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Abstract

Bioimage Informatics in the Big Data Era: Algorithms for High-Dimensional
Spectral, Volumetric, and Temporal Image Processing

By Blair J. Rossetti

Big data is revealing new challenges in the area of bioimage informatics—the study of
systems and methods for handling, processing, and visualizing biological images. Bio-
logical events are inherently multidimensional, and they occur at different timescales,
frequencies, and resolutions. Yet, for many years, the limitations of digital imag-
ing technologies have prevented researchers from gaining a holistic view of their
problem. The goal of modern bioimage informatics is to leverage knowledge in big
data, computer vision, and machine learning to efficiently and effectively process
high-dimensional data sets. Although many open-source algorithms are available for
processing bioimages, advanced numerical methods are still needed for handling big
spectral, volumetric, and temporal data. In this work, we discuss novel contributions
to the areas of spectral unmixing, volumetric reconstruction, and video-based track-
ing. Specifically, we present (1) a robust algorithm for unmixing large numbers of
fluorescent labels from contaminated spectral micrographs; (2) an offline/online mul-
tiresolution workflow for the reconstruction of three-dimensional subvolumes of inter-
est from serial gigapixel whole slide images; and (3) an automated analysis pipeline
and graphical interface to aid in situ tracking of insect movement that uses low-cost,
human-readable tags.
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Chapter 1

Introduction

We will begin by asking if the prevailing notion of what computer systems

can achieve in biological image-processing may not be overly modest.

This question seems to us fundamental, for such an underestimate might

produce not only a limitation of objectives, but also a restriction of the

class of problems considered amenable to computer processing.

“The Analysis, Synthesis, and Description of Biological Images”

— Lipkin, Watt, & Kirsch, (1966)

In a time where seemingly all information is recorded, stored, and collated, it is

perhaps a bit ironic that we cannot pinpoint the origin of the phrase big data. To the

best of our knowledge, however, the first mention of the phrase in computer science

was the 1997 seminar entitled “Big Data and the Next Wave of InfraS-tress”1 by

Silicon Graphics scientist John Mashey [50, 139, 148]. In his presentation, Mashey

described big data as being a looming source of what he called infrastress2, or “the

bad effects of faster change in computer susbsystems and usage. . . than in underlying

infrastructure” [149]. Infrastress is what arises when hardware speed and capacity

1A later version of Mashey’s slide deck can be found at http://static.usenix.org/event/

usenix99/invited_talks/mashey.pdf [149].
2Infrastress is a portmanteau of the words infrastructure and stress.

http://static.usenix.org/event/usenix99/invited_talks/mashey.pdf
http://static.usenix.org/event/usenix99/invited_talks/mashey.pdf
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outpace the software on which they rely. For every bump in hardware performance,

computer scientists and software engineers have been left scrambling to keep up.

This imbalance leads to bottlenecks, artificial limits, instability, and complicated

workarounds. Mashey believed that infrastress would only last a couple of years until

the existing imbalance was corrected [149]. However, the sense of infrastress has

only increased over the past twenty years and the phrase big data is now in common

parlance [29, 30, 31, 103]. This phenomena raises a few pressing questions. First, what

does big data mean today and does it differ from what Mashey described in the late-

nineties? Second, how is big data impacting modern science? Third, what algorithms

and methods can be used to rectify the current hardware/software imbalance? The

goal of this work is not to answer these questions outright, as such answers may not

even exist, but to explore how these questions relate to a subfield of computer science

called bioimage informatics3. Let’s begin by addressing our first question and settling

on a definition for big data.

1.1 Big Data and the Big Data Era

One of the first attempts to characterize big data came from META Group4 analyst

Doug Laney. In his 2001 report discussing trends in e-commerce, Laney outlined what

is now referred to as the three Vs of big data [118]. He suggested that any solution for

managing the large influx of e-commerce data must take into account its volume (i.e.,

storage requirements), velocity (i.e., rate of generation/analysis), and variety (i.e.,

mixture of data types). The three Vs have since been generalized to describe the

three ways data can be big5. For example, we find large volume three-dimensional

3Bioimage informatics is not to be confused with imaging informatics which deals with the pro-
cessing of radiography data.

4META Group was acquired by Gartner in 2005.
5The three Vs model has expanded to include value [30], veracity [48], variability [65], and visu-

alization [202]; however, these additional attributes describe desired traits rather than fundamental
properties of data.
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images in microscopy [133], high velocity streaming videos in ethology [76], and a

wide variety of multimodal satellite data in remote sensing [31]. Each of these data

sets represents a different big data problem.

The three Vs are useful in classifying the types of big data, but big is still a relative

term. For Mashey, big meant any data set that could saturate a 4 GB memory cards,

40 GB storage drive, or 1 GHz processor [149]. Ten years earlier, Stytz, Frieder &

Frieder had an even smaller interpretation of big :

The large amount of data processed, up to 35 MB (megabytes) produced

per patient by a single modality study, hinders rapid image formation.

The challenge posed to the computer scientist lies in the development of

techniques for rapid, accurate manipulation of large quantities of data to

produce images that are useful to a physician. [214]

These definitions of big are almost laughable by modern standards. For comparison,

35 MB is equivalent to five seconds of 4K video at 30 fps, and the same quantity of

information can be transferred in 280 ms over a gigabit network connection. This

change in what we consider big data is a reflection of the 58 % year-over-year growth

in general computing capacity [91].

In an effort to localize the phrase to the last twenty years, big data is now com-

monly defined as any collection of information that cannot be analyzed using tra-

ditional methods in a reasonable amount of time. However, this definition is also a

moving target since traditional methods are constantly evolving. Freeman & Glass

articulated this same imbalance between data size and existing methods in their 1969

publication on image digitization:

Currently, there is much interest in the use of digital computers for the

processing of pictorial data. Usually the applications are problems that

involve such large amounts of pictorial data that manual processing is

either not feasible or not economical. [62]



4

From this passage, we must conclude that big data, as it has been defined, is not a

new phenomenon6. Why, then, did Chen, Mao & Liu claim in 2014 that the “era of

big data has come beyond all doubt” [30]?

There is something undoubtedly new about the challenges of modern data pro-

cessing, yet our attempts to define big data as an entity have proven futile. Scientific

research will continue to push the boundaries of existing hardware, and our data will

always be big. It appears best, then, not to think of big data as a collection of infor-

mation but, instead, as the field of research that aims to find scalable solution to the

storage, manipulation, and analysis data sets. Through this lens, the Big Data Era

marks the point where the field of big data has begun to mature across a variety of

domains.

1.2 Bioimage Informatics

As with most fields, big data is revealing new challenges in the area of bioimage

informatics—the study of systems and methods for handling, processing, and visu-

alizing biological images. Biological event are inherently multidimensional, and they

occur at different timescales, frequencies, and resolutions. Yet, for many years, the

limitations of digital imaging technologies have prevented researchers from gaining a

holistic view of their problem. Advances in optical sensing and the rise of computa-

tional imaging are providing new avenues for measuring complex biological processes

[16, 26, 231]. The goal of modern bioimage informatics is to leverage knowledge

in big data, computer vision, and machine learning to efficiently and effectively pro-

cess high-dimensional data sets. Although many open-source algorithms are available

for processing bioimages [46, 153, 192], advanced numerical methods are needed for

handling big spectral, volumetric, and temporal data [9]. We will briefly explore ap-

plications within these three areas.

6A similar observation led Lugmayr et al. [143] to develop the Cognitive Big Data framework.
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Bioimages are considered to have five possible dimensions: space (x, y, z), color

(λ), and time (t). Although most photographs have three color channels for red,

green, and blue light, bioimages can contain ten or hundreds of colors. Spectral

imagers are optical sensors that measure the intensity of light across the visible and

near-visible wavelengths (typically 400–800 nm). When coupled with a microscope,

spectral imaging systems allow scientists to record the emission profiles of fluorophore-

labeled specimen across an entire scene. Overlapping emission profiles are difficult to

visually inspect, and they require the use of spectral unmixing algorithms to interpret.

Spectral unmixing is the process of separating a mixture of light into its component

profiles or signatures. Unmixing algorithms have shown great promise for applications

where samples contain many fluorescent labels; however, existing methods perform

poorly on images contaminated by autofluorescent molecules and stray sources of

light. Therefore, robust spectral unmixing methods are required to analyze high-

dimensional spectral micrographs under noisy, real-world conditions.

Two-dimensional (x,y) images represent either a projection or a cross-section of

a three-dimensional scene. Loss of depth (z) information makes it difficult to fully

understand the nature of three-dimensional biological processes. Gigapixel imaging

of serial histology samples presents a new modality for the study of three-dimensional

disease morphologies. However, serial gigapixel imaging has also created new prob-

lems for the registration and reconstruction of large volumes. A single color gigapixel

(i.e., 109 pixels) image can occupy nearly a gigabyte of memory. With tens or hun-

dreds of serial gigapixel images, the memory requirements quickly become intractable.

Gigapixel image registration is an out-of-core problem that precludes the direct appli-

cation of many conventional registration techniques. Clinicians require fast access to

subvolumes of interest from within gigapixel histology data sets in order to evaluate

and study disease hallmarks.

Biological processes occur over a variety of timescales. A neuronal action po-
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tential is measured in milliseconds; whereas, the pupation of a butterfly may take

several weeks. Temporal (t) imaging is essential for recording the dynamics of bio-

logical events. For instance, measurements of animal movement are critical for un-

derstanding behavioral and ecological properties such as the spread of disease within

communities. Video-based animal tracking is a low-cost mechanism for elucidating

the roles that specific individuals play in disease emergence (e.g., by identifying a

subset of superspreaders). Monitoring animals often necessitates long-duration video

recordings across multiple sites. Since these experiments produce thousands of hours

of video data, automated methods are required to condense the tracking data to a

manageable size for review and analysis.

1.3 Contributions of Work

In this work, we discuss novel contributions to the areas of spectral unmixing, volumet-

ric reconstruction, and video-based tracking. These contributions focus on different

applications of big spectral, volumetric, and temporal data:

Spectral Data: We present a robust algorithm for unmixing large numbers of flu-

orescent labels from contaminated spectral micrographs. As part of this algorithm,

we also describe a new method for measuring fluorophore reference spectra [186].

Volumetric Data: We present an offline/online multiresolution workflow for the

reconstruction of three-dimensional subvolumes of interest from serial gigapixel whole

slide images [185].

Temporal Data: We present an automated analysis pipeline and graphical interface

to aid in situ tracking of insect movement that uses human-readable tags and low-cost

video stations [184].
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1.4 Outline

This dissertation is divided into three primary chapters corresponding to spectral

data (Chapter 2), volumetric data (Chapter 3), and temporal data (Chapter 4). Each

chapter begins with a brief historical overview that aims to provide context to the

scale and structure of each data type. We then discuss what sensors and optical

systems are required to capture each type of bioimage. This background sets the

stage for a discussion of applications in each data area and a review of relevant

algorithms. Finally, each chapter presents a novel contribution to the area of bioimage

informatics. The details of each method are described and followed by an evaluation

of their performance and discussion of any limitations.
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Chapter 2

Spectral Data

In his 1672 letter to the Royal Society, Isaac Newton presented his “New Theory about

Light and Colours” [164]. At the time, it was known that one could produce a rainbow

of colors by passing white light through a triangular prism. However, the physical

principles behind this “Phenomena of Colours” was highly contested. Newton dis-

missed the theory put forth in René Descartes’ 1644 Principia philosophiae suggesting

that prisms create the observed colors by modifying white light [49]. Instead, Newton

took the opposite position by claiming that “light itself is a heterogeneous mixture

of differently refrangible rays” [164]. In other words, colors combine to form white

light. To prove this, Newton described his Experimentum Crucis in which he used a

prism to separate white light into its component colors and a lens to recombine the

colors back into white light (see Figure 2.1). The critical insight gained from this

experiment was the notion that color is a property of light itself and not a property

of the prism or the lens as Descartes’ theory suggested.

Today we know that light consists of waves of particular frequencies, and these

waves travel at different speeds in different materials. When light passes from one

material to another, its speed changes but its frequency stays the same. As a result,

the light bends, or refracts, by some angle. The relationship between the incident
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A B C D E

Figure 2.1: Illustration of Newton’s Experimentum Crucis from his 1672 letter “New
Theory about Light and Colours.” Incident white light is dispersed by a prism (A).
The diverging component colors are collected and focused by a lens (B). Light cast
on a piece of white paper placed at plane C would show a rainbow with colors from
blue (top) to red (bottom). Moving the paper to plane D would reveal that the colors
converge to form white light. Finally, moving the paper to plane E would show an
inverted rainbow with colors from red (top) to blue (bottom).

angle, denoted θ1, and the refraction angle, denoted θ2, is given by Snell’s law:

sin θ1

sin θ2

=
n2

n1

, (2.1)

where n1 and n2 are the refractive indices of the two materials. The refractive index

for a given material can be expressed by

nm =
λ0

λm
, (2.2)

where λ0 is the wavelength of light in a vacuum and λm is the wavelength of light in

material m. As we can see, the refraction of light is dependent on the wavelength of

the incident light. This dependence between wavelength and refraction is the reason

why short-wavelength blue light has a larger refraction angle than long-wavelength

red light. Newton’s experiments on the dispersion of light led to a critical shift in

thinking about light as a combination of spectral colors.

In this chapter, we examine the spectral characteristics of light, the information

they provide, and how we can design algorithms to leverage this information. We

begin by examining the human perception of color and how this process is mimicked
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in digital cameras. This discussion is followed by an exploration of how the spectral

components of light are measured and the applications of these methods in fluores-

cence microscopy. The remainder of the chapter is spent on algorithms for processing

high-dimensional spectral images. We outline the existing spectral unmixing methods

and reveal some of the challenges in analyzing real-world data. We identify broken

assumptions and derive new algorithms for the processing of contaminated spectral

micrographs. Finally, we compare these new methods to the current standards in

spectral image analysis.

2.1 Spectral Imaging

Newton’s 1672 Experimentum Crucis provided proof of the heterogeneity of light;

however, his thinking on how light and colors are detected by the human eye were

fundamentally flawed. In his 1665 notes entitled “Of Colours”, Newton wrote1:

Light seldom striks upon the parts of grosse bodys (as may bee seen in its

passing through them), its reflection & refraction is made by the diversity

of æthers, & therefore its effect on the Retina can only bee to make this

vibrate which motion then must bee either carried in the optick nerve to

the sensorium or produce other motions that are carried thither. [163]

In this quote, Newton suggests that light cannot pass through the curved “optick

nerve” because light particles travel in a straight lines. Therefore, he believed that

impacts from light particles caused vibrational waves that traveled into the brain.

While we still do not have a complete understanding of how the brain perceives color,

we now know the fundamental biological components that allow humans to detect

light of different wavelengths.

1The Newton Project has published an online edition of Newton’s writings from 1642–1727 which
can be accessed at http://www.newtonproject.ox.ac.uk/.

http://www.newtonproject.ox.ac.uk/
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The human eye contains three types of photoreceptors—rods, cones, and intrinsi-

cally photosensitive retinal ganglion cells. Our perception of color, however, is largely

dictated by the three2 subtypes of cone cells found in the retina. Short, medium,

and long cone cells are so named for the portions of the electromagnetic spectrum

that they can detect. Short cones, or S-cones, are most sensitive to wavelengths

around 442 nm; whereas, M-cones and L-cones are sensitive to wavelengths around

543 nm and 570 nm, respectively [211]. By detecting different combinations of short-

wavelength blue light, medium-wavelength green light, and long-wavelength red light,

our cone cells allow us to distinguish millions of different spectral profiles.

Digital cameras have been designed to function in much the same way as our

cone cells. Camera sensors are made up of blue, green, and red photodetectors that

match the spectral sensitivity of our S-, M-, and L-cones, respectively (see Figure 2.2).

Spectral sensitivity is a wavelength-dependent measure of light detection efficiency.

Let’s denote the spectral sensitivity of the blue, green, and red photodetectors as

SB(λ), SG(λ), and SR(λ), where λ represents the wavelength of light. For a given

image pixel, a camera measures the intensity of blue (B), green (G), and red (R)

light according to the detector response functions

B =

∫
L(λ)SB(λ)dλ,

G =

∫
L(λ)SG(λ)dλ,

R =

∫
L(λ)SR(λ)dλ,

(2.3)

where L(λ) is the incident light spectrum. When displayed as an additive overlay

(e.g., as with an electronic display), these components form an RGB triplet that

replicates the original color perceived by our eye–brain combination.

For each location in an observed scene, digital cameras integrate a continuous

2A 2010 study by Jordan et al. [100] suggests that roughly 12% of women are tetrachromatic
(i.e., they have four subtypes of cone cells).
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Figure 2.2: Spectral sensitivity of S-, M-, and L-cone cells (shaded regions) compared
to the blue, green, and red photodetectors of a Nikon D5100 (colored lines) [44, 211].

spectrum of light according to the RGB response functions. Together, these response

functions provide a coarse discretization of L(λ) (see Figure 2.3 E). This rough spec-

tral approximation limits our ability to differentiate sources of light with similar spec-

tra. In other words, there exist multiple spectral profiles that produce the same RGB

color. Fortunately, there is no inherent reason why camera sensors need only record

three bands of spectral wavelengths. Instead of measuring B, G, and R by Eq. 2.3,

we can integrate the incident light over an array of M detectors with non-overlapping

spectral sensitivities (see Figure 2.3). The M spectral response functions measure the

intensity, denoted Im, at each contiguous spectral band and can be written as

Im =

∫
L(λ)Sm(λ)dλ, for m = 1, . . . ,M, (2.4)

where Sm(λ) is the spectral sensitivity of the mth detector. For fixed bounds, the

range of wavelengths detected within each band decreases as M increases. Therefore,

more spectral bands results in a better approximation of the true light spectrum L(λ).

