the base field up to squares.

Lemma 7.3 (Biquadratic-norm trick, [KLST], Lemma 1.4). If l1 and l2 are
two quadratic extensions of a field l, then

Nl1/l

(
l×1
)
∩Nl2/l

(
l×2
)

= Nl1⊗ll2/l

(
(l1 ⊗l l2)×

)
l×2.

Lemma 7.4 (Folklore). Let k(u) be a finite separable extension of k generated
by u of degree pgh where p is a prime not dividing h and g ≥ 1. Then there
exist finite separable extensions M1/M2/k such that the following conditions
hold :

1. k(u) ⊂M1 and M1 = M2(u).

2. [M1 : M2] = p and p 6 | [M1 : k(u)]

Proof. Let M/k be any finite Galois extension containing k(u) and let S be
any p-Sylow of Gal(M/k(u)). Since Gal(M/k(u)) is a subgroup of Gal(M/k),
there is a p-Sylow subgroup T of Gal(M/k) containing S.

Let MS and MT denote the fixed fields of S and T in M respectively. Note
that MS ⊇ MT and since S and T are appropriate p-Sylow subgroups,
we have p - [MS : k(u)] and p - [MT : k]. Comparing degrees yields
[MS : MT ] = pg. Also note that u 6∈MT and k(u) ⊂MS.

In fact, MT (u) = MS because [MS : MT ] and [MS : k(u)] are coprime.

S is a proper subgroup of its normalizer NT (S) because T is nilpotent and
S 6= T . Thus, you can find a subgroup V such that S ⊆ V ⊆ T and index of
S in V is p. Set M2 to be the fixed field of V in M and set M1 = MS.
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Thus M1 = M2(u) is of degree p over M2 and satisfies the other conditions
given in the Lemma.

k

k(u)

MT

MV = M2

MS = M1

M

pgh

p 6 | [MT : k]

p 6 | [MS : k(u)]

p

Figure 7.1: Diagram for the folklore lemma

The following lemma tells us that Pfister forms yield R-trivial varieties. Note
that in fact more is true, namely that PSO(q) is stably-rational for any
generalized Pfister form q ([Me96], Prop 7).

Lemma 7.5. If q is an n-fold Pfister form over a field k, then

PSO(q)(k)/R = {1}.

Proof. If q is isotropic, it is hyperbolic and hence G(q) = Hyp(q) = k×.
Therefore assume without loss of generality that q is anisotropic.
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Case n = 1 : Let q = 〈1,−a〉. Then G(q) = Nk(
√
a)/k(k (

√
a)
×

). Further,
q splits over a finite field extension L of k if and only if a is a square in
L. Therefore qL splits if and only if L ⊇ k (

√
a) ⊇ k and hence clearly

Hyp(q) = G(q).

General case : Recall that Pfister forms are round, that is D(q) = G(q)

for any Pfister form q. Let q̃ be the pure-subform of q. If b ∈ D(q̃) ⊆ D(q),
then by Lemma 7.2

b ∈ D(〈1, b〉) = Hyp (〈1, b〉) k×2 ⊆ Hyp(q)k×2.

Note that any x ∈ G(q) = D(q) can be written (up to squares from k×) as
either b or 1 + b for some b ∈ D(q̃). Since x = b ∈ D(q̃) has just been taken
care of, it is enough to note that for b ∈ D(q̃),

1 + b ∈ D (〈1, b〉) ⊆ Hyp(q)k×2.

7.4 Comparison of some Hyp groups

Let q be an anisotropic quadratic form over a field k of characteristic 0. Let
p be an anisotropic Pfister form defined over k and let Q = q ⊥ tp over
the field of Laurent series K = k((t)). Note that K is a complete discrete
valued field with uniformizing parameter t and residue field k. Recall the
exact sequence in Witt groups :

0→W(k)
Res−−→W(K)

δ2,t−−→W(k)→ 0,
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where Res is the restriction map and δ2,t denotes the second residue homo-
morphism with respect to the parameter t.

Remark. Q is anisotropic and dim(Q) > dim(p).

This can be shown with the aid of the above exact sequence. Let the
anisotropic part of Q be Qan ' q1 ⊥ tq2 for quadratic forms qi defined
over k. Then each qi is anisotropic. The following equality in W(k) is in fact
an isometry because the forms are anisotropic :

δ2,t(Q) = p = q2.

This immediately implies q ' q1. The inequality between dimensions of Q
and p follows immediately.

Proposition 7.6. Hyp(Q)K×2 ⊆ Hyp (qK)K×2 if PSO(q)(k)/R 6= {1}.

Proof. Let L/K be a finite field extension which splits Q. There is a unique
extension of the discrete valuation on K to L which makes L into a complete
discrete valued field. Let l denote the residue field of L. Since the character-
istic of k is 0, k ⊆ K and l ⊆ L. Let Knr denote the maximal non-ramified
extension of K in L and π be a uniformizing parameter of L. Let f = [l : k],
the degree of the residue field extensions and e be the ramification index of
L/K. Let vX denote the corresponding valuation on fields X = K,Knr, L

and OX , the corresponding discrete valuation rings.
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Since L/Knr is totally ramified, the minimal polynomial of π (which is also
its characteristic polynomial) over Knr is an Eisenstein polynomial xe +

ae−1x
e−1+. . .+a1x+a0 inKnr[x], where vKnr (a0) = 1 and vKnr (ai) ≥ 1 ∀ 1 ≤

i ≤ e− 1 ([CF67], Chap 1, Sec 6, Thm 1). Note that NL/Knr(π) = (−1)ea0.

Knr = l((t)) and L = l((π)) ([Serre95], Chap 2, Thm 2). Let a0 = −ut(1 +

u1t + . . .) in OKnr = l[[t]]. By Hensel’s lemma, 1 + u1t + . . . = w2 for some
w in Knr. The relation given by the Eisenstein polynomial can be rewritten
by applying Hensel’s lemma again as follows :

πe = utv2, u ∈ l×, v ∈ L×.

Hence the norm of π can be computed up to squares. That is,

NL/K(π) = NKnr/K((−1)ea0) ∈ (−1)ef (−t)fNl/k(u)K×2.

The problem is subdivided into two cases depending on the parity of the
ramification index e of L/K.

Case I : e is odd

We show that L also splits q in this case. Let δ2,π : W(L) → W(l) be the
second Milnor residue map with respect to the uniformizing parameter π
chosen above. Note that QL = q + πup in W(L). Then

QL = 0 =⇒ δ2,π (Q) = 0 ∈W(l)

=⇒ up = 0 ∈W(L)

=⇒ q = 0 ∈W(L).
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Case II : e is even

Now QL = q+up = 0 in W (L). Since any element of L× is of the form απb2

or αb2 for some α ∈ l× and b ∈ L, the norm computation of π done before
yields the following :

NL/K

(
L×
)
⊆ 〈Nl/k (u) (−t)f〉K×2.

So it is enough to show that f is even and Nl/k (u) is in Hyp (q) k×2.

Claim : f is even.
If f is odd, then PSO (ql) (l) /R 6= {1} by Lemma 7.1. But ql = −up is a
form similar to a Pfister form. Hence by Lemma 7.5, PSO (ql) (l)/R = {1}
which is a contradiction.

Claim : Nl/k (u) ∈ Hyp (q) k×2.

Look at l ⊇ k (u) ⊇ k. If [l : k (u)] is even, then Nl/k (u) = Nk(u)/k

(
u[l:k(u)]

)
∈

k×2 which proves the claim.

Otherwise r : W (k (u))→W (l) is injective and hence q+up = 0 in W (k (u)).
It remains to show that Nk(u)/k (u) ∈ Hyp (q) k×2.

Suppose that [k(u) : k] is odd. Then Lemma 7.1 implies that PSO
(
qk(u)

)
/R 6=

{1}. On the other hand, qk(u) is similar to Pfister form pk(u). This contradicts
Lemma 7.5. Therefore [k(u) : k] is even.

Let [k(u) : k] = 2gh where h is odd and g ≥ 1. Lemma 7.4 gives us a
quadratic extension M1 = M2(u) over M2 such that M1 is an odd extension
of k(u).

Since [M1 : k(u)] is odd, there is a w ∈ k× such that
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NM1/k(u) = Nk(u)/k

(
NM1/k(u)(u)

)
= Nk(u)/k(u)w2.

Hence it suffices to show that NM1/k(u) ∈ Hyp(q)k×2. Using transitivity of
norms and the definition of Hyp groups, showingNM1/M2 (u) ∈ Hyp (qM2)M2

×2

proves the claim.

Let η := NM1/M2 (u). By using Scharlau’s transfer and Frobenius reciprocity
([Scharlau], Chap 2, Lemma 5.8 and Thm 5.6),

p⊗ 〈1〉 = −〈u〉q ∈W (M1) =⇒ p⊗ 〈1,−η〉 = 0 ∈W (M2) .

Hence η ∈ G (pM2) = D (pM2) since p is a Pfister form.

Let s be the pure subform associated with pM2 . We can assume (up to
squares from M2) that η = b or 1 + b for some b ∈ D (s). In either case,
η ∈ NM2(

√
−b)/M2

((
M2

(√
−b
))×). By Lemma 7.2, p = 〈〈b, . . .〉〉. Note that

if −b is already a square in M2, then the above reasoning shows that q splits
over M1 which shows that η ∈ Hyp (qM2)M

×2
2 . If −b is not a square, then p

splits in M2

(√
−b
)
and hence q = −up splits in M1

(√
−b
)
.

