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Abstract

Composite Conditional Likelihood

By Lijia Wang

Sparse clustered data often arise in genetic and epidemiologic studies, such as studies
of complex diseases that tend to aggregate within households. Fine stratification is
needed to adjust for the population heterogeneity that is commonly encountered in
such studies. In this dissertation, we consider a finely stratified study, and we aim
to find a robust and flexible method to measure the pairwise associations between
individual outcomes within clusters.

We propose a composite conditional likelihood approach that allows the in-
vestigator to specify only marginal densities and intracluster pairwise densities,
and is insensitive to the stratum-specific nuisance parameters. We investigate the
asymptotic properties of our composite conditional likelihood method under both
the standard situation and the sparse data situation.

We also develop and apply general odds ratio models, which accommodate either
discrete or continuous observations, for use in composite conditional likelihood. We
propose a specific odds ratio model for use in household aggregation studies, which
not only rewards pairwise departure from the references points but also penalizes
lack of agreement. We demonstrate via simulation studies that the proposed
method provides a valid and flexible way to obtain robust inference in studies of
pairwise association with sparse clustered data. We apply the method to a study
of drinking water quality within households, finely stratified by small geographic area..

We finally conduct an exploratory study regarding the selection of weights for
each cluster in the proposed composite conditional likelihood to improve efficiency of
estimation. We investigate the optimal choice of cluster-specific weights under both
the standard situation and the sparse data situation. We demonstrate via simulation
studies that the efficiency of estimation is improved. We reanalyze the water quality
data after incorporating the proposed weights and compare the results analyzed under
equal and unequal weights.
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Chapter 1

Introduction
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1.1 Motivation

Sparse clustered data often arise in genetic and epidemiologic studies, such as studies

of complex diseases that tend to aggregate within households. Fine stratification is

needed to adjust for the population heterogeneity which is commonly encountered

in such studies. The scientific interest might be in the effects of covariates on the

marginal outcome and the intracluster associations. This inferential problem is

challenging for several reasons. Fully parametric models would require specification

of third- and higher-order associations of the observations within clusters. However,

it is difficult to verify the assumptions made on the higher order associations,

and the resulting inferences on interest parameters would be sensitive to such

assumptions (Liang et al., 1992). The generalized estimating equation (GEE)

appproach (Liang and Zeger 1986; Liang et al. 1992) and pairwise likelihood (PL)

approach (Lindsay 1988; Le Cessie and Van Houwelingen 1994) do not require full

specification of the likelihood, but yield inconsistent inferences of parameters with

sparse data due to sensitivity to the estimation of stratum-specific parameters:

this becomes the “infinitely many nuisance parameters” problem in the sparse data

context (Neyman and Scott, 1948). Random-effects models avoid the above nuisance

parameter problem, but often do not provide flexible models of pairwise association;

moreover, random-effects models require assumptions about the joint distribution of

stratum-level random effects, conditional upon other study covariates, and hence,

inferences on parameters of interest might be sensitive to such assumptions.

In my dissertation, we consider a finely stratified study consisting of a total of p

strata with ni independent clusters in the ith stratum, and mij correlated observations

in its jth cluster (See Table 1.1 for the data structure). We assume that individual

outcomes yijk marginally are distributed according to a generalized linear model with
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canonical link and stratum-specific intercept λi:

fijk(yijk;λi, α, φ) = exp{
yijk(λi + xTijkα)− b(λi + xTijkα)

a(φ)
+ c(yijk, φ)}, k = 1, . . . ,mij,

(1.1)

where α is a parameter vector of main effects, xijk are known constants, φ is

a dispersion parameter, and the real-valued functions a(·), b(·), c(·) are known.

Assume also that a parameter vector β relates some pairwise covariates zijkl to the

marginal intracluster pairwise probability fijkl(yijk, yijl;λi, α, φ, β), k 6= l, where

β = β0, say, indicates pairwise independence. We aim to find a robust and flexible

method to measure the pairwise associations between individual outcomes within

clusters. Our primary interest is in the sparse data situation when the number

of strata is much larger than the number of observations per stratum (p → ∞,

Ni =
ni∑
j=1

mij < K < ∞), although we also investigate the standard situation when

the number of observations per stratum is much larger than the number of strata and

cluster sizes are uniformly bounded (p < ∞, ni → ∞, mij < L < ∞, and ni

N
→ ri,

where N =
p∑
i=1

ni, and 0 < ri < R <∞).

Our work is motivated by a study of gastrointestinal health effects due to the

consumption of drinking water (Payment et al., 1997). This prospective study was

conducted over 16 months. A total of 1339 households with young children, stratified

by 138 small geographic areas, were randomly drawn from a population in Quebec

served by a single water treatment plant and its distribution system (Figure 1.1).

Households were randomly assigned into one of the four drinking water groups:

unmodified tap water; tap water with a purge valve; bottled plant water; or purified

bottled water. Counts of highly credible gastrointestinal illness (HCGI) episodes

and covariates including sex and age of all participating household members were

recorded. Previous study suggested a relative higher risk of gastrointestinal illnesses
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in tap water group (Payment et al., 1997). Researchers also desired to investigate

potential unmeasured household-specific environmental effects on gastrointestinal

illness episodes. Therefore, it is of scientific interest to assess: 1) the effects of

covariates on the counts of HCGI; 2) whether HCGI episodes tended to aggregate

within households, which suggests an unmeasured household-specific environmental

effect.

In my dissertation, we first develop a general composite conditional likelihood for

sparse clustered data and investigate its properties (Aim 1), and then we also develop

and apply general odds ratio models for use in this composite conditional likelihood

(Aim 2), and finally we discuss the selection of weights for each cluster to improve

efficiency of estimation (Aim 3). In the next section of this chapter, we review the

existing work on the composite conditional likelihood for sparse clustered binary data,

the general odds ratio function and the choices of weights for composite likelihood.

In the end of this chapter, we present the outline of the dissertation.

Table 1.1: Data Structure

stratum cluster observation
1 1 Y111, Y112, . . . , Y11m11

2 Y121, Y122, . . . , Y12m12

...
...

n1 Y1n11, Y1n12, . . . , Y1n1m1n1

2 1 Y211, Y212, . . . , Y21m21

2 Y221, Y222, . . . , Y22m22

...
...

n2 Y2n21, Y2n22, . . . , Y2n2m2n2

...
...

...

p 1 Yp11, Yp12, . . . , Yp1mp1

2 Yp21, Yp22, . . . , Yp2mp2

...
...

np Ypnp1, Ypnp2, . . . , Ypnpmpnp
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Figure 1.1: A map of households (units are in meters)



7

1.2 Background

1.2.1 Composite likelihood methods

In a general setting, let L(θ; Y) denote a parametric log-likelihood, where θ is an

unknown parameter, and Y is a random vector. As discussed in Lindsay (1988), we

write log-likelihoods Li(β) for a set of conditional or marginal events, for i = 1, . . . , n,

and construct the composite log-likelihood as:

CL(θ) =
n∑
i=1

wiLi(θ) (1.2)

where wi are weights chosen by the investigator, either on efficiency grounds or

specified to be proportional to the inverse probability of ascertaining the cluster in

studies where clusters have unequal probabilities of ascertainment. One could solves

the equation dCL(β)
dβ

= 0 , also called the composite score function, to obtain the

estimator of θ.

Composite likelihood methods have several appealing properties: (1) composite

likelihood can be a substitute for the likelihood when the maximum likelihood

estimator is difficult to obtain; (2) like the score function, the composite score

function is an unbiased estimating function; and (3) the resulting estimators can

be consistent even when full maximum likelihood estimators are not, also called

consistency robustness (Lindsay, 1988).
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1.2.2 Composite conditional likelihood for sparse clustered

binary data

As discussed in Section 1.1, challenges of conducting fully likelihood-based in-

ference on sparse correlated data include modeling higher order associations

within clusters, which often are not of primary scientific interest, and handling

the stratum-specific nuisance parameters. By contrast, one approach that is

insensitive to stratum-specific parameters and requires only assumptions about

marginal densities and pairwise densities within clusters is a composite conditional

likelihood approach (Hanfelt, 2004). In earlier work, Hanfelt (2004) focused on the

special case where the individual outcomes are binary, i.e., the individual outcome

Yijk ∼ Bernoulli(µijk), µijk = expit(λi + xTijkα), and the pairwise probability mass

functions are given by fijkl(yijk, yijl;α, β), k < l. Here, α is a vector of main effects

and β is a vector of intracluster pairwise associations.

Here, we briefly review this prior work. First, a composite conditional likelihood

based on the pairwise conditional scheme is constructed for inference on α. Specifi-

cally, an independent pair drawn from different clusters within a stratum, Yijk, Yiuv,

j 6= u, are considered. For this pair, the sum Yijk + Yiuv is a complete sufficient

statistic for the nuisance parameter λi when α is known. For binary data, Yijk + Yiuv

can only be 0, 1, or 2, and f(yijk|Yijk + Yiuv = 0) and f(yijk|Yijk + Yiuv = 2) are

degenerate. Therefore, a composite conditional likelihood for α is given by:

l(1)(α) =

(1)∑
i

l
(1)
i (α) =

K∑
i=1

ni∑
j<u

wijwiu{
mij∑
k=1

miu∑
v=1

∆ijk,iuvlog f(yijk|Yijk + Yiuv = 1;α)},

(1.3)

where ∆ijk,iuv = 1 if Yijk + Yiuv = 1, or 0 otherwise. The weights wij are known for

each cluster.
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Next, a composite conditional likelihood for the pairwise association β is con-

structed based on a quadruplet consisting of two pairs of observations drawn from

two different clusters within one stratum, (Yijk, Yijl, Yiuv, Yiuw). For binary data, the

sum of the quadruplets, which yield non-degenerate conditional probability, can only

be 1, 2, or 3. Moreover, the conditional probability is not very informative about β in

the case of ’nearly concordant’ quadruplets where the sum is 1 or 3. For this reason,

we focus on quadruplets whose sum is 2. More specifically, the conditional proba-

bilities conditioning on quadruplets of the form Yijk = 1, Yiuv = 1, Yijl + Yiuw = 1

or Yijk = 0, Yiuv = 0, Yijl + Yiuw = 1 are not very informative about the pairwise

association, so only quadruplets of the form Yijk = 1, Yiuv = 0, Yijl + Yiuw = 1 are

considered. Therefore, a composite likelihood for β is given by:

l(2)(β; η, λ) =

p∑
i=1

l
(2)
i (β; η, λi)

=

p∑
i=1

ni∑
j<u

wijwiu{
mij∑
k 6=l

miu∑
v 6=w

∆ijkl,iuvwlog f(yijl|Yijk = 1, Yiuv = 0, Yijl + Yiuw = 1; β, α, λi)},

(1.4)

where ∆ijkl,iuvw = 1 if Yijk = 1, Yiuv = 0, Yijl + Yiuw = 1, or 0 otherwise. In

my dissertation, we consider a “discordant quadruplet” consisting of two pairs of

observations drawn from two different clusters within one stratum, keeping two of

the observations and the sum of the other two fixed, and generalize the composite

conditional likelihood approach to accommodate responses of any type, such as

counts or continuous data.
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1.2.3 General odds ratio function

The general odds ratio function (Osius 2004; Chen 2003, 2004; Van Der Linde 2003)

is defined as:

ψijkl(yijk, yijl; β) =
fijkl(yijk, yijl)fijkl(y

0
ijk, y

0
ijl)

fijkl(yijk, y0ijl)fijkl(y
0
ijk, yijl)

, k 6= l, (1.5)

where fijkl refers to the pairwise density (or mass, in the discrete case) of (Yijk, Yijl),

k 6= l, and the y0ijk are known reference values, typically y0ijk = 0. The general odds

ratio function has several appealing features as a measure of pairwise association:

it 1) accommodates responses of any type, such as counts or continuous data; 2)

reduces to the usual odds ratio in the special case of binary data; 3) is invariant under

prospective or retrospective proband-based sampling design; 4) is unconstrained by

the marginal univariate distributions of the responses; and 5) completely character-

izes the pairwise association, i.e. the information in the pairwise distribution that is

not contained in the marginal univariate distributions (Osius, 2004).

When the cluster size is greater than 2, the general odds ratio function typically is

restricted, but not severely so, by the joint distribution of the clustered observations

(e.g. Liang et al., 1992). For multivariate normal or poisson data, the general odds

ratio function is unrestricted.

One simple general odds ratio model is the bilinear log odds ratio model (Chen

2003, 2004), given by:

log ψ(y1, y2; β) = β(y1 − y01)× (y2 − y02), (1.6)

where y01 and y02 are reference points, and ⊗ would replace × for vector responses.
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This model can be extended to accommodate pairwise covariates z12 (Chen, 2007) as:

log ψ(y1, y2; z12, β) = d(z12, β)(y1 − y01)× (y2 − y02),

where d(·) is a known function. Note that (1.6) makes a strong assumption that log

odds ratios are linear in the responses. This assumption can be relaxed somewhat by

assuming a transformed linear odds ratio model (Chen, 2007), given by:

log ψ(y1, y2; β) = β{G(y1)−G(y01)}{H(y2)−H(y02)} (1.7)

where G(·) and H(·) are known nonlinear functions, preferably monotonic, such as

when G(·) and H(·) are cumulative distribution functions.

The general odds ratio model has certain advantages over other models of

pairwise association. Alternatively, one could adopt a copula model (Van Ophem,

1999), which shares several of the appealing features of general odds ratio function

in measuring pairwise association, but it is not invariant under different sampling

designs and does not have an odds ratio interpretation. The correlation coefficient

generally is inadequate as a measure of association, since it is not invariant when

the sampling procedure depends on the marginal characteristics (Chen, 2007), and

the range of the correlation parameter can be severely constrained by the marginal

means (Lakshminarayana et al., 1999).

