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Abstract 
 
 

 
 
 
 

Synthetic Studies Toward Methanoquinolizidine-Containing 
Akuammiline Alkaloids 

 
By Eric Andreansky 

 
 
 
 
 
 
 
 
 
 
 
 
The akuammiline alkaloids are family of indole monoterpenoids that are characterized by 
their congested, polycyclic cores. A subset of these alkaloids containing a 
methanoquinolizidine core has been the subject of much synthetic interest, but only 
recently have been the subject of successful total syntheses. A cascade annulation toward 
a tetracyclic akuammiline alkaloid core has been developed beginning from an accessible 
N-Cbz hemiaminal ether substrate containing pendant indole and allylsilane moieties. 
Unlike related cascades toward the Malagasy alkaloids, these cascade substrates were only 
tolerant of (Z)-allylsilane geometries, with the other isomers only providing an undesired 
diene product. Studies were performed on making this and related cascade enantioselective 
with both a chiral auxiliary and enantioselective catalysis. This tetracyclic intermediate 
was converted into a pentacyclic methanoquinolizidine core for the natural product 
strictamine. Additionally, this core could be converted into a pentacyclic furoindoline core 
that maps onto the currently unsynthesized natural product pseudoakuammigine. While 
successfully leading us to these structures, the currently developed routes require a 
significant number of steps. Studies are currently underway to develop a more succinct 
route to these natural products. 
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Chapter 1. The Akuammiline Alkaloids: Structure, Biology, and 
Synthesis 
1.1 Introduction 

 The akuammiline alkaloids, a family of indole monoterpenoids, are a diverse group 

of natural products that have been known for well over a century. The name of this alkaloid 

comes from the traditional name of the shrub Picralima nitida in western Africa, 

‘akuamma’, where some of the original alkaloids were isolated.1 The defining structural 

feature of all members of this alkaloid family is the key C7-C16 bond, whose presence 

often leads to sterically congested, polycyclic architectures (Figure 1-1). This 

characteristic, along with their known biological activity, have made these natural products 

the subject of synthetic studies for decades. However, the inherent challenges present in 

their topologies have prevented successful total syntheses from being completed until 

2009. 

 

Figure 1-1. Representative akuammiline alkaloid structure and comparison of the topology of their 

methanoquinolizidine core with that of adamantane. 

 The complex polycyclic architecture of these indole alkaloids have inspired 

chemists for decades. The namesake alkaloid akuammiline (1.1), for example, contains a 

central cage-like methanoquinolizidine core composed of three six-membered rings and 

one eight-membered ring (Figure 1-1).2 Initial visual inspection of this motif evokes 

comparison to the structure of adamantane, but also highlights some more inherent 

challenges into the synthesis of its structure. While sterically congested, the structure of 
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adamantane is inherently strain-free due to all four six-membered rings contained in its 

polycyclic structure sitting in a preferred chair conformation. With the 

methanoquinolizidine core, the medium-sized eight-membered ring introduces enough 

torsional strain that it enforces the two bridging six-membered rings to permanently sit in 

a boat conformation. This congested structure is the direct result of the defining C7-C16 

linkage, a bond that essentially causes the molecule to be folded upon itself. These unusual 

features have both intimidated and intrigued synthetic chemists who have had interest in 

accessing these alkaloids for many years.  

Scheme 1-1. Proposed biosynthesis of geissoschizine and conversion into marvacurine, akuammiline, 

and strychnos alkaloids. 

 

 The key C7-C16 linkage that leads to this complex structure appears to be born out 

from its possible biosynthesis (Scheme 1-1).3 Initial examination of the structural features 

of the akuammiline alkaloids show some similarities to other known alkaloid families, such 

as the strychnos and marvacurine alkaloids, revealing a potential shared biosynthetic origin 
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for these natural products.4 Geissoschizine (1.4), formed from the condensation of 

tryptamine 1.2 and the terpenoid secologanin (1.3), is proposed to be the biosynthetic 

precursor to for many indole monoterpene alkaloid families. This tetracyclic alkaloid can 

undergo various couplings or rearrangements to give a diverse array of natural products. 

Oxidative linkage of C16 and C7 in geissoschizine (1.4) provides the akuammiline alkaloid 

rhazimal (1.6), which is hypothesized to be the biosynthetic precursor for many alkaloids 

in this family. In comparison, a C2-C16 linkage with concomitant rearrangements provides 

the strychnos alkaloid preakuammicine (1.7), while a N1-C16 linkage leads to the 

formation of the marvacurine alkaloid pleiocarpamine (1.5). This shared biosynthetic 

pathway between these families of alkaloids foretells of the potential for shared synthetic 

strategies to access these natural products in the laboratory. 

 

Figure 1-2. Classification of akuammiline alkaloids based upon structural features. 

Scheme 1-2. Proposed biosynthetic pathway for representative akuammiline alkaloids from the 

biosynthetic precursor rhazimal (1.6). 
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The structural diversity of the akuammiline alkaloid family goes beyond the 

methanoquinolizidine alkaloids, such as rhazimal (1.6).5 This family of over 100 different 

alkaloids also contains many structurally diverse species that are the result of oxidations 
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such as akuammiline (1.1), strictamine (1.8), and pseudoakuammigine (1.9), can be 

grouped together based on this structural feature. C5 oxidation is the next differentiating 
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can be further modified via subsequent reductive cleavage toward another subgroup, the 

furoindoline derivatives such as aspidophylline A (1.12), aspidodasycarpine (1.13), and 
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natural products such as scholarisine A (1.17), hypothesized to form from parent 

furoindoline alkaloids, and the alkaloids that are a product of N4 migration, such as 

calophyline A (1.15) and vincorine (1.16).  

 This structural diversity is again hypothesized to be the result of biosynthesis, all 

beginning with modifications of the alkaloid precursor rhazimal (1.6) via changes in 

oxidation state, acylations, alkylation, or subsequent rearrangements of the original skeletal 

framework (Scheme 1-2).4 Some major modications stand out that provide access to unique 

structures within this family. First, reduction of the aldehyde in rhazimal (1.6) to rhazimol 

(1.18) provides access to numerous structures, such as the acetylated namesake alkaloid 

akuammiline (1.1) and the cyclized intermediate pseudoakuammigine (1.9). Alternatively, 

rhazimal may deformylate at C16, forming the natural product strictamine (1.8). From here, 

any of these intermediates may undergo a series of redox steps to provide eventual access 

to the furoindoline intermediates. C5 oxidation can provide access to a series of 

hemiaminal containing alkaloids, such as picraline (1.10) from akuammiline (1.1) and 

picrinine (1.11) from strictamine (1.8). Reduction of this hemiaminal intermediate provides 

the furoindoline alkaloids, such as aspidophylline A (1.12), lonicerine (1.14), and 

aspidodasycarpine (1.13). More structural diversity is obtained from skeletal 

rearrangements of these alkaloids. Migration of N4 from C3 to C2 in strictamine (1.8) leads 

to the alkaloid vincorine (1.16), while migration of N4 to C14 in psuedoakuammigine (1.9) 

with subsequent C3 oxidation would lead to calophyline A (1.15). 

 

1.2 Biological Activity 
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Figure 1-3. Representative biological activity of several akuammiline alkaloids.  
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representative, with more extensive examination of their pharmacological activity detailed 

in several reviews.4-5, 15 

 

1.3 Akuammiline Alkaloids: Prior Synthetic Studies 

 Both these intriguing structural features and biological activity outlined above have 

caught the attention of synthetic chemists for some time, but it was only within the past 

decade that successful forays into this natural product family have occurred. The rest of 

this chapter will be composed of the analysis of prior total syntheses of this family of 

alkaloids; in particular, we will focus our attention on vincorine (1.16), aspidophylline A 

(1.12), and scholarisine A (1.17), some of the most heavily studied original alkaloids in 

this family, along with some related natural products that may have had single total 

syntheses completed. Lastly, our focus will center on the methanoquinolizidine-containing 

akuammiline alkaloids, natural products that have only very recently succumbed to 

successful total synthesis but that had been the topic of study since these alkaloids first 

caught the attention of the synthetic community. Indeed, no successful synthesis had been 

completed at the time the studies in this thesis had begun. We will delve more deeply into 

these early synthetic studies, both successful and unsuccessful, as well as the recently 

completed syntheses, as they are informative of the challenges present in the syntheses of 

these alkaloids. 

 

 

1.3.1 Total Syntheses of Vincorine 
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 Vincorine (1.14) was the first akuammiline alkaloid to successfully succumb to 

total synthesis. This alkaloid is characterized by its cyclotryptamine motif, formed as the 

result of the migration of N4 from C3 to C2 in the parent alkaloid strictamine. This 

particular motif subsequently became the focus of all groups who completed syntheses of 

this natural product, often using cascade processes to that end.  

Scheme 1-3. Total synthesis of vincorine (1.16) by Yong Qin and coworkers using a key indole 

cyclopropanation/ring-opening/cyclization cascade.16 
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intermediate proved challenging to move forward with their initially desired intramolecular 

Heck strategy, instead requiring significant manipulation to provide an intermediate that 

could close the final ring by intramolecular lactamization. Over 11 steps, cyclotryptamine 

1.23 is oxidized to carboxylic acid 1.25, which upon removal of the tosyl protecting group 

under reductive conditions and coupling with Mukaiyama’s reagent provides lactam 1.26. 

This intermediate was converted over 12 steps into vincorine (1.16), providing the natural 

product in a total of 30 steps. Despite the high step count, the Qin group was able to 

successfully gain access to the first natural product within this family, a significant 

accomplishment at the time.  

Scheme 1-4. Total synthesis of vincorine (1.16) by Dawei Ma and coworkers using a oxidative coupling 

cascade as the key step.17 
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effectively shortening the number of steps necessary to finish the natural product. The 

cyclization precursor 1.27 is available over twelve steps from 5-methoxytryptamine. 

Double deprotonation of indole N-H and malonate in intermediate 1.27, followed by 

exposure to molecular iodine promotes an oxidative coupling between the central malonate 

carbon and the 3 position of the indole, forging an indolenine 1.28 that readily cyclizes 

with the pendant Boc-protected ethylamine chain, providing cyclotryptamine intermediate 

1.29. This intermediate contains the necessary functionality to synthesize the final ring of 

the natural product in short order. Conversion of the pendant allylic silyl ether into an 

allylic chloride 1.30, followed by Boc deprotection of the D ring amine and reaction under 

basic alkylation conditions provided the pentacycle 1.31, which could be converted to 

vincorine (1.16) over one step. Their rout successfully provided vincorine in a total of 18 

steps.  

Scheme 1-5. Total synthesis of vincorine (1.16) by David MacMillan and coworkers using an 

enantioselective Diels-Alder/cyclization cascade and intramolecular radical cyclization as key steps.18 
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 In 2013, David MacMillan and coworkers completed a very succinct 

enantioselective synthesis of vincorine (1.16) (Scheme 1-5).18 Their strategy centered 

around an organocatalytic Diels-Alder reaction between vinylindole 1.33, available in two 

steps from protected 5-methoxyindole 1.32, and an unsaturated aldehyde providing an 

intermediate 1.34 that would readily cyclize under the acidic reaction conditions to 

cyclotryptamine 1.35. This approach mimics that used by Levy and coworkers in a model 

system toward this natural product. Cyclotryptamine 1.35 could be readily converted to 

intermediate 1.36 over four steps. The final ring in the natural product was constructed by 

cyclization of a secondary radical, formed by decomposition of an acyl telluride, onto the 

propargyl thioether chain, providing an exocyclic allene 1.37 that was selectively 

hydrogenated to vincorine (1.16). The MacMillan group was able to complete the shortest 

synthesis of vincorine (1.16) to date, providing the natural product in nine steps. 

 

1.3.2 Total Syntheses of Aspidophylline A 

 Aspidophylline A (1.12) was one of the earliest targets, and subsequently turned 

into one of the most popular, within this alkaloid family, with four successful total 

syntheses having been completed to date. This natural product is a characteristic member 

of the furoindoline subgroup of akuammiline alkaloids. This characteristic motif has 

typically been the main focus of syntheses of this natural product, with many of the 

strategies focusing on ways to forge the key furoindoline moiety. 

 The seminal publication of the total synthesis of aspidophylline A (1.12) came from 

Neil Garg and coworkers in 2011.19 Their approach centered around two key steps: an 

intramolecular Heck reaction to form the E ring, and an interrupted Fischer indolization 
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reaction to forge the key furoindoline system in the natural product. Their Heck cylization 

substrate 1.39, readily prepared from 2-pyridinone 1.38 over seven steps, efficiently 

cyclized to form bicycle 1.40, which was converted into lactone 1.41 over nine steps. 

Reaction of this substrate with phenylhydrazine in the presence of trifluoroacetic acid led 

to the synthesis of indolenine 1.42 via an interrupted Fischer indolization, whose lactone 

motif was subsequently opened in basic methanol to form the furoindoline intermediate 

1.43. This intermediate was readily converted to aspidophylline A (1.12), providing the 

natural product in a total sequence of 22 steps. Neil Garg and coworkers later published a 

shorter 17 step enantioselective synthesis of this natural product in 2016 that centered 

around a similar approach.20 

Scheme 1-6. Total synthesis of aspidophylline A (1.12) by Neil Garg and coworkers using key Heck 

cyclization and interrupted Fischer Indolization steps.19 
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oxidative coupling to indolenine 1.46 followed by cyclization to the furoindoline core 1.47. 

Conversion of this intermediate over seven steps provided the intramolecular Heck reaction 

precursor 1.48, which readily cyclized to the pentacycle 1.49. This intermediate was readily 

converted into apsidophylline A (1.12) upon removal of Boc protection with 

trimethylsilyltriflate. Dawei Ma and coworkers were able to access this natural product 

over a total of 14 steps. 

Scheme 1-7. Total synthesis of aspidophylline A (1.12) by Dawei Ma and coworkers using a key 

oxidative coupling/cyclization cascade.21 
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successfully underwent intramolecular conjugate addition via lithium-halogen exchange of 

the vinyl iodide, providing pentacycle 1.54. This intermediate was readily converted to 

aspidophylline A (1.12) over two steps, providine a successful total synthesis over a total 

of 14 steps. 

Scheme 1-8. Total synthesis of aspidophylline A (1.12) by Jieping Zhu and coworkers via key 

oxacyclization and intramolecular conjugate addition steps.22 
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Scheme 1-9. Total synthesis of aspidophylline A (1.12) by Yu-Rong Yang and coworkers using a key 

enantioselective iridium-catalyzed cyclization cascade.23 
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readily cyclized onto the epoxide to form tricyclic intermediate 1.62. Subsequent protection 

and oxidation provided ketone 1.63, which underwent Fischer indole synthesis with 1-

benzyl-1-phenylhydrazine to provide the indole 1.64. To close the final ring in the 

structure, lactone 1.64 was converted into mesylate 1.65 over a non-trivial sequence of ten 

steps. Intramolecular cyclization of the mesylate with the indole under basic conditions 

provided indolenine 1.66, which was converted over two steps into scholarisine A (1.17) 

and providing the natural product in a total of 20 steps. 

Scheme 1-10. Total synthesis of scholarisine A (1.17) by Amos Smith and coworkers featuring key 

aminocyclization and indole alkylation steps.24 
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indolenine ring in the natural product was assembled via a radical-mediated C-H 

functionalization reaction, wherein (2-iodophenyl)imine 1.72, prepared from tricycle 1.71 

in five steps, underwent radical decomposition to the aryl radical 1.73, which abstracted 

the adjacent proton from the tertiary C7 position. The newly formed tertiary radical 

cyclized onto the aromatic ring, providing indolenine 1.74 upon air oxidation. This 

intermediate was readily converted into scholarisine A (1.17) over four steps. Scott Snyder 

and coworkers completed a successful synthesis of this natural product over 14 steps.  

Scheme 1-11. Total synthesis of scholarisine A (1.17) by Scott Snyder and coworkers using key radical 

cascade and C-H functionalization steps.26 
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(Scheme 1-12).27-28 Their approach paralleled the one they used in the synthesis of 

aspidophylline A (1.12) but was informed by the higher oxidation state present at the C5 

stereocenter. The key ketone intermediate 1.76, available over 11 steps from protected 4-

aminocyclohexanone 1.75, was cyclized under via Fischer indolization to provide 

indolenine 1.77. Unlike the related aspidophylline A intermediate, which contained a 

lactone moiety, this intermediate contained a protected diol. Deprotection and oxidative 

cleavage of this diol would provide a dialdehyde wherein the more properly positioned of 

the two groups could cyclize onto the indolenine to form hydroxyfuroindoline intermediate 

1.78, which was readily converted into the natural product over three additional steps. Neil 

Garg and coworkers were able to successfully complete a total synthesis of picrinine (1.11) 

over a total of 17 steps. 

Scheme 1-12. The total synthesis of picrinine (1.11) by Neil Garg and coworkers using key Fischer 

indolization and diol cleavage/oxacyclization steps. 27 
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significantly more challenging than some of the other previously explored alkaloids due to 

the presence of the vicinal C7 and C16 quaternary stereocenters in their central core. To 

address this issue, Ang Li had to use a somewhat different approach, using an 

intramolecular gold-catalyzed cyclization and an intramolecular alkylation to form key 

stereocenters. Beginning from indole intermediate 1.79, they were successfully able to 

synthesize cyclization substrate 1.80 enantioselectively over six steps. Gold-mediated 

cyclization between the TIPS enol ether and the pendant alkyne furnished ketone 

intermediate 1.81, which was readily converted into iodide 1.82 over seven steps. C-3 

alkylation of the indole followed by allyl protecting group removal furnished lactol 1.83, 

which readily cyclized to furoindoline 1.84 upon reduction with sodium borohydride. 

Subsequent protecting group manipulations and oxidations provided access to both 

aspidodasycarpine (1.13) and lonicerine (1.14). 

Scheme 1-13. Total synthesis of aspidodasycarpine (1.13) and lonicerine (1.14) by Ang Li and 

coworkers using key gold-catalyzed cyclization and indole alkylation steps.29 
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 In 2016, Liansuo Zu and coworkers published the first total synthesis of 

calophylline A (1.15), a rearranged akuammiline alkaloid characterized by migration of the 

N4 nitrogen from C3 to C14 (Scheme 1-14).30 This is the only alkaloid in this family known 

to have this specific migration pattern. Additionally, it is one of the few alkaloids with a 

cyclized furoindoline motif derived from a C16 substituent, similar to that seen in 

akuammine and pseudoakuammiline; no successful synthesis of an akuammiline alkaloid 

containing such a motif had been completed up to this point. There approach centered 

around a cascade process beginning from spirocycle 1.86, available from protected 3-

indolenone 1.85 in six steps. Reaction of this intermediate in the presence of trifluoroacetic 

acid leads to formation of a tertiary carbocation that readily under goes an aza-pinacol 

rearrangement, leading to a product that readily eliminates under the acidic conditions to 

unsaturated imine 1.87. This intermediate is readily trapped with the pendant sulfonamide 

chain, forming tetracycle 1.88. This intermediate is converted over nine steps to allylic 

alcohol 1.89 which undergoes an intramolecular Heck cyclization to provide aldehyde 

1.90. The last major goal for the synthesis of this natural product was the introduction of 

the final substituent on the C16 stereocenter which would subsequently cyclize to form the 

key furoindoline motif. In order for this to successfully work, they required both oxidation 

of the indoline up to the indolenine, as well as C3 oxidation, in order for successful aldol 

condensation on the C16 center to occur.  Presumably these oxidations made the axial face 

of the formed enolate more accessible to reaction with formaldehyde. This could be readily 

accomplished in three steps, providing intermediate 1.91. This substrate 1.91 successfully 

reacted under basic conditions with formaldehyde to provide furoindoline intermediate 

1.92, which was readily converted into calophylline A (1.15) over two steps. Ang Li and 
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coworkers were successfully able to complete a total synthesis of this natural product over 

22 steps. 

Scheme 1-14. Total synthesis of calophyline A (1.15) by Liansuo Zu and coworkers, centering around 

an aza-Pinacol/Elimination/Conjugate Addition cascade.30 
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aspects of this synthesis, Dolby hypothesized that this center could potentially be formed 

by reaction of an indole and a pendant electrophilic chain, forging the C ring in a final step 

from an indole substituted bicyclic precursor. In order to test this hypothesis, they had to 

synthesize a prerequisite 1-aza-[3.3.1]bicyclononane substrate 1.96 containing a fused 

indole to react with the pendant electrophile. Initially they were able to access this structure 

from substituted cyclohexene 1.93 by epoxidation and base-mediated amide cyclization to 

provide alcohol 1.94, which was subsequently oxidized to ketone 1.95. Subsequent Fischer 

indole synthesis provided the desired structure 1.96, albeit in low enough of yield to 

warrant an alternative approach. Beginning with 4-carbethoxycyclohexanone 1.97, Fischer 

indolization and subsequent reduction with lithium aluminum hydride provided alcohol 

1.98, which was homologated with cyanide via a two-step protocol to intermediate 1.99. 

Subsequent benzylic oxidation with periodic acid to ketone 1.100, followed by reduction 

of both the ketone and nitrile moieties with lithium aluminum hydride provided the amino 

alcohol 1.101, which cyclized to the desired core 1.102 upon heating in 1,2-

dichlorobenzene. The free nitrogen of the bicycle could be coupled with various 

substituents for forming the C ring. Subsequent attempts to complete this final ring closure 

proved to be unsuccessful. Using either an a-chloroamide 1.103 or one pot 

mesylation/alkyation with alcohol 1.105 proved unsuccessful, as well as N-methylindole 

substrate 1.107, presumably used to prevent possible N1 alkylation. While this strategy 

proved unsuccessful, it did provide insights for future groups looking to synthesize these 

natural products. 
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Scheme 1-15. Studies by Dolby and coworkers toward an akuammiline alkaloid methanoquinolizidine 

core.31-32 
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allylamine of the E ring as present in strictamine (1.18). The Bosch group explored the 

formation of this final bond via activation of the alcohol, but found no desired cyclization, 

similar to what was observed previously by Dolby. In addition, the Bosch group explored 

alternative strategies, such as the use of thionium ions either generated from a pummerer 

rearrangement of sulfoxide 1.113 or via a thioacetal intermediate1.114, to forge the final 

ring. However, these intermediates cyclized on the less sterically-hindered indole nitrogen 

instead of at the 3 position of the indole, providing pentacycles 1.115 and 1.116, thus 

proving this strategy to be unsuccessful. 

Scheme 1-16. Studies by Bosch and coworkers toward the akuammiline alkaloids.33-34 
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enaminone intermediate 1.117 to tetrahydro-b-carboline 1.118 whose motif could be 

mapped onto the akuammiline alkaloids. They envisioned cyclizing to a tetracyclic 

intermediate 1.120 via cyclopropanation of the indole ring, followed by ring opening to the 

indolenine. Conversion of the b-carboline intermediate 1.118 to diazo 1.119 was 

successful, but no cyclization was observed under a variety of conditions tested.  

Scheme 1-17. Synthetic attempts to form an akuammiline alkaloid core by Cook and coworkers.35 
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this intermediate successfully creates the hemisphere of the methanoquinolizidine subset 

of alkaloids that differs from the other members of the akuammiline alkaloid family and 

carries a similar nitrogen substitution pattern to an intermediate that worked successfully 

in our laboratory (Chapter 2). 

Scheme 1-18. Successful synthesis of a tetracyclic akuammiline alkaloid core by Matsuo and 

coworkers.36 
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Scheme 1-19. Synthetic studies of a ring-closing-metathesis/Ireland-Claisen approach toward 

strictamine by Hidetoshi Tokuyama and coworkers.37 
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double deprotonation of the indole and malonate substituent with LiHMDS, followed by 

reaction with molecular iodine. However, this substrate led exclusively to substitution on 

the indole nitrogen instead of the 3 position of the indole, forming tetracycle 1.135. 

Scheme 1-20. Attempted synthesis of an akuammiline alkaloid tetracyclic core by Jieping Zhu and 

coworkers.38 
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Upon reoxidation to the indolenine with pyridinium chlorochromate, strictamine (1.18) 

was synthesized upon nosyl deprotection and spontaneous cyclization of the D ring. 

Cathafoline (1.141) was also obtained from the same precursor by reductive amination with 

formaldehyde to provide the N-methylindoline, followed by a similar deprotection and 

cyclization sequence. Both natural products were accessed enantioselectively in a total of 

24 steps, and represent a significant achievement that was a long time coming in this area 

of alkaloid synthesis. 

Scheme 1-21. Total synthesis of strictamine (1.18) and cathafoline (1.141) by Neil Garg and coworkers 

using a Fischer indolization/reduction and late state D ring cyclization.20 
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with sodium iodide to bridged bicycle 1.145. This intermediate was readily converted over 

four steps into indolenine intermediate 1.146 containing an a,b-unsaturated ester and a 

pendant vinyl iodide readily positioned for planned intramolecular reductive Heck 

cyclization to complete the synthesis. However, significant challenges were faced in 

getting this reaction to occur, and the only successful result was obtained with 

stoichiometric nickel in low yield (5-10%), providing strictamine (1.18) directly. The 

difficulty in this last cyclization may be due to the C ring needing to occupy a less favored 

boat conformation for the cyclization to occur. After the publication of the total synthesis 

of strictamine from the Zhu group, many groups published formal syntheses of strictamine 

(1.18) that end at the same unsaturated ester intermediate 1.146. This implies several other 

groups might have looked into using a similar approach but were not able get the 

cyclization reaction to successfully occur on their own. 

Scheme 1-22. Total synthesis of (±)-strictamine (1.18) by Jieping Zhu and coworkers employing an 

intramolecular reductive Heck cyclization to forge the E ring.39 

 

 Nobutaka Fujii, Kiroaki Ohno, and coworkers completed a 14 step formal synthesis 

of strictamine (1.18) that centered around a gold-catalyzed cyclization to form the central 

D ring of the natural product (scheme 1-23).40 Beginning with dihydro-b-carboline, 

propargyl alcohol 1.147 was successfully synthesized over a sequence of eight steps. This 
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intermediate successfully underwent an intramolecular gold-catalyzed cyclization between 

the indole and the pendant alkyne to provide tetracycle 1.148. This intermediate was 

converted in nine steps to intermediate 1.146 that the Zhu group successfully cyclized into 

strictamine (1.18). 

Scheme 1-23. Formal synthesis of (±)-strictamine (1.18) by Fujii, Ohno, and coworkers employing a 

gold(I)-catalyzed cyclization to forge the C ring.40 

 

 Tanja Gaich and coworkers has published a 26 step formal synthesis of strictamine 

(1.18) that centers around using several strategic [2,3]-Stevens rearrangements to 

synthesize the desired core (Scheme 1-24).41-42 Their goal was to access a zwitterionic 

intermediate 1.155 that would undergo a [2,3]-Stevens rearrangement to provide a C/D 

bicycle 1.156. The route to this intermediate was lengthy, beginning with the synthesis of 

substituted pyrollidine 1.151 from nitroarene 1.150 over twelve steps. Introduction of the 

allyl substituent that would later be necessary for the key rearrangement occurred by an 

earlier [2,3]-Stevens rearrangement with intermediate 1.152, leading to intermediate 1.153. 

This structure was converted into the key bicycle 1.154 over nine steps, with allylation and 

rearrangement of this intermediate leading to the desired C/D core 1.155. This intermediate 

was converted over two steps to the previously reported Zhu intermediate 1.146, leading 

to completion of the synthesis. 
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Scheme 1-24. Formal synthesis of (±)-strictamine (1.18) by Tanja Gaich and coworkers employing a 

[2,3]-Stevens rearrangement to forge the D ring.41 

 

 Scott Snyder and coworkers published a short enantioselective formal synthesis 

(1.18) of strictamine that has some parallels to the synthesis of Fujii and Ohno (Scheme 1-

25).43 An copper-catalyzed asymmetric propargylation of dihydro-b-carboline with allenyl 

pinacolborane was used to set the first stereocenter, providing alkyne intermediate 1.156. 

Palladium-catalyzed carbonylation of the terminal alkyne provided alkynyl ester 1.157. A 

key gold(I)-catalyzed cyclization provided the tetracyclic intermediate 1.158 in the correct 

oxidation state, which could provide the Zhu intermediate 1.146 after a simple alkylation. 

This route would provide strictamine over a total of seven steps, the shortest route to this 

natural product to date. 
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Scheme 1-25. Formal synthesis of (+)-strictamine (1.18) by Snyder and coworkers using an 

enantioselective propargylation and gold(I)-catalyzed cyclization to forge the C ring.43 

 

 

1.5 Conclusion 

 The akuammiline alkaloids have been a group of natural products that have 

attracted interest from the synthetic community for a long time, but the inherent challenges 

in their structure have limited their successful synthesis until recently. As can be seen, 

studies toward these alkaloids have been a proving ground for methodology in the synthesis 

of natural products containing complicated polycyclic architectures, leading to the 

development of many creative strategies to access these difficult motifs. Despite what has 

been accomplished, much more can still be done to come up with creative and succinct 

strategies to access these natural products. 
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Chapter 2. Development of a Cascade Annulation Toward an 
Akuammiline Alkaloid Core 
2.1 Previous Studies: Iminium Ion Cascades Toward the Malagasy Alkaloids 

 The Blakey group has a long standing interest in the synthesis of nitrogen-

containing natural products. Our laboratory had previously examined the development of 

an iminium ion cascade annulation that would lead to the core structure of a previously 

unsynthesized family of natural products, the Malagasy alkaloids, that have promising 

antimalarial activity (Scheme 2-1).1 Toward this end, we envisioned tetracyclic core 2.3 as 

being a useful synthetic intermediate toward these natural products and that it could 

potentially be accessed by a cascade reaction, wherein reaction of an activated iminium ion 

2.1 with the 3 position of a pendant indole would form an indolenium ion 2.2 that is then 

positioned to react with a pendant nucleophilic allylsilane, forming a tetracyclic core 2.3 

of malagashanine (2.4), as shown. 

Scheme 2-1. Initially proposed iminium ion cascade annulation toward a core structure 2.3 of the 

Malagasy alkaloids. 

 

 A prior student in our laboratory, Ricardo Delgado, performed significant initial 

investigations into developing this cascade.2  He initially proposed being able to access a 

desired imine precursor 2.7, which he hypothesized would be directly activated into an 

iminium ion using an appropriate acyl chloride, by direct condensation of b,g-unsaturated 

aldehyde 2.6 and 1-methyltryptamine 2.5 under both acidic and neutral conditions (Scheme 
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2-2). However, this intermediate was never isolated or observed, instead producing a 

complex mixture of possible decomposition products, believed to potentially be due to 

isomerization of the olefin into conjugation with the carbonyl. Therefore, a new method 

was required for formation of the iminium ion not by condensation, but under conditions 

that would prevent potential olefin isomerization. 

Scheme 2-2. Initial attempts toward a direct imine condensation reaction for the synthesis of a 

Malagasy alkaloid core.2 

 

 A solution to the problem was achieved using an alternative strategy, where instead 

coupling the two fragments together in a higher oxidation state, as a carboxylic acid 

derivative instead of an aldehyde, and then performing a strategic reduction would provide 

access to an intermediate that would be able to provide the desired iminium ion, preferably 

under aprotic conditions. Precedent for this process was found in prior work by the Suh 

group, where they were able to selectively form N-acyliminium ions like 2.10 by Lewis-

acid-mediated decomposition of O-TMS hemiaminal ethers 2.9, an intermediate in the 

desired aldehyde oxidation state but already condensed with the desired amine (Scheme 2-

3).3 Subsequently, these iminium ion intermediates could react readily with nucleophiles. 

These hemiaminal ether intermediates were formed by selective reduction of the previously 

formed amides 2.8 with diisobutylaluminum hydride at low temperature, followed by 

trapping with a silylating reagent.  
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Scheme 2-3. Synthesis of hemiaminal ethers via reduction of amides and subsequent decomposition 

with Lewis acids to iminium ions, as reported by Suh and coworkers.3 

 

 Dr. Delgado was able to successfully use this approach to develop a cascade 

annulation that provided access to a Malagasy alkaloid core (Scheme 2-4).4 After exploring 

a variety of protecting group patterns for both the indole and hemiaminal ether nitrogens, 

he was able to obtain an effective cyclization protocol for the Malagasy core with substrate 

2.12. Decomposition of this N-Benzyl N’-Tosyl substrate with Lewis acid provided 

tetracycle 2.13 in 82% yield. Sulfonyl substitution on the hemiaminal ether nitrogen was 

found to be critical for obtaining the observed regioselectivity for reaction with the indole. 

Otherwise, Pictet-Spengler cyclizations would be found as the dominant product of the 

reaction. 

Scheme 2-4. Successful cyclization of N-tosyl hemiaminal ether 2.12 to form a Malagasy alkaloid core 

2.13.4 

 

 In order to use this cascade reaction in a synthesis, a way to introduce substitution 

at the C16 position would be necessary (Scheme 2-5). This was deemed to be too 

synthetically challenging using tetracycle 2.13 formed above from a 1,1-disubstituted 
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cascade. However, it was unknown if the cascade would tolerate the increased steric 

hindrance of an additional substituent on the olefin, or whether the cascade would be 

subsequently diastereoselective in the formation of the C16 stereocenter. To test this, two 

isomeric variants of a trisubstituted derivative, 2.14 and 2.16, were synthesized and tested 

in the cascade reaction. Both isomers were found to successfully cyclize to Malagasy cores 

(2.15 and 2.17), and excitingly the geometry of the allylsilane directly translated into the 

stereochemistry of the C16 stereocenter. The stereochemistry formed from the benzyl 

protected E-allylsilane product 2.17 directly mapped onto that observed in the natural 

product malagashanine (2.4), so this intermediate was moved forward in a successful 

synthesis of the natural product.5 

Scheme 2-5. Cascade annulation reaction of hemiaminal ether substrates 2.14 and 2.16 toward C16 

substituted cores 2.15 and 2.17.5 
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2.2 Unexpected Regiodivergent Cascade Products During Malagasy Alkaloid Studies 

Scheme 2-6. Regiodivergent cascade reactions, relevant to the akuammiline alkaloids, discovered 

during studies toward the Malagasy alkaloids.2 

 

 During initial investigations toward a Malagasy alkaloid cascade, some trends were 
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with this substitution pattern. Intriguingly, these obtained bridged polycycles map well 

onto the methanoquinolizidine akuammiline alkaloids, such as strictamine (2.24), for 

which no successful syntheses had been completed at the time of this discovery. 

Scheme 2-7. Divergent pathways for iminium ion cyclizations due to differing nitrogen substituents.  
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benzylic cation intermediate 2.25. This intermediate is also obtained when a 6-methoxy 
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second cyclization with the allylsilane to form an akuammiline alkaloid core 2.27, as occurs 

alternatively with a tosyl substituent on the indole. Therefore, it seems that the substituents 

on both the indole and hemiaminal ether nitrogens played a larger role than just protection, 

steering the mechanism down differing pathways that could lead to topologically 

contrasting products.  