This idea is the crux of a technique called spectral imaging.
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Figure 2.3: Illustration comparing the RGB response functions to ten spectral re-
sponse functions. A scene of flowers (A) contains reflected light with different spec-
tra profiles. The yellow bounded region produces the continuous spectrum, denoted
Lflower(λ), shown in B. Lflower(λ) is overlaid on the subsequent plots for reference.
The plots in panels C and D show the spectral sensitivities of the blue, green and red
detectors (C) and the spectral array detectors (D). The results of computing the RGB
response functions in Eq. 2.3 are shown as overlapping bars in panel E. The results
of computing the spectral response functions in Eq. 2.4 are shown as non-overlapping
bars in (F). The widths of the bars in panels E and F are equal to the full width at
half maximum of the corresponding spectral sensitivities. The RGB response func-
tions produce a much coarser approximation of Lflower(λ) as compared to the spectral
response functions.
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Spectral imaging is a technique for measuring the spectrum of light at each pixel

location in a scene. The resulting spectral image is represented as a third-order

tensor, or three-dimensional matrix, containing a single intensity value for every (x,

y, λ) pixel (see Figure 2.4 A). Since spectral imaging systems are restricted to using

one- or two-dimensional photodetectors3, special methods are required for capturing

spatial-spectral data. There are four main categories of spectral imaging systems:

wavelength scanning, spatial scanning, spatiospectral scanning, and snapshot (see

Figure 2.4 B-E). Wavelength scanning systems use a two-dimensional image sensor to

measure the light intensities of an entire scene one spectral band at a time. Similarly,

spatial scanning systems use either one- or two-dimensional sensors to measure all

spectral bands for one pixel or row of pixels at a time. Spatiospectral scanning mixes

these two methods by acquiring a different spectral band for every row of pixels [81].

Scanning methods are able to achieve high spatial and spectral resolution, but do so

at the expense of time. For time-sensitive applications, snapshot methods sacrifice

spatial and spectral resolution in order to simultaneously measure the spectral data

for the entire scene in one image. This is often accomplished by projecting each

spectral band onto different regions of a two-dimensional sensor. For more details on

spectral image acquisition, we refer the reader to reviews by Gao & Smith [66], Garini

et al. [68], Li et al. [131], Lu & Fei [142], Shaw & Burke [200].

The spectral resolution, or width of each spectral band, dictates how well a spectral

image can approximate L(λ); whereas, the detection range determines which portion

of the electromagnetic spectrum is observed. For a fixed detection range, higher spec-

tral resolution means that more spectral bands are measured. Systems that collect an

order of 100 to 101 spectral bands are generally referred to as multispectral imagers.

Hyperspectral imagers, on the other hand, capture an order of 101 to 102 spectral

bands. As a result, spectral data can range anywhere from a couple of megabytes to

3Three-dimensional photodetectors, such as multi-well arrays [54], have not yet been introduced
into commercial spectral imaging systems.
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A.

B. C.

D. E.

Figure 2.4: Illustration of a spectral image and the four methods of spectral imaging.
A spectral image (A) is represented as a series of two-dimensional spatial images
where each image corresponds to a different band of wavelengths. There are four
categories of spectral imaging systems: wavelength scanning (B), spatial scanning
(C), spatiospectral scanning (D), and snapshot imaging (E). Each depiction shows
which dimension of data is recorded at each time step.
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many gigabytes per image. The decision to use multispectral or hyperspectral imag-

ing depends on the required spectral resolution and the amount of available light.

For low-light situations, hyperspectral imaging is often not possible because there are

not enough photons of each wavelength to produce an adequate signal-to-noise ratio

image.

Multispectral and hyperspectral imaging have a wide range of applications in

biology [68, 252], biomedicine [142], remote sensing [70], food safety [135], forensics

[178], art conservation [7], and more [108]. In each application area, spectral imaging

allows for the detection of otherwise invisible features. In this work, we focus on a

specific type of spectral imaging called spectral microscopy and discuss how it can be

used to explore micron-scale biological objects. More specifically, we derive algorithms

for the analysis of spectral micrographs under real-world conditions.

2.1.1 Applications in Microscopy

Fluorescence microscopy is an imaging modality for measuring the light emitted by

fluorescent molecules, called fluorophores, at spatial scales near or equal to the diffrac-

tion limit of light4. There are two main types of fluorophores—labels and sensors.

Fluorescent labels are molecules that have fixed spectral signatures5 that are used to

differentiate and localize distinct objects or regions of interest. In labeling experi-

ments, fluorophores with distinct emission spectra are chemically bound to different

biological molecules. Fluorescent sensors, on the other hand, are molecules who’s

spectra shift in response to changing micro-environments [84, 111], molecular interac-

tions [223], biomechanical forces [42], and more [208]. Fluorescent sensors can either

be bound to target molecules or be free-floating. Both fluorescent labels and sensors

4There are now many super-resolution microscopy techniques available that use optical and com-
putational methods to exceed the diffraction limit; however, these technique carry a large number
of constraints that make sample preparation and imaging challenging [196].

5The emission spectrum of any fluorescent molecule will be altered by its environment; however,
fluorescent labels are designed to be reasonably stable in most environments.
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are commercially available with a wide range of spectral properties [115, 152].

Conventional fluorescence microscopes work similarly to digital cameras in that

they both rely on filters to separate light. Unlike a digital camera, however, the goal

of a fluorescence microscope is not to replicate the color vision but to completely

separate the light of each unique emission spectrum. Which fluorophores and, more

importantly, how many fluorescent labels/sensors can be used in an experiment is

dictated by the spectral characteristics of the filter being used (i.e., what wavelengths

of light they let pass). There are a number of tools available to help optimize the

choice of fluorescent labels/sensors based on the configuration of a given microscope

(e.g., SPEKcheck by Phillips et al. [172] and FPbase by Lambert [115]). These tools

attempt to identify the set of fluorescent labels that minimize spectral cross talk, a

problem where the filter used for one fluorescent label does not adequately exclude the

fluorescence emission of other labels (see Waters [236] and references therein). Yet,

even with such optimization, most fluorescence microscopes can only accommodate

up to four fluorescent labels or two fluorescent sensors before cross talk becomes

unavoidable. To make matters worse, real-world biological images are contaminated

with background fluorescence from external sources of light and autofluorescence from

naturally fluorescing organic molecules.

Spectral microscopy has become the method of choice when needing to avoid cross

talk, mitigate autofluorescence, and simultaneously visualize many fluorescent labels

or sensors [85, 99, 128]. Instead of relying on conventional filters, spectral microscopes

use specialized optics such as prisms, diffraction gratings, continuous or variable fil-

ters, and interferometers to approximate the spectrum of emitted light for every pixel

(see reviews by Garini & Tauber [67] and Li et al. [131]6). Most commercial systems

have a spectral resolution of 1–15 nm/band, a detection range between 380–800 nm,

and collect tens (i.e., multispectral) or hundreds (i.e., hyperspectral) of spectral bands

6For an even broader treatment of spectral imaging, we refer the reader to the “Spectral Imaging”
special issue of Cytometry Part A [126].
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Figure 2.5: Spectral micrograph of objects labeled with one of four different fluo-
rophores. Each two-dimensional image indicates to the amount of light recorded at a
particular band of wavelengths. Plotting the intensity at the center of each colored
bounding box produces the corresponding spectral profiles plotted at the bottom
right. Each fluorescent label exhibits a different spectrum.

[35, 66]. Regardless of the acquisition mode, spectral microscopes provide access to

the underlying spectral information so that the spectra of fluorescent labels can be

compared and the spectral shift of fluorescent sensors can be measured (see Figure

2.5).

Spectral microscopy has been used in a range of label and sensor applications

including karyotyping [198], Förster resonance energy transfer [216], Brainbow imag-

ing [137], and live-cell imaging [227]. Perhaps the most prominent use of spectral

microscopy is the simultaneous visualization of multiplexed fluorescent labels. Valm

et al. [228, 229] showed that spectral microscopy, along with computational methods,

can distinguish over one hundred different biological targets in a single field of view.

In these experiments, binary combinations of fluorophores were used as barcodes to

uniquely identifying different populations of bacteria. More recently, Mark Welch
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Figure 2.6: Processed spectral micrograph of a bacterial biofilm where each color
identifies a different type of bacteria: blue is Actinomyces, green is Streptococcus,
yellow is Neisseriaceae, and red is Corynebacterium. The scale bar represents 10 µm.

et al. [147] showed that spectral microscopy could be used to image complex bac-

terial biofilms. In these experiments, the fluorescent labels were bound to different

taxonomic groups of bacteria using a method called fluorescence in situ hybridization

(FISH). As the name suggests, FISH works by hybridizing fluorescent oligonucleotide

probes to target cells containing complementary 16S ribosomal RNA sequences (see

Bouvier & Del Giorgio [21] and references therein). Under optimal conditions, spec-

tral microscopy allows for the visualization of dynamic microbial communities (see

Figure 2.6). However, real-world spectral images are plagued by several problems:

background fluorescence, autofluorescence, and spatially overlapping fluorophores.

As a result, the spectrum at a given pixel may represent a mixture of light from other

sources. We rely on a class of algorithms called spectral unmixing in order the extract

the components of mixed spectra.
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2.2 Spectral Mixing and Unmixing

In this section, we examine the properties of spectral mixing in well-behaved images

(i.e., data without contamination from sources such as background fluorescence and

autofluorescence). When a pixel location contains only one fluorescent label, the mea-

sured emission spectrum is a scaled version of that fluorophore’s spectral signature

(i.e., the canonical spectrum of the fluorophore under the given environmental con-

ditions). If two or more fluorescent labels exist at the same pixel location, then the

measured spectrum represents a combination of their spectral signatures. In this sce-

nario, we refer to each unique component of the mixture as an endmember7. Exactly

how the spectral signatures of endmembers combine to form an observed spectrum is

described mathematical by a spectral mixing model.

2.2.1 Linear Mixing Model (LMM)

Let’s assume that we have observed the spectrum at a pixel location using the spectral

response functions defined in Eq. 2.4. We can denote the observed M -dimensional

nonnegative spectrum as y ∈ RM
≥0. Recall that M is the number of contiguous

spectral bands. We can similarly denote the spectra of N endmembers as sn ∈ RM
≥0

for n = 1, . . . , N . Exactly how these N endmember spectra mix to generate the

observed spectrum y is determined by a spectral mixing model. In nearly all cases of

spectral microscopy analysis, the mixing of light is assumed to follow a linear mixing

model (LMM) [252]. The LMM states that

y =
N∑

n=1

snwn + e, (2.5)

7Endmember is a term borrowed from mineralogy that refers to the purest form of an element
that exists in a mixture.
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where wn ∈ R≥0 is the nonnegative weight for the nth endmember, and e ∈ RM is a

noise vector (typically assumed to follow a Gaussian or Poisson distribution). Since

M > N , this is an overdetermined system. The LMM is commonly described as a

linear combination of endmembers; however, it is important to note that the weights

are nonnegative. Instead, we can more accurately describe the LMM as a conical

combination of endmembers. The nonnegativity of the weights reflects the fact that

a negative amount of an endmember does not have a physical meaning in the context

of our problem8. In exchange for the simplicity of the LMM, we make the fairly large

assumption that any nonlinear affects are negligible. Nonlinear mixing can arise as a

result of light scattering, constructive or destructive interference, Förster resonance

energy transfer, or contamination from background fluorescence.

Let’s now consider an entire spectral image with P pixels, denoted Y ∈ RPy×Px×M
≥0 ,

where PyPx = P . To simplify our problem, we will start by defining an unfold(·)

operation that takes a three-dimensional spectral image and flattens it into a two-

dimensional matrix:

unfold(Y) = Y, (2.6)

where Y ∈ RM×P
≥0 is our spectral image matrix. Effectively, we have vectorized the

spatial data for every spectral band in Y . For completeness, we define fold(·) as the

operation that reforms the spatial dimension and takes unfold(Y) back to a tensor:

fold(unfold(Y)) = Y . Given an observed spectral image matrix, we can write the

LMM in matrix notation as

Y = SW + E, (2.7)

where S ∈ RM×N
≥0 is the endmember matrix with columns being endmember spectra,

W ∈ RN×P
≥0 is the weight matrix with columns being the endmember weights for a

given pixel, and E ∈ RM×P
≥0 is the noise matrix. Since the weights are nonnegative,

8In general, destructive interference of light waves is unlikely to break the assumption of nonneg-
ativity.
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W can be interpreted as the abundance of each endmember at every pixel. By

folding W into the third-order tensor W ∈ RPy×Px×N
≥0 (i.e., fold(W) = W), we can

conveniently visualize the endmember weights as a series of spatial abundance maps.

In the literature, W is referred to as the unmixed image because it separately shows

the contributions that each endmember makes to the mixed spectra in Y . Since W is

seldom, if ever, known in advance, the unmixed image must be determined indirectly

from the observed spectral image in a process called spectral unmixing.

2.2.2 Linear Unmixing

Spectral unmixing is an inverse problem that aims to decompose a mixed spectrum

into a set of component endmembers and their associated weights. When spectral

mixing is assumed to follow the LMM, then the inverse problem is called linear un-

mixing. Linear unmixing, like most inverse problems, is ill-posed. According to the

definition given by Jacques Hadamard [82], a problem is well-posed if: (1) a solution

exists, (2) the solution is unique, and (3) the solution is stable. Should any of these

conditions be violated, the problem is considered ill-posed. As we will see, the pres-

ence of noise means that linear unmixing is unlikely to have an exact solution, and

there is often no guarantee that an approximate solution will be unique.

A variety of linear unmixing methods have been used by the remote sensing com-

munity for the analysis of hyperspectral geospatial data, and there exists a rich lit-

erature on advanced hyperspectral unmixing algorithms [17, 52, 90, 105, 106, 145].

Although some methods from remote sensing have been directly applied to spectral

micrographs [86, 142], there are several key differences between the problem con-

ditions that make unmixing algorithms for geospatial data unsuitable for spectral

microscopy. As compared to remote sensing data,

• spectral micrographs typically measure fluorescence rather than reflectance;



23

• spectral micrographs are photon-limited and contain fewer spectral bands (i.e.,

lower spectral resolution);

• spectral micrographs may be illuminated by multiple sources;

• spectral micrographs may contain deadbands where illumination optics obscure

the detection of some spectral wavelengths;

• and spectral micrographs are often heavily contaminated by background fluo-

rescence and autofluorescent organic molecules.

As a result of these differences, there is an ongoing need to develop spectral unmixing

methods specifically tailored towards spectral microscopy applications [9]. Existing

methods for spectral microscopy unmixing can generally be classified as either a non-

negative matrix factorization or nonnegative least squares problem. In the remainder

of this section, we describe these two problems and their prominent variants.

Nonnegative Matrix Factorization (NMF)

The LMM suggests that an observed spectral image can be decomposed into the

product of two nonnegative matrices. Therefore, it seems appropriate to interpret

linear unmixing as a nonnegative matrix factorization (NMF) problem. Despite al-

ready being a popular analysis method for remote sensing [169], NMF was launched

into prominence as a result of a paper by Lee & Seung [123]. Unlike other matrix

decomposition methods such as principal component analysis (PCA) or independent

component analysis (ICA), NMF has the advantage of producing a set of basis vectors

that are identifiable and interpretable as endmembers [63]. NMF is typically formu-

lated as a constrained nonlinear optimization problem in which we aim to minimize

the distance between a nonnegative matrix Y and the product of its nonnegative
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factors S and W:

min
S,W

D(Y,SW), subject to S � 0,W � 0, (2.8)

whereD is some distance metric related to the assumed noise model, � is element-wise

≥, and 0 is the appropriately-sized zero matrix. Since neither S nor W are known a

priori, NMF is a type of blind source separation. While it is not necessary to know

either of S or W, it is critical to have an accurate estimate of their structure in order

to make the problem more well-determined. For example, a particularly useful piece

of information is the number of nonnegative basis vectors (i.e., endmembers).

A common criticism against NMF is that there is no unique solution to Eq. 2.8.

For any pair of matrices S∗ and W∗ that satisfy Y = S∗W∗, it is always possible to

define a nonsingular matrix C such that Y = (S∗C)(C−1W∗). In the trivial case, C

can be a scaling or permutation matrix. Nevertheless, uniqueness results have been

shown for special cases of NMF where the data is separable or sufficiently spread

[51, 72, 95, 120]. For many practical applications, NMF has been shown to provide

unique solutions up to some scaling and permutation [73].

The method of minimizing Eq. 2.8 turns out to be nontrivial since the objective

function is nonconvex in S and W. Methods for solving NMF problems are derived

from the observation that D(Y,SW) is convex in S when W is fixed and convex in

W when S is fixed. This holds due to the symmetry of the problem; in particular,

note that

D(Y,SW) = D(YT ,WTST ). (2.9)

The convex subproblems of NMF can be alternatingly optimized using a two block

coordinate descent method (see Algorithm 1). The main variation between NMF

algorithms lies in how these subproblems are solved or approximated. For a thorough

treatment of NMF algorithms, we refer the reader to the work by Cichocki et al. [32].
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Algorithm 1: Block Coordinate Descent Framework for NMF

Input : spectral data Y ∈ RM×P
≥0 and rank N

Output: optimal solutions S∗ ∈ RM×N
≥0 and W∗ ∈ RN×P

≥0

1 W∗ ← initial guess;
2 S∗ ← initial guess;
3 repeat

// approximate solutions to steps 4 & 5 are often sufficient

4 W∗ ← arg minW∗�0D(Y,S∗W∗);
5 S∗ ← arg minS∗�0D(YT ,W∗TS∗T );

6 until a stopping condition is met ;

The distance metric used in Eq. 2.8 depends on which noise distribution we assume

for E. There are three sources of noise in most microscopy systems: shot noise,

thermal noise, and read noise [236]. Shot noise and thermal noise are derived from the

intrinsic uncertainty of measuring discrete units such as photons or electrons. Read

noise refers to the electronic interference introduced when converting the detected

photons into an electrical signal. Whereas shot noise and thermal noise follow a

Poisson distribution, read noise is generally assumed to be Gaussian distributed. If

an image is shot-noise-limited, we aim to minimize Poisson distributed noise. This

problem is equivalent to minimizing the negative log-likelihood, or Kullback-Leibler

(KL) divergence [124]. The generalized KL divergence is written as

DKL(Y,SW) =
∑
m,p

(
ymp log

ymp∑
n smnwnp

− ymp +
∑
n

smnwnp

)
. (2.10)

A more common assumption is that Gaussian distributed noise dominates E. To

minimize Gaussian noise, we equivalently minimize the squared Euclidean distance

defined as

DE(Y,SW) =
1

2

∥∥Y − SW
∥∥2

F
=

1

2

∑
m,p

(
ymp −

∑
n

smnwnp

)2

, (2.11)

where ‖·‖F is the Frobenius norm. Both DKL and DE have been used extensively for
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spectral unmixing thanks to the work by Lee & Seung [124]. However, Cichocki et al.

