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Abstract

Within-host RNA virus evolution in the context of
cellular coinfection and genetic linkage

By Brent Elliott Allman

RNA viruses pose one of the greatest threats to public health, in part due to their
rapid evolutionary patterns. As viruses infect individuals in a population they accrue
mutations, some of which confer phenotypes that increase the virulence or transmis-
sibility of the virus. While these phenotypes can have population-level consequences,
the evolutionary forces that allow adaptive mutations to reach high frequency largely
occur at the level of individual hosts. Further, the dynamics that ensue at the host-
level are consequences of processes at the intra- and inter-cellular levels. I explore how
the diversity of within-host viral populations is shaped, with particular considerations
for cellular coinfection and genetic linkage. When viruses coinfect host cells, different
parental genotypes produce protein products by hijacking host cell machinery and
these proteins help to produce progeny virions. We ask what happens when proteins
with differential fitness effects are treated as public goods. A key assumption of our
models is that when coinfection occurs, the fitness of the viral progeny is a result
of incomplete dominance from the parental genotypes. This results in fitness that is
in between the most- and least-fit parents. We develop models and apply them to
data to investigate the evolutionary phenomena that result from these within-host
scenarios. Using simulations, we show that coinfection weakens the efficacy of selec-
tion, approaching the neutral selection limit. So as rates of coinfection increase, so do
rates of deleterious mutation accumulation. We also develop deterministic models of
wild-type and mutant virus evolution within-host. We show that a beneficial mutant
is fixed less readily when we increase rates of coinfection. We then use Markov chain
Monte Carlo to infer the relative fitness of a viral mutation that occurred in an ani-
mal model of influenza infection. These contributions are significant because we know
that coinfection occurs within-host, and our work shows that models that infer fitness
without considering coinfection are likely underestimating the magnitude of fitness
coefficients. Our results may help to explain slower fixation of adaptive variants at the
epidemiological level. Next, we identify intra-host single nucleotide variants (iSNVs)
in immunocompromised patients with chronic SARS-CoV-2 infections. Experimen-
tal collaborators show that some of these iSNVs confer immune escape induced by
monoclonal antibody treatment. Finally, we investigate interpretations of within-host
evolution with data from a focal patient. We show that iSNV data alone can lead to
incomplete evolutionary narratives, but additional resolution can be obtained when
genetic linkage through haplotype analysis is brought to the fore.
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Foreword

A vignette of identity-informed science
By Brent Elliott Allman

Science should be conducted without regard to identity or personal politics, some
might say. The ideal scientific inquiry is unbiased and is independent from the re-
searcher, some might say. Before I began graduate school, I may have agreed with
these sentiments. However, after reflecting on my body of work from graduate school,
I see how parts of my identity were unconsciously woven into the questions I addressed
and the topics I took interest in. Particularly, the majority of my time during the
PhD was spent thinking about the unique phenotypes that emerge when different
genotypes produce progeny in concert with one another. (Later this is referred to as
phenotypic hiding.) These unique phenotypes often do not match the genetic material
that they house. I see parallels of my identity in this theme. Being born from parents
of different races, I have both a phenotype and genotype that is unique from each
of my parents − not squarely black or white. Like my assumptions around progeny
that are produced by phenotypic hiding, my the internal locus of my identity isn’t
necessarily consistent with my (perceived) phenotype.

Whats more, I don’t see this realization as a failure to be unbiased, or a failure to
remove the personal from the professional. Instead, I see my work as a unique success
that was colored by my experiences before and during graduate school. My affinity
for the themes of my dissertation may have come from a desire to better understand
these experiences and understand my self.
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Chapter 1