Scheme 2-8. Proposed retrosynthetic analysis for the development of more synthetically useful cascade 

reaction for the synthesis of an akuammiline alkaloid core. 
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an effect potential additional transannular strain for the allylsilane addition step would have 

on the success of making an akuammiline alkaloid core. Herein, we describe our studies 

toward the development of a cascade reaction that would allow for the synthesis of a more 

synthetically useful akuammiline alkaloid core.   

 

2.3 Synthesis and Reactivity of N,N’-Bistosyltryptamine Hemiaminal Ether 

substrates 

Scheme 2-9. Retrosynthetic analysis for synthesis of hemiaminal ether substrates 2.31 and 2.32. 
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amide, so our initial forays into these systems involved developing a synthetic route to 

N,N’-bistosyltryptamines 2.33 and 2.35 and carboxylic acid 2.35.  

Scheme 2-10. Synthesis of N,N’-bistosyl-6-methoxytryptamine 2.33 via a key Japp-Klingeman/Fischer 

indolization reaction sequence. 
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deprotonated ethyl acetoacetate provided the alkylated acetoacetate derivative 2.37 in 71% 

yield over two steps. The indole moiety was furnished over a sequence of two steps. First, 

a Japp-Klingeman reaction was performed on the 1,3-dicarbonyl to provide hydrazone 

2.38, which was directly subjected to acid to induce a Fischer indolization to provide the 

6-methoxyindole 2.39 in 69% yield over two steps. To provide 6-methoxytryptamine 2.40, 

the phthalimide protecting group and the ethyl carboxylate in the 2 position of the indole 

would need to be removed. Refluxing with aqueous potassium hydroxide removed the 

phthalimide group and saponified the ester, while subsequently refluxing with hydrochloric 

acid promoted the necessary decarboxylation, providing 6-methoxytryptamine 2.40 in 72% 

yield over two steps. Tosyl protection of both nitrogens occurred via a four step sequence. 

Temporary protection of the aliphatic nitrogen as the tert-butylcarbamate followed by tosyl 

protection of the indole nitrogen provided intermediate 2.41 in 80% yield over two steps. 

Subsequent removal of the carbamate under acidic conditions followed by tosyl protection 

of the aliphatic nitrogen provided N,N’-bistosyl-6-methoxytryptamine 2.33 in 45% yield 

over two steps.2 

Scheme 2-11. Synthesis of N,N’-bistosyltryptamine 2.34. 
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the indole nitrogen was protected as the sulfonamide 2.43. This material was take on crude 

to the next step due to the presence of residual tosyl chloride being inconsequential in later 

steps. Subsequent removal of the Boc protecting group under acidic conditions followed 

by tosyl protection of the aliphatic nitrogen provided N,N’-bistosyltryptamine 2.34 in 55% 

yield over three steps. 

Scheme 2-12. Synthesis of allylsilane 2.33. 
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Scheme 2-13. Coupling of tryptamines 2.33/2.34 and carboxylic acid 2.35 and concomitant reduction 

to the hemiaminal ether substrates 2.31/2.32. 
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temperature followed by trapping with trimethylsilylimidazole in the presence of 

imidazole, providing hemiaminal ether substrate 2.31 in 80% yield and 2.32 in 50% yield.  

Scheme 2-14. Reaction of hemiaminal ether substrates 2.31 and 2.32 with BF3·OEt2 to provide Pictet-

Spengler products 2.51 and 2.52. 
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applied to an actual total synthesis of an akuammiline alkaloid. First, none of the desired 

targets contain a methoxy substituent in the 6 position of the indole, meaning that a 

difficult removal of this functionality would be necessary at a later stage in any synthetic 

sequence. Additionally, the use of tosyl protection on both nitrogens would prove 

difficult when later differentiation of both nitrogens would be necessary. Finally, the use 

of 6-methoxytryptamine as a starting material was both expensive, and the step count 

would increase significantly if it needed to be synthesized, requiring seven steps to 

successfully access. Therefore, our efforts focused on the development of cascade 

substrate that would provide a product with more synthetic utility.  

 

2.4 Development of (N-Ts-N’-Cbz)tryptamine-based Substrates for Akuammiline 

Alkaloid Cascade Reactions 

Scheme 2-15. Reexamination of (N-Ts-N’-Cbz)tryptamine substrate 2.20 shows that it would 

potentially provide a more synthetically useful akuammiline alkaloid core. 
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regioselectivity (Scheme 2-15). While the yield obtained was low, we believed we could 

further optimize the reaction conditions if a substrate with a trisubstituted allylsilane would 

provide us our desired cascade product. Therefore, we set out to synthesize both allylsilane 

isomers of the (N-Ts-N’-Cbz)tryptamine hemiaminal ether substrates. 

Scheme 2-16. Synthesis of N-tosyltryptamine hydrochloride salt 2.53. 
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allylsilane addition occurred through a chair-like transition state. Synthesis of this 

precursor began with protection of 3-butyn-1-ol as the PMB ether 2.54 in 72% yield, 

followed by deprotonation of the terminal alkyne and subsequent addition to 

paraformaldehyde to provide the propargyl alcohol 2.55 in 97% yield. This alcohol was 

used to direct reduction of the alkyne with Red-Al®, with subsequent trapping of the formed 

organoaluminate with N-iodosuccinimide to provide Z-vinyl iodide 2.56 in 83% yield.10 

Protection of the allylic alcohol as the TBDPS ether followed by removal of the PMB group 

with DDQ provided homoallylic alcohol 2.57. The desired product proved difficult to 

separate from the p-anisaldehyde byproduct formed from this oxidative cleavage step, so a 

subsequent reduction of the byproduct with sodium borohydride was required to facilitate 

purification, providing the desired homoallylic alcohol 2.57 in 92% yield over two steps. 

Sequential Dess-Martin and Pinnick oxidations provided the carboxylic acid 2.58, which 

was subsequently subjected to our previously used Negishi coupling conditions to provide 

the desired allylsilane 2.59 in 78% yield over three steps.8 

Scheme 2-17. Synthesis of Z-allylsilane carboxylic acid intermediate 2.59. 
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 Synthesis of our desired hemiaminal ether intermediate 2.62 was accomplished via 

a three step synthetic sequence (Scheme 2-18). Carboxylic acid 2.59 was coupled to 

tryptamine hydrochloride 2.53 using EDC and HOBt, providing N-H amide 2.60 in 64% 

yield. Subsequent deprotonation of the amide followed by trapping with CbzCl provided 

the N-Cbz amide 2.61 in 97% yield. Reduction of the N-Cbz amide with DIBAL-H 

followed by trapping with trimethylsilylimidazole provided hemiaminal ether 2.62 in 96% 

yield. 

Scheme 2-18. Synthesis of hemiaminal ether substrate 2.62. 
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obtained was an akuammiline alkaloid core with the desired C16 substituent sitting in the 

axial position. This relative stereochemistry does not match that of the methyl ester 

substituent in akuammiline alkaloid natural products. Due to our knowledge that both 

allylsilane isomers are tolerated and are able to provide differing C16 epimers selectively 

in our Malagasy alkaloid cascade, we next decided to examine E-allylsilane isomers of our 

substrate in the akuammiline cascade. 

Scheme 2-19. Cyclization of hemiaminal ether 2.62 to tetracycle 2.63 with Lewis acid. 

 

 

Figure 2-1. X-ray crystal structure of obtained akuammiline alkaloid core tetracycle 2.63. 
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2.55, TBDPS protection followed by removal of the PMB ether with DDQ provided 

homopropargylic alcohol 2.64 in 72% yield over two steps. Hydrozirconation of the 

homopropargylic alcohol followed by trapping with N-Iodosuccinimide provided the E-

vinyl iodide 2.65 in 74% yield.7 Sequential Dess-Martin and Pinnick oxidation provided 

carboxylic acid 2.66, which was subjected to a Negishi coupling to provide E-allylsilane 

2.67 in 76% yield over three steps.8 

Scheme 2-20. Synthesis of E-allylsilane carboxylic acid 2.67. 
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Scheme 2-21. Synthesis of hemiaminal ether substrate 2.70. 

 

 The E-allylsilane isomer of the hemiaminal ether substrate 2.70 did not cyclize to 

form the desired akuammiline alkaloid core like the prior substrate, instead providing a 

diene product 2.71 in 71% yield (Scheme 2-22). This is similar to the result observed with 

prior hemiaminal ether substrate containing a 6-methoxytryptamine moiety. We initially 

hypothesized that this cyclization might not have been successful due to steric hindrance 

caused by the large TBDPS ether, believing that switching to a less sterically congested 

benzyl ether might allow allylsilane addition step to occur.  

Scheme 2-22. Cyclization of hemiaminal ether substrate 2.70 to diene product 2.70 obtained by a Pictet-

Spengler cyclization.  
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coupling the previously discussed carboxylic acid 2.35 with tryptamine hydrochloride 2.53 

with EDC and HOBt, providing the N-H amide 2.72 in 90% yield. Reaction of the 

deprotonated amide with CbzCl provided the N-Cbz amide 2.73 in 77% yield. Reduction 

with DIBAL-H and trapping with trimethylsilylimidazole provided the desired hemiaminal 

ether 2.74 in 73% yield. 

Scheme 2-23. Synthesis of benzyl protected hemiaminal ether substrate 2.74. 
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Scheme 2-24. Cyclization of hemiaminal ether substrate 2.74 to provide previously obtained diene 2.71. 

 

 This difference in product selectivity between the two differing allylsilane isomers 

was rationalized by examination of the possible transition states for the allylsilane addition 

step (Figure 2-2). Examination of the chair-like transition states for the allylsilane addition 

step of both isomers reveals significant transannular strain between the 

trimethylsilylmethylene substituent of the allylsilane and the already formed piperidine D 

ring. This strain is relieved in a boat-like transition for Z-allylsilane intermediate. 

Additionally, the product formed from the Z-allylsilane isomer is that expected from a boat-

like transition state for this step. Intriguingly, the products observed from the previously 

developed Malagasy alkaloid cascade are also those expected from a boat-like transition 

state for the allylsilane addition. In contrast, invoking a similar transition state for the E-

allylsilane isomer introduces instead significant eclipsing interactions between the 

protected silyloxymethylene substituent of the allylsilane and the already formed D ring. 

Therefore, the E-allylsilane isomer experiences significant steric hindrance in either 

possible transition state for the allylsilane addition step, allowing rearomatization of the 

indole ring to outcompete. This is in direct contrast to what is observed with our previously 

developed Malagasy alkaloid cascades, where both allylsilane geometries are able to 

successfully cyclize to tetracyclic alkaloid cores. This demonstrates the increased steric 

demands for the bridged akuammiline alkaloid system in comparison to Malagasy alkaloid 

cores.  
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Figure 2-2. Rationale for the observed product outcomes for the Z- and E-allylsilane isomers based 

upon the possible transition states for the allylsilane addition step. 

 

2.5 Optimization of the Z-Allylsilane Containing Hemiaminal Ether Cascade 

 Having successfully developed a cascade reaction with a trisubstituted allylsilane 

that would provide a properly substituted akuammiline alkaloid core, we sought out to 

optimize the reaction conditions to provide a more significant yield of our desired core 

(Scheme 2-25). The main byproduct observed from the reaction was (N-Ts-N’-

Cbz)tryptamine, the result of hydrolysis of the formed iminium ion in the cascade. We 

found that the combination of running the reaction at lower temperature for longer times (-

78 °C for 24 hours) with the addition of freshly dried 4Å molecular sieves provided a more 

useful yield of the desired core 2.63 (83%). Of note is that this cascade would begin to 

experience problems if attempted on a significantly larger scale (>6 grams of hemiaminal 

ether substrate), with the diene observed for the E-allylsilane isomers beginning to appear 

in this reaction. The desired core and the diene byproduct often proved difficult to separate 

by column chromatography, leading to lower isolated yields of the desired core 2.63 (~40-

50%). 
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Scheme 2-25. Development of optimized reaction conditions for cyclization of Z-allylsilane isomer 2.62 

to tetracyclic akuammiline core 2.63. 

 

 

2.6 Studies Toward the Development of an Asymmetric Iminium Ion Cascade 

 The cascade reactions we have developed toward both the Malagasy and 

akuammiline alkaloids have proven to be powerful methods, but both regiodivergent 

variants would be the first stereodetermining step in any synthetic sequence toward these 

alkaloids. Due to the formation of a stereoablated iminium ion intermediate, both cascades 

inherently lead to racemic products. Our laboratory has had a longstanding interest in 

developing an asymmetric variant of our cascade reactions, especially if induced by the use 

of an asymmetric catalyst. However, there are inherent challenges to the development of 

asymmetric methods for additions to C-N double bonds, an area much less developed than 

additions to carbonyls. Due to the decreased electronegativity of nitrogen compared to 

oxygen, an imine is inherently less electrophilic than a carbonyl. This decreased 

electronegativity also makes nitrogen more Lewis basic, sometimes leading to strong 

binding of the addition products to any typically used Lewis acidic catalyst, diminishing 

turnover. Asymmetric additions to iminium ions are even more difficult due to the absence 

of strong Lewis basic sites necessary for catalyst binding. Therefore, enantioselective total 

syntheses typically do not use iminium ion reactions as their stereodetermining step. We 
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will describe herein studies performed to examine both a chiral auxiliary approach and an 

asymmetric catalytic approach to our cascade reactions. 

 

2.6.1 Examination of Diastereoselective Additions to Hemiaminal Ethers Substituted 

with Ellman’s Auxiliary 

 Since their introduction in 1997 by Jonathan Ellman and coworkers, chiral 

sulfinamides (2.64) have found extensive use as chiral ammonia equivalents for the 

asymmetric synthesis of amines (Scheme 2-26).11 These chiral auxiliaries are 

commercially available and can be condensed with aldehydes and ketones to form 

sulfinimines 2.65 in high yields. Diastereoselective reduction or nucleophilic attack of 

these sulfinimines to sulfinamides 2.66, followed by removal of the chiral auxiliary under 

mildly acidic conditions, leads to chiral amines 2.67 with high enantioselectivities. In our 

Malagasy alkaloid cascade, a tosyl group on the hemiaminal ether nitrogen is necessary for 

both iminium ion activation as well as to provide the desired regioselective outcome of the 

reaction. Observing the similarity between a sulfonamide and Ellman’s sulfinamide 

auxiliaries, we hypothesized that we could develop an enantioselective variant of our 

cascade (2.68-2.70) using this auxiliary as a chiral directing group. However, this auxiliary 

had never been used in reactions of iminium ions, so the effectiveness of a sulfinyl 

substituent as an activating group, as well as its tolerance of the reaction conditions, were 

unclear. Therefore, we set out to explore several simple model systems to see if we could 

both synthesize sulfinyl-substituted hemiaminal ethers 2.68 as well as subject them to our 

cascade reaction conditions.  
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Scheme 2-26. Utilization of Ellman’s auxiliary 2.64 in diastereoselective additions to amines,11 and the 

proposed iminium ion cascade annulation using Ellman’s auxiliary as a chiral activating group. 

 

Two groups of model systems were explored to analyze the effect of a sulfinyl 

auxiliary on Lewis acid mediated decomposition of hemiaminal ethers and their subsequent 

reactions with nucleophiles. The first group involved simple substrates that could be 

synthesized in a small number of steps to explore the intermolecular addition of 

nucleophiles. We also synthesized a second group of substrates that would explore a 

potentially more favored intramolecular reaction.  

Scheme 2-27. Synthesis of N-acyl-N-benzylsulfinamides 2.72 and 2.73. 

 

We chose substrates 2.72 and 2.73, derived from acetic acid and benzoic acid 

respectively, as simple systems that could be readily prepared and tested for intermolecular 

reactions (Scheme 2-27). To explore these reactions, N-benzyl-(S)-tert-butylsulfinamide 

2.71 was readily synthesized by reductive amination of (S)-tert-butylsulfinamide 2.64 with 

benzaldehyde.12 Deprotonation with sodium hydride and subsequent reaction with the 

appropriate anhydride led to the acetyl- or benzoyl-substituted sulfinamides 2.72 and 2.73.  
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 Selective reduction and silyl trapping of the acetylated sulfinamides 2.72 and 2.73   

to form the desired hemiaminal ether substrates 2.74 and 2.75 proved to be initially difficult 

(Table 2-1). Yields for the reduction of acetamide 2.72 and benzamide 2.73 with DIBAL-

H and trapping with trimethylsilylimidazole were initially low, but proceeded 

diastereoselectively, with a diastereomeric ratio of 3.3:1.0 and 4.3:1.0 obtained for the 

acetyl- and benzoyl-derived species 2.74 and 2.75, respectively (entries 1-2). Alternative 

reductants (Red-Al® and L-Selectride®) led to significant decomposition of the starting 

material, presumably due to over-reduction. Of note was the presence of a thiol in these 

reaction mixtures, suggesting that the N-S bond was potentially being cleaved under these 

initially explored reaction conditions. Eventually, slow addition of DIBAL-H was found to 

be crucial in this reaction for both increased yields and diastereoselectivies. Addition of 

DIBAL-H over one hour increased the yield of 2.74 to 42% with a diastereomeric ratio of 

7.0:1.0 (entry 3), while addition of the reductant over two hours increased the yield to 65% 

and led to the formation of a single diastereomer by 1H NMR (entry 4). The absolute 

configuration of the major diastereomer could not be determined. 

Table 2-1. Optimization of the synthesis of N-sulfinyl hemiaminal ethers 2.74 and 2.75 from N-

acylsulfinamides 2.72 and 2.73. 
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 Reaction of hemiaminal ether 2.74 with BF3·OEt2 in the presence of 

trimethylallylsilane only led to the isolation of N-benzylsulfinamide 2.71 in 53% yield, the 

result of hydrolysis of the iminium ion intermediate (Scheme 2-28). We next examined 

reaction with more nucleophilic N-benzylindole, one that would closely model the actual 

nucleophile we would use in our reactions (Table 2-2). N-benzylindole did successfully 

couple with our generated iminium ion to benzylamine 2.76 in 13% yield, but the product 

isolated had the sulfinyl auxiliary cleaved under the reaction conditions (entry 1). A 

significant quantity of N-benzylsulfinamide 2.71 (61% yield) was also obtained from this 

reaction. No reactivity was observed when an alternative Lewis acid, 

chlorotrimethylsilane, was used (entry 4), and attempts to run the reaction in either diethyl 

ether or toluene did not provide any of the coupled product 2.76 (entry 2-3). Alternatively, 

using a Bronsted acid, p-toluenesulfonic acid, led to the addition product 2.76 being the 

major component in the reaction (52%), but again with the auxiliary being cleaved (entry 

5). Adding 3Å molecular sieves to the reaction shut down the hydrolysis side reaction, 

leading to 59% yield of the cleaved addition product 2.76 (entry 6). This product was 

disappointingly formed in 9% ee as determined by Mosher amide analysis. This implies 

that either the sulfinamide is insufficient at inducing chirality or that the auxiliary was 

being cleaved before the addition reaction had occurred. To diminish the amount of 

auxiliary cleavage observed, catalytic acid was used, but no reaction was observed (entry 

7). Potassium hydrogen sulfate was also examined as a Bronsted acid its successful use in 

the synthesis of sulfinimines by condensation with no cleavage of the auxiliary being 

observed. KHSO4 mediated the reaction, but still resulted in mainly the auxiliary cleavage 

product 2.76 (entry 8). 
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Scheme 2-28. Attempted reaction of hemiaminal ether 2.74 with allyltrimethylsilane. 

 

Table 2-2. Reaction of hemiaminal ether 2.74 with N-benzylindole. 

 

 Given the difficulties apparent in the intermolecular addition reactions, as well as 

our desired reaction being an intramolecular cascade, we next sought to develop 

intramolecular test substrates containing tethered electron-rich aromatic rings. To this end, 

we first attempted the synthesis of indole-containing hemiaminal ether substrate 2.77 

(Scheme 2-29). Beginning with indole-3-acetic acid, selective protection of the indole 

provided N-benzylindole-3-acetic acid 2.78 in 65% yield, which was subsequently 

converted into the Weinreb amide 2.79 and selectively reduced to N-benzylindole-3-

acetaldehyde 2.80 in 50% yield over two steps. However, attempts to couple this material 

to sulfinamide 2.81 failed under the standard reductive amination conditions.  
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Scheme 2-29. Attempted synthesis of indole containing intramolecular substrate 2.77. 

 

We also explored a substrate containing an electron rich anisole ring 2.83 (Scheme 

2-30). Beginning with 3-(3-methoxylphenyl)propanoic acid, coupling with N-

benzylsulfinamide 2.71 via the pivaloyl mixed anhydride provided the acetylated 

sulfinamide 2.82 in 44% yield. Reduction with DIBAL-H and trapping with 

trimethylsilylimidazole provided the hemiaminal ether substrate 2.83 in 32% yield in 

4.0:1.0 dr. When this substrate was subjected to our best conditions found for the previous 

intermolecular reactions, only N-benzylsulfinamide 2.71 was obtained in 54% yield, most 

likely the result of iminium hydrolysis. Due to the combination of the observed significant 

auxiliary cleavage and the low enantioselectivity of coupled product that was obtained, the 

exploration of this approach as a method to form a chiral natural product core was 

abandoned.  
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Scheme 2-30. Synthesis of anisyl-substituted substrate 2.83 and attempted cyclization under acidic 

conditions. 

 

 

2.6.2 Studies Toward the Development of an Asymmetric Cascade Reaction with Ion-

Pairing Catalysis 

 As stated above, asymmetric catalysis of iminium ion reactions is difficult due to 

the lack of Lewis basic functionality that traditional Lewis acid or metal-based catalysts 

can bind to. A recent advance in this area is the usage of ion-pairing catalysis, wherein a 

substrate and chiral catalyst are held in proximity via an ion-pairing interaction instead of 

the more typical covalent interactions used in traditional forms of catalysis (Scheme 2-

31).13 One form of this catalysis involves a chiral Bronsted acid whose conjugate base can 

ion pair with a cationic intermediate formed either by acid-mediated decomposition or 

condensation within the substrate. For example, Rene de Gelder and coworkers have been 

able to demonstrate that BINOL-based chiral phosphoric acid 2.85 can catalyze 

asymmetric Pictet-Spengler reactions toward tetrahydro-b-carbolines 2.86, wherein 

enantioselectivity is proposed to be induced by ion pairing between the conjugate base of 

the catalyst and the iminium formed by condensation of an aldehyde and tryptamine 2.84.14 

Alternatively, a strong hydrogen bonding catalyst can bind to an anion formed by 
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decomposition of a substrate, effectively holding the cationic intermediate formed in 

proximity of the catalyst by ion-pairing. This catalysis mode is invoked in Eric Jacobsen 

and coworkers’ use of chiral thioureas in the catalysis of asymmetric Pictet-Spengler 

reactions on cyclic hemiaminals 2.87, wherein the binding of the thiourea to a chloride 

anion effectively holds the chiral catalyst in close enough proximity of the N-acyliminium 

ion to induce enantioselectivity.15 Intrigued by these recent advances, we were curious if 

this form of catalysis would allow us to access an enantioselective variant of our cascade 

annulations we have developed. 

Scheme 2-31. Examples of ion-pairing catalysis as applied to reactions containing iminium ion 

intermediates.14-15 

 

 Our laboratory has been exploring the possibility of using ion pairing catalysis in 

our cascade with varying amounts of success for almost a decade. The best result in terms 

of enantioselectivity before the studies outlined below was achieved by former graduate 
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able to obtain the desired core of malagashanine 2.17 in 39% yield from hemiaminal 

ether 2.16, but with only 24% ee. This was the best enantiomeric excess obtained after 

almost a year and a half of studies. Additionally, while this reaction was able to obtain a 

synthetically useable yield of product, typically these reactions were messy and led to 

multiple products. 

Scheme 2-32. Asymmetric catalysis of malagashanine cascade with chiral phosphoramide 2.90.16 

 

 This problem of messy reactivity was noted by Ricardo Delgado during some of 

the earliest investigations into using this type of catalyst (Scheme 2-33).2 Indeed, Ricardo 

noted that Bronsted acids typically led to issues with protodesilylation and alkene 

migration in the substrates, often leading to formation of several byproducts (2.91-2.93) 

with none of the desired tetracyclic core 2.13 being observed. While he was able to get a 

synthetically useful quantity of the desired Malagasy alkaloid core 2.13 with triflic acid, 

significant amounts of protodesilylated Pictet-Spengler product 2.93 was still obtained. In 

examining these results as a whole, it became apparent that we needed a catalytic system 

that would impart enantioselectivity by ion-pairing but that didn’t use strong Bronsted 
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reactivity with these chiral BINOL-based catalysts that did not involve their use as 

Bronsted acids. 

Scheme 2-33. Examples of early attempts by Ricardo Delgado to mediate our cascade annulation with 

Bronsted acids.2 

 

 Upon reexamination of the literature, we came across some published results from 

Benjamin List’s group that we thought could potentially be applicable to our cascade 

annulation (Scheme 2-34).17 Using chiral disulfonimides based on the BINOL 

framework, List and coworkers were able to enantioselectively perform addition 

reactions with silylated nucleophiles such as silyl ketene acetals 2.95 and allylsilanes 

(2.97 and 2.99) to aldehydes (2.94). This was intriguing because these catalysts were 

typically using in reactions with silylated nucleophiles similar to those used in our 

cascade. Very few examples of these types of nucleophiles are used with the previously 

disclosed chiral phosphoric acid catalysts and their derivatives.18 
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Scheme 2-34. Examples of the use of chiral disulfonimide catalysts by Benjamin List and coworkers in 

asymmetric additions of silylated nucleophiles to aldehydes.17 

 

 Intriguingly, Benjamin List proposed that the active catalyst species within these 

reactions is the N-trimethylsilyl derivative formed by protodesilylation of a small portion 

of the nucleophile, as with the silylketene acetal shown (Figure 2-3).19 This species 

behaves like a silylium ion Lewis acid due to the weak coordination of the disulfonimide 

anion with the trimethylsilyl group, similar to the reactivity that has been evoked with the 

previously-disclosed achiral N-trimethylsilyltriflimide Lewis acid catalyst. Silylation of 

the terminal end of the carbonyl leads to formation of a silyloxycarbenium ion held in an 

ion pair with the disulfonamide anion. Addition of the nucleophile followed by 

nucleophilic attack of the disulfonimide anion on the then formed silylium ion would lead 

to reformation of the silylated catalyst. In a way, this catalyst involves similar ion-pairing 

binding modes as the chiral phosphoric acid catalysts, but instead involves transfers with a 

silylium ion instead of a proton, possibly eliminating any complications with Bronsted acid 

sensitive substrates. 
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Figure 2-3. Proposed mechanism for disulfoninamide-catalyzed Mukaiyama aldol reaction invoking 

an N-trimethylsilyldisulfonimide intermediate.19 

 We envisioned a possible mechanism for our cascade involving an N-

trimethylsilyldisulfonimide catalyst (Figure 2-4). This proposed mechanism in a way 

parallels what we believe is happening when decomposing our hemiaminal ether substrates 

with Lewis acids. The Lewis acidic silylated catalyst would promote decomposition of our 

hemiaminal ether, leading to generation of our iminium ion and disulfonimide anion with 

loss of bis(trimethylsilyl)ether. Upon reaction of the iminium ion with the indole, 

subsequent addition of the allylsilane to the indolenium ion would lead to formation of our 

desired product while regenerating the silylated catalyst conveniently with the 

trimethylsilyl group from the allylsilane moiety.  
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Figure 2-4. Proposed mechanism for reaction of N-trimethylsilyldisulfonimide catalysts with 

hemiaminal ether substrates. 

 Due to the sensitivity of our system to Bronsted acids, typically by 

protodesilylation, we wished to come up with a method for in situ generation of the 

silylated catalyst other than protodesilylation of a small quantity of the nucleophilic 

substrate (Scheme 2-35). In the previous phosphoric acid catalyst systems, silver salts had 

been invoked in some mechanisms,20 and these species can sometimes be isolated and used 

in these reactions.21 We envisioned that if we could form the silver salt 2.102 of the 

disulfonimide 2.101, reaction with trimethylsilylchloride would lead to formation of the 

silylated catalyst 2.103 with loss of insoluble silver chloride.  

Scheme 2-35. Proposed method for in situ generation of N-trimethylsilyldisulfonimide catalyst 2.103 

without protodesilylation of substrate. 
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 We therefore set out to examine if this aprotic catalyst system could provide us with 

both clean reactivity and useful enantioselectivity in our cascade. We first had to synthesize 

a test catalyst, a process that could be accomplished in six steps, using a modified route 

based on methods disclosed by List and coworkers (Scheme 2-36).19 BINOL was first 

converted into the O-thiocarbamate 2.104 by deprotonation and reaction with 

dimethylthiocarbamoyl chloride. This intermediate was converted into the S-thiocarbamate 

2.105 via a Newman-Kwart rearrangement by heating this intermediate neat to 285 °C. 

This reaction proved to be capricious, never providing yields comparable to those reported 

by List and coworkers, with significant quantities of a thiophene byproduct typically being 

formed. The difficulties with Newman-Kwart rearrangements on BINOL-based substrates 

have been known, but none of the disclosed solutions gave satisfactory results in this 

reaction.22-24 The S-thiocarbamate derivative 2.105 was directly converted into the sulfonyl 

chloride 2.106 by acidic cleavage and subsequent reaction with in situ generated chloride 

gas, produced by the reaction of hydrochloric acid and N-chlorosuccinimide. The 

disulfonimide 2.107 was formed by stirring the sulfonyl chloride 2.106 in benzene under a 

balloon of ammonia. To introduce the 3,3’-substituents on the catalyst, the disulfonimide 

group was used as an ortho director for lithiation. Quenching this process with iodine 

provided the 3,3’-diiodide 2.108.25 Subsequent Suzuki coupling of the iodide 2.108 with 

our desired aryl boronic acid provided the desired disulfonimide catalyst 2.109. Compared 

to methods to synthesize the related chiral phosphoric acid catalysts, this route was 

attractive because the 3,3’-substituents, often the key factor in determining selectivity with 

these types of catalysts, could be introduced in the last step, potentially allowing ready 

synthesis of a broad library of catalysts from a large batch of diiodide precursor 2.108.  
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Scheme 2-36. Synthesis of disulfonimide catalyst 2.109 from BINOL. 

 

 To initially examine the feasibility of the disulfonimide to mediate our cascade, we 

began by testing reactions involving stoichiometric quantities of this reagent (Scheme 2-

38). Within these studies, the hemiaminal ether substrate 2.16 that provides Malagasy core 

2.17 was examined due to the presence of an already well developed chiral HPLC method. 

When hemiaminal ether 2.16 was exposed to an equivalent of chiral disulfonimide 2.109 

at room temperature, no reaction was observed, even after 48 hours. However, when the 

chiral disulfonimide 2.109, chlorotrimethylsilane, and silver carbonate were premixed and 

then added to a solution of hemiaminal ether 2.16, complete consumption of the substrate 

occurred in less than 30 minutes. Multiple products were formed, as had been seen in 

previous attempts at asymmetric catalysis, but some the desired product 2.17 was isolated, 

albeit in less than 10% yield. 
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Scheme 2-37. Initial test reactions with stoichiometric quantities of disulfonimide 2.109. 

 

 When the chiral disulfonimide 2.109 was used on a catalytic scale (20 mol %), 

hemiaminal ether starting material 2.16 was consumed, suggesting the possibility of 

catalysis (Scheme 2-38). To see if we could clean up the reactivity, we attempted the 

cyclization reaction at lower temperatures (-40 and -78 °C). At both of these temperatures, 

it appeared the reaction would lead exclusively to the desired tetracyclic product 2.17, with 

this product obtained gratifyingly in 57% ee at -78 °C. This was the highest enantiomeric 
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disulfonimide but would then stall, leading to significant amounts of starting material still 

being present in the reaction. This suggests that the active species mediating the desired 

cyclization could not turnover, only providing a small quantity of the desired core. 

Scheme 2-38. Reactions with catalytic quantities of disulfonimide 2.109. 
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suggests that the combination of chlorotrimethylsilane and silver carbonate was 

facilitating detrimental background reactivity that was leading to many of the observed 

byproducts in our reaction. 

Scheme 2-39. Control reaction of hemiaminal ether 2.16 with chlorotrimethylsilane and silver 

carbonate. 

 

 To examine whether the silylated disulfonimide was truly competent to mediate our 

desired cascade, we examined an alternative method for forming this intermediate, instead 

using a substoichiometric quantity of silyl ketene acetal 2.95 as a silylating agent that was 

suggested to form the active catalyst in Benjamin List’s prior studies (Scheme 2-40).19 

Indeed, he found it necessary to add a small quantity of this silyl ketene acetal 2.95 in 

disulfonimide-catalyzed Sakurai allylations due to the allylsilane not forming a significant 

quantity of the active catalyst by protodesilylation. When these reaction conditions were 

tested at room temperature, no reaction was observed, even over 48 hours. This suggests 

that the silylated disulfonimide itself was not the active species that was mediating the 

desired above studied reactions and that this catalyst system would not be competent in 

mediating an enantioselective variant of our cascade. 
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Scheme 2-40. Attempted reaction of hemiaminal ether using disulfonimide catalyst 2.109 in the 

presence of silyl ketene acetal 2.95 as an activating reagent. 

 

 To this end, we still have an active interest in the development of a catalyst system 

that would be effective for our cascade. Currently, we are planning to explore the possible 

use of anion-binding catalysis as an alternative method for activation of trimethylsilyl 

halides as Lewis acids in our cascade. This is based off of some preliminary unpublished 

results from Eric Jacobsen’s group, with whom we may collaborate to develop such a 

system. This would circumvent any problems involving excess Bronsted acidity as well 

the use of silver salts in the formation of active silylium catalysts. 
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faces steric clashing in both the boat- and chair-like transition states for the allylsilane 

addition step of the cascade, while the Z-allylsilane isomer is able to overcome this 

hindrance in its boat-like transition state.  