The introduction of subfield M2 is useful because the biquadratic norm trick
can be used! More precisely, since

η ∈ NM2(
√
−b)/M2

((
M2

(√
−b
))×)

∩NM1/M2

(
M×

1

)
,

Lemma 7.3 shows that η is up to squares a norm from M1

(√
−b
)

and
M1

(√
−b
)
splits q. Thus η ∈ Hyp (qM2)M

×2
2 as claimed.
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Proposition 7.7. Hyp (qK)K×2 ⊆ Hyp (q)K×2.

Proof. Again using the exact sequence of Witt groups, it is clear that if q is
split by a finite field extension L of K, then it is also split by l, the residue
field of L. Thus Hyp (qK) is generated by NL/K (L×) where L runs over finite
unramified extensions of K which split q. By Springer’s theorem, [l : k] has
to be even. And characteristic of k = 0 implies that L ' l((t)). To conclude,
it is enough to observe that

Nl((t))/k((t)) (l((t)))× ⊆ Nl/k(l
×)K×2.

7.5 A recursive procedure

We are ready to spell out our recursive procedure. We start with slightly
stronger hypotheses than what was mentioned in the strategy in Section 7.2.
Note that all fields discussed in this chapter henceforth will have character-
istic 0. Let L be a field, n ∈ N, λ ∈ L, and φ be a quadratic form over L.
We say that (n, λ, L, φ) has property ? if the following holds :

- φ is an anisotropic quadratic form over L in In (L),

- The scalar λ ∈ L is in G (φ) but not in Hyp (φ)L×2,

- There exists a decomposition of φ into a sum of generalized n-fold
Pfister forms in the Witt ring W (L), each of which is annihilated by
〈1,−λ〉.
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More precisely, in W (L),

φ =
m∑
i=1

αipi,n,where αi ∈ L×, pi,n ∈ Pn (L) ,

〈1,−λ〉 ⊗ pi,n = 0 ∀ i.

Assume that (n, λ, kn, qn) has property ? with qn =
∑m

i=1 αipi,n for pi,n ∈
Pn (kn) and αi ∈ k×n such that each pi,n is annihilated by 〈1,−λ〉. Let K0

denote the field kn. Define the fields Ki recursively as follows :

Ki := Ki−1 ((ti)) ∀ 1 ≤ i ≤ m.

Let Q0 denote the quadratic form qn defined over K0. Define the quadratic
forms Qi over fields Ki recursively as follows :

Qi := Qi−1 ⊥ tipi,n ∀ 1 ≤ i ≤ m.

Note that λ ∈ G (Qi) for each 1 ≤ i ≤ m since λ ∈ G (qn) and G (pi,n) for
each i.

Theorem 7.8. Let (n, λ, kn, qn) have property ?. Then for (Km, Qm) as
above, the following hold :

1. Qm ∈ In+1 (Km)

2. λ ∈ G (Qm) \ Hyp (Qm)Km
×2. In particular, PSO (Qm) is not Km-

stably rational.

3. (n+ 1, λ,Km, Qm) has property ?.
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Proof. In the Witt ring W (Km),

Qm = qn +
m∑
i=1

tipi,n

=
m∑
i=1

αipi,n + tipi,n

=
m∑
i=1

pi,n ⊗ 〈αi, ti〉

∈ In I ⊆ In+1 (Km) .−−− (1)

We now prove by induction that λ ∈ G (Qi) \Hyp (Qi)Ki
×2 for each i ≤ m.

The base case i = 0 is given, namely for the pair (kn, qn). Assume as induction
hypothesis that this statement holds for all i ≤ j. The proof of the statement
for i = j + 1 follows :

The following notations are introduced for convenience.

(Q,K) := (Qj+1, Kj+1) .

(q, k) := (Qj, Kj) .

t := tj+1.

p := pj+1,n ∈ Pn (k) .

Thus Q = q + tp ∈W (K).

Since λ ∈ k× and not in Hyp(q)k×2, it is not in Hyp(q)K×2. By Propo-
sition 7.7, λ 6∈ Hyp(qK)K×2 and by Proposition 7.6, λ 6∈ Hyp(Q)K×2. By
construction, λ ∈ G(Q) as λ ∈ G (p)∩G(q). Hence λ ∈ G(Q) \Hyp(Q)K×2.

It is clear that (n+ 1, λ,Km, Qm) has property ? by Equation 1.
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7.6 Conclusion

Theorem 7.9. For each n, there exists a quadratic form qn defined over a
field kn such that qn ∈ In (kn) and PSO (qn) is not kn-stably rational.

Proof. Let q be an anisotropic quadratic form of dimension 6 over a field F of
characteristic 0. If the discriminant of q is not trivial and C0(q) is a division
algebra, then by ([Me96], Thm 3) there exists a field extension E of F such
that

PSO(q)(E)/R 6= {1}.

Define k1 := E, q1 := qE and pick a λ ∈ G (q1) \ Hyp (q1) k×2
1 .

We can write q1 =
∑r

i=1 αifi in the Witt ring W (k1) for some scalars αi ∈ k×1
and 1-fold Pfister forms fi which are annihilated by 〈1,−λ〉([Scharlau], Chap
2, Thm 10.13).

Therefore Theorem 7.8 can be applied repeatedly to produce pairs (kn, qn)

such that

PSO (qn) (kn) /R 6= {1}.

This implies that PSO (qn) is not kn-stably rational.
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Chapter 8

On norm principles

‘Is that sort of stuff any use to you?’

- John Mortimer, Trials of Rumpole

Norm principles examine the behaviour of the images of group morphisms
from an algebraic group into a commutative one with respect to the norm
map. The classical norm principles attributed to Scharlau and Knebusch
can be reformulated as a special case of norm principles for certain group
homomorphisms. Further the Knebusch norm principle can be derived from
Gille and Merkurjev’s norm principle which is stated for more general R-
trivial groups ([Gille93], [Me95]). Thus the study of norm principles is a
close cousin to the study of rationality questions of group varieties. However
as the paper of Merkurjev and Barquero shows, norm principles for certain
classical groups hold without any condition whatsoever on their rationality
([BM]). In this chapter, we define what constitutes a norm principle for an
algebraic group and examine some norm principles that have been shown to
hold, which will prove a crucial ingredient in the second main result of this
disseration.
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8.1 What is a norm principle?

Let T be a commutative k-algebraic group and let L/k denote a finite
separable field extension. Then one can define the norm homomorphism
NL/k : T (L) → T (k) which sends t  

∏
γ γ(t) where γ runs over cosets of

Gal (ksep/L) in Gal (ksep/k).

If T = Gm, then NL/k : T (L) → T (k) is precisely the usual norm NL/k :

L∗ → k∗.

Now let G be a k-algebraic group and let f : G→ T be an algebraic homo-
morphism defined over k.

G(L) T (L)

G(k) T (k)

f(L)

NL/k

f(k)

We say that the norm principle holds for f : G→ T if for all separable field
extensions L/k,

NL/k(Image f(L)) ⊆ Image f(k).

That is, we say that the norm principle holds for f : G→ T if given any sepa-
rable field extension L/k and any t ∈ T (L) such that t ∈ (Image f(L) : G(L)→ T (L)),
then NL/k(t) ∈ (Image f(k) : G(k)→ T (k)). Note that the norm principle
holds for any algebraic group homomorphism between abelian groups.

We say that the weak norm principle holds for f : G→ T if given any separa-
ble field extension L/k and any t ∈ T (k) such that t ∈ (Image f(L) : G(L)→ T (L)),
then t[L:k] = NL/k(t) ∈ (Image f(k) : G(k)→ T (k)). It is clear that if the
norm principle holds for f , then so does the weak norm principle.
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8.2 Classical examples

Reduced norms

Let A/k be a central simple algebra and let L/k be a separable field extension.
Further let λ ∈ L∗ such that λ ∈ NrdL ((A⊗k L)∗). Then it is a classical
result that NL/k (λ) is again a reduced norm from A/k.

This can be easily seen from the following characterization of reduced norms
of a central simple algebra

Nrdk (A∗) = 〈NF/k (F ∗) | A⊗k F = 0 ∈ Br(F )〉.

We can restate this in our context by saying that norm principle holds for
the reduced norm morphism

Nrd : GL1(A)→ Gm.

Scharlau’s norm principle

Let q be a regular quadratic form over k and let L/k be a separable field
extension. Further let λ ∈ L∗ such that λ ∈ G (qL), the group of similarities.
Then Scharlau’s norm principle states that that NL/k (λ) ∈ G (q) ([Lam],
Thm 4.3).

One can see this as follows : Look at F := k (λ) ⊆ L. If [L : F ] is even, then
NL/k (λ) ∈ k∗2 and hence clearly it is in G (q).

If [L : F ] is odd, then since W (F ) ↪→ W(L), we have that λqF ' qF . Also
Nk(λ)/k ' NL/k (λ) mod k∗2. Hence we are reduced to showing the norm
principle for the simple extension L = k (λ), which can be done by using the
so called Scharlau transfer and Frobenius reciprocity.
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We can restate Scharlau’s norm principle in our context by saying that norm
principle holds for the multiplier map

µ : GO(q)→ Gm.