In my dissertation, we show that, under the composite conditional likelihood ap-

proach, a natural way to model pairwise association within clusters is via the general

odds ratio function (Osius 2004; Chen 2003, 2004; Van Der Linde 2003). We also

propose a specific odds ratio model for use in household aggregation studies, where

all responses are measured on the same scale and an unmeasured exposure is hy-
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pothesized to affect responses within households in the same way, that we argue is

more suitable than the bilinear log odds ratio model (1.6) and that not only rewards

pairwise departure from the references points y01 and y02, but also penalizes lack of

agreement.
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1.3 Outline

This dissertation is organized as follows. In Chapter 2, we develop a general

composite conditional likelihood and investigate its properties. We first present a

composite conditional likelihood approach that allows the investigator to specify

only the individual marginal densities and intracluster pairwise densities to conduct

inference on sparse clustered data. Specifically, we adopt the approach in Hanfelt

(2004) to construct a composite conditional likelihood that is free of stratum-specific

nuisance parameters when estimating the effects of covariates on the marginal

univariate responses and the dispersion parameter, η = (α, φ), and we propose

a general composite conditional likelihood, based on “discordant quadruplets”,

that is strongly insensitive to the stratum-specific nuisance parameters, to conduct

inference on the intracluster pairwise associations β. We investigate the asymptotic

properties of our composite conditional likelihood method under both the standard

situation and the sparse data situation. Under the standard situation, we prove

in detail the consistency and asymptotic normality for estimators of both η and

β; we also investigate, in some specific examples, the asymptotic efficiency of the

estimator of β and the sensitivity to the stratum-specific nuisance parameters.

Under the sparse data situation, we present the consistency and asymptotic

normality results for the estimate of η, and investigate the situation when con-

sistency and asymptotic normality hold for the estimate of β for specific distributions.

In Chapter 3, we develop and apply general odds ratio models for use in composite

conditional likelihood. We propose a specific general odds ratio model for use in

household aggregation studies, that not only rewards pairwise departure from the

references points but also penalizes lack of agreement. We demonstrate via simulation

studies that the proposed model for use in composite conditional likelihood provides

a valid and flexible way to obtain robust inference in studies of pairwise association
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with sparse clustered data by comparing the performance our approach versus GEE

approach. We apply the method to investigate the marginal effects of covariates

on HCGI and the aggregation of HCGI within households in the drinking water study.

In Chapter 4, we discuss the selection of weights for each cluster in the proposed

composite conditional likelihood to improve efficiency of estimation. We investigate

the optimal choice of cluster-specific weights via multivariate normal distributed data

under both the standard situation and the sparse data situation. Specifically, we take

advantage of Hajek projection to facilitate the comparison of estimators obtained by

composite conditional likelihood and full likelihood, in situations where the latter is

optimal, to identify a weight for each cluster that is at least approximately efficient.

We demonstrate via simulation studies that the efficiency of estimation is improved.

We reanalyze the water quality data after incorporating the proposed weights and

compare the results analyzed under equal and unequal weights.

In Chapter 5, we summarize our current work and discuss the future direction of

research.
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Chapter 2

Develop A General Composite

Conditional Likelihood and

Investigate Its Properties
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2.1 A General Composite Conditional Likelihood

Under the assumption that individual outcomes yijk marginally are distributed ac-

cording to a generalized linear model (1.1), we follow the approach of Hanfelt (2004),

and use the composite conditional log-likelihood below to render inferences about the

main effects and dispersion parameter, i.e., η = (αT , φ)T , insensitive to the effects of

nuisance parameters λ = {λi, i = 1, . . . , p}:

l(1)(η) =

p∑
i=1

l
(1)
i (η) =

p∑
i=1

ni∑
j<u

l
(1)
iju(η) =

p∑
i=1

ni∑
j<u

wijwiu{
mij∑
k=1

miu∑
v=1

log f(yijk|Yijk+Yiuv; η)},

(2.1)

where {wij} are known cluster-specific weights, which should be specified to be pro-

portional to the inverse probability of ascertaining the cluster in studies where clusters

have unequal probabilities of ascertainment (Hanfelt, 2004); and f(yijk|Yijk + Yiuv =

aijk,iuv; η) is

exp{a−1(φ)yijk(xijk − xiuv)Tα + c(yijk, φ) + c(aijk,iuv − yijk, φ)}∫
exp{a−1(φ)sijk(xijk − xiuv)Tα + c(sijk, φ) + c(aijk,iuv − sijk, φ)} dsijk

. (2.2)

In the case where the responses are discrete, we use summation rather than integra-

tion in the denominator of (2.2).

A greater challenge, and the focus of this chapter, is developing a composite condi-

tional likelihood approach to conduct inference on the pairwise association parameter

β. We note that under model (1.1) the collection of cluster-specific sums of responses,

{Yi++ =
ni∑
j=1

mij∑
k=1

Yijk, i = 1, . . . , p}, are locally ancillary statistics at β = β0; and hence,

one could consider conducting inference about pairwise association parameter β based

on the following conditional log-likelihood:

l+(β; η, λ) =

p∑
i=1

log f ((yi1, . . . , yini
)|Yi++ = yi++; β, η, λi) , (2.3)
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which is free of nuisance parameters λ = (λ1, . . . , λp) locally at β = β0. However,

this approach requires a complete specification of the joint distribution of correlated

outcomes in each cluster yij = {yijk, k = 1, . . . ,mij}.

As an alternative to model (2.3), we consider a “discordant quadruplet” consisting

of two pairs of observations drawn from two different clusters within one stratum,

keeping two of the observations and the sum of the other two fixed (Figure 2.1),

denoted by

(Yijk, Yijl, Yiuv, Yiuw)|(Yijk = yijk, Yiuv = yiuv, Yijl+Yiuw = aijl,iuw), for j 6= u, k 6= l, v 6= w.

We propose a composite log-likelihood for β consisting of a sum of component log-

probabilities, based on a scheme of conditioning on the above discordant quadruplets:

l(2)(β; η, λ) =

p∑
i=1

l
(2)
i (β; η, λi) =

p∑
i=1

ni∑
j<u

l
(2)
iju(β; η, λi) (2.4)

=

p∑
i=1

ni∑
j<u

wijwiu{
mij∑
k 6=l

miu∑
v 6=w

log f(yijl|Yijk = yijk, Yiuv = yiuv, Yijl + Yiuw = aijl,iuw; β, η, λi)}.

Importantly, l(2)(β; η, λ) is free of nuisance parameters λ when evaluated locally at

β = β0; this indicates that model (4.2) is strongly insensitive to stratum-specific

effects λ, except when the intracluster pairwise assocations are quite strong, i.e., β

is far from β0. We will see in Section 3.2 some special cases when l(2)(β; η, λ) is free

of λ for all β; moreover, in the next section, we show in an example that, even when

l(2)(β; η, λ) depends on λ, it contains little information about λ.
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Figure 2.1: Discordant quadruplet: the red and green responses, and the sum of the
two yellow responses, are considered fixed; the larger the circle is, the larger the value
of observation
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2.2 Asymptotic Results

We consider conducting joint inference on parameters of interest η and β in the

presence of nuisance parameters λ by the following pair of composite conditional

estimating functions:

G(1)(η) =
∂l(1)(η)

∂η
=

p∑
i=1

G
(1)
i (η) =

p∑
i=1

ni∑
j<u

G
(1)
iju(Yij,Yiu, η) (2.5)

G(2)(β; η, λ) =
∂l(2)(β; η, λ)

∂β
=

p∑
i=1

G
(2)
i (β; η, λ) =

p∑
i=1

ni∑
j<u

G
(2)
iju(Yij,Yiu, β; η, λi).

(2.6)

We solve the equations G(1)(η) = 0 and G(2)(β; η, λ̂) = 0 to obtain η̂ and β̂, where λ̂

is obtained by maximizing the plug-in first-order unconditional composite likelihood,

i.e.,

λ̂i = arg maxλi

ni∑
j=1

mij∑
k=1

log fijk(yijk;λi, η̂), (i = 1, . . . , p). (2.7)

We assume that {Yij, Xij,mij, wij, j = 1, . . . , ni} are independent and identically

distributed for each stratum (Datta and Satten, 2008). We investigate the properties

of η̂ and β̂ under two asymptotic schemes. In Section 2.2.1, we consider the standard

asymptotic setting with a fixed number of strata, while the number of clusters are

large, i.e., p < ∞, ni → ∞, and ni

N
→ ri, where N =

p∑
i=1

ni, and 0 < ri < ∞. In

Section 2.2.2, we consider a sparse data asymptotic setting where the numbers of

clusters are uniformaly bounded, while the number of strata is large, i.e., p → ∞,

ni < K < ∞. Throughout, we assume uniformly bounded cluster sizes, i.e.,

mij < L <∞.
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2.2.1 Standard asymptotic results

The asymptotic results of η̂ and β̂ under the standard asymptotic setting (p < ∞,

ni →∞, and ni

N
→ ri, where N =

p∑
i=1

ni, and 0 < ri <∞) are briefly sketched in the

following proposition:

Proposition 1: Let the true parameter values of η, β, λ be η0, β0, λ0 = (λi0, i =

1, . . . , p). Suppose conditions (a)-(g) in A1 in the Appendix of this chapter hold;

then, η̂ is strongly consistent and asymptotic normal, that is,

η̂
w.p.1−−−→ η0,

√
N(η̂ − η0)

d−→ N(0, [A(1)(η0)]
−1B(1)(η0){[A(1)(η0)]

−1}T ),

where A(1)(η0) =
p∑
i=1

r2iE[−G(1)′

i12 (Yi1,Yi2, η0)], and B(1)(η0) =
p∑
i=1

4r3iB
(1)
i (η0),

B
(1)
i (η0) = var{E[G

(1)
i12(Yi1,Yi2, η0)|Yi1 = yi1]}.

Furthermore, suppose conditions (h)-(o) in A1 in the Appendix of this chapter hold;

then, β̂ is strongly consistent and asymptotic normal, that is,

β̂
w.p.1−−−→ β0,

√
N(β̂−β0)

d−→ N(0, [A(2)(β0; η0, λ0)]
−1B(2)(β0; η0, λ0){[A(2)(β0; η0, λ0)]

−1}T ).

where A(2)(β0; η0, λ0) =
p∑
i=1

r2iE[−G(2)′

i12 (Yi1,Yi2, β0; η0, λ0)], and B(2)(β0; η0, λ0) =

p∑
i=1

4r3iB
(2)
i (β0; η0, λ0), B

(2)
i (β0; η0, λ0) = var{E[G

(∗)
i12(Yi1,Yi2, β0; η0, λ0)|Yi1 = yi1]}.

The proof of Proposition 1 is provided in A2 in the Appendix of this chapter.

To briefly explore the asymptotic efficiency of our proposed approach, we consider

a single stratum of bivariate normal data with marginal means λ1 + xT1jkα, marginal

variance φ, and cluster sizes of 2. We assume homogeneous intracluster pairwise

correlation, ρ, say, and arbitrarily apply the Fisher z-transformation,

1

2
log {(1 + ρ)/(1− ρ)} = β, (2.8)
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so that −∞ < β < ∞. Under this scenario, or any other smooth transformation of

ρ, the asymptotic relative efficiency of β̂ versus the maximum likelihood estimator of

β is given by ARE(β̂) = 1; that is, β̂ is fully efficient under the standard asymptotic

setting. Moreover, under the homogeneous correlation model (2.8), l(2)(β; η, λ) is free

of nuisance parameters λ.

Although l(2)(β; η, λ) depends on λ in general, we expect little sensitivity of

l(2)(β; η, λ) to λ. To further examine the sensitivity of l(2)(β; η, λ) to λ, we consider

a single stratum with cluster sizes of 2, consisting of bivariate normal data with

marginal means λ1 + xT1jkα, marginal variances φ, and heterogeneous intracluster

pairwise correlations ρj ∼ Unif(0, 1), j = 1, . . . , n1. We compute the asymptotic

relative efficiency of λ̃, where λ̃ is an estimator of λ obtained by maximizing

l(2)(β; η, λ), versus the maximum likelihood estimator of λ. We find that ARE(λ̃) is

close to 0 (≈ 0.003), confirming that l(2)(β; η, λ) contains relatively little information

about nuisance parameters λ.

2.2.2 Results under sparse data situation

For the sparse data situation (p→∞, ni < K <∞), Lindeberg central limit theorem

(Lindeberg, 1922) can be used to establish the consistency and asymptotic normality

of η̂; that is,

η̂
w.p.1−−−→ η0,

√
p(η̂ − η0)

d−→ N(0, V1) (2.9)

where V1 = limp→∞ p[E(∂G
(1)(η)
∂η

]−1var(G(1)(η)){[E(∂G
(1)(η)
∂η

]−1}T . Furthermore, under

the assumption that λ1, λ2, . . . , λp are independent and identically distributed, we can

show that β̂ is strongly consistent and asymptotic normal (Lindeberg, 1922); that is,

β̂
w.p.1−−−→ η0,

√
p(β̂ − β0)

d−→ N(0, V2) (2.10)
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where V2 = limp→∞ p[E(∂G
(2)(β)
∂β

]−1var(G(2)(β)){[E(∂G
(2)(β)
∂β

]−1}T . When λ1, . . . , λp are

not independent and identically distributed, general results are lacking, although it

is encouraging to note, as seen in the following examples, that under certain homo-

geneity conditions, l(2)(β; η, λ) is free of λ for all β, and thus the consistency and

asymptotic normality of β̂ is ensured.

Example 1. Let (Yij1, Yij2) follow a bivariate normal distribution with marginal means

λi + xTijkα, (k = 1, 2), and common marginal variance φ. Here, l(2)(β; η, λ) is free of

λ when the intracluster pairwise correlations are homogeneous within strata, for any

model ρij12 = corr(Yij1, Yij2) = ρ(β, zi), where zi denotes a pairwise covariate that is

the same for all pairs of observations within clusters in stratum i.

Example 2. For correlated binary data, l(2)(β; η, λ) is free of λ under homogeneous

marginal means and intracluster pairwise odds ratios within strata (Hanfelt, 2004).

Example 3. Let (Yij1, Yij2) follow a bivariate Poisson distribution (Madsen and

Dalthorp, 2007) with marginal means exp(λi + xTijkα) (k = 1, 2). Here, l(2)(β; η, λ)

is free of λ under homogeneous means and intracluster pairwise correlations within

strata, for any model ρij12 = corr(Yij1, Yij2) = ρ(β, zi).

The above examples suggest that, in the challenging situation of sparse data

with λ1, . . . , λp not independent and identically distributed, l(2)(β; η, λ) generally is

insensitive to nuisance parameters λ, and provides valid inference on β, provided

that either β is not so far from β0 or the covariates, xijk and zijkl, are not too

heterogeneous within strata.