 
2.8 Experimental Procedures 

General Experimental 

Reactions were performed under a dry nitrogen atmosphere with anhydrous 

solvents using standard Schlenk techniques unless otherwise stated. Glassware was dried 

in an oven at 120 °C for a minimum of six hours prior to use. Anhydrous tetrahydrofuran 

(THF), diethyl ether (Et2O), and dichloromethane (CH2Cl2) were obtained by passage 

through activated alumina using a Glass Contours solvent purification system. Anhydrous 

dimethyl sulfoxide (DMSO), N,N-dimethylformamide (DMF), acetonitrile (MeCN), and 

methanol (MeOH) were obtained from EMD Millipore and were stored over dry 4Å 

molecular sieves. N,N-diisopropylethylamine (DIPEA), pyridine (pyr), and triethylamine 

(Et3N) were distilled from calcium hydride and stored over dry 4Å molecular sieves. Boron 

trifluoride diethyl etherate (BF3·OEt2) was distilled under vacuum from calcium hydride 

directly before use. 4Å powdered molecular sieves were activated by heating to 100 °C 

under reduced pressure (0.2 torr) for at least 12 hours. Lithium bis(trimethylsilyl)amide 

(LiHMDS), Schwartz reagent (Cp2ZrHCl), copper(I) chloride (CuCl), lithium chloride 

(LiCl), and 9-borabicyclo(3.3.1)nonane dimer (9-BBN-H dimer) were stored and weighed 

in a nitrogen-filled glovebox. Pd(MeCN)2Cl2,26 2-iodoxybenzoic acid (IBX),27 and Dess-

Martin Periodinane (DMP)28 were synthesized according to previously reported methods. 

All other reagents and solvents were obtained from commercial suppliers and used as 
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received. Ozone was supplied using a Pacific Ozone Supply L21 ozone generator. 

Reactions under pressurized hydrogen were performed in a Parr 4793 general purpose 

pressure vessel. Analytical thin layer chromatography (TLC) was performed on precoated 

glass backed Silicycle SiliaPure® 0.25 mm silica gel 60 plates. Visualization was 

accomplished with UV light, ethanolic p-anisaldehyde, ethanolic phosphomolybdic acid, 

or aqueous potassium permanganate. Flash column chromatography was performed using 

Silicycle SilaFlash® F60 silica gel (40-63 µm). Preparatory thin layer chromatography was 

performed on precoated glass backed Silicycle SiliaPure® 1.0 mm silica gel 60 plates. 1H 

and 13C nuclear magnetic resonance (NMR) spectra were recorded on a Varian Inova 600 

spectrometer (600 MHz 1H, 151 MHz 13C), a Bruker 600 spectrometer (600 MHz 1H, 151 

MHz 13C), a Varian Inova 500 spectrometer (500 MHz 1H, 126 MHz 13C), and a Varian 

Inova 400 spectrometer (400 MHz 1H, 100 MHz 13C) at room temperature in CDCl3 

(neutralized and dried over anhydrous K2CO3) with internal CHCl3 as the reference (7.26 

ppm for 1H and 77.23 ppm for 13C), unless otherwise stated. Chemical shifts were reported 

in parts per million (ppm) and coupling constants (J values) in Hz. Multiplicity was 

indicated using the following abbreviations: s = singlet, d = doublet, t = triplet, q = quartet, 

p = pentet, m = multiplet, b = broad. Infrared (IR) spectra were recorded using a Thermo 

Electron Corporation Nicolet 380 FT-IR spectrometer. High resolution mass spectra 

(HRMS) were obtained using a Thermo Electron Corporation Finigan LTQFTMS (at the 

Mass Spectrometry Facility, Emory University). We acknowledge the use of shared 

instrumentation provided by grants from the NIH and the NSF. 

 

Alkyl Chloride 2.36: 
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 Phthalimide (2.35 g, 16.0 mmol, 1.0 equiv), K2CO3 (6.63 g, 48.0 mmol, 3.0 equiv), 

and benzyltriethylammonium chloride (547.0 mg, 2.40 mmol, 20 mol %) was brought up 

in acetone (40.0 mL). 1-bromo-3-chloropropane (4.75 mL, 48.0 mmol, 3.0 equiv) was then 

added, and the resultant slurry was stirred for 24 hours at room temperature. The reaction 

mixture was concentrated under reduced pressure, and water (100.0 mL) and EtOAc (100.0 

mL) were added. The layers were separated, and the aqueous phase was extracted with 

EtOAc (3 x 75.0 mL). The combined organic layer was washed with brine (100.0 mL), 

dried over anhydrous Na2SO4, filtered, and concentrated under reduced pressure. 

Purification by flash column chromatography on silica gel (3:2 hexanes/EtOAc) provided 

alkyl chloride 2.36 (3.45 g, 96%) as a white solid. Spectral data matched that previously 

reported.6 

1H NMR (400 MHz, CDCl3) δ 7.84 (dd, J = 4.8, 2.8 Hz, 2H), 7.71 (dd, J = 5.6, 3.2 Hz, 

2H), 3.84 (t, J = 7.2 Hz, 2H), 3.56 (t, J = 6.8 Hz, 2H), 2.16 (p, J = 6.8 Hz, 2H) ppm.  
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 Alkyl chloride 2.36 (1.00 g, 4.47 mmol, 1.0 equiv) and NaI (2.00 g, 13.41 mmol, 

3.0 equiv) were dissolved in acetone (20.0 mL), and the reaction mixture was refluxed for 

ten hours. The mixture was cooled, and the precipitated salts were filtered over celite. The 

filter pad was washed with acetone (3 x 10.0 mL), and the filtrate was concentrated under 

reduced pressure to provide crude iodide, which was dissolved in THF (10.0 mL). To a 

suspension of NaH (214.0 mg, 60 wt % dispersion in mineral oil, 5.36 mmol, 1.2 equiv) in 

THF (10.0 mL) was added ethyl acetoacetate (0.63 mL, 4.92 mmol, 1.1 equiv) drop-wise. 

After gas evolution ceased, DMPU was added (2.0 mL). The alkyl iodide solution was then 

added via cannula, and the reaction mixture was refluxed for 12 hours. The reaction mixture 

was cooled to room temperature and quenched with saturated aqueous NH4Cl (20.0 mL). 

The layers were separated, and the aqueous phase was extracted with Et2O (3 x 20.0 mL). 

The combined organic layer was washed with water (3 x 20.0 mL) and brine (20.0 mL), 

dried over anhydrous Na2SO4, filtered, and concentrated under reduced pressure. 

Purification by flash column chromatography on silica gel (3:2 hexanes/EtOAc) provided 

ester 2.37 (1.00 g, 71% over two steps) as a white solid. Spectral data matched that 

previously reported.6 

1H NMR (400 MHz, CDCl3) δ 7.82 (dd, J = 5.6, 3.2 Hz, 2H), 7.70 (dd, J = 5.6, 2.8 Hz, 

2H), 4.16 (q, J = 6.8 Hz, 2H), 3.68 (t, J = 7.2 Hz, 2H), 3.48 (t, J = 4.0 Hz, 1H), 2.21 (s, 

3H), 1.94-1.60 (m, 4H), 1.24 (t, J = 6.8 Hz, 3H) ppm. 
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Tryptamine 2.39: 

 

 Meta-anisidine (0.71 mL, 6.30 mmol, 1.0 equiv) was dissolved in MeOH (4.8 mL) 

and water (19.7 mL), and the resultant solution was cooled to 0 °C. Hydrochloric acid 

(36%, 5.0 mL) was added drop-wise over 30 minutes. A solution of NaNO2 (993.0 mg, 

14.4 mmol, 2.3 equiv) in water (3.5 mL) was then added drop-wise over 30 minutes. The 

mixture was then stirred for 30 minutes at 0 °C to provide a solution of the desired 

diazonium salt. Ester 2.37 (2.80 g, 8.80 mmol, 1.4 equiv) and NaOAc (8.30 g, 101.0 mmol, 

16.0 equiv) were dissolved in MeOH (40.0 mL) and stirred for one hour at room 

temperature. The diazonium salt solution was then added drop-wise to the ester solution 

over one hour, and the resultant reaction mixture was stirred for 16 hours. CH2Cl2 (60.0 

mL) was added, and the layers were separated. The organic layer was washed with water 

(3 x 40.0 mL), dried over anhydrous Na2SO4, filtered, and concentrated under reduced 

pressure. The residue was brought up in EtOH (10.7 mL) and hydrochloric acid (36%, 10.7 

mL) was added. The reaction mixture was refluxed for 24 hours and then cooled to room 

temperature. A precipitate formed, which was filtered and washed with water (3 x 20.0 
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mL). The solid was dried under high vacuum to provide tryptamine 2.39 (1.60 g, 69% over 

two steps) as a pale tan solid. Spectral data matched that previously reported.6 

1H NMR (400 MHz, CDCl3) δ 8.64 (bs, 1H), 7.80 (dd, J = 5.6, 3.2 Hz, 2H), 7.68 (dd, J = 

5.6, 3.2 Hz, 2H), 7.60 (d, J = 8.4 Hz, 1H), 6.75 (m, 2H), 4.40 (q, J = 7.2 Hz, 2H), 3.99 (t, 

J = 7.2 Hz, 2H), 3.83 (s, 3H), 3.43 (t, J = 8.0 Hz, 2H), 1.44 (t, J = 6.8 Hz, 3H) ppm. 

 

6-Methoxytryptamine 2.40: 

 

 Tryptamine 2.39 (1.60 g, 4.35 mmol) was added to 15% aqueous KOH (10.0 mL), 

and the slurry was heated to reflux for 24 hours, the solution becoming homogenous upon 

progression of the reaction The reaction was cooled to room temperature, and 1 M HCl 

was added drop-wise until pH < 1. The reaction mixture was then heated to reflux for 24 

hours, and was again cooled to room temperature. The reaction was neutralized by slow 

addition of saturated aqueous NaHCO3. The aqueous solution was extracted with EtOAc 

(3 x 50.0 mL). The combined organic layer was washed with brine (50.0 mL), dried over 

anhydrous Na2SO4, filtered, and concentrated under reduced pressure to provide 6-

methoxytryptamine 2.40 (595.5 mg, 70% over two steps) as a white solid. Spectral data 

matched that previously reported.6 
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N-Ts-N’-Boc-6-methoxytryptamine 2.41: 

 

 To a solution of 6-methoxytryptamine 2.40 (140.8 mg, 0.74 mmol, 1 equiv) in THF 

(4.0 mL) was added Et3N (0.15 mL, 1.11 mmol, 1.5 equiv). The reaction mixture was 

cooled to 0 °C, and a solution of Boc2O (161.5 mg, 0.74 mmol, 1.0 equiv) in THF (1.0 mL) 

was added. The reaction mixture was stirred for 14 hours, and then quenched with saturated 

aqueous NH4Cl (5.0 mL). The layers were separated, and the aqueous phase was extracted 

with Et2O (3 x 5.0 mL). The combined organic layer was washed with brine (10.0 mL), 

dried over anhydrous MgSO4, filtered, and concentrated under reduced pressure. The crude 

residue was brought up in CH2Cl2 (10.0 mL). Powdered NaOH (73.0 mg, 1.85 mmol, 2.5 

equiv) and TBAHS (25.0 mg, 0.08 mmol, 10 mol %) were added, and the mixture was 

stirred for ten minutes. TsCl (212.0 mg, 1.11 mmol, 1.5 equiv) was added, and the 

suspension was stirred for 16 hours. Water (10.0 mL) was added, and the biphasic mixture 

was stirred for ten minutes. The layers were separated, and the aqueous phase was extracted 

with CH2Cl2 (3 x 25.0 mL). The combined organic layer was dried over anhydrous Na2SO4, 

filtered, and concentrated under reduced pressure. Purification by flash column 

chromatography on silica gel (7:3 hexanes/EtOAc) provided N-Ts’N’-Boc’-6-

methoxytryptamine 2.41 (266.0 mg, 80% over two steps) as a white solid. Spectral data 

matched that previously reported.2 

1H NMR (400 MHz, CDCl3) δ 7.73 (d, J = 8.4 Hz, 2H), 7.52 (d, J = 2.0 Hz, 1H), 7.35 (d, 

J = 8.8 Hz, 1H), 7.25 (d, 1H), 7.22 (d, J = 8.4 Hz, 2H), 6.86 (dd, J = 8.8, 2.4 Hz, 2H), 
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4.56 (bs, 1H), 3.88 (s, 3H), 3.39 (q, J = 6.9 Hz, 2H), 2.82 (t, J = 6.9 Hz, 2H), 2.18 (s, 3H), 

1.45 (s, 9H) ppm. 

 

N,N’-bistosyl-6-methoxytryptamine 2.33: 

 

 To a solution of carbamate 2.41 (266.0 mg, 0.59 mmol, 1.0 equiv) in CH2Cl2 (4.0 

mL) was added a solution of HCl in 1,4-dioxane (4M, 4.0 mL), and the resultant mixture 

was stirred for one hour. The reaction was quenched by the slow addition of saturated 

aqueous NaHCO3 until pH>7, and the layers were separated. The aqueous phase was 

extracted with CH2Cl2 (3 x 10.0 mL), and the combined organic layer was wash with water 

(10.0 mL) and brine (10.0 mL). The combined organic layer was dried over anhydrous 

Na2SO4, filtered, and concentrated under reduced pressure. The crude residue was brought 

up in CH2Cl2 (7.0 mL), and Et3N (0.33 mL, 2.36 mmol, 4.0 equiv) and TsCl (124.0 mg, 

0.65 mmol, 1.1 equiv) were added. The reaction mixture was stirred for 18 hours and was 

then quenched with water (10.0 mL). The layers were separated, and the aqueous layer was 

extracted with CH2Cl2 (3 x 20.0 mL). The combined organic layer was dried over 

anhydrous Na2SO4, filtered, and concentrated under reduced pressure. Purification by flash 

column chromatography on silica gel (3:2 hexanes/EtOAc) provided N,N’-bistosyl-6-

methoxytryptamine 2.33 (133.0 mg, 45% over two steps) as a white solid. Spectral data 

matched that previously reported.2 
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1H NMR (400 MHz, CDCl3) δ 7.73 (d, J = 8.4 Hz, 2H), 7.59 (d, J = 8.4 Hz, 2H), 7.50 (d, 

J = 2.0 Hz, 1H), 7.27 – 7.21 (m, 4H), 7.17 (d, J = 8.4 Hz, 2H), 6.81 (dd, J = 8.8, 2.4 Hz, 

1H), 4.24 (t, J = 7.6 Hz, 1H), 3.88 (s, 3H), 3.23 (q, J = 5.6 Hz, 2H), 2.79 (t, J = 6.8 Hz, 

2H), 2.41 (s, 3H), 2.35 (s, 3H) ppm. 

 

Boc-tryptamine 2.42: 

 

 To a solution of Et3N (15.7 mL, 112.3 mmol, 1.5 equiv) in THF (400.0 mL) at 0 °C 

was added tryptamine (12.0 g, 74.9 mmol, 1.0 equiv). A solution of Boc2O (16.4 g, 74.9 

mmol, 1.0 equiv) in THF (100.0 mL) was then added to the tryptamine solution by cannula. 

The reaction mixture was slowly warmed to room temperature and stirred for 16 hours. 

The reaction mixture was concentrated under reduced pressure. Purification by flash 

column chromatography on a short plug (2 inch) of silica gel (1:1 hexanes/EtOAc) 

provided Boc-tryptamine 2.42 (17.9 g, 94%) as a pale tan oil. Spectral data matched that 

previously reported.29 

1H NMR (400 MHz, CDCl3) δ 8.06 (s, 1H), 7.59 (d, J = 7.9 Hz, 1H), 7.32 (d, J = 7.9 Hz, 

1H), 7.19 (t, J = 7.3 Hz, 1H), 7.10 (t, J = 7.0 Hz, 1H), 6.97 (bs, 1H), 4.61 (bs, 1H), 3.45 (q, 

J = 6.6 Hz, 2H), 2.95 (t, J = 6.7 Hz, 2H), 1.41 (s, 9H) ppm. 
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N,N’-bistosyltryptamine 2.34: 

 

 To a solution of Boc-tryptamine 2.42 (17.9 g, 68.9 mmol, 1.0 equiv) in CH2Cl2 

(250.0 mL) at 0 °C was consecutively added tosyl chloride (19.7 g, 103.4 mmol, 1.5 equiv), 

powdered NaOH (6.9 g, 172.3 mmol, 2.5 equiv) and TBAHS (2.3 g, 6.9 mmol, 10 mol %). 

The resultant slurry was warmed to room temperature and stirred for 24 hours. The reaction 

mixture was quenched with water (100.0 mL), and the layers were separated. The aqueous 

phase was extracted with CH2Cl2 (3 x 50.0 mL). The combined organic layer was dried 

over anhydrous Na2SO4, filtered, and concentrated under reduced pressure. The residue 

was filtered over a plug of silica gel (2:1 hexanes/EtOAc) and concentrated under reduced 

pressure. The residue was dissolved in CH2Cl2 (200.0 mL) and cooled to 0 °C. 4 M HCl in 

1,4-dioxane (60.0 mL) was added dropwise to the solution, and the mixture was stirred for 

one hour. The reaction mixture was concentrated under reduced pressure to provide the 

crude ammonium chloride salt. This residue was brought up in CH2Cl2 (250.0 mL) and 

cooled to 0 °C. Et3N (39.0 mL, 275.6 mmol, 4.0 equiv) was added dropwise to the slurry. 

Tosyl chloride (14.5 g, 75.8 mmol, 1.1 equiv) was then added, and the resultant mixture 

was warmed up to room temperature and stirred for 14 hours. The reaction was quenched 

with water (100.0 mL), and the layers were separated. The aqueous phase was extracted 

with CH2Cl2 (3 x 100.0 mL). The combined organic layer was dried over anhydrous 

Na2SO4, filtered, and concentrated under reduced pressure. The crude residue was triturated 
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with methanol, sonicated, and filtered to provide N,N’-bistosyltryptamine 2.34 (16.9 g, 

52% over three steps) as a white solid. 

1H NMR (300 MHz, CDCl3) δ 7.95 (d, J = 8.1 Hz, 1H), 7.73 (d, J = 8.1 Hz, 2H), 7.60 (d, 

J = 8.4 Hz, 2H), 7.34 – 7.13 (m, 8H), 4.51 (t, J = 7.2 Hz, 1H), 3.23 (q, J = 6.9 Hz, 2H), 

2.83 (t, J = 6.9 Hz, 2H), 2.40 (s, 3H), 2.33 (s, 3H) ppm.  

13C NMR (126 MHz, CDCl3) δ 145.0, 143.4, 136.7, 135.2, 135.1, 130.2, 129.9, 129.7, 

126.9, 126.8, 124.9, 123.8, 123.2, 119.2, 118.7, 113.8, 42.3, 25.5, 21.6, 21.5 ppm. 

HRMS (+APCI) calculated for C25H25O4N2S2 [M+H]+ 469.1256, found 469.1255. 

 

Benzyl Ether 2.44: 

 

 To a suspension of NaH (60 wt % dispersion in mineral oil, 3.60 g, 89.0 mmol, 1.0 

equiv) in THF (250.0 mL) at 0 °C was added propargyl alcohol (5.20 mmol, 89.0 mmol, 

1.0 equiv) drop-wise, and the reaction mixture was warmed to room temperature and stirred 

for one hour. TBAI (1.07 g, 2.90 mmol, 3 mol %) and benzyl bromide (11.7 mL, 97.9 

mmol, 1.1 equiv) were added, and the resultant mixture was stirred at room temperature 

for 16 hours. The reaction was quenched with water (100.0 mL), and the organic solvent 

was removed under reduced pressure. The resultant aqueous phase was extracted with Et2O 

(3 x 150.0 mL). The combined organic layer was washed with brine (150.0 mL), dried over 

anhydrous MgSO4, filtered, and concentrated under reduced pressure. Purification by flash 

OH

BnBr, TBAI, NaH

THF, 0 °C
96%

OBn
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column chromatography on silica gel (4:1 hexanes/EtOAc) provided benzyl ether 2.44 

(9.88 g, 96%) as a colorless oil. Spectra data matched that previously reported.5  

1H NMR (300 MHz, CDCl3) δ 7.41-7.22 (m, 5H), 4.61 (s, 2H), 4.19 (s, 2H), 2.42 (s, 1H) 

ppm. 

 

Propargyl Alcohol 2.45: 

 

 To a solution of benzyl ether 2.44 (3.52 g, 24.1 mmol, 1.0 equiv) in THF (125.0 

mL) at -78 °C was added n-BuLi (2.5 M in hexanes, 12.5 mL, 31.3 mmol, 1.3 equiv) drop-

wise over ten minutes, and the solution was stirred for one hour. BF3·OEt2 (3.86 mL, 31.3 

mmol, 1.3 equiv) was then added drop-wise, and the solution was stirred for 15 minutes. 

A solution of oxirane (1.43 mL, 28.9 mmol, 1.2 equiv) in THF (3.0 mL) was quickly 

cannulated into the benzyl ether solution, and the resultant mixture was stirred for two 

hours. The reaction was quenched with saturated aqueous NH4Cl (45.0 mL), and the layers 

were separated. The aqueous phase was extracted with Et2O (3 x 100.0 mL). The combined 

organic layer was washed with brine (150.0 mL), dried over anhydrous Na2SO4, filtered, 

and concentrated under reduced pressure. Purification by flash column chromatography on 

silica gel (3:2 hexanes/EtOAc) provided propargyl alcohol 2.45 (2.99 g, 56%) as a yellow 

oil. Spectral data matched that previously reported.5 

1H NMR (400 MHz, CDCl3) δ 7.38-7.30 (m, 5H), 4.60 (s, 2H), 4.18 (t, J = 2.1 Hz, 2H), 

3.75 (q, J = 6.3 Hz, 2H), 2.54 (tt, J = 6.3, 2.2 Hz, 2H), 1.75 (bt, J = 5.4 Hz, 1H) ppm. 

OBn
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Vinyl Iodide 2.46: 

 

 To a slurry of Cp2ZrHCl (12.2 g, 47.1 mmol, 3.0 equiv) in CH2Cl2 (75.0 mL) at 0 

°C was added a solution of propargyl alcohol 2.45 (2.99 g, 15.7 mmol, 1.0 equiv) in CH2Cl2 

(75.0 mL) via cannula, and the resultant mixture was stirred for three hours at 0 °C. A 

solution of N-iodosuccinimide (7.06 g, 31.4 mmol, 2.0 equiv) in THF (75.0 mL) was then 

added via cannula, and the reaction mixture was stirred for 30 minutes. The reaction was 

quenched with 1:1 saturated aqueous NaHCO3/saturated aqueous Na2SO3 (150.0 mL), and 

the mixture was stirred for 15 minutes. The biphasic mixture was filtered through celite, 

and the filter pad was washed with Et2O (2 x 100.0 mL). The combined organic layers were 

washed with brine (150.0 mL), dried over anhydrous Na2SO4, filtered, and concentrated 

under reduced pressure. Purification by flash column chromatography on silica gel (4:1 

hexanes/EtOAc) provided vinyl iodide 2.46 (2.98 g, 60%) as an orange oil. Spectral data 

matched that previously reported.5 

1H NMR (400 MHz, CDCl3) δ 7.38-7.30 (m, 5H), 6.62 (t, J = 6.9 Hz, 1H), 4.53 (s, 2H), 

3.98 (d, J = 6.9 Hz, 2H), 3.74 (t, J = 5.2 Hz, 2H), 2.72 (t, J = 5.7 Hz, 2H), 1.99 (s, 1H) 

ppm.  
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Allylsilane 2.35: 

 

 To a solution of vinyl iodide 2.46 (2.99 g, 9.40 mmol, 1.0 equiv) in CH2Cl2 (60.0 

mL) was added DMP (5.98 g, 14.1 mmol, 1.5 equiv), and the reaction mixture was stirred 

for two hours. The reaction was quenched with 1:1 saturated aqueous NaHCO3/saturated 

aqueous Na2SO3 (100.0 mL), and the biphasic mixture was stirred for 15 minutes. The 

layers were separated, and the aqueous phase was extracted with Et2O (3 x 25.0 mL). The 

combined organic layer was dried over anhydrous Na2SO4, filtered, and concentrated under 

reduced pressure. The crude residue was brought up in CH2Cl2 (23.0 mL) and t-BuOH 

(86.0 mL), and 2-methyl-2-butene (46.0 mL) was added. A solution of NaClO2 (9.0 g, 

100.0 mmol, 10.6 equiv) and NaH2PO4 (10.9 g, 90.8 mmol, 9.6 equiv) in water (100 mL) 

was then added in one portion, and the biphasic reaction mixture was stirred for one hour. 

Brine (100.0 mL) was added, and the layers were separated. The aqueous phase was 

extracted with CH2Cl2 (3 x 50.0 mL). The combined organic layer was washed with brine 

(100.0 mL), dried over anhydrous Na2SO4, filtered, and concentrated under reduced 

pressure. The residue was azeotroped with toluene (3 x 50.0 mL) to remove residual t-

BuOH, providing crude carboxylic acid 2.47 (2.90 g, 96%) as a yellow oil. 

 To anhydrous ZnBr2 (3.96 g, 17.56 mmol, 3.1 equiv) was added TMSCH2MgCl 

solution (1M in Et2O, 18.1 mL, 18.10 mmol, 3.2 equiv), and the resultant slurry was stirred 
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at room temperature for 12 hours. DMF (12.0 mL) and Et2O (4.0 mL) were added, and the 

reaction was cooled to 0 °C. A solution of carboxylic acid 2.43 (1.88 g, 5.66 mmol, 1.0 

equiv) in DMF (10.0 mL) was cannulated into the reaction mixture. A solution of 

Pd(MeCN)2Cl2 (146.8 mg, 0.56 mmol, 10 mol %) in DMF (1.0 mL) was then added, and 

the reaction was stirred at 0 °C for two hours. The reaction was quenched by the slow 

addition of saturated aqueous NH4Cl (20.0 mL), and the layers were separated. The 

aqueous layer was extracted with CH2Cl2 (3 x 50.0 mL). The combined organic layer was 

washed with saturated aqueous LiCl (3 x 50.0 mL), water (3 x 50.0 mL), and brine (50.0 

mL). The organic layer was filtered through celite, and the filter pad was washed with 

CH2Cl2 (3 x 20.0 mL). The filtrate was dried over anhydrous Na2SO4, filtered, and 

concentrated under reduced pressure to provide allylsilane 2.35 (1.13 g, 95%) as a dark 

orange oil, which was used without further purification. Spectral data matched that 

previously reported.5 

1H NMR (400 MHz, CDCl3) δ 8.25 (bs, 1H), 7.39-7.29 (m, 5H), 5.51 (t, J = 6.9 Hz, 1H), 

4.56 (s, 2H), 4.03 (d, J = 6.9 Hz, 2H), 3.06 (s, 2H), 1.67 (s, 2H), 0.06 (s, 9H) ppm.  
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 To a solution of carboxylic acid 2.35 (87.0 mg, 0.30 mmol, 1.3 equiv) in THF (3.0 

mL) was added pivaloyl chloride (37 µL, 0.30 mmol, 1.3 equiv) and NMM (36 µL, 0.32 

mmol, 1.4 equiv), and the reaction was stirred for one hour at room temperature. To a 

solution of N,N’-bistosyl-6-methoxytryptamine 2.33 (115.0 mg, 0.23 mmol, 1.0 equiv) in 

THF (3.0 mL) and DMPU (0.3 mL) at -78 °C was added n-BuLi (0.13 mL, 2.2 M in 

hexanes, 0.28 mmol, 1.2 equiv), and the reaction was stirred for one hour. The precipitate 

was removed from the mixed anhydride solution via a syringe filter, and this was added to 

the lithiate solution. The anhydride flask was rinsed with THF (3.0 mL), and this solution 

was syringe filtered and added to the lithiate solution. The resultant reaction mixture was 

stirred for four hours at -78 °C, and the reaction was then quenched with saturated aqueous 

NH4Cl (10.0 mL) and warmed to room temperature. The layers were separated, and the 

aqueous phase was extracted with Et2O (3 x 15.0 mL). The combined organic layer was 

washed with saturated aqueous NaHCO3 (15.0 mL) and brine (15.0 mL), dried over 

anhydrous MgSO4, filtered, and concentrated under reduced pressure. Purification by flash 

column chromatography on silica gel (7:3 hexanes/EtOAc) provided N-Ts amide 2.48 

(40.0 mg, 22%) as a colorless oil. 

1H NMR (400 MHz, CDCl3) δ 7.83 (d, J = 8.0 Hz, 2H), 7.71 (m, 4H), 7.51 (m, 3H), 

7.32-7.19 (m, 8H), 6.86 (dd, J = 8.4, 2.0 Hz, 1H), 5.41 (t, J = 6.8 Hz, 1H), 4.33 (s, 2H), 

4.06-3.89 (m, 2H), 3.85 (s, 2H), 3.77 (d, J = 6.8 Hz, 2H), 3.35 (s, 2H), 2.40 (s, 3H), 2.32 

(s, 3H), 1.48 (s, 2H), -0.05 (s, 9H) ppm. 

HRMS (+NSI) calculated for C41H48O7N2NaS2Si [M+Na]+ 795.2570, found 795.2569. 
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Hemiaminal Ether 2.31: 

 

 To a solution of N-Ts amide 2.48 (40.0 mg, 0.05 mmol, 1.0 equiv) in CH2Cl2 (2.0 

mL) at -78 °C was added DIBAL-H (1M in CH2Cl2, 0.1 mL, 0.1 mmol, 2.0 equiv), and the 

reaction was stirred for one hour. Trimethylsilylimidazole (22 µL, 0.15 mmol, 3.0 equiv) 

and imidazole (4.0 mg, 0.05 mmol, 1.0 equiv) were added, and the reaction mixture was 

stirred at -20 °C for 24 hours. The reaction was quenched with saturated Rochelle’s salt 

solution (2.0 mL), and the biphasic mixture was stirred till both layers were clear. The 

layers were separated, and the aqueous phase was extracted with CH2Cl2 (3 x 5.0 mL). The 

combined organic layer was dried over Na2SO4, filtered, and concentrated under reduced 

pressure. Purification by flash column chromatography on silica gel (3:2 hexanes/EtOAc) 

provided hemiaminal ether 2.31 (37.0 mg, 84%) as a colorless oil. 

1H NMR (400 MHz, CDCl3) δ 7.74 (d, J = 8.0 Hz, 2H), 7.67 (d, J = 8.4 Hz, 2H), 7.51 (d, 

J = 1.6 Hz, 1H), 7.45 (d, J = 9.2 Hz, 1H), 7.28-7.17 (m, 10H), 6.86 (dd, J = 8.4, 2.4 Hz, 

1H), 5.46 (dd, J = 9.2, 2.4 Hz, 2H), 5.28 (t, J = 5.6 Hz, 1H), 4.41 (dd, J = 20.1, 12.4 Hz, 

2H), 4.03 (m, 1H), 3.91 (m, 1H), 3.85 (s, 3H), 3.45 (m, 1H), 3.26 (m, 1H), 3.01 (m, 1H), 

2.37 (s, 3H), 2.32 (s, 3H), 1.79 (dd, J = 12.8, 2.8 Hz, 1H), 1.57 (m, 1H), 1.31 (d, J = 13.2 

Hz, 1H), 0.04 (s, 9H), -0.04 (s, 9H) ppm. 

HRMS (+NSI) calculated for C44H58O7N2NaS2Si2 [M+Na]+ 869.3122, found 869.3127. 
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N-Ts amide 2.49: 

 

 To a solution of carboxylic acid 2.35 (82.0 mg, 0.28 mmol, 1.3 equiv) in THF (8.0 

mL) was added NMM (33 µL, 0.30 mmol, 1.4 equiv) and pivaloyl chloride (35 µL, 0.28 

mmol, 1.3 equiv), and the reaction was stirred for one hour. To a solution of N,N’-

bistosyltryptamine 2.34 (100.0 mg, 0.22 mmol, 1.0 equiv) in THF (8.0 mL) and DMPU 

(0.8 mL) at -78 °C was added n-butyllithium (0.10 mL, 2.5 M in hexanes, 0.26 mmol, 1.2 

equiv) drop-wise. The precipitate was removed from the anhydride solution via a syringe 

filter, and the anhydride solution was added drop-wise to the lithiate solution. The flask for 

the anhydride solution was rinsed with THF (8.0 mL), filtered through a syringe filter, and 

added drop-wise to the lithiate solution. The reaction mixture was stirred for four hours at 

-78 °C. Saturated aqueous NH4Cl (20.0 mL) was then added, and the reaction was warmed 

up to room temperature. The layers were separated, and the aqueous phase was extracted 

with Et2O (3 x 15.0 mL). The combined organic layer was washed with saturated aqueous 

NaHCO3 (25.0 mL) and brine (25.0 mL), dried over anhydrous Na2SO4, filtered, and 

concentrated under reduced pressure. Purification by flash column chromatography on 

silica gel (3:1 hexanes/EtOAc) provided N-Ts amide 2.49 (101.3 mg, 62%) as a colorless 

oil. 
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1H NMR (400 MHz, CDCl3) δ 7.94 (d, J = 8.4 Hz, 1H), 7.73 (d, J = 7.6 Hz, 2H), 7.69 (d, 

J = 8.4 Hz, 2H), 7.66 (d, J = 8.0 Hz, 1H), 7.36 (s, 1H), 7.32-7.18 (m, 11H), 5.42 (t, J = 

7.6 Hz, 1H), 4.33 (s, 2H), 3.92 (m, 2H), 3.77 (d, J = 6.8 Hz, 2H), 3.36 (s, 2H), 3.03 (m, 

2H), 2.39 (s, 3H), 2.31 (s, 3H), 1.48 (s, 2H), -0.05 (s, 9H) ppm. 

HRMS (+NSI) calculated for C40H46O6N2NaS2Si [M+Na]+ 765.2464, found 765.2471. 

 

Hemiaminal Ether 2.32: 

 

To a solution of N-Ts Amide 2.49 (101.9 mg, 0.13 mmol, 1.0 equiv) in CH2Cl2 (3.0 mL) at 

-78 °C was added DIBAL-H (0.27 mL, 1.0 M in CH2Cl2, 0.27 mmol, 2.0 equiv) drop-wise 

over 15 minutes. The reaction was stirred at -78 °C for two hours, and then 

trimethylsilylimidazole (60 µL, 0.41 mmol, 3.1 equiv) and imidazole (9.0 mg, 0.13 mmol, 

1.0 equiv) were added. The reaction mixture was warmed up to -20 °C and stirred for 18 

hours. The reaction was quenched with saturated Rochelle’s salt solution (4.0 mL), and the 

biphasic mixture was stirred until both layers were clear. The layers were separated, and 

the aqueous phase was extracted with CH2Cl2 (3 x 5.0 mL). The combined organic layer 

was dried over anhydrous Na2SO4, filtered, and concentrated under reduced pressure. 