[32, chap. 2] have outlined a variety of distance metrics to accommodate different

noise profiles.

The nonconvexity of NMF typically requires that we add some type of regular-

ization to our objective function to guide us to a sensible solution. Given that most

spectral microscopy images contain large regions of dark background pixels, the most

obvious option is to impose sparsity on the weights W. As pointed out by Gillis

& Glineur [74], the first-order Karush-Kuhn-Tucker (KKT) conditions for Eq. 2.8

show that NMF already provides some level of sparsity in its solutions. Consider the

following generalized KKT conditions for NMF:

S � 0, W � 0, (2.12)

∇SD � 0, ∇WD � 0, (2.13)

S�∇SD = 0, W �∇WD = 0, (2.14)

where � is the element-wise product. From W � ∇WD = 0, we can see that any

stationary point requires that either of the elements wnp or ∂D
∂wnp

be equal to zero.

The same argument can be made to explain the implicit sparsity of S. Neverthe-

less, many applications of spectral unmixing benefit from additional penalties against

dense solutions.

Perhaps the most popular regularized NMF method for spectral microscopy un-

mixing is PoissonNMF developed by Neher et al. [162]. As one of the only open-source

unmixing tools available in ImageJ [9], PoissonNMF has become a common method

for spectral microscopy unmixing. As its name suggests, PoissonNMF is intended for

use with images dominated by Poisson distributed noise. The PoissonNMF algorithm
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is a sparsity-regularized form of the KL-divergence that can be written as

min
S,W

∑
m,p

∑
n

smnwnp − ymp log(
∑
n

smnwnp)︸ ︷︷ ︸
Negative Log-Likelihood

+ γ
∑
p

∑
nwnp√∑
nw

2
np︸ ︷︷ ︸

`1/`2 Sparsity

, s.t. S � 0,W � 0,

(2.15)

where the γ parameter controls the level of sparsity. Although it is not described

in Eq. 2.15, the PoissonNMF ImageJ plugin can operate in both a blind and semi-

blind manner where select endmembers can be fixed during the minimization. As

reported by Neher et al. [162], a limitation of PoissonNMF is that it yields unsatis-

factory results when unmixing more than four endmembers. Similar semi-blind NMF

approaches using the Gaussian noise model for read-noise-limited data have been

suggested by Huang et al. [96] and Tong et al. [220]. However, these methods are

also limited to unmixing three to five endmembers. Megjhani et al. [154] proposed a

powerful morphologically constrained spectral unmixing (MCSU) algorithm using an

NMF-like dictionary learning method. MCSU builds a dictionary of morphological

motifs unique to each fluorescent label, and shows impressive results for up to eight

fluorescent labels. Unfortunately, MCSU requires that the reference images share the

same morphologies found in the test images and that the morphologies differ between

fluorophores.

Nonnegative Least Squares (NLS)

For spectral unmixing by NMF, we are only required to provide an estimate of the

number of endmembers N (i.e., the rank of S). In some spectral microscopy applica-

tions, however, it may be possible to estimate each of the endmember spectra. This

greatly simplifies our unmixing problem because we now only need to solve one of the

two convex NMF subproblems. Furthermore, if we assumed that the noise follows a

Gaussian distribution, then spectral unmixing becomes a nonnegative least squares
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(NLS) problem defined as

WNLS = arg min
W

1

2

∥∥Y − SW
∥∥2

F
, subject to W � 0. (2.16)

When S has full column rank, NLS is strictly convex and has a unique solution. In

the context of spectral microscopy, requiring S to have full column rank means that

each endmember spectrum must be linearly independent9. Most unmixing algorithms

that come packaged with commercial microscopes solve the NLS problem using the

active-set algorithm by Lawson & Hanson [122].

The convexity of NLS makes it a convenient method for solving spectral unmixing

problems; however, it carries the strong assumption that S in known. Evaluating the

validity of this assumption is critical to ensuring a good unmixing solution. Fortu-

nately, there are certain cases where S can be approximated to a high degree. Since

biological samples are labeled with a known set of fluorophores, it is often possible

to generate a set of reference samples. A reference sample and its corresponding

spectral reference image is a separate control sample that is labeled with only one

of the fluorophores from the set (see Figure 2.7). We can denote the corresponding

spectral reference images as Rn ∈ RQy×Qx×M
≥0 and the spectral reference matrices as

unfold(Rn) = Rn ∈ RM×Q
≥0 for n = 1, . . . , N , where QyQx = Q is the number of

pixels.

Spectral microscopy practitioners estimate endmembers from reference images us-

ing a variety of methods based on the arithmetic mean. In general, endmembers

are determined by the average spectral signature over all foreground pixels or some

user-defined region of interest within the reference image. Since the illumination con-

ditions can vary between reference and test images, it is common to normalize the

9Linear independence is different than statistical independence since we do not require the end-
member spectra to be orthogonal.
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A. B. C. D.

E. F. G.

Figure 2.7: Example of spectral reference images of fluorescent labeled bacteria. Each
spectral image has been color-coded to mimic its appearance to the human eye. Each
image corresponds to a different fluorescent label: DY-415 (A), DY-490 (B), ATTO
520 (C), ATTO 550 (D), Texas Red-X (E), ATTO 620 (F), and ATTO 655 (G).
Notice that the human eye is unable to distinguish between the red fluorescent labels
(D-G).

mean endmembers by their `∞- or `1-norm. We can write this in matrix form as

s̄n =
1

‖hn‖1

Rnhn

sn =
1

‖s̄n‖∞
s̄n for n = 1, . . . , N,

(2.17)

where hn ∈ RQ is a binary vector with 1 indicating the foreground and 0 indicating

the background of the nth reference image. Foreground/background thresholding can

be performed using any of a number of different thresholding algorithms.

When Y is known to only contain endmembers corresponding to measurable fluo-

rescent labels, NLS will provide sufficiently accurate unmixing results. However, it is

not always possible to know which endmembers exist in an image. In particular, there

are many different types of autofluorescent molecules, and knowing which autofluo-

rescence endmembers are present is often impractical. In addition, a poorly prepared
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reference sample or an improper estimation method will lead to undesired unmixing

results [252]. As such, NLS typically lacks the flexibility to adequately handle many

of the unmixing problems that arise in realistic applications.

2.3 Spectral Mixing and Unmixing of Contami-

nated Micrographs

Under ideal imaging conditions, both NLS and NMF methods can produce decent

solutions to the spectral unmixing problem. However, real-world spectral images are

almost never well-behaved. Contamination can arise from multiple sources including

nonuniform illumination, stray and scattered light, nonlinear interactions, and aut-

ofluorescent molecules [99, 236, 252]. The LMM lumps all of these sources of contam-

ination into the noise term E. As a result, spectral unmixing methods based on the

LMM will distribute the unaccounted intensity across many endmember weights—a

problem called proportion indeterminacy [250]

In order to perform spectral unmixing on real-world images, we need to examine

the assumptions made by the LMM and observe where NMF and NLS fail. With this

understanding, we can build a new unmixing method that is suitable for contami-

nated spectral imagines. In this section, we formally define an affine mixing model

(AMM) that generalizes the LMM by including a term to absorb any background

fluorescence. From this model, we derive an affine NMF method for estimating end-

members from reference images. We then propose a semi-blind sparse affine spectral

unmixing (SSASU) method for images contaminated with both autofluorescence and

background fluorescence.
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2.3.1 Affine Mixing Model (AMM)

According to the LMM, all observed spectra are the result of a conical combination

of light from different endmembers and some (hopefully) small amount of noise. Yet,

all fluorescence images contain some amount of global background fluorescence that

originates from a variety of sources in the sample and optical path [236]. This back-

ground fluorescence represents a type of intensity offset that is present in all observed

spectra. By neglecting this source of light, the LMM forces the noise term, E, to

account for the offset intensity. This becomes a problem in NMF and NLS when E is

assumed to follow a Gaussian distribution centered at zero. As a result, regularization

terms intended to enforce sparsity will be ineffective under these conditions and the

solution for the weight matrix W will be dense—a form of proportion indeterminacy.

Laurberg & Hansen [121] identified a similar problem and proposed a generalized

NMF method that included a term to account for the offset component found in a

variety of data types. Following this idea, we can formulate a new mixing model for

spectral images containing background fluorescence. The affine mixing model (AMM)

is defined as

Y = SW + b1T + E, (2.18)

where b ∈ RM
≥0 is the nonnegative background spectrum and 1 is a vector of ones.

The offset component of the observed spectral imaging is given by b1T . Conveniently,

the AMM becomes equivalent to the LMM when no background fluorescence exists

(i.e., b = 0). It is important to note that the AMM assumes that the background

spectrum is ubiquitous across the entire image. This assumption is most likely to

fail when illumination optics are misaligned; otherwise, the offset term provides a

mechanism to enforce sparsity on the weight matrix.

The main goal of spectral unmixing is to determine the abundance of each fluores-

cent label; however, fluorescent labels are only a subset of the endmembers found in
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a contaminated spectral image. Instead, we can think of the endmember matrix, S,

as being composed of two different endmember types—fluorophore endmembers and

autofluorescence endmembers. As we discussed above, it is often possible to estimate

the endmember spectra of fluorescent labels using reference images. Autofluorescence

endmember spectra, on the other hand, are notoriously more difficult. While it is

possible to use an unlabeled sample as a reference for autofluorescence, there is no

guarantee that the same autofluorescence molecules will exist in every spectral image.

Therefore, it makes sense to slightly modify Eq. 2.18 by partitioning S into the K

fluorophore endmembers that remain constant across spectral images and the L aut-

ofluorescence endmembers that are unique to each observed image. If we denote the

fluorophore endmember matrix as S̄ ∈ RM×K
≥0 and the autofluorescence endmember

matrix as S̆ ∈ RM×L
≥0 , then we can write the AMM as

Y =
[
S̄, S̆

]
W + b1T + E. (2.19)

Since S =
[
S̄, S̆

]
, Eq. 2.18 and Eq. 2.19 are equivalent. However, this more explicit

formulation allows us to separately treat endmembers from different sources.

2.3.2 Semi-blind Sparse Affine Spectral Unmixing (SSASU)

NMF- and NLS-based spectral unmixing methods presents different trade-offs that

must be considered before a particular method is chosen for analysis. NMF provides

flexibility in that endmember spectra need not be known a priori. This flexibility,

however, means that we must solve a difficult nonconvex problem. NLS is strictly

convex with a unique and easy to determine solution; however, inaccurate or missing

endmember spectra can lead to erroneous solutions. As a compromise, we present a

hybrid semi-blind source separation approach based on the AMM called semi-blind

sparse affine spectral unmixing (SSASU). By assuming a Gaussian noise model, we
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can write SSASU as

min
S̆,W,b

1

2

∥∥Y − [S̄, S̆]W − b1T
∥∥2

F
+ γ
∥∥W∥∥

1
,

subject to S̆ � 0,W � 0,b � 0,

(2.20)

where γ is a parameter for controlling the level of sparsity and ‖·‖1 is the sum over all

matrix elements. A related affine model (incorrectly called a linear model) was pro-

posed by Woolfe et al. [239] to address autofluorescence in spectral images; however,

this model did not include a penalty for dense solutions.

In this problem, semi-blind refers to the fact that Eq. 2.20 minimizes over S̆ and

not S̄. The fluorophore endmember spectra are fixed in SSASU because we assume

that they can be accurately estimated from reference images. Since the autofluores-

cence endmembers vary from one spectral image to another, S̆ is learned directly from

the data. SSASU is based on the AMM and includes a background term to account

for an offset component which allows for the effective enforcement of sparsity. Since

the objective function is nonconvex, the sparsity penalty is also useful in helping

Eq. 2.20 converge to a desired solution.

We solve SSASU using a three block coordinate descent framework, similar to

Algorithm 1, where each iteration separately updates S̆, W, and b. We follow the

multiplicative update scheme suggested by Lee & Seung [124] in which each update

can be viewed as a type of gradient descent. Because the typical gradient descent

update is additive and can introduce negative elements, we aim to derive updates of

the form

S̆← S̆�
∇−

S̆
DSSASU

∇+

S̆
DSSASU

,

W←W � ∇
−
WDSSASU

∇+
WDSSASU

,

b← b� ∇
−
bDSSASU

∇+
bDSSASU

,

(2.21)
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where ∇− and ∇+ represent the negative and positive terms of the gradient, respec-

tively, and the division is performed element-wise.

To derive the updates for S̆, W, and b, we first rewrite the SSASU objective

function from Eq. 2.20 as

DSSASU =
1

2
Tr
((

Y − SW − b1T
P

)(
Y − SW − b1T

P

)T)
+ γ1T

NW1P , (2.22)

where Tr(·) is a matrix trace, 1P is a P -dimensional vector of ones, and 1N is an

N -dimensional vector of ones. Note that we have substituted S for
[
S̄, S̆

]
in Eq. 2.22

to simplify the notation. If we expand the terms inside the trace in Eq. 2.22, we get

DSSASU =
1

2
Tr
(
YYT −YWTST −Y1PbT − SWYT + SWWTST (2.23)

+ SW1pb
T − b1T

PYT + b1T
PWTST + b1T

P1PbT
)

+ γ1T
NW1P . (2.24)

In this form, it becomes much easier to determine the partial derivatives of DSSASU

with respect to S, W, and b. Using the properties of matrix traces we get

∇SDSSASU = SWWT + b1T
PWT −YWT (2.25)

∇WDSSASU = STSW + STb1T
P + γ1N1T

P − STY (2.26)

∇bDSSASU = SW1P + b1T
P1P −Y1P . (2.27)

From these partial derivatives, we can define the gradient updates using the heuristics

in Eq. 2.21. By separating the negative and positive terms of the partial derivatives,
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we obtain the update rules

S← S� YWT(
SW + b1T

P

)
WT

,

W←W � STY

ST
(
SW + b1T

P

)
+ γ

,

b← b� Y1P(
SW + b1T

P

)
1P

.

(2.28)

Finally, we need to restrict the update rule for S to the autofluorescence endmember

matrix S̆. Let’s first partition the weight matrix into a fluorophore weight matrix, de-

noted W̄ ∈ RK×P
≥0 , and an autofluorescence weight matrix, denoted W̆ ∈ RL×P

≥0 , such

that WT =
[
W̄T ,W̆T

]T
. By restricting the update rule for S to the autofluorescence

components, we obtain the autofluorescence endmember update rule

S̆← S̆� YW̆T(
S̆W̆ + b1T

P

)
W̆T

. (2.29)

To prevent against scaling problems, each update of S̆ is typically followed by a

normalization of the columns. Combining the update rules from Eq. 2.28 and Eq. 2.29

along with the normalization procedure, we have the complete iterative scheme for

SSASU (see Algorithm 2).

Endmember estimation

Unlike standard NMF, SSASU assumes that the endmember spectra for the fluo-

rescent labels are known a priori. As we have seen with NLS, estimating the K

fluorophore endmember spectra is possible from a set of reference images Rk ∈ RM×Q
≥0

for k = 1, . . . , K. However, the arithmetic mean method defined in Eq. 2.17 assumes

the same zero-centered Gaussian noise as the LMM. Fluorophore endmember spectra

estimated by the mean of the foreground pixels will generally contain an offset com-

ponent. Even slight inaccuracies in endmember estimates are known to dramatically
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Algorithm 2: SSASU

Input : spectral data Y ∈ RM×P
≥0 , fluorophore endmember spectra S̄ ∈ RM×K

≥0 ,
autofluorescence endmember rank L, and sparsity parameter γ

Output: optimal solutions S̆∗ � 0, W∗ � 0, and b∗ � 0
1 W∗ ← initial guess;

2 S̆∗ ← initial guess;
3 b∗ ← initial guess;
4 repeat

5 Ŷ ← [S̄, S̆∗]W∗ + b∗1T ;

6 W∗ ←W∗ �
((

[S̄, S̆∗]TY
)
�
(
[S̄, S̆∗]T Ŷ + γ

))
;

7 S̆∗ ← S̆∗ �
((

YW̆∗T )� (ŶW̆∗));

8 foreach s̆i ∈ S̆∗ do
9 s̆i ← s̆i/‖s̆i‖∞;

10 end

11 b∗ ← b∗ �
((

Y1
)
�
(
Ŷ1
))

;

12 until a stopping condition is met ;
// � and � represent element-wise multiplication and division,

respectively

effect the determination of the endmember weights by inducing proportion indeter-

minacy [250]. We address this problem by proposing an affine NMF method for

estimating endmembers.

To estimate endmembers from reference images, we first define an affine model

similar to Eq. 2.18 for reference images as

Rk = skẅ
T
k + b̈k1

T + Ek, (2.30)

where ẅk ∈ RQ
≥0 and b̈k ∈ RM

≥0 are the weights and background spectrum for the

nth reference image. Since the reference image contains only one fluorophore, the

weight matrix gives the intensity scaling of sk for each pixel. The inverse problem of

estimating each endmember spectra is equivalent to a blind source separation problem
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solved by

min
sk,ẅk,b̈k

1

2

∥∥Rk − skẅ
T
k − b̈k1

T
∥∥2

F
,

subject to sk � 0, ẅk � 0, b̈k � 0.

(2.31)

Since sn, ẅn, and b̈n are all unknown, the objective function in Eq. 2.31 is nonconvex.

Again, we use a block coordinate descent method to find a solution. The update rules

for the three variables are

sk ← sk �
Rkẅk(

skẅT
k + b̈k1T

)
ẅk

,

ẅk ← ẅk �
RT

k s(
ẅksTk + 1b̈T

k

)
sk
,

b̈k ← b̈k �
Rk1(

skẅT
k + b̈k1T

)
1
,

(2.32)

for k = 1, . . . , K. An advantage of these update rules compared to the mean esti-

mation method is that they operate over the entire reference image Rk. Therefore,

we are not required to threshold foreground from background or define a region of

interest. This is important to emphasize because the estimated spectrum can change

dramatically depending on how the thresholding or regions are defined.