24

2.3 Appendix

A1. Regularity conditions for Proposition 1:

(a) there is an integrable and symmetric kernel g1 such that; for all η ∈ Θ1,

where Θ1 is a compact topological space, |G(1)
iju(Yij,Yiu, η)| < g1(Yij,Yiu) and

(Yij,Yiu) ∈ R2;

(b) there is a sequence S2
M1

of measurable sets such that P (R2 −
∞⋃

M1=1

S2
M1

) = 0; for

each M1, E[G
(1)
iju(Yij,Yiu, η)|Yij = yij] is equicontinuous in η for Yij ∈ S1

M1
,

and E[G
(1)
iju(Yij,Yiu, η)] is equicontinuous in η for (Yij,Yiu) ∈ S2

M1
, where

S2
M1

= S1
M1
× S1

M1
;

(c)
p∑
i=1

Eη0 [G
(1)
i (η)] exists for all η ∈ Θ1,

p∑
i=1

Eη0 [G
(1)
i (η0)] = 0, and

p∑
i=1

Eη0 [G
(1)
i (η)] 6= 0

for all η 6= η0 in Θ1;

(d) G
(1)
iju(Yij,Yiu, η) and its first two partial derivatives with respect to η exist for

all η in a neighborhood of η0;

(e) for each η in a neighborhood of η0, there exists a function h1(Yij,Yiu) with finite

expectation, such that |∂
2G

(1)
ijk(Yij ,Yik,η)

∂η2
| ≤ h1(Yij,Yiu) for all (Yij,Yiu);

(f) E[−G(1)′

i12 (Yi1,Yi2, η0)] exists and is nonsingular;

(g) B
(1)
i (η0) = var{E[G

(1)
i12(Yi1,Yi2, η0)|Yi1 = yi1]} exists and is finite;

(h) there is an integrable and symmetric kernel g2 such that; for all β ∈ Θ2, where

Θ2 is a compact topological space, |G(2)
iju(Yij,Yiu, β; η0, λi0)| < g2(Yij,Yiu) and

(Yij,Yiu) ∈ R2;

(i) there is a sequence S2
M2

of measurable sets such that P (R2 −
∞⋃

M2=1

S2
M2

) = 0; for

each M2, E[G
(2)
iju(Yij,Yiu, β; η0, λi0)|Yij = yij] is equicontinuous in β for Yij ∈
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S1
M2

, and E[G
(2)
iju(Yij,Yiu, β; η0, λi0)] is equicontinuous in β for (Yij,Yiu) ∈ S2

M2
,

where S2
M2

= S1
M2
× S1

M2
;

(j)
p∑
i=1

E(β0,η0,λi0)[G
(2)
i (β; η, λi)] exists for all η ∈ Θ1 and β ∈ Θ2,

p∑
i=1

E(β0,η0,λi0)[G
(2)
i (β0; η0, λi0)] = 0, and

p∑
i=1

E(β0,η0,λi0)[G
(2)
i (β; η, λi)] 6= 0 for all

η 6= η0 in Θ1, β 6= β0 in ∈ Θ2;

(k) G
(∗)
iju(Yij,Yiu, β; η, λi) (defined in A2) and its first two partial derivatives with

respect to β exist for all β in a neighborhood of β0;

(l) for each β in a neighborhood of β0, there exists a function h2(Yij,Yiu) with finite

expectation, such that |∂
2G

(∗)
iju(Yij ,Yiu,β;η,λi)

∂β2 | ≤ h2(Yij,Yiu) for all (Yij,Yiu);

(m) E[−G(∗)′
iju (Yij,Yiu, β0; η0, λi0)] exists and is nonsingular;

(n) B
(2)
i (β0; η0, λ0) = var{E[G

(∗)
i12(Yi1,Yi2, β0; η0, λ0)|Yi1 = yi1]} exists and is finite;

(o) λ̂ is strongly consistent and
√
N−consistent, i.e., λ̂i

w.p.1−−−→ λi and λ̂i − λi =

Op(N−1/2).

Condition (a)-(b) and (h)-(i) are regularity conditions in Theorem 1 given by Yeo and

Johnson (2001) for almost sure uniform convergence of G
(1)
i (η) and G

(2)
i (β; η0, λi0),

i = 1, . . . , p.

A2. Proof of Proposition 1:

Let η̂ be the root of
p∑
i=1

G
(1)
i (η) = 0. If η̂ is not consistent, there exists a

subsequence of η̂, {η̂k} such that η̂k
w.p.1−−−→ η1 6= η0. Then
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|
p∑
i=1

G
(1)
i (η̂k)−

p∑
i=1

Eη0 [G
(1)
i (η1)]| ≤ |

p∑
i=1

G
(1)
i (η̂k)−

p∑
i=1

Eη0 [G
(1)
i (η̂k)]|

+ |
p∑
i=1

Eη0 [G
(1)
i (η̂k)]−

p∑
i=1

Eη0 [G
(1)
i (η1)]|

The first term on the right hand side converges to 0 by uniform convergence of
p∑
i=1

G
(1)
i (η). The second term converges to 0 by continuity of

p∑
i=1

Eη0G
(1)
i . Thus

p∑
i=1

G
(1)
i (η̂k)

w.p.1−−−→
p∑
i=1

Eη0 [G
(1)
i (η1)] 6= 0, and this contradicts

p∑
i=1

G
(1)
i (η̂k) = 0. There-

fore, η̂
w.p.1−−−→ η0.

0 =

p∑
i=1

G
(1)
i (η̂) =

p∑
i=1

[G
(1)
i (η0) +G

(1)′

i (η0)(η̂ − η0) +G
(1)′′

i (η∗)(η̂ − η0)2/2]

=

p∑
i=1

[G
(1)
i (η0) + (η̂ − η0){G(1)′

i (η0) +G
(1)′′

i (η∗)(η̂ − η0)/2}]

=⇒
√
N(η̂ − η0) = {

p∑
i=1

−G(1)′

i (η0)−
p∑
i=1

G
(1)′′

i (η∗)(η̂ − η0)/2}−1
√
N

p∑
i=1

G
(1)
i (η0)

where G
(1)′

i (η0) =
∂G

(1)
i (η)

∂η

∣∣∣∣
η=η0

, G
(1)′′

i (η∗) =
∂2G

(1)
i (η)

∂η2

∣∣∣∣
η=η∗

.

By U-statistics theory (Serfling, 2009),

√
ni

2

ni(ni − 1)
G

(1)
i (η0)

d−→ N(0, 4B
(1)
i (η0))

=⇒
√
N

2

N2
G

(1)
i (η0)

d−→ N(0, 4r3iB
(1)
i (η0))

=⇒
√
N

p∑
i=1

2

N2
G

(1)
i (η0)

d−→ N(0,

p∑
i=1

4r3iB
(1)
i (η0))
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By U-statistics theory (Serfling, 2009),

2

ni(ni − 1)
G

(1)′

i (η0)
P−→ E[−∂G

(1)
i12(Yi1,Yi2, η)

∂η

∣∣∣∣
η=η0

]

=⇒
p∑
i=1

2

N2
G

(1)′

i (η0)
P−→

p∑
i=1

r2iE[−∂G
(1)
i12(Yi1,Yi2, η)

∂η

∣∣∣∣
η=η0

] = A(1)(η0)

Since η̂
P−→ η0 and by assumption 2

N2

p∑
i=1

G
(1)′′

i (η∗) = Op(1), we have

2
N2

p∑
i=1

G
(1)′′

i (η∗)(η̂ − η0)/2
P−→ 0. By Slutsky’s theorem,

√
N(η̂ − η0)

d−→

N(0, [A(1)(η0)]
−1B(1)(η0){[A(1)(η0)]

−1}T ).

Let β̂ be the root of
p∑
i=1

G
(2)
i (β; η̂, λ̂i) = 0. If β̂ is not consistent, there exists a

subsequence of β̂, {β̂k} such that β̂k
w.p.1−−−→ β1 6= β0. Then

|
p∑
i=1

G
(2)
i (β̂k; η̂, λ̂i)−

p∑
i=1

Eβ0,η0,λi0 [G
(2)
i (β1; η0, λi0)]|

≤|
p∑
i=1

G
(2)
i (β̂k; η̂, λ̂i)−

p∑
i=1

G
(2)
i (β̂k; η0, λi0)|+ |

p∑
i=1

G
(2)
i (β̂k; η0, λi0)−

p∑
i=1

Eβ0,η0,λi0 [G
(2)
i (β̂k; η0, λi0)]|

+|
p∑
i=1

Eβ0,η0,λi0 [G
(2)
i (β̂k; η0, λi0)]−

p∑
i=1

Eβ0,η0,λi0 [G
(2)
i (β1; η0, λi0)]|

The first term converges to 0 by continuity of
p∑
i=1

G
(2)
i and the strongly consistent

of η̂ and λ̂. The second term on the right hand side converges to 0 by uniform

convergence of
p∑
i=1

G
(2)
i (β; η0, λi0). The third term converges to 0 by continuity of

p∑
i=1

Eβ0,η0,λi0G
(2)
i . Thus

p∑
i=1

G
(2)
i (β̂k; η̂, λ̂i)

w.p.1−−−→
∑p

i=1Eβ0,η0,λi0 [G
(2)
i (β1; η0, λi0)] 6= 0,

and this contradicts
p∑
i=1

G
(2)
i (β̂k; η̂, λ̂i) = 0. Therefore, β̂

w.p.1−−−→ β0.

Let G
(3)
i (λi), i = 1, . . . , p, are estimating functions which yield λ̂ in condition (d) of

Proposition 1. Define θi = (η, λi), for i = 1, . . . , p. To prove the asymptotic normality
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of β̂, we first define a projected estimating function G∗i (β, θi) which is uncorrelated

with (η, λi) as:

G∗i (β, θi) = G
(2)
i (β, θi)

−

E[G
(1)
i (η)G

(2)
i (β, θi)]

E[G
(3)
i (λi)G

(2)
i (β, θi)]


T  E{[G(1)

i (η)]2} E[G
(1)
i (η)G

(3)
i (λi)]

E[G
(3)
i (λi)G

(1)
i (η)] E{[G(3)

i (λi)]
2}


−1G

(1)
i (η)

G
(3)
i (λi)

 ,

where G∗i (β, θi) is a U-statistics, and G∗i (β̂, θ̂i) = 0.

0 =

p∑
i=1

G∗i (β̂, θ̂i) =

p∑
i=1

[G∗i (β̂, θi0) +G∗
′

iθi
(β̂, θi0)(θ̂i − θi0) +G∗

′′

iθi
(β̂, θ∗i )(θ̂i − θi0)2/2]

(2.11)

where θ∗i is a point between θi0 and θ̂i, G
∗′
iθi

(β̂, θi0) =
∂G∗i (β̂,θi)

∂θi

∣∣∣∣
θi=θi0

, G∗
′′

iθi
(β̂, θ∗i ) =

∂2G∗i (β̂,θi)

∂θ2i

∣∣∣∣
θi=θ∗i

. By U-statistics theory (Serfling, 2009), we have (θ̂i−θi0) = Op(n
−1/2
i ),

and (θ̂i − θi0)2 = Op(n
−1
i ).

G∗
′

iθi
(β̂, θi0) =

∂G∗i (β0, θi)

∂θi

∣∣∣∣
θi=θi0

+
∂2G∗i (β, θi)

∂θi∂β

∣∣∣∣
θi=θi0,β=β∗

(β̂ − β0), (2.12)

where β∗ is a point between β0 and β̂. Since E[
∂G∗i (β0,θi)

∂θi

∣∣∣∣
θi=θi0

] = 0 and β̂
P−→ β0, we

have G∗
′

iθi
(β̂, θi0) = op(n

2
i ). By assumption, G∗

′′
i (β̂, θ∗i ) = Op(n

2
i ).

Next, we express (2.11) as:

0 =

p∑
i=1

[G∗i (β̂, θi0) + op(n
3/2
i )]

=

p∑
i=1

[G∗i (β0, θi0) +G∗
′

iβ(β0, θi0)(β̂ − β0) +G∗
′′

iβ (β∗, θi0)(β̂ − β0)2/2 + op(n
3/2
i )]

=

p∑
i=1

{G∗i (β0, θi0) + (β̂ − β0)[G∗
′

iβ(β0, θi0) +G∗
′′

iβ (β∗, θi0)(β̂ − β0)/2] + op(n
3/2
i )}
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=⇒
√
N(β̂−β0) = {

p∑
i=1

−G∗′iβ(β0, θi0)−
p∑
i=1

G∗
′′

iβ (β∗, θi0)(β̂−β0)/2}−1{
√
N

p∑
i=1

G∗i (β0, θi0)+o(N
2)},

(2.13)

where G∗
′

iβ(β0, θi0) =
∂G∗i (β,θi0)

∂β

∣∣∣∣
β=β0

, G∗
′′

iβ (β0, θi0) =
∂2G∗i (β,θi0)

∂β2

∣∣∣∣
β=β∗

By U-statistics the-

ory (Serfling, 2009),

√
ni

2

ni(ni − 1)
G∗i (β0, θi0)

d−→ N(0, 4B
(2)
i (β0; η0, λ0)), (2.14)

where G∗ijl is the kernal of the U-statistics G∗i .