Purification by flash column chromatography on silica gel (4:1 hexanes/EtOAc) provided 

hemiaminal ether 2.32 (53.0 mg, 50%) as a colorless oil.  
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1H NMR (400 MHz, CDCl3) δ 7.96 (d, J = 8.0 Hz, 1H), 7.76 (d, J = 6.4 Hz, 2H), 7.68 (d, 

J = 8.4 Hz, 2H), 7.59 (d, J = 8.0 Hz, 1H), 7.34-7.19 (m, 12H), 5.35 (dd, J = 8.8, 2.8 Hz, 

1H), 5.27 (t, J = 7.6 Hz, 1H), 4.41 (q, J = 11.6 Hz, 2H), 4.02 (dd, J = 12.8, 8.8 Hz, 1H), 

3.91 (dd, J = 11.2, 4.8 Hz, 1H), 3.47 (m, 1H), 3.29 (m, 1H), 3.05 (m, 1H), 2.37 (s, 3H), 

2.31 (s, 3H), 1.78 (dd, J = 13.6, 1.4 Hz, 1H), 1.53 (t, J = 16.0 Hz, 1H), 1.31 (d, J = 13.4 

Hz, 1H), 0.04 (s, 9H), -0.05 (s, 9H) ppm. 

HRMS (+NSI) calculated for C43H46O6N2NaS2Si2 [M+Na]+ 839.3016, found 839.3015. 

 

Diene 2.51: 

 

 To a solution of hemiaminal ether 2.31 (37.0 mg, 0.04 mmol, 1.0 equiv) in 

CH2Cl2 (1.0 mL) at 0 °C was added BF3·OEt2 (25 µL, 0.20 mmol, 5.0 equiv), and the 

reaction was stirred for one hour. The mixture was quenched with saturated aqueous 

NaHCO3 (2.0 mL), and the layers were separated. The aqueous phase was extracted with 

CH2Cl2 (3 x 2.0 mL). The combined organic layer was dried over anhydrous Na2SO4, 

filtered, and concentrated under reduced pressure. Purification by preparatory thin layer 

chromatography on silica gel (4:1 hexanes/EtOAc, silica washed with EtOAc) provided 

diene 2.51 (32.0 mg, 72%) as a white solid. 
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1H NMR (600 MHz, CDCl3) δ 7.82 (d, J = 7.8 Hz, 2H), 7.39 (d, J = 7.8 Hz, 2H), 7.37 (s, 

1H), 7.36 (d, J = 1.8 Hz, 2H), 7.28 (d, J = 7.8 Hz, 2H), 7.03 (d, J = 7.8 Hz, 1H), 7.01 (d, 

J = 8.4 Hz, 2H), 6.94 (d, J = 8.4 Hz, 1H), 6.50, (dd, J = 7.8, 2.4 Hz, 1H), 5.59 (ddd, J = 

16.8, 10.2, 6.6 Hz, 1H), 5.30 (d, J = 7.8 Hz, 1H), 5.14 (bs, 1H), 5.89 (d, J = 9.0 Hz, 1H), 

3.77 (s, 3H), 2.95 (d, J = 3.0 Hz, 1H), 2.51 (s, 3H), 2.45-2.35 (m, 2H), 2.32 (s, 3H), 2.04 

(m, 1H), 1.98 (m, 1H), 1.52 (dd, J = 13.8, 2.4 Hz, 1H), 1.29 (t, J = 13.2 Hz, 1H) ppm. 

13C NMR (100 MHz, CDCl3) δ 160.2, 145.1, 141.6, 137.4, 132.3, 131.1, 130.0, 129.5, 

128.5, 128.2, 127.5, 127.3, 126.0, 122.1, 114.4, 109.7, 107.1, 103.2, 67.8, 66.0, 56.1, 

54.1, 43.1, 42.5, 32.5, 32.0, 30.1, 22.0, 21.5 ppm. 

HRMS (+APCI) calculated for C31H33O5N2S2 [M+H]+ 577.1825, found 577.1832. 

 

Diene 2.52: 

 

 To a solution of hemiaminal ether 2.32 (58.0 mg, 0.07 mmol, 1.0 equiv) in CH2Cl2 

(2.0 mL) at 0 °C was added BF3·OEt2 (41 µL, 0.33 mmol, 4.7 equiv) drop-wise over one 

minute. The reaction mixture was stirred for one hour and was then quenched with 

saturated aqueous NaHCO3 (2.0 mL). The layers were separated, and the aqueous phase 

was extracted with CH2Cl2 (3 x 3.0 mL). The combined organic layer was dried over 

anhydrous Na2SO4, filtered, and concentrated under reduced pressure. Purification by 
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preparatory thin layer chromatography (4:1 hexanes/EtOAc, rinsed with EtOAc) provided 

diene 2.52 (5.0 mg, 18%) as a white solid.  

1H NMR (600 MHz, CDCl3) δ 7.83 (d, J = 5.6 Hz, 2H), 7.64 (d, J = 5.6 Hz, 1H), 7.39 (d, 

J = 6.0 Hz, 2H), 7.27 (d, J = 5.6 Hz, 2H), 7.16 (m, 2H), 7.06 (d, J = 4.0 Hz, 2H), 7.00 (m, 

2H), 5.60 (ddd, J = 11.6, 6.7, 4.4 Hz, 1H), 5.33 (d, J = 5.6 Hz, 1H), 5.16 (s, 1H), 4.90 (d, 

J = 7.2 Hz, 2H), 4.87 (s, 1H), 2.95 (d, J = 2.0 Hz, 1H), 2.51 (s, 3H), 2.47-2.37 (m, 2H), 

2.32 (s, 3H), 2.06 (m, 1H), 2.03 (m, 1H), 1.53 (d, J = 2.0 Hz, 1H), 1.32 (t, J = 8.8 Hz, 

1H) ppm. 

HRMS (+APCI) calculated for C30H31O4N2S2 [M+H]+ 547.1725, found 547.1831. 

 

Tryptamine Hydrochloride 2.53:  

 

MeOH (215.0 mL) was cooled to 0 °C, and acetyl chloride (61.0 mL, 856.7 mmol, 

20.0 equiv) was added drop-wise over ten minutes, providing an approximately 4 M 

methanolic HCl solution. Carbamate 2.47* (17.7 g, 42.8 mmol, 1.0 equiv) was added in one 

portion, and the reaction was stirred at room temperature for 18 hours. The reaction mixture 

was concentrated under reduced pressure. The crude residue was triturated with Et2O and 

filtered to provide tryptamine hydrochloride 2.53 (12.5 g, 83%) as a grey solid.  

1H NMR (500 MHz, d6-DMSO) δ 8.21 (s, 3H), 7.90 (d, J = 8.2 Hz, 1H), 7.86 (d, J = 8.3 

Hz, 2H), 7.74 (s, 1H), 7.65 (d, J = 7.8 Hz, 1H), 7.38 - 7.33 (m, 3H), 7.28 (t, J = 7.5, 1H), 

3.10 (dq, J = 11.4, 5.7 Hz, 2H), 3.04 - 2.97 (m, 2H), 2.31 (s, 1H) ppm.  
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13C NMR (126 MHz, d6-DMSO) δ 159.3, 145.4, 134.3, 134.2, 130.2, 126.8, 124.9, 124.3, 

123.3, 119.7, 118.1, 113.2, 38.0, 22.5, 21.0 ppm. 

IR (thin film, cm-1) 2913, 1596, 1493, 1446, 1372, 1307, 1287, 1212, 1170, 1133, 1123, 

1092, 1020, 976, 945, 807, 745, 701, 667, 630, 598, 577, 567, 536.  

HRMS (+NSI) calculated for C34H38O4N4ClS2 [2M-Cl]+ 665.2018, found 665.2026. 

 

PMB Ether 2.54: 

 

 4-methoxybenzyl alcohol (10.3 mL, 83.0 mmol, 1.0 equiv) was added drop-wise to 

48% HBr (50.0 ml), and the mixture was stirred for one hour. Et2O (100.0 mL) was then 

added, and the two layers were separated. The organic layer was washed with saturated 

aqueous NaHCO3 (2 x 100.0 mL), dried over anhydrous CaCl2 for thirty minutes, filtered, 

and concentrated under reduced pressure to provide crude 4- methoxybenzyl bromide, 

which was used immediately without further purification. A slurry of NaH (60 wt % 

dispersion in mineral oil, 5.27 g, 132 mmol, 1.6 equiv) in THF (50.0 mL) was cooled to 0 

°C. 3-Butyn-1-ol (7.6 mL, 100.0 mmol, 1.2 equiv) was added drop-wise over 15 minutes, 

and the reaction was stirred for one hour. Crude 4-methoxybenzyl bromide was then added, 

and the reaction mixture was warmed up to room temperature and stirred for 14 hours. The 

reaction was quenched with saturated aqueous NH4Cl (200.0 mL). The layers were 

separated, and the aqueous phase was extracted with Et2O (3 x 100.0 mL). The combined 

organic layer was washed with brine (100.0 mL), dried over anhydrous MgSO4, filtered, 

OPMBOH
PMBBr, NaH

THF, 0 °C
72%
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and concentrated under reduced pressure. Purification by flash column chromatography on 

silica gel (19:1 pentane/Et2O) provided the PMB ether 2.54 (11.4 g, 72%) as a colorless 

oil.  

1H NMR (500 MHz, CDCl3) δ 7.29 (d, J = 8.3 Hz, 2H), 6.90 (d, J = 8.7 Hz, 2H), 4.51 (s, 

2H), 3.83 (s, 3H) 3.59 (t, J = 7.0 Hz, 2H), 2.51 (td, J = 7.0, 2.7 Hz, 2H), 2.01 (t, J = 2.7 Hz, 

1H) ppm. 

13C NMR (126 MHz, CDCl3) δ 159.4, 130.2, 129.5, 113.9, 81.5, 72.8, 69.4, 67.9, 55.4, 

20.0 ppm. 

IR (thin film, cm-1) 3289, 2860, 1612, 1586, 1511, 1463, 1361, 1301, 1243, 1173, 1092, 

1032, 819, 756, 636, 581. 

HRMS (+APCI) calculated for C12H14O2 [M]+ 190.0994, found 190.0991. 

 

Propargyl Alcohol 2.55:  

 

A solution of PMB ether 2.54 (11.4 g, 59.9 mmol, 1.0 equiv) in THF (80.0 mL) 

was cooled to -78 °C. n-BuLi (2.5 M in hexanes, 26.4 mL, 65.9 mmol, 1.1 equiv) was 

added drop-wise over five minutes, and the resultant mixture was stirred for one hour. 

Paraformaldehyde (5.40 g, 179.4 mmol of monomer, 3.0 equiv) was added in one portion, 

and the reaction was warmed to room temperature and stirred for 12 hours. The mixture 

was quenched with saturated aqueous NH4Cl (50.0 mL) and water (50.0 mL). Et2O (100.0 

OPMB
OPMB

HO

n-BuLi
THF, -78 °C

then (CH2O)n
97%
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mL) was added, and the layers were separated. The aqueous phase was extracted with Et2O 

(3 x 100.0 mL). The combined organic layer was washed with brine (100.0 mL), dried over 

anhydrous MgSO4, filtered, and concentrated under reduced pressure. Purification by flash 

column chromatography on silica gel (2:1 hexanes/EtOAc) provided propargyl alcohol 

2.55 (12.8 g, 97%) as a colorless oil.  

1H NMR (500 MHz, CDCl3) δ 7.29 (d, J = 8.7 Hz, 2H), 6.90 (d, J = 8.7 Hz, 2H), 4.50 (s, 

2H), 4.25 (s, 2H), 3.82 (s, 3H), 3.57 (t, J = 6.9 Hz, 2H), 2.53 (tt, J = 6.9, 2.2 Hz, 2H) ppm. 

13C NMR (126 MHz, CDCl3) δ 159.4, 130.1, 129.5, 113.9, 83.2, 79.6, 72.7, 68.0, 55.4, 

51.4, 20.3 ppm.  

IR (thin film, cm-1) 3405, 2910, 2863, 1612, 1586, 1512, 1462, 1361, 1302, 1244, 1174, 

1135, 1089, 1026, 819, 755, 710, 637, 579. 

HRMS (+NSI) calculated for C13H20O3N [M+NH4]+ 238.1438, found 238.1439. 

 

Vinyl Iodide 2.56:  

 

Propargyl alcohol 2.55 (10.5 g, 47.7 mmol, 1.0 equiv) was dissolved in THF (50.0 

mL) and cooled to 0 °C. Red-Al® (60 % wt/v solution in toluene, 27.3 mL, 81.0 mmol, 1.7 

equiv) was added drop-wise over ten minutes. The resulting slurry was warmed to room 

temperature and stirred for three hours. The reaction mixture was cooled to -78 °C, and a 

solution of N-iodosuccinimide (19.3 g, 85.9 mmol, 1.8 equiv) in THF (50.0 mL) was added 

OPMB

HO

I

HO

OPMB
Red-Al
THF/PhMe, 0 °C

then NIS, -78 °C
83%



	 105 

via cannula. The reaction mixture was stirred for 30 minutes. Upon warming to room 

temperature, the reaction mixture was quickly poured into a 1:1 mixture of saturated 

aqueous Na2SO3/saturated Rochelle's salt solution (300.0 mL), and the biphasic mixture 

was stirred vigorously until both layers were clear and colorless. The layers were separated, 

and the aqueous phase was extracted with Et2O (3 x 100.0 mL). The combined organic 

layer was washed with brine (100.0 mL), dried over anhydrous MgSO4, filtered, and 

concentrated under reduced pressure. Purification by flash column chromatography on 

silica gel (3:1 to 2:1 hexanes/EtOAc) provided vinyl iodide 2.56 (13.7 g, 83%) as a pale 

yellow oil.  

1H NMR (500 MHz, CDCl3) δ 7.27 (d, J = 8.7 Hz, 2H), 6.89 (d, J = 8.7 Hz, 2H), 5.91 (tt, 

J = 5.7, 1.1 Hz, 1H), 4.46 (s, 2H), 4.14 (d, J = 5.6 Hz, 2H), 3.80 (s, 3H), 3.60 (t, J = 6.4 

Hz, 2H), 2.77 (td, J = 6.4, 1.0 Hz, 2H) ppm. 

13C NMR (126 MHz, CDCl3) δ 159.2, 136.1, 130.0, 129.4, 113.8, 104.5, 72.7, 68.3, 67.2, 

55.3, 45.1 ppm. 

IR (thin film, cm-1) 3370, 2859, 1611, 1511, 1460, 1360, 1301, 1244, 1173, 1081, 1030, 

814, 755, 566. 

HRMS (+NSI) calculated for C13H21O3NI [M+NH4]+ 366.0561, found 366.0563. 
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Alcohol 2.57:  

 

Vinyl iodide 2.56 (8.57 g, 24.7 mmol, 1.0 equiv) and imidazole (3.36 g, 49.3 mmol, 

2.0 equiv) were dissolved in CH2Cl2 (40.0 mL) and cooled to 0 °C. TBDPSCl (7.05 mL, 

27.1 mmol, 1.1 equiv) was added drop-wise, and the reaction mixture was stirred at room 

temperature for three hours. The reaction was quenched with saturated aqueous NH4Cl 

(60.0 mL), and the layers were separated. The aqueous phase was extracted with CH2Cl2 

(3 x 50.0 mL). The combined organic layer was washed with water (100.0 mL) and brine 

(100.0 mL). The organic layer was dried over anhydrous Na2SO4, filtered, and concentrated 

under reduced pressure to provide the crude TBDPS ether, which was used directly in the 

next step without further purification.  

The crude TBDPS ether was dissolved in CH2Cl2 (40.0 mL) and cooled to 0 °C. 

DDQ (6.15 g, 27.1 mmol, 1.1 equiv) and water (2.0 mL) were added, and the resultant 

black slurry was stirred for one hour. The reaction mixture was filtered over celite, and the 

filtrate quenched with of a 1:1 mixture of saturated aqueous Na2SO3/saturated aqueous 

NaHCO3 (150.0 mL). The layers were separated, and the aqueous phase was extracted with 

DCM (3 x 100.0 mL). The combined organic layer was washed with brine (100.0 mL), 

dried over anhydrous Na2SO4, filtered, and concentrated under reduced pressure. The crude 

mixture was brought up in dry MeOH (40.0 mL) and cooled to 0 °C. NaBH4 (2.80 g, 74.1 

TBDPSCl, Imid.

I

TBDPSO

OPMB

DDQ, CH2Cl2/H2O

then NaBH4, MeOH
92%

over two steps

I

HO

OPMB

I
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mmol, 3.0 equiv) was added in portions, and the mixture was stirred for four hours. The 

solution was concentrated under reduced pressure, and the residue was brought up in Et2O 

(100.0 mL) and H2O (100.0 ml). The layers were separated, and the aqueous phase was 

extracted with Et2O (3 x 100.0 ml). The combined organic layer was washed with brine 

(100.0 mL), dried over anhydrous MgSO4, filtered, and concentrated under reduced 

pressure. Purification by flash chromatography on silica gel (4:1 to 7:3 hexanes/EtOAc) 

provided alcohol 2.57 (10.52 g, 92% over three steps) as a colorless oil.  

1H NMR (500 MHz, CDCl3) δ 7.72 – 7.64 (m, 4H), 7.48 – 7.37 (m, 6H), 6.01 (tt, J = 5.1, 

1.1 Hz, 1H), 4.28 (dt, J = 5.0, 1.0 Hz, 2H), 3.71 (t, J = 5.8 Hz, 2H), 2.68 (tq, J = 6.0, 1.0 

Hz, 2H), 1.07 (s, 9H) ppm. 

13C NMR (126 MHz, CDCl3) δ 138.0, 135.7, 133.5, 129.9, 127.9, 102.2, 69.1, 61.0, 47.9, 

26.9, 19.3 ppm. 

IR (thin film, cm-1) 3392, 3071, 2931, 2858, 1472, 1427, 1264, 1110, 1051, 907, 823, 731, 

701, 612. 

HRMS (+NSI): calculated for C21H27O2INaSi [M+Na]+ 489.0717, found 489.0718. 

 

Allylsilane 2.59:  

 

I
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OH
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Alcohol 2.57 (10.52 g, 22.5 mmol, 1.0 equiv) was brought up in CH2Cl2 (50.0 mL). 

Dess-Martin Periodinane (11.48 g, 27.1 mmol, 1.2 equiv.) was then added, and the resultant 

slurry was stirred at room temperature for three hours. The reaction was diluted with EtOAc 

(100.0 mL) and quenched with a 1:1 mixture of saturated aqueous Na2SO3/saturated 

aqueous NaHCO3 (100.0 mL). The layers were separated, and the aqueous phase was 

extracted with EtOAc (3 x 50.0 mL). The combined organic layer was washed with brine 

(100.0 mL), dried over anhydrous Na2SO4, filtered, and concentrated under reduced 

pressure. The crude residue was brought up in t-BuOH (100.0 mL) and CH2Cl2 (100.0 mL). 

2-methyl-2-butene (50.0 mL) was then added, and the reaction was cooled to 0 °C. NaClO2 

(20.3 g, 225.0 mmol, 10.0 equiv.) and NaH2PO4 (21.6 g, 180 mmol, 8.0 equiv.) were 

dissolved in H2O (100.0 mL), and the resultant solution was added in one portion to the 

reaction mixture. The biphasic mixture was stirred for one hour and then diluted with water 

(150.0 mL). CH2Cl2 (150.0 mL) was added, and the layers were separated. The organic 

layer was washed with water (100.0 mL) and brine (100.0 mL), dried over anhydrous 

Na2SO4, filtered, and concentrated under reduced pressure. Residual t-BuOH was removed 

by azeotroping the residue with toluene (3 x 50.0 mL) to provide the crude carboxylic acid 

2.58 as a yellow oil, which was used without further purification. 

TMSCH2Cl (9.4 mL, 67.5 mmol, 3.0 equiv.) was dissolved in dry Et2O (68.0 mL). 

Mg turnings (1.68 g, 67.5 mmol, 3.0 equiv) and a crystal of iodine were added. An initial 

exotherm was observed, and the mixture was stirred for five hours at reflux until all 

magnesium was consumed. The freshly formed Grignard solution was cooled to room 

temperature and added via cannula to anhydrous ZnBr2 (15.80 g, 69.8 mmol, 3.1 equiv), 

and the resultant slurry was stirred for 12 hours. DMF (68.0 mL) was then added. A 



	 109 

solution of crude carboxylic acid 2.53 in DMF (15.0 mL) was added, and the reaction 

mixture was cooled to 0 °C. A solution of Pd(MeCN)2Cl2 (583.7 mg, 2.25 mmol, 0.1 equiv) 

in DMF (10.0 mL) was then added, and the reaction was warmed to room temperature and 

stirred for three hours. The reaction was quenched with saturated aqueous NH4Cl (50.0 

mL) and Et2O (100.0 mL), and the layers were separated. The aqueous phase was extracted 

with Et2O (3 x 100.0 mL). The combined organic layer was washed with H2O (2 X 150.0 

mL), 5% aqueous LiCl (2 x 150.0 ml), and brine (100.0 mL). The organic layer was dried 

over anhydrous MgSO4, filtered through celite, and concentrated under reduced pressure. 

Purification by flash column chromatography on silica gel (9:1 hexanes/EtOAc) provided 

allylsilane 2.59 (7.72 g, 78% over three steps) as a yellow oil.  

1H NMR (500 MHz, CDCl3) δ 7.73 – 7.67 (m, 4H), 7.45 – 7.36 (m, 6H), 5.49 (t, J = 6.1 

Hz, 1H), 4.17 (d, J = 6.1 Hz, 2H), 2.98 (s, 2H), 1.47 (s, 2H), 1.06 (s, 9H), -0.04 (s, 9H) 

ppm. 

13C NMR (126 MHz, CDCl3) δ 178.0, 135.7, 134.0, 131.5, 129.7, 126.6, 61.3, 44.6, 27.0, 

22.1, 19.3, -0.9 ppm.  

IR (thin film, cm-1) 3071, 2954, 2856, 1708, 1427, 1249, 1111, 1079, 1046, 850, 824, 736, 

701, 613.  

HRMS (+NSI) calculated for C25H37O3Si2 [M+H]+ 441.2276, found 441.2273. 
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Amide 2.60: 

 

A solution of tryptamine hydrochloride 2.43 (7.1 g, 28.4 mmol, 1.0 equiv) in CH2Cl2 (90.0 

mL) was cooled to 0 °C, and DIPEA (29.7 mL, 170.4 mmol, 6.0 equiv) was added drop-

wise. A solution of carboxylic acid 2.59 (12.5 g, 28.4 mmol, 1.0 equiv) in CH2Cl2 (90.0 

mL) was added via cannula. HOBt·H2O (4.61 g, 34.1 mmol, 1.2 equiv) and EDCI·HCl 

(6.54 g, 34.1 mmol, 1.2 equiv) were added, and the reaction mixture was warmed to room 

temperature and stirred for 48 hours. The reaction was quenched with 0.5 N aqueous HCl 

(200.0 mL), and the layers were separated. The organic phase was washed with saturated 

aqueous NaHCO3 (200.0 mL) and brine (200.0 mL), dried over anhydrous Na2SO4, filtered, 

and concentrated under reduced pressure. Purification by flash column chromatography on 

silica gel (9:1 to 4:1 hexanes/EtOAc) provided amide 2.60 (13.4 g, 64%) as a yellow oil. 

1H NMR (600 MHz, CDCl3) δ 7.98 (d, J = 8.4 Hz, 1H), 7.73 (d, J = 8.3 Hz, 2H), 7.68 – 

7.65 (m, 4H), 7.49 (d, J = 7.7 Hz, 1H), 7.43 – 7.33 (m, 7H), 7.30 (t, J = 7.8 Hz, 1H), 7.24 

– 7.19 (m, 3H), 5.87 (t, J = 6.0 Hz, 1H), 5.40 (t, J = 6.5 HZ, 1H), 4.13 (d, J = 6.4 Hz, 2H), 

3.44 (q, J = 7.2 Hz, 2H), 2.85 – 2.77 (m, 4H), 2.33 (s, 3H), 1.28 (s, 2H), 1.03 (s, 9H), -0.09 

(s, 9H) ppm.  

TBDPSO

O

HO
TMS

DIPEA, CH2Cl2

N

NH3+Cl-

Ts

N
NTs

O
TMS

HEDC·HCl, HOBt·H2O

TBDPSO

64%



	 111 

13C NMR (126 MHz, CDCl3) δ 170.9, 144.9, 135.7, 135.4, 135.3, 134.9, 134.8, 133.8, 

130.8, 130.0, 127.8, 126.9, 124.9, 123.4, 123.3, 119.8, 119.6, 113.8, 61.0, 47.7, 39.4, 29.8, 

26.7, 25.2, 22.1, 21.7, 19.3, -0.8 ppm. 

IR (thin film, cm-1) 3304, 3069, 2926, 2855, 1646, 1533, 1448, 1428, 1368, 1249, 1172, 

1112, 1086, 978, 909, 851, 823, 738, 669, 597, 574, 537. 

HRMS (+NSI) calculated for C42H52O4N2NaSSi2 [M+Na]+ 759.3079, found 759.3077. 

 

Cbz-Amide 2.61: 

 

A solution of amide 2.60 (1.93 g, 2.62 mmol, 1.1 equiv) in THF (17.0 mL) was cooled to 

-78 °C. A solution of LiHMDS (1.0 M in THF, 2.48 mL, 2.48 mmol, 1.0 equiv) was added 

drop-wise over five minutes, and the solution was stirred for one hour. CbzCl (0.55 mL, 

3.93 mmol, 1.6 equiv) was then added, and the solution was stirred at -78 °C for 24 hours. 

The reaction was quenched with saturated aqueous NH4Cl (30.0 mL) and warmed to room 

temperature. The layers were separated, and the aqueous phase was extracted with Et2O (3 

x 30.0 mL). The combined organic phase was washed with brine (30.0 mL), dried over 

anhydrous MgSO4, filtered, and concentrated under reduced pressure. Purification by flash 

column chromatography on silica gel (9:1 to 4:1 hexanes/EtOAc) provided Cbz-amide 2.61 

(2.09 g, 97%) as a sticky foam.  

N
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1H NMR (600 MHz, CDCl3) δ 7.95 (d, J = 8.4 Hz, 1H), 7.72 (d, J = 8.4 Hz, 2H), 7.71 – 

7.65 (m, 4H), 7.43-7.25 (m, 14H), 7.19 (d, J = 8.0 Hz, 2H), 7.11 (t, J = 7.4 Hz, 1H), 5.33 

(t, J = 6.2 Hz, 1H), 5.08 (s, 2H), 4.17 (d, J = 6.2 Hz, 2H), 4.00 – 3.89 (m, 2H), 3.57 (s, 2H), 

2.93 – 2.81 (m, 2H), 2.32 (s, 3H), 1.46 (s, 2H), 1.02 (s, (H), -0.06 (s, 9H) ppm. 

13C NMR (151 MHz, CDCl3) δ 173.7, 154.1, 144.9, 135.73, 135.65, 135.40, 135.25, 134.9, 

134.1, 133.3, 130.8, 129.9, 129.6, 128.9, 128.7, 126.9, 126.8, 125.2, 125.1, 124.8, 123.2, 

119.7, 113.8, 113.7, 77.4, 68.8, 61.3, 47.8, 44.4, 27.0, 24.5, 22.8, 21.7, 19.3, -0.8 ppm.  

IR (thin film, cm-1) 3068, 2953, 2856, 1735, 1695, 1597, 1447, 1427, 1357, 1265, 1248, 

1169, 1112, 1043, 977, 908, 848, 823, 734, 700, 667, 601, 575, 537. 

HRMS (+NSI) calculated for C50H62O6N3SSi2 [M+NH4]+ 888.3892, found 888.3892. 

 

 

 

 

Hemiaminal Ether 2.62: 

 

A solution of Cbz-amide 2.61 (3.17 g, 3.62 mmol, 1.0 equiv) in CH2Cl2 (25.0 mL) was 

cooled to -78 °C. DIBAL-H (1.0 M in CH2Cl2, 7.25 mL, 7.25 mmol, 2.0 equiv) was added 

drop-wise over ten minutes, and the reaction was stirred for one hour. TMS-imidazole (1.39 
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mL, 10.88 mmol, 3.0 equiv) and imidazole (246.4 mg, 3.62 mmol, 1.0 equiv) were then 

added, and the reaction was warmed up to -20 °C and stirred for 18 hours. The reaction 

was quenched with saturated Rochelle’s salt solution (30.0 mL), and the biphasic mixture 

was stirred vigorously at room temperature until both layers were clear. The layers were 

separated, and the aqueous phase was extracted with CH2Cl2 (3 x 30.0 mL). The combined 

organic phase was dried over anhydrous Na2SO4, filtered, and concentrated under reduced 

pressure. Purification by flash column chromatography on silica gel (9:1 hexanes/EtOAc) 

provided hemiaminal ether 2.62 (3.21 g, 96%) as a sticky foam. 

1H NMR (600 MHz, CDCl3) (1:0.6 mixture of rotamers) δ 7.98 – 7.94 (m, 1.6H), 7.77 – 

7.71 (m, 3.8H), 7.66 – 7.65 (m, 6.4H), 7.42 – 7.23 (m, 22.4H), 7.21 – 7.19 (m, 3.2H), 7.06 

(t, J = 7.6 Hz, 1H), 5.93 (t, J = 6.3 Hz, 1H), 5.75 (t, J = 6.3 Hz, .6H), 5.35 (t, J = 6.3 Hz, 

1H), 5.29 (t, J = 6.3 Hz, .6H), 5.24 – 5.13 (m, 2.2H), 5.08 (d, J = 12.1 Hz, 1H), 4.09 – 4.04 

(m, 3.2H), 3.56 – 3.25 (m, 3.2H), 3.04 – 2.82 (m, 3.2H), 2.35 – 2.11 (m, 8H), 1.50 (d, J = 

13.7 Hz, 1H), 1.43 (d, J = 13.6 Hz, 1H), 1.36 (d, J = 13.8 Hz, .6H), 1.24 (d, J = 14.2 Hz, 

.6H), 1.00 (s, 14.4H), 0.12 (s, 9H), 0.05 (s, 5.4H), -0.06 (s, 9H), -0.13 (s, 5.4H) ppm.  

13C NMR (126 MHz, CDCl3) (1:0.6 mixture of rotamers) δ 164.6, 155.5, 154.7, 144.9, 

136.6, 135.7, 135.5, 135.3, 134.5, 134.1, 131.1, 130.9, 130.0, 129.6, 128.7, 128.5, 128.4, 

127.8, 126.9, 125.1, 125.0, 124.7, 123.3, 123.3, 120.7, 120.4, 120.1, 119.8, 113.8, 79.4, 

79.2, 67.5, 61.2, 46.0, 45.7, 41.7, 41.4, 26.9, 26.5, 25.4, 22.2, 21.7, 19.3, 0.0, -0.7, -0.8 

ppm. 

IR (thin film, cm-1) 2954, 2856, 1699, 1598, 1447, 1416, 1372, 1341, 1250, 1210, 1173, 

1110, 1027, 976, 943, 909, 842, 740, 701, 669, 603, 576, 537. 

HRMS (+NSI) calculated for C53H72O6N3SSi3 [M+NH4]+ 962.4444, found 962.4475. 
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Tetracycle 2.63: 

 

A solution of hemiaminal ether 2.62 (900.0 mg, 0.96 mmol, 1.0 equiv) and 4 Å MS (900.0 

mg) in CH2Cl2 (9.0 mL) was cooled to -78 °C. Freshly distilled BF3·OEt2 (0.18 mL, 2.91 

mmol, 3.0 equiv) was added drop-wise over five minutes, and the reaction was stirred at -

78 °C for 24 hours. The mixture was warmed up to room temperature and quenched via 

the slow addition of saturated aqueous NaHCO3 (15.0 mL) and CH2Cl2 (5.0 mL). The 

biphasic mixture was stirred for 30 minutes. The layers were separated, and the aqueous 

phase was extracted with CH2Cl2 (3 x 10.0 mL). The combined organic layer was dried 

over anhydrous Na2SO4, filtered, and concentrated under reduced pressure. Purification by 

flash column chromatography on silica gel (9:1 to 4:1 hexanes/EtOAc) provided tetracycle 

2.63 (601.1 mg, 83%) as a crunchy foam.  

Tetracycle 2.63 was present as a 1.0:1.0 mixture of rotamers in CDCl3 at 23 °C. The 

rotameric peaks could be partially resolved at 80 °C in d6-DMSO. 

Structural assignment was confirmed by X-ray crystallography analysis (vide infra). X-ray 

quality crystals were grown by slow evaporation of a solution of tetracyle 2.63 from 1:1 n-

heptane/CH2Cl2 at 4 °C. 

1H NMR (600 MHz, CDCl3) (1.0:1.0 mixture of rotamers) δ 7.70 – 7.60 (m, 4H), 7.50 – 

7.25 (m, 32 H), 7.15 (d, J = 8.0 Hz, 2H), 7.07 (t, J = 7.8 Hz, 2H), 6.93 (t, J = 8.6 Hz, 2H), 

6.86 (t, J = 7.4 Hz, 2H), 6.76 (d, J = 7.3 Hz, 2H), 5.41 – 5.36 (m, 2H), 5.24 – 5.12 (m, 4H), 
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4.99 (s, 1H), 4.99 (s, 2H), 4.92 (d, J = 7.3 Hz, 2H), 4.03 – 3.91 (m, 4H), 3.54 (dt, J = 33.1, 

10.1, 2H), 2.83 – 2.73 (m, 4H), 2.52 – 2.37 (m, 4H), 2.29 (d, J = 26.6 Hz, 6H), 2.11 (dd, J 

= 27.4, 12.4 Hz, 2H), 1.80 – 1.71 (m, 2H), 0.90 (s, 18H) ppm. 

1H NMR (600 MHz, d6-DMSO, 80 °C) δ 7.86 (bs, 1H), 7.78 (d, J = 8.2 Hz, 1H), 7.71 – 

7.65 (m, 7H), 7.68 – 7.58 (m, 9H), 7.52 (bs, 2H), 7.41 (t, J = 8.5 Hz, 1H), 7.33 (d, J = 7.4 

Hz, 1H), 7.32 (t, J = 7.3 Hz, 1H), 5.61 (s, 1H), 5.48 – 5.42 (m, 2H), 5.29 (s, 1H), 5.21 (s, 

1H), 4.21 – 4.07 (m, 2H), 3.76 (t, J = 10.2 Hz, 1H), 3.18 (s, 1H), 3.03 – 2.90 (m, 2H), 2.68 

– 2.56 (m, 4H), 2.51 (bs, 1H), 2.08 – 1.99 (m, 1H), 1.15 (s, 9H) ppm. 