2.4 Comparison of Methods

We assessed the robustness of endmember estimation by affine NMF and arithmetic

mean across seven different reference images: DY-415, DY-490, ATTO 520, ATTO

550, Texas Red-X, ATTO 620, and ATTO 655. Each endmember estimate was com-

pared against a ground truth endmember by measuring the spectral angle.

We evaluated our SSASU method by unmixing a set of ten real-world spectral

images each of which were labeled with seven fluorophores (see Table 2.1) and con-

taminated by background and autofluorescence (see Appendix A for details on sample

preparation and imaging). For comparison, we performed the same evaluation with
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Table 2.1: Oligonucleotide probes and their taxonomic targets

Probe ID Taxon Target Fluorophore

Smit651-DY415-2 Species Streptococcus mitis DY-415
Ssal372-DY490-2 Species Streptococcus salivarius DY-490
Prv392-AT520-2 Genus Prevotella ATTO 520
Vei488-AT550-1 Genus Veillonella ATTO 550
Act118-TRX-1 Genus Actinomyces Texas Red-X
Nei1030-AT620-2 Family Neisseriaceae ATTO 620
Rot491-AT655-2 Genus Rothia ATTO 655

the two most commonly used unmixing methods—PoissonNMF and NLS. The suc-

cess of each method was measured by the Relative Reconstruction Error (RRE) and

Proportion Indeterminacy (PI).

2.4.1 Endmember Estimation

Since poorly estimated endmembers can degrade the overall performance of unmix-

ing, it remains important to evaluate the accuracy of the estimates. Yet, defining

a ground truth set of endmembers is difficult because all images will contain some

level of background fluorescence. Instead, we compare the endmember estimates to

fluorometer data reported in the literature [152]. While the fluorometer data is mea-

sured under different optical and environmental conditions, these data still provide

a useful baseline to check estimates made from reference images. For the following

comparison, endmembers were estimated by the mean method using Eq. 2.17 and

by the affine NMF method using Eq. 2.31. The binary mask required by the mean

method was computed using the the Triangle algorithm because of its robustness to

different illumination conditions [248].

While neither the mean nor the affine NMF estimation methods perfectly matched

the fluorometer data due to differing environmental conditions and the spectral ac-

curacy of the microscope [35], Figure 2.8 shows that affine NMF estimated end-

members are less contaminated by background fluorescence than the mean estimated
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Figure 2.8: Comparison of seven mean and affine NMF estimated endmember spectra
with fluorometer measurements. The shaded regions represent the fluorometer data,
the dotted lines represent the mean estimates, and the dashed lines represent the
affine NMF estimates. The gray vertical lines show the wavelength where dichroic
mirrors blocked the measurement of emitted light (i.e., locations of missing spectral
data).

endmembers. As expected, fluorophores with higher-energy emission spectra are ef-

fected more by background generated from mounting media and other sources. We

evaluated this quantitatively by calculating the spectral angle between each mean

and affine NMF estimated endmember and its corresponding fluorometer-measured

spectrum. The spectral angle, which is related to cosine similarity, is calculated as

θ(s, ŝ) = arccos
(

s·̂s
‖s‖2‖ŝ‖2

)
, where s is the fluorometer spectrum and ŝ is the estimated

spectrum. As reported in Table 2.2, affine NMF estimated endmembers are as good or

better at approximating the true endmember spectra than estimation by arithmetic

mean.
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Table 2.2: Spectral angle between estimated endmembers and their corresponding
fluorometer spectra

Method DY-415 DY-490 ATTO 520 ATTO 550 TRX ATTO 620 ATTO 655

Mean 0.484 0.324 0.455 0.088 0.065 0.203 0.053
Affine NMF 0.421 0.293 0.455 0.087 0.052 0.203 0.024

2.4.2 Spectral Unmixing

The unmixing performance of SSASU, NLS, and PoissonNMF was evaluated on the

basis of two relative error metrics that ranged from zero (better) to one (worse). The

ability to reconstruct the observed signal was determined by the relative reconstruc-

tion error (RRE), and was defined by

RRE(Y, Ŷ) =
‖Y − Ŷ‖F
‖Y‖F

, (2.33)

where Y was the observed image and Ŷ was the reconstructed image. It is worth

noting that the RRE provides a measure of underfitting/overfitting and does not

indicate the quality of a solution. For example, an algorithm can produce a physically

meaningless solution to the unmixing problem with a near-zero RRE by fitting the

noise in addition to the signal. Therefore, we use the RRE in conjunction with a metric

that evaluates the ability of the unmixing algorithm to separate autofluorescence from

the fluorophore endmembers.

Since the fluorophores used to label the test images were known to bind to dis-

tinct bacteria, each pixel in the image contains at most one fluorophore (with the

rare exception of areas where different bacteria overlap). In this case, a poor so-

lution for an observed spectrum will produce positive weights for more than one

endmember. This is a type of overfitting known as proportion indeterminacy (PI).

We measured PI by checking the non-orthogonality of the weight matrix. Since each

pixel contains only one endmember, the property W∗W∗T = D should hold, where

D = diag(‖w∗1‖2
2, . . . , ‖w∗N‖2

2) and w∗n is the nth column of W∗T . From this property,
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we define a measure of PI as

PI(W∗) =
‖D−W∗W∗T‖F

‖D‖F
. (2.34)

Together, RRE and PI indicate the fit and quality of each unmixing solution.

SSASU requires two parameters to be determined prior to unmixing: the sparsity

parameter, γ, and the rank of the autofluorescence endmember matrix, L = rank(S̆).

While these parameters can be tuned on a per-image basis, we kept the parameters

constant across all test images to illustrate the robustness of the algorithm. The

parameters were empirically chosen to be γ = 0.009 and L = 1. PoissonNMF also

requires the user to set a sparsity parameter γP and the autofluorescence endmember

rank KP . These parameters were set empirically to γP = 6 and LP = 1 for all test

images. The fluorophore endmembers, S, used for SSASU, NLS, and PoissonNMF

were set to the values estimated by the affine NMF method. The autofluorescence

endmember for NLS was estimated by affine NMF from a no-probe control sample

(i.e., an unlabeled sample taken from the dorsum of the tongue).

SSASU, NLS, and PoissonNMF were each able to effectively reconstruct the test

images with RREs below 0.14 (see bottom of Figure 2.9). Across all test images, NLS

had the highest RRE. This was expected because NLS has the fewest free variables and

is therefore more limited in its ability to fit the observed data. Although PoissonNMF

had the lowest RRE in most cases, both PoissonNMF and SSASU performed similarly

and neither exhibited signs of overfitting.

Despite having similar RRE across all test images, the quality of the solutions

varied dramatically between the different methods. SSASU outperformed both NLS

and PoissonNMF in all but one test case at reducing proportion indeterminacy (see

top of Figure 2.9). For eight of the ten test images, PoissonNMF was least able to

cleanly separate the fluorophores. When comparing the worst PI for each method,
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Figure 2.9: Comparison of unmixing performance for SSASU, NLS, and PoissonNMF
across ten test images taken from five samples. The proportion indeterminacy (top)
measures the non-orthogonality of the weight matrices and illustrates how well each
method separates the fluorophore endmembers in the presence of autofluorescence.
The relative reconstruction error (bottom) evaluates each method’s ability to recon-
struct the observed spectra image.
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SSASU showed a clear improvement over both NLS and PoissonNMF at 0.55, 0.89,

and 0.90, respectively.

The performance illustrated by these metrics can be observed qualitatively in the

unmixing results for test image E2 (see Figure 2.10). In the results for NLS (Fig-

ure 2.10 A-H), autofluorescence has contaminated nearly all of the unmixed channels.

This same autofluorescence light was efficiently captured in the autofluorescence chan-

nel of the SSASU unmixed image (Figure 2.10 I). We also note that Prevotella (ATTO

520) was not present in image E2, yet the ATTO 520 channel of the NLS unmixed

image contained a significant amount of light (Figure 2.10 D). The composite view of

all unmixed fluorophore channels (i.e., all channels excluding autofluorescence) clearly

illustrates the ability of SSASU to efficiently separate both the autofluorescence and

the fluorophores (Figure 2.10 Q & R).

Samples can contain many different types of autofluorescent molecules, and ex-

actly which autofluorescence endmembers exist in an image is difficult to ascertain in

advance. For applications using NLS, it is common to estimate the autofluorescence

endmember from a no-probe control. Figure 2.11 shows how the autofluorescence

endmember estimated from the no-probe control image compared to those learned by

SSASU. It is clear that the no-probe control endmember poorly characterized the aut-

ofluorescence encountered in the test images. The ability to learn the autofluorescence

spectrum directly from an image allows SSASU to adapt to highly varied samples.

This flexibility lets SSASU fit the observed data with a sparse set of endmember

weight, thereby reducing proportion indeterminacy as compared to NLS.
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Figure 2.10: Montage of unmixed images for NLS (top half) and SSASU (bottom
half). Panels A-P show the unmixed channels for autofluorescence (A, I); S. mi-
tis/DY-415 (B, J); S. salivarius/DY-490 (C, K); Prevotella/ATTO 520 (D, L); Veil-
lonella/ATTO 550 (E, M); Actinomyces/Texas Red-X (F, N); Neisseriaceae/ATTO
620 (G, O); and Rothia/ATTO 655 (H, P). A larger composite view of the non-
autofluorescence unmixed channels is shown for NLS in panel Q and for SSASU in
panel R. The scale bar in panel R indicates 10 µm.



45

0.00

0.25

0.50

0.75

1.00

400 500 600 700

Wavelength (nm)

In
te
n
si
ty

A1

A2

B1

B2

C1

C2

D1

D2

E1

E2

Figure 2.11: Comparison of the autofluorescence endmember estimated from the
no-probe control reference image (gray region) to the autofluorescence endmembers
learned by SSASU.

2.5 Discussion

Spectral microscopy and unmixing make it possible to visualize biological samples

labeled with a large set of fluorophores. However, the choice of unmixing algorithm

is important for achieving the desired results. In this chapter, we proposed and eval-

uated a semi-blind sparse affine spectral unmixing (SSASU) algorithm aimed at sep-

arating fluorescence endmembers in the presence of autofluorescence and background

fluorescence. In all but one test case, SSASU was able to outperform both NLS and

PoissonNMF in mitigating autofluorescence. While our method is more flexible than

NLS, we note that, like other NMF methods, SSASU is more computationally expen-

sive and does not guarantee a unique solution. Therefore, we recommend SSASU for

situations where spectral micrographs are contaminated with one or many sources of

autofluorescence.

In addition, we described an affine NMF method for estimating endmembers from
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reference images. We showed that affine NMF estimation was as good or better than

the mean estimation method across all test cases. In addition, affine NMF does not

depend on a thresholding of foreground and background. This makes affine NMF

more robust to images with uneven illumination profiles.

There are several clear extensions of this work. First, formulating a version of

SSASU for tensors would allow for the unmixing of spectral images that use se-

quential excitation. Second, allowing minor adjustments to fluorophore endmember

spectra on an image-by-image basis would allow the algorithm to accommodate for

endmember variability (i.e., changes in the endmember spectra as a result of the

micro-environment).
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Chapter 3

Volumetric Data

By the end of the nineteenth century, industrialized printing had made scientific

textbooks and the illuminating illustrations they contained accessible to the masses.

Across the emerging disciplines, scientific illustrations quickly became the standard for

detailing experiments, summarizing results, and relaying abstract concepts. Philoso-

pher Bruno Latour highlighted the enduring importance of two-dimensional images in

his 1986 essay “Visualization and Cognition: Thinking with Eyes and Hands” when

he wrote:

Scientists start seeing something once they stop looking at nature and

look exclusively and obsessively at prints and flat inscriptions. In the

debates around perception, what is always forgotten is this simple drift

from watching confusing three-dimensional objects, to inspecting two-

dimensional images which have been made less confusing. [119]

Latour posits that the prevalence of scientific illustration stems, in part, from the mo-

bility of flat media. Figures on paper can be easily shared, stored, and reproduced;

whereas, three-dimensional objects are much more cumbersome. In the digital age,

however, virtual reality headsets, 3D printers, and three-dimensional rendering soft-

ware have greatly simplified the sharing of three-dimensional data. These physical
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and virtual models have become indispensable tools for gaining a multilevel under-

standing of specimen. Yet, even during the rise of flat drawings, the importance of

three-dimensional models in providing a complete and tangible representation of a

subject was recognized by scientists such as embryologist and inventor Wilhelm His

Sr.

Embryology, the study of early development, flourished during the last half of

the nineteenth century as scientists raced to define a theory of embryogenesis. At

the time, scientists would carefully dissect embryos at different developmental stages

and illustrate their findings. To facilitate this process, His developed one of the

first microtomes in 1870. The microtome replaced hand dissection by providing a

mechanism for generating repeatable serial sections through a specimen. These serial

sections revealed important internal structures that would help explain embryonic

development; however, many scientists found it difficult to relate the two-dimensional

sections to the embryo’s three-dimensional form. Controversial scientist Ernst Haeckel

lamented that “the next generation of ‘scientific zoologists’ will know only cross-

sections and stained tissues, but neither whole animals nor their mode of life” [83,

93]. To avoid the problem described by Haeckel, His argued that the only way to

simultaneously understand the microscopic internal and macroscopic external features

of an embryo was to physically reconstruct wax models of specimen from projections

of serial sections. In His’ 1870 “Description of a Microtome”, he wrote:

Gaining plastic views through the synthetic combination of sectional im-

ages is undoubtedly a long and laborious detour, but it cannot be avoided

whenever the object is too fine to reveal its relief to us directly. Anyone

who takes the trouble to give body to their views in a malleable material,

such as in wax or in clay, will soon discover how important the uninter-

ruptedness of the sections is for such reconstructions of plastic views and



49

sectional images.1 [92, 93]

What His proclaimed in the late nineteenth century has now been shown experi-

mentally. Humans are particularly bad at mentally reconstructing three-dimensional

objects from two-dimensional cross-sections. This is even true when the object’s

structure is known in advanced [64, 240].

Just as an engineer might learn how an unknown system works by taking it apart

and putting it back together, His felt that a complete understanding of an embryo

could be gained by precisely breaking it down with a microtome and carefully recon-

structing the serial sections in a malleable material. This type of slice-based volu-

metric modeling has become the basis of many areas of modern research. Volumetric

data made from serial slices are found across biology [27], medicine [59], geology [107],

material science [249], and manufacturing [136].

In this chapter, we will explore slice-based methods for acquiring volumetric data,

the limitations and problems these three-dimensional methods present, and algo-

rithms used to reconstruct three–dimensional models from consecutive volume slices.

We will start by examining different types of three-dimensional imaging systems and

their use in microscopy. Each method has its own set of limitations that impede

and restrict our ability to reconstruct the original three-dimensional form. We then

outline existing methods for assembling volumetric data from serial images. Finally,

we propose and evaluate a new method aimed at reconstructing large-scale histology

samples.

1Original text: “Die Gewinnung plastischer Anschauungen durch synthetische Combination von
Durchschnittsbildern ist unstreitig ein weiter und mühsamer Umweg, aber er ist nicht zu umgehen
überall da, wo die Objecte zu fein sind, um uns ihr Relief unmittelbar zu enthüllen. Wie wichtig aber
für solche Reconstructionen plastischer Anschauungen und Durchschnittsbilder die Lückenlosigkeit
der Schnitte seien, das wird jeder bald erfahren, der sich die Mhe nimmt, seinen Anschauungen in
einem bildsamen Material in Wachs oder in Thon Körper zu geben” [92].
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3.1 Volumetric Imaging

There are many different types of three-dimensional imaging methods, such as spec-

tral (x, y, λ), video (x, y, t), and multimodal (x, y, m) to name a few; however,

the term three-dimensional imaging is more commonly used in reference to meth-

ods that capture information about the x, y, and z spatial dimensions. Of the many

imaging modalities, three-dimensional imaging is arguably the most familiar and com-

prehensible to humans. We, like many predatory animals, rely on binocular vision2

for stereopsis—the perception of depth. Our brains infer the depth of an object by

comparing the views provided by our left and right eyes. In general, objects with a

greater horizontal shift, or disparity, between the two views are closer than objects

with less horizontal shift.

Binocular vision is one example of a class of three-dimensional imaging called range

imaging. Some other examples of range imaging techniques include: time-of-flight,

structured illumination, lidar, structure from motion, lightfield, and photogrammetry

[195]. Each of these range imaging methods create a depth map or point cloud in

which every point in a scene is associated with a distance relative to the observer.

Range imaging has a variety of uses in medicine, quality control, forensics, game

development, art, and cultural heritage [57, 195]. Although range imaging provides

three-dimensional information, the resulting depth maps only relates to the surface

features of the objects in the scene. These method are unable to measure information

about interior details or occluded regions (see Figure 3.1).

Depth maps and point clouds are useful in describing external three-dimensional

structures, but they do not allow for inspection of important internal features. To

gain a holistic understanding of an entire three-dimensional volume, we must turn to a

different class of imaging called volumetric imaging. Instead of producing depth maps,

2Binocular vision, as opposed to monocular vision, refers to the observation of a scene by two
sources.
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A.

B.

C.

Figure 3.1: Three-dimensional photogrammetry range imaging. A series of two-
dimensional images is acquired from different angles around the object of interest
(A). A three-dimensional point cloud is generated by determining the spatial cor-
respondence between matching feature points within the images. The color data
from the two-dimensional images are then mapped onto the surfaces defined by the
point cloud (B). Since range imaging only measures the light reflecting off an object,
three-dimensional information cannot be determined for any occluded regions in the
camera views. This missing data translates into holes and empty regions in the re-
sulting model (C). The x, y, and z axes are indicated in panels B and C by the red,
green, and blue arrows, respectively.
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volumetric imaging measures intensity information for every voxel3 within a volume.

If the object of interest is partially transparent to the portion of the electromagen-

tic spectrum used for imaging, then volumetric imaging can be performed in toto4.