Knebusch’s norm principle

Let q be a regular quadratic form over k and let L/k be a separable field
extension. Further let λ ∈ L∗ such that λ is a spinor norm. Then Knebusch’s
norm principle states that that NL/k (λ) is a spinor norm as well ([Lam],
Remark 5.13).

We can restate Knebusch’s norm principle in our context by saying that norm
principle holds for the spinor norm map

µ : Γ+(q)→ Gm.

8.3 More norm principles

The norm principles of Gille and Merkurjev are stated in general for R-trivial
elements.

Theorem 8.1 (Gille, [Gille93]). Let 1 → µ → G̃ → G → 1 be an isogeny
of semi-simple algebraic groups over a characteristic 0 field k and NL/k :

H1 (L, µ)→ H1 (k, µ) be the induced norm map for a field extension L/k.

RG(L) H1 (L, µ)

RG(k) H1 (k, µ)

δ(L)

NL/k

δ(k)
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Let RG(L) (resp. RG(k)) denote the elements of G(L) (resp G(k)) which
are R-equivalent to the identity. Then

NL/k

(
Image δ(L) : RG(L)→ H1 (L, µ)

)
⊆
(
Image δ(k) : RG(k)→ H1 (k, µ)

)
.

Theorem 8.2 (Merkurjev’s norm principle, [Me95], Thm 3.9). Let G1, G be
connected reductive k-groups and let T be a k-torus which fit into the exact
sequence 1→ G1 → G

f−→ T → 1. Then

NL/k (Image f(L) : RG(L)→ T (L)) ⊆ (Image f(k) : RG(k)→ T (k)) .

Thus for instance if G is k-rational, then norm principle always holds for
f : G → T . The classical norm principle for reduced norms and Knebusch
norm principle can therefore be recovered from the above theorem by noting
that the group GL1(A) and Γ+(q) are k-rational. Scharlau’s norm principle
is however not recovered since GO+(q) needn’t be rational always.

The most relevant norm principle for us is however the following one proved
by Merkurjev and Barquero for classical reducive groups of certain types

Theorem 8.3 ([BM], Thm 1.1). Let G be a k-reductive group and T , a
commutative k-group. Assume further that the Dynkin diagram of G does
not contain connected components Dn, n ≥ 4, E6 or E7. Then the norm
principle holds for any k-group homomorphism G→ T .

Note that any map f : G→ T for G and T as above factors as follows :

G G/ [G,G]

T

π

f
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Thus if the norm principle holds for the canonical map π : G → G/ [G,G],
it holds for f too. This is simply because G/ [G,G] is abelian and hence
the norm principle trivially holds for G/ [G,G] → T . Thus their paper
investigates norm principles for π.

Using several interesting algebraic group constructions, the authors manage
to reduce the problem to norm principles of certain reductive groups called
envelopes Ĝ of [G,G]. These techniques are extremely useful to us for they
can be adapted to answer a question of Serre for many connected reductive
groups as shown in the next chapter.
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Chapter 9

On a question of Serre

‘Mathematics is letting the principles do the work for you so that you do not have

to do the work for yourself.’
- George Polya

Let k be a field of characteristic not 2. In this chapter, we give a positive
answer to Serre’s injectivity question for any smooth connected reductive
k-group whose Dynkin diagram contains connected components only of type
An, Bn or Cn (Theorem 9.8). We do this by relating Serre’s question to
the norm principles proved by Barquero and Merkurjev ([BM]) and use and
extend Jodi Black’s result on Serre’s question for adjoint classical groups
([Black]). We also investigate Serre’s question for quasi-split reductive k-
groups (Theorem 9.11). The main reference is ([N2])

9.1 Serre’s question

Let k be a field and let G be smooth connected linear algebraic group over k.
Let X denote a principal homogeneous space under G over k, i.e. a k-variety
with a G-action such that Xksep equipped with its Gksep-action is isomorphic
to Gksep . Note that then X (ksep) is a principal homogeneous space under
G (ksep) as defined in Section 5.3.1.
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A zero cycle on X is any element of the free abelian group on closed points
of X. We may associate to any zero cycle z =

∑
nixi (where n ∈ Z and xi

are closed points of X), its degree which is defined to be

deg(z) =
∑

ni [k(xi) : k] ,

where k (xi) denotes the residue field of xi.

A k-rational point z of X is simply a point in X(k) (i.e. a closed point
with residue field k). Clearly k-rational points are zero cycles of degree one.
Serre’s question, which is open in general, asks whether the converse is true,
namely

Question 9.1 (Serre, [Serre95], p. 233). Let G be any connected linear alge-
braic group over a field k and let X be a principal homogeneous space under
G over k. If X admits a zero cycle of degree one, does X have a k-rational
point?

There is a one-to-one correspondence between the first cohomology group
H1(k,G) and the set of isomorphism classes of principal homogeneous spaces
under G over k. Under this bijection, the trivial class in H1(k,G) corresponds
to the class of principal homogeneous spaces under G over k with rational
points. (Thm 5.1 or [Serre97], Chapter I, Proposition 33).

Now if z =
∑
nixi is a zero cycle of degree one on a principal homogeneous

space X under G over k, then [X] = 1 ∈ H1 (k(xi), G). Since deg(z) = 1, we
have that gcd [k(xi) : k] = 1.

The question whether X admits a k-rational point is equivalent to asking
whether [X] = 1 ∈ H1 (k,G). Thus Serre’s question can be restated in the
language of Galois cohomology as follows :
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Question 9.2. Let G be any connected linear algebraic group over a field
k. Let L1, L2, . . . , Lr be finite field extensions of k of degrees d1, d2, . . . , dr

respectively such that gcdi(di) = 1. Then is the following sequence exact?

1→ H1(k,G)→
r∏
i=1

H1(Li, G).

9.1.1 Known results

Let us look at G = PGLn. The first cohomology group H1(k,G) classifies
central simple algebras of degree n. The classical result that the index of a
central simple algebra divides the degrees of its splitting fields answers Serre’s
question affirmatively for this group PGLn.

Let q be a regular quadratic form over k and let G = O(q). The first coho-
mology group H1(k,G) classifies regular quadratic forms q′ with dimension
equal to dim(q). Then Springer’s theorem for quadratic forms answers it
affirmatively for this (albeit sometimes disconnected) group.

This is because if z =
∑
nixi is a zero cycle of degree one corresponding to

a quadratic form q′, then necessarily some [k(xi) : k] is odd. Thus we are
given that q′ becomes hyperbolic over k(xi). Springer’s theorem asserts that
therefore q′ itself is hyperbolic.

More generally, let A/K be a central simple algebra with involution σ such
that Kσ = k. That is K = k if σ is of the first kind and K/k is a quadratic
extension if σ is of the second kind. Bayer-Lenstra’s theorem ([BL]) asserts
that for any odd extension L/k, the following morphism between cohomology
sets of the group of isometeries of (A, σ) is exact

1→ H1(k,U (A, σ))→ H1 (L,U (A, σ)) .
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This immediately implies that Serre’s question has a positive answer for
G = U (A, σ).

Jodi Black answers Serre’s question positively for absolutely simple simply
connected and adjoint k-groups of classical type.

Theorem 9.3 ([Black], Thm 0.2). Let k be a field of characteristic different
from 2 and let J be an absolutely simple algebraic k-group which is not of
type E8 and which is either a simply connected or adjoint classical group or
a quasi-split exceptional group. Then Serre’s question has a positive answer
for J .

9.2 Preliminaries

We work over the base field k of characteristic not 2. By a k-group, we mean
a smooth connected linear algebraic group defined over k. And mostly, we
will restrict ourselves to reductive groups. We say that a k-group G satisfies
SQ if Serre’s question has a positive answer for G. In this section, we recall
the reduction to the characteristic 0 case and list a few useful lemmata.

9.2.1 Reduction to characteristic 0

Let G be a connected reductive k-group whose Dynkin diagram contains con-
nected components only of type An, Bn, Cn or (non-trialitarian)Dn. Without
loss of generality we may assume that k has characteristic 0 ([Gille10(2)], Pg
47). We give a sketch of the reduction argument for the sake of completeness.

Suppose that the characteristic of k is p > 0. Let L1, L2, . . . , Lr be finite field
extensions of k of degrees d1, d2, . . . , dr respectively such that gcdi(di) = 1.
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Let ξ be an element in the kernel of

H1(k,G)→
r∏
i=1

H1(Li, G).

By a theorem of Gabber, Liu and Lorenzini ([GLL], Thm 9.2) which was
pointed out to us by O. Wittenberg, we note that any torsor under a smooth
group scheme G/k which admits a zero-cycle of degree 1 also admits a zero-
cycle of degree 1 whose support is étale over k. Thus without loss of generality
we can assume that the given coprime extensions Li/k are in fact separable.

By ([Maclane], Thm 1 & 2), there exists a complete discrete valuation ring R
with residue field k and fraction field K of characteristic zero. Let Si denote
the corresponding étale extensions of R with residue fields Li and fraction
fields Ki.