13C NMR (126 MHz, CDCl3) (1:1 mixture of rotamers) δ 164.6, 155.9, 155.7, 144.6, 144.4, 

143.9, 143.1, 137.1, 136.0, 135.7, 135.6, 133.9, 133.7, 131.4, 131.2, 129.9, 129.5, 129.4, 

128.8, 128.6, 128.5, 128.3, 128.2, 127.9, 127.6, 127.5, 124.7, 122.3, 122.2, 115.0, 114.8, 

114.5, 69.3, 69.0, 67.4, 62.6, 60.5, 54.1, 54.0, 51.1, 51.0, 44.5, 40.0, 36.0, 35.7, 31.2, 30.6, 

27.1, 27.0, 21.6, 21.2, 19.4, 14.3 ppm. 

IR (thin film, cm-1) 3069, 2931, 2857, 1691, 1470, 1455, 1170, 1084, 907, 729, 700, 577. 

HRMS (+NSI) calculated for C47H51O5N2SSi [M+H] + 783.3283, found 783.3275. 

 

Vinyl iodide 2.65: 

 

A round bottom flask was charged with Cp2ZrHCl (7.66 g, 29.70 mmol, 3.0 equiv) in a 

glove box. The flask was removed from the glove box and placed under nitrogen pressure. 
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The solid was brought up in CH2Cl2 (80.0 mL) and cooled to 0 °C. A solution of the alcohol 

2.64 (3.35 g, 9.90 mmol, 1.0 equiv) in CH2Cl2 (80.0 mL) was added via cannula, and the 

resultant mixture was stirred for three hours. The reaction mixture was subsequently cooled 

to -78 °C, and a solution of NIS (4.45 g, 19.80 mmol, 2.0 equiv) in dry THF (80.0 mL) was 

then added via cannula. The reaction was stirred for thirty minutes and was subsequently 

quenched via the addition of a 1:1 mixture of saturated aqueous Na2SO3/saturated aqueous 

NaHCO3 (200.0 mL) and warmed to room temperature. The biphasic mixture was filtered 

over celite and rinsed with Et2O (3 x 50.0 mL). The layers were separated, and the aqueous 

phase was extracted with Et2O (3 x 100.0 mL). The combined organic layer was washed 

with brine (100.0 mL), dried over anhydrous MgSO4, filtered, and concentrated under 

reduced pressure. Purification by flash chromatography on silica gel (9:1 hexanes/EtOAc) 

afforded vinyl iodide 2.65 (3.45 g, 74%) as a pale yellow oil.  

1H NMR (400 MHz, CDCl3) δ 7.71-7.65 (m, 4H), 7.47-7.39 (m, 6H), 6.56 (t, 1H, J = 6.7 

Hz), 4.15 (d, 2H, J = 6.7 Hz), 3.65 (q, 2H, J = 5.9 Hz), 2.54 (t, 2H, J= 5.8 Hz), 1.62 (t, 1H, 

J = 6.1 Hz), 1.05 (s, 9H) ppm. 

13C NMR (100 MHz, CDCl3) δ 143.0, 135.7, 133.2, 130.0, 127.9, 101.6, 61.6, 60.8, 42.5, 

26.9, 19.3 ppm. 

IR (thin film, cm-1) 3500-2500, 3070, 2929, 2856, 1712, 1427, 1106, 699.8. 

HRMS (+NSI) calculated for C21H25INaO3Si [M+Na]+ 503.0515, found 503.0510. 
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Allylsilane 2.67: 

 

Vinyl iodide 2.65 (3.44 g, 7.4 mmol, 1.0 equiv) was dissolved in CH2Cl2 (35.0 mL). DMP 

(3.75 g, 8.8 mmol, 1.2 equiv) was added, and the reaction was stirred for three hours. The 

reaction was quenched with a 1:1 mixture of saturated aqueous Na2SO3/saturated aqueous 

NaHCO3 (50.0 mL), and the layers were separated. The aqueous phase was extracted with 

EtOAc (3 x 50.0 mL). The combined organic layers were washed with brine (50.0 mL), 

dried over anhydrous Na2SO4, filtered, and concentrated under reduced pressure. The 

residue was dissolved in t-BuOH (62.0 mL) and CH2Cl2 (14.0 mL). 2-methyl-2-butene 

(33.0 mL) was then added and the mixture was cooled to 0 °C. NaClO2 (6.67 g, 73.7 mmol, 

10.0 equiv) and NaH2PO4 (7.08 g, 59.0 mmol, 8.0 equiv) were dissolved in H2O (68.0 mL). 

The resultant aqueous solution was added to the reaction mixture in one portion, and the 

biphasic mixture was stirred for one hour. The reaction was quenched with water (100.0 

mL) and CH2Cl2 (100.0 mL). The layers were separated, and the aqueous phase was 

extracted with CH2Cl2 (3 x 100.0 mL). The combined organic phase was washed with brine 

(100.0 mL), dried over anhydrous Na2SO4, filtered, and concentrated under reduced 

pressure. Residual t-BuOH was removed by azeotroping the residue with toluene (3 x 50.0 

mL) to provide the crude carboxylic acid 2.66 as a yellow oil, which was used without 

further purification. 
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ZnBr2 (5.31 g, 23.6 mmol, 3.2 equiv) and TMSCH2MgCl (1.0 M in Et2O, 22.1 mL, 22.1 

mmol, 3.0 equiv) were combined and stirred for 12 hours at room temperature. The mixture 

was cooled to 0 °C, and DMF (30.0 mL) and Et2O (10.0 mL) were slowly added added. A 

solution of crude carboxylic acid X in DMF (20.0 mL) was added to the reaction mixture 

via cannula. A solution of Pd(MeCN)2Cl2 (191.2 mg, .737 mmol, 10 mol %) in DMF (5.0 

mL) was added, and the resultant mixture was stirred for three hours. The reaction was 

quenched with saturated aqueous NH4Cl (150.0 mL) and Et2O (100.0 mL), and the layers 

were separated. The aqueous phase was extracted with Et2O (3 x 75.0 mL). The combined 

organic layer was washed with water (2 x 100.0 mL), 5% aqueous LiCl (100.0 mL), and 

brine (100.0 mL). The organic layer was dried over anhydrous Na2SO4, filtered through 

celite, and concentrated under reduced pressure. Purification by column chromatography 

on silica gel (4:1 to 7:3 hexanes/EtOAc) provided allylsilane 2.67 (2.48 g, 76% over three 

steps) as a yellow oil. 

1H NMR (500 MHz, CDCl3) δ 7.71 – 7.66 (m, 4H), 7.46 – 7.36 (m, 6H), 5.48 (t, J = 7.0 

Hz, 1H), 4.17 (d, J = 6.9 Hz, 2H), 3.00 (s, 2H), 1.63 (s, 2H), 1.03 (s, 9H), 0.02 (s, 2H) ppm. 

13C NMR (126 MHz, CDCl3) δ 174.8, 135.7, 133.5, 129.9, 127.9, 125.3, 60.8, 39.0, 27.9, 

26.9, 19.3, -1.2 ppm. 

IR (thin film, cm-1) 3200, 2857, 1706, 1248, 1110, 1045, 842, 823, 700, 612. 

HRMS (-NSI) calculated for C25H35O3Si2 [M-H]- 439.2125, found 439.2136. 
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Amide 2.68: 

 

Tryptamine hydrochloride 2.53 (1.48 g, 5.9 mmol, 1.1 equiv) was brought up in CH2Cl2 

(20.0 mL).  The resultant slurry was cooled to 0 °C, and DIPEA (6.2 mL, 35.4 mmol 4.5 

equiv) was added drop-wise. HOBt·H2O (799.0 mg, 5.9 mmol, 1.1 equiv) was then added 

to the tryptamine solution. A solution of carboxylic acid 2.67 (2.48 g, 5.6 mmol, 1.0 equiv) 

in CH2Cl2 (20.0 mL) was added to the tryptamine solution. EDC·HCl (1.13 g, 5.9 mmol, 

1.1 equiv) was then added, and the reaction was stirred for three hours. The reaction was 

quenched with aqueous 0.5 N HCl (100.0 mL) and stirred for 15 minutes. CH2Cl2 (100.0 

mL) was added, and the layers were separated. The organic phase was washed with aqueous 

2 N HCl (100.0 mL), saturated aqueous NaHCO3 (2 x 100.0 mL), and brine (100.0 mL). 

The organic layer was dried over anhydrous Na2SO4, filtered, and concentrated under 

reduced pressure. Purification by flash chromatography on silica gel (4:1 to 3:1 

hexanes/EtOAc) provided the amide 2.68 (2.40 g, 58%) as a sticky foam. 

1H NMR (400 MHz, CDCl3) δ 7.95 (d, J = 8.5 Hz, 1H), 7.72 (d, J = 8.3 Hz, 2H), 765 (dd, 

J = 7.8, 1.6 Hz, 4H), 7.46 – 7.34 (m, 6H), 7.29 (d, J = 10.1 Hz, 2H), 7.19 (dd, J = 7.6, 6.1 

Hz, 4H), 6.42 (t, J = 6.4 H, 1H), 5.43 (t, J = 7.2 Hz, 1H), 4.13 (d, J = 7.1 Hz, 2H), 3.35 (q, 

J = 6.6 Hz, 2H), 2.91 (s, 2H), 2.72 (t, J = 7.2 Hz, 2H), 2.32 (s, 3H), 1.47 (s, 2H), 1.01 (s, 

9H), 0.00 (s, 9H) ppm. 
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13C NMR (126 MHz, CDCl3) δ 170.3, 144.9, 137.6, 135.7, 135.6, 133.6, 130.9, 130.0, 

128.0, 126.9, 124.9, 124.6, 123.4, 123.2, 119.9, 119.6, 113.8, 60.5, 41.1, 39.4, 27.7, 27.0, 

25.2, 19.3, -1.3 ppm. 

IR (thin film, cm-1) 3338, 3069, 2954, 2930, 2857, 1675, 1370, 1173, 1112, 851, 703. 

HRMS (+NSI) calculated for C42H52O4N2NaSSi2 [M+Na]+ 759.3079, found 759.3112. 

 

Cbz-Amide 2.69: 

 

A solution of amide 2.68 (2.40 g, 3.30 mmol, 1.1 equiv) in THF (16.0 mL) was cooled to 

-78 °C. A solution of LiHMDS (0.31 M in THF, 1.00 mL, 3.10 mmol, 1.0 equiv) was added 

drop-wise over five minutes, and the mixture was stirred for one hour. CbzCl (0.55 mL, 

3.90 mmol, 1.3 equiv) was then added, and the reaction was stirred at -78 °C for 18 hours. 

The reaction was quenched with saturated aqueous NH4Cl (25.0 mL), and the biphasic 

mixture was warmed to room temperature. The layers were separated, and the aqueous 

phase was extracted with Et2O (3 x 25.0 mL). The combined organic layer was washed 

with brine (50.0 mL), dried over anhydrous MgSO4, filtered, and concentrated under 

reduced pressure. Purification by flash column chromatography on silica gel (9:1 to 4:1 

hexanes/EtOAc) provided Cbz-amide 2.69 (1.80 g, 67%) as a sticky foam. 

1H NMR (500 MHz, CDCl3) δ 7.97 (s, 1H), 7.74 (d, J = 8.4 Hz, 2H), 7.70 (dd, J = 7.6, 1.7 

Hz, 4H), 7.44 – 7.33 (m, 13H), 7.30 – 7.27 (m, 1H), 7.21 (d, J = 8.1 Hz, 2H), 7.12 (t, J = 
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7.6 Hz, 1H), 5.50 (t, J = 6.4 Hz, 1H), 5.09 (s, 2H), 4.18 (d, J = 6.4 Hz, 2H), 3.93 – 3.83 (m, 

2H), 3.58 (s, 2H), 2.85 – 2.75 (m, 2H), 2.34 (s, 3H), 1.57 (s, 2H), 1.06 (s, 9H), 0.06 (s, 9H) 

ppm. 

13C NMR (126 MHz, CDCl3) δ 173.1, 154.0, 144.8, 135.6, 135.3, 135.1, 134.8, 134.0, 

132.8, 130.6, 129.8, 129.5, 128.8, 128.6, 127.6, 126.8, 126.0, 124.7, 123.5, 123.1, 119.6, 

119.3, 113.6, 68.7, 61.04, 44.4, 41.7, 29.7, 28.2, 26.8, 24.4, 21.6, 19.2, -1.2 ppm. 

IR (thin film, cm-1) 2954, 2856, 1734, 1697, 1170, 736, 701. 

HRMS (+NSI) calculated for C50H58O6N2NaSSi2 [M+Na]+ 893.3446, found 893.3468. 

 

Hemiaminal Ether 2.70: 

 

A solution of Cbz-amide 2.69 (1.80 g, 2.10 mmol, 1.0 equiv) in CH2Cl2 (40.0 mL) was 

cooled to -78 °C. A solution of DIBAL-H (1.0 M in CH2Cl2, 4.13 mL, 4.13 mmol, 2.0 

equiv) was added over five minutes, and the reaction was stirred for one hour. TMS-

imidazole (0.91 mL, 6.20 mmol, 3.0 equiv) and imidazole (140.9 mg, 2.10 mmol, 1.0 

equiv) were added, and the resultant mixture was warmed to -20 °C and stirred for 20 hours. 

The reaction was warmed to room temperature and quenched with saturated aqueous 

Rochelle’s salt solution (50.0 mL). The biphasic mixture was stirred at room temperature 

until both layers were clear. The layers were separated, and the aqueous phase was 

extracted with CH2Cl2 (3 x 50.0 mL). The combined organic layer was dried over 
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anhydrous Na2SO4, filtered, and concentrated under reduced pressure. Purification by flash 

column chromatography on silica gel (9:1 hexanes/EtOAc) provided hemiaminal ether 

2.70 (1.53 g, 78%) as a sticky foam. 

1H NMR (600 MHz, CDCl3) (1.0:0.8 mixture of rotamers) δ 7.97 (d, J = 8.3 Hz, 0.8H), 

7.94 (d, J = 8.4 Hz, 1H), 7.75 (d, J = 8.1 Hz, 1.6H), 7.72 (d, J = 8.1 Hz, 2H), 7.66-7.57 (m, 

7.2H), 7.38 – 7.16 (m, 28.8H), 7.12 (t, J = 7.4 Hz, .8H), 6.93 (t, J = 7.6 Hz, 1H), 5.69 (dd, 

J = 8.2, 4.2 Hz, 1H), 5.48 (dd, J = 8.2, 4.2 Hz, .8H), 5.32 (dd, J = 2.5, 1.8 Hz, 1H), 5.29 

(dd, J = 2.5, 1.8 z, .8H), 5.18 – 5.03 (m, 3.6H), 4.25 – 4.07 (m, 3.6H), 3.40 – 3.24 (m, 2H), 

3.19 – 3.08 (m, 1.6H), 2.92 – 2.69 (m, 3.6H), 2.31 (s, 5.4H), 2.18 (dd, J = 13.1, 8.3 Hz, 

1H), 2.11 (dd, J = 13.3, 8.2 Hz, .8H),  1.92 (dd, J = 13.1, 4.3 Hz, 1H), 1.86 (dd, J = 13.3, 

4.4 Hz, .8H), 1.50 – 1.43 (m, 2H), 1.31 – 1.25 (m, 1.6H), 1.00 (s, 16.2H), 0.03 (s, 18H), -

0.03 (s, 6.2H), -0.05 (s, 6.2H) ppm. 

13C NMR (151 MHz, CDCl3) (1.0:0.8 mixture of rotamers) δ 155.0, 154.2, 144.7, 136.5, 

136.3, 135.5, 135.2, 135.1, 134.8, 134.0, 130.9, 130.7, 129.8, 129.7, 129.5, 128.6, 128.5, 

128.3, 128.1, 127.7, 117.6, 127.5, 126.8, 125.7, 125.6, 124.6, 123.1, 120.4, 120.1, 119.9, 

119.6, 113.6, 79.2, 79.0, 67.2, 61.0, 60.8, 60.0, 41.5, 41.2, 39.7, 39.4, 31.9, 29.7, 29.4, 27.7, 

27.5, 26.8, 26.6, 25.4, 22.7, 21.6, 19.2, 19.0, 14.1, -0.3, -1.3 ppm. 

IR (thin film, cm-1) 3070, 2956, 2929, 2857, 1702, 1427, 1306, 1174, 1112, 846, 703, 577. 

HRMS (+NSI) calculated for C53H72O6N3SSi3 [M+NH4]+ 962.4444, found 962.4469. 
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Diene 2.71: 

 

A solution of hemiaminal ether 2.70 (100.0 mg, 0.11 mmol, 1.0 equiv) in CH2Cl2 

(1.0 mL) was cooled to -78 °C. BF3·OEt2 (0.04 mL, 0.32 mmol, 2.9 equiv) was added drop-

wise over five minutes, and the reaction was stirred at -78 °C for 24 hours. The reaction 

was quenched with saturated aqueous NaHCO3 (3.0 mL) and CH2Cl2 (3.0 mL), warmed to 

room temperature, and stirred for one hour. The layers were separated, and the aqueous 

phase was extracted with CH2Cl2 (3 x 10.0 mL). The combined organic layer was dried 

over anhydrous Na2SO4, filtered, and concentrated under reduced pressure. Purification by 

preparatory thin layer chromatography on silica gel (4:1 hexanes/EtOAc) provided diene 

2.71 (41.0 mg, 71%) as a colorless oil. 

1H NMR (400 MHz, CDCl3) (1.0:0.8 mixture of rotamers) δ 8.18 (d, J = 8.7 Hz, 1H), 7.71 

(d, J = 8.1 Hz, 2H), 7.47 – 7.06 (m, 18.8H), 6.73 (d, J = 8.1 Hz, 1.6H), 6.51 – 6.26 (m, 2.8 

H), 6.09 (dd, J = 11.6, 2.4 Hz, 1H), 5.76 (d, J = 17.6 Hz, 1H), 5.67 (d, J = 17.6 Hz, .8H), 

5.23 – 5.02 (m, 8.8H), 4.47 (dd, J = 13.7, 6.4 Hz, 1H), 4.30 (dd, J = 13.7, 6.4 Hz, 1H), 3.39 

– 3.19 (m, 3.6H), 2.92 – 2.51 (m, 5.2H), 2.27 (s, 2.4H), 2.19 (s, 3H) ppm. 

13C NMR (151 MHz, CDCl3) (1.0:0.8 mixture of rotamers) δ 156.2, 155.9, 144.7, 144.6, 

137.5, 137.4, 137.1, 137.0, 136.9, 136.8, 136.6, 136.5, 135.8, 135.7, 134.4, 134.1, 130.5, 

129.7, 124.1, 124.0, 118.6, 118.5, 117.9, 116.6, 115.7, 115.6, 67.8, 67.4, 62.7, 62.2, 51.0, 
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50.8, 38.6, 38.0, 36.7, 36.4, 36.1, 35.8, 35.2, 32.4, 32.0, 31.2, 29.9, 29.2, 27.0, 22.9, 21.7, 

21.4, 20.8, 19.3, 14.3 ppm. 

IR (thin film, cm-1) 3045, 2931, 2858, 1693, 1414, 1358, 1170, 1104, 1081, 910, 734, 702, 

584. 

HRMS (+NSI) calculated for C31H30O4N2NaS [M+Na]+ 549.1819, found 549.1819. 

 

N-H Amide 2.72: 

 

 To a solution of carboxylic acid 2.35 (500.0 mg, 1.70 mmol, 1.0 equiv) in CH2Cl2 

(15.0 mL) was added tryptamine hydrochloride 2.53 (631.5 mg, 1.80 mmol, 1.05 equiv), 

and the mixture was then subsequently cooled to 0 °C. HOBt·H2O (270.2 mg, 2.0 mmol, 

1.1 equiv) and EDC·HCl (383.4 mg, 2.0 mmol, 1.1 equiv) were then added, and the reaction 

was warmed to room temperature and stirred for 24 hours. The reaction was quenched by 

the addition of 10% aqueous citric acid (20.0 mL) and CH2Cl2 (10.0 mL), and the layers 

were separated. The organic layer was washed with 10% aqueous citric acid (20.0 mL), 

saturated aqueous NaHCO3 (2 x 20.0 mL), and brine (20.0 mL). The organic layer was 

dried over anhydrous Na2SO4, filtered, and concentrated under reduced pressure. 

Purification by flash column chromatography on silica gel (4:1 hexanes/EtOAc) provided 

N-H amide 2.72 (902.5 mg, 90%) as a colorless oil. 
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1H-NMR (400 MHz, CDCl3) δ 7.95 (d, J = 8.3 Hz, 1H), 7.73 (d, J = 8.1 Hz, 2H), 7.40 (d, 

J = 7.8 Hz, 1H), 7.35 – 7.15 (m, 10H), 6.92 (t, J = 5.9 Hz, 1H), 5.51 (t, J = 7.2 Hz, 1H), 

4.40 (s, 2H), 3.95 (d, J = 7.4 Hz, 2H), 3.23 (q, J = 6.8 Hz, 2H), 2.97 (s, 2H), 2.57 (t, J = 

7.2 Hz, 2H), 2.33 (s, 3H), 1.55 (s, 2H), 0.02 (s, 9H) ppm. 

HRMS (+NSI) calculated for C33H40O4N2NaSSi [M+Na]+ 611.2376, found 611.2372. 

 

Cbz Amide 2.73: 

 

 To a solution of N-H amide 2.72 (905.2 mg, 1.53 mmol, 1.05 equiv) in THF (7.5 

mL) at -78 °C was added freshly prepared LiHMDS solution (0.31M in THF, 4.70 mL, 

1.46 mmol, 1.0 equiv), and the reaction mixture was stirred for one hour. CbzCl (0.32 mL, 

2.30 mmol, 1.6 equiv) was then added, and the reaction was stirred at -78 °C for 28 hours. 

The reaction mixture was quenched with saturated aqueous NH4Cl (20.0 mL) and warmed 

to room temperature. The layers were separated, and the aqueous phase was extracted with 

Et2O (3 x 20.0 mL). The combined organic layer was washed with brine (30.0 mL), dried 

over anhydrous MgSO4, filtered, and concentrated under reduced pressure. Purification by 

flash column chromatography on silica gel (9:1 to 4:1 hexanes/EtOAc) provided N-Cbz 

Amide 2.73 (853.1 mg, 77%) as a colorless oil. 

1H-NMR (400 MHz, CDCl3) δ 7.92 (d, J = 8.4 Hz, 1H), 7.70 (d, J = 7.6 Hz, 2H), 7.41 – 

7.15 (m, 15H), 7.09 (t, J = 7.6 Hz, 1H), 5.46 (t, J = 7.0 Hz, 2H), 5.07 (s, 2H), 4.43 (s, 2H), 
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3.95 (d, J = 6.7 Hz, 2H), 3.93 – 3.83 (m, 2H), 3.64 (s, 2H), 2.83 – 2.76 (m, 2H), 2.30 (s, 

3H), 1.60 (s, 2H), 0.02 (2, 9H) ppm. 

HRMS (+NSI) calculated for C41H46O6N2NaSSi [M+Na]+ 745.2744, found 745.2746. 

 

Hemiaminal Ether 2.74: 

 

 To a solution of Cbz Amide 2.73 (853.1 mg, 1.18 mmol, 1.0 equiv) in CH2Cl2 (25.0 

mL) at -78 °C was added DIBAL-H (1 M in CH2Cl2, 2.36 mL, 2.36 mmol, 2.0 equiv), and 

the resultant mixture was stirred for one hour. TMS-imidazole (0.54 mL, 3.54 mmol, 3.0 

equiv) and imidazole (80.3 mg, 1.18 mmol, 1.0 equiv) were then added, and the reaction 

was warmed up to -20 °C and stirred for 20 hours. The reaction was warmed to room 

temperature and quenched with saturated Rochelle’s salt solution (50.0 mL), and the 

resultant biphasic mixture was stirred until both layers were clear. The layers were 

separated, and the aqueous phase was extracted with CH2Cl2 (3 x 50.0 mL). The combined 

organic layer was dried over anhydrous Na2SO4, filtered, and concentrated under reduced 

pressure. Purification by flash column chromatography on silica gel (9:1 hexanes/EtOAc) 

provided hemiaminal ether 2.74 (686.3 mg, 73%) as a sticky foam. 

1H-NMR (400 MHz, CDCl3) (1:0.7 mixture of rotamers) δ 7.98 – 7.93 (m, 1.7H), 7.77 – 

7.64 (m, 4.1H), 7.41 – 7.13 (m, 25.5H), 7.04 (t, J = 7.5 Hz, 1H), 5.80 (dd, J = 8.3, 4.3 Hz, 

1H), 5.61 (dd, J = 8.3, 4.3 Hz, .7H), 5.30 (t, J = 6.9 Hz, 1H), 5.27 – 5.07 (m, 4.1H), 4.48-

DIBAL-H
CH2Cl2, -78 °C

then TMS-Imid.
Imid., -20 °C

N
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Cbz

TMS

73% BnO

N
NTs

O

Cbz

TMS
BnO



	 127 

4.27 (m, 3.4H), 4.10 – 3.84 (m, 3.4H), 3.52 – 3.17 (3.4H), 3.02 – 2.75 (m, 3.4H), 2.39 – 

2.25 (m, 6.5H), 2.19 – 2.00 (m, 2H), 1.64 (d, J = 13.5 Hz, 1H), 1.57 – 1.49 (m, 1.7H), 1.36 

(d, J = 13.5 Hz, .7H), 0.08 (s, 9H), 0.03 (s, 15.3H), -0.04 (s, 6.3H) ppm. 

HRMS (+NSI) calculated for C44H60O3N3SSi2 [M+NH4]+ 814.3741, found 814.3739. 
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2.9 Spectral Data for Key Intermediates 

Amide 2.60: 1H NMR (600 MHz, CDCl3) 
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Amide 2.60: 13C NMR (126 MHz, CDCl3) 
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Cbz-Amide 2.61: 1H NMR (600 MHz, CDCl3) 
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Cbz-Amide 2.61: 13C NMR (151 MHz, CDCl3) 
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Hemiaminal Ether 2.62: 1H NMR (600 MHz, CDCl3) 
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Hemiaminal Ether 2.62: 13C NMR (126 MHz, CDCl3) 
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Tetracycle 2.63: 1H NMR (600 MHz, CDCl3, 23 °C) 
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Tetracycle 2.63: 1H NMR (600 MHz, d6-DMSO, 80 °C) 
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Tetracycle 2.63: 13C NMR (126 MHz, CDCl3) 
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Amide 2.68: 1H NMR (400 MHz, CDCl3) 
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Amide 2.68: 13C NMR (126 MHz, CDCl3) 
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Cbz-Amide 2.69: 1H NMR (500 MHz, CDCl3) 
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Cbz-Amide 2.69: 13C NMR (126 MHz, CDCl3) 
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Hemiaminal Ether 2.70: 1H NMR (600 MHz, CDCl3) 
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Hemiaminal Ether 2.70: 1H NMR (151 MHz, CDCl3) 
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Diene 2.71: 1H NMR (400 MHz, CDCl3) 
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Diene 2.71: 13C NMR (151 MHz, CDCl3) 
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X-Ray Crystallography Data for Tetracycle 2.63: 

 
Table 1. Crystal data and structure refinement for ESA9613 
Identification code ESA9613 
Empirical formula C47H50N2O5SSi 
Formula weight 783.04 
Temperature/K 110(2) 
Crystal system monoclinic 
Space group C2/c 
a/Å 16.0823(17) 
b/Å 18.0956(19) 
c/Å 28.619(3) 
α/° 90 
β/° 97.4057(16) 
γ/° 90 
Volume/Å3 8259.2(15) 
Z 8 
ρcalcmg/mm3 1.259 
m/mm-1 0.156 
F(000) 3328.0 
Crystal size/mm3 0.797 × 0.483 × 0.355 
Radiation MoKα (λ = 0.71073) 
2Θ range for data collection 3.404 to 54.206° 
Index ranges -20 ≤ h ≤ 20, -23 ≤ k ≤ 23, -36 ≤ l ≤ 36 
Reflections collected 36451 
Independent reflections 9120[R(int) = 0.0412] 
Data/restraints/parameters 9120/318/601 
Goodness-of-fit on F2 1.155 
Final R indexes [I>=2σ (I)] R1 = 0.0684, wR2 = 0.1326 
Final R indexes [all data] R1 = 0.0941, wR2 = 0.1526 
Largest diff. peak/hole / e Å-3 0.49/-0.38 
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Table 2. Fractional Atomic Coordinates (×104) and Equivalent Isotropic Displacement Parameters (Å2×103) for 
ESA9613. Ueq is defined as 1/3 of of the trace of the orthogonalised UIJ tensor. 
Atom x y z U(eq) 
C18 6559(2) 6214.5(15) 4433.1(10) 38.4(7) 
C19A 6893(7) 6381(8) 4939.3(19) 35.5(8) 
C20A 6288(6) 6418(7) 5244(3) 43.0(12) 
C21A 6519(7) 6598(7) 5713(3) 58.4(16) 
C22A 7350(7) 6743(9) 5885(3) 55.7(17) 
C23A 7942(7) 6706(11) 5587(4) 47.8(9) 
C24A 7723(7) 6528(11) 5118(4) 37.5(13) 
C19B 6840(4) 6308(4) 4952.6(13) 35.5(8) 
C20B 6386(3) 6057(4) 5302.5(16) 43.0(12) 
C21B 6691(3) 6172(4) 5771.9(17) 58.4(16) 
C22B 7459(4) 6517(4) 5897.5(19) 55.7(17) 
C23B 7912(4) 6746(5) 5556(2) 47.8(9) 
C24B 7612(3) 6647(4) 5085.5(19) 37.5(13) 
C37 8261(19) 914(8) 2721(6) 32.8(10) 
C38 7869(5) 427(4) 2987(3) 51.3(16) 
C39 8319(5) -150(4) 3225(3) 69(2) 
C40 9165(12) -245(10) 3197(5) 58.4(19) 
C41 9557(4) 265(4) 2921(2) 48.0(16) 
C42 9104(4) 833(3) 2687(2) 37.2(13) 
C37' 8227(18) 905(8) 2736(5) 32.8(10) 
C38' 8021(4) 159(3) 2720(2) 43.0(13) 
C39' 8528(5) -384(4) 2948(3) 52.7(14) 
C40' 9286(10) -170(10) 3207(5) 55.4(19) 
C41' 9505(4) 526(4) 3254(3) 51.4(15) 
C42' 9001(4) 1068(4) 3014(2) 44.6(14) 
C33A 6684(3) 1464(4) 1993.5(19) 39.4(9) 
C34A 6028(5) 1023(5) 2212(3) 63.8(18) 
C35A 6297(5) 2207(4) 1809(3) 44.7(15) 
C36A 6968(6) 1028(5) 1581(3) 51.4(18) 
C33B 6733(5) 1365(7) 1989(3) 39.4(9) 
C34B 6267(9) 696(8) 2148(5) 63.8(18) 
C35B 6089(8) 1993(7) 1865(6) 44.7(15) 
C36B 7131(13) 1164(11) 1545(6) 51.4(18) 
Si1 7593.5(5) 1695.0(4) 2454.3(3) 29.87(17) 
C2 7632.0(14) 3527.0(13) 4206.7(8) 22.1(5) 
C3 7214.3(15) 4187.3(13) 3944.6(8) 23.7(5) 
C4 5860.5(16) 3658.4(15) 4198.6(10) 30.2(6) 
C5 6322.2(15) 2942.2(14) 4352.3(9) 26.5(5) 
C6 7100.0(14) 2832.2(13) 4102.7(8) 22.8(5) 
C7 6839.4(15) 2682.5(14) 3565.0(9) 26.4(5) 
C8 6530.5(16) 3370.4(15) 3292.8(9) 28.6(5) 
C9 7044.9(16) 4057.3(14) 3414.3(9) 26.7(5) 
C10 8533.9(15) 2524.8(14) 4287.1(8) 25.4(5) 
C11 9225.4(16) 2066.0(15) 4385.5(9) 30.4(6) 
C12 9084.0(17) 1334.8(15) 4509.9(10) 33.5(6) 
C13 8285.8(17) 1072.2(15) 4536.3(10) 32.5(6) 
C14 7596.6(16) 1536.9(14) 4431.0(9) 27.8(5) 
C15 7724.5(15) 2260.1(13) 4303.8(8) 23.9(5) 
C16 5875.4(19) 3364.7(17) 2965.1(11) 38.2(7) 
C17 6189.3(16) 4948.5(15) 4316.8(9) 29.8(6) 
C25 9288.5(15) 4149.1(14) 4817.8(9) 27.1(5) 
C26 9761.7(16) 3747.1(15) 5173.1(10) 32.8(6) 
C27 9732.9(17) 3949.9(16) 5637.5(10) 36.0(6) 
C28 9236.3(18) 4526.8(16) 5756.2(10) 34.6(6) 
C29 8782.4(18) 4929.3(15) 5394.6(10) 33.4(6) 
C30 8805.4(16) 4742.8(14) 4925.4(9) 29.7(6) 
C31 9164(2) 4716.2(19) 6262.3(10) 45.9(8) 
C32 7512.9(16) 2312.3(16) 3313.7(9) 31.3(6) 
C43 8307.6(18) 2377.6(16) 2220.6(10) 35.4(6) 
C44 8249(2) 3128.5(17) 2318.5(10) 42.0(7) 
C45 8786(2) 3636.5(18) 2153.7(12) 49.6(8) 
C46 9392(2) 3407(2) 1888.7(13) 56.3(9) 
C47 9447(3) 2675(2) 1774.1(16) 66.2(11) 
C48 8920(2) 2171(2) 1940.0(15) 58.2(10) 
N1 8483.8(12) 3279.2(11) 4117.8(7) 24.2(4) 
N2 6433.8(13) 4287.1(12) 4162.0(8) 28.0(5) 
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O1 9029.9(11) 4497(1) 3934.8(6) 30.9(4) 
O2 10016.4(11) 3478.0(11) 4178.3(7) 36.2(5) 
O3 7117.2(12) 2092.2(11) 2859.8(6) 35.4(4) 
O4 6769.0(12) 5484.3(10) 4274.3(7) 34.0(4) 
O5 5540.8(12) 5058.0(11) 4477.5(7) 39.4(5) 
S1 9266.9(4) 3873.8(4) 4228.1(2) 26.98(15) 

 

Table 3. Bond Lengths for ESA9613. 
Atom Atom Length/Å   Atom Atom Length/Å 
C18 C19A 1.509(5)   C2 N1 1.494(3) 
C18 C19B 1.507(4)   C3 C9 1.525(3) 
C18 O4 1.451(3)   C3 N2 1.482(3) 
C19A C20A 1.390(6)   C4 C5 1.530(4) 
C19A C24A 1.393(6)   C4 N2 1.477(3) 
C20A C21A 1.385(6)   C5 C6 1.531(3) 
C21A C22A 1.388(7)   C6 C7 1.565(3) 
C22A C23A 1.358(7)   C6 C15 1.504(3) 
C23A C24A 1.381(6)   C7 C8 1.518(4) 
C19B C20B 1.389(5)   C7 C32 1.530(4) 
C19B C24B 1.393(5)   C8 C9 1.509(4) 
C20B C21B 1.385(5)   C8 C16 1.317(4) 
C21B C22B 1.388(6)   C10 C11 1.387(3) 
C22B C23B 1.358(6)   C10 C15 1.394(3) 
C23B C24B 1.381(5)   C10 N1 1.447(3) 
C37 C38 1.37(3)   C11 C12 1.396(4) 
C37 C42 1.38(3)   C12 C13 1.380(4) 
C37 Si1 1.877(4)   C13 C14 1.393(4) 
C38 C39 1.397(10)   C14 C15 1.381(3) 
C39 C40 1.38(2)   C17 N2 1.352(3) 
C40 C41 1.41(2)   C17 O4 1.361(3) 
C41 C42 1.382(9)   C17 O5 1.209(3) 
C37' C38' 1.39(2)   C25 C26 1.394(4) 
C37' C42' 1.42(2)   C25 C30 1.383(4) 
C37' Si1 1.877(4)   C25 S1 1.756(3) 
C38' C39' 1.386(9)   C26 C27 1.385(4) 
C39' C40' 1.398(16)   C27 C28 1.383(4) 
C40' C41' 1.309(17)   C28 C29 1.393(4) 
C41' C42' 1.396(8)   C28 C31 1.508(4) 
C33A C34A 1.521(6)   C29 C30 1.390(4) 
C33A C35A 1.545(5)   C32 O3 1.428(3) 
C33A C36A 1.538(5)   C43 C44 1.393(4) 
C33A Si1 1.886(3)   C43 C48 1.399(4) 
C33B C34B 1.524(7)   C44 C45 1.385(5) 
C33B C35B 1.547(6)   C45 C46 1.374(5) 
C33B C36B 1.541(6)   C46 C47 1.370(5) 
C33B Si1 1.889(4)   C47 C48 1.372(5) 
Si1 C43 1.868(3)   N1 S1 1.656(2) 
Si1 O3 1.637(2)   O1 S1 1.4279(19) 
C2 C3 1.520(3)   O2 S1 1.4249(19) 
C2 C6 1.528(3)     
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Chapter 3. Synthetic Studies Toward Methanoquinolizidine-Containing 
Akuammiline Alkaloids 
 Upon access to a tetracyclic core for the akuammiline alkaloids, we set out to 

develop a synthetic route, starting from such an intermediate, to successfully access an 

unsynthesized member of this alkaloid family. We set our initial sights on strictamine, 

arguably the simplest of the methanoquinolizidine-containing akuammiline alkaloids that 

had not been synthesized at that time. Upon the examination of our tetracycle compared to 

that of the desired natural products, these structures lacked the E ring necessary to furnish 

the methanoquinolizidine core present in these natural products. Therefore, much of the 

discussion in this section will center on the exploration of possible methods to furnish this 

E-ring structure. 