=⇒
√
N

2

N2
G∗i (β0, θi0)

d−→ N(0, 4riB
(2)
i (β0; η0, λ0))

=⇒
√
N

p∑
i=1

2

N2
G∗i (β0, θi0)

d−→ N(0,

p∑
i=1

4r3iB
(2)
i (β0; η0, λ0))

=⇒
√
N

p∑
i=1

2

N2
G∗i (β0, θi0) + op(1)

d−→ N(0,

p∑
i=1

4r3iB
(2)
i (β0; η0, λ0))

By U-statistics theory (Serfling, 2009),

2

ni(ni − 1)
−G∗′iβ(β0, θi0)

P−→ E[−∂G
∗
i12(Yi1,Yi2, β, θi0)

∂β

∣∣∣∣
β=β0

]

=⇒
p∑
i=1

2

N2
−G∗′iβ(β0, θi0)

P−→
p∑
i=1

r2iE[−∂G
∗
i12(Yi1,Yi2, β, θi0)

∂β

∣∣∣∣
β=β0

] = A(2)(β0; η0, λ0)

Since β̂
P−→ β and by assumption 2

N2

∑p
i=1G

∗′′
iβ (β∗, θi0) = Op(1), we have

2
N2

p∑
i=1

G∗
′′

iβ (β∗, θi0)(β̂ − β0)/2
P−→ 0. By Slutsky’s theorem,

√
N(β̂ − β0)

d−→ N(0, [A(2)(β0; η0, λ0)]
−1B(2)(β0; η0, λ0){[A(2)(β0; η0, λ0)]

−1}T ).
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Chapter 3

Develop and Apply General Odds

Ratio Models for Use in Composite

Conditional Likelihood
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3.1 General Odds Ratio Models

3.1.1 Model intracluster pairwise association via odds ratio

function under the composite conditional likelihood ap-

proach

While the proposed composite conditional likelihood (4.2) could be written in terms

of the pairwise density (or mass) functions fijkl(· · · , · · · ;λi, η, β), such an approach

would not be desirable, since in general we lack probability models for pairwise

data that are both flexible and computationally convenient, especially for discrete

data. As an alternative to specifying the pairwise probabilities fijkl(· · · , · · · ;λi, η, β)

directly, in this chapter we pursue a more flexible and convenient approach, in

which we indirectly specify the pairwise probabilities, via the marginal univariate

probability (1.1) and a general odds ratio function.

Under the “discordant quadruplet” conditional scheme adopted in (4.2), we can

write the relevant conditional probabilities in terms of the general odds ratio function

ψijkl(·, ·; β) as

f(yijl|Yijk = yijk, Yiuv = yiuv, Yijl + Yiuw = a; β, η, λi) =

ψijkl(yijk, yijl; β)ψiuvw(yiuv, a− yijl; β)∫
ψijkl(yijk, sijl; β)ψiuvw(yiuv, a− sijl; β)Cijkl,iuvw(sijl, yijl, a) dsijl

, (3.1)

where, in the denominator, summation would replace integration for discrete re-

sponses. Note that the only term that depends on nuisance parameter λi in (3.1)

is a type of between-cluster contrast given by

Cijkl,iuvw(sijl, yijl, a) =
fijkl(y

0
ijk, sijl)fiuvw(y0iuv, a− sijl)

fijkl(y0ijk, yijl)fiuvw(y0iuv, a− yijl)
, j < u, k 6= l, v 6= w. (3.2)



34

Under pairwise independence within clusters and adoption of marginal univariate

model (1.1), it follows that Cijkl,iuvw(sijl, yijl, a) would reduce to the following term,

which is free of λi:

Cijkl,iuvw(sijl, yijl, a) = exp{(sijl − yijl)(xijl − xiuw)Tα/a(φ) + c(sijl, φ)

+ c(a− sijl, φ)− c(yijl, φ)− c(a− yijl, φ)}.

Owing to the fact that the odds ratio function and marginal univariate distribu-

tions uniquely determine the pairwise distribution (Osius, 2004), Cijkl,iuvw(sijl, yijl, a)

is uniquely determined by the odds ratio function and marginal univariate distri-

butions. Furthermore, Cijkl,iuvw(sijl, yijl, a) can be computed based on an iterative

procedure called “marginal fittings” which was proved by Osius (2004) to converge:

1) start with any initial guess of the pairwise density function fY1Y2 with ψY1,Y2 as its

odds ratio which satisfies the existence conditions in Osius (2004);

2) adjust fY1Y2 ’s marginal distribution of Y1 to the pre-specified marginal fY1 , then

adjust fY1Y2 ’s marginal distribution of Y2 to the pre-specified marginal fY2 ;

3) repeat 2) till convergence;

4) calculate Cijkl,iuvw(sijl, yijl, a) by (3.2).

After each step of “marginal fittings”, the corresponding odds ratio remains equiv-

alent to ψY1,Y2 . Refer to A1 in the Appendix in this chapter for details in existence

conditions in Osius (2004), the choice of the initial density f
(0)
Y1Y2

and adjusting f
(0)
Y1Y2

’s

marginal distribution.
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3.1.2 Develop a odds ratio model for use in composite con-

ditional likelihood

We reviewed some general odds ratio models in Chapter 1. In the drinking water

study, where all responses yijk are measured on the same scale and we desire β to be

regarded as a measure of household aggregation of illness episodes, it seems desirable

that the measurement of pairwise association not only rewards pairwise departure

from the references points y01 and y02, but also penalizes lack of agreement; unfor-

tunately, neither Model (1.6) nor Model (1.7) accomodates the latter property. We

propose an alternative general odds ratio model that avoids this limitation as:

log ψ(y1, y2; β) =
β(y1 − y01)× (y2 − y02)

1 + 2(y1 − y2)2
, (3.3)

which can be extended to accommodate pairwise covariates z12 as:

log ψ(y1, y2; z12, β) =
d(z12, β)(y1 − y01)× (y2 − y02)

1 + 2(y1 − y2)2
. (3.4)

Model (3.3) is symmetric in terms of y1 and y2, linear in β, rewards pairwise

departure from the references points y01 and y01 in the same direction, penalizes lack

of agreement by adding the term 2(y1 − y2)
2 in the denominator, and reduces to

the usual odds ratio function in the case of binary data. As shown in Table 3.1,

both model (1.6) (bilinear model) and model (3.3) (proposed model) reward pairwise

departure from the reference points, e.g., log ψ(10, 10; β) > log ψ(1, 1; β); however,

the bilinear model (1.6) does not penalize lack of agreement, so that it assigns the

equality log ψ(1, 100; β) = log ψ(5, 20; β) = log ψ(10, 10; β), which would exaggerate

the extent of familial aggregation of disease, and thus seems less satisfactory than

the proposed odds ratio model (3.3) in the water quality study.
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We show the rational for using 2(y1 − y2)
2 in the denominator rather than

(y1 − y2)
2 (model 1) or 2|y1 − y2| (model 2) via a simple comparison. As shown

in Table 3.2, neither model 1 nor model 2 penalize lack of agreement in certain

circumstances, e.g., under model 1, log ψ(1, 1; β) = log ψ(1, 2; β), under model

2, log ψ(3, 3; β) < log ψ(10, 20; β), log ψ(2, 3; β) < log ψ(5, 20; β), which are less

satisfactory than the proposed model (3.3) in the water quality study.

To briefly assess the number of iterations of “marginal fittings” needed for conver-

gence when using model (3.3), we let (Yij1, Yij2) follow a bivariate Poisson distribution

with marginal means exp(λi + xTijkα) (k = 1, 2), α = 0.5, λi ∼ Unif(−1, 0), wij = 1,

and we used model (3.3), with four different values of β, to model the intracluster

pairwise associations. We obtained β̂ by solving the equation G(2)(β; η, λ̂) = 0,

and we used the “marginal fittings” method to evaluate Cijkl,iuvw. We started with

the initial pairwise density function f(y1, y2) = exp(βy1y2/(1 + 2(y1 − y2)
2), which

satisfied the existence conditions in Osius (2004). The iterative estimates of β,

shown in Figure 3.1, indicated that five steps of “marginal fittings” were sufficient

for convergence for all values of β.

Table 3.1: Log general odds ratios under the bilinear model and the proposed model
with reference values y01 = y02 = 0

y1 y2 bilinear model proposed model
1 1 β β
1 2 2β 0.667β
1 3 3β 0.333β
10 10 100β 100β
5 20 100β 0.222β
1 100 100β 0.056β
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Table 3.2: Log general odds ratios under the proposed model and alternative models
with reference values y01 = y02 = 0

y1 y2 proposed model model 1
1 1 β β
1 2 0.667β β
y1 y2 proposed model model 2
2 3 2β 2β
3 3 9β 9β
10 20 0.995β 9.524β
5 20 0.222β 3.226β

0 1 2 3 4 5 6

0.05

0.10

0.15

0.20

0.25

0.30

0.35

step

β

ρ=0.7

ρ=0.5

ρ=0.3

ρ=0.1

Figure 3.1: Iterative estimates using the “marginal fittings” method



38

3.2 Simulation Studies

We conducted a simulation study to assess the performance of l(2)(β; η, λ) incorpo-

rating the general odds ratio function. We let (Yijk, Yijl) follow a bivariate normal

distribution, where marginally Yijk ∼ N(λi + xTijkα, φ), and chose the bilinear

log odds ratio model ψ(yijk, yijl; zijkl, β) = βzijklyijkyijl, with pairwise covariate

zijkl = |xijk − xijl|, where xijk ∼ Unif(−1, 1), and specified α = 1, φ = 1, β = 1,

wij = 1, λi ∼ Unif(−1, 1). We used the Nelder-Mead method to obtain η̂ that

maximized l(1)(η), then estimated nuisance parameters λ using equation (2.7),

and finally used a combination of golden section search and successive parabolic

interpolation to obtain β̂ that maximizes l(2)(β; η̂, λ̂). We compared our estimates

to the naive GEE approach, which was not intended for use with sparse data. For

GEE, we used algorithms in Brent (1973) first to alternately estimate α, φ and λ

until convergence, then to estimate β based on the quadratic generalized estimating

function.

We considered both the sparse data situation where we specified p = 200, ni = 6

and mij = 2, and the less-sparse situation where we specified p = 50, ni = 30

and mij = 2. For each scenario, we considered both extensive intracluster pairwise

dependence (β = 3) and less-extensive intracluster pairwise dependence (β = 1).

We estimated nuisance parameters in two ways: 1) we obtained λ̂i by (2.7); and 2)

we used a Gaussian-based shrinkage estimator λ̃i = (λ̂i +
∑
i′
λ̂i′/p)/2. Results for

inferences on η and β are shown in Table 3.3. As expected, the composite conditional

likelihood (CCL) approach was barely influenced by the estimation method of

nuisance parameters, whereas the GEE approach was more sensitive to fitting the

nuisance parameters. CCL achieved lower bias of β̂ under all the scenarios, especially

the sparse data scenario, than the GEE approach. GEE tended to underestimate

φ under both sparse and less-sparse situations, while the CCL approach yielded



39

valid inference on φ. Moreover, GEE estimators of β had large standard errors,

and even larger sandwich-based standard error estimates, defects not seen with the

CCL approach, which is designed to reduce the aberrant effects of fitting nuisance

parameters. In this simulation study, both GEE and CCL yielded valid inference on α.

Next we conducted a simulation study to evaluate the performance of our two

sandwich estimators of standard error, one of which was targeted for non-sparse

data (Section 2.2.1) and the other for sparse data (Section 2.2.2) in the ambiguous

situation of less-sparse data. Specifically, we let (Yijk, Yijl) follow a bivariate normal

distribution, where marginally Yijk ∼ N(λi + xTijkα, φ), and chose the bilinear log

odds ratio model ψ(yijk, yijl; zijkl, β) = βzijklyijkyijl, with pairwise covariate zijkl =

|xijk − xijl|, where xijk ∼ Unif(−1, 1), and specified α = 1, φ = 1, β = 1, wij = 1,

λi ∼ Unif(−1, 1). We considered the less-sparse situation where p = 50, ni = 30 and

mij = 2. We considered both extensive intracluster pairwise dependence (β = 3) and

less-extensive intracluster pairwise dependence (β = 1). As shown in Table 3.4, both

estimates of standard error are close to the empirical standard error, demonstrating

that both standard error estimators are valid for inference in the ambiguous setting

of less-sparse data.
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Table 3.3: Results of 1000 simulated samples for inferences on β, α, and φ

β Data Method β̂ ŝe(β̂) se(β̂) α̂ ŝe(α̂) se(α̂) φ̂ ŝe(φ̂) se(φ̂)
1 sparse CCL 1.0016 0.0712 0.0727 0.9982 0.0348 0.0335 0.9984 0.0344 0.0333

1.0010 0.0712 0.0727 0.9982 0.0348 0.0335 0.9984 0.0344 0.0333
GEE 0.8371 0.1172 0.0858 0.9984 0.0301 0.0317 0.8795 0.0294 0.0286

0.9801 0.1300 0.0930 0.9985 0.0322 0.0326 0.9917 0.0309 0.0305
less-sparse CCL 1.0044 0.0695 0.0695 1.0013 0.0320 0.0315 0.9974 0.0317 0.0328

1.0045 0.0696 0.0696 1.0013 0.0320 0.0315 0.9974 0.0317 0.0328
GEE 0.9723 0.1285 0.0911 1.0013 0.0312 0.0312 0.9736 0.0308 0.0319

1.0662 0.1451 0.0995 1.0011 0.0328 0.0333 1.0611 0.0337 0.0345
3 sparse CCL 2.9928 0.1595 0.1628 0.9980 0.0355 0.0341 0.9983 0.0382 0.0371

2.9927 0.1595 0.1627 0.9980 0.0355 0.0341 0.9983 0.0382 0.0371
GEE 2.7597 0.4833 0.2631 0.9982 0.0300 0.0315 0.8595 0.0322 0.0312

3.0184 0.5191 0.2985 0.9983 0.0322 0.0326 0.9766 0.0337 0.0332
less-sparse CCL 3.0032 0.1558 0.1568 1.0014 0.0324 0.0317 0.9972 0.0351 0.0364

3.0045 0.1558 0.1568 1.0014 0.0324 0.0317 0.9972 0.0351 0.0364
GEE 2.9723 0.4989 0.2938 1.0014 0.0315 0.0312 0.9695 0.0340 0.0353

3.1489 0.5570 0.3392 1.0011 0.0330 0.0333 1.0579 0.0367 0.0379
ŝe(·): mean of estimated standard errors; se(·): empirical standard error.
sparse data situation: p = 200, ni = 6 and mij = 2
less-sparse situation: p = 40, ni = 30 and mij = 2
two rows for each approach in each scenario correspond to
two estimation methods for nuisance parameters:

first row, λ̂; second row, λ̃

Table 3.4: Performance of standard error estimators for less sparse data

β ŝe1(β̂) ŝe2(β̂) se(β̂)
1 0.0717 0.0695 0.0695
3 0.1628 0.1558 0.1568
ŝe1(·) and ŝe2(·): means of estimated standard errors
under standard situation and sparse data situation
se(·): empirical standard error
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3.3 Water Quality Study

In the analysis of the water quality study, we omitted 8 small geographic areas

with zero HCGI episodes. The resulting data set used for analysis consisted of 130

small geographic areas (strata), with 1-36 households (mean=10.2) per stratum, 2-8

individuals (mean=3.92) per household, and 0-36 HCGI episodes (mean=0.67) per

individual. Age was classified into 3 categories in accordance with school attendance

policies: 2-5 years, 6-17 years, and greater than 17 years, and the category 2-5

years was specified as the reference group. Male was chosen as the reference group

for sex, and purified tap water was chosen as the reference group for drinking

water type. We used the composite conditional likelihood approach, where we

specified wij = 1 in both (2.5) and (2.6), to draw inferences on the covariates

that affected the number of HCGI episodes and the aggregation of HCGI episodes

within households. Specifically, we assumed that the HCGI episodes marginally

followed Poisson log-linear models, Yijk ∼ Poi(exp(λi + xTijkα+ Tij)), where Tij was a

known offset for the person log-months on study. We used our proposed odds ratio

model (3.4), with d(zijkl, β) = zijkl ⊗ β, to assess intracluster pairwise associations.