There exists a smooth R-group scheme G̃ with special fiber G and connected
reductive generic fiber G̃K . Now given any torsor t ∈ H1(k,G), there exists
a torsor t̃ ∈ H1

ét(R, G̃) specializing to t which is unique up to isomorphism.
This in turn gives a torsor t̃K in H1(K, G̃K) by base change, thus defining a
map ik : H1(k,G)→ H1(K, G̃K) ([GMS], Pg 29). It clearly sends the trivial
element to the trivial element. The map i also behaves well with the natural
restriction maps, i.e., it fits into the following commutative diagram :

H1(k,G) H1(K, G̃K)

∏
H1(Li, G)

∏
H1(Ki, G̃K).

ik

∏
iLi
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Let ξ̃ denote the torsor in H1
ét(R, G̃) corresponding to ξ as above. Therefore

ξ̃K := ik(ξ) is in the kernel of

H1(K, G̃K)→
r∏
i=1

H1(Ki, G̃K).

Suppose that G̃K satisfies SQ. Then ξ̃K is trivial. However by ([Nisnevich]),
the natural map H1

ét(R, G̃)→ H1(K, G̃K) is injective and hence ξ̃ is trivial in
H1

ét(R, G̃). This implies that its specialization, ξ, is trivial in H1(k,G).

Thus from here on, we assume that the base field k has characteristic 0.

9.2.2 Lemmata

Lemma 9.4. Let k-groups G and H satisfy SQ. Then G×kH also satisfies
SQ.

Proof. Let Li/k be a field extension. Then the map H1(k,G ×k H) →
H1(Li, G ×k H) is precisely the product of the maps H1(k,G) → H1(Li, G)

and H1(k,H)→ H1(Li, H). This immediately shows that if G and H satisfy
SQ, so does G×k H.

Lemma 9.5. Let 1→ Q→ H → G→ 1 be a central extension of a k-group
G by a quasi-trivial torus Q. Then H satisfies SQ if and only if G satisfies
SQ.

Proof. Since Q is quasi-trivial, H1(L,Q) = {1} ∀ L/k. From the long exact
sequence in cohomology, we have the following commutative diagram.

1 H1(k,H) H1(k,G) H2(k,Q)

1
∏

H1(Li, H)
∏

H1(Li, G)
∏

H2(Li, Q)

δk

∏
δLi
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From the above diagram, it is clear that if G satisfies SQ, so does H.

Conversely, assume that H satisfies SQ. Let a ∈ H1(k,G) become triv-
ial in

∏
H1(Li, G). Then δk(a) becomes trivial in each H2(Li, Q). Hence

the corestriction CorLi/k (δk(a)) = δk(a)di becomes trivial in H2(k,Q) where
di = [Li : k]. Since gcdi (di) = 1, this implies that δk(a) is itself trivial in
H2(k,Q). Therefore a comes from an element b ∈ H1(k,H) which is trivial
in
∏

H1(Li, H). (The fact that H1(Li, Q) = {1} guarantees that b is trivial
in H1(Li, H)). Since H satisfies SQ by assumption, b is trivial in H1(k,H)

which implies the triviality of a in H1(k,G).

Lemma 9.6. Let E be a finite separable field extension of k and let H be an
E-group satisfying SQ. Then the k-group RE/k(H) also satisfies SQ.

Proof. Set G = RE/k(H) and let ξ be an element in the kernel of H1(k,G)→∏r
i=1 H1(Li, G) where gcdi [Li : k] = 1.

Since char(k) = 0, Li ⊗k E is an étale E-algebra and hence isomorphic to
E1,i×E2,i×. . .×Eni,i where each Ej,i is a separable field extension of E. Thus∑ni

j=1 [Ej,i : E] = [Li : k] and therefore gcd [Ej,i : E] = 1 where 1 ≤ i ≤ r and
1 ≤ j ≤ ni.

By Eckmann-Faddeev-Shapiro, we have a natural bijection of pointed sets

H1 (k,G) ' H1 (E,H) ,

H1 (Li, G) '
ni∏
j=1

H1 (Ej,i, H) .

Thus we have that ξ is in the kernel of H1(E,H) →
∏

i≤r, j≤ni
H1(Ej,i, H).

Since H satisfies SQ, we see that ξ is trivial.
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9.3 Serre’s question and norm principles

9.3.1 Pushouts

([CGP], Remark 1.4.5) Consider groups A,B,C such that C acts on the left
on groups A,B. It acts on itself on the left by conjugation. Let f : A → B

and g : A → C be C-homomorphisms. Assume further that for each a ∈ A
and b ∈ B, we have

g(a)b = f(a)bf(a)−1.

Let X be the semi-direct product B o C. So for x = (b, c), y = (b′, c′) ∈ X,
we have xy = (b(cb′), cc′). Define h : A → X sending a  (f(a)−1, g(a)).
Then h is a group homomorphism as

h(a)h(a′) =
(
f(a)−1, g(a)

) (
f(a′)−1, g(a′)

)
=
(
f(a)−1g(a)f(a′)−1, g(a)g(a′)

)
=
(
f(a)−1f(a)f(a′)−1f(a)−1, g(aa′)

)
=
(
f(aa′)−1, g(aa′)

)
= h(aa′).

Also h(A) is normal in X. This is because for a ∈ A and (b, c) ∈ X, we have
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(b, c)h(a)(b, c)−1 = (b, c)h(a)
(
c−1b−1, c−1

)
= (b, c)

(
f(a)−1, g(a)

) (
c−1b−1, c−1

)
=
(
bcf(a)−1, cg(a)

) (
c−1b−1, c−1

)
=
(
bcf(a)−1cg(a)c−1b−1, cg(a)c−1

)
=
(
bcf(a)−1g(ca)b−1, g(ca)

)
=
(
bf(ca−1)f(ca)b−1f(ca)−1, g(ca)

)
=
(
bf (eA) b−1f(ca)−1, g(ca)

)
=
(
f(ca)−1, g(ca)

)
∈ h(A).

Then we define the pushout or the cofibre product

A B

C Q

f

g

to be Q ' X/h(A).

Note that

- When A,C are abelian and C acts trivially on A and B, then Q =

B × C/A where you identify A ⊆ B × C via the diagonal embedding.
If further B is abelian, then Q is abelian also.

- When A is a normal subgroup of C and f is a C-equivariant quotient
then B is a normal subgroup of the pushout Q, with Q/B ' C/A.
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9.3.2 Intermediate groups Ĝ and G̃

Notations are as in Section 5 of ([BM]).

In this section, we introduce new groups Ĝ and G̃ related to G and deduce
a positive answer to Serre’s question for them.

Let G be our given connected reductive k-group whose Dynkin diagram con-
tains connected components only of type An, Bn, Cn or (non-trialitarian) Dn

and let G′ denote its derived subgroup. Let Z(G) = T and Z(G′) = µ.

Let ρ : µ ↪→ S be an embedding of µ into a quasi-trivial torus S. We can
always do this! This is because of the following :

Let Γ = Gal (ksep/k), the absolute Galois group of k. The character group
X(µ) is a continuous Γ module and hence the action makes it a Γ/N module
for some open normal subgroup N C Γ.

Notice that Γ/N is a finite group and Z [Γ/N ]n is a Z module of finite rank
which is a Γ-permutation module for any n ≥ 1. And these correspond to
quasi-trivial tori!

Thus there exists n ≥ 1 such that f : Z [Γ/N ]n → X(µ) is a surjective Γ mod-
ule map. This implies µ ↪→ S is a closed immersion of µ into corresponding
quasi-trivial torus S.

We denote the cofibre product e(G′, ρ) = G′×S
µ

by Ĝ. This k-group is called
an envelope of G′.

µ G′

S Ĝ

δ

ρ

γ
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Now the quasi-trivial torus S = Z(Ĝ) and Ĝ fit into an exact sequence as
follows :

1→ S → Ĝ→ G′ ad → 1. (∗)

where G′ ad corresponds to the adjoint group of G′.

Since every adjoint group of classical type is a product of Weil restrictions
of absolutely simple adjoint groups, Jodi’s result (Theorem 9.3), along with
Lemmata 9.4 and 9.6, implies that G′ ad satisfies SQ. Applying Lemma 9.5
to the exact sequence (*) above, we see that Ĝ satisfies SQ. Let us choose
such an envelope Ĝ of G′ which satisfies SQ.

Define an intermediate abelian group T̃ to be the cofibre product T×S
µ

.

µ T

S T̃

ρ α

ν

Let the algebraic group G̃ be the cofibre product defined by the following
diagram :

G′ × T G

G′ × T̃ G̃

m

id ×α β

ε

Here G′ × T̃ acts on G′ × T by
(
g′, t̃
)

(g, t) = (g′gg′−1, t). And it acts on G
by
(
g′, t̃
)

(g) = g′gg′−1. Thus by the discussion in the previous section about
pushouts, we have G̃/G ' T̃ /T ' S/µ which is a torus.
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Then we have the following commutative diagram with exact rows ([BM],
Prop 5.1) . Note that each row is a central extension of G̃.

1 µ G′ × T̃ G̃ 1 (∗∗)

1 S Ĝ× T̃ G̃ 1 (∗ ∗ ∗)

δ,νρ

ρ

ε

id

γ,ν

Since T̃ is abelian, the existence of the co-restriction map shows that T̃
satisfies SQ. Since Ĝ satisfies SQ, we can apply Lemmata 9.4 and 9.5 to
(***) to see that G̃ satisfies SQ.

9.3.3 Relating Serre’s question and norm principle

The deduction of SQ for G from Ĝ and G̃ follows via the (weak) norm
principles.