 

3.1 Initial Strategy: Homologation of Exocyclic Olefin and Lactamization 

 Examination of our tetracyclic core synthesized from our previously developed 

cascade reveals how our structure maps onto the structure of the natural product strictamine 

(3.4) (Scheme 3-1). Beyond the required functional group manipulations and oxidations 

required on the western half of the molecule, the main structural challenge was the 

synthesis of the E ring. Mapping the structure of our core onto strictamine reveals that 

tetracycle 3.6 contains at this point all of the carbons, except for one, of a 

methanoquinolizidine core. Therefore, a one carbon homologation on the terminal end of 

the olefin, preferably containing functionality to enable E ring closure, would be necessary, 

in addition to introduction of a C15 stereocenter via reduction. Both transformations could 

occur via a formal hydrocarboxylation across the alkene. The introduction of a carboxylic 
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acid functionality was desired both for its ability to provide ring closure via lactamization 

(3.5), as well as providing a functional handle for introduction of the alkene via an aldol 

condensation in subsequent steps. Indeed, this approach parallels that used in the synthesis 

of vincorine by Yong Qin and coworkers, where they closed the final ring in the natural 

product by lactamization (3.2), and then introduced the exocyclic olefin 3.3 by aldol 

condensation with acetaldehyde followed by syn elimination with DCC and CuCl.1 

Scheme 3-1. Initial retrosynthetic analysis for the synthesis of the methanoquinolizidine core of 

strictamine via a hydrocarboxylation strategy.1 

 

 A similar approach was used in our group’s synthesis of malagashanine (Scheme 

3-2),2 where we performed a formal hydroacylation on the exocyclic olefin of the 

malagashanine core 3.7 using methodology developed by Paul Knochel and coworkers.3 

Initial hydroboration of the exocyclic olefin with 9-BBN-H provided the terminal 

organoborane. Sequential transmetallation of this organoborane with zinc followed by 

copper provided an organocuprate intermediate that readily reacted with acetyl chloride to 
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provide methyl ketone 3.8 as a 2:1 mixture of C15 diastereomers, with 50% yield of the 

desired isomer being obtained. 

Scheme 3-2. Formal hydroacylation used in the total synthesis of malagashanine,2 and the proposed 

formal hydrocarboxylation strategy on akuammiline core 3.6. 
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Scheme 3-3. Reaction of organoboranes to form aldehydes and carboxylic acids.4-5 

 

 Therefore, we were highly interested in the possibility of using such a route, as it 

would provide a very succinct and direct method for the synthesis of the E ring. Before 

advancing toward a more complicated homologation protocol, we wished to examine 

simple hydroboration/oxidation of our substrate 3.6 to alcohol 3.15 (Scheme 3-4). Initial 

attempts at hydroboration with excess 9-BBN-H proved unsuccessful, even at higher 

temperatures. Even though there would be possible complications with the carbonylation 

protocol due to most successful cases involving alkyl-9-BBN derivatives, we wished to see 

if less sterically hindered borane dimethylsulfide would be able to add to our substrate. 

However, even the addition of this simple borane was found not to occur. 

Scheme 3-4. Unsuccessful attempts at hydroboration of akuammiline core 3.6 with 9-BBN-H and less 

sterically hindered BH3·SMe2. 

 

We hypothesized that the steric hindrance of the system, in particular the large 

TBDPS protecting group, was preventing successful addition to the exocyclic olefin, and 

9-BBN-H

THF

B
R

R CO (1 atm)

KBH(Oi-Pr)3

(i-PrO)3Al
B

H

R

R

H2O2

O
H

B
R

R [Cu], CO2 OH
O

3.10
3.11 3.12 3.13

3.11 3.14

OTBDPS

NN
Cbz

HHTs

H

9-BBN-H

THF, 23 or 60 °C
then H2O2, NaOH

OTBDPS

NN
Cbz

HHTs

HH
OH

OTBDPS

NN
Cbz

HHTs

H
THF, 23 or 60 °C
then H2O2, NaOH

OTBDPS

NN
Cbz

HHTs

HH
OH

BH3·SMe2

3.6

3.6

3.15

3.15



	 154 

next examined the addition to deprotected homoallylic alcohol 3.17 (Scheme 3-5). 

Removal of the TBDPS protecting group on 3.6 proceeded readily with TBAF to provide 

homoallylic alcohol 3.17. This species was next subjected to hydroboration with 9-BBN-

H and borane dimethylsulfide, but neither of these boranes successfully added to the 

exocyclic olefin.  

Scheme 3-5. Removal of TBDPS protecting group from akuammiline core 3.6, and subsequent 

attempts at hydroboration.  
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iodide was attempted on tetracycle 3.6, no reaction was observed with our substrate. Due 

to the lack of success with our initial examination of an alkene addition approach, we 

examined other possible reactions with the exocyclic olefin, something which later 

informed our choices about synthetic strategy. 

Scheme 3-6. Attempted hydrozirconation of alkene in akuammiline alkaloid substrate 3.6.  
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3.2 Ketone Addition/Deoxygenation Strategy for Synthesis of the E ring 

 An alternative to alkene addition is oxidative cleavage, a reaction that would 

provide a ketone product with our substrate. While less desirable in respect to synthetic 

strategy, for we would be removing a carbon atom that would otherwise map onto a portion 

of the E ring of strictamine (3.4), the formed ketone 3.19 would still be present as a 

functional handle on C15, the important bridgehead junction between the E ring and the C 

ring. Oxidative cleavage was demonstrated in our previously developed malagashanine 

core 3.7, where ketone 3.18 could be provided successfully under Johnson-Lemieux 

conditions (Scheme 3-7).8 Therefore, we initially set out to examine whether our 

akuammiline alkaloid core 3.6 could react under such conditions. Initial attempts at 

standard Johnson-Lemieux conditions with catalytic osmium tetroxide showed no 

reactivity. Using more forcing conditions with stoichiometric osmium showed some 

reactivity, but the desired ketone 3.19 was only observed in low yield at 80 °C over a period 

of four days.  

Scheme 3-7. Successful Johnson-Lemieux oxidation of malagashanine core 3.7,8 and attempted 

oxidative cleavage of tetracycle 3.6. 
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 The lack of reactivity is not surprising, as sterically congested olefins can be 

difficult to successfully dihydroxylate, often allowing for selective olefin cleavage among 

several olefins in a complex substrate. A similar substrate caused problems in the synthesis 

of aspidophytine by E. J. Corey and coworkers, where standard Johnson-Lemieux or 

Upjohn reaction conditions were not found to successfully cleave or dihydroxylate the 

exocyclic olefin 3.20 (Scheme 3-8).9 They found in the course of these studies that adding 

electron-rich DMAP promoted osmium tetroxide addition to sterically hindered systems, 

and these reaction conditions, followed by cleavage of the formed diol 3.21 with Pb(OAc)4, 

provided their desired ketone 3.22.  

Scheme 3-8. Stepwise dihydroxylation/cleavage process of a sterically congested exocyclic olefin in the 

total synthesis of aspidophytine by E. J. Corey and coworkers.9 
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Scheme 3-9. Application of dihydroxylation conditions containing DMAP to a TBDPS protected 

Malagasy alkaloid core 3.23.8 

 

 Attempts to apply the conditions developed by Corey to our akuammiline alkaloid 

core 3.6 proved to be unsuccessful, providing mostly recovered starting material as well as 

a small quantity of what was believed to be the osmate ester that clung to the baseline in 

thin layer chromatography (Scheme 3-10). Additionally, using an alternative sodium 

borohydride quench also proved to be unsuccessful, providing similar results to what was 

seen before. 

Scheme 3-10. Attempted dihydroxylation with OsO4/DMAP of exocyclic olefin in akuammiline alkaloid 

core 3.6. 
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standard conditions at room temperature, as was seen in our prior examples, but 

surprisingly, synthetically useful yields of the ketone 3.19 could be obtained by running 

the reaction under microwave irradiation. While promising, stoichiometric quantities of 

toxic osmium tetroxide were still required to get useful quantities of material, so other 

approaches to olefin cleavage were also examined. 

Scheme 3-11. Successful development of Johnson-Lemieux conditions for cleavage of exocyclic olefin 

3.6 under microwave irradiation conditions. 
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Scheme 3-12. Successful oxidative alkene cleavage of exocyclic olefin 3.6 via ozonolysis. 

 

 With now having easy access to ketone 3.19, we reevaluated our synthetic approach 

to these natural products (Scheme 3-13). The C15 ketone provided an electrophilic center 

directly on the key bridgehead carbon required for building the E ring. Therefore, we 

imagined an approach where intramolecular addition of a vinyl nucleophile to the ketone 

could form the key C15-C20 bond (3.26) with the desired stereochemistry. This approach 

was attractive due to the ability to introduce the required alkene substituent in the C-C bond 

forming step instead of through later functional group manipulation. We desired a method 

that would not lead to isomerization of the precursor olefin, ruling out traditional metal-

halogen exchange methods which have been shown to isomerize the olefin in related 

systems. Nozaki-Hiyama-Kishi couplings typically do not lead to scrambling of alkene 

geometry;10 therefore, we examined chromium-mediated methodology to explore the 

feasibility of such an addition step. 

Scheme 3-13. Proposed closure of E ring via a ketone addition/deoxygenation sequence. 
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 Examination of such an intramolecular addition reaction required synthesis of the 

vinyl iodide precursor 3.27, which could be accessed from ketone 3.19 over two steps 

(Scheme 3-14). Removal of the Cbz protecting group proceeded under mild conditions via 

hydrogenation to provide secondary amine 3.28 with the addition of a large excess of acetic 

acid being necessary for successful removal. This intermediate was subsequently alkylated 

with an allyl mesylate available in three steps from crotonaldehyde.11 While allylamine 

3.27 was successfully obtained, this reaction was fairly capricious, most likely due to the 

sensitivity of the doubly b-substituted ketone to basic conditions. Just reacting this 

substrate under alternative conditions provided significant quantities of unsaturated ketone 

3.29, the result of ready b-elimination of the TBDPS ether under the reaction conditions. 

Scheme 3-14. Cbz protecting group removal and amine alkylation, along with significant beta-

elimination seen under differing basic conditions. 
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commonly applied to less sterically hindered aldehydes. While this approach was not 

explored further in order to examine alternative routes to a methanoquinolizidine structure, 

it might be worth examining this disconnection in the future to see if other methods 

specifically designed for ketone additions could be applied. 

Scheme 3-15. Deiodination observed during attempted intramolecular Nozaki-Hiyama-Kishi coupling 

reaction. 
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work best, especially accounting for the apparent sensitivity of ketone 3.19. Initially, we 

believed that silyl deprotection and oxidation of the pendant alcohol chain in ketone 3.19 

would provide the most succinct method for ready access to a b-ketoester intermediate 

3.33, which we believed could be readily deoxygenated into our desired a,b-unsaturated 

ester 3.32.  

Scheme 3-17. Attempted removal of TBDPS protecting group on ketone 3.19. 

 

 Initial attempts at silyl deprotection of ketone 3.19 demonstrated the high 

sensitivity of this intermediate to overly acidic or basic conditions (Scheme 3-17). When 

initial deprotection of the silyl ether with TBAF was attempted, a messy slew of 

unidentified products was obtained. This suggested that the TBAF solution that was used 

was too basic, so the reaction was subsequently run buffered with acetic acid. However, 

the addition of acetic acid buffer now completely shut down reactivity at room temperature, 

and sluggish reactivity was only restored at 60 °C, providing 31% yield of the b-

hydroxyketone 3.34. To see if more acidic deprotection conditions would be favored, 

HF·pyridine was tested, but this reagent also led to a messy mixture of products. We believe 

that the ready susceptibility of this ketone intermediate to b-elimination on both sides, 

OTBDPS

NN
Cbz

O

HHTs

H

TBAF

THF, 23 °C

OTBDPS

NN
Cbz

O

HHTs

H

OH

NN
Cbz

O

HHTs

H

multiple
unidentified
products

TBAF, AcOH

THF

OH

NN
Cbz

O

HHTs

H23 °C : N/R
60 °C : 31%

OTBDPS

NN
Cbz

O

HHTs

H

HF·pyr

MeCN, 0 °C

OH

NN
Cbz

O

HHTs

H

multiple
unidentified
products

3.19 3.34

3.19 3.34

3.19 3.34



	 163 

combined with the possibility of retro-aldol reactions of the b-hydroxyketone product, 

rendered using this approach with the ketone ineffective. To alleviate this, we hypothesized 

that reducing the ketone would remove this side reactivity and allow us to further explore 

this synthetic pathway. 

Scheme 3-18. Ozonolysis with reductive quench of both TBDPS ether 3.7 and homoallylic alcohol 3.16.  

 

 One way to obtain the desired alcohol would be during the prior ozonolysis step, 

where instead the quench occurs with sodium borohydride to provide a secondary alcohol 

(Scheme 3-18). Attempts at this with the silyl protected tetracycle 3.7 were only marginally 

successful, leading to only 13% yield of the desired alcohol 3.35 along with 34% yield of 

the previously obtained ketone 3.19. Believing that the TBDPS ether could possibly block 

effective reduction during this step, we instead explored this reaction with homoallylic 

alcohol 3.16. Gratifyingly, this reaction successfully provided diol 3.36 in high yield. 

Scheme 3-19. Attempted dual oxidation to 1,3-dicarbonyl derivative 3.37.  
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 With diol in hand, we next examined whether it could be successfully oxidized to 

a 1,3-dicarbonyl intermediate (Scheme 3-19). However, no successful oxidation was ever 

observed over several different attempts with DMP, Swern, or Parikh-Doering oxidations. 

When we observed this structure, we wondered if we could get access to a shorter route to 

our intermediate if we could selectively oxidize the primary alcohol and subsequently form 

an unsaturated carbonyl by b-elimination of the secondary alcohol.  

Scheme 3-20. Proposed selective primary alcohol oxidation/beta-elimination sequence and attempts of 

selective primary alcohol oxidation of diol 3.36. 
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common organic solvents necessary for these reactions. We believed this general 

insolubility drastically inhibited its reactivity in the oxidations attempted.  

Scheme 3-21. Attempted Shapiro reaction strategy. 
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subsequent migration in later steps via intermediacy of the formed thermodynamic vinyl 

triflate. Several methods for the formation of the thermodynamic vinyl triflate were trialed, 

but none successfully provided the desired intermediate (Scheme 3-22). Attempted 

thermodynamic deprotonation with i-PrNMgBr showed no reactivity, presumably due to 

the steric hindrance of the desired site of deprotonation.16 Going in with less sterically 

congested bases, such as sodium hydride and the weaker triethylamine, instead led to messy 

reactivity, with the beta-eliminated product 3.45 being observed. This result is not 

surprising, due to the equatorial C16 hydrogen being properly aligned with the ketone, 

preventing successful enolate formation in the chair conformation and instead favoring 

elimination. Therefore, we focused our next efforts on forming the kinetic triflate of the 

ketone. 

Scheme 3-22. Attempted synthesis of thermodynamic vinyl triflate 3.43. 
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the baseline under silica gel chromatography. Presumably, this material resulted from b-

elimination of the Cbz substituent at warmer temperatures, revealing an a,b-unsaturated 

ketone 3.47 that could potentially polymerize under the reaction conditions. In order to 

overcome this problem, a triflating reagent was necessary that could trap the kinetic enolate 

formed at low temperature. Phenyl triflimide could not successfully react at these 

temperatures, but using the more reactive Comins’ reagent led to the successful formation 

of vinyl triflate 3.48 in good yields.17 

Scheme 3-23. Successful synthesis of vinyl triflate 3.46 using Comins’ reagent. 

  

 With vinyl triflate in hand, we next examined the synthesis of the a,b-unsaturated 

ester moiety necessary for a successful conjugate addition reaction (Scheme 3-24). We 

were able to successfully remove the vinyl triflate using formic acid as a hydride surrogate, 

but stoichiometric quantities of palladium acetate were found to be necessary to get 

appreciable yields of the desired product 3.49.18 Subsequent deprotection of the TBDPS 

ether went smoothly using TBAF, and the formed homoallylic alcohol 3.50 was oxidized 

with Dess-Martin Periodinane in the presence of a significant excess of K2CO3, providing 
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a,b-unsaturated aldehyde 3.39. While this intermediate was isolable, it readily decomposed 

during subsequent attempted reactions necessary to furnish the methyl ester. 

Scheme 3-24. Attempted synthesis of Michael acceptor for intramolecular conjugate addition. 

 

3.4 Lactamization Revisited: Cross-Coupling/Hydrogenation Strategy for Synthesis 

of the E ring 

While examining the above approach, we also hypothesized that we could use the 

formed vinyl triflate as a reactive handle for C-C bond formation instead of removing it by 

reduction (Scheme 3-25). We envisioned we could couple in the required two carbon 

fragment necessary for building the E ring by reacting this vinyl triflate 3.48 with a simple 

vinyl organometallic. We chose to use vinyl(tributyl)stannane due to its commercial 

availability, as well as the neutral conditions and general reliability of Stille cross couplings 

in synthetic applications. 

Scheme 3-25. Proposed coupling of necessary two carbon E ring fragment via cross-coupling 

methodology. 
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 Initial attempts at the Stille cross coupling of the vinyl triflate 3.48 with 

vinyl(tributyl)stannane proved to be unsuccessful (Scheme 3-26). Standard conditions for 

Stille coupling with vinyl triflates, using lithium chloride19 and copper iodide20 additives, 

were found to be unsuccessful when Pd(PPh3)4 was used as a catalyst. A selection of 

varying mono- and bisphosphine ligands were explored with Pd2(dba)3, but these cross 

couplings were also not successful. The lack of success for these reactions may have been 

due to the steric hindrance in reaction with the vinyl triflate 3.48, a problem we had 

previously encountered when trying to perform reactions successfully on C15.  

Scheme 3-26. Initial attempts at a Stille coupling of vinyl triflate 3.48 with vinyltributylstannane. 

 

 We examined the literature to see if there were conditions developed for Stille 
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to reactions with vinyl halides and triflates that prove otherwise difficult to couple, as can 
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Scheme 3-27. Successful Stille coupling protocol for the synthesis of diene 3.51.21-22  

 

 Successful formation of diene product 3.51, with the correct carbon count in place 

for the E ring, led us to rework our synthetic strategy (Scheme 3-28). With the carbon 

framework in hand, we next needed to convert our diene intermediate into one with the 

correct oxidation state and desired functionality to successfully cyclize toward the 

methanoquinolizidine core. First, a functional handle would be needed at the terminal end 

of the diene in order to allow for proper coupling, presumably using an alkene 

functionalization selective for the external olefin of the diene substrate. Next, the internal 

olefin would need to undergo a diastereoselective reduction, effectively setting the C15 

stereochemistry and positioning the substituent on this carbon in the required axial position 

for ring closure.  
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Scheme 3-28. Retrosynthetic analysis for conversion of diene 3.51 into a ring-closed lactam core 3.56. 

 

 We first set out to perform a selective anti-Markovnikov functionalization of the 

terminal olefin of the diene, introducing the functionality required for a later ring closing 

step (Scheme 3-29). Due to our desire to use an amide coupling protocol to close the E 

ring, we wished to selectively introduce an alcohol to the terminal position that could be 

later oxidized to the required carboxylic acid. We did not envision the selectivity of such a 

process being problematic due to the more internal trisubstituted olefin component of the 

diene being more sterically encumbered than the terminal olefin we wished to 

functionalize. Indeed, hydroboration of the terminal olefin portion of the diene with 9-

BBN-H proceeded without incident, with subsequent oxidation providing homoallylic 

alcohol 3.58. Use of commercial solutions of 9-BBN-H for this reaction, while sometimes 

successful, proved typically unreliable for this process, and it was found that using a THF 

solution freshly prepared from 9-BBN-H dimer weighted in a glovebox was necessary for 

consistent high yields.  

Scheme 3-29. Successful hydroboration of terminal olefin in diene 3.51 to homoallylic alcohol 3.58. 
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C ring to set the C15 stereocenter. However, potential challenges in the hydrogenation of 

this internal olefin were apparent, beyond just the inherent difficulty in reducing a 

trisubstituted olefin (Scheme 3-30). While the desired face of our olefin for reduction was 

present on the convex face of the C/D bicyclic system in intermediate 3.58, it was also 

present on the concave face of the B/C 5,6-fused ring system. Additionally, the axially 

positioned TBDPS ether might block access to the desired face of the olefin, as it had done 

previously with reactions involving the exocyclic olefin 3.6. Reductions of sterically 

hindered olefins can often successfully be accomplished using homogenous cationic 

rhodium or iridium catalysts.23 These cationic complexes also may be directed to specific 

faces of olefins for hydrogenation by binding to neighboring Lewis basic functionality.24 

We hypothesized that the oxygen present on the C16 axial substituent could potentially 

bind to one of these catalysts, facilitating the desired selective hydrogenation. We therefore 

set out to synthesize a substrate 3.59 with a free alcohol on the C16 axial substituent. 

Scheme 3-30. Analysis of faces of the internal olefin of the C ring of 3.58 in terms of potential for 

hydrogenation and proposed intermediate 3.59 for directed hydrogenation. 
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sufficient to facilitate this cleavage, providing homoallylic alcohol 3.59 in 80% yield over 

two steps. 

Scheme 3-31. Exposure of axially-position alcohol 3.59 for directed hydrogenation. 

 

Table 3-1. Attempted directed hydrogenations of internal olefin 3.59 under various pressures. 

 

Entry Catalyst Mol % H2 (bar) Time (h) Yielda 
1 [Ir(cod)(PCy3)(py)]PF6 2 1 24 - 
2 [Ir(cod)(PCy3)(py)]PF6 2 10 24 - 
3 [Ir(cod)(PCy3)(py)]PF6 2 30 24 - 
4 [Ir(cod)(PCy3)(py)]PF6 2 60 24 - 
5 [Ir(cod)(PCy3)(py)]PF6 20 60 48 - 
6 [Ir(cod)(PCy3)(py)]BArF

4 2 1 24 - 
7 [Ir(cod)(PCy3)(py)]BArF

4 2 30 24 - 
8 [Ir(cod)(PCy3)(py)]BArF

4 2 60 72 26 
9 [Ir(cod)(PCy3)(py)]BArF

4 5 90 48 - 
 a Reaction conditions: substrate (10 mg unless otherwise stated), catalyst, dichloromethane (mL) were combined in a 

vial sealed with a teflon cap under nitrogen. The vial was either placed under a balloon of hydrogen gas (1 bar) or 
pierced with a needle and placed into a Parr reaction vessel under the stated hydrogen pressure. 
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if the reaction was instead run at more forcing pressures. Instead, when increasing the 

pressure to 90 bar to attempt to force the reaction (Entry 9), reactivity appeared to shut 

down. 

 One diagnostic observation in all of these reactions was the propensity of the 

solutions to turn a pale yellow after a period of time, differing from the bright orange 

solutions that would initially persist upon fresh addition of the catalyst. It has been 

previously described that this yellow solution occurs when the iridium hydride intermediate 

produced by reaction of the catalyst with hydrogen forms an unreactive trimer that falls out 

of the catalytic cycle (Scheme 3-22).26 Often this occurs before hydrogenation of the olefin 

can occur in especially hindered substrates, often leading to low yields of the desired 

product. This is a known problem with these hydrogenation catalysts, with many differing 

ligand sets having been explored that increase the lifetime of the active catalyst in the 

reaction solution.27 

Scheme 3-32. Propensity of cationic iridium hydrogenation catalysts to undergo deactivating 

trimerization under typical hydrogenation conditions.26 
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the olefin. The facial selectivity of the hydrogenation was confirmed by the observation of 

key correlations in the NOESY spectrum between the C15 hydrogen (2.55 ppm) and the 

hydrogens present on the C16 axial directing group (3.58/3.25 ppm); these observed NOEs 

would not be expected with the alternative diastereomer. Now having a preparatively useful 

route toward a reduced intermediate 3.60, we next focused our efforts on developing a 

route to successfully close the E ring. 

Scheme 3-33. Successful hydrogenation of internal olefin 3.59 with successive dosing of Crabtree’s 

catalyst. 

 

 Synthesis of our lactamization precursor required several manipulations (Scheme 

3-34). We had to deprotect the terminal pendant alcohol and oxidize it to a carboxylic acid, 

followed by subsequent deprotection of the D ring nitrogen and amide coupling to form 

the E ring. Toward this end, we protected the prior directing alcohol as the TBS ether 3.61 

in 70% yield, followed by straightforward removal of the terminal acetate substituent to 

provide pendant alcohol 3.62. Sequential oxidation with Dess-Martin Periodinane followed 

by Pinnick oxidation provided the terminal carboxylic acid 3.63 in 95% yield over two 

steps. 
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Scheme 3-34. Deprotection of terminal E ring alcohol and subsequent oxidation to carboxylic acid 3.63.  

 

 Our approach for the lactamization to form the final E ring is modeled off of that 

used in Yong Qin’s synthesis of vincorine, so we used their conditions as initial guidelines 

to test the reaction (Scheme 3-35).1 An initial roadblock to testing this reaction was the 
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intermediates. Indeed, 50 bar of hydrogen pressure as well as long reaction times (5 days) 

was necessary in order for complete removal of the Cbz protecting group to be observed 

by 1H NMR. Presumably the presence of the now axial substituent on C15 made the 

environment around the Cbz substituent more sterically encumbered, requiring the use of 

more forcing conditions for its removal. This reaction mixture was filtered through celite, 

concentrated, and directly subjected to the coupling conditions used in the Qin synthesis of 

vincorine. When the residue from hydrogenation was reacted with Mukaiyama’s reagent, 

lactam product 3.64 was obtained in 36% yield over two steps. Cyclization toward the 

lactam was confirmed by observation in the HMBC spectrum of a correlation between the 

hydrogens on C5 (4.58/2.91 ppm) and the lactam C=O carbon (180.8 ppm). 

OH

NN
Cbz

HHTs

HH

OAc

deprotection/
oxidation

deprotection/
lactamization

N

N

H
H

H

O

OR

Ts

OH

NN
Cbz

HHTs

HH

OAc
TBSCl, imid.

CH2Cl2

OTBS

NN
Cbz

HHTs

HH

OAc

OTBS

NN
Cbz

HHTs

HH

OH
K2CO3

MeOH

1.) DMP, CH2Cl2

2.) NaClO2, NaH2PO4
2-Me-2-butene
t-BuOH/CH2Cl2/H2O OTBS

NN
Cbz

HHTs

H H
CO2H

70% 87%

94%
over two steps

3.60 3.56

3.60 3.61 3.62

3.63



	 177 

Scheme 3-35. Successful synthesis of pentacycle 3.64 via Cbz deprotection and lactamization with 

Mukaiyama’s reagent. 

 

 Therefore, we had successfully completed a synthesis of a pentacyclic core of the 

natural product strictamine that contains the whole carbon framework of the 

methanoquinolizidine core of the natural product. From here, introduction of the E ring 

olefin and subsequent functional group manipulations would provide access to the natural 

product.  
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synthesis of some of these unsynthesized alkaloids (Scheme 3-36).  We envisioned that 

tosyl deprotection of the indoline followed by oxidation would provide the indolenine, 

which we believed would readily cyclize into the furoindoline upon deprotection of the 

silyl ether.  

Scheme 3-37. Conditions explored for removal of the indoline tosyl substituent (3.6). 

 

 We first explored conditions to conditions to remove the tosyl protecting group on 

the indoline nitrogen (Scheme 3-37). Standard conditions (sodium napthelenide) used to 

remove a tosyl protecting group in our related Malagasy core surprisingly proved 

ineffective.2 We noted that Neil Garg and coworkers had used magnesium in methanol 

under sonication to mildly remove a tosyl substituent in their total synthesis of 

aspidophylline A.28 When using their conditions, where ammonium chloride is added to 

buffer the system, we observed no reactivity. However, if the reaction was run in the 

absence of ammonium chloride, the tosyl group was removed cleanly, providing N-H 

indoline 3.67 in 91% yield.  
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Scheme 3-38. Oxidation of indoline 3.67 to indolenine 3.68. 

 

 We next sought conditions to successfully oxidize the N-H indoline 3.67 into the 

indolenine 3.68 (Scheme 3-38). Initial examination of the literature showed that Swern 

conditions could successfully perform this transformation in related systems, but no 

product was observed when they were attempted.29 Attempts to use DMP also proved 

unsuccessful. When a reaction was trialed with 1.5 equiv of IBX, a small quantity of our 

desired indolenine was obtained. We found that we were able to access useful quantities of 

our desired indolenine 3.68 when a large excess of IBX was used.  

Scheme 3-39. Silyl deprotection and cyclization to furoindoline pentacycle 3.65. 
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HMBC correlations in the relevant indolenine 3.68 and furoindoline 3.65 spectra. 

Oxidation of the N-H indoline 3.67 to the indolenine 3.68 led to observable downfield 

shifts of the aromatic protons on the ring above 7.0 ppm. The indolenine C=N carbon is 

readily observable in the 13C NMR (184.1 ppm) and a clear correlation between the C4 

proton (5.53-5.38 ppm) and this carbon is seen in the HMBC spectrum. Upon deprotection 

and cyclization to the furoindoline 3.65, the indoline aromatic protons shift slightly upfield. 

The C=N  carbon shift disappears and a new carbon shifts appear (99.5/99.3 ppm, mixture 

of rotamers) in roughly the region expected for a hemiaminal carbon. There are now clearly 

correlations seen in the HMBC between the C4 proton (4.79/4.65 ppm, mixture of 

rotamers) and the oxygen-substituted CH2 (3.75/3.72 ppm) and the new signal for the 

hemiaminal ether, confirming cyclization. 

 

 

 

 

 

 

 

 

 



	 181 

3.6 New Directions: Development of an Alternative Akuammiline Alkaloid Cascade 

Annulation 

Scheme 3-40. Prior synthetic route to pentacycle 3.64 and proposed more succinct route to related 

pentacycle 3.70. 

 

 Upon analysis of our route to lactam intermediate 3.64, and in light of the successful 

syntheses of strictamine (3.4) published by several groups in 2016 and 2017, we felt it 
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pentacyclic lactam 3.64 was building the E ring, so we envisioned developing a cascade 

process that provides a core 3.70 with the E ring already in place. This would require a 

repositioning of the allylsilane where it would form instead a pendant arm on C16 instead 

of some of the central C ring structure. Using the same disconnections as in our previous 

cascade, we would need access to cyclic hemiaminal ether 3.71. We believed this 

intermediate could be accessed in 5 steps from tryptamine hydrochloride 3.72 and 

unsaturated lactone 3.73. meaning that we could potentially access our pentacyclic 

structure in 6 steps, a significant reduction in step count compared to our previous route. 

Additionally, the substrate would contain a preformed stereocenter, circumventing the need 

for the development of an asymmetric variant of these cascade reactions and instead 

inducing enantioselectivity in an earlier, more conventional step. 

Scheme 3-41. Synthesis of cyclic hemiaminal ether substrate 3.71. 

 

 Examination of this possible cascade require the synthesis of cyclic hemiaminal 
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provided g,d-unsaturated lactone 3.74.30 Subsequent cross metathesis with 

allyltrimethylsilane provided the substituted allylsilane 3.75 as a 3.5:1.0 mixture of E/Z 

isomers which were unable to be separated at this point or in any later intermediate. Amide 

3.76 was formed by a trimethylaluminum-mediated coupling of lactone 3.75 with 

tryptamine hydrochloride 3.72.31 Subsequent oxidation of the free primary alcohol under 

Parikh-Doering conditions provided hemiaminal 3.77, the result of condensation of the 

formed aldehyde on the amide.32 Subsequent reaction with trimethylsilylimidazole 

provided hemiaminal ether substrate. 

Scheme 3-42. Cyclization of hemiaminal ether substrate 3.71 to strychnos-like core 3.78. 