When computing Cijkl,iuvw, we started with the initial pairwise density function

f(y1, y2) = exp(βy1y2/(1+2(y1−y2)2) and conducted five steps of “marginal fittings”,

which we confirmed was sufficient for the convergence of parameter estimates. We

used sandwich-based standard error estimates, as given in Section 2.2.2, to compute

the standard errors of α̂ and β̂.

The results, shown in Table 3.5 and Table 3.6, revealed that the risk of HCGI

decreased with age, and females were more prone to HCGI than males. Under an

intercept-only odds ratio model, there was evidence that HCGI episodes tended to ag-

gregate within households. To further investigate the household aggregation patterns,

we fitted a general odds ratio model that included covariates, and found that HCGI
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episodes tended to aggregate among school-age children, and also between school-age

children and adults, whereas HCGI was least likely to aggregate among adults. After

adjusting for covariates, the intercept β0 was significantly different zero, which sug-

gested an unmeasured household-specific environmental effect on HCGI episodes.

Table 3.5: Fitted regression model for the marginal means

Estimate se p-value
α1: unmodified tap water 0.0752 0.1131 0.5061
α2: tap water with a purge valve -0.0045 0.1041 0.9655
α3: bottled plant water -0.0767 0.1499 0.6089
ref: purified bottled water 0
α4: age 6-17 -0.5570 0.0713 <0.0001
α5: age > 17 -0.7214 0.0563 <0.0001
ref: age < 6 0
α6: female 0.1597 0.0431 0.0002
ref: male 0
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Table 3.6: Fitted regression model for intracluster association

Estimate se p-value
Intercept-only model
β0: intercept 0.0534 0.0172 0.0019
Covariate model
β0: intercept 0.0478 0.0090 <0.0001
β1: unmodified tap water 0.0087 0.0096 0.3648
β2: tap water with a purge valve 0.0336 0.0431 0.4354
β3: bottled plant water 0.0038 0.0480 0.9373
ref: purified bottled water 0
β4: children(< 6)−children(6-17) 0.0104 0.0492 0.8331
β5: children(< 6)−adult 0.0171 0.0136 0.2095
β6: children(6-17)−children(6-17) 0.0433 0.0166 0.0009
β7: children(6-17)−adult 0.0348 0.0157 0.0266
β8: adult-adult -0.0295 0.0095 0.0002
ref: children(< 6)−children(< 6) 0
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3.4 Appendix

A1. “Marginal fittings” procedure

We consider arbitrary non-empty probability space (ΩY1 ,BY1 , πY1) and

(ΩY2 ,BY2 , πY2) as well as their product (Ω,B, π), i.e., the set Ω = ΩY1 × ΩY2

equipped with the product measure π = πY1 × πY2 . Let P denote the class of

probability measures P on (Ω,B) which have a positive density f > 0 with respect

to π, i.e. P is dominated by π and dominates π : P � π � P . Further let F be the

class of corresponding densities, i.e. the Radon-Nikodym derivatives f = dP/dπ for

any P ∈ P .

The existence theorem in Osius (2004) says that for any ψ that meets the

following two conditions, there exists a joint distribution with given marginal

distributions πY1 and πY2 and with ψ as its log odds ratio function.

(1) logqY1 = log[ψY1 ] is πY1 integrable;

(2) logqY2 = log[ψY2 ] is πY2 integrable;

where ψY1 =
∫
ψdπY1 , and ψY2 =

∫
ψdπY2 .

To construct an iterative sequence of pairwise densities, we start with any choice of

initial pairwise density, such that the corresponding odds ratio is equivalent toψY1,Y2 .

A natural choice of initial pairwise density is fY1,Y2 = ψY1,Y2 . At the tth step, we adjust

both marginals of f
(t)
Y1,Y2

and obtain f
(t+1)
Y1,Y2

by f
(t+1)
Y1,Y2

= (f
(t)|Y1
Y1,Y2

)|Y2 , where f |X(x, y) =

f(x, y)/fX(x). Specifically, under the product measure, the adjustment from f
(t)
Y1,Y2
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to f
(t+1)
Y1,Y2

is given as:

f
(t+1)1

Y1,Y2
=f

(t)
Y1,Y2

fY1/

∫
fY1,Y2dπY2 ;

f
(t+1)
Y1,Y2

=f
(t+1)1

Y1,Y2
fY2/

∫
fY1,Y2dπY1

After each step, the corresponding odds ratio remains equivalent to ψY1,Y2 . The con-

vergence theorem in Osius (2004) ensures the convergence of the “marginal fittings”

procedure to the desired density.
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Chapter 4

Investigate Optimal Choices of

Cluster-specific Weights
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4.1 Introduction

Composite likelihood is constructed as a weighted sum of log-likelihoods of low-

dimensional margins (Lindsay, 1988). When the weights are all equal, they can be

ignored. The selection of unequal weights to improve efficiency in composite likeli-

hood has been discussed in recent literature. In the standard setting, Varin et al.

(2011) obtained optimal weights by comparing the Godambe information (Godambe,

1960) of the composite likelihood versus the Fisher information of the full likelihood.

However, efficiency comparison cannot be not easily implemented in our proposed

composite conditional likelihood. Recall l(1)(η) and l(2)(β; η, λ) proposed in Section

2.1, given as below:

l(1)(η) =

p∑
i=1

l
(1)
i (η) =

p∑
i=1

ni∑
j<u

l
(1)
iju(η) =

p∑
i=1

ni∑
j<u

wijwiu{
mij∑
k=1

miu∑
v=1

log f(yijk|Yijk+Yiuv; η)},

(4.1)

l(2)(β; η, λ) =

p∑
i=1

l
(2)
i (β; η, λi) =

p∑
i=1

ni∑
j<u

l
(2)
iju(β; η, λi) (4.2)

=

p∑
i=1

ni∑
j<u

wijwiu{
mij∑
k 6=l

miu∑
v 6=w

log f(yijl|Yijk = yijk, Yiuv = yiuv, Yijl + Yiuw = aijl,iuw; β, η, λi)}.

Both l(1)(η) and l(2)(β; η, λ) are constructed based on a scheme of conditioning

on observations drawn from different clusters. The structural difference of our

composite conditional likelihood from the standard estimating functions makes

it difficult to achieve optimal weights of our composite conditional likelihood by

comparing the Godambe information versus the Fisher information. In addition,

since both η and β are parameter vectors, both Godambe information and Fisher

information are matrices which cannot be compared directly. In Varin et al. (2011),

a comparison of diagonal components corresponding to particular parameters

of interest is recommended when parameter is a vector. However, in the water
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quality study, the elements of main effects parameter vector and pairwise associ-

ation parameter vector are equally important, and we cannot pick a “particular

interest” element, so this method is not satisfactory for our proposed composite

conditional likelihood. In Lindsay et al. (2011), an optimal weighting strategy

based on optimizing the weighted composite score under the least square criterion

is discussed, and an optimal weight matrix is constructed which accommodates the

parameter vector situation. However, this approach is not applicable to our sit-

uation either, as the cluster-specific weights in both l(1)(η) and l(2)(β; η, λ) are scalars.

As discussed above, a direct comparison of information matrices is unavailable in

our situation. An alternative approach is to compare the maximum composite likeli-

hood estimator versus the maximum likelihood estimator under certain distribution

assumptions (Joe and Lee, 2009). Specifically, Joe and Lee (2009) investigated the op-

timal cluster-specific weights for pairwise likelihood via multivariate normal data with

exchangeable correlation structure. Consider Yi = (Yi1, . . . , Yidi)
′ ∼ N(µ1di ,Σdi), for

i = 1, . . . , n. Under exchangeable correlation structure with variance η2 and correla-

tion ρ, the negative log-likelihood is given as:

−L0 =
∑
i

{1

2
dilogη2 +

1

2
(di − 1)log(1− ρ) +

1

2
log[1 + (di − 1)ρ]} (4.3)

+
1

2η2(1− ρ)

∑
i

[

di∑
j=1

(yij − µ)2 − ρ

1 + (di − 1)ρ
(yi+ − diµ)2],

and the negative weighted pairwise likelihood is

−L1 =
∑
i

wi{
di(di − 1)

2
logη2 +

1

4
di(di − 1)log(1− ρ2)} (4.4)

+
1

2η2(1− ρ)

∑
i

wi
∑

1≤j<k≤di

[(yij − µ)2 + (yik − µ)2 − ρ

1 + ρ
(yij + yik − 2µ)2].
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Under the assumption that ρ is known, the optimal choice of weight is obtained by

directly comparing the pairwise likelihood estimator

µ̂w =

∑
i

wi(di − 1)Yi+∑
i

wi(di − 1)di+

and maximum likelihood estimator

µ̂ =

∑
i

[1 + (di − 1)ρ]−1Yi+∑
i

[1 + (di − 1)ρ]−1di+
.

If ρ is known, the optimal wi is

wi = (di − 1)−1[1 + (di − 1)ρ]−1,

which depends on both the cluster size and the correlation. In the above example,

the estimators µ̂ and µ̂w shared a similar, simple structure and so could be com-

pared directly. By contrast, our composite conditional log-likelihoods, l(1)(η) and

l(2)(β; η, λ), are constructed by summing over component log-likelihoods for pairs of

clusters, and hence the estimators cannot be compared directly with MLE. Moreover,

under the sparse data situation where the number of strata is large, we encounter the

“infinitely many nuisance parameters“ problem, and hence the maximum likelihood

estimator is not valid.

In this chapter, we conduct an exploratory study on optimal choices of cluster-

specific weights of our composite conditional likelihoods. Owing to conditioning,

the leading term in the asymptotic bias of the estimator vanishes, so the selection

of unequal weights to improve efficiency in our composite conditional likelihoods is

mainly about achieving estimators with smaller variance. Specifically, we utilize Hájek
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projection and adopt the approach in Joe and Lee (2009) by comparing the maximum

composite likelihood estimator versus the maximum likelihood estimator under the

standard (i.e., non-sparse) situation. For the more challenging sparse data situation,

we investigate the cluster-specific weights via simulation studies.
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4.2 Optimal Choices of Cluster-specific Weights

for Proposed Composite Conditional Likeli-

hood Under Standard Situation

We investigate the optimal choice of cluster-specific weights under two asymptotic

schemes. We first investigate the optimal choice of weight under the standard situa-

tion with a fixed number of strata, while the number of clusters are large. We consider

a single stratum with n clusters with varying cluster sizes mj, and observations in

each cluster follow a multivariate normal distribution, i.e., Yj = (Yj1, . . . , Yjmj
)′ ∼

N(µj, σ
2Σj), for j = 1, . . . , n, where µj = (µj1, . . . , µjmj

)′, µjk = λ + xTjkα, σ2 is the

variance parameter, and Σj is the correlation matrix for the jth cluster. Without loss

of generality, we consider scalar α here. Then l(1)(α, σ2) is given as:

l(1)(α, σ2) =
n∑
j<u

wjwu

mj∑
k=1

mu∑
v=1

[log(πσ2)−1/2 − (yjk − yuv − (xjk − xuv)α)2

4σ2
]. (4.5)

Refer to A1 in the Appendix in this chapter for detailed derivation of l(1)(α, σ2).

Under this multivariate normal distribution assumption, the log-likelihood l(α, σ2, ρ)

is given as:

l(α, σ2,Σ1, . . . ,Σn) =
n∑
j=1

[log(2πσ2)−
mj
2 |Σj|−

1
2 −

(yj − µj)TΣ−1j (yj − µj)
2σ2

]. (4.6)

By solving ∂l(1)(α, σ2)/∂α = 0, the composite conditional likelihood estimator is given

as:

α̃ =

n∑
j<u

wjwu
mj∑
k=1

mu∑
v=1

(yjk − yuv)(xjk − xuv)

n∑
j<u

wjwu
mj∑
k=1

mu∑
v=1

(xjk − xuv)2
(4.7)
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By solving ∂l(α, σ2, ρ)/∂α = 0 assuming ρ and λ are known, the maximum likelihood

estimator is given as:

α̂ =

n∑
j=1

xTj Σ−1j (yj − λ1mj
)

n∑
j=1

xTj Σ−1j xj

(4.8)

Since α̃ relies on summation over pairs of clusters in both numerator and denominator,

it is not directly comparable with α̂ given by (4.8). To enhance comparability, we

propose conducting Hajek projection to the composite conditional likelihood and

comparing the projected composite likelihood estimator with the maximum likelihood

estimator. Under the regularity condition E[
mj∑
k=1

mu∑
v=1

logf(yjk|Yjk + Yuv, α, σ
2)]2 <∞,

n∑
j<u

mj∑
k=1

mu∑
v=1

logf(yjk|Yjk + Yuv, α, σ
2)

≈
n∑
i=1

E[
n∑
j<u

mj∑
k=1

mu∑
v=1

logf(yjk|Yjk + Yuv)|Yi]− (n− 1)E[
n∑
j<u

mj∑
k=1

mu∑
v=1

logf(yjk|Yjk + Yuv)]

=
n∑
i=1

{E[
n∑
u>i

mi∑
k=1

mu∑
v=1

logf(yik|Yik + Yuv)|Yi]/2 + E[
n∑
j<i

mj∑
k=1

mi∑
v=1

logf(yhk|Yjk + Yiv)|Yi]/2},

Refer to A2 in Appendix in this chapter for detailed derivation.