Let β : G→ G̃ be the embedding of k-groups with the cokernel P isomorphic
to the torus S

µ
where G̃ and G are as in Section 9.3.2. Thus we have the

following exact sequence :

1→ G
β−→ G̃

π−→ P → 1.

Lemma 9.7. If the weak norm principle holds for π : G̃ → P , then G

satisfies SQ.

Proof. From the long exact sequence of cohomology, we have the following
commutative diagram :
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1 → G(k) → G̃(k)
πk−→ P (k)

δk−→ H1(k,G)
βk−→ H1(k, G̃)

↓ ↓ ↓ ↓ ↓

1 →
∏
G(Li) →

∏
G̃(Li)

∏
πLi−−−→

∏
P (Li)

∏
δLi−−−→

∏
H1(Li, G) →

∏
H1(Li, G̃).

Let a ∈ H1(k,G) become trivial in
∏

H1(Li, G). As G̃ satisfies SQ, βk(a)

becomes trivial in H1(k, G̃). Hence a = δk(b) for some b ∈ P (k) and δLi
(b) is

trivial in H1(Li, G). Therefore, there exist ci ∈ G̃(Li) such that πLi
(ci) = b.

Showing that G satisfies SQ, i.e. that a is trivial, is equivalent to showing

b ∈
(

Imageπk : G̃(k)→ P (k)
)
.

However b ∈
(

ImageπLi
: G̃(Li)→ P (Li)

)
. Since the weak norm principle

holds for π : G̃→ P , bdi ∈ Image
(
πk : G̃(k)→ P (k)

)
where [Li : k] = di for

each i. As gcdi(di) = 1, this means b ∈ Image
(
πk : G̃(k)→ P (k)

)
.

The norm principle of Merkurjev and Barquero (Theorem 8.3) for reductive
groups shows that the norm principle and hence the weak norm principle
holds for the map π : G̃ → P for reductive k-groups G as in the following
theorem (Theorem 9.8). Thus we have

Theorem 9.8. Let k be a field of characteristic not 2. Let G be a connected
reductive k-group whose Dynkin diagram contains connected components only
of type An, Bn or Cn. Then Serre’s question has a positive answer for G.
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9.4 Quasi-split groups

Let G be a connected quasi-split reductive k-group whose Dynkin diagram
does not contain connected components of type E8 and let G′ denote its
derived subgroup. Let Gsc denote the simply connected cover of G′. Then
one has the exact sequence 1 → C → Gsc → G′ → 1, where C is a finite
k-group of multiplicative type, central in Gsc.

Using a remark made by Gopal Prasad that Gsc is quasi-split if and only
if G is quasi-split, we can therefore assume that Gsc is quasi-split. Under
this condition, we would like to show that G satisfies SQ by following the
reduction techniques used in Sections 9.2 and 9.3.

Lemma 9.9. Let G be a connected reductive k-group. If Gsc is quasi-split,
then there exists an extension 1 → Q → H

ψ−→ G → 1, where Q is a quasi-
trivial k-torus, central in reductive k-group H with H ′ simply connected and
quasi-split.

Proof. Recall that there is a central extension (called a z-extension) of G
by a quasi-trivial torus Q such that H ′ is semisimple and simply connected
([MS], Prop 3.1 and [BK], Lemma 1.1.4).

1→ Q→ H
ψ−→ G→ 1.

The restriction ψ|H′ : H ′ → G yields the fact that H ′ is the simply connected
cover of G′ and hence is quasi-split.

Lemmata 9.5 and 9.9 imply that we can restrict ourselves to connected re-
ductive k-groups G such that G′ is simply connected and quasi-split.
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Lemma 9.10. Let H be any reductive k-group such that its derived subgroup
H ′ is semi-simple simply connected and quasi-split. Let T denote the k-
torus H/H ′. Then the natural exact sequence 1 → H ′ → H

φ−→ T → 1

induces surjective maps φ(L) : H(L)→ T (L) for all field extensions L/k. In
particular, the norm principle holds for φ : H → T .

Proof. There exists a quasi-trivial maximal torus Q1 of H ′ defined over k
([HS], Lem 6.7). Let Q1 ⊂ Q2, where Q2 is a maximal torus of H defined
over k. The proof of ([HS], Lem 6.6) shows that φ|Q2 : Q2 → T is surjective
and that Q2 ∩H ′ is a maximal torus of H ′. Since Q2 ∩H ′ ⊆ Q1, we get the
following extension of k-tori

1→ Q1 → Q2 → T → 1.

Since Q1 is quasitrivial, H1 (L,Q1) = 0 for any field extension L/k which
gives the surjectivity of φ(L) : Q2(L) → T (L) and hence of φ(L) : H(L) →
T (L).

Let Ĝ be an envelope of G′ defined using an embedding of µ = Z(G′) into a
quasi-trivial torus S. Note that G′ is assumed to be simply connected and
quasi-split and is also the derived subgroup of Ĝ by construction.

µ G′

S Ĝ

δ

ρ

γ

Thus, we get an exact sequence 1 → G′ → Ĝ → Ĝ/G′ → 1 to which we
can apply Lemma 9.10 to conclude that the norm principle holds for the
canonical map Ĝ→ Ĝ

[Ĝ,Ĝ]
.
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Constructing the intermediate group G̃ as in Section 9.3.2, we see that the
norm principle also holds for the natural map G̃ → G̃/G ([BM], Prop 5.1).
Then using Theorem 9.3 ([Black]) and Lemma 9.7, we can conclude that
following theorem holds.

Theorem 9.11. Let k be a field of characteristic not 2. Let G be a con-
nected quasi-split reductive k-group whose Dynkin diagram does not contain
connected components of type E8. Then Serre’s question has a positive an-
swer for G.
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Chapter 10

Obstruction to norm principles

for groups of type Dn

‘So it’s quite a necessary step, you see?’ said the Tortoise

‘I see,’ said Achilles; and there was a touch of sadness in his tone.
- Lewis Caroll

Let k be a field of characteristic not 2. In this chapter, we investigate norm
principles for (non-trialitarian) Dn groups and give a scalar obstruction de-
fined up to spinor norms (Theorem 10.4) whose vanishing will imply the
norm principles and yield a positive answer to Serre’s question for connected
reductive k-groups whose Dynkin diagrams contain components of this type
also. The main references are ([N2]) and ([KMRT]).

10.1 Preliminaries

Let (A, σ) be a central simple algebra of degree 2n over k and let σ be an
orthogonal involution. Let C (A, σ) denote its Clifford algebra which is a
central simple algebra over its center, Z/k, the discriminant extension. Let i
denote the non-trivial automorphism of Z/k and let σ denote the canonical
involution of C (A, σ).
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Recall from Theorem 2.7 that depending on the parity of n, σ is either an
involution of the second kind (when n is odd) or of the first kind (when n

is even). Let µ : Sim (C (A, σ), σ) → RZ/kGm denote the multiplier map
sending similitude c to σ(c)c.

Let Ω (A, σ) be the extended Clifford group. Note that this has center RZ/kGm

and is an envelope of Spin (A, σ) ([BM], Ex 4.4). We recall below the map
κ : Ω (A, σ)(k)→ Z∗/k∗ as defined in ([KMRT], Pg 182).

Given ω ∈ Ω (A, σ)(k), let g ∈ GO+ (A, σ)(k) be some similitude such that
ω  gk∗ under the natural surjection Ω (A, σ)(k)→ PGO+ (A, σ)(k).

Let h = µ(g)−1g2 ∈ O+ (A, σ)(k) and let γ ∈ Γ (A, σ)(k) be some element in
the special Clifford group which maps to h under the vector representation
χ : Γ (A, σ)(k)→ O+ (A, σ)(k).

Note that by Section 3.4.5, we have Int (ω) = C([g]) and Int (ω2) = C([g2]) =

C([h]) = Int(γ). Thus ω2 and γ differ by an element in Z∗. Hence ω2 = γz

for some z ∈ Z∗. Then κ (ω) = zk∗.

Note that the map κ has Γ (A, σ)(k) as kernel. Also if z ∈ Z∗, then κ(z) =

z2k∗.

By following the reductions in ([BM]), it is easy to see that one needs to
investigate whether the norm principle holds for the canonical map

Ω (A, σ)→ Ω (A, σ)

[Ω (A, σ),Ω (A, σ)]
.

We will need to investigate the norm principle for two different maps depend-
ing on the parity of n.



130

10.1.1 The map µ∗ for n odd

Let U ⊂ Gm ×RZ/kGm be the algebraic subgroup defined by

U(k) = {(f, z) ∈ k∗ × Z∗|f 4 = NZ/k(z)}.

Recall the map µ∗ : Ω (A, σ)→ U defined in ([KMRT], Pg 188) which sends

ω  
(
µ(ω), ai(a)−1 µ(ω)2

)
,

where ω ∈ Ω (A, σ)(k) and κ(ω) = a k∗. This induces the following exact
sequence ([KMRT], Pg 190)

1→ Spin (A, σ)→ Ω (A, σ)
µ∗−→ U → 1.

Since the semisimple part of Ω (A, σ) is Spin (A, σ), the above exact sequence
shows that it suffices to check the norm principle for the map µ∗.