Introduction

While RNA viruses are among the smallest biological units, they can have disastrous

consequences on individuals, populations, and societies. As agents of infectious dis-

eases, RNA viruses can impair or kill their hosts on large scales during pandemics

both historically and presently. The 1918 influenza pandemic likely had its origins in

avian and swine host populations, and a decade after the pandemic ended, phyloge-

netic evidence that the ancestor to the pandemic strain was found to be circulating

in avian populations (Reid et al., 2004). Low estimates indicate the pandemic killed

approximately 50 million people (Frost, 1920, Johnson and Mueller, 2002). Influenza

had its most recent pandemic in 2009, when a virus circulating in birds infected

commercial swine and created a genetically distinct reassortant virus that had huge

adaptive potential in human hosts (Team, 2009). Most recently, severe acute respira-

tory syndrome coronavirus-2 (SARS-CoV-2), the virus responsible for COVID-19, has

caused the modern ongoing pandemic and has killed over 6.2 million people estimated

by the World Health Organization as of June 1, 2022 (World Health Organization,

accessed 2022-06-02). The virus has also been shown to circulate in other mammalian

hosts (Damas et al., 2020, Wu et al., 2020, Hossain et al., 2021). In order to maintain

transmission chains and spread through their host populations, RNA viruses must
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evolve to be transmissible among these host populations. In the absence of hosts,

viruses cannot evolve, so any adaptation with population-level consequences must

first evolve within individual hosts.

RNA viruses have a remarkable capacity to evolve within their hosts through

several life-history features. Their high mutation rates on the order of 10−6 to 10−4

substitutions per nucleotide per replication cycle quickly generate massive amounts

of diversity on which the force of natural selection can act (Sanjuán et al., 2010). The

vast majority of mutations that are introduced into viral genomes will have deleterious

fitness effects (Sanjuán et al., 2004), and negative selection will work to purge these

from populations. Rare beneficial mutations will also be introduced into populations,

and these will be positively selected for over viral generations.

While positive and negative selection act to shape the diversity of intrahost pop-

ulations, this diversity is what is transmitted to secondary infections. Although the

diversity within a single host may be vast, what becomes transmitted to the next

host may not be a representative sample of this variation because of transmission

bottlenecks. In the cases of respiratory viruses like IAV and SARS-CoV-2, narrow

bottlenecks limit the scope of variation transmitted between hosts, which decreases

the efficacy of selection at the between-host level via genetic drift (Ghafari et al.,

2020, Popa et al., 2020, Martin and Koelle, 2021). But large changes to individual

viral genomes can arise outside the scope of mutation to create the opportunity for

adaptation.

In some viruses, recombination during replication allows for the exchange of long

segments of genetic code within genomic segments. HIV, norovirus, and SARS-CoV-2

are examples of viruses that undergo this form of exchange. This can produce novel

viral strains by introducing many mutations simultaneously onto a genetic backbone.

RNA viruses also have genomic diversity, such that some virus genomes are organized

in multiple discrete segments of RNA that encode one or more genes. Influenza is one
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such virus, and reassortment between distinct lineages of IAV are what produced the

pandemic H1N1 strain in 2009 (Smith et al., 2009). Other viruses such as multipartite

viruses fail to package all of their gene segments into single viral particles. In order

for these viruses to successfully progenerate, the full complement of gene segments

must be delivered to their host’s site of replication. This may seem disadvantageous,

but it also allows for more flexible dosing of individual genes to host cells (Michalakis

and Blanc, 2020), creating and additional layer of genetic diversity. To have evolu-

tionary consequences, recombination, reassortment, and complementation all rely on

genetically or genomically distinct viral particles coinfecting the same host cell.

To a first approximation, cellular coinfection events may seem rare because the

entire host cell population far outnumbers an in vivo viral population. However, not

all of these cells are available for the virus to infect. Once the first virions successfully

infect a host cell, the number of cells that can be infected is limited because the viruses

emerging from that host cell are locally dispersed. Spatial structure effectively reduces

the host cell population size, driving up viral density and the probability of coinfection

events (Gallagher et al., 2018).