Examples of in toto volumetric imaging methods include: confocal microscopy, light-

sheet microscopy, magnetic resonance imaging (MRI), positron emission tomography

(PET), and other computed tomography modalities [12, 104, 215]. These nonde-

structive volumetric methods work by imaging a series of contiguous two-dimensional

virtual slices through the specimen. In the case of confocal microscopy, a specialized

aperture blocks any light originating from outside the plane of focus. As such, a

three-dimensional volume can be generated by moving the focal plane through the z

dimension and acquiring a two-dimensional (x, y) image at each step (see Figure 3.2).

These methods have the advantage of imaging the entire three-dimensional volume

in-place; however, they require the specimen to be translucent.

In toto volumetric imaging is ineffective when the object is opaque to the electro-

magnetic wavelengths used for imaging. In these situations, we must return to the

methods pioneered by Wilhelm His Sr. and the anatomists of the nineteenth cen-

tury. His proposed that the entire volume be examined by: (1) sectioning a specimen

into sequential thin slices using a microtome, (2) transferring the form of each sec-

tion onto a workable medium, and (3) reconstructing the three-dimensional volume

from the series of media. As described by Born [20], wax was the medium of choice

for late nineteenth- and early twentieth-century anatomists. Each serial section was

magnified and projected onto a thin wax plate, and the wax was trimmed to match

the contours and internal details of each section. Subsequently, the set of trimmed

wax plates were fused together to form a complete three-dimensional model. Today,

in sectio5 imaging remains an important component of modern research where it is

3Voxel refers to an element in a volume (i.e., vo·lume el ·ement), and it is the three-dimensional
equivalent of a pixel (i.e., pi ·cture el ·ement).

4In toto means as a whole.
5In sectio means in sections.
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A.

B.

C.

D.

Figure 3.2: Three-dimensional confocal microscopy volumetric imaging. A confocal
microscope is used to measure a series of two-dimensional optical sections through
a transparent embryo containing fluorescent labels (A-C). The serial sections are
reconstructed and rendered as a three-dimensional model of the original embryo (D).
Each voxel in the volumetric image (D) contains intensity information related to its
specific (x, y, z) location.
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most commonly used in medicine and histology [217]. Although we now use digi-

tal images instead of wax, the principles remain the same. Serial sections are cut

on microtomes, digitally imaged, and virtually reconstructed to recreate the original

three-dimensional structure.

As an destructive method, serial sectioning and reconstruction has more points of

failure than in toto volumetric imaging. Specifically, in sectio imaging suffers from

artifacts at both the sectioning and imaging steps (see Pichat et al. [173] and references

therein). In order to safely section a specimen, it must first be fixed and embedded

in a rigid medium (e.g., paraffin wax or optimal cutting temperature compound).

Processing tissue for fixation and embedding can cause structures in the tissue to

deform or degrade [217]. During cutting, the tissue sections are compressed by the

knife and can be torn or fractured. Folds and wrinkles can form when placing the

sections onto glass slides, and de-embedding can introduce contaminates such as dust

and dirt. Vignetting, out-of-focus regions, and uneven illumination [125] are a few

examples of artifacts that can appear during imaging. As part of the reconstruction

process, these artifacts must be taken into account and corrected.

In his 1951 paper “Section Compression Photographically Rectified,” Osborne

Heard noted:

[I]t appears that section deformation is inherent and inescapable. There-

fore when the exact form of the section is critically important, as for

instance in the precise registration required in modelling embryos from

serial sections, deformation must either be accepted as a necessary evil,

or ways and means must be found to correct it. [88]

Heard went on to describe the first optical method for correcting compression artifacts

induced by sectioning. The method used a pair of mirrors to apply a transformation

to the projected image of a section. By aligning the projections of each pair of

sections, it was possible to remove compression artifacts and sequentially reconstruct
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the entire three-dimensional volume. What is critical to note is that a successful three-

dimensional reconstruction relied on the accurate registration of each sequential pair

of sections. This workflow remains the basis of modern reconstruction methods for

sets of digital images.

3.2 Registration

Image registration is the process of aligning a pair of images to a common coordinate

system. The image pair may be multiple views of the same scene (e.g., photogram-

metry [213]), the same view at multiple time points (e.g., image-guided surgery [5]),

the same view using multiple sensor types (e.g., multimodal image fusion [53]), or

multiple views of a related scene (e.g., reconstruction of serial sections [173]). In

more formal terms, the objective of image registration is to find a transformation ϕ

that maps a target image T ∈ RQy×Qx to a reference image R ∈ RPy×Px such that

some distance metric is minimized, where Q = QyQx is the number of pixels in the

target image and P = PyPx is the number of pixels in the reference image. The

transformation ϕ : ΩR → ΩT is a mapping of points from the reference image domain

ΩR ⊂ R2 to points in the target image domain ΩT ⊂ R2.

Registration problems are typically categorized as being either intensity-based or

feature-based depending on the type of distance metric they employ [166, 173, 207,

230, 253]. Intensity-based distance metrics compare the grayscale intensity values of

the images or regions within the images; whereas, feature-based metrics evaluate the

distance between a set of corresponding image feature points. Since there are many

fewer feature points than grayscale values in an image, each iteration of a feature-

based method is often much faster to compute than an iteration of an intensity-based

method. For reasonably-sized images, however, intensity-based methods tend to have

greater accuracy.
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3.2.1 Intensity-Based Registration

The reference image R and target image T are represented as sets of discrete grayscale

values corresponding to grid points along the vertical and horizontal image axes. In

order to evaluate the intensity at an off-grid coordinate point, we require an inter-

polation function (e.g., linear, polynomial, or spline) that models the properties of

the underlying image scene. Let IR : ΩR → R be an interpolation function that

produces a grayscale value for every coordinate point in the reference image domain.

Similarly, let IT : ΩT → R be an interpolation function for the target image. With

these interpolators, we can write the intensity-based registration problem as

min
ϕ

∫
ΩR

DI

(
IR(x), IT(ϕ(x))

)
dx, subject to ϕ ∈M, (3.1)

where x ∈ ΩR is a coordinate point, DI : R × R → R is a distance function, and

M is a set of admissible transformations (which is often restricted to smooth and

invertible functions). Registration is an ill-posed problem that is unlikely to have a

unique solution in realistic scenarios [60]. As such, it is necessary to restrict the set of

feasible transformations to M. Also, note that the transformed target image, denoted

Tϕ ∈ RPy×Px , can be generated by evaluating IT(ϕ(x)) for all of the grid points in the

reference image. Therefore, Eq. 3.1 can be interpreted as finding the transformation

that minimizes the intensity differences between R and Tϕ.

There are many distance functions that can be used in the intensity-based regis-

tration framework, and the appropriate metric largely depends on the types of images

being registered. For instance, a direct intensity comparison, such as the squared dif-

ference DI,SD(r, t) = 1
2
(r − t)2, can be used for unimodal images because they have

similar structures and intensity profiles. Whereas, indirect intensity gradient compar-

isons, such as mutual information [175], are best for multimodal images with different

intensity profiles. By letting PrR and PrT be the marginal probability distributions
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for the reference and target image intensities, respectively, and letting PrR,T be the

joint probability distribution of combined intensities, the mutual information can be

written as

DI,MI(r, t) = Pr
R,T

(r, t) log
PrR,T(r, t)

PrR(r) PrT(t)
. (3.2)

In this context, the joint and marginal probability distributions are the combined and

individual histograms of image intensities, respectively. Other popular distance met-

rics include cross-correlation, normalized cross-correlation, and normalized gradient

field [158].

3.2.2 Feature-Based Registration

Instead of using the grayscale intensity values to determine the alignment of two

images, feature-based methods use the distance between a set of corresponding feature

points. A feature point, or landmark, is an automatically or manually selected location

of interest (e.g., corner, edge, intersection, curve apex, region, or fiducial marker)

that exists in both the reference and target images. Although manually selected

feature points are still common, there are now a variety of automatic feature detectors

available [132, 194, 219] (see Table 3.1). Automatic feature detectors use a three step

approach to finding feature points: (1) candidate feature points are identified in the

reference image, (2) candidate feature points are identified in the target image, and

(3) corresponding feature points are determined by matching the candidate reference

and target feature points. The matching process typically compares candidate feature

points based on the properties of their local image regions.

Let’s denote the indices for the set of k corresponding feature points as K =

{1, . . . , k} and the two feature point functions as FR and FT. The functions FR :

K → ΩR and FT : K → ΩT map an index to the corresponding feature point

coordinates in the reference and target image domains, respectively. As such, we can
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Table 3.1: Common feature detectors

Detector Feature Citation

Harris corner Harris & Stephens [87]
MinEigen corner Shi & Tomasi [201]
Features from Accelerated Segment Test
(FAST)

corner Rosten & Drummond [187]

Binary Robust Invariant Scalable Keypoints
(BRISK)

corner Leutenegger et al. [127]

Scale Invariant Feature Transform (SIFT) blob Lowe [141]
Speeded-Up Robust Features (SURF) blob Bay et al. [15]
Oriented FAST and Rotated BRIEF (ORB) blob Rublee et al. [190]
Accelerated-KAZE (AKAZE) blob Alcantarilla et al. [6]
Fast Retina Keypoint (FREAK) blob Alahi et al. [4]
Learned Invariant Feature Transform
(LIFT)

blob Yi et al. [245]

Maximally Stable Extremal Regions
(MSER)

region Matas et al. [150]

formulate the feature-based registration problem as

min
ϕ

∫
K
DF

(
ϕ(FR(y)), FT(y)

)
dy, subject to ϕ ∈M, (3.3)

where y ∈ K is a feature point index and DF is a distance function. A wide variety of

distance metrics can be used in Eq. 3.3, but a common choice is the squared Euclidean

distance, defined as DF,E(r, t) = 1
2
‖r− t‖2

2. For the parametric transformations dis-

cussed in the next section, Eq. 3.3 has an analytical solution [11, 226, 203]; however,

the existence of incorrect correspondence often requires a numerical solution. In prac-

tice, most feature-based registration problems rely on the iterative Random Sample

Consensus (RANSAC) method to find the best transformation [61].

3.2.3 Parametric Transformation

We have seen that the registration problem can be formulated using an intensity-based

or feature-based framework; however, we have not yet examined the transformation
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ϕ. Regardless of whether we use an intensity-based or feature-based approach, Mod-

ersitzki [158] points out that ϕ can be viewed as being either parametric or nonpara-

metric. In parametric registration, ϕ is parameterized by the vector a = (a1, . . . , ad)
T .

Since a has d elements, the problem is said to have d degrees of freedom. While more

degrees of freedom generally allows for a better alignment between the transformed

target image and the reference image, it comes at the cost of greater computational

complexity.

The affine transform is perhaps the most commonly used transformation in pa-

rameterized registration problems. In two-dimensions, affine transforms have d = 6

degrees of freedom which allows for rotation, dilation (i.e., uniform scaling), transvec-

tion (i.e., shearing), translation, or any combination of these actions6. The typical

form of an affine transformation is

ϕ(a,x) =

[
a1 a3

a2 a4

] [
x1

x2

]
+

[
a5

a6

]
= Ax + b,

(3.4)

where b performs the translation and A performs the rotation, dilation, and transvec-

tion. Note that all linear transforms and their combinations can be written as sim-

plified versions of the affine transform. Table 3.2 includes a list of a few examples

of affine transforms—the most common being the isometry (i.e., rigid) and similarity

transforms.

Affine transforms are said to have a global property because all coordinate points

undergo the same transformation defined by A and b. However, not all parametric

models are global. If more degrees of freedom are required for accurate registration, ϕ

can be formulated such that different transformations are applied to coordinate points

from different regions. In this scheme, the function ϕ is referred to as a deformation

6Affine transforms also allow for reflection; however, this property is often not necessary or desired
in registration problems.
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Table 3.2: Common types of affine transformations

d ϕ(a,x) Action

Rotation 1

[
cos(a1) sin(a1)
− sin(a1) cos(a1)

] [
x1

x2

]
rotate

Dilation
1

[
a1 0
0 a1

] [
x1

x2

]
scale

(scaling)

Transvection
2

[
1 a2

a1 1

] [
x1

x2

]
shear

(shearing)

Translation 2

[
x1

x2

]
+

[
a1

a2

]
translate

Isometry
3

[
cos(a1) sin(a1)
− sin(a1) cos(a1)

] [
x1

x2

]
+

[
a2

a3

]
rotate, translate

(rigid)

Similarity 4 a1

[
cos(a2) sin(a2)
− sin(a2) cos(a2)

] [
x1

x2

]
+

[
a3

a4

]
scale, rotate, translate

and it works by applying a displacement to every coordinate point. An example of a

local parametric model is the basis spline, or B-spline, registration [191]. The concept

behind B-spline registration is to locally deform a target image using a mesh of m×n

control points represented by the parameter vector a. Since each control point has

a vertical and horizontal component, B-spline deformation has d = 2mn degrees of

freedom. The B-spline deformation can be written as

ϕ(a,x) = x +
m∑
i=1

n∑
j=1

Bi,j(x)

[
ai+m(j−1)

amn+i+m(j−1)

]
, (3.5)

where Bi,j denotes the Cox-de Boor recursive spline function (typically of degree four)

[40, 45]. The “locality” of the deformation is dependent on the density of the mesh.

As more control points are added, smaller deformations are possible.
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3.2.4 Nonparametric Transformation

Nonparametric image registration problems, occasionally called nonlinear registra-

tion, generally use a transformation of the form

ϕ(x) = x + u(x), (3.6)

where u : ΩR → R2 is a displacement function. Rather than optimizing over a set

of parameters, the goal of nonparametric schemes is to find a separate displacement

vector for every point in ΩR. Since the nonparametric registration problem has as

many degrees of freedom as there are coordinate points, the constraints in Eq. 3.1

and Eq. 3.3 are often replaced by regularizers to ensure a reasonable deformation

ϕ. To avoid deformation artifacts (e.g., holes, folds, kinks, etc.), the nonparametric

registration problem typically follows some physically motivated model such as elastic

body, viscous fluid flow, diffusion, among others [158, 207]. Even still, great care must

be taken when using nonparametric registration as the target image can easily become

over-deformed.

3.3 Reconstruction

Just as Heard used manual registration to reconstruct three-dimensional wax models

from serial sections, today we use the numerical registration methods discussed in

the previous section to reconstruct three-dimensional digital models from a set of

digital images (see Ware & LoPresti [234] for a historical perspective on reconstruc-

tion). Modern automated microtomes, such as the Automatic Tape Collection Ultra-

Microtome (ATUM) invented by Bullen [23], have removed many of the large-scale

slice-to-slice inconsistencies; however, registration is still necessary to remove fine-

scale cutting, mounting, staining, and imaging artifacts for precise three-dimensional
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models. The question of how best to extend pairwise registration methods to the re-

construction of serial sections remains an open and active area of research [157, 173].

As we have discussed, registration aligns a target image to a reference image.

When extending registration to three-dimensional reconstruction, we must determine

which serial section will define the reference coordinate system. An obvious option is

to adopt the framework described by Levinthal & Ware [129] whereby the first serial

section is oriented as desired and each subsequent section is registered to the previ-

ously registered section. In other words, reconstruction is performed by registering

all serial sections to the coordinate system defined by the first section. The primary

disadvantage of this approach is the propagation and accumulation of registration

error. Any errors made in registering the first sections will be carried through to all

remaining sections. Pichat et al. [173] points out that the propagation of error can

be minimized by registering each section to the center of the stack of serial sections.

In this way, any registration errors will only affect half of the serial sections. There

also exist automated methods for choosing the optimal reference section from a stack

[13]. Alternatively, Pichat et al. [174] proposed a graph-based approach to reduce

error propagation by finding the composition of transformations with the least error.

Unfortunately, this method requires that each section is registered not just to its

direct neighbors but also to second and third neighbors.

The amount of registration error depends largely on the registration framework

(intensity-based or feature-based) and the transformation. Although transformations

with many degrees of freedom are better able to align two images, they are susceptible

to the banana reconstruction problem (see Cooper et al. [37], Malandain et al. [146]

and references therein). The banana reconstruction problem refers to the loss of dis-

placement information as a result of in sectio imaging that can cause a banana-shaped

object to be reconstructed into a cylinder. Variations of the banana reconstruction

problem have been known to scientists for nearly a century. In 1951, Heard wrote:
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Unless there is an exact record of the dimensions of the block or a precise

measurement made of the mounted sections before the paraffin is removed,

there is no way to check the amount of compression and therefore no means

of knowing the size to which the image should he rectified. [88]

The solution proposed by Heard [88] was to produce a ground truth displacement

image for every section by photographing the sample surface before each cut of the

microtome. This process allowed Heard to register each serial section to its ground

truth and maintain the correct displacement relative to the sample’s medial axis.

Similar methods acquire ground truth volumes using in toto volumetric imaging [218].

Although they do not provide ground truth information, fiducial marks are a common

method for avoiding the banana reconstruction problem. Fiducial marks, described

as early as 1900 [238], are corresponding points that exist in all serial sections and can

be used to reconstruct the three-dimensional volume without shifts along the sample’s

medial axis. Lastly, Colchester et al. [34] showed that registering the bottom surface

of one section to the top surface of the next section provides enough correspondence to

avoid reconstruction artifacts. Unfortunately, this method requires twice the amount

of images.

3.3.1 Extensions to Gigapixel Volumetric Data

The introduction of high-throughput whole slide imaging (WSI) systems have ex-

panded the use of serial sections in histology and pathology [22, 57, 58, 71, 151, 182].

WSI microscopes are automated platforms for generating high-resolution images of

histology sections by stitching together many smaller high-magnification images (e.g.,

40–60×). A single section can range from tens to hundreds of millimeters in length

and width. This means that a WSI system using a 0.25 µm/pixel resolution would gen-

erate an image with up to 150 gigapixels. As such, each serial section image can easily

occupy tens of gigabytes of storage space. Images from WSI microscopes typically
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utilize a special multi-resolution file format (e.g., SVS, VMS, NDPI, SCN, MRXS,

etc.) in order to handle the large storage size and facilitate loading and viewing.