 

 When hemiaminal ether 3.71 was reacted under Lewis acidic conditions, the major 

product was strychnos-like core 3.78 in 25% yield as a 2.5:1 mixture of C16 epimers 

(Scheme 3-42). A mixture of various Pictet-Spengler cyclization isomers was also obtained 

as a majority of the rest of the product distribution, with nothing resembling the desired 

pentacycle 3.70 found. The connectivity was established by analysis of 1H NMR, COSY, 
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by observation of an NOE for the C2 proton (3.76 ppm) upon irradiation of the C16 proton 

N

O

TMS

N

TMSO

N

N

H
H

Ts

O

H
BF3·OEt2

DCM, 0 °C, 1 h

25 % yield
2.5:1 dr at C16

H

H

Ts

N

N

H

Ts

O

H 2.98 ppm
3.76 ppm

N

N

H

Ts

O

H

H

Major Diastereomer Minor Diastereomer

3.69 ppm 6.05 ppm

Assigment (1D NOESY)

3.71
3.78

16

N

O

TMS
H

N
Ts

H
+

unassigned
stereochemical
mixture

46% yield



	 184 

(2.98 ppm) with 1D NOESY, while an NOE is observed for a proton of the olefin (6.05 

ppm) upon irradiation of the C2 proton (3.69 ppm) of the minor isomer. Based upon our 

prior cyclizations, this result is surprising; this particular nitrogen substitution pattern 

typically resulted in mainly the regiodivergent akuammiline alkaloid core, with no 

strychnos-like core being observed. The observation of mainly Pictet-Spengler products 

implies that this cyclization mode might have been preferred, but the allylsilane addition 

step was not able to successfully occur.  

Scheme 3-43. Rationale for lack of observed akuammiline core with cyclic hemiaminal ether substrate 

3.71. 

 

 The lack of a desired akuammiline core can be rationalized by examining both the 

geometry of the formed iminium ion as well as the relative stereochemistry of the benzylic 

cation intermediate the allylsilane must intercept to form an akuammiline alkaloid product 

in both our prior and currently explored cascade (Scheme 3-43). Due to the cyclic nature 

of hemiaminal ether 3.71, only (Z)-iminium ion 3.79 can be formed. When the (Z)-iminium 
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allylsilane addition, leading to competing rearomatization, preventing a path forward for 

an akuammiline-type product. In comparison, our previous cascade with hemiaminal 3.69 

which involves an acyclic iminium ion intermediate, appears to lead exclusively to 

formation of the (E)-iminium ion 3.81.  Cyclization of this iminium ion on the indole leads 

to a cis relationship between the C2 and C3 protons in intermediate 3.82, effectively 

placing the allylsilane on the opposite face and positioned such that it can readily cyclize 

to form the desired tetracycle. Therefore, this results hints that the proper iminium ion 

geometry is very important for achieving the desired cyclization outcome from our cascade, 

with an (E)-iminium ion geometry as was obtained in our prior open-chain substrates being 

necessary for allylsilane addition to occur in the akuammiline alkaloid cascade pathway. 

This is not detrimental for the synthesis of strychnos-like cores, as can be seen in both the 

above result as well as with our labs exploration of developing an oxocarbenium ion variant 

of our cascade for the synthesis of mattogrossine.33 

Scheme 3-44. Retrosynthetic analysis for proposed open-chain hemiaminal ether substrate 3.84. 

 

As a result of this analysis, we decided to adopt a hybrid approach between our 

previous cascade and this newly developed one (Scheme 3-44). Instead of having the E 

ring already cyclized, we instead have a protected two carbon pendant chain that could be 

used to construct it already installed in cascade product 3.83. This would allow for ready 

construction of this moiety, while still allowing for an open chain substrate that could 
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provide us with the acyclic hemiaminal ether 3.84, which we could readily construct from 

intermediate 3.76 that we had previously synthesized. This would also allow us to use the 

same nitrogen protecting group pattern that we found necessary for our regioselectivity in 

our earlier cascade. In total, this tetracyclic product 3.83 would potentially be prepared in 

just seven steps from unsaturated lactone 3.73. 

Scheme 3-45. Synthesis of open-chain hemiaminal ether substrate 3.84.  

 

 The desired hemiaminal ether was synthesized in short order from amide 3.76 

(Scheme 3-45). Protection of the primary alcohol in amide 3.76 as the TBDPS ether 3.85 

went in high yield. Installation of the Cbz group on the amide 3.85 by deprotonation with 

LiHMDS followed by reaction with benzylchloroformate provided the N-Cbz amide 3.86 

in moderate yield. Reduction of the amide with DIBAL-H followed by trapping with 

trimethylsilylimidazole provided the hemiaminal ether 3.84. 

Scheme 3-46. Cyclization of open-chain hemiaminal ether substrate 3.84 to tentative tetracycle 3.87. 
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 When hemiaminal ether 3.84 was subjected to Lewis acid, the tentatively assigned 

tetracycle 3.87 was obtained as the major product as an inseparable 2.0:1.0 mixture of 

diastereomers (Scheme 3-46). Initial assignment of this structure was difficult due to the 

presence of both rotamers from the Cbz substituent as well as a diastereomeric mixture. 

When heated to 80°C in d6-DMSO, the peaks partially resolved, allowing for a COSY 

spectrum to be obtained that helped in assigning the proper connectivity of the structure. 

However, a good quality NOESY spectrum was unable to be obtained under these 

conditions, so the relative stereochemistry at C15 and C16 was not able to be established. 

Scheme 3-47. Preliminary data on the synthesis of (E)-allylsilane 3.89. 

 

 Due to the cyclized product present being an inseperable diastereomeric mixture, 
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to be due to the volatility of these products, so our current efforts explore a similar sequence 

of reactions on a protected open chain variant of this material that should be less susceptible 

to material losses. 

 

3.7 Conclusion and Future Directions 

Scheme 3-48. Proposed Future Route of New Akuammiline Core Toward Strictamine (3.4) and 

Pseudoakuammigine (3.66). 
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would already contain the necessary framework for quick synthesis of 

methanoquinolizidine structure 3.70 (Scheme 3-48). A requirement for this strategy to be 

successful would be correct establishment of the stereochemistry on C15 in 3.83, 

positioning the substituent for proper E ring closure. Whether this would be the case with 

our cyclization has not yet been established. From pentacycle 3.70, we can imagine 

accessing strictamine (3.4) over eight steps for a total of 20 steps from commercially 

available starting materials. Alternatively, we could potentially access 

pseudoakuammigine (3.66), an alkaloid in this family that has yet to have been synthesized, 

over ten steps from pentacycle 3.70 for a total of 22 steps. Finally, these routes could be 

made enantioselective if method for the enantioselective synthesis of terminal alkene 3.74 

or a related intermediate could be developed, circumventing the need for the development 

of an asymmetric catalytic system for our iminium ion cascade. The feasibility of this route 

is currently being explored. 

 

3.8 Experimental Procedures 

Ketone 3.19: 

 

Ozone (4% in O2) was bubbled through a solution of tetracycle 3.6 (395.8 mg, 0.52 

mmol, 1.0 equiv) in CH2Cl2 (20.0 mL) at -78 °C until a blue color persisted. After five 

minutes, ozone bubbling was ceased and the mixture was sparged with oxygen. After thirty 

minutes, oxygen bubbling was ceased, and a solution of PPh3 (292.0 mg, 1.05 mmol, 2.0 
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equiv) in CH2Cl2 (8.0 mL) was added in one portion. The reaction mixture was warmed to 

room temperature, stirred for 12 hours, and subsequently concentrated under reduced 

pressure. Purification by flash column chromatography on silica gel (7:3 hexanes/EtOAc) 

provided ketone 3.19 (301.0 mg, 74%) as a crunchy foam. 

1H NMR (500 MHz, CDCl3) (1.0:0.8 mixture of rotamers) δ 7.79 - 7.74 (m, 3.6H), 7.56 - 

7.31 (m, 27H), 7.25 - 7.17 (m, 3.6H), 7.00 - 6.92 (m, 3.6H), 6.81 (d, J = 7.3 Hz, 1.8H), 

5.87 - 5.77 (m, 0.8H), 5.77 - 5.67 (m, 1H), 5.42 (d, J = 12.3 Hz, 1H), 5.26 - 5.11 (m, 2.6H), 

4.22 (dd, J = 15.1, 6.2 Hz, 1H), 4.10 (dd, J = 15.1, 6.1 Hz, 0.8H), 3.82 (t, J = 9.8 Hz, 0.8H), 

3.77 - 3.68 (m, 1H), 3.35 - 3.21 (m, 1.8H), 3.11 (td, J = 16.3, 3.8 Hz, 1.8H), 2.86 (d, J = 

9.0 Hz, 1.8H), 2.79 (dd, J = 10.6, 5.5 Hz, 1.8H), 2.65 - 2.55 (m, 3.6H), 2.34 (d, J = 25.6 

Hz, 5.4H), 2.14 - 2.03 (m, 1.8H), 1.79 (dd, J = 12.9, 6.7 Hz, 1.8H), 1.64 (s, 1H), 1.28 (s, 

0.8H), 0.99 (s, 16.2H) ppm. 

13C NMR (126 MHz, CDCl3) (1.0:0.8 mixture of rotamers) δ 214.9, 208.6, 155.1, 145.0, 

143.0, 136.6, 135.8, 135.7, 133.9, 132.9, 130.9, 130.0, 129.9, 129.8, 129.7, 129.0, 128.9, 

128.7, 128.5, 128.4, 128.3, 128.3, 128.0, 127.9, 127.8, 127.7, 124.8, 124.7, 122.6, 122.4, 

115.3, 110.1, 68.7, 68.5, 67.9, 62.4, 59.9, 59.7, 52.8, 52.7, 47.5, 46.0, 39.4, 38.8, 37.7, 35.7, 

35.4, 27.0, 21.7, 19.2, 10.7, 10.6 ppm. 

IR (thin film, cm-1) 3070, 2930, 2857, 1695, 1599, 1456, 1412, 1370, 1306, 1253, 1187, 

1171, 1111, 1030, 998, 976, 908, 850, 814, 765, 729, 701, 659, 608, 580, 547. 

HRMS (+NSI) calculated for C46H49O6N2SSi [M+H]+ 785.3075, found 785.3082. 

 

Vinyl Triflate 3.48: 
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A solution of LiHMDS (142.2 mg, 0.85 mmol) in THF (1.85 mL) was cooled to -

78 °C. A solution of ketone 3.19 (222.0 mg, 0.28 mmol) in THF (1.0 mL) was added drop-

wise over ten minutes, and the reaction mixture was stirred for 90 minutes at -78 °C. A 

solution of Comin’s reagent (333.8 mg, 0.85 mmol) in THF (1.0 mL) was added in one 

portion, and the reaction mixture was stirred at -78 °C for four hours. The reaction mixture 

was quenched with saturated aqueous NH4Cl (5.0 mL) and warmed to room temperature. 

The layers were separated, and the aqueous phase was extracted with Et2O (3 x 10.0 mL). 

The combined organic layer was washed with brine (25.0 mL), dried over anhydrous 

MgSO4, filtered, and concentrated under reduced pressure. Purification by flash column 

chromatography on silica gel (4:1 hexanes/EtOAc) provided vinyl triflate 3.48 (213.3 mg, 

83%) as a crunchy foam. 

1H NMR (500 MHz, CDCl3) (1.0:1.0 mixture of rotamers) δ 7.82 (d, J = 7.9 Hz, 2H), 7.62 

(dd, J = 8.6, 4.2 Hz, 2H), 7.55 (d, J = 7.8 Hz, 2H), 7.52 – 7.47 (m, 2H), 7.46 – 7.28 (m, 

25H), 7.23 – 7.18 (m, 2H), 7.11 (ddd, J = 8.6, 7.5, 1.6 Hz, 2H), 6.90 – 6.78 (m, 6H), 6.13 

(dd, J = 7.5, 2.6 Hz, 1H), 6.05 – 5.92 (m, 4H), 5.39 (d, J = 12.5 Hz, 1H), 5.24 – 5.09 (m, 

3H), 4.23 (dd, J = 14.5, 5.5 Hz, 1H), 4.20 – 4.08 (m, 1H), 3.60 – 3.45 (m, 2H), 3.45 – 3.23 

(m, 3H), 3.01 (dd, J = 11.2, 5.1 Hz, 2H), 2.92 (s, 3H), 2.69 (s, 4H), 2.43 – 2.23 (m, 6H), 

2.20 – 2.06 (m, 2H), 1.77 (dtd, J = 19.1, 13.1, 5.7 Hz, 2H), 1.59 (s, 1H), 1.26 (s, 1H), 0.96 

(s, 18H) ppm. 

19F NMR (282 MHz, CDCl3) (1.0:1.0 mixture of rotamers) δ -72.91, -78.99 ppm. 
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13C NMR (151 MHz, CDCl3) (1.0:1.0 mixture of rotamers) δ 173.6, 155.1, 154.5, 154.0, 

144.8, 143.1, 141.4, 135.8, 135.7, 135.3, 135.1, 134.8, 132.9, 132.7, 131.0, 130.7, 129.9, 

129.5, 128.8, 128.7, 128.6, 128.4, 127.8, 127.5, 127.4, 126.8, 124.7, 124.1, 124.0, 123.8, 

123.7, 123.6, 123.1, 119.6, 119.3, 114.5, 113.6, 111.0, 68.9, 67.9, 67.8, 63.4, 63.1, 49.9, 

49.7, 48.7, 48.5, 47.1, 45.3, 44.3, 36.2, 35.6, 27.4, 26.9, 24.3, 21.6, 18.9, -1.4 ppm. 

IR (thin film, cm-1) 2955, 2928, 2856, 1701, 1375, 1174, 1111, 846, 702, 604. 

HRMS (+NSI) calculated for C47H48O8N2F3S2Si [M+H]+ 917.2568, found 917.2594. 

Diene 3.51: 

 

Vinyl triflate 3.48 (197.5 mg, 0.215 mmol, 1.0 equiv) was weighed into a Schlenk 

flask and brought into a N2-filled glove box. CuCl (106.6 mg, 1.077 mmol, 5.0 equiv) and 

LiCl (54.8 mg, 1.292 mmol, 6.0 equiv) were added to the Schlenk flask. The flask was 

subsequently sealed and removed from the glove box. Pd(Ph3)4 (24.9 mg, 0.022 mmol, 10 

mol %) was then added, and the flask was subjected to three vacuum/N2 fill cycles. DMSO 

(2.2 mL) and vinyltributylstannane (100 µL, 0.323 mmol, 1.5 equiv) were added, and the 

reaction mixture was then degassed via four freeze/pump/thaw cycles (-78 °C). The 

resultant slurry was heated to 60 °C and stirred for 48 hours. The reaction was cooled to 

room temperature and quenched with 1M aqueous NH4OH (5.0 mL) and Et2O (5.0 mL). 

The resultant biphasic mixture was stirred till both layers were homogenous. The layers 

were separated, and the aqueous phase was extracted with Et2O (3 x 5.0 mL). The combined 

organic phase was washed with 1M potassium fluoride (3 x 10.0 mL) and brine (10.0 mL). 
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The organic phase was dried over anhydrous MgSO4, filtered, and concentrated under 

reduced pressure. Purification by flash column chromatography on silica gel (9:1 to 4:1 

hexanes/EtOAc, 3% Et3N) provided diene 3.51 (135.3 mg, 79%) as a sticky foam.  

1H NMR (500 MHz, CDCl3) (1.0:1.0 mixture of rotamers) δ 7.89 (d, J = 7.9 Hz, 2H), 7.72 

(d, J = 8.3 Hz, 2H), 7.62 (d, J = 8.0 Hz, 2H), 7.48 (d, J = 6.8 Hz, 6H), 7.44 – 7.20 (m, 30H), 

6.97 – 6.85 (m, 4H), 6.01 – 5.74 (, 6H), 5.37 (d, J = 12.3 Hz, 1H), 5.14 (td, J = 21.0, 12.4 

Hz, 3H), 4.92 (d, J = 17.6 Hz, 2H), 4.58 (d, J = 11.0 Hz, 2H), 4.08 (dd, J = 15.1, 6.2Hz, 

1H), 4.00 (dd, J = 14.0, 4.9 Hz, 1H), 3.41 (t, J = 11.5 Hz, 2H), 3.19 – 2.95 (m, 6H), 2.46 

(s, 2H), 2.35 (s, 3H), 2.28 (s, 3H), 2.15 (d, J = 10.9 Hz, 1h), 2.09 (d, J = 11.8 Hz, 1H), 1.78 

(dtd, J = 18.1, 13.2, 5.7 Hz, 2H), 0.92 (s, 18H) ppm. 

13C NMR (151 MHz, CDCl3) (1.0:1.0 mixture of rotamers) δ 155.0, 154.9, 154.3, 153.9, 

144.8, 144.3, 144.2, 143.8, 143.6, 143.5, 136.7, 136.6, 136.5, 136.4, 136.3, 136.0, 135.7, 

135.3, 135.2, 135.0, 134.8, 133.4, 133.3, 131.4, 129.8, 129.7, 129.6, 129.4, 128.8, 128.5, 

128.3, 128.1, 127.9, 127.8, 127.5, 127.3, 126.8, 124.7, 124.6, 124.5, 123.8, 123.5, 123.1, 

119.9, 119.6, 119.5, 119.2, 114.5, 114.3, 114.0, 113.6, 70.1, 69.8, 68.5, 67.5, 67.4, 65.4, 

65.3, 49.0, 48.8, 48.2, 44.1, 43.0, 37.0, 36.4, 36.1, 36.0, 29.7, 27.5, 27.0, 26.9, 26.6, 24.6, 

21.6, 21.5, 20.9, 18.8 ppm. 

IR (thin film, cm-1) 3045, 2931, 2858, 1693, 1414, 1358, 1170, 1104, 1081, 910, 734, 702, 

584. 

HRMS (+NSI) calculated for C48H51O5N2SSi [M+H]+ 795.3283, found 795.3298. 

 

Alcohol 3.58: 
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A solution of 9-BBN-H dimer (g, 0.518 mmol, 2.5 equiv) in THF (1.1 mL) was cooled to 

0 °C. A solution of diene 3.51 (164.6 mg, 0.207 mmol, 1.0 equiv) in THF (1.1 mL) was 

added, and the reaction was warmed to room temperature and stirred for 24 hours. The 

reaction was cooled to 0 °C, and 2 N sodium hydroxide (2.1 mL) and 30 % hydrogen 

peroxide (2.1 mL) were slowly added. The mixture was stirred for one hour, and diethyl 

ether (10.0 mL) and water (10.0 mL) were added. The layers were separated, and the 

aqueous phase was extracted with diethyl ether (3 x 10.0 mL). The combined organic layer 

was washed with brine (25.0 mL), dried over anhydrous MgSO4, filtered, and concentrated 

under reduced pressure. Purification by flash column chromatography on silica gel (3:2 to 

1:1 hexanes/EtOAc) provided alcohol 3.58 (119.4 mg, 71%) as a sticky foam. 

1H NMR (600 MHz, CD3OD) (1.0:0.8 mixture of rotamers) δ 7.80 (d, J = 8.1 Hz, 2H), 

7.59 (dd, J = 13.5, 8.2 Hz, 3.6 Hz, 3.6H), 7.51 (d, J = 7.4 Hz, 1.8H) 7.45 – 7.27 (m, 24.6H), 

7.19 (d, J = 8.0 Hz, 2H), 7.12 (t, J = 7.8 Hz, 1.8H), 6.97 (d, J = 8.0 Hz, 1.8H), 6.91 – 6.79 

(m, 2.8H), 5.82 (d, J = 6.3 Hz, 1H), 5.74 (d, J = 8.0 Hz, 0.8H), 5.62 (t, J = 5.0 Hz, 1.8H), 

5.36 (d, J = 12.4 Hz, 0.8 Hz), 5.22 – 5.09 (m, 2.8H), 4.03 – 3.93 (m, 1.8H), 4.04 – 3.94 (m, 

3.6H), 3.44 – 3.36 (m, 1.8H), 3.31 – 3.25 (m, 1.8H), 2.89 – 2.81 (m, 3.6H), 2.51 – 2.45 (m, 

1.8H), 2.40 – 2.23 (m, 9H), 2.09 (dd, J = 21.2, 13.9 Hz, 1.8H), 1.67 – 1.55 (m, 3.6H), 0.92 

(s, 16.2H) ppm. 

13C NMR (151 MHz, CD3OD) (1.0:0.8 mixture of rotamers) δ 156.9, 156.4, 146.2, 145.9, 

144.5, 144.4, 138.3, 138.2, 136.9, 134.5, 134.3, 132.5, 132.2, 130.9, 130.8, 130.7, 129.8, 

OTBDPS

NN
Cbz
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129.6, 129.5, 129.4, 129.3, 129.1, 129.0, 128.7, 128.6, 125.3, 124.9, 119.0, 118.9, 115.6, 

72.8, 71.3, 71.1, 68.7, 68.5, 66.9, 61.1, 50.3, 50.1, 44.8, 42.6, 39.9, 38.0, 37.3, 37.1, 37.0, 

35.3, 34.2, 30.8, 28.6, 27.5, 26.3, 23.8, 21.5, 21.4, 19.7 ppm. 

IR (thin film, cm-1) 3408, 2923, 2853, 1684, 1456, 1418, 1357, 1285, 1254, 1169, 1112, 

1072, 908, 730, 701, 613, 583. 

HRMS (+NSI) calculated for C48H53O6N2SSi [M+H]+ 813.3388, found 813.3390. 

 

Homoallylic Alcohol 3.59: 

 

To a solution of alcohol 3.58 (66.5 mg, 0.082 mmol, 1.0 equiv) in pyridine (0.9 mL) was 

added DMAP (99.8 mg, .817 mmol, 10 equiv) and acetic anhydride (80 µL, 0.817 mmol, 

10 equiv). The reaction mixture was stirred for six hours at room temperature. The reaction 

was quenched with saturated sodium bicarbonate solution (5.0 mL) and ethyl ether (5.0 

mL), and the layers were separated. The organic layer was washed with water (5.0 mL), 

saturated aqueous CuSO4 (5.0 mL), and brine (5.0 mL). The organic layer was dried over 

anhydrous MgSO4, filtered, and concentrated under reduced pressure. The crude residue 

was brought up in CH3CN (0.8 mL) and HF·pyridine (0.9 mL) and pyridine (0.9 mL) were 

added. The reaction was stirred for eight hours at room temperature. The reaction mixture 

was quenched with saturated sodium bicarbonate (5.0 mL) and ethyl acetate (5.0 mL), and 

the layers were separated. The organic layer was washed with water (5.0 mL), saturated 

OTBDPS

NN
Cbz

HHTs

OH
H
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2.) HF·pyr., pyr., MeCN
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HHTs

OAc
H80%

over two steps



	 196 

aqueous CuSO4 (5.0 mL), and brine (5.0 mL). The organic layer was dried over anhydrous 

Na2SO4, filtered, and concentrated under reduced pressure. Purification by flash column 

chromatography on silica gel (1:1 hexanes/EtOAc) provided homoallylic alcohol 3.59 

(40.5 mg, 80% over two steps) as a sticky foam.  

1H NMR (500 MHz, CDCl3) (1:0.5 mixture of rotamers) δ 7.90 (d, J = 7.5 Hz, 1.5H), 7.78 

(d, J = 7.4 Hz, 1.5H), 7.61 (d, J = 7.7 Hz, 1.5H), 7.51 (d, J = 7.0 Hz, 1.5H), 7.45 – 7.31 (m, 

4.5H), 7.31 – 7.27 (m, 3H), 7.22 (d, J = 7.3 Hz, 1.5 H), 7.07 (d, J = 5.9 Hz, 3H), 6.90 (d, J 

= 7.6 Hz, 1.5Hz), 6.00 – 5.73 (m, 3H), 5.39 (d, J = 12.3 Hz, 1H), 5.24 – 5.08 m, 2H), 4.31 

– 4.31 (m, 3H), 4.16 – 3.99 (m, 1.5H), 3.39 – 3.27 (m, 1.5H), 3.20 (dt, J = 27.4, 13.0 Hz, 

1.5H), 2.99 (s, 1.5H), 2.80 (d, J = 10.2 Hz, 1.5H), 2.64 (s, 3H), 2.43 – 223 (m, 6H), 2.10 – 

1.96 (m, 6H), 1.85 – 1.68 (m, 1.5H), 1.50 (s, 1.5H) ppm. 

13C NMR (126 MHz, CDCl3) (1:0.5 mixture of rotamers) δ 171.1, 155.2, 154.9, 144.9, 

142.9, 141.7, 141.5, 137.0, 136.9, 130.9, 129.9, 129.8, 128.9, 128.8, 128.6, 128.5, 128.4, 

128.2, 127.9, 124.6, 124.4, 123.2, 123.1, 120.4, 120.1, 115.6, 69.5, 69.3, 67.7, 67.5, 62.6, 

62.4, 62.0, 48.7, 48.6, 48.4, 44.0, 36.6, 36.0, 35.8, 34.6, 29.8, 21.7, 21.6, 21.1 ppm. 

IR (thin film, cm-1) 3534, 2923, 1734, 1687, 1455, 1414, 1357, 1284, 1237, 1169, 1122, 

1092, 762, 731, 582. 

HRMS (+NSI) calculated for C34H37O7N2S [M+H]+ 617.2316, found 617.2319. 
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Alcohol 3.60: 

 

To a solution of homoallylic alcohol X (27.4 mg, 0.044 mmol) in CH2Cl2 (0.5 mL) was 

added [Ir(cod)(py)(PCy3)]BArF
4 (1.4 mg, 0.0009 mmol, 2 mol %). The solution was 

subjected to hydrogen gas (60 bar) for 36 hours. The reaction mixture was depressurized, 

and additional [Ir(cod)(py)(PCy3)]BArF
4 (1.4 mg, 0.0009 mmol, 2 mol %) was added. The 

solution was resubjected to hydrogen gas (60 bar) for 36 hours. The reaction mixture was 

depressurized, and additional [Ir(cod)(py)(PCy3)]BArF
4 (1.4 mg, 0.0009 mmol, 2.4 mol %) 

was added. The reaction mixture was resubjected to hydrogen gas (60 bar) for 36 hours. 

The reaction mixture was depressurized and concentrated under reduced pressure. 

Purification by column chromatography on silica gel (1.1 hexanes/EtOAc) provided 

reduced alcohol 3.60 (15.0 mg, 55%) as a sticky foam. Additionally, starting material was 

recovered from the reaction mixture (6.3 mg, 23%). 

Assignment of relative stereochemistry was accomplished by examination of COSY and 

NOESY spectra (vide infra). 

1H NMR (500 MHz, CDCl3) (1.0:0.7 mixture of rotamers) δ 7.80 (t, J = 9.0 Hz, 3.4H), 

7.57 (d, J = 8.0 Hz, 1.7H), 7.50 (d, J = 7.4 Hz, 1.7H), 7.44 (t, J = 7.4 Hz, 1.7H), 7.38 (s, 

3.4H), 7.32 – 7.21 (m, 6.8H), 7.10 – 6.98 (m, 3.4H), 5.66 (d, J = 9.0 Hz, 0.7H), 5.58 (d, J 

= 7.7 Hz, 1H), 5.38 (d, J = 12.4 Hz, 1H), 5.26 – 5.10 (m, 2.4H), 4.23 – 4.02 (m, 5.1H), 3.58 

(d, J = 11.9 Hz, 1.7H), 3.47 – 3.32 (m, 1.7H), 3.30 – 3.21 (m, 1.7H), 2.94 – 2.83 (m, 1.7H), 

OH
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2.85 – 2.71 (m, 1.7H), 2.55 (s, 1.7H), 2.37 (s, 2.1H), 2.32 (s, 3H), 2.16 – 2.00 (m, 6.8H), 

1.99 – 1.90 (m, 1.7H), 1.90 – 1.57 (m, 5.1H), 1.44 – 1.28 (m, 3.4H) ppm. 

13C NMR (126 MHz, CDCl3) (1.0:0.7 mixture of rotamers) δ 171.3, 155.7, 155.0, 144.7, 

144.6, 143.5, 136.8, 136.7, 135.0, 134.9, 131.4, 129.9, 128.7, 128.2, 127.8, 124.3, 124.0, 

123.8, 114.7, 71.1, 70.8, 67.6, 62.3, 61.1, 61.0, 60.5, 48.5, 48.4, 47.2, 47.1, 43.5, 36.9, 35.2, 

34.7, 33.2, 32.6, 32.1, 29.8, 26.5, 26.3, 21.6, 21.2, 14.3 ppm. 

IR (thin film, cm-1) 3533, 2922, 1733, 1686, 1454, 1413, 1356, 1284, 1236, 1168, 1121, 

1091, 761, 730, 582. 

HRMS (-NSI) calculated for C34H37O7N2S [M-H]- 617.2316, found 617.2319. 

 

TBS Ether 3.61: 

 

A solution of alcohol 3.60 (34.9 mg, 0.0564 mmol, 1.0 equiv) in CH2Cl2 (0.56 mL) was 

cooled to 0 °C. TBSCl (9.3 mg, 0.0620 mmol, 1.1 equiv) and imidazole (8.4 mg, 0.1241, 

2.2 equiv) were added, and the reaction mixture was warmed to room temperature and 

stirred 16 hours. The mixture was quenched with saturated aqueous NH4Cl (2.0 mL) and 

CH2Cl2 (2.0 mL), and the layers were separated. The aqueous phase was extracted with 

CH2Cl2 (3 x 2.0 mL). The combined organic layer was dried over anhydrous Na2SO4, 

filtered, and concentrated under reduced pressure. Purification by column chromatography 

OH

NN
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on silica gel (7:3 hexanes/EtOAc) provided TBS ether 3.61 (29.1 mg, 70%) as a colorless 

oil. 

1H NMR (500 MHz, CDCl3) (1.0:1.0 mixture of rotamers) δ 7.77 (d, J = 13.9, 8.1 Hz, 3H), 

7.58 (d, J = 7.8 Hz, 2H), 7.50 (d, J = 7.6 Hz, 2H), 7.44 (t, J = 7.3 Hz, 2H), 7.41 – 7.34 (m, 

5H), 7.32 – 7.26 (m, 3H), 7.23 (t, J = 7.6 Hz, 5H), 7.03 (d, J = 7.9 Hz, 2H), 6.97 (q, J = 7.3 

Hz, 2H), 5.63 (d, J = 9.2 Hz, 1H), 5.53 (d, J = 6.8 Hz, 1H), 5.37 (d, J = 12.4 Hz, 1H), 5.26 

– 5.11 (m, 3H), 4.19 – 3.99 (m, 6H), 3.51 – 3.34 (m, 4H), 2.92 – 2.83 (m, 4H), 2.76 (tt, J 

= 15.7, 8.2 Hz, 2H), 2.35 (d, J = 20.7 Hz, 6H), 2.31 – 2.17 (m, 4H), 2.07 (s, 6H), 1.91 – 

1.72 (m, 4H), 1.71 – 1.57 (m, 2H), 1.44 – 1.29 (m, 4H), 0.86 (s, 18H), -0.06 (d, J = 19.6 

Hz, 12H) ppm. 

13C NMR (126 MHz, CDCl3) (1.0:1.0 mixture of rotamers) δ 171.3, 155.8, 155.7, 144.5, 

144.4, 143.4, 136.9, 134.9, 134.8, 129.9, 128.8, 128.3, 128.1, 127.8, 125.7, 123.2, 123.1, 

114.3, 71.3, 71.0, 67.5, 62.3, 62.2, 48.8, 48.7, 47.7, 47.5, 43.8, 37.4, 37.1, 35.7, 35.2, 33.3, 

33.2, 32.7, 27.0, 26.8, 26.1, 21.1, 18.3, -5.3, -5.4 ppm. 

IR (thin film, cm-1) 2952, 1736, 1693, 1238, 1184, 1170, 1071, 1005, 754, 732, 606, 546. 

HRMS (+NSI) calculated for C40H53O7N2SSi [M+H]+ 733.3337, found 733.3348. 
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To a solution of TBS ether 3.61 (13.3 mg, 0.0181 mmol, 1.0 equiv) in MeOH (1.8 mL) was 

added K2CO3 (25.1 mg, 0.1814 mmol, 10 equiv), and the resultant mixture was stirred for 

18 hours. The reaction was quenched with water (5.0 mL) and CH2Cl2 (5.0 mL), and the 

layers were separated. The aqueous phase was extracted with CH2Cl2 (3 x 5.0 mL). The 

combined organic layer was dried over anhydrous Na2SO4 and filtered. The solution was 

concentrated under reduced pressure to provide alcohol 3.62 (10.9 mg, 87%) as a colorless 

oil, which was used without further purification. 

1H NMR (500 MHz, CDCl3) (1.0:1.0 mixture of rotamers) δ 7.75 (t, J = 9.6 Hz, 3H), 7.56 

(d, J = 7.9 Hz, 2H), 7.48 (d, J = 7.1 Hz, 2H), 7.45 – 7.32 (m, 7H), 7.29 (d, J = 6.7 Hz, 2H), 

7.21 (t, J = 7.2 Hz, 5H), 7.06 – 6.92 (m, 4H), 5.59 (d, J = 7.1 Hz, 1H), 5.51 (d, J = 8.1 Hz, 

1H), 5.34 (d, J = 12.4 Hz, 1H), 5.25 – 5.08 (m, 3H), 4.11 – 3.96 (m, 2H), 3.79 – 3.57 (m, 

4H), 3.53 – 3.38 (m, 4H), 2.87 (s, 2H), 2.84 – 2.77 (m, 2H), 2.77 – 2.64 (m, 2H), 2.38 – 

2.17 (m, 10H), 1.87 – 1.73 (m, 5H), 1.67 – 1.54 (m, 3H), 1.42 – 1.28 (m, 2H), 0.85 (s, 

18H), -0.07 (d, J = 14.1 Hz, 12H) ppm. 

13C NMR (126 MHz, CDCl3) δ 158.2, 158.0, 155.9, 155.7, 144.6, 144.4, 143.4, 137.0, 

136.8, 134.9, 131.5, 131.4, 129.9, 128.8, 128.7, 128.3, 128.1, 127.9, 125.8, 123.3, 123.1, 

114.3, 71.3, 71.0, 67.5, 62.7, 62.6, 60.5, 48.9, 48.8, 47.8, 47.5, 43.8, 37.7, 37.5, 35.7, 35.3, 

33.4, 32.8, 29.8, 27.1, 27.0, 26.1, 21.7, 18.3, -5.3, -5.4 ppm. 

IR (thin film, cm-1) 3428, 2951, 2927, 1692, 1494, 1456, 1360, 1255, 1170, 1112, 1088, 

1067, 837, 814, 737, 658, 605, 547. 