As discussed above, the coinfection of genetically distinct viruses can have evo-

lutionary consequences; among these, phenotypic hiding. When viruses infect a cell,

they hijack the host cell machinery to produce viral proteins that facilitate the produc-

tion of new viral genomes and viral particles. What happens when viruses contribute

genetic material that encodes proteins with differential fitness? If these proteins are

used together, the phenotypes of viral progeny represent contributions from more

than one viral parent. These phenotypes may be entirely unique, and the genomes of

the viral progeny emerging won’t encode the information to reproduce these pheno-

types if they were to go on to singly infect host cells. This phenomenon of novel viral

phenotypes among discordant viral genotypes is called phenotypic hiding. In two of

the following chapters, we explore the evolutionary significance of phenotypic hiding.
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In particular, we first use an agent-based model to show that deleterious muta-

tions accumulate more readily when phenotypic hiding is in effect. While this result

is not particularly surprising given previous literature showing that natural selection

is weakened by phenotypic hiding, we extend these results by incorporating cellular

heterogeneity into the model. We do this first by stochastically modifying the contri-

bution that fitness has on a cell’s output of virus, and then by modifying the output

of a cell in a multiplicity of infection-dependent manner. Each of these forms of

stochasticity increase deleterious mutation accumulation. We show that these results

are generalizable across fitness functions.

Next, we further model phenotypic hiding by considering the evolution of a single

viral variant within a host. We fit our model to empirical data to show that estimates

of variant fitness that consider coinfection differ in magnitude from estimates that

assume variant fitness is independent of cellular coinfection.

We next move to a more applied setting where we consider the evolution of

SARS-CoV-2 within immunocompromised patients. Using samples taken longitu-

dinally from three chronically infected patients, we call intra-host single nucleotide

variants (iSNVs). Experiments performed by collaborators show that some of the

iSNVs that evolved over the course of the infections conferred immune escape. We

further examine the data by determining genetically linked iSNVs, haplotypes, and

describing how these data can be more informative than iSNV data alone.

Taken together, the work presented here reiterates the importance of understand-

ing the evolutionary dynamics of viruses within their hosts because the diversity

produced and maintained at this level is what gets transmitted to secondary hosts,

and begets subsequent epidemics and pandemics.
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2.1 Abstract

RNA viruses have high mutation rates, with the majority of mutations being deleteri-

ous. We examine patterns of deleterious mutation accumulation over multiple rounds

of viral replication, with a focus on how cellular coinfection and heterogeneity in viral

output affect these patterns. Specifically, using agent-based intercellular simulations

we find, in agreement with previous studies, that coinfection of cells by viruses re-

laxes the strength of purifying selection, and thereby increases the rate of deleterious

mutation accumulation. We further find that cellular heterogeneity in viral output

exacerbates the rate of deleterious mutation accumulation, regardless of whether this

heterogeneity in viral output is stochastic or is due to variation in cellular multiplicity

of infection. These results highlight the need to consider the unique life histories of

viruses and their population structure to better understand observed patterns of viral

evolution.

2.2 Introduction

RNA viruses have high mutation rates and undergo frequent population bottlenecks,

making them particularly prone to the accumulation of deleterious mutations. As

such, these populations can experience deleterious mutation loads, which is the bur-

den on fitness that recurrent and persistent mutations have on populations (Crow,

1958, Agrawal and Whitlock, 2012). Indeed, the accumulation of deleterious muta-

tions in viruses has been repeatedly demonstrated using experimental evolution. In

particular, experiments have demonstrated that serial population bottlenecks impact

rates of deleterious mutation accumulation in viral populations (Chao, 1990, Clarke

et al., 1993, Escarmı́s et al., 1996, Elena et al., 1998, Poon and Chao, 2004, Garćıa-

Arriaza et al., 2005). Drugs that exploit this accumulation by increasing already high

mutation rates can drive viral populations extinct (Anderson et al., 2004, Pauly and
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Lauring, 2015, Bank et al., 2016). Experimental studies have also shown that cellular

coinfection affects the rate of deleterious mutation accumulation in viral populations

(Wilke and Novella, 2003a, Novella et al., 2004). In particular, cellular coinfection

leads to slower purging of deleterious mutations because selection is relaxed: when

multiple viral genomes are present in a cell, they all share their protein products

(Zavada, 1976, Froissart et al., 2004). With multiple copies of the same gene that

have differential fitness, phenotypes and genotypes of the offspring will not neces-

sarily be matched. Cellular coinfection therefore allows for “phenotypic hiding” of

deleterious mutations (Wilke and Novella, 2003a, Novella et al., 2004).