Three-dimensional reconstruction of gigapixel serial sections is a difficult prob-

lem because their size precludes any method that requires an image to be entirely

loaded into memory [10, 33, 168, 174, 197, 242]. Although some registration meth-

ods have been developed for gigapixel images [38, 140, 182, 193, 199, 206], there

are no online methods for dynamically reconstructing subvolumes of interest from

serial gigapixel images. To address this, we describe a multiresolution scaling and

propagation method for serial image registration.

Our method was inspired by the observation that clinicians are often only inter-

ested in small subvolumes of data that exhibit disease hallmarks. When using existing

methods, accessing such subvolumes required the prior registration of the entire series

of gigapixel images. In addition to being computationally expensive, some methods

may fail if the image dimensions are too large. Therefore, our method computes the

registration at a manageable resolution during an offline stage and then performs a

scaling and propagation to extract subvolumes of interest on-the-fly for any desired

resolution. In this way, we minimize the computational burden and focus the analysis

on the tissue subvolumes of interest to domain experts.

3.4 Subvolume Registration from Gigapixel Serial

Sections

Reconstruction from gigapixel serial sections is an out-of-core problem that is typ-

ically approached by performing the registration subproblem in pieces. However,

registration at the native gigapixel resolution can be time consuming, and the fu-

sion of piecewise transformations can be complex. For many clinical applications, we

note that registration at the native resolution is often not necessary. Furthermore,
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Figure 3.3: An overview of the two-stage subvolume reconstruction method consisting
of offline registration at low resolution (left panel) and online composition of scaled
transforms (right panel).

clinicians typically only require access to small subvolumes for closer examination.

Therefore, we present a two-stage registration method that (1) performs pairwise

registration at a low resolution and (2) reconstructs the requested subvolume by first

scaling all transformations to the appropriate resolution and propagating reference

coordinate points by composition of the pairwise transformations (see Figure 3.3). In

this section, we describe the methods used for each stage and evaluate the perfor-

mance.

3.4.1 Registration

Clinical tissue samples are typically collected, processed, and serially sectioned for

diagnostics purposes, and the histological procedures used are optimized for through-

put rather than three-dimensional reconstruction. In other words, the orientation and

consistency between serial sections is not preserved or recorded as with automated

microtomy or blockface imaging. Nevertheless, pathologists and clinicians can greatly

benefit from having access to accurately reconstructed subvolumes. In order to prop-

erly align such sections, we employ a three-step registration including (1) principal

axis alignment, (2) global feature-based registration, and (3) local B-spline registra-

tion (see left panel of Figure 3.3). Registration is computed between each sequential
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pair of grayscale images within the stack. The resolution used for registration is cho-

sen based on the scale of tissue features and the memory limitations of the system.

In general, image downsampling ranges from 1/64–1/256× the native resolution.

Alignment

To correct for the random orientation of tissue sections across sequential images,

each image pair is roughly aligned by their principal axes [8]. Conceptually, the

principal axes of a tissue section represent the major and minor axes of the ellipse

that has been fitted to the tissue contours, and the origin of the axes is the centroid

of the tissue contours. The polylines defining the tissue contours are determined by

first isolating the primary tissue components with an adaptive global threshold. As

histology sections typically have high contrast, simple Otsu thresholding is sufficient

for most situations. The p points defining the contour polylines are denoted by the set

C = {c1, . . . , cp}, where ci = (ci,1, ci,2)T is a single polyline point. We next determine

the origin of the section by computing the centroid of the tissue contours, denoted as

µ = 1
p

∑p
i=1 ci.

The problem of finding the principal axes is equivalent to the problem of fitting an

ellipse to the tissue contours C which can be accomplished by matrix diagonalization

of the contour scatter matrix. The scatter matrix, denoted S ∈ R2×2, is determined

by S =
∑p

i=1(ci − µ)(ci − µ)T . Cholesky factorization of S gives the eigenvectors

V = (v1,v2), where v1,v2 ∈ R2. In this context, the eigenvectors v1 and v2 represent

the major and minor axes of the fitted ellipse, respectively.

The process described above is performed separately for the reference and target

images to give the reference axes VR, target axes VT, reference origin µR, and

target origin µT. Since the axes may be 180° opposed, the rotation matrix is either

Π+ = VRVT
T or Π− = −VRVT

T. We take the rotation direction associated with the

smaller difference between the reference image and the aligned target image defined
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as

ΠP = arg min
Π∈{Π+,Π−}

∑
ΩR

(
IR(x)− IT(Πx + (µR −ΠµT))

)2
. (3.7)

Recall that IR : ΩR → R and IT : ΩT → R are interpolation functions for the

reference and target images, respectively. Since principal axis alignment consists of a

rotation and translation, it can be thought of as a parameterized rigid transformation

defined as

ϕP(ΠP,µP,x) = ΠPx + τP

=

[
ΠP τP

0T 1

]x1

x2

1


= Px̂

(3.8)

where τP = µR − ΠPµT and 0 is a vector of zeros. The resulting principal axis

transformed target image TϕP
is generated by evaluating IT(Px̂) for all grid points

in ΩR (see Figure 3.4). An important limitation of principal axis alignment is that it

fails when contours have rotational symmetry. Since the fitted ellipse of a rotationally

symmetric object is a circle, the major and minor axes cannot be uniquely determined.

Global Registration

The principal axis rigid transformation roughly aligns each serial section to a defined

reference section. However, an additional global registration is required to fine tune

the rotation and translation parameters as well as correct for scaling artifacts resulting

from slight magnification differences. In general, adding a degree of freedom for

scaling is not advised for most tissue samples because it can result in the sample being

reconstructed into a cylinder. However, sections containing multiple tissue pieces are

less susceptible to this problem because any scaling also increases the relative distance

between each tissue piece.
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A. B. C.

D. E. F. G.

Figure 3.4: Principal axis alignment of a reference image (A-C) and a target image
(D-F) using tissue contours. The reference (A) and target (D) images are randomly
oriented as a result of sectioning. The origins and principal axes of the tissue contours
are determined for the reference image (B) and target image (E). Aligning the origins
and principal axis of the target image to the reference image (C) produces the aligned
target image (F). The quality of principal axis alignment (G) is shown as the absolute
difference between the reference (C) and aligned target (F) images.

For global similarity transformation, we detect prominent tissue components in the

aligned serial sections using a features detector. Since tissue samples do not contain

hard lines or large contiguous regions, the SURF blob detector was chosen over the

alternative corner or region detectors. The SURF detector uses three filter octaves and

four octave layers; however, the filter sizes should be adjusted to fit the feature sizes

at the downsampled resolution. Next, correspondence between reference and target

landmarks are determined by matching local descriptors. With the corresponding

features, we determine the global similarity transform using a generalized RANSAC

method called Maximum Likelihood Estimation Sample Consensus (MLESAC) [221].

The global transform is written as

ϕG(s,ΠG, τG,x) = sΠGx + τG

=

[
sΠG τG

0T 1

]x1

x2

1


= Gx̂,

(3.9)
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A. B. C.

D. E. F. G.

Figure 3.5: Global registration of a reference image (A-C) and a aligned target image
(D-F) using SURF features and a similarity transform. The target image (D) has
been roughly aligned to the reference image (A). Corresponding SURF features are
identified between the reference (B) and target (E) images. MLESAC is used to find
the similarity transform that registers the target image (F) to the reference image (C).
The quality of global registration (G) is shown as the absolute difference between the
reference (C) and transformed target (F) images.

where s, ΠG, and τG are the global scaling parameter, rotation matrix, and displace-

ment vector, respectively. The pairwise global transforms are used to register each

aligned section to a given reference image (see Figure 3.5).

Local Deformation

Global registration is followed by a nonrigid registration to compensate for local tis-

sue deformations. The local deformation is computed using the B-spline transform

described in Eq 3.5 with a 32× 32 grid of control points. The optimal local deforma-

tion is found by simultaneously maximizing the normalized mutual information and

minimizing transformation energy (see Figure 3.6) [14, 191]. We denote the local de-

formation as the displacement function ϕL : R3 → R3 that maps a globally registered

reference coordinate to a local deformed target coordinate. Care must be taken when

using a free form deformation because over-deformation artifacts can arise. However,

over-deformation is expected to be minimal at downsampled resolutions.
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A. B. C.

D. E. F. G.

Figure 3.6: Local registration of a reference image (A-C) and a globally registered
target image (D-F) using a B-spline transform. The target image (D) has been glob-
ally registered to the reference image (A). A B-spline mesh (B) is used to determine
the deformation between the reference image and the target image (E). The B-spline
deformation is used to register the target image (F) to the reference image (C). The
quality of local registration (G) is shown as the absolute difference between the ref-
erence (C) and deformed target (F) images.

3.4.2 Reconstruction by Composition of Scaled Transforms

The offline three-step registration process generates three sets of pairwise registra-

tions. Since each subsequent registration step was performed on the result of the

previous step, the composition of transforms necessary for final reconstruction is not

obvious. In order to extract registered subvolumes of interest, we must first scale

each pairwise transformation to the appropriate resolution. To this point, the trans-

formations were determined based on a defined grid size. Higher resolution images

are produced by using points on a finer grid.

To simplify the problem, we combine the rigid transformation from alignment

with the similarity transformation from feature-based registration. Since both steps

are formulated as affine transformations, we can denote the combined global trans-
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formation as

ϕG,P(G,P,x) =

[
sΠG τG

0T 1

] [
ΠP τP

0T 1

]x1

x2

1


= GPx̂.

(3.10)

Since the displacement terms of G and P are not scale-invariant, they must be scaled

appropriately for every desired resolution. Let α denote the magnification factor

between resolutions. We can construct the scaled combined global transformation

and its inverse as

Ḡ =

[
sΠG,P ατG,P

0 1

]
Ḡ−1 =

[
sΠT

G,P −αsΠT
G,PτG,P

0 1

] (3.11)

where ΠG,P = ΠGΠP and τG,P = τG + τP. Note that when α = 1, Ḡ = GP. For

convenience, we denote the scalable global transformation as ϕḠ(α,G,P,x) = Ḡx̂,

where x̂ = (x1, x2, 1)T .

With the scaled transformations defined, we now turn to the problem of mapping

points in the reference domain to points in any target domain using a cascade of

pairwise transformations. To facilitate discussion, let us denote the ith original image,

globally registered image, and locally deformed image as Ii, Īi, and Ĩi, respectively.

Assuming that there are N serial images in the imaging volume, we set image i∗ as

the reference image for the whole volume, where i∗ =
⌊
N
2

⌋
. We can therefore denote

ϕḠ,i and ϕ−1
Ḡ,i

as the scalable global transformations from Ii to Ii+1 and from Ii+1 to

Ii, respectively. Similarly, let ϕL,i and ϕ−1
L,i be the nonrigid deformation from Īi to

Īi+1 and from Īi+1 to Īi, respectively.

As the nonrigid registration at the low resolution is applied to the globally regis-

tered image sequence and only local alignment transformations for all adjacent image
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pairs are available, the method for composing the pairwise transformations is as fol-

lows:

Step 1: As globally registered images Īi have the same dimensions as the reference

image Ii∗ where i < i∗, we first map an arbitrary coordinate (xi
∗

1 , x
i∗
2 ) ∈ ΩIi∗ to

globally registered image Īi∗−1 space by nonrigid mapping ϕ−1
L,i∗−1 (see blue arrows in

Figure 3.3).

Step 2: The coordinate (xi
∗−1

1 , xi
∗−1

2 ) ∈ ΩĪi∗−1
can be mapped to ΩIi∗−1

using the

global transformation ϕ−1
Ḡ,i∗−1

(see orange arrows in Figure 3.3).

Step 3: Repeat Step 1 and 2 to propagate ϕ−1
L and ϕ−1

Ḡ
for aggregated transforma-

tion from Ii∗ to any arbitrary image in the volume. A similar procedure with the

noninverted transformations is applied when i > i∗.

With the above method for composing transformations, the online extraction of

registered subvolumes requires that we perform the above steps only for the subvolume

coordinates. The algorithmic description of this registration propagation is presented

in Algorithm 3. The algorithm for subvolume reconstruction was written in MATLAB

and uses the OpenSlide [77] library to handle and access gigapixel image data. A

version of this method is currently deployed on the Digital Pathology web portal for

use in reconstructing subvolumes for pathology research [112].

3.4.3 Evaluation

Evaluating the performance and robustness of large-scale registration problems re-

mains a challenge. Rohlfing [183] has shown that tissue overlap and similarity scores

are not always reliable; however, ground truth data for serial gigapixel images in not

readily available. Furthermore, the type of corresponding in toto volumetric ground

truth images suggested by Pichat et al. [173] are often not possible for small tis-

sue samples. Therefore, we evaluated our method by qualitatively inspecting the

reconstructed subvolumes and by quantifying the propagation of error resulting from
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Algorithm 3: Subvolume Reconstruction by Composition of Scaled Transforms

Input : original serial images {Ii, i = 1, . . . , N}
Output: registered serial images {Ĩi, i = 1, . . . , N}

1 Set reference image index i∗ =
⌊
N
2

⌋
;

2 Compute ϕḠ and ϕL by alignment, global registration, and local deformation;
3 for i ∈ (i∗ − 1, i∗ − 2, . . . , 1) do
4 j ← i∗ + 1;
5 for (x1, x2) ∈ ROI ⊆ ΩIi∗ do
6 while j ≥ i do
7 Apply ϕ−1

L,j;

8 j ← j − 1;

9 end
10 while j ≥ i do
11 Apply ϕ−1

Ḡ,j
;

12 j ← j − 1;

13 end

14 end

15 end
16 for i ∈ (i∗ + 1, i∗ + 2, . . . , N) do
17 j ← i∗ + 1;
18 for (x1, x2) ∈ ROI ⊆ ΩIi∗ do
19 while j ≥ i do
20 Apply ϕL,j;
21 j ← j + 1;

22 end
23 while j ≤ i do
24 Apply ϕḠ,j;
25 j ← j + 1;

26 end

27 end

28 end
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scaling and composing transformations generated at non-native resolutions.

We first tested our method for subvolume reconstruction on a set of forty serial

hematoxylin and eosin stained tissue sections from a glioblastoma (GBM) biopsy

with an overall image volume of 12.930× 15.279× 0.200 mm. Each GBM serial sec-

tion was cut to 5 µm thick and digitized at 0.2265 µm/pixel resolution, resulting in

a 150 gigavoxel volume. From the entire image volume, we extracted a registered

928× 928× 200 µm, or 670 megavoxel, subvolume by performing alignment, global

registration, and local deformation at a 1/256× downsampled resolution and map-

ping to the native gigapixel resolution.

First, registration accuracy was examined visually for tissue edge discontinuity in

distinct cross-sections through the low resolution image volume in Figure 3.7. Each

cross-section plane was uniquely colored in the three-dimensional view of the regis-

tered volume. Cross-section locations were randomly selected and colored to match

the y × z cross-section views. Scaling in the z dimension was increased to aid visual

inspection of contour discontinuities. We observed the progressive improvement in

registration for rigid alignment, similarity transformation, and B-spline deformation.

The subvolume montage view of a small tissue region of interest in Figure 3.8 showed

a high correspondence across serial sections, suggesting the efficacy of our proposed

method.

We quantitatively evaluated the propagation of error as a result of transforma-

tion scaling and composition by computing the registration accuracy for ten syn-

thetic image volumes. For each such synthetic ground truth volume, we replicated

a single section from the GBM data set fifty times at 1/256×, 1/128×, and 1/64×

downsampling. We intentionally produced random global transformations and local

deformations to the 1/256× synthetic volumes to simulate distortions introduced by

tissue processing. Global transformations were constructed using sheer, translation,

and rotation values drawn from N (0, 0.001), N (0, ρ/3), where ρ is the smallest im-
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Original Aligned Global Local

Figure 3.7: Qualitative evaluation of registration accuracy using random cross-
sections. Each row in the bottom panel displays the y × z cross-sections at each
registration stage for the corresponding cutting plane in the three-dimensional ren-
dered volume at the top.
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Figure 3.8: Results of high resolution mapping and propagation for a 4096 × 4096
pixel region of serial GBM sections. A montage of the registered region is presented
on the left, and a three-dimensional rendered volume corresponding to the green box
is shown on the right.

age dimension, and U(0, 360), respectively. We extrapolated a 4× 4 matrix, subject

to N (0, 4), to appropriate image dimensions for generating local deformations. The

global and local deformations were scaled to produce identical distortions for the

1/128× and 1/64× ground truth volumes.

Registration was performed for each distorted synthetic volume at 1/256× down-

sampling, and the average registration accuracy was computed for alignment, global,

and local registration. The registration accuracy for each synthetic volume was mea-

sured by the background overlap between the synthetic ground truth and deformed

volume (see Wang et al. [232] for additional detail). The average registration accura-

cies at 1/256× resolution described the distortion correction power at each sequen-

tial registration step. To explore the error in multi-resolution mapping, we scaled

the deformations at 1/256× resolution and applied them to the 1/128× and 1/64×

resolutions. The registration accuracy for each step at each resolution is presented

in Table 3.3. We noticed that sequential alignment, global, and local registration

can correct most simulated distortions, and there was no substantial increase in error

introduced by scaling between resolutions. The observed degradation from aligned to

global registration could have resulted from the extra degree of freedom for scaling
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Table 3.3: Registration accuracy for each processing step at three different levels:
Mean±Std (n = 50).

Downsampling Aligned Global Local

1/256× 0.938± 0.005 0.903± 0.020 0.989± 0.001
1/128× 0.934± 0.005 0.900± 0.019 0.974± 0.001
1/64× 0.931± 0.005 0.897± 0.018 0.965± 0.001

in the similarity transform estimation, given our synthetic data is not substantially

scaled by simulated distortions.

3.5 Discussion

Volumetric data is becoming an integral component of many research disciplines. As

clinicians and pathologists turn to digital WSI technology, there is a growing need

for algorithms that can process large amounts of related image data. In this chap-

ter, we proposed a two stage registration method that performs offline registration

at a downsampled resolution and reconstructs subvolumes of interest online at any

desired resolution. Both qualitative and quantitative evaluation results demonstrate

the promise of our registration method for reconstruction from serial gigapixel whole

slide histology images. We note that our method presents several limitations. Namely,

registration accuracy will always be limited to the resolution of the downsampled im-

ages, and repeated requests for the same subvolume requires recomputing the same

composition of transformation. For practical purposes, we do not believe that these

limitations will greatly impose on clinical and research use via the Digital Pathology

web portal.