10.1.2 The map µ for n even

Recall the following exact sequence induced by restricting µ to Ω (A, σ)

([KMRT], Pg 187)

1→ Spin (A, σ)→ Ω (A, σ)
µ
−→ RZ/kGm → 1.

Since the semisimple part of Ω (A, σ) is Spin (A, σ), the above exact sequence
shows that it suffices to check the norm principle for the map µ.
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10.2 An obstruction to being in the image of

µ∗ for n odd

Given (f, z) ∈ U(k), we would like to formulate an obstruction which prevents
(f, z) from being in the image µ∗ (Ω (A, σ)(k)). Note that for z ∈ Z∗, µ∗(z) =

(NZ/k(z), z4) and hence the algebraic subgroup U0 ⊆ U defined by

U0(k) = {(NZ/k(z), z4)|z ∈ Z∗}.

has its k-points in the image µ∗ (Ω (A, σ)(k)).

Let µn[K] denote the kernel of the norm map RK/kµn
N−→ µn where K/k is a

quadratic extension. Note that µ4[Z] is the center of Spin (A, σ) as n is odd.
Also recall that (Prop 5.5 or [KMRT], Prop 30.13, Pg 418)

H1
(
k, µ4[Z]

) ∼= U(k)

U0(k)
.

Thus, we can construct the map S : PGO+ (A, σ)(k)→ H1
(
k, µ4[Z]

)
induced

by the following commutative diagram with exact rows :

1 Z∗ Ω (A, σ)(k) PGO+ (A, σ)(k) 1

1 U0(k) U(k) H1
(
k, µ4[Z]

)
1

µ∗

χ′

µ∗ S

The map S also turns out to be the connecting map from PGO+ (A, σ)(k)→
H1
(
k, µ4[Z]

)
([KMRT], Prop 13.37, Pg 190) in the long exact sequence of

cohomology corresponding to the exact sequence
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1→ µ4[Z] → Spin (A, σ)→ PGO+ (A, σ)→ 1.

Since the maps µ∗ : Z∗ → U0(k) and χ′ : Ω (A, σ)(k)→ PGO+ (A, σ)(k) are
surjective, an element (f, z) ∈ U(k) is in the image µ∗ (Ω (A, σ)(k)) if and
only if its image [f, z] ∈ H1

(
k, µ4[Z]

)
is in the image S

(
PGO+ (A, σ)(k)

)
.

Therefore we look for an obstruction preventing [f, z] from being in the image
S(PGO+ (A, σ)(k)). Recall the following commutative diagram with exact
rows and columns :

1

µ2

1 µ2 Spin (A, σ) O+ (A, σ) 1

1 µ4[Z] Spin (A, σ) PGO+ (A, σ) 1

1

χ

id π

χ′

Figure 10.1: Diagram relating Spin,PGO+, and O+

The long exact sequence of cohomology induces the following commutative
diagram (Figure 10.2) with exact columns ([KMRT], Prop 13.36, Pg 189),
where
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O+ (A, σ)(k) k∗

k∗2

PGO+ (A, σ)(k) H1
(
k, µ4[Z]

)
k∗

k∗2
= k∗

k∗2

Sn

π i

S

µ j

Figure 10.2: Spinor norms and S for n odd

µ : PGO+ (A, σ)(k)→ k∗

k∗2
is induced by the multiplier map

µ : GO+ (A, σ)→ Gm,

i : k∗

k∗2
→ H1

(
k, µ4[Z]

)
= U(k)

U0(k)
is the map sending fk∗2  [f, f 2],

j : U(k)
U0(k)

= H1
(
k, µ4[Z]

)
→ k∗

k∗2
is the map sending [f, z] N(z0)k∗2

where z0 ∈ Z∗ is such that z0i(z0)−1 = f−2z.

Definition 10.1. We call an element (f, z) ∈ U(k) to be special if there
exists a [g] ∈ PGO+ (A, σ)(k) such that j([f, z]) = µ([g]).

Let (f, z) ∈ U(k) be a special element and let [g] ∈ PGO+ (A, σ)(k) be
such that j([f, z]) = µ([g]). From the discussion above, it is clear that
(f, z) is in the image µ∗ (Ω (A, σ)(k)) if and only if [f, z] is in the image
S
(
PGO+ (A, σ)(k)

)
.

Thus S([g])[f, z]−1 is in kernel j = Image i and hence there exists some α ∈ k∗

such that
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[f, z] = S([g])[α, α2] ∈ U(k)

U0(k)
.

Note that if g is changed by an element in O+ (A, σ)(k), then α changes by
a spinor norm by Figure 10.2 above. Thus given a special element, we have
produced a scalar α ∈ k∗ which is well defined up to spinor norms.

[f, z] ∈ S
(
PGO+ (A, σ)(k)

)
⇐⇒ [α, α2] ∈ S

(
PGO+ (A, σ)(k)

)
⇐⇒ (α, α2) ∈ µ∗ (Ω (A, σ)(k)) .

This happens if and only if there exists w ∈ Ω (A, σ)(k) such that

α = µ(w),

α2 = κ(w)i(κ(w))−1 µ(w)2.

This implies κ(w) ∈ k∗ and hence w ∈ Γ (A, σ)(k). Thus α is a spinor
norm, being the similarity of an element in the special Clifford group. Also
note if α is a spinor norm, then α = µ(γ) for some γ ∈ Γ (A, σ)(k) and
µ∗(γ) =

(
µ(γ), µ(γ)2

)
.

Thus a special element (f, z) is in the image of µ∗ if and only if the produced
scalar α is a spinor norm. We call the class of α in k∗

Sn(A,σ)
to be the scalar

obstruction preventing the special element (f, z) ∈ U(k) from being in the
image µ∗ (Ω (A, σ)(k)).
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10.3 An obstruction to being in the image of µ

for n even

Given z ∈ Z∗, we would like to formulate an obstruction which prevents z
from being in the image µ (Ω (A, σ)(k)) . Note that for z ∈ Z∗, µ(z) = z2

and hence the subgroup Z∗2 is in the image µ (Ω (A, σ)(k)).

Like in the case of odd n, we can construct the map S : PGO+ (A, σ)(k) →
Z∗

Z∗2
induced by the following commutative diagram with exact rows :

1 Z∗ Ω (A, σ)(k) PGO+ (A, σ)(k) 1

1 Z∗2 Z∗ Z∗

Z∗2
1

µ µ

χ′

S

Figure 10.3: Diagram from ([KMRT], Definition 13.32, Pg 187)

Again by the surjectivity of the maps, µ : Z∗ → Z∗2 and χ′ : Ω (A, σ)(k) →
PGO+ (A, σ)(k), an element z ∈ Z∗ is in the image µ (Ω (A, σ)(k)) if and only
if its image [z] ∈ Z∗

Z∗2
is in the image S

(
PGO+ (A, σ)(k)

)
. Therefore we look

for an obstruction preventing [z] from being in the image S(PGO+ (A, σ)(k)).
And as before, we arrive at the the following commutative diagram (Figure
10.4) with exact rows and columns ([KMRT], Prop 13.33, Pg 188), where
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O+ (A, σ)(k) k∗

k∗2

PGO+ (A, σ)(k) Z∗

Z∗2

k∗

k∗2
= k∗

k∗2

Sn

π i

S

µ j

Figure 10.4: Spinor norms and S for n even

µ : PGO+ (A, σ)(k)→ k∗

k∗2
is induced by the multiplier map

µ : GO+ (A, σ)→ Gm,

i : k∗

k∗2
→ Z∗

Z∗2
is the inclusion map,

j : Z∗

Z∗2
→ k∗

k∗2
is induced by the norm map from Z∗ → k∗.

Definition 10.2. We call an element z ∈ Z∗ to be special if there exists a
[g] ∈ PGO+ (A, σ)(k) such that j([z]) = µ([g]).

Let z ∈ Z∗ be a special element and let [g] ∈ PGO+ (A, σ)(k) be such
that j([z]) = µ([g]). As before a special element z ∈ Z∗ is in the image
µ (Ω (A, σ)(k)) if and only if [z] is in the image S

(
PGO+ (A, σ)(k)

)
.

Thus S([g])[z]−1 is in kernel j = Image i and hence there exists some α ∈ k∗

such that

[z] = S([g])[α] ∈ Z∗

Z∗2
.
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Note that if g is changed by an element in O+ (A, σ)(k), then α changes by
a spinor norm by Figure 10.4 above. Thus given a special element, we have
produced a scalar α ∈ k∗ which is well defined up to spinor norms.

[z] ∈ S
(
PGO+ (A, σ)(k)

)
⇐⇒ [α] ∈ S

(
PGO+ (A, σ)(k)

)
⇐⇒ (α) ∈ µ (Ω (A, σ)(k)) .

Since α ∈ k∗ also, this is equivalent to α being a spinor norm ([KMRT], Prop
13.25, Pg 184).

We call the class of α in k∗

Sn(A,σ)
to be the scalar obstruction preventing the

special element z ∈ Z∗ from being in the image µ (Ω (A, σ)(k)).

10.4 Scharlau’s norm principle revisited

Let µ : GO+ (A, σ) → Gm denote the multiplier map. We would like to
show that the norm principle holds for µ. So let L/k be a separable field
extension of finite degree and let g1 ∈ GO+ (A, σ)(L) be such that µ (g1) =

f1 ∈ L∗. Let f denote NL/k (f1). We would like to show that f is in the
image µ

(
GO+ (A, σ)(k)

)
.