Several processes reduce the accumulation of deleterious mutations in RNA viruses.

One such mechanism is through the evolution of higher fidelity polymerase proteins,

thus reducing deleterious mutation rates (Pfeiffer and Kirkegaard, 2003, Coffey et al.,

2011, Cheung et al., 2014). Recombination (and its segmented analogue, reassort-

ment) also reduces the rate of deleterious mutation accumulation through the gener-

ation of high fitness viral genotypes via viral sex. By limiting cellular multiplicity of

infection (MOI), superinfection exclusion (Turner et al., 1999, Schaller et al., 2007,

Folimonova, 2012) also reduces the opportunity for phenotypic hiding. However, su-

perinfection exclusion also limits the opportunity for viral sex to occur, and thus its

net effect on the rate of deleterious mutation accumulation is unknown.

The effect of cellular MOI on the rate of deleterious mutation accumulation is

particularly interesting to consider given its uniqueness to viral populations and that

cellular coinfection is, in effect, a double-edged sword: providing an opportunity

to purge deleterious mutations via viral sex, while relaxing selection on deleterious

mutations by increasing the extent of phenotypic hiding. However, when phenotypic

hiding dominates, the benefits of coinfection are greatly reduced for viruses that

cannot recombine or reassort. Here, we develop a model to examine the effects of

cellular coinfection on deleterious mutation accumulation in viral populations in the
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context of these opposing effects. We first show that the simplest version of the model

recapitulates previous findings in the literature (Wilke and Novella, 2003a, Novella

et al., 2004) that indicate cellular coinfection, in the absence of genetic exchange,

increases the accumulation of deleterious mutations. We then extend this model to

include cellular heterogeneity in viral output, based on experimental findings that

demonstrate extreme cellular heterogeneity in response to viral infection (Russell

et al., 2018, Martin et al., 2020). We find that heterogeneity, whether due to variation

in cellular MOI or intrinsic cellular variation, increases the rate of deleterious mutation

accumulation. Our findings highlight how viral life history characteristics can impact

deleterious mutation accumulation.

2.3 Model

2.3.1 Base model

We use a generalized Wright-Fisher model of the viral population (Fig. 2.1), with V

virions infecting a host cell population of size C. Both V and C remain constant

over time, yielding a constant average MOI of V/C. Each virion has g genes in its

genome. These genes are distributed across y freely reassorting gene segments, with

no recombination within segments. Deleterious mutations occur at a rate of U/g per

gene per generation, such that the overall deleterious mutation rate occurs at a rate

of U per genome per generation. In simulations of this model, we use y ∈ {1, 2, 4, 8}

to capture a range of reassortment potentials, with y = 8 reflective of influenza A

virus genomes. For simplicity, we use g = 8 in all simulations so that genes can be

evenly distributed across the considered numbers of segments. Within each gene, we

adopt an infinite sites assumption. Thus each genome can be characterized simply

by how many deleterious mutations it carries at each of its g genes.

At the beginning of each generation, the V virions are randomly assigned to the
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Figure 2.1: Schematic of the base model with a viral genome depicted over a single gener-
ation. Each generation consists of a series of steps A-D. (A) V virions infect C cells. Here,
two virions infect the shown cell. The viral genomes each have g = 8 genes distributed
across y = 4 gene segments. Each gene is labeled 1-8. (B) Within each cell, the fitnesses
of individual gene copies are calculated using equation (2.1). These ωi,j values are used to
calculate the group fitness for each gene. (C) Cellular fitnesses are then calculated using
equation (2.3). (D) V viral progeny are formed by selecting parental cells according to
their cellular fitnesses, and then selecting gene segments at random from within the cell.
Deleterious mutations (lightning bolts) are introduced during the formation of these viral
progeny. Steps A-D are repeated for t generations.