In the future, we plan to extend this work with iterative registration correc-

tions across multiple resolutions to further improve concordance across serial sec-

tions. Moreover, we intend to incorporate human-annotated landmarks to extend the

quantitative assessment.
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Chapter 4

Temporal Data

Sociologist and science historian Hannah Landecker describes the use of visual media

in the sciences as “part of the exploration of the role of time in experimentation”

[116]. Drawings, photographs, and models have allowed scientists to freeze partic-

ular moments during their experiments, but it was not until the twentieth century

that scientists were truly able to manipulate time to gain new insights into physical

phenomena. The introduction of film and video into the laboratory was heralded

by three Victorian-era scientists: physiologist Étienne-Jules Marey, astronomer Jules

Janssen, and photographer Eadweard Muybridge [80]. In 1874, Janssen developed

the photographic revolver—a device that was able to capture nearly fifty images in

one minute. Soon after, Marey and Muybridge leveraged Janssen’s technology to

great effect in the study of motion. Marey referred to the technique of capturing se-

quential photographs over time as choronophotography. Chronophotographic images

were initially displayed as arranged sets of photographs, but technical improvements

later allowed these sequential views to be overlayed in a single image. For the first

time, scientists had a mechanism to not only freeze a moment, but to see how motion

progressed in time.

As acquisition and projection methods continued to develop, chronophotography
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gave way to cinematography. Although much attention has been given to cinematog-

raphy from the perspective of entertainment and the arts, film played an equally

important role in shaping the practices and communication of science (see works by

Canales [25], Gaycken [69], Gouyon [80], Landecker [117], Stramer & Dunn [212]).

Some of the earliest uses of film were to record and enhance the observation of mi-

croscopic specimen. The field of microcinematography, or photomicrography, was

pioneered by the French doctor Jean Comandon. As Comandon wrote in his 1932

article “Cinematography and the Science of Nature”:

Only microcinematography is able to preserve the traces of phenomena

that occur in the preparation. Like the retina of an eye which never tires,

the film follows, for an extended time, all the changes that take place;

moreover, the cinematograph is, like the microscope itself, an instrument

of research, while one acts on the visual space, the other acts on time,

condensing or spreading movements by accelerating or slowing them; it

thus reduces their speed to a magnitude that is more easily perceptible,

which even reveals to us that which we do not suspect.1[36]

Comandon viewed film as an extension of the eye that could manipulate the scale

of time in order to expose the secret motions of cells. Throughout the twentieth

century and into the twenty-first, film and video played an integral role across many

scientific disciplines. Video and temporal imaging is used today to communicate

protocols [170], observe cell processes [98], visualize ecosystems [161], measure climate

change [3], and track animal behavior [235]. With the decreasing cost of digital video

hardware and increased commercial use of video systems, analytical methods for

1Original text: “La microcinématographie est seule capable de conserver des traces des
phénoménes qui se passent dans la préparation. Comme la rétine d’un œil jamais fatigué, le film suit,
pendant un temps prolongé, tous les changements qui s’opérent; bien plus, le cinématographe est,
ainsi, que le microscope lui-même, un instrument de recherches, tandis que celui-ci agit sur l’espace
visuel, celui-là agit sur le temps, en y condensant ou en y étalant les mouvements par l’accéléré ou
le ralenti; il ramène ainsi leur vitesse à une grandeur qui les rend plus facilement perceptibles, qui,
même, les révéle là où nous ne les soupçonnions pas.” [36].
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processing large amounts of video data are becoming vital for modern science.

This chapter explores the use of temporal data in scientific research with an em-

phasis on large data sets. We begin by discussing the different modes of video and

temporal imaging from chronophotography to multi-location imaging. We then ex-

amine common approaches to video analysis including object detection, recognition,

and tracking. Lastly, we present and evaluate a method for tracking insect movement

across multiple locations and show how this technique can be used to monitor the

behavior of honey bees.

4.1 Temporal Imaging

Chronophotography, although not a form of cinematography or videography, was the

first attempt to capture and study movements over time. Early chronophotographs

consisted of several photos arranged to show the progression of movement. In later

years, the development of the stroboscopic flash allowed scientists to capture motion

by taking multiple exposures on the same piece of film. The superposition of multiple

poses in a single image made it possible to precisely measure the displacement caused

by some action. Although chronophotography refers to all photographic methods that

allow the study of motion, modern techniques are generally categorized by whether

they compress or expand time (see Figure 4.1). Time-lapse photography compresses

time by capturing photos at a slow frequency; whereas, high-speed photography ex-

pands time by capturing photos in rapid succession.

The progression from static chronophotographs to dynamic films grew from work

in animation and projection. It was quickly realized that chronophotographs taken

by Myubridge and his contemporaries could be made into zoetropes that would reca-

pitulate the original motion of an object. A zoetrope is a device that gives the illusion

of motion by quickly displaying an array of images one after the other. In 1879,
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Figure 4.1: Chronophotographs displaying the locomotion of an inchworm (top) and
the rotation of the Earth (bottom). By overlaying a series of photographs taken in
rapid succession, the relatively quick movements of an inchworm can be decomposed
into a sequence of poses. Similarly, the slow motion of the Earth relative to the night
sky can be observed by overlaying a series of photographs taken over a long period
of time. The resulting star trails form arcs around the triple star system Polaris,
also called the North Star or Pole Star. Depending on the speed and duration of
acquisition, chronophotography either expands or compresses time so that the extreme
motion of an object can be observed in a single image.
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Muybridge developed a specialized zoetrope-style projector called the Zoopraxiscope

to animate his chronophotographs [89]. Both the zoetrope and modern movies rely

on visual persistence to give the sensation of continuous motion. As Michael Faraday

wrote in his 1931 article “On a Peculiar Class of Optical Deceptions”:

The eye has the power, as is well known, of retaining visual impression

for a sensible period of time; and in this way, recurring actions, made

sufficiently near to each other, are perceptibly connected, and made to

appear as a continued impression. [56]

This visual persistence, which was measured by Patrice d’Arcy to be about 130 ms

[43], partially dictates the flicker fusion rate—the frequency at which intermittent

light appears to be continuous. By displaying images at a frequency equal or greater

than the flicker fusion rate, the once static chronophotographs became motion pic-

tures.

Landecker notes that time plays three important roles in scientific research:

There is the time of experiment, the time of recording, and the time of

demonstration, and these parameters can be manipulated in relation to

one another in order to see new phenomena or to see well-known phenom-

ena in a new way. [116]

Time-lapse imaging uses a low recording frequency and high viewing frequency to

highlight motion that occurs over long timescales; whereas, high-speed imaging uses

a high recording frequency and low viewing frequency to slow the motion of fast

moving objects. Modern time-lapse systems require automated software to trigger

and expose each image and auxiliary equipment to stabilize and protect the camera

for the duration of the experiment. To achieve high-speed imaging, the exposure

time must be sufficiently low as to avoid motion blur and acquire enough images over

the short duration of the experiment. Therefore, high-speed systems need elaborate
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lighting and triggering mechanisms to ensure that enough photons are available to

properly expose each image.

In addition to their ability to compress and expand time, films and videos allow

scientists to analyze a phenomena multiple times without having to physically rerun

an experiment. As video-capable imaging sensors become smaller and cheaper, their

use in real-time monitoring (i.e., videos in which the times of experimentation, record-

ing, and demonstration are all equal) has greatly increased [47, 212]. Moreover, the

transition from film to digital video has opened the door to advanced video analysis.

Nearly all video analysis is focused on describing the motion of objects through de-

tection and tracking algorithms. In the next section we explore the general categories

and methods for object detection and tracking with an emphasis on their applications

in ecology.

4.2 Object Tracking

Object tracking is the problem of measuring the trajectory of an image element as it

moves through a scene. Although the term most specifically refers to the process of

following an object, object tracking is also used in reference to the entire workflow

of object detection, recognition, and tracking. The object detection and recognition

subproblems aim to locate image elements of interest and classify them against a set of

known objects types (e.g., cat, dog, sign, human, etc.). Object tracking has received

a great deal of attention over the past two decades (see reviews by Cox [39], Joshi

& Thakore [101], Trucco & Plakas [222], Yang et al. [244], Yilmaz et al. [246]), and

particular applications, such as surveillance, have been extensively explored [101,

144, 159, 160]. Despite these efforts, object tracking remains a challenging problem.

Videos are an imperfect two-dimensional projection of a three-dimensional scene.

The tracking of an object is impeded by occlusion, image noise, low frame rates,
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illumination changes, and the relative motion between the sensor and the object.

Moreover, large volumes of streaming and/or multi-view video data, as in surveillance

and monitoring, makes it difficult to achieve suitable processing times for real-time

or batch analysis.

At the highest level, tracking algorithms can be separated by whether they track

a single or multiple objects. For the purposes of this work, however, we will focus

on the generalized multiple object tracking methods. Luo et al. [144] divides these

algorithms into detection-based tracking (DBT) and detection-free tracking (DFT)2. In

DBT, object tracks are built by linking together objects that have been automatically

detected in multiple video frames. DFT, on the other hand, requires that objects be

manually initialized. Local region descriptors for each manually-initialized object are

used to track its motion across the scene.

Both DBT and DFT can be performed in an online or offline manner. Online

tracking is suitable for real-time video analysis, but requires that trajectories be ex-

tended in time without information from future video frames. As a result, tracking

is more difficult in the beginning frames because there is less information about the

objects being tracked. Offline tracking can be used whenever real-time tracking data

is not required. Since videos are processed in batch, offline tracking can leverage

information about an object across all video frames. However, this additional infor-

mation comes at the cost of requiring more storage and faster processing hardware

than online algorithms. Several benchmarks have been established to evaluate specific

applications of both online and offline tracking algorithms [130, 204, 241].

Although the majority of object tracking methods have focused on applications

in areas such as surveillance [94], action recognition [176], and particle tracking [155],

inexpensive video sensors have opened the doors to the remote monitoring of animals

[47, 114, 161, 237]. Videos taken from remote camera traps, monitoring stations,

2Yang & Nevatia [243] originally termed “detection-based tracking” and “detection-free tracking”
as “association-based tracking” and “category-free tracking,” respectively.
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aerial drones, and animal-borne cameras are used to study animal behavior as it

relates to social dynamics, communication, foraging, disease transmission, and more.

4.2.1 Applications in Ecology

Measurement of animal movement is key to understand ecological and evolutionary

processes such as dispersal, population and metapopulation dynamics, disease trans-

mission, and gene flow [225]. Many of these studies are central to conservation efforts

[55]; however, we still have a limited understanding of animal movement in most

applications. For example, there are very few diseases for which we have a well-

characterized empirical understanding of spatial transmission dynamics driven by

host movement. This is true even for diseases important to public health [181, 233].

Existing categories of methods for recording animal trajectories include:

• direct human observation involving marked [180] and unmarked [75] individuals;

• trace-based methods with visible trail markers such as powdered dyes [1];

• active and passive electronic tags including radio tracking [2], harmonic radar

[167], GPS tags [179], and RFID [110];

• biomarkers including stable isotopes [189];

• and image-based methods including camera traps, video tracking [47], and fin-

gerprinting methods [113, 171].

These methods balance trade-offs between cost, accuracy, reliability, tracking area,

ability to distinguish individuals, tracking capacity, and behavior-altering impedi-

ments. The low-cost and scalability of image-based methods has made them an

attractive compromise between the accuracy of radio tracking and the cost of trace-

based methods.
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A limited number of methods exist for measuring movement for small organisms

such as insects because they require the use of miniaturized components that are

susceptible to false negative detection. Within the existing repertoire, even fewer

methods offering consistent individual-level resolution are affordable, scalable and

operable in the field [24, 109, 156, 224, 235]. Therefore, we developed a method

that combines automated video capture and a graphical interface to quantify motion

dynamics of insects from discrete locations by video analysis of inexpensive (� $0.01

per tag) and lightweight tags attached to individual insects. This method differs

from similar optical tag tracking methods in that the tags are human-readable and

the setup does not require specialized materials [28, 41, 235]. We have deployed

consumer-grade digital cameras for video capture, similar to work by Steen [209],

with simple weatherproofed enclosures, keeping the cost of the entire system low (see

Appendix B). The key developmental component is a video analysis and graphical

editing software that identifies tags in video frames, assembles these discrete tags

into tracks of the same insect moving through scenes, infers the tag identifier by digit

recognition, and provides a user-friendly graphical environment for editing tracking

data.

4.3 Graphical Insect Tracking Environment

We have developed an analysis pipeline and graphical editor, called the GRAPHical

Insect Tracking Environment (GRAPHITE), for end-to-end processing of video data

[184]. GRAPHITE3 is a modular set of functions with a graphical interface entirely

written in MATLAB. The software consists of a video preprocessor, tag detector,

digit reader, track builder, and a processing interface (see Figure 4.2). The user can

choose to initiate the entire set of analysis routines as a single pipeline or access each

module independently for a tailored analysis of a particular video. Batch processing

3GRAPHITE is open source and available at https://github.com/brossetti/graphite.

https://github.com/brossetti/graphite


87

is performed offline using a parallel framework. As such, GRAPHITE is capable of

handling large volumes of video data.

Our system is designed for use in field settings, in contrast to other video-based

methods that are used in laboratory studies with predefined tracking areas [156, 165].

Compared with typical camera traps [188], our system can distinguish individuals via

human-readable tags with unique numeric identifiers. Moreover, using a video-based

method overcomes three limitations of existing RFID technology. First, it enables

easier access to location-based data by monitoring more colonies at a fraction of the

cost of comparable RFID systems. Second, small RFID tags require close proximity

to a detector for accurate tracking; whereas, our system only requires that insects

pass within the visible range of the camera. Lastly, our method can be scaled-up to

track more insects at more tracking locations with minimal additional expense.

We show proof-of-concept of this method by tracking honey bees (Apis mellifera)

at the entrance of beehives (see Appendix B for the experimental setup). We expect

that our method can be deployed to track other types of uniquely marked insects

(approximately 3 mm long or larger) moving at discrete locations. In particular, our

method is most readily applied to central-place foragers with small nest, colony, or

roost entrances relative to the animal’s size. It would also be straightforward to deploy

our method in studies with bait stations and feeders, such as artificial flowers and

pollinator feeding stations for honey bees [79] and social stingless bees [97]. Although

free-ranging animal movements could also be tracked, this would be more challenging

than the present study. Limitations to our method are three-fold. First, organisms

need to be tagged. This necessitates prior capture as well as knowledge about which

individuals are expected to be seen at each camera location. Second, the system is

not expected to be as effective with solitary animals. Third, GRAPHITE is an offline

processing tool and requires more storage than online tracking solutions. Even with

these limitations in mind, we believe that our low-cost experimental setup and user-
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A. B.

C. D.

E. F.

Figure 4.2: The GRAPHITE workflow consists of five modules: video preprossesor,
tag detector, digit reader, track builder, and graphical editor. The video preprocessor
accepts a raw video (A) as input and generates a background image and, optionally, a
cropped video file as output (B). Each frame of the cropped video is searched for tag
regions, and the resulting individual tag images are extracted, saved, and logged in
an annotation file (C). Tag regions are preprocessed and sent to the Tesseract OCR
engine for digit recognition (D). The orientation with the highest average confidence
is chosen as the correct orientation, and digit recognition results are appended to the
annotation file. Tag data from different frames are linked as tracks based on their
spatial locations and sizes (E). The graphical editor allows individual and global
changes to tag data stored in the annotation file, and it allows users to export the
annotation data along with a summary video of tracked animals (F).
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Figure 4.3: The main GRAPHITE interface allows users to select videos for batch
processing (left), adjust tracking parameters (middle), and execute specific modules
(right). In case of disruptions, GRAPHITE remembers which modules have already
been run for each video file and it will skip steps as appropriate when the analysis is
resumed.

friendly graphical software has the potential to contribute to a spectrum of insect

movement studies.

GRAPHITE is a DBT system that works by detecting tags across all video frames

and linking them together into tracks. The entire system is tied together with an

intuitive graphical interface that provides access to critical analysis parameters (see

Figure 4.3). In the sections below we examine each of the five GRAPHITE modules:

(1) video preprossesor, (2) tag detector, (3) digit reader, (4) track builder, and (5)

graphical editor. Video tutorials describing the batch processing functionality and

graphical editor interface are included as supplemental data.

4.3.1 Video Preprocessing Module

The first module is a video preprocessor that prepares each video for tracking (see

Figure 4.2 A-B). The module allows the user to crop videos in the temporal and spatial
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A. B.

C. D.

Figure 4.4: Active region detection and cropping from a raw video file. A map
of the active areas is determined by the pixel-wise variance over all frames where
higher intensity values represent a greater deviation from the background, indicating
motion events (A). Global adaptive thresholding is used to separate active (white)
from static (black) regions in the activity map (B). The binarized image is cleaned by
morphological operations including dilation (C). A bounding box is determined for
the largest active region (outlined in red), and the associated coordinates are used to
crop the raw video (D).

dimensions to reduce the processing time. The user can specify trimming times to

remove frames from the beginning and/or end of each video. Trimming is useful for

discarding videos segments in which the camera is being positioned or removed from

the camera housing. The spatial dimensions can also be cropped to remove areas

that fall outside the camera viewport, or active region, as described in Appendix B.

Enabling active region cropping reduces the search space for subsequent modules and

can lead to faster tag detection (see Figure 4.4).
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Since motion events correspond to pixels with high variance, the active region is

located by computing the pixel-wise variance across the trimmed video frames. The

resulting variance image provides a map of activity where brighter pixels correspond

to higher levels of motion. The activity map is segmented by an adaptive threshold,

such as Otsu, into active foreground and static background regions. The binary map

is cleaned by a series of morphological operations to more clearly define the active

region, and the bounding box coordinates are determined for the largest contiguous

region. These coordinates are used to crop the raw video frames for subsequent

analysis.