HRMS (+NSI) calculated for C38H50O6N2KSSi [M+K]+ 729.2790, found 729.2804. 
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Carboxylic Acid 3.63: 

 

To a solution of alcohol 3.62 (7.4 mg, 0.011 mmol, 1.0 equiv) in CH2Cl2 (0.5 mL) was 

added K2CO3 (15.2 mg, 0.11 mmol) and DMP (6.7 mg, 0.016 mmol, 1.5 equiv), and the 

reaction was stirred for 12 hours. The reaction mixture was quenched with saturated 

aqueous Na2SO3 (5.0 mL) and CH2Cl2 (5.0 mL), and the biphasic mixture was stirred for 

30 minutes until both layers were clear. The layers were separated, and the aqueous phase 

was extracted with CH2Cl2 (3 x 5.0 mL). The combined organic layer was dried over 

Na2SO4, filtered, and concentrated in vacuo. The crude residue was brought up in t-BuOH 

(0.25 mL) and CH2Cl2 (0.5 mL), and 2-methyl-2-butene (0.5 mL) was added. A solution 

of NaClO2 (19.0 mg, 0.210 mmol, 20.0 equiv) and NaH2PO4 (30.2 mg, 0.252 mmol, 24.0 

equiv) in water was added, and the reaction mixture was stirred for three hours. The 

reaction was quenched with water (10.0 mL) and EtOAc (10.0 mL), and the layers were 

separated. The aqueous phase was extracted with EtOAc (3 x 10.0 mL). The combined 

organic was washed with brine, dried over anhydrous Na2SO4, filtered, and concentrated 

under reduced pressure. Purification by preparatory thin layer chromatography on silica 

gel (1:1 hexanes/EtOAc) provided carboxylic acid 3.63 (7.1 mg, 94% over two steps) as a 

sticky foam. 

1H NMR (500 MHz, CDCl3) (1.0:1.0 mixture of rotamers) δ 7.78 (d, J = 8.1 Hz, 2H), 7.74 

(d, J = 8.2 Hz, 2H), 7.55 (d, J = 8.1 Hz, 2H), 7.47 (d, J = 7.3 Hz, 2H), 7.41 (t, J = 7.4 Hz, 

3H), 7.38 – 7.30 (m, 5H), 7.23 – 7.15 (,m, 6H), 7.03 – 6.91 (m, 4H), 5.66 (d, J = 8.5 Hz, 

1.) DMP, CH2Cl2
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1H), 5.56 (d, J = 7.9 Hz, 1H), 5.37 (d, J = 12.4 Hz, 1H), 5.25 – 5.07 (m, 3H), 4.18 – 4.01 

(m, 2H), 3.54 – 3.39 (m, 2H), 3.18 (dd, J = 10.5, 4.7 Hz, 2H), 3.08 (dd, J = 10.4, 7.0 Hz, 

2H), 2.86 (s, 2H), 2.80 – 2.63 (m, 4H), 2.42 (td, J = 17.6, 4.8 Hz, 3H), 2.32 (d, J = 24.7 

Hz, 9H), 2.21 – 1.99 (m, 5H), 1.72 – 1.55 (m, 3H), 0.81 (s, 18H), -0.06 (s, 6H), -0.11 (s, 

6H) ppm. 

13C NMR (151 MHz, CDCl3) (1.0:1.0 mixture of rotamers) δ 176.2, 155.6, 155.4, 144.5, 

144.3, 143.3, 136.8, 136.7, 134.7, 134.5, 131.4, 131.3, 129.8, 128.7, 128.5, 128.3, 128.2, 

128.0, 127.9, 127.8, 125.1, 125.0, 123.2, 122.9, 114.4, 114.3, 71.4, 71.1, 67.4, 63.6, 63.4, 

60.4, 56.0, 48.6, 48.5, 45.6, 45.5, 43.5, 38.5, 38.3, 37.0, 36.8, 35.7, 35.1, 32.8, 32.1, 31.9, 

29.7, 27.9, 27.8, 25.9, 22.7, 21.5, 21.1, 18.2, 14.2, 14.1, -5.5, -5.7 ppm. 

IR (thin film, cm-1) 2952, 2927, 2855, 1698, 1469, 1257, 1171, 1122, 1083, 837, 754, 585. 

HRMS (+NSI) calculated for C38H49O7N2SSi [M+H]+ 705.3024, found 705.3033. 

 

Pentacycle 3.64: 

 

To a solution of carboxylic acid 3.63 (7.1 mg, 0.0105 mmol, 1.0 equiv) in EtOAc (0.25 

mL) and MeOH (0.25 mL) was added Pd/C (10 % w/w, 1.1 mg, 10 mol %)) and AcOH 

(0.25 mL). The reaction mixture was placed under hydrogen pressure (50 bar) and was 

stirred for five days. The reaction was depressurized and was diluted with MeOH (2.0 mL). 

OTBS
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The reaction mixture was filtered, and the filter cake was rinsed with MeOH (5 x 2.0 mL). 

The reaction mixture was concentrated under reduced pressure. The crude residue was 

brought up in CH2Cl2 (1.0 mL) and transferred to a pressure vessel. Et3N (30 µL, 0.21 

mmol, 20.0 equiv) and Mukaiyama’s reagent (13.4 mg, 0.0525 mmol, 5.0 equiv) were 

added, and the reaction was sealed and heated to 40 °C. The reaction mixture was stirred 

for three days. The reaction mixture was cooled to room temperature and concentrated 

under reduced pressure. Purification by preparatory thin layer chromatography on silica 

gel (1:1 hexanes/EtOAc) provided pentacycle 3.64 (2.1 mg, 36% over two steps) as a 

colorless oil. 

Structural assignment was confirmed by examination of COSY, HMQC, and HMBC 

spectra (vide infra). 

1H NMR (600 MHz, CDCl3) δ 7.72 (d, J = 8.2 Hz, 1H), 7.69 (d, J = 8.3 Hz, 2H), 7.28 (d, 

J = 8.1 Hz, 2H), 7.22 (t, J = 8.5 Hz, 1H), 7.01 (t, J = 7.7 Hz, 1H), 6.96 (d, J = 7.3 Hz, 1H), 

4.55 (dd, J = 13.9, 7.8 Hz, 1H), 4.52 (t, J = 5.6 Hz, 1H), 3.52 (d, J = 5.5 Hz, 1H), 2.99 (dt, 

J = 14.1, 4.4 Hz, 1H), 2.90 (ddd, J = 13.8, 10.7, 6.0 Hz, 1H), 2.79 (t, J = 10.3 Hz, 1H), 2.64 

(s, 1H), 2.59 (dd, J = 9.9, 4.1 Hz, 1H), 2.56 (d, J = 3.6 Hz, 1H), 2.51 (t, J = 3.0 Hz, 1H), 

2.49 – 2.41 (m, 1H), p2.38 (s, 3H), 1.89 (dd, J = 13.2, 6.0 Hz, 1H), 1.81 (dd, J = 14.2, 5.7 

Hz, 1H), 1.53 (dd, J = 10.5, 4.1 Hz, 1H), 0.75 (s, 9H), -0.19 (s, 6H) ppm. 

13C NMR (151 MHz, CDCl3) δ 181.0, 145.2, 143.4, 136.3, 131.2, 130.0, 128.4, 124.4, 

124.2, 115.3, 67.1, 64.3, 56.1, 53.7, 51.6, 45.6, 44.8, 42.7, 41.4, 32.1, 29.9, 28.7, 26.0, 24.0, 

22.9, 21.8, 18.2, 14.3, -5.4 ppm. 

IR (thin film, cm-1) 2953, 2925, 2854, 1662, 1459, 1340, 1170, 1090, 938, 778, 665, 582. 
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HRMS (+NSI) calculated for C30H41O4N2SSi [M+H]+ 553.2551, found 553.2570. 

 

N-H Indoline 3.67: 

 

To a solution of indoline 3.6 (37.9 mg, 0.060 mmol, 1.0 equiv) in DMSO (0.6 mL) is added 

IBX (168.0 mg, 0.6 mmol, 10 equiv), and the reaction mixture is stirred for 14 hours. The 

mixture is quenched with saturated aqueous Na2SO3 (5.0 mL) and EtOAc (5.0 mL), and 

the layers are separated. The aqueous layer is extracted with EtOAc (3 x 5.0 mL). The 

combined organic layer is washed with brine (10.0 mL), dried over anhydrous Na2SO4, 

filtered, and concentrated under reduced pressure. Purification by flash column 

chromatography on silica gel (4:1 hexanes/EtOAc) provided N-H indoline 3.67 (17.4 mg, 

46%) as colorless oil. 

1H NMR (500 MHz, CDCl3) (1.0:1.0 mixture of rotamers) δ 7.74 (d, J = 7.3 Hz, 2H), 7.56 

– 7.18 (m, 32H), 7.02 (dd, J = 18.8, 6.9 Hz, 4H), 5.44 (d, J = 32.5 Hz, 2H), 5.31 – 5.06 (m, 

8H), 4.03 (td, J = 13.8, 4.3 Hz, 2H), 3.73 (d, J = 10.7 Hz, 1H), 3.60 (d, J = 13.2 Hz, 2H), 

3.33 – 3.24 (m, 2H), 3.22 – 2.97 (m, 8H), 2.52 – 2.39 (m, 2H), 1.57 – 1.45 (m, 2H), 0.85 

(d, J = 8.5 Hz, 18H) ppm. 

13C NMR (126 MHz, CDCl3) (1.0:1.0 mixture of rotamers) δ 184.1, 155.8, 155.2, 145.6, 

142.8, 136.5, 135.4, 135.3, 132.7, 132.3, 129.5, 129.4, 128.6, 128.1, 128.0, 127.5, 125.5, 

125.4, 122.7, 122.6, 122.0, 115.4, 67.5, 66.4, 55.4, 55.2, 52.8, 52.7, 41.3, 40.3, 39.4, 39.3, 

38.8, 38.6, 29.7, 26.5, 18.9 ppm. 
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IR (thin film, cm-1) 3069, 2929, 2856, 1697, 1414, 1105, 736, 702. 

HRMS (+NSI) calculated for C40H43O3N2Si [M+H]+ 627.3038, found 627.3040. 

 

Indolenine 3.68: 

 

To a solution of indoline 3.67 (37.9 mg, 0.060 mmol, 1.0 equiv) in DMSO (0.6 mL) is 

added IBX (168.0 mg, 0.6 mmol, 10 equiv), and the reaction mixture is stirred for 14 hours. 

The mixture is quenched with saturated aqueous Na2SO3 (5.0 mL) and EtOAc (5.0 mL), 

and the layers are separated. The aqueous layer is extracted with EtOAc (3 x 5.0 mL). The 

combined organic layer is washed with brine (10.0 mL), dried over anhydrous Na2SO4, 

filtered, and concentrated under reduced pressure. Purification by flash column 

chromatography on silica gel (4:1 hexanes/EtOAc) provided indolenine 3.68 (17.4 mg, 

46%) as colorless oil. 

Structural assignment was confirmed by examination of COSY, HMQC, and HMBC 

spectra (vide infra). 

1H NMR (500 MHz, CDCl3) (1.0:1.0 mixture of rotamers) δ 7.74 (d, J = 7.3 Hz, 2H), 7.56 

– 7.18 (m, 32H), 7.02 (dd, J = 18.8, 6.9 Hz, 4H), 5.44 (d, J = 32.5 Hz, 2H), 5.31 – 5.06 (m, 

8H), 4.03 (td, J = 13.8, 4.3 Hz, 2H), 3.73 (d, J = 10.7 Hz, 1H), 3.60 (d, J = 13.2 Hz, 2H), 

3.33 – 3.24 (m, 2H), 3.22 – 2.97 (m, 8H), 2.52 – 2.39 (m, 2H), 1.57 – 1.45 (m, 2H), 0.85 

(d, J = 8.5 Hz, 18H) ppm. 
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13C NMR (126 MHz, CDCl3) (1.0:1.0 mixture of rotamers) δ 184.1, 155.8, 155.2, 145.6, 

142.8, 136.5, 135.4, 135.3, 132.7, 132.3, 129.5, 129.4, 128.6, 128.1, 128.0, 127.5, 125.5, 

125.4, 122.7, 122.6, 122.0, 115.4, 67.5, 66.4, 55.4, 55.2, 52.8, 52.7, 41.3, 40.3, 39.4, 39.3, 

38.8, 38.6, 29.7, 26.5, 18.9 ppm. 

IR (thin film, cm-1) 3069, 2929, 2856, 1697, 1414, 1105, 736, 702. 

HRMS (+NSI) calculated for C40H43O3N2Si [M+H]+ 627.3038, found 627.3040. 

 

Furoindoline 3.65: 

 

To a solution of indolenine 3.68 (5.1 mg, 0.008 mmol, 1.0 equiv) in THF (0.04 mL) was 

added TBAF solution (1.0 M in THF, 0.04 mL, 0.040 mmol, 5.0 equiv), and the mixture 

was stirred for 24 hours. The reaction was quenched with saturated aqueous NH4Cl (1.0 

mL) and EtOAc (1.0 mL), and the layers were separated. The aqueous phase was extracted 

with EtOAc (3 x 2.0 mL). The combined organic was washed with brine (5.0 mL), dried 

over Na2SO4, filtered, and concentrated under reduced pressure. Purification by preparatory 

thin layer chromatography on silica gel (4:1 hexanes/EtOAc) provided furoindoline 3.65 

(2.8 mg, 90%) as a sticky foam. 

Structural assignment was confirmed by examination of COSY, HMQC, and HMBC 

spectra (vide infra). 
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1H NMR (500 MHz, CDCl3) (1.0:1.0 mixture of rotamers) δ 7.44 – 7.30 (m, 10H), 7.18 – 

7.08 (m, 4H), 6.89 – 6.78 (m, 3H), 6.72 (d, J = 7.7 Hz, 1H), 5.27 (d, J = 12.3 Hz, 1H), 5.22 

– 5.07 (m, 3H), 4.98 (s, 2H), 4.93 (s, 2H), 4.79 (d, J = 6.0 Hz, 1H), 4.75 (bs, 1H), 4.66 (d, 

J = 6.0 Hz, 1H), 4.45 (bs, 1H), 3.73 (d, J = 15.1 Hz, 4H), 3.69 – 3.60 (m, 2H), 3.58 – 3.44 

(m, 2H), 3.34 (s, 2H), 3.04 – 2.86 (m, 2H), 2.56 – 2.44 (m, 2H), 2.24 – 2.13 (m, 2H), 1.64 

– 1.53 (m, 2H) ppm. 

13C NMR (126 MHz, CDCl3) (1.0:1.0 mixture of rotamers) δ 155.8, 155.5, 148.7, 148.4, 

147.5, 147.3, 136.8, 136.7, 134.6, 128.6, 128.4, 128.2, 128.1, 127.9, 127.7, 122.0 121.9, 

120.3, 120.2, 112.0, 111.9, 111.0, 110.9, 99.5, 99.3, 74.7, 67.2, 67.0, 56.0, 52.9, 52.8, 52.7, 

52.5, 52.3, 52.2, 37.4, 37.2, 35.5, 35.3, 32.0, 31.5, 29.7 ppm. 

IR (thin film, cm-1) 3311, 2927, 1693, 1246, 1099, 1016, 744. 

HRMS (+NSI) calculated for C24H25O3N2 [M+H]+ 389.1860, found 389.1859. 

 

Alkene 3.74: 

 

 A solution of vinylmagnesium bromide (1.0 M in THF, 17.3 mL, 17.3 mmol, 1.5 

equiv) was added to CuCl (1.71 g, 17.3 mmol, 1.5 equiv) at -78 °C, and the resultant slurry 

was stirred for one hour. A solution of unsaturated lactone 3.73 (1.13 g, 11.5 mmol, 1.0 

equiv) in THF (60.0 mL) was then added drop-wise over ten minutes, and the reaction 

mixture was then stirred at -78 °C for two hours. The reaction was quenched with 1:1 

saturated aqueous NH4OH/saturated aqueous NH4Cl (100.0 mL), and was warmed to room 

O

O
MgBr

CuCl, THF, -78 °C
O

O
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temperature. The layers were separated, and the aqueous phase was extracted with ether (3 

x 50.0 mL). The combined organic layer was washed with saturated aqueous NH4Cl (3 x 

50.0 mL) and brine (50.0 mL), dried over anhydrous MgSO4, filtered, and concentrated 

under reduced pressure. Purification by Kugelrohr distillation provided alkene 3.74 (473.3 

mg, 33%) as a colorless oil. Spectral data matched that previously reported.30 

1H NMR (500 MHz, CDCl3) δ 5.79 (ddd, J = 16.8, 10.8, 6.1 Hz, 1H), 5.17-4.98 (m, 2H), 

4.45 (dt, J = 11.3, 4.7 Hz, 1H), 4.31 (ddd, J = 11.3, 10.1, 3.9 Hz, 1H), 2.78-2.62 (m, 2H), 

2.49-2.27 (m, 1H), 2.08-1.95 (m, 1H), 1.76-1.67 (m, 1H) ppm.  

 

Allylsilane 3.75: 

 

 To a solution of of alkene 3.74 (357.7 mg, 2.84 mmol, 1.0 equiv) in CH2Cl2 (14.2 

mL) was added second generation Grubbs catalyst (120.6 mg, 0.142 mmol, 5 mol %) and 

allyltrimethylsilane (4.5 mL, 28.4 mmol, 10.0 equiv). The reaction mixture was heated to 

reflux for 18 hours. The reaction mixture was cooled to room temperature and then 

concentrated under reduced pressure. Purification by flash column chromatography on 

silica gel (95:5 pentane/Et2O) provided allylsilane 3.75 (237.5 mg, 39%) as a pale brown 

oil.  

1H NMR (400 MHz, CDCl3) δ 5.55-5.38 (m, 1H), 5.17 (dd, J = 15.2, 6.7 Hz, 1H), 4.40 (dt, 

J = 11.4, 4.7, 1H), 4.28 (dd, J = 10.0, 3.9 Hz, 1H), 2.72-2.50 (m, 2H), 2.38-2.21 (m, 1H), 

O

O
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TMS
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2.01-1.85 (m, 1H), 1.65 (ddt, J = 14.7, 9.8, 4.9 Hz, 1H), 1.42 (d, J = 9.0 Hz, 2H), -0.03 (s, 

9H) ppm. 

13C NMR (126 MHz, CDCl3) δ 170.4, 136.4, 123.3, 70.2, 44.6, 38.2, 31.2, 30.2, 1.7 ppm. 

HRMS (+NSI) calculated for C11H21O2Si [M+H]+ 213.1311, found 213.1312. 

 

Amide 3.76: 

 

 To a slurry of N-tosyltryptamine hydrochloride 3.72 (1.69 g, 4.83 mmol, 3.0 equiv) 

in THF was added trimethylaluminum solution (2.0 M in toluene, 2.50 mL, 4.83 mmol, 3.0 

equiv) at 0 °C, and the reaction mixture was stirred for one hour. A solution of allylsilane 

3.75 (342.4 mg, 1.61 mmol, 1.0 equiv) in THF (8.0 mL) was then added, and the reaction 

mixture was heated up to 50 °C for 16 hours. The reaction mixture was cooled to room 

temperature and quenched with saturated Rochelle’s salt solution (10.0 mL). The biphasic 

mixture was stirred until both layers were clear. The layers were separated, and the aqueous 

phase was extracted with EtOAc (3 x 10.0 mL). The combined organic layer was washed 

with brine, dried over anhydrous Na2SO4, filtered, and concentrated under reduced 

pressure. Purification by flash column chromatography on silica gel (EtOAc) provided 

amide 3.76 (543.6 mg, 64%) as a sticky foam. 

1H NMR (500 MHz, CDCl3) δ 7.99 (d, J = 8.4 Hz, 1H), 7.75 (d, J = 8.4 Hz, 2H), 7.51 (d, 

J = 7.8 Hz, 1H), 7.38 (s, 1H), 7.33 (t, J = 7.8 Hz, 1H), 7.25-7.20 (m, 3H), 5.61 (t, J = 5.5 

N
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Hz, 1H), 5.46 (dt, J = 16.2, 8.3 Hz, 1H), 5.05 (dd, J = 15.1, 8.7 Hz, 1H), 3.70-3.58 (m, 2H), 

3.54 (q, J = 6.5 Hz, 2H), 2.93-2.79 (m, 2H), 2.72-2.55 (m, 1H), 2.24-2.09 (m, 2H), 1.66-

1.48 (m, 2H), 1.36 (ddd, J = 7.8, 5.4, 1.2 Hz, 2H) ppm. 

13C NMR (126 MHz, CDCl3) δ 172.6, 139.4, 136.4, 134.8, 131.0, 130.0, 129.0, 128.2, 

124.9, 124.6, 123.3, 123.0, 119.8, 119.4, 113.7, 60.0, 45.0, 41.7, 37.5, 34.2, 31.2, 25.5, 

21.3, 1.7 ppm. 

HRMS (+NSI) calculated for C28H39O4N2SSi [M+H]+ 537.2400, found 537.2398. 

 

Hemiaminal 3.77: 

 

 DMSO (1.6 mL) and pyr·SO3 (297.7 mg, 1.87 mmol, 3.3 equiv) were combined in 

a round-bottom flask, and the resultant mixture was stirred for 30 minutes.  A solution of 

amide 3.76 (297.8 mg, 0.57 mmol, 1.0 equiv) in CH2Cl2 (2.9 mL) and triethylamine (1.33 

mL, 9.61 mmol, 17.0 equiv) was then added, and the reaction was stirred for three hours. 

The reaction was quenched with saturated NH4Cl (10.0 mL), and the layers were separated. 

The aqueous phase was extracted with CH2Cl2 (3 x 10.0 mL). The combined organic layer 

was washed with water (2 x 10.0 mL), dried over anhydrous Na2SO4, filtered, and 

concentrated under reduced pressure. Purification by flash column chromatography on 

silica gel (3:2 hexanes/EtOAc) provided hemiaminal 3.77 (160.5 g, 54%) as a sticky foam. 
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1H NMR (600 MHz, CDCl3) δ 7.98 (d, J = 8.3 Hz, 1H), 7.75 (d, J = 8.3 Hz, 2H), 7.38 (d, 

J = 5.8 Hz, 1H), 7.33-7.29 (m, 2H), 7.26-7.22 (m, 1H), 7.21 (d, J = 8.1 Hz, 2H), 5.56 – 

5.38 (m, 1H), 5.25 (dd, J = 15.4, 6.1 Hz, 1H), 4.65 (dt, J = 11.2, 5.4 Hz, 1H) 3.78-3.61 (m, 

2H), 3.49-3.40 (m, 2H), 3.10-2.99 (m, 1H), 2.99-2.86 (m, 1H), 2.49 (ddd, J = 16.7, 4.8, 1.8 

Hz, 1H), 2.15-2.03 (m, 2H), 1.44 (d, J = 8.0 Hz, 2H), -0.02 (s, 9H) ppm. 

13C NMR (126 MHz, CDCl3) δ 168.9, 139.4, 136.4, 134.8, 131.0, 130.0, 129.0, 128.2, 

124.9, 124.6, 123.3, 123.0, 119.8, 119.4, 113.7, 83.2, 45.5, 44.0, 42.1, 39.3, 31.2, 24.3, 

21.4, 1.6 ppm. 

HRMS (+NSI) calculated for C28H36O4N2NaSSi [M+Na]+ 547.2063, found 547.2059. 

 

Hemiaminal Ether 3.71: 

 

 To a solution of hemiaminal 3.77 (160.5 g, mmol, equiv) in CH2Cl2 (1.0 mL) was 

added trimethylsilylimidazole (0.23 mL, 1.53 mmol, 5.0 equiv), and the solution was 

stirred at room temperature for two hours. The reaction was quenched with saturated 

aqueous NH4Cl (2.0 mL), and the layers were separated. The aqueous phase was extracted 

with CH2Cl2 (3 x 2.0 mL). The combined organic layer was dried over anhydrous Na2SO4, 

filtered, and concentrated under reduced pressure. Purification by flash column 

chromatography on silica gel (9:1 hexanes/EtOAc) provided hemiaminal ether 3.71 (75.3 

mg, 47%) as a stick foam. 
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1H NMR (500 MHz, CDCl3) δ 7.97 (d, J = 8.1 Hz, 1H), 7.74 (d, J = 8.4 Hz, 2H), 7.34-7.27 

(m, 3H), 7.25-7.17 (m, 3H), 5.48-5.39 (m, 1H), 5.15 (dd, J = 15.2, 7.0 Hz, 1H), 4.82 (dd, J 

= 8.2, 5.7 Hz, 1H), 3.64 (ddd, J = 13.3, 9.9, 6.3 Hz, 2H), 3.58-3.49 (m, 2H), 3.08-2.96 (m, 

1H), 2.88 (dtd, 10.5, 9.9, 5.3, 1H), 2.47 (dd, J = 16.5, 4.1 Hz, 1H), 2.02 (dd, J = 16.1, 5.7 

Hz, 1H), 1.54-1.43 (m, 1H), 1.42 (d, J = 7.7 Hz, 2H), 0.07 (s, 9H), -0.01 (s, 9H) ppm. 

HRMS (+NSI) calculated for C31H45O4N2SSi2 [M+H]+ 597.2369, found 597.2364. 

 

Tetracycle 3.78: 

 

 To a solution of hemiaminal ether 3.71 (75.3 mg, 0.123 mmol, 1.0 equiv) in CH2Cl2 

(1.3 mL) at 0 °C was added BF3·OEt2 (0.05 mL, 0.370 mmol, 3.0 equiv). The resultant 

mixture was stirred for one hour and was then quenched with saturated aqueous NaHCO3 

(2.0 mL). The layers were separated, and the aqueous phase was extracted with CH2Cl2 (3 

x 2.0 mL). The combined organic layer was dried over anhydrous Na2SO4, filtered, and 

concentrated under reduced pressure. Purification by prepatory thin layer chromatography 

on silica gel (4:1 hexanes/EtOAc, rinsed with EtOAc) provided tetracycle 3.78 (13.3 mg, 

25%, 2.5:1 mixture of C16 epimers) as a colorless oil. 

1H NMR (600 MHz, CDCl3) (2.5:1.0 mixture of epimers) δ 7.67 (t, J = 8.0 Hz, 5H), 7.61 

(d, J = 8.1 Hz, 2H), 7.58 (d, J = 8.2 Hz, 2H), 7.34-7.27 (m, 6H), 7.22 (d, J = 8.2 Hz, 5H), 

7.17 (d, J = 8.1 Hz, 2H), 7.13 (t, J = 7.5 Hz, 1H), 7.05 (t, J = 7.5 Hz, 2.5H), 6.97 (t, J = 9.5 
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Hz, 2.5H), 6.12-6.00 (m, 1H), 5.37-5.25 (m, 2.5H), 5.22 (d, J = 10.3 Hz, 1H), 5.13 (d, J = 

13.9 Hz, 2.5H), 5.07 (d, J = 17.0 Hz, 1H), 4.93 (d, J = 10.1 Hz, 2.5H), 4.11-4.02 (m, 3.5H), 

3.78 (d, J = 7.5 Hz, 2.5H), 3.69 (d, J = 3.0 Hz, 1H), 3.63 (d, J = 10.1 Hz, 1H), 2.98 (t, J = 

8.9 Hz, 2.5H), 2.87 (qd, J = 11.0, 4.0 Hz, 3.5H), 2.75-2.69 (m, 3.5H), 2.67 (d, J = 18.4 Hz, 

2H), 2.57 (d, J = 17.8 Hz, 2.5H), 2.47 (dd, J = 17.7, 5.3 Hz, 1H), 2.42-2.30 (m, 12.5H), 

2.17-2.11 (m, 4.5H), 2.04-1.99 (m, 4.5H), 1.85 (dt, J = 12.8, 2.3 Hz, 1H), 1.25-1.17 (m, 

3.5H), 0.97-0.82 (m, 3.5H) ppm. 

HRMS (+NSI) calculated for C25H27O3N2S [M+H]+ 435.1737, found 435.1741. 

 

TBDPS Ether 3.85: 

 

 To a solution of amide 3.76 (543.6 mg, 1.01 mmol, 1.0 equiv) in CH2Cl2 (10.1 mL) 

was added imidazole (151.8 mg, 2.23 mmol, 2.2 equiv) and TBDPSCl (0.29 mL, 1.11 

mmol, 1.1 equiv). The reaction mixture was stirred for 6 hours and was then quenched with 

saturated aqueous NH4Cl (20.0 mL). The layers were separated, and the aqueous phase was 

extracted with CH2Cl2 (3 x 20.0 mL). The combined organic layer was dried over 

anhydrous Na2SO4, filtered, and concentrated under reduced pressure. Purification by 

column chromatography on silica gel (4:1 to 7:3 hexanes/EtOAc) provided TBDPS ether 

3.85 (632.7 mg, 82%) as a colorless oil. 
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1H NMR (500 MHz, CDCl3) δ 7.99 (d, J = 8.3 Hz, 1H), 7.74 (d, J = 8.4 Hz, 2H), 7.64 (d, 

J = 8.0 Hz, 4H), 7.48 (d, J = 7.1 Hz, 1H), 7.43-7.29 (m, 7H), 7.24-7.18 (m, 3H), 7.14 (s, 

1H), 5.57 (t, J = 5.1 Hz, 1H), 5.42-5.32 (m, 1H), 4.94 (dd, J = 15.2, 8.7 Hz, 1H), 3.72-3.61 

(m, 2H), 3.48 (q, J = 7.0 Hz, 2H), 2.87-2.75 (m, 2H), 2.67-2.55 (m, 1H), 2.20 (dd, J = 14.3, 

5.9 Hz, 1H), 2.04 (dd, J = 14.3, 8.6 Hz, 1H), 1.70-1.63 (m, 1H), 1.55-1.42 (m, 1H), 1.29 

(d, J = 4.7 Hz, 2H), 1.04 (s, 9H), -0.09 (s, 9H) ppm. 

HRMS (+NSI) calculated for C44H56O4N2NaSSi2 [M+Na]+ 787.3397, found 787.3393. 

 

Cbz Amide 3.86: 

 

 To a solution of TBDPS ether 3.85 (632.7 mg, 0.83 mmol, 1.0 equiv) in THF (4.1 

mL) at -78 °C was added a solution of LiHMDS (152.3 mg, 0.91 mmol, 1.1 equiv) in THF 

(4.1 mL). The reaction mixture was stirred at -78 °C for one hour, then CbzCl (0.16 mL, 

1.08 mmol, 1.3 equiv) was added. The resultant mixture was warmed to room temperature 

and stirred for one hour. The reaction mixture was quenched with saturated aqueous NH4Cl 

(10.0 mL). The layers were separated, and the aqueous layer was extracted with Et2O (3 x 

10.0 mL). The combined organic layer was washed with brine (20.0 mL), dried over 

anhydrous Na2SO4, filtered, and concentrated under reduced pressure. Purification by flash 

column chromatography on silica gel (9:1 hexanes/EtOAc) provided Cbz Amide 3.86 

(281.3 mg, 38%) as a colorless oil. 
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1H NMR (500 MHz, CDCl3) δ 7.96 (d, J = 8.3, 1H), 7.74 (d, J = 8.3 Hz, 2H), 7.67 (d, J = 

6.4 Hz, 4H), 7.43-7.26 (m, 14H), 7.20 (d, J = 8.0 Hz, 2H), 7.12 (t, J = 7.6 Hz, 1H), 5.38 

(dt, J = 15.6, 8.1 Hz, 1H), 5.07 (s, 2H), 5.00 (dd, J = 15.1, 8.7 Hz, 1H), 3.96-3.84 (m, 2H), 

3.70-3.61 (m, 2H), 3.05-2.90 (m, 2H), 2.90-2.69 (m, 3H), 2.62 (s, 3H), 1.75-1.66 (m, 1H), 

1.56-1.45 (m, 1H), 1.34 (d, J = 7.9 Hz, 2H), 1.05 (s, 9H), -0.08 (s, 9H) ppm.  

HRMS (+NSI) calculated for C52H62O6N2NaSSi2 [M+Na]+ 921.3765, found 921.3765. 
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3.9 Spectra Data for Key Intermediates 

Ketone 3.19: 1H NMR (500 MHz, CDCl3) 
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Ketone 3.19: 13C NMR (126 MHz, CDCl3) 
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Vinyl Triflate 3.48: 1H NMR (500 MHz, CDCl3) 
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Vinyl Triflate 3.48: 13C NMR (151 MHz, CDCl3) 
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Diene 3.51: 1H NMR (500 MHz, CDCl3) 
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Diene 3.51: 13C NMR (151 MHz, CDCl3) 
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Alcohol 3.58: 1H NMR (600 MHz, CD3OD) 
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Alcohol 3.58: 13C NMR (151 MHz, CD3OD) 
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Homoallylic Alcohol 3.59: 1H NMR (500 MHz, CDCl3) 
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Homoallylic Alcohol 3.59: 13C NMR (126 MHz, CDCl3) 
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Alcohol 3.60: 1H NMR (500 MHz, CDCl3) 
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Alcohol 3.60: 13C NMR (126 MHz, CDCl3) 
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Alcohol 3.60: COSY 
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Alcohol 3.60: NOESY 
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TBS Ether 3.61: 1H NMR (500 MHz, CDCl3) 
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TBS Ether 3.61: 13C NMR (126 MHz, CDCl3) 
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Alcohol 3.62: 1H NMR (500 MHz, CDCl3) 
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Alcohol 3.62: 13C NMR (126 MHz, CDCl3) 
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Carboxylic Acid 3.63: 1H NMR (500 MHz, CDCl3) 
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Carboxylic Acid 3.63: 13C NMR (151 MHz, CDCl3) 
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Pentacycle 3.64: 1H NMR (600 MHz, CDCl3) 
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Pentacycle 3.64: 13C NMR (151 MHz, CDCl3) 
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Pentacycle 3.64: COSY 
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Pentacycle 3.64: HMQC 
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Pentacycle 3.64: HMBC 
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Indoline 3.67: 1H NMR (500 MHz, CDCl3) 
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Indoline 3.67: 13C NMR (126 Mhz, CDCl3) 
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Indolenine 3.68: 1H NMR (500 MHz, CDCl3) 
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Indolenine 3.68: 1H NMR (126 MHz, CDCl3) 
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Indolenine 3.68: COSY 
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Indolenine 3.68: HMQC 
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Indolenine 3.68: HMBC 
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Furoindoline 3.65: 1H NMR (500 MHz, CDCl3) 
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Furoindoline 3.65: 13C NMR (126 MHz, CDCl3)  
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Furoindoline 3.65: COSY 
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Furoindoline 3.65: HMQC 
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Furoindoline 3.65: HMBC 
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