C cells, resulting in a Poisson distribution of virions across cells. Once inside the

cells, the numbers of mutations on each gene determine the aggregate fitness of the

viral population within each cell. This aggregate fitness, which we call “cellular

fitness,” determines the relative contribution of each cell’s virus population to the

next generation of virions. To calculate cellular fitness, we first calculate the fitness

of each gene that was delivered to a cell:

ωi,j = (1− s)ni,j (2.1)

where s is the constant fitness cost of a deleterious mutation and ni,j is the number

of deleterious mutations on gene i delivered by virion j. For each gene i, we calculate
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the mean fitness of the gene in a cell as

ωi =
1

m

m∑

j=1

ωi,j (2.2)

where m is the multiplicity of infection of the host cell. Finally, we calculate the

expected cellular fitness, Wc, as:

Wc =

g∏

i

ωi (2.3)

Equations 1 − 3 make three key assumptions: (1) each mutation within a gene con-

tributes multiplicatively to the fitness of that gene (Eqn. 2.1); (2) each copy of a

gene i contributes equally to ωi via incomplete dominance (Eqn. 2.2); and (3) each

gene segment is essential and equally important in its contribution to cellular fitness

(Eqn. 2.3). We make these assumptions based on the idea that when multiple virions

of differing genotypes infect a cell, the produced viral proteins are treated as common

goods used in the generation of progeny virions.

At the end of each generation, we draw the V progeny virions for the next genera-

tion from across the set of infected cells. Each progeny virion is drawn independently,

with the probability that the virion comes from cell c proportional to Wc. Given that

the virion comes from cell c, each of its y gene segments is drawn randomly from

the parental virions that infected the cell. As such, a high fitness gene segment is as

likely to be drawn from a cell as a low fitness gene segment, reflecting our assumption

that cellular fitness depends on the aggregate of shared viral proteins that have been

produced in a cell. Once all parental gene segments have been chosen, the mutations

are added as described above. We repeat this full process for t discrete generations.
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2.3.2 Heterogeneous cellular output stemming from differ-

ences in cellular characteristics

Viral output from cells can be affected by host cell characteristics such as size, cell

type, and cell cycle stage (Brooke et al., 2013, Schulte and Andino, 2014, Heldt

et al., 2015, Golumbeanu et al., 2018, Leviyang and Griva, 2018, Russell et al., 2018,

Xin et al., 2018, Phipps et al., 2020, Sun et al., 2020). To consider the effect of

heterogeneity in virus output on deleterious mutation accumulation, we extend our

base model described above by adapting an approach used by Lloyd-Smith et al.

(2005) to describe population-level viral transmission heterogeneity (superspreading

dynamics). Specifically, we introduce cellular heterogeneity by making a distinction

between the cellular output W ′
c and the cellular fitness Wc. We make this distinction

because the amount of virus produced by a cell is no longer solely determined by

the cellular fitness, but now also depends on stochastic factors. For each cell c, the

cellular fitness Wc is still determined by the genes of the infecting viruses according

to Eqn. 2.3 as above. But in the next generation, the probability that a viral progeny

is drawn from c is no longer proportional to Wc, and is instead proportional to W ′
c,

a gamma-distributed random variable with mean Wc and shape parameter k, i.e.,

probability density function:

p (W ′
c = ω|Wc) =

1

Γ(k)

(
k

Wc

)k

ωk−1e−kω/Wc . (2.4)

The parameter k controls the extent of cellular heterogeneity. As k → ∞, hetero-

geneity driven by host cell characteristics becomes minimal and the probability that

a progeny virion derives from cell c converges to its cellular fitness, W ′
c → Wc. In

contrast, as k → 0, the probability that a viral progeny derived from cell c becomes

increasingly dependent on host cell characteristics and relatively less dependent on

the fitness of viral genes delivered to a cell.
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2.3.3 Heterogeneity in cellular output stemming from differ-

ences in cellular multiplicity of infection

Virus output from cells can also be affected by cellular multiplicity of infection, with

higher cellular MOI having the potential to increase viral yield (Phipps et al., 2020,

Martin et al., 2020). To consider the effect that this source of cellular heterogeneity in

virus output may have on deleterious mutation accumulation, we extended the base

model to allow cellular multiplicity of infection to impact cellular output. Specifically,

we let cellular output of a cell with multiplicity of infection mc be given by a linear

relationship between cellular input and cellular fitness, W ′
c = mcWc. While numerous

other functional forms are possible, this is the simplest one that allows us to assess

the qualitative effect of input-dependence on deleterious mutation accumulation.