Then l(1)(α, σ2) can be approximated as:

l(1)(α, σ2) =
n∑
j<u

wjwu

mj∑
k=1

mu∑
v=1

logf(yjk|Yjk + Yuv, α, σ
2)

≈
n∑
i=1

wi{E[
n∑
u>i

mi∑
k=1

mu∑
v=1

logf(yik|Yik + Yuv)|Yi]/2 + E[
n∑
j<i

mj∑
k=1

mi∑
v=1

logf(yjk|Yjk + Yiv)|Yi]/2}
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Under multivariate normal distribution assumption, we have

l(1)(α, σ2) (4.9)

≈
n∑
i=1

wi{
n∑
u>i

mi∑
k=1

mu∑
v=1

(yik − xikα− λ)2

8σ2
+

n∑
j<i

mj∑
k=1

mi∑
v=1

(yiv − xivα− λ)2

8σ2
}+ C

=
n∑
i=1

wi{
n∑

j=1,j 6=i

mj

mi∑
k=1

(yik − xikα− λ)2

8σ2
}+ C,

where C is free of α.

We obtain a projected composite conditional likelihood estimator α̃s by maximizing

the right-hand size of equation (4.9), giving:

α̃s =

n∑
i=1

wj
n∑

j=1,j 6=i
mj[

mi∑
k=1

xik(yik − λ)]

n∑
i=1

wj
n∑

j=1,j 6=i
mj[

mi∑
k=1

x2ik]
, (4.10)

which is now comparable to the MLE, since it has the same form of summation

with MLE in both numerator and denominator. Following the basic approach in

Joe and Lee (2009), we can compare α̃s and α̂ to yield insights into the optimal

weights. These cluster-specific weights generally depend on cluster sizes, as well as

the correlation structure and covariates. So we consider some choices of weights

under different assumptions.

First, considering weights that only depend on cluster sizes which is our primary

interest, a comparison of α̃s and α̂ suggests we assign weight w
(1)
j = 1

M−mj
, where

M =
n∑
j=1

mj, to the jth cluster. Under this choice of weights, α̂ is equivalent to α̃s

when we assume independent correlation structure. More generally, this choice of

weights, based on Hajek projection, does not actually depend on the multivariate

normal assumption, and so it is still appropriate when the outcome is not normally

distributed (Refer to A3 in the Appendix in this chapter for a discussion on the
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robustness of this choice of weights to the multivariate normal distribution assump-

tion). It is notable that, unlike standard composite likelihoods that do not rely on

conditioning, where it is common to use the weights wj = 1
mj−1 (Varin et al., 2011),

under our pairwise conditioning setting the more appropriate weights w
(1)
j = 1

M−mj

increase as the cluster size increases. Under the standard situation where n is large

and mj is uniformly bounded, we can expect this choice of weights to be close to

equal weights.

Second, we consider weights that depend on both cluster sizes and correlation

structure. We consider exchangeable correlation structure with intracluster correla-

tion ρ. Under this assumption, α̂ is given by:

α̂ =

n∑
j=1

[
mj∑
k=1

{xjk(yjk − λ)[1 + (mj − 2)ρ]−
∑
l 6=k

xjk(yjl − λ)ρ}] 1
1+(mj−1)ρ

n∑
j=1

[
mj∑
k=1

{x2jk[1 + (mj − 2)ρ]−
∑
l 6=k

xjkxjlρ}] 1
1+(mj−1)ρ

(4.11)

When ρ 6= 0, we cannot assign weights such that α̃s has the same form as α̂. but

a comparison suggests that we consider assigning weight w
(2)
j = 1

M−mj

1+(mj−2)ρ
1+(mj−1)ρ to

the jth cluster. When mj is large, w
(2)
j is close to w

(1)
j . Unlike w

(1)
j , w

(2)
j depends

on the distribution assumption, so w
(2)
j should be adjusted accordingly when the

observations are not multivariate normal.

Third, we consider weights that depend on cluster sizes, correlation structure and

covariates. We consider a special case where xjk ∼ Bernoulli (0.5). Without loss of

generality, we assume that the observations in each cluster are sorted so that the first

half are 1 and the latter half are 0. Under this assumption, ignoring whether mj is
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odd or even, α̂ is given by:

α̂ =

n∑
j=1

[
mj/2∑
k=1

{(yjk − λ)[1 + (mj − 2)ρ]−
∑
l 6=k

(yjl − λ)ρ}] 1
1+(mj−1)ρ

n∑
j=1

mj

2
[1 + (mj/2− 1)ρ] 1

1+(mj−1)ρ

, (4.12)

and α̃ is given by:

α̃ =

n∑
j=1

wi
n∑

j=1,j 6=i
mj[

mi/2∑
k=1

(yik − λ)]

n∑
j=1

wi
n∑

j=1,j 6=i
mj(

mi

2
)

(4.13)

By comparing these two estimators, we consider assigning weight w
(3)
j =

1
M−mj

1+(mj/2−1)ρ
1+(mj−1)ρ to the jth cluster. Under this choice of weights, the denomi-

nators of α̂ and α̃s are the same, and the numerators are close given than yjk has

mean λ when xjk is 0, so the two estimators are approximately equivalent. Here, the

w
(3)
j depend on the distribution assumption, so w

(3)
j should be adjusted accordingly

under other distribution assumption.

To summarize, under the standard (i.e., non-sparse) situation with single stratum,

the following weights are suggested for l(1)(α, σ2):

(a) when cluster-specific weights are allowed to depend on cluster sizes only, we

suggest assigning weights w
(1)
j = 1

M−mj
to the jth cluster;

(b) when cluster-specific weights are allowed to depend on cluster sizes and corre-

lation structure, under exchangeable multivariate normal distribution assump-

tion, we suggest assigning weights w
(2)
j = 1

M−mj

1+(mj−2)ρ
1+(mj−1)ρ to the jth cluster

(c) when cluster-specific weights are allowed to depend on cluster sizes, correlation

structure and covariates, under exchangeable multivariate normal distribution

assumption with xjk ∼ Bernoulli (0.5), we suggest assigning weight w
(3)
j =
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1
M−mj

1+(mj/2−1)ρ
1+(mj−1)ρ to the jth cluster.

For (b) and (c), the choices of weights depend on the distribution assumption. Under

other distribution assumptions, the weights should be adjusted accordingly.

We apply the same strategy to l(2)(β; η, λ) to investigate the optimal choice of

cluster-specific weights. Specifically, we first conduct Hajek projection to l(2)(ρ) as:

l(2)(ρ) =
n∑
j<u

wjwu

mj∑
k 6=l

mu∑
v 6=w

log f(yjl|Yjk = yjk, Yuv = yuv, Yjl + Yuw = ajl,uw; ρ)

≈
n∑
i=1

wi{E[
n∑
u>i

mi∑
k 6=l

mu∑
v 6=w

log f(yil|Yik = yik, Yuv = yuv, Yil + Yuw = ail,uw)|Yi]/2

+ E[
n∑
j<i

mj∑
k 6=l

mi∑
v 6=w

log f(yjl|Yjk = yjk, Yiv = yiv, Yjl + Yiw = ajl,iw)|Yi]/2}

Refer to A4 in Appendix in this chapter for more details.

After conducting Hajek projection, we investigate the optimal choices of weights under

exchangeable multivariate normal distribution assumption with no covariates. Under

this assumption, the log-likelihood l(ρ) is given as:

l(ρ) =
n∑
j=1

{log[(2πσ2)−
mj
2 |Σj|−

1
2 ]−

(yj − λ1)TΣ−1j (yj − λ1)

2σ2
}

=
n∑
j=1

{−mj

2
log(2πσ2)− 1

2
log|Σj| −

(yj − λ1)TΣ−1j (yj − λ1)

2σ2
}

and l(2)(ρ) is given as:

l(2)(ρ) ≈
n∑
i=1

wi

n∑
j=1,j 6=i

mj(mj − 1){
mi∑
k 6=l

[−1

2
log

2πσ2(1− ρ2)
2

− (yil − yik)2 − 2ρσ2

4(1− ρ2)σ2
]}

=
n∑
i=1

wi

n∑
j=1,j 6=i

mj(mj − 1){−mj(mj − 1)

2
log(2πσ2)−

mi∑
k 6=l

[
1

2
log

(1− ρ2)
2

+
(yil − yik)2 − 2ρσ2

4(1− ρ2)σ2
]}
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Refer to A5 in Appendix in this chapter for more details.

Owing to varying cluster sizes, we need to reduce n fractions to a common fraction

to obtain the analytical form of ρ̂ even under this simple situation where there are

no covariates, so we cannot easily follow the approach in Joe and Lee (2009) to

determine choices of weights by comparing estimators. As an alternative strategy,

we compare l(ρ) versus l(2)(ρ). We consider cluster-specific weights that depend on

cluster sizes only, and it is natural that we assign weight w
(4)
j = 1

(mj−1)
n∑

i=1,i 6=j
mi(mi−1)

to

the jth cluster. Moreover, this choice of weights does not depend on the distribution

assumption, so it is still appropriate when the outcome is not normally distributed.

Under the standard situation where n is large and mj is uniformly bounded, we can

expect this choice of weights to be close to 1
(mj−1) .

The optimal weights under the single stratum situation can be directly generalized

to multiple strata situation. Under the standard situation where the number of

strata is fixed and the number of clusters per-stratum is large, we apply Hajek

projection to each stratum of l(1)(α) and l(2)(ρ), and the sum of the stratum-level

remainders is still negligible. Therefore, the optimal cluster-specific weights under

the single stratum situation w
(1)
j , w

(2)
j , w

(3)
j and w

(3)
j , j = 1, . . . , n become: 1)

w
(1)
ij = 1

nj∑
k=1,k 6=j

mik

; 2) w
(2)
ij = 1

nj∑
k=1,k 6=j

mik

1+(mij−2)ρ
1+(mij−1)ρ ; 3) w

(3)
ij = 1

nj∑
k=1,k 6=j

mik

1+(mij/2−1)ρ
1+(mij−1)ρ ; and

4) w
(4)
ij = 1

(mij−1)
n∑

k=1,k 6=j

mik(mik−1)
.

We conducted simulation studies to assess the performances of l(1)(α) and l(2)(ρ)

under different weights. We first conducted a simulation study for l(1)(α). We let

Yij = (Yij1, . . . , Yijmij
)′ follow an exchangeable multivariate normal distribution

with intracluster correlation ρ, where marginally Yijk ∼ N(λi + xTijkα, σ
2), where

xijk ∼ Bernoulli (0.5), and specified α = 2, φ = 1, λi ∼ Unif(−1, 1). We obtained α̂

by maximizing l(1)(α). We considered non-sparse situation, where p = 4, nj = 50,
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and mij were between 2 to 10 with equal probability. We considered different

levels of intracluster correlation where ρ = 0.1, 0.3, 0.5, 0.7, or 0.9. We considered

five choices of weights: 1) w
(1)
ij = 1

nj∑
k=1,k 6=j

mik

; 2) w
(2)
ij = 1

nj∑
k=1,k 6=j

mik

1+(mij−2)ρ
1+(mij−1)ρ ; 3)

w
(3)
ij = 1

nj∑
k=1,k 6=k

mij

1+(mij/2−1)ρ
1+(mij−1)ρ ; 4) equal weights w

(5)
ij = 1; and 5) commonly used

weights for composite likelihood w
(6)
ij = 1

mij−1 (Varin et al., 2011). Results for

inferences on α are shown in Table 4.1. As expected, w
(1)
ij , w

(2)
ij and w

(3)
ij had similar

performance with equal weights, with our recommended weights w
(3)
ij performing

the best in terms of achieving the estimator with the smallest empirical standard

deviation, and the smallest mean square error under all levels of ρ, while the

commonly used weights for composite likelihood w
(6)
ij performed worst.

We also conducted a simulation study for l(2)(β). We considered a single stratum

with n clusters with varying cluster sizes mj, j = 1, . . . , n, and observations in

each cluster follow a exchangeable multivariate normal distribution with intracluster

correlation ρ and no covariates, where marginally Yjk ∼ N(λ, σ2), k = 1, . . . ,mj,

and specified φ = 1, λ∼Unif(−1, 1). We obtained ρ̂ by maximizing l(2)(ρ). We

considered non-sparse situation where p = 4, n = 50, and mj were between 2 to

10 with equal probability. We considered different levels of intracluster correlation

where ρ = 0.1, 0.3, 0.5, 0.7, or 0.9. We considered four choices of cluster-specific

weights: 1) w
(4)
j ; 2) equal weights w

(5)
j = 1; 3) commonly used weights for composite

likelihood w
(6)
j = 1

mj−1 (Varin et al., 2011); 4) commonly used weights for composite

pairwise likelihood w
(7)
j = 1

mj(mj−1) (Varin et al., 2011). Results for inferences on ρ

are shown in Table 4.2. As expected, all the results were only mildly sensitive to the

choice of weights, with our recommended weights w
(4)
j performing the best in terms

of achieving the estimator with the smallest empirical standard deviation, and the

smallest mean square error under all levels of ρ, followed by w
(6)
j which w

(4)
j is close
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to under the standard situation, and then equal weight, while the commonly used

weights for composite pairwise likelihood w
(7)
j performed worst.