Note that by a generalization of Scharlau’s norm principle ([KMRT], Prop
12.21; [Black], Lemma 4.3) there exists a g̃ ∈ GO (A, σ)(k) such that f =

µ(g̃). However we would like to find a proper similitude g ∈ GO+ (A, σ)(k)

such that µ(g) = f .

We investigate the cases when the algebra A is non-split and split separately.
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Case I : A is non-split

Note that g1 ∈ GO+ (A, σ)(L). If g̃ ∈ GO+ (A, σ)(k), we are done. Hence
assume g̃ 6∈ GO+ (A, σ)(k). By a generalization of Dieudonné’s theorem
([KMRT], Thm 13.38, Pg 190), we see that the quaternion algebras

B1 = (Z, f1) = 0 ∈ Br(L),

B2 = (Z, f) = A ∈ Br(k).

Since A is non-split, B2 6= 0 ∈ Br(k). However co-restriction of B1 from L

to k gives a contradiction, because

0 = CorB1 =
(
Z,NL/k(f1)

)
= B2 ∈ Br(k).

Hence g̃ ∈ GO+ (A, σ)(k).

Case II : A is split

Since A is split, A = EndV where (V, q) is a quadratic space and σ is the
adjoint involution for the quadratic form q. Again, if g̃ ∈ GO+ (A, σ)(k), we
are done. Hence assume g̃ 6∈ GO+ (A, σ)(k). That is

det(g̃) = −f 2n/2 = −(fn).
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Since A is of even degree (2n) and split, there exists an isometry1 h of de-
terminant −1. Set g = g̃h. Then det(g) = fn where µ(g) = f . Thus we
have found a suitable g ∈ GO+ (A, σ)(k) which concludes the proof of the
following :

Theorem 10.3. The norm principle holds for the map

µ : GO+ (A, σ)→ Gm.

10.5 Spinor obstruction to norm principle for

non-trialitarian Dn

Let L/k be a separable field extension of finite degree. And let w1 ∈
Ω (A, σ)(L) be such that for

n odd : µ∗(w1) = θ which is equal to (f1, z1) ∈ U(L),

n even : µ(w1) = θ which is equal to z1 ∈
(
RZ/kGm

)
(L).

We would like to investigate whether NL/k(θ) is in the image of µ∗ (Ω (A, σ)(k))

(resp µ (Ω (A, σ)(k)) ) when n is odd (resp. even) in order to check if the norm
principle holds for the map µ∗ : Ω (A, σ)→ U (resp. µ : Ω (A, σ)→ RZ/kGm).

Let [g1] ∈ PGO+ (A, σ)(L) be the image of w1 under the canonical map
χ′ : Ω (A, σ)(L) → PGO+ (A, σ)(L). Clearly θ is special and let g1 ∈
GO+ (A, σ)(L) be such that µ([g1]) = j([θ]).

1Since V is of even dimension 2n, h can be chosen to be a hyperplane reflection for
instance
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By Theorem 10.3, there exists a g ∈ GO+ (A, σ)(k) such that2

µ([g]) = NL/k (j[θ]) = j
(
[NL/k θ]

)
.

Hence NL/k(θ) is special.

By Subsection 10.2 (resp. 10.3) , NL/k(θ) is in the image of µ∗ (resp µ) if and
only if the scalar obstruction α ∈ k∗

Sn(A,σ)
defined for NL/k(θ) vanishes. Thus

we have a spinor norm obstruction given below.

Theorem 10.4 (Spinor norm obstruction). Let L/k be a finite separable
extension of fields. Let f denote the map µ∗ (resp µ) in the case when n is
odd (resp. even). Given θ ∈ f (Ω (A, σ)(L)), there exists scalar obstruction
α ∈ k∗ such that

NL/k(θ) ∈ f (Ω (A, σ)(k)) ⇐⇒ α = 1 ∈ k∗

Sn(A, σ)
.

Thus the norm principle for the canonical map

Ω (A, σ)→ Ω (A, σ)

[Ω (A, σ),Ω (A, σ)]
,

and hence for non-trialitarian Dn holds if and only if the scalar obstructions
are spinor norms.

2The map j commutes with NL/k in both cases.
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Chapter 11

A summary

‘You know what the poet Shakespeare said, Jeeves?’

‘Exit hurriedly, pursued by a bear.’
- P.G. Wodehouse, Very good Jeeves

We conclude with a short note summarizing this dissertation and highlighting
its main results.

A k-variety X is said to be k-rational if its function field k(X) is a purely
transcendental extension of k. X is said to be k-stably rational if X ×k Am

k

is k-rational for some m ≥ 0. The rationality of group varieties was studied
using the machinery of R-equivalence.

Motivated by the examples of non-rational adjoint groups of the form PSO(q)

of Merkurjev and Gille for quadratic forms q living in the first couple of terms
of the filtration of the Witt ring, we gave a recursive construction producing
an infinite family of examples of non-rational adjoint groups. More precisely,
we proved the following:

Theorem (7.9). For each n, there exists a quadratic form qn defined over a
field kn such that qn ∈ In (kn) and PSO (qn) is not kn-stably rational.
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The closely related theme of norm principles for algebraic groups was ex-
plored. The norm principles proved by Merkurjev and Barquero ([BM]) and
the techniques used therein were adapted to study the following question of
Serre for classical reductive groups.

Question. Let G be any connected linear algebraic group over a field k and
let X be a principal homogeneous space under G over k. If X admits a zero
cycle of degree one, does X have a k-rational point?

Using Jodi Black’s result ([Black]), we were able to affirmatively answer
Serre’s question for many of the classical reductive groups as in the following:

Theorem (9.8). Let k be a field of characteristic not 2. Let G be a connected
reductive k-group whose Dynkin diagram contains connected components
only of type An, Bn or Cn. Then Serre’s question has a positive answer for
G.

The case of quasi-split reductive groups was also studied and a uniform proof
answering Serre’s question positively was given by the following

Theorem (9.11). Let k be a field of characteristic not 2. Let G be a connected
quasi-split reductive k-group whose Dynkin diagram does not contain con-
nected components of type E8. Then Serre’s question has a positive answer
for G.

Finally, the missing ingredient, i.e. norm principles for groups of type (non-
trialitarian)Dn, was studied and and a scalar obstruction defined up to spinor
norms was given whose vanishing will imply the norm principles and yield a
positive answer to Serre’s question for connected reductive k-groups whose
Dynkin diagrams contain components of this type also.
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Theorem (10.4). Let L/k be a finite separable extension of fields. Let f
denote the map µ∗ (resp µ) in the case when n is odd (resp. even). Given
θ ∈ f (Ω (A, σ)(L)), there exists scalar obstruction α ∈ k∗ such that

NL/k(θ) ∈ f (Ω (A, σ)(k)) ⇐⇒ α = 1 ∈ k∗
Sn(A, σ)

.

It is tantalizingly unclear whether such obstructions to norm principles for
the non-trialitarian Dn case exist at all. It seems to be expected that norm
principle holds, at least in this context and hence we would like to continue
studying this scalar obstruction with greater vigour.

It has been an extremely pleasant journey compiling these results in the form
of this dissertation and we hope, you the reader, have enjoyed it, if not as
much, at least a little. And we end with the hopeful thought that maybe
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[BK] M. Borovoi and B. Kunyavskĭi, Formulas for the unramified Brauer
group of a principal homogeneous space of a linear algebraic group,
Journal of Algebra 225(2) (2000) : pgs 804-821.

[Black] J. Black, Zero cycles of degree one on principal homogeneous spaces,
Journal of Algebra 334 (2011) : pgs 232-246.

[Brown] K. S. Brown, Cohomology of groups, Springer Science and Business
Media (87) (2012).

[CF67] J. W. S. Cassels & A. Fröhlich, Algebraic Number Theory, Academic
Press London/New York (1967).



145

[Chernousov] V. Chernousov, The group of similarity ratios of a canonical
quadratic form, and the stable rationality of the variety PSO, Math.
Zametki 55 No. 4 (1994) : pgs 114-119; Math. Notes 55 Nos. 3-4
(1994) : pgs 413-416.

[CP] V. Chernousov & V. P. Platonov, The rationality problem for semisim-
ple group varieties, Journal fur die Reine und Angewandte Mathe-
matik (1998) : pgs 1-28.

[Chevalley] C. Chevalley, On algebraic group varieties, J. Math. Soc. Jap. 6
(1954) : pgs 303-324.

[Cliff] Professor Clifford, Applications of Grassmann’s extensive algebra,
American Journal of Mathematics 1(4) (1878) : pgs 350-358.

[CTS] J.-L. Colliot-Thélène & J. J. Sansuc, La R-équivalence sur les tores,
Annales Scientifiques de l’École Normale Supérieure 10 (1977) : pgs
175-229.

[CT07] J.-L. Colliot-Thélène, Lectures on linear algebraic groups,
Beijing (2007) : http://www.math.u-psud.fr/~colliot/

BeijingLectures2Juin07.pdf

[CGP] B. Conrad, O. Gabber & G. Prasad, Pseudo-reductive groups, 26
Cambridge University Press (2015).

[Draxl] P. K. Draxl, Skew fields, Cambridge University Press 81 (1983).