2.3.4 Alternative fitness functions

To test the robustness of our results, we also consider alternative models for how

cellular fitness depends on the genetic composition of the infecting virions. Above,

we assume that the realized fitness of gene segment i is the arithmetic average of the

fitnesses of the individual gene segments i = 1, ...,m. Here, we can instead consider

the possibility that the fitness of gene segments depends on the fitness of the most

or least fit infecting gene segment. That is, when calculating the fitness of a gene

i, we take either ωi = max{ωi,1, . . . , ωi,m} or ωi = min{ωi,1, . . . , ωi,m} where m is

the multiplicity of infection of the host cell. These are two limiting models for the

“dominance” of viral mutations; together with the original fitness function, they span

most of the biologically plausible parameter range. We proceed to calculate Wc as

in Eqn. 2.3. We estimate the affects of these fitness functions under both the base

model structure and with stochastic heterogeneity (Eqn. 2.4).
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2.4 Results

In our results, we focus on presenting the mean number of deleterious mutations

accumulated in a viral population by generation t. Unless otherwise specified, data

shown are from the final generation of the simulated infection, t = 20 or t = 150.

With a viral generation being approximately 5 hours long for viruses such as influenza

(Baccam et al., 2006), this corresponds to approximately 4 days post-infection and

31 days post-infection, respectively. In addition to t = 20 and t = 150 conveniently

approximating the number of generations over acute and more chronic infections, we

choose these two endpoints due to substantial changes in rates of deleterious mutation

accumulation over time. Roughly, t = 20 is the time to approach mutation-selection

balance for many of our simulations, so changes in the number of accumulated mu-

tations at this time reflect shifts in the mutation-selection balance distribution. At

the later time t = 150, we can distinguish between populations with a slow-acting

Muller’s ratchet versus ones with a fast-acting Muller’s ratchet.

2.4.1 Phenotypic hiding relaxes selection

We first show that our base model reproduces key findings on deleterious mutation

accumulation from previous work using similar cellular coinfection modeling frame-

works, in addition to classical population genetics. That is, we establish that the

sizes of the virus and host cell populations influence the rate of genetic drift and the

extent of phenotypic hiding in the context of cellular coinfection.

For simplicity, we begin by considering an unsegmented genome (y = 1), so there

is no reassortment. One key finding from the field of population genetics is that

reducing population size increases the rate of deleterious mutation accumulation due

to an increased rate of genetic drift, particularly in asexual populations (Fisher, 1930,

Wright, 1931, Kimura et al., 1963, Lynch et al., 1995). This effect has mostly been
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studied under purely individual-level selection. This is a good approximation of our

system at low MOI, where most infected cells are infected by only a single virion.

Indeed simulations of our model reproduce this effect of population size at low MOI

(Fig. 2.2A).

Figure 2.2: Simulated patterns of deleterious mutation accumulation without cellular
heterogeneity. (A)-(C) Mean number of accumulated mutations at t = 20 genera-
tions. Each data point shown is the average across 20 replicate simulations with error
bars showing the standard error, except for the three largest population sizes in sub-
plot (C), which have only a single replicate shown due to computational limitations. Red
dashed lines show the theoretical expectation of mutation accumulation at selective neu-
trality (Ut). Blue dotted lines show the expectation of mutation accumulation for an in-
finite viral population size at its mutation-selection balance (U/s). Parameter values are
V = 1000, C = 1000, U = 1, s = 0.2, g = 8, y = 1 unless otherwise indicated. (A) MOI
(= V /C) is kept constant at 0.1, such that cell population sizes scale linearly with viral
population sizes. Higher viral population sizes have lower rates of deleterious mutation
accumulation. Large viral populations reach their deterministic mutation-selection balance
and have lower rates of deleterious mutation accumulation thereafter. (B) The virus pop-
ulation size is kept constant at V = 1000 and cell population size C is modified to change
MOI. Here, increasing MOI increases phenotypic hiding and therefore deleterious mutation
accumulation. (C) . The cell population size is kept constant at C = 1000 and the virus
population size V is modified to change MOI. At low MOI, genetic drift, whose sole effects
are shown in (A), dominates and mutation accumulation rates are high because of small
viral population sizes. At high MOI, phenotypic hiding, whose effects are shown in (B),
dominates and mutation accumulation rates are high because of high levels of cellular coin-
fection.