For the more challenging sparse data situation, where MLE is not consistent,

it would be inappropriate to investigate optimal choices of weights by comparing

the composite conditional likelihood estimator versus MLE. Moreover, when cluster

sizes vary, the minimum sufficient statistics for λ, when other parameters are known,

generally depends on the known parameters, and so we cannot easily compare

the composite conditional likelihood estimator versus the consistent maximum

conditional likelihood estimator. In addition, when the number of strata is large,

the sum of the stratum-level remainders of our composite conditional likelihood

after conducting Hajek projection might not be negligible. Therefore, when the

data are sparse, we investigate optimal choices of cluster-specific weights for our

proposed composite conditional likelihood via simulation studies, as detailed in the

next Section.
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Table 4.1: Inference on α under different choices of weights based on 1000 simulated
samples

weight ρ
0.1 0.3 0.5 0.7 0.9

1 EmpBias 0.000887 0.001985 0.002933 0.003835 0.004805
EmpSD 0.057952 0.058261 0.058710 0.05929 0.060071
MSE 0.003359 0.003398 0.003456 0.003530 0.003632

2 EmpBias 0.000881 0.001979 0.002955 0.003908 0.004953
EmpSD 0.057955 0.058281 0.058763 0.059386 0.060218
MSE 0.003360 0.003401 0.003462 0.003542 0.003651

3 EmpBias 0.000917 0.001997 0.002918 0.003811 0.004792
EmpSD 0.058045 0.058424 0.058821 0.059343 0.060083
MSE 0.003370 0.003417 0.003468 0.003536 0.003633

4 EmpBias 0.001023 0.002100 0.003024 0.003899 0.004831
EmpSD 0.058002 0.058333 0.058785 0.05935 0.060088
MSE 0.003365 0.003407 0.003465 0.003538 0.003634

5 EmpBias 0.001590 0.002276 0.002847 0.003364 0.003871
EmpSD 0.074321 0.074512 0.074808 0.075224 0.075841
MSE 0.005526 0.005557 0.005604 0.005670 0.005767

weight:1. w
(1)
ij ; 2. w

(2)
ij ; 3. w

(3)
ij ; 4. w

(5)
ij ; and 5. w

(6)
ij

Table 4.2: Inference on ρ under different choices of weights based on 1000 simulated
samples

ρ
0.1 0.3 0.5 0.7 0.9

1 EmpBias 0.005796 0.005968 0.005158 0.003493 0.001128
EmpSD 0.048977 0.055043 0.043839 0.026546 0.008753
MSD 0.002432 0.003065 0.001948 0.000717 7.80E-05

2 EmpBias 0.007916 0.007387 0.006108 0.004105 0.001303
EmpSD 0.049638 0.058906 0.04714 0.028363 0.009322
MSD 0.002527 0.003525 0.002259 0.000821 8.90E-05

3 EmpBias 0.005718 0.005907 0.005116 0.003468 0.001123
EmpSD 0.049123 0.055059 0.043857 0.026573 0.008763
MSD 0.002446 0.003066 0.00195 0.000718 7.80E-05

4 EmpBias 0.003679 0.002484 0.002704 0.00208 0.000719
EmpSD 0.064258 0.067682 0.052888 0.032301 0.010688
MSD 0.004143 0.004587 0.002804 0.001048 0.000115

weight:1. w
(4)
j ; 2. w

(5)
j ; 3. w

(6)
j ; and 4. w

(7)
j
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4.3 Optimal Choices of Cluster-specific Weights

for Proposed Composite Conditional Likeli-

hood Under Sparse Data Situation

As discussed in Section 4.2, when the data are sparse it is extremely challenging

to derive optimal weights for composite conditional likelihood analytically. We

instead investigate the optimal choices of cluster-specific weights for sparse data via

simulation studies.

We first investigate the choices of weights for l(1)(α). We let Yij =

(Yij1, . . . , Yijmij
)′ follow an exchangeable multivariate normal distribution with

intracluster correlation ρ, where marginally Yijk ∼ N(λi + xTijkα, σ
2), where

xijk ∼ Bernoulli (0.5), and specify α = 2, φ = 1, λi ∼ Unif(−1, 1). We obtained

α̂ by maximizing l(1)(α). We considered sparse data, where p = 50, nj = 4, and

mij were between 2 to 10 with equal probability. We considered different levels of

intracluster correlation where ρ = 0.1, 0.3, 0.5, 0.7, or 0.9. We first considered the

five weights compared in the simulation study in the simpler non-sparse setting:

1) w
(1)
ij = 1

nj∑
k=1,k 6=j

mik

; 2) w
(2)
ij = 1

nj∑
k=1,k 6=j

mik

1+(mij−2)ρ
1+(mij−1)ρ ; 3) w

(3)
ij = 1

nj∑
k=1,k 6=k

mij

1+(mij/2−1)ρ
1+(mij−1)ρ ;

4) equal weights w
(5)
ij = 1; and 5) commonly used weights for composite likelihood

w
(6)
ij = 1

mij−1 (Varin et al., 2011). However, as shown in Table 4.3, equal weights

performed better than w
(1)
ij , w

(3)
ij and w

(5)
ij in terms of achieving the estimator with

smaller empirical standard deviation and smaller mean square error under all levels

of ρ, and performed better than w
(2)
ij under weak intracluster correlation.

The unsatisfactory performance of the above weights which performed well in

the non-sparse setting is highly likely related to the large number of strata under
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the sparse data situation. Therefore, we consider adjusting the weights in the sparse

data situation as: 1) w
(1∗)
ij = 1

p∑
s=1

nj∑
k=1,k 6=j

msk

; 2) w
(2∗)
ij = 1

p∑
s=1

nj∑
k=1,k 6=j

msk

1+(mij−2)ρ
1+(mij−1)ρ ; 3)

w
(3∗)
ij = 1

p∑
s=1

nj∑
k=1,k 6=k

msj

1+(mij/2−1)ρ
1+(mij−1)ρ . Under the same simulation setting, we compare

these three adjusted weights with 4) equal weights w
(5)
ij = 1; and 5) commonly

used weights for composite likelihood w
(6)
ij = 1

mij−1 . As shown in Table 4.4, our

composite conditional likelihood was only mildly sensitive to the choice of weights,

with w
(3∗)
ij performing the best in terms of achieving the estimator with the smallest

empirical standard deviation and the smallest mean square error under all levels of

ρ, followed by w
(1∗)
ij , and then equal weights, while the commonly used weights for

composite likelihood w
(6)
ij performed worst. Therefore, in the sparse data situation,

we suggest:1) assigning weights w
(1∗)
ij = 1

p∑
s=1

nj∑
k=1,k 6=j

msk

to the ith stratum, jth cluster

for l(1)(α) when cluster-specific weights are allowed to depend on cluster size only;

and 2) assigning weights w
(3∗)
ij = 1

p∑
s=1

nj∑
k=1,k 6=k

msj

1+(mij/2−1)ρ
1+(mij−1)ρ to the ith stratum, jth

cluster under the above distribution assumption when cluster-specific weights are

allowed to depend on cluster size, correlation structure and covariates.

We also investigated otpimal choices of weights for l(2)(ρ). We let

Yij = (Yij1, . . . , Yijmij
)′ follow a exchangeable multivariate normal distribution

with intracluster correlation ρ and no covariates, where marginally Yijk ∼ N(λi, σ
2),

and specified φ = 1, λi ∼ Unif(−1, 1). We obtained ρ̂ by maximizing l(2)(ρ). We

considered sparse data situation where we specified p = 50, nj = 4, and mij were

between 2 to 10 with equal probability. We considered different levels of intracluster

correlation where ρ = 0.1, 0.3, 0.5, 0.7, or 0.9. Based on the results for l(2)(ρ) in the

non-sparse setting and the results for l(1)(α) in the sparse setting, we considered five

choices of cluster-specific weights: 1) the optimal weights in the non-sparse setting
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w
(4)
ij = 1

(mij−1)
n∑

k=1,k 6=j
mik(mik−1)

; 2) adjusted w
(4)
ij , w

(4∗)
ij = 1

(mij−1)
p∑

s=1

n∑
k=1,k 6=j

msk(msk−1)
;

3) equal weights w
(5)
ij = 1; and 4) commonly used weights for composite pairwise

likelihood w
(7)
ij = 1

mij(mij−1) . Results for inferences on ρ are shown in Table 4.5.

Similar to l(1)(α), the optimal weights w
(4)
ij which performed well in the non-sparse

setting performed worse than equal weights, but the adjusted weights w
(4∗)
ij achieved

the estimator with the smallest empirical standard deviation and smallest mean

square error under all levels of ρ. Therefore, under sparse data situation, we suggest

assigning weights w
(4∗)
ij = 1

(mij−1)
p∑

s=1

n∑
k=1,k 6=j

msk(msk−1)
to the ith stratum, jth cluster

for l(2)(ρ).

Table 4.3: Inference on α under different choices of weights based on 1000 simulated
samples

weight ρ
0.1 0.3 0.5 0.7 0.9

1 EmpBias 0.000625 0.000839 0.001009 0.001154 0.001281
EmpSD 0.06234 0.06432 0.066258 0.06817 0.070086
MSE 0.003887 0.004138 0.004391 0.004648 0.004914

2 EmpBias 0.000664 0.000979 0.001217 0.001399 0.001526
EmpSD 0.062136 0.063619 0.065296 0.067138 0.069138
MSE 0.003861 0.004048 0.004265 0.00451 0.004782

3 EmpBias 0.000422 0.000593 0.000791 0.000948 0.001052
EmpSD 0.063632 0.065838 0.067292 0.068691 0.070178
MSE 0.004049 0.004335 0.004529 0.004719 0.004926

4 EmpBias 0.002279 0.002334 0.00232 0.002236 0.002026
EmpSD 0.061567 0.063559 0.065555 0.067564 0.069633
MSE 0.003796 0.004045 0.004303 0.00457 0.004853

5 EmpBias 0.000481 0.000647 0.00077 0.000863 0.000921
EmpSD 0.080326 0.082497 0.084493 0.086345 0.08802
MSE 0.006453 0.006806 0.00714 0.007456 0.007748

weight:1. w
(1)
ij ; 2. w

(2)
ij ; 3. w

(3)
ij ; 4. w

(5)
ij ; and 5. w

(6)
ij
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Table 4.4: Inference on α under different choices of weights based on 1000 simulated
samples

ρ
0.1 0.3 0.5 0.7 0.9

1 EmpBias 0.002236 0.002284 0.002264 0.002175 0.001963
EmpSD 0.061519 0.063517 0.065521 0.067538 0.069619
MSE 0.00379 0.00404 0.004298 0.004566 0.004851

2 EmpBias 0.002261 0.002354 0.002343 0.002236 0.001977
EmpSD 0.06156 0.063733 0.065984 0.068308 0.070772
MSE 0.003795 0.004067 0.004359 0.004671 0.005013

3 EmpBias 0.002101 0.00216 0.002196 0.00215 0.00196
EmpSD 0.061461 0.063453 0.065404 0.067415 0.069558
MSE 0.003782 0.004031 0.004283 0.004549 0.004842

4 EmpBias 0.002279 0.002334 0.00232 0.002236 0.002026
EmpSD 0.061567 0.063559 0.065555 0.067564 0.069633
MSE 0.003796 0.004045 0.004303 0.00457 0.004853

5 EmpBias 0.000481 0.000647 0.00077 0.000863 0.000921
EmpSD 0.080326 0.082497 0.084493 0.086345 0.08802
MSE 0.006453 0.006806 0.00714 0.007456 0.007748

weight:1. w
(1∗)
ij ; 2. w

(2∗)
ij ; 3. w

(3∗)
ij ; 4. w

(5)
ij ; and 5. w

(6)
ij

Table 4.5: Inference on ρ under different choices of weights based on 700 simulated
samples

ρ
0.1 0.3 0.5 0.7 0.9

1 EmpBias -0.004111 -0.004991 -0.003012 -0.001025 -0.000103
EmpSD 0.050218 0.051395 0.039707 0.023874 0.007807
MSE 0.002539 0.002666 0.001586 0.000571 6.10E-05

2 EmpBias -0.002272 -0.00278 -0.001837 -0.00065 -6.70E-05
EmpSD 0.027987 0.031162 0.024399 0.014263 0.004532
MSE 0.00079 0.000981 6.00E-04 0.000204 2.10E-05

3 EmpBias -0.002181 -0.003169 -0.00221 -0.000806 -0.000108
EmpSD 0.029887 0.035275 0.027816 0.016116 0.005092
MSE 0.000898 0.001254 0.000779 0.00026 2.60E-05

4 EmpBias -0.002274 -0.002453 -0.001476 -0.000449 -9.00E-06
EmpSD 0.03634 0.036043 0.027842 0.016668 0.005426
MSE 0.001326 0.001305 0.000777 0.000278 2.90E-05

weight:1. w
(4)
ij ; 2. w

(4∗)
ij ; 3. w

(5)
ij ; and 4. w

(7)
ij
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4.4 Water Quality Study Reanalysis

We have analyzed the water quality data in Section 3.2 under equal cluster-

specific weights. In this Section, we re-analyze the water quality data allow-

ing for unequal weights. Based on the discussion in Section 4.2 for optimal

choices of weights under the sparse data situation, we re-analyze the data by

assigning w
(1∗)
ij = 1

p∑
s=1

nj∑
k=1,k 6=j

msk

to the ith stratum jth cluster for l(1)(α) and

w
(4∗)
ij = 1

(mij−1)
p∑

s=1

n∑
k=1,k 6=j

msk(msk−1)
to the ith stratum jth cluster for l(2)(β) (Fig-

ure ??, Figure 4.2, Figure 4.3). We followed the distribution assumption and

estimation method in Section 3.3. Specifically, the HCGI episodes marginally

followed Poisson log-linear models, Yijk ∼ Poi(exp(λi + xTijkα + Tij)), where Tij was

a known offset for the person log-months on study. We used the general odds ratio

model (3.4), with d(zijkl, β) = zijkl ⊗ β, to assess intracluster pairwise associations.

When computing Cijkl,iuvw, we started with the initial pairwise density function

f(y1, y2) = exp(βy1y2/(1 + 2(y1 − y2)2) − β(y21 + y22)/2) and conducted five steps of

“marginal fittings”.

The results are summarized in Table 4.6 and Table 4.7. Under assigned unequal

weights, the effects of covariates on the number of HCGI episodes were very close to

the results under equal weights. The household aggregation patterns were slightly

different than the results under equal weights. Under an intercept-ony odds ratio

model, we still concluded that HCGI episodes tended to aggregate within households.

For the regression incorporating covariates, the results indicated that HCGI episodes

tended to aggregate among school-age children, but was least likely to aggregate

among adults. After adjusting for covariates, the intercept β0 was significantly

different zero, which suggested an unmeasured household-specific environmental

effect on HCGI episodes.
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The different results regarding household aggregation of HCGI using unequal

weights from equal weights results might be driven by the households to which

extremely large weights are assigned (Figure 4.1). Among the 84 households to

which large weights are assigned, 32 of them belong to the “unmodified tap wa-

ter” group. The high proportion of “unmodified tap water” group in households

with large weights explains the difference results regarding aggregation pattern in

this particular drinking water group using unequal versus equal weights. To reduce

the influence of those extremely large weights, we consider Gaussian-based shrinkage

weights, wsij = (w
(4∗)
ij +

∑
i′

∑
j′
wi′j′/N)/2 (Figure 4.4). Table 4.8 shows the results of

covariate model under this smoothed weights. We found that HCGI episodes tended

to aggregate among school-age children, but was least likely to aggregate among

adults. These results suggest that there might be a tradeoff between robustness and

efficiency when using unequal weights. One need to be cautious about using unequal

weights when covariates are not balanced in clusters with extreme large or small

weights.