[GLL] O. Gabber, Q. Liu, & D. Lorenzini, The index of an algebraic variety,
Inventiones mathematicae 192(3) (2013) : pgs 567-626.

[GMS] S. Garibaldi, A. Merkurjev & J.-P. Serre, Cohomological invariants
in Galois cohomology, University Lecture Series 28 (2003), American
Mathematical Society, Providence, RI.

http://www.math.u-psud.fr/~colliot/BeijingLectures2Juin07.pdf
http://www.math.u-psud.fr/~colliot/BeijingLectures2Juin07.pdf


146

[Gille93] P. Gille, R-équivalence et principe de norme en cohomologie ga-
loisienne, Comptes rendus de l’Académie des sciences 316 (4) (1993)
: pgs 315-320.

[Gille97] P. Gille, Examples of non-rational varieties of adjoint groups, Jour-
nal of Algebra 193 (1997) : pgs 728-747.

[Gille07] P. Gille, Le probleme de Kneser-Tits, Séminarie Bourbaki 983

(2009) : pgs 39-81.

[Gille10] P. Gille, Lectures on R-equivalence on linear algebraic groups,
Grenoble (2010) : http://math.univ-lyon1.fr/homes-www/gille/
prenotes/grenoble.pdf

[Gille10(2)] P. Gille, Serre’s conjecture II: a survey, Quadratic forms, linear
algebraic groups, and cohomology, Springer New York (2010) : pgs
41-56.

[GS] P. Gille & T. Szamuely, Central simple algebras and Galois cohomol-
ogy, Cambridge University Press 101 (2006).

[HS] D. Harari & T. Szamuely, Local-global questions for tori over p-adic
function fields, arXiv preprint arXiv:1307.4782 (2013).

[Knus88] M. A. Knus, Quadratic Forms, Clifford Algebras and Spinors,
https://people.math.ethz.ch/~knus/papers/campinas.pdf.

[KLST] M.-A. Knus, T. Y. Lam, D. B. Shapiro & J.-P. Tignol, Discriminants
of involutions on biquaternion algebras, Proc. Sympos. Pure Math. 58
(1995) : pgs 279-303.

[KMRT] M.-A. Knus, A. Merkurjev, M. Rost & J.-P. Tignol, The book of
involutions, American Mathematical Society Colloquium Publications
44 (1998), AMS.

http://math.univ-lyon1.fr/homes-www/gille/prenotes/grenoble.pdf
http://math.univ-lyon1.fr/homes-www/gille/prenotes/grenoble.pdf
https://people.math.ethz.ch/~knus/papers/campinas.pdf


147

[Lam] T. Y. Lam, Introduction to quadratic forms over fields, American
Mathematical Soc. 67 (2005).

[Maclane] S. MacLane, Subfields and automorphism groups of p-adic fields,
Annals of Mathematics (1939) : pgs 423-442.

[Me95] A. Merkurjev, The norm principle for algebraic groups, Algebra i
Analiz 7 (1995) : pgs 77-105.

[Me96] A. Merkurjev, R-equivalence and rationality problem for semisimple
adjoint classical groups, Publications Mathématiques de l’IHÉS 84

(1996) : pgs 189-213.

[Me98] A. Merkurjev, K-theory and algebraic groups, European Congress of
Mathematics, Birkhäuser Basel (1998) : pgs 43-72.

[MS] J. S. Milne & K. Y. Shih, Conjugates of Shimura varieties, Hodge
cycles, motives, and Shimura varieties, Springer Berlin Heidelberg
(1981) : pgs 280-356.

[Nisnevich] Y. Nisnevich, Rationally Trivial Principal Homogeneous Spaces
and Arithmetic of Reductive Group Schemes Over Dedekind Rings,
C. R. Acad. Sci. Paris, Série I 299 (1984) : pgs 5-8.

[N1] Nivedita Bhaskhar, More examples of non-rational adjoint groups,
Journal of Algebra 397 (2014) : pgs 39-46.

[N2] Nivedita Bhaskhar, On Serre’s injectivity question and norm principle,
Commentarii Mathematici Helvetici 91 (2016) : pgs 145-161.

[Parimala09] R. Parimala, Some aspects of the algebraic theory of quadratic
forms, Arizona Winter School (2009) : http://swc.math.arizona.

edu/aws/2009/09ParimalaNotes.pdf.

http://swc.math.arizona.edu/aws/2009/09ParimalaNotes.pdf
http://swc.math.arizona.edu/aws/2009/09ParimalaNotes.pdf


148

[PSr85] R. Parimala & R. Sridharan, 2-Torsion in Brauer Groups : A
Theorem of Merkurjev, ETHZ (1985) : www.math.ethz.ch/~knus/

sridharan/merkurjev84.pdf.

[Platonov76] V. P. Platonov, The Tannaka-Artin problem and reduced K-
theory, Mathematics of the USSR-Izvestiya 10 (1976) : pgs 211-243.

[Platonov78] V. P. Platonov, Algebraic groups and reduced K-theory, Proc.
Internat. Congress Math., Helsinki (1978) : pgs 311-317.

[PLR] V. P. Platonov & A.S. Rapinchuk, Algebraic Groups and Number
Theory, Academic Press Inc. (1994).

[Sansuc81] J. J. Sansuc, Groupe de Brauer et arithmétique des groupes al-
gébriques linéaires sur un corps de nombres, Journal für die reine und
angewandte Mathematik 327 (1981) : pgs 12-80.

[Scharlau] W. Scharlau, Quadratic and Hermitian Forms, Springer-Verlag
(1985).

[Serre79] J.-P. Serre, Local Fields, Springer-Verlag (1979).

[Serre95] J.-P. Serre, Cohomologie galoisienne: progrès et problèmes, Sémi-
naire Bourbaki (1993/94), Astérisque 227 (783(4)) (1995) : pgs 229-
257.

[Serre97] J.-P. Serre, Galois cohomology, Springer-Verlag (1997).

[Shatz] S. S. Shatz, Profinite groups, arithmetic, and geometry, Princeton
university press 67 (1972).

[Sridharan05] R. Sridharan, Beginnings of group cohomology, Resonance,
10(9) (2005) : pgs 37-52.

www.math.ethz.ch/~knus/sridharan/merkurjev84.pdf
www.math.ethz.ch/~knus/sridharan/merkurjev84.pdf


149

[Tignol93] J.-P. Tignol, Central simple algebras, involutions, and quadratic
forms, Lecture notes, National Taiwan University, Taiwan, (1993).

[Tits78] J. Tits, Groupes de whitehead de groupes algébriques simples sur
un corps. Séminaire Bourbaki 489-506 (1978) : pgs 218-236.

[Vo77] V. E. Voskresenskii, Algebraic tori, Nauka. Moscow (1977).


	An introduction
	The story
	The plan
	The prerequisites
	Quadratic form theory
	Algebras with involutions


	Examining Clifford's algebras
	Generalizing quaternions
	Clifford algebra of a quadratic form
	The even Clifford algebra `39`42`"613A``45`47`"603AC0(V,q)
	Structure theorem for Clifford algebras
	Involutions on Clifford algebras

	Clifford algebra of an algebra with orthogonal involution
	Examples serve better than description
	A walk through the classification of linear algebraic groups
	Some adjectives of linear algebraic groups
	Classical groups á la Weil 
	Classification of classical groups
	Case I : Simply connected 
	Case II : Adjoint 

	Type Dn details
	The Clifford bimodule
	The Clifford group
	The vector representation
	The Spin group
	The extended Clifford group


	A crash course on group cohomology
	The Ext functor
	Recipes for computing cohomology
	Connecting maps

	A nice `39`42`"613A``45`47`"603AZG projective resolution of `39`42`"613A``45`47`"603AZ
	Rewriting the complex F'( Pi)

	Cocycles and coboundaries in low dimensions
	Special morphisms between cohomology groups
	Restrictions and inflations
	Coinduction and corestriction
	Gratuities

	A computation : Hilbert 90

	A glimpse of Galois cohomology
	Profinite groups
	Profinite group cohomology
	Non-abelian cohomology
	A principal homogeneous space
	Two long exact sequences
	Three computations


	Reviewing R-equivalence and rationality
	What is being rational?
	Detecting non-rationality
	Early examples of non-rational groups
	Chevalley's example
	Serre's example

	The story for simply connected groups
	The reduced Whitehead of an algebra
	Positive rationality results for simply connected groups

	The story for adjoint groups
	Merkurjev's forumula
	Merkurjev's example

	A natural question



	More examples of non-rational groups
	Notations and Conventions
	Strategy
	Lemmata
	Comparison of some Hyp groups
	A recursive procedure
	Conclusion

	On norm principles
	What is a norm principle?
	Classical examples
	More norm principles

	On a question of Serre
	Serre's question
	Known results

	Preliminaries
	Reduction to characteristic 0
	Lemmata

	Serre's question and norm principles
	Pushouts
	Intermediate groups  and 
	Relating Serre's question and norm principle

	Quasi-split groups

	Obstruction to norm principles for groups of type Dn
	Preliminaries
	The map * for n odd
	The map `39`42`"613A``45`47`"603A for n even

	An obstruction to being in the image of * for n odd
	An obstruction to being in the image of `39`42`"613A``45`47`"603A for n even
	Scharlau's norm principle revisited
	Spinor obstruction to norm principle for non-trialitarian Dn

	A summary
	Bibliography