The most important function of the video preprocessor is to generate a static

background image for use in tag detection. The background image should represent

all of the static visual components in the scene. A possible method for generating a

background image is to capture a still frame of the empty scene; however, acquiring

a background image in this way is not practical since bees are constantly entering

and exiting the beehive. Instead, we generate a grayscale background image by cal-

culating the mean pixel-wise intensity over all frames of the trimmed and cropped

videos sequence. Since the field-of-view is known to be fixed, this method produces

a robust background image that accurately captures the properties of a given scene

(i.e., camera position, obstructions, and lighting condition). We note, however, that

using the pixel-wise mean intensity to represent the background is not advised when

scene elements can change over the course of a single video.

4.3.2 Tag Detection Module

As a DTB system, GRAPHITE operates by separately detecting tags in each video

frame (see Figure 4.2 C). In a given video frame, a moving object can either be

a tagged or untagged insect. Since the tags and insects are different colors (white

and yellow, respectively), these two objects can be separated using a color filter. To
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A. B.

C. D.

E. F.

G.

Figure 4.5: Tag detection from a single video frame. A full-color video frame (A) is
color filtered and converted to grayscale (B). The grayscale background image (C) is
subtracted from the color-filtered image to produce a motion map (D). The MSER
feature detector identifies five contiguous areas with stable intensity labeled in orange,
yellow, green, cyan, and blue (E). MSERs are filtered by solidity, aspect ratio, and
eccentricity to remove non-tag regions and a minimum bounding rectangle (MBR),
shown in green, is fit to the remaining orange tag regions (F). The MBR coordinates
are used to extract and rotate the tag region (G).

accommodate different color schemes, the user can input any RGB triplet specifying

the color to be removed. Both the video sequence and RGB triplet are converted to

hue-saturation-value colorspace. The specified color is filtered by setting the value

of all pixels with a hue within 15° of the specified color to zero. Finally, the filtered

frames are converted to grayscale for subsequent processing.

Locating motion in a scene requires that we identify image elements that deviate

from the reference background image. Therefore, the background image generated

during video preprocessing is subtracted from each color-filtered video frame to pro-

duce a motion map. Contiguous regions representing possible tags are detected in

each motion map using a Maximally Stable Extremal Region (MSER) feature detec-

tor. MSERs represent appropriately colored moving objects with a size ranging from

300 to 3,000 pixels in area (see Figure 4.5 A-E).
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To this point, the tag detection module has focused on the detection of all putative

tag regions. The module proceeds by discarding non-tag regions, or false positive.

Since the tag dimensions are known a priori, we use shape measurements including

solidity, aspect ratio, and eccentricity to conservatively filter MSERs that do not

represent tags. Solidity is the ratio of the region area to the convex hull area; aspect

ratio is the ratio of the minor-axis length to the major-axis length of the region’s

fitted ellipse; and eccentricity is the distance between the fitted ellipse foci and the

major-axis. In the case where the MSER feature detector finds overlapping areas,

only the smallest region by size is retained (see Figure 4.5 F).

Although filtering by physical attributes removes most non-tag regions, additional

steps are required to further reduce the number of false positives. In our solution,

each potential tag region is fitted with a minimum-area bounding rectangle (MBR).

The MBR coordinates are used to rotate and crop the region from the full-color video

frame. Each cropped region is resized to 60× 30 pixel rectangle and represented by

a histogram of oriented gradients (HOG) feature vector. A HOG feature vector is

a series of one-dimensional histograms describing the edge orientations within each

4× 4 pixel image patch. By encapsulating the shape components found within the

image, we classify cropped regions as tag or non-tag using a two-class support vector

machine (SVM). The SVM was trained on HOG features from 4093 false tag images

and 880 positive tag images. Any remaining tag regions are passed onto the next

module for digit recognition.

4.3.3 Digit Recognition Module

Digit recognition from natural images has been an area of intensive research [78, 102,

247, 251]. The digit recognition module uses the Tesseract optical character recog-

nition (OCR) engine [205] to identify digits in tag images (see Figure 4.2 D). Each

extracted tag image is first preprocessed to enhance the contrast of digit characters.
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Tag image preprocessing begins with channel-wise wavelet denoising and a rolling-

ball background subtraction to correct for uneven illumation [210]. Wavelet denoising

uses a discrete stationary wavelet transform to remove noise in the image frequency

domain without excessive edge blurring. The rolling-ball background is generated by

a morphological open operation on each color channel with a 5 pixel radius spheri-

cal structuring element. Each channel is then histogram-normalized and sharpened

before conversion to grayscale.

As any remaining marks within border regions can result in incorrect digit recog-

nition, we limit analysis to the digit containing region. We multiply the column sum

and row sum of the tag image to produce a map of the digit region. This map is bina-

rized and the bounding box coordinates for the foreground digit region are recorded.

If a digit region is not found, the tag is marked as a false positive and removed from

the following analysis.

Preprocessed tag images are passed to the Tesseract OCR engine for digit predic-

tion. The OCR engine was trained on more than 100 examples for each preprocessed

digit. As tag images can be in two possible orientations (right-side up and upside

down), digit predictions are made for both orientations. Digits with the highest three

confidence levels are retained as the predictions for each orientation, and the highest

average confidence level is used to indicate the correct orientation.

4.3.4 Track Assembly Module

To this point, each video frame has been analyzed independently to detect and read

tags. Relating frame-wise tag data into tracks is necessary to achieve an interpretation

of bee activity (see Figure 4.2 E). For this purpose, the trajectory of each tagged bee

is assembled by linking tag data from frames based on centroid (x, y) location and

tag size (area). The x-y-area feature vectors for sequential tag images are compared

with a nearest neighbor algorithm. The Euclidean distance between each feature
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Figure 4.6: The tracks for three tagged bees are overlaid onto the background image
derived from the 50 minute video. Each color (red, yellow, and blue) represents the
path of one tagged bee. Squares indicate the points of first observation, and circles
denote the points of last observation. Gaps in the tracks indicate an occlusion of at
least one second. The tracks show that all three bees exited the beehive (top represent
the beehive opening).

vector is used to match a tag in one frame to a single tag in an adjacent frame. The

track assembly algorithm tolerates gaps between matches of half a second to account

for momentary occlusions. Matched tags are linked together into tracks with unique

track identification numbers to represent tagged bee motion paths (see Figure 4.6).

4.3.5 Graphical Editor

We set the software parameters to provide robust results for our experimental setup,

but conditions can vary tremendously even within a single study. Therefore, a full-

featured graphical editor is provided to allow users to correct errors in the automat-

ically generated tag data (see Figure 4.2 F). The editor is designed to provide users

with easy access to critical tag data, including tag digits, track identifiers, and false

positive status.

The editor presents users with two tabular windows (see Figure 4.7). The first

window allows users to select one or more tracks. Once tracks are selected, the second

window displays all tags included in those tracks. Selecting a tag will display tag-

related video frames with a green bounding box around the tag of interest. All other

detected tags within frames are bounded in yellow. Edits can be made for individual

tags or even groups of tags for enhanced efficiency.
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Figure 4.7: The graphical user interface for editing tag data automatically generated
by the prior modules.

After edits are made, users can export the annotations as either an Excel or CSV

file. For an intuitive overview of the data, users can export a summary video that

contains annotated video segments of each tag track (see supplemental video). Each

track is represented by an MBR in a unique color and with tag digits displayed.

4.3.6 Evaluation

GRAPHITE has a human-in-the-loop design in which a user screens potential tracks

that are automatically generated by the video analysis pipeline that preemptively min-

imizes the false negative detection rate. Monitoring was performed for 90 colonies at

six apiaries resulting in 1,339 video files with a cumulative duration of approximately
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12,000 hours. The false negative rate was determined by manually reviewing a ran-

dom sample of 600 one-minute videos segments. A set of 362 segments were randomly

sampled from the 181 videos containing detected tags and 238 segments were ran-

domly sampled from the remaining 1,157 videos. On average, a one-minute segment

was reviewed for approximately 20 % of the videos where a tag was not detected. This

review resulted in a false negative rate of 0 %.

GRAPHITE detected 1,160,145 potential tag regions in 181 of these videos. Po-

tential tag regions were manually reviewed with the graphical editor. 6,766 tags were

identified (representing 450 tracks from 229 bees) resulting in a false positive rate

of 99.4 %. Despite the expectedly high false positive rate, the pipeline reduced the

manual screening time by over 1000× (from 12,000 hours to 11 hours) without miss-

ing any tagged bees. In addition, false positives were mostly grouped into a small

number of tracks that were quickly reviewed and removed in bulk.

4.4 Discussion

GRAPHITE offers a low-cost, end-to-end animal movement tracking environment

with a user-friendly graphical interface. We demonstrate the efficacy of the devel-

oped software with specific application to tracking tagged bees. The accessible and

minimal hardware requirements along with the highly automated and flexible pro-

cessing modules allow for many different experimental setups with various model

organisms. This flexibility allows capabilities beyond video tracking software with no

means to identify individuals traversing different tracking stations [109, 224].

A major advantage of this method is its ability to track individual insect move-

ments in a low-cost field setting, as opposed to average movement rates that routine

techniques such as powdered dye provide. Individual variation in movement can have

large consequences for the ecology and evolution of species [18, 19]. For example, in
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infectious disease studies, certain individuals may be more likely to move and thereby

have greater contact rates than other individuals. Highly mobile and connected indi-

viduals could thereby have major impacts on disease transmission, and in some cases

act as superspreaders [138].

In future work, the GRAPHITE digit reading module can be upgraded to more

efficient learning engines. In addition, corrections made via the editor can be fed back

into machine learning models to iteratively improve the accuracy of digit recognition.

The SVM classifier used to remove non-tag regions during tag detection could also

benefit from the same feedback mechanism.
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Chapter 5

Conclusion

“Seeing is believe, but measuring is knowing,” has been the unofficial motto of the

bioimage informatics field for many years, and no other tool has been more valuable

in the measurement and analysis of biological images than the computer. In their

1966 paper “The Analysis of Cell Images,” Prewitt & Mendelsohn wrote:

[M]odern large capacity, high speed data facilities at last provide the abil-

ity to manipulate the hitherto unmanageable quantities of optical infor-

mation contained within all but the simplest images. With the basic

materials for achieving automation via mensuration finally at hand, at-

tention has been turned towards generating and evaluating methods for

extracting meaning from quantitative optical information. [177]

This perspective still rings true today. As hardware for generating big biological data

has continued to mature, the focus of modern bioimage informatics research has been

the development of scalable algorithms for the storage, manipulation, and processing

of image data. In this work we presented three such methods spanning all five image

dimensions: space (x, y, z), color (λ), and time (t). These methods represent stepping

stones on the way to robust and versatile processing of bioimages of large volume,

high velocity, and wide variety.
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In Chapter 2, we presented a novel NMF approach, called SSASU, that produces

clean unmixing results for contaminated spectral micrographs. High-dimensional

spectral images remain a powerful imaging modality for the analysis of complex com-

munities, and SSASU is a practical solution for decomposing real-world data. In

addition, we provided a numerical method for the estimation of endmembers from

reference images. This method increases the scalability of spectral image analysis by

removing the need for manual segmentation or the use of thresholding algorithms. We

note that, like other NMF methods, SSASU does not guarantee a unique solution.

Therefore, future work in spectral unmixing should focus on leveraging additional

a priori information to reduce the solution space. Promising avenues in this area

include the pixel-purity assumption and statistical approaches that account for the

endmember variation contained in reference images.

The problem of volumetric reconstruction described in Chapter 3 is of great inter-

est in modern bioimage informatics. The widespread use of three-dimensional imaging

systems including confocal and lightsheet microscopes, block facing scanning electron

microscopes, and serial whole slide scanners have amplified the need for accurate and

efficient registration methods. We proposed a two-stage registration method that

performs offline registration and online subvolume reconstruction. This method is

ideally suited for use with interactive systems (e.g., web portals and virtual slide

viewers) that allows researchers and clinicians to request specific subvolumes for fur-

ther analysis. As mentioned, a limitation of this work is that reconstruction accuracy

will always be limited to the resolution used for registration. Future work will use a

multilevel registration approach in which the transformations are modified based on

information from higher resolutions.

We described in Chapter 4 the GRAPHITE software for interactive video-based

animal tracking. A major advantage of GRAPHITE is its ability to use low-cost,

human-readable tags for monitoring animal motion across many discrete locations.
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The minimal hardware requirements and flexible processing modules allow for many

different experimental setups with various model organisms. GRAPHITE’s modu-

larity also allows for easy upgrades to different portions of the analysis pippeline.

For instance, GRAPHITE’s digit recognition module could be replaced by a more

advanced convolutional neural network to improve reliability in tag identification.

In addition, it is possible to use the human annotations collected by the editor to

iteratively improve the accuracy of the neural network throughout an experiment.

In closing, and as we consider our next steps in bioimage informatics, it seems

fitting to consider again the epigraph at the start of this dissertation:

We will begin by asking if the prevailing notion of what computer systems

can achieve in biological image-processing may not be overly modest. This

question seems to us fundamental, for such an underestimate might pro-

duce not only a limitation of objectives, but also a restriction of the class

of problems considered amenable to computer processing. [134]
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Appendix A

Spectral

A.1 Sample Preparation

To evaluate the proposed method, a set of seven reference samples, ten test samples,

and one no-probe control was prepared. The bacteria Leptotrichia buccalis was used

as the biological target for generating reference samples for each of the seven fluo-

rophores: DY-415, DY-490, ATTO 520, ATTO 550, Texas Red-X, ATTO 620, and

ATTO 655 (Dyomics GmbH; ATTO-TEC GmbH; Thermo Fisher Scientific Inc.).

L. buccalis cells were cultured, fixed, and then separately hybridized using custom

fluorophore-conjugated oligonucleotide probes (biomers.net GmbH) as decribed by

Mark Welch et al. [147].

Test samples consisted of biofilms that were collected from the dorsum of the

tongue, chemically fixed, and hybridized using a set of probes specific to different

taxa of bacteria (see Table 2.1). Two samples were taken from each of five human

subjects (A-E). An additional biofilm sample was collected from subject D, chemically

fixed, and hybridized without a fluorophore to generate a no-probe control sample

(used to measure autofluorescence). After hybridization, the reference samples, test

samples, and no-probe control were mounted on slides as per Mark Welch et al. [147].
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A.2 Imaging and Preprocessing

All spectral micrographs were acquired on a Zeiss LSM 880 using a 63×/1.4 NA Plan-

Apochromat objective. Point scanning was performed simultaneously for the 405 nm,

488 nm, 561 nm, and 633 nm lasers using the 405 and 488/561/633 dichroic mirrors.

Spectral data was collected from a range of 410–696 nm using 8.6 nm steps. Each

reference image was acquired using dimensions of 512× 512 pixel at 0.263 µm/pixel

resolution. Test images were acquired at 2048× 2048 pixel and down-sampled to

1024× 1024 pixel at a resolution of 0.220 µm/pixel.

The use of dichroic mirrors blocked the detection of emitted light near the exci-

tation wavelengths. Since these dark bands contained little information, they were

removed from the reference and test images prior to any analysis. In total, 6 of the

32 spectral bands were removed.
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Appendix B

Temporal

B.1 Experimental Setup

Tags were designed to be durable in the outdoor environment, easily visible, lightweight,

and low-cost. Each tag consisted of a unique three-digit number that was inkjet-

printed (7.5 pt font) on white card stock (Neenah Exact Index, Item# 40508) with

UV-resistant ink (PrintPayLess Black UV-Resistant Dye Ink). An inverted color

scheme can be used for light-colored insects. Tags were punched from the card stock

and trimmed to a final size of 2.5× 6 mm. The tags were then sprayed with a UV-

resistant coating (Krylon UV-Resistant Clear Acrylic Coating Spray, Item# 1305)

and a waterproof coating (Scotchgard Outdoor Water Shield, Item# 5019-6).

We recorded bee movement for a total of 90 colonies at six apiaries managed

by the University of Georgia. To ensure that bees were correctly tagged with their

respective colony and queen, brood frames were moved to an enclosed environment

one day prior to tagging. We tagged newly emerged worker bees as they are not yet

able to fly or sting. A unique tag was secured to the thorax of newly emerged bees

using a waterproof glue (Titebond III, Item# 1411). The glue was allowed to become

tacky and then applied to the bees using a wood toothpick. The tag was then affixed
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and held briefly to set. All tags were oriented with the rightmost number towards

the head of the bee. Ethical considerations must be given to the tagging of sensitive

or threatened species and the impact of tagging on the tracked animals.

A camera housing was temporarily mounted to the entrance of each beehive for

monitoring tagged bees that exited and entered the apiaries (see Figure B.1). Each

camera housing was 10× 15× 15.5 cm with a lower landing that extended 8.5 cm

from the front face. Bees could pass through a 100× 8 mm opening at the front

of the camera housing. The camera compartment was separated from the passage

by a 3 mm thick OPTIX acrylic sheet. The camera-facing-side of the acrylic sheet

above the entrance was painted black except for an 18 mm viewport strip for video

recording. The entrance-facing-side of the acrylic sheet was treated with a lubricant

(3-IN-ONE Dry Lubricant, Item# 3IO-DL-00) to inhibit bees from walking in an

orientation that obscured the tags. Lighting was provided by a 1.5 W battery-powered

LED (LouisaStore Portable Pocket LED Card Light, Item# BOOPIU26TO) located

within the camera compartment. Modifications to the camera housing can be made

to accommodate alternative experiments and organisms provided the camera retains

clear en face view of tags.

Videos were recorded on Canon PowerShot SD1100 IS model cameras (30 fps;

640× 480 pixel; automatic white balance; macro mode). Video duration ranged from

45 minutes to one hour depending on the battery. The camera was mounted in the

camera compartment on a wooden shelf 106 mm above the acrylic sheet. Frame-by-

frame tracking was restricted to the viewport area; however, integration of data from

multiple camera housings allows low-resolution tracking of tagged insects across sites.
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Figure B.1: A camera housings was attached to the front entrance of each beehive
as shown on the left. Each camera housing was constructed with a lower landing,
viewport, and camera shelf as diagrammed on the right. The red arrows point to the
lower landing.
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