Table 4.6: Fitted regression model for the marginal means

unequal weights equal weights
Estimate se p-value Estimate se p-value

α1: unmodified tap water 0.0809 0.1123 0.4716 0.0752 0.1131 0.5061
α2: tap water with a purge valve -0.0050 0.1046 0.9616 -0.0045 0.1041 0.9655
α3: bottled plant water -0.07726 0.1487 0.6036 -0.0767 0.1499 0.6089
ref: purified bottled water 0 0
α4: age 6-17 -0.5559 0.0715 <0.0001 -0.5570 0.0713 <0.0001
α5: age > 17 -0.7227 0.0566 <0.0001 -0.7214 0.0563 <0.0001
ref: age < 6 0 0
α6: female 0.1602 0.0433 0.0001 0.1597 0.0431 0.0002
ref: male 0 0
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Table 4.7: Fitted regression model for intracluster association

unequal weights equal weights
Estimate se p-value Estimate se p-value

Intercept-only model
β0: intercept 0.0510 0.0176 0.0038 0.0534 0.0172 0.0019
Covariate model
β0: intercept 0.0534 0.0094 <0.0001 0.0478 0.0090 <0.0001
β1: unmodified tap water 0.0126 0.0032 0.0001 0.0087 0.0096 0.3648
β2: tap water with a purge valve 0.0355 0.0217 0.1022 0.0336 0.0431 0.4354
β3: bottled plant water 0.0175 0.0161 0.2775 0.0038 0.0480 0.9373
ref: purified bottled water 0 0
β4: children(< 6)−children(6-17) 0.0041 0.0328 0.9005 0.0104 0.0492 0.8331
β5: children(< 6)−adult 0.0176 0.0270 0.5145 0.0171 0.0136 0.2095
β6: children(6-17)−children(6-17) 0.0163 0.0008 <0.0001 0.0433 0.0166 0.0091
β7: children(6-17)−adult 0.0277 0.0209 0.1847 0.0348 0.0157 0.0266
β8: adult-adult -0.0356 0.0111 0.0013 -0.0295 0.0095 0.0020
ref: children(< 6)−children(< 6) 0 0
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Table 4.8: Fitted covariate model for intracluster association under shrinkage weights

Estimate se p-value
β0: intercept 0.0459 0.0108 <0.0001
β1: unmodified tap water 0.0098 0.0090 0.2725
β2: tap water with a purge valve 0.0315 0.0398 0.4283
β3: bottled plant water 0.0013 0.0092 0.8959
ref: purified bottled water 0
β4: children(< 6)−children(6-17) 0.0093 0.0368 0.8016
β5: children(< 6)−adult 0.0150 0.0147 0.3068
β6: children(6-17)−children(6-17) 0.0386 0.0132 0.0033
β7: children(6-17)−adult 0.0396 0.0544 0.4675
β8: adult-adult -0.0267 0.0093 0.0041
ref: children(< 6)−children(< 6) 0
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4.5 Appendix

A1.

Let Yj = (Yj1, . . . , Yjmj
)′ ∼ N(µj, σ

2Σj), for j = 1, . . . , n, where µj =

(µj1, . . . , µj2)
′, µjk = λ + xTjkα. Given the assumption that clusters are independent,

we have  Yjk

(Yjk + Yuv)

 ∼ N(

 µjk

(µjk + µuv)

 , σ2

 1 1

1 2

).

By the property of conditional multivariate normal distribution, we have

Yjk|(Yjk + Yuv = ajk,uv) ∼ N(
1

2
(yjk + yuv + (xjk + xuv)α),

1

2
σ2),

where ajk,uv = yjk + yuv. Then l(1)(α, σ2) is given as:

l(1)(α, σ2) =
n∑
j<u

wjwu

mj∑
k=1

mu∑
v=1

logf(yjk|Yjk + Yuv, α, σ
2)

=
n∑
j<u

wjwu

mj∑
k=1

mu∑
v=1

[log
1√
πσ2
− (yjk − yuv − (xjk − xuv)α)2

4σ2
].

A2.

Under the regularity condition E[
mj∑
k=1

mu∑
v=1

logf(yjk|Yjk+Yuv, α, σ
2)]2 <∞, by Hajek

projection,

n∑
j<u

mj∑
k=1

mu∑
v=1

logf(yjk|Yjk + Yuv, α, σ
2) (4.14)

≈
n∑
i=1

E[
n∑
j<u

mj∑
k=1

mu∑
v=1

logf(yjk|Yjk + Yuv)|Yi]− (n− 1)E[
n∑
j<u

mj∑
k=1

mu∑
v=1

logf(yjk|Yjk + Yuv)].

Given the assumption that clusters are independent, equation (4.14) can be expressed
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as:

n∑
i=1

E[
n∑
u>i

mi∑
k=1

mu∑
v=1

logf(yik|Yik + Yuv)|Yi]

+
n∑
i=1

E[
n∑
j<i

mj∑
k=1

mi∑
v=1

logf(yhk|Yjk + Yiv)|Yi]

+
n∑
i=1

E[
n∑

j<u,j 6=i,u 6=i

mj∑
k=1

mu∑
v=1

logf(yjk|Yjk + Yuv)]

+(n− 1)E[
n∑
j<u

mj∑
k=1

mu∑
v=1

logf(yjk|Yjk + Yuv)]

Note that the difference of the last two term in the above equation is

−E[
n∑
j<u

mj∑
k=1

mu∑
v=1

logf(yjk|Yjk + Yuv)], so approximately we have

n∑
j<u

mj∑
k=1

mu∑
v=1

logf(yjk|Yjk + Yuv, α, σ
2)

≈
n∑
i=1

{E[
n∑
u>i

mi∑
k=1

mu∑
v=1

logf(yik|Yik + Yuv)|Yi]/2 + E[
n∑
j<i

mj∑
k=1

mi∑
v=1

logf(yhk|Yjk + Yiv)|Yi]/2}

A3.

It is clear to see the rational for assigning weight w
(1)
j = 1

M−mj
, where M =

n∑
j=1

mj,

to the jth cluster via multivariate normal distribution. More generally, this choice

of weights, based on Hajek projection, does not actually depend on the multivariate

normal assumption. As shown in Section 4.2, l(1)(α, σ2) is approximated as:

l(1)(α, σ2) =
n∑
j<u

wjwu

mj∑
k=1

mu∑
v=1

logf(yjk|Yjk + Yuv, α, σ
2)

≈
n∑
i=1

wi{E[
n∑
u>i

mi∑
k=1

mu∑
v=1

logf(yik|Yik + Yuv)|Yi]/2 + E[
n∑
j<i

mj∑
k=1

mi∑
v=1

logf(yjk|Yjk + Yiv)|Yi]/2}
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The conditional expectation E[
n∑
u>i

mi∑
k=1

mu∑
v=1

logf(yik|Yik + Yuv)|Yi] depends on the

observed data in the ith cluster only, so it can be further simplified as

E[
n∑
u>i

mu

mi∑
k=1

logf(yik|Yik +Yu1)|Yi]. Similarly, E[
n∑
j<i

mj∑
k=1

mi∑
v=1

logf(yjk|Yjk +Yiv)|Yi] can

be expressed as E[
n∑
j<i

mj

mi∑
v=1

logf(yj1|Yj1 + Yiv)|Yi]. Therefore, the above approxima-

tion of l(1)(α, σ2) can be expressed as:

l(1)(α, σ2) ≈
n∑
i=1

wi{
n∑

j=1,j 6=i

mjE[

mi∑
v=1

logf(yj1|Yj1 + Yiv)|Yi]/2}. (4.15)

The closed form of this approximation can be obtained under particular distribution

assumptions of the outcome. When we consider cluster-specific weights that only

depend on cluster sizes, we ignore the distribution assumption of the outcome, so it

is natural that we assign weight w
(1)
j = 1

M−mj
, where M =

n∑
j=1

mj, to the jth cluster

such that the term wi
n∑

j=1,j 6=i
mj in the right hand side of equation (4.15) cancels

out. Therefore, we can still consider this choice of weights when the outcome is not

normally distributed

A4.

Under the regularity condition E[
mj∑
k 6=l

mu∑
v 6=w

log f(yjl|Yjk = yjk, Yuv = yuv, Yjl +Yuw =
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ajl,uw; ρ)]2 <∞, by Hajek projection,

n∑
j<u

mj∑
k 6=l

mu∑
v 6=w

log f(yjl|Yjk = yjk, Yuv = yuv, Yjl + Yuw = ajl,uw; ρ)

≈
n∑
i=1

E[
n∑
j<u

mj∑
k 6=l

mu∑
v 6=w

log f(yjl|Yjk = yjk, Yuv = yuv, Yjl + Yuw = ajl,uw)|Yi]

− (n− 1)E[
n∑
j<u

mj∑
k 6=l

mu∑
v 6=w

log f(yjl|Yjk = yjk, Yuv = yuv, Yjl + Yuw = ajl,uw)]

=
n∑
i=1

E[
n∑
u>i

mi∑
k 6=l

mu∑
v 6=w

log f(yil|Yik = yik, Yuv = yuv, Yil + Yuw = ail,uw)|Yi]

+
n∑
i=1

E[
n∑
j<i

mj∑
k 6=l

mi∑
v 6=w

log f(yjl|Yjk = yjk, Yiv = yiv, Yjl + Yiw = ajl,iw)|Yi]

+
n∑
i=1

E[
n∑

j<u,j 6=i,u 6=i

mj∑
k 6=l

mu∑
v 6=w

log f(yjl|Yjk = yjk, Yuv = yuv, Yjl + Yuw = ajl,uw)]

− (n− 1)E[
n∑
j<u

mj∑
k 6=l

mu∑
v 6=w

log f(yjl|Yjk = yjk, Yuv = yuv, Yjl + Yuw = ajl,uw)].

Note that the difference of the last two term in the above equation is

−E[
n∑
j<u

mj∑
k 6=l

mu∑
v 6=w

log f(yjl|Yjk = yjk, Yuv = yuv, Yjl + Yuw = ajl,uw)], so approximately

we have

n∑
j<u

mj∑
k 6=l

mu∑
v 6=w

log f(yjl|Yjk = yjk, Yuv = yuv, Yjl + Yuw = ajl,uw; ρ)

≈
n∑
i=1

{E[
n∑
u>i

mi∑
k 6=l

mu∑
v 6=w

log f(yil|Yik = yik, Yuv = yuv, Yil + Yuw = ail,uw)|Yi]/2

+ E[
n∑
j<i

mj∑
k 6=l

mi∑
v 6=w

log f(yjl|Yjk = yjk, Yiv = yiv, Yjl + Yiw = ajl,iw)|Yi]/2}
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Then we can approximate l(2)(ρ) as:

l(2)(ρ) =
n∑
j<u

wjwu

mj∑
k 6=l

mu∑
v 6=w

log f(yjl|Yjk = yjk, Yuv = yuv, Yjl + Yuw = ajl,uw; ρ)

≈
n∑
i=1

wi{E[
n∑
u>i

mi∑
k 6=l

mu∑
v 6=w

log f(yil|Yik = yik, Yuv = yuv, Yil + Yuw = ail,uw)|Yi]/2

+ E[
n∑
j<i

mj∑
k 6=l

mi∑
v 6=w

log f(yjl|Yjk = yjk, Yiv = yiv, Yjl + Yiw = ajl,iw)|Yi]/2}

A5.

Let Yj = (Yj1, . . . , Yjmj
)′ ∼ N(µj, σ

2Σj), for j = 1, . . . , n, where µj =

(µj1, . . . , µj2)
′, µjk = λ+ xTjkα, and Σj has an exchangeable structure. When there is

no covariates, µj = λ1. Then we have

Yjl|(Yjk, Yuv, Yjl + Yuw = ajl,uw) ∼ N(µjkl,uvw, τ
2),

where µjkl,uvw = 1
2
ρ(yjk − yuv) + 1

2
ajl,uw, and τ 2 = 1

2
(1 − ρ2)σ2. Therefore, after

conducting Hajek projection, l(2)(ρ) can be approximated as:

l(2)(ρ) ≈
n∑
i=1

wi

n∑
j=1,j 6=i

mj(mj − 1){
mi∑
k 6=l

[−1

2
log

2πσ2(1− ρ2)
2

− (yil − yik)2 − 2ρσ2

4(1− ρ2)σ2
]}

(4.16)
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Chapter 5

Summary and Future Direction of

Study
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5.1 Summary

Our composite conditional likelihood approach is insensitive to nuisance parameters,

and provides robust and flexible inference for sparse clustered data. One limitation,

however, is that the marginal univariate distributions must follow a generalized linear

model. The general odds ratio function (1.5) can be used to assess the intracluster

pairwise associations and is particularly well-suited for use with the composite

conditional likelihood approach; this measure of pairwise association has several

attractive features: it accommodoates responses of any type, is invariant under

prospective or retrospective proband-based sampling design, is unconstrained by the

marginal univariate distributions of the responses, and it completely characterizes

the pairwise association. Specifically, we have proposed the odds ratio model (3.4)

for use when responses are all on the same scale, and we desire to investigate the

familial aggregation patterns of disease. Moreover, as an exploratory study, we

investigate the optimal choices of cluster-specific weights for our proposed composite

conditional likelihood. Under our choices of weights, the efficiency of estimation

improves.
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5.2 Future Direction of Study

The third aim of my dissertation is an exploratory study, and hence needs more

future work. One future direction of study is to further investigate the choices

of cluster-specific weights which are allowed to depend on cluster sizes as well as

correlation structure and covariates. Moreover, this exploratory study on selection

of weights is under the i.i.d cluster size assumption, and another future direction

of study is to investigate optimal choices of weights when cluster sizes are not

identically distributed.

Furthermore, my dissertation work on composite conditional likelihood focuses

on two asymptotic schemes: standard situation and sparse data situation. Future

work could be done on the composite conditional likelihood under the rectangular

array asymptotic scheme.

In my dissertation, we assume that individual outcomes marginally are distributed

according to a generalized linear model, and we model the general odds ratio function.

One future direction of study is to investigate if there is a way to relax the generalized

linear model assumption on marginal outcomes and model the general odds ratio

function only.
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