Previous work has shown that cellular coinfection and the sharing of viral pro-

teins relaxes the strength of selection on individual virions, and thus allows delete-

rious mutations to accumulate at a faster rate in viral populations than otherwise
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expected (Wilke and Novella, 2003a, Froissart et al., 2004, Novella et al., 2004). Our

model recapitulates this “phenotypic hiding” in simulations where the viral popula-

tion size is kept constant and the number of cells is modified to change the overall MOI

(Fig. 2.2B). The monotonic increase in the number of accumulated deleterious muta-

tions in the population in conjunction with increases in MOI is directly attributable

to relaxed selection.

In Figure 2.2A, we found that increases in the viral population size (while main-

taining a constant MOI) can slow mutation accumulation by decreasing the rate of

genetic drift and slowing deleterious mutation accumulation. In Figure 2.2B, how-

ever, we found that increases in MOI (while maintaining a constant viral population

size) can accelerate mutation accumulation by increasing the extent of phenotypic

hiding. Thus, increases in viral population size that are not matched by increases

in the size of the cell population could yield a non-monotonic relationship between

viral population size and the rate of deleterious mutation accumulation. Figure 2.2C

shows the results of this tension between the effects of genetic drift and phenotypic

hiding. At low MOI (≪ 1), coinfection is rare, and the primary effect of a larger

viral population size across simulations is a reduction in the strength of genetic drift,

thus decreasing mutation accumulation. As MOI approaches 1, however, phenotypic

hiding starts to play a more pronounced role and mutation accumulation increases.

At very high MOI (≫ 1) phenotypic hiding is essentially complete and deleterious

mutations accumulate at the neutral rate U .

Despite having constant sized populations in our simulations, the uniqueness of

viral systems occupying high mutation rates with high mutational effects makes ana-

lytical inference a challenge. After calculating predictions of mutation accumulation

from Gordo and Charlesworth (2000) (their equations 3a and 3b), we get a poor match

compared to our simulations (Supplementary Figure A.1). Indeed, their predictions

at very small populations exceed the neutral limit of accumulation (data not shown).
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We attribute this to our simulations being in a parameter regime that is not often

considered when modeling Muller’s ratchet, where high mutation rates are constantly

introducing large-effect mutations into small populations. Gordo and Charlesworth

(2000) models Muller’s ratchet where V e−U/s >> 1, and we only approach this regime

at large V where phenotypic hiding is more strong than the benefits of large popula-

tion sizes.

The rate of deleterious mutation accumulation should decrease in segmented viral

genomes because reassortment can re-create high fitness genotypes that have been lost

to drift by combining segments that have a small number of deleterious mutations,

halting Muller’s ratchet (Fisher, 1930, Wright, 1931, Kimura et al., 1963, Muller, 1964,

Haigh, 1978, Chao, 1990, Chao et al., 1997). We confirm that this occurs in our base

model when we consider the viral genome of g = 8 genes divided across y = 1, 2, 4, 8

gene segments (Fig. 2.3). Because reassortment does not affect the approach to

mutation-selection balance, it has little effect at early times (e.g., t = 20). But at

later times it results in a slower ‘clicking’ of the ratchet (Fig. 2.3A), and more highly

segmented genomes, which allow more reassortment, have lower levels of accumulated

deleterious mutations than genomes that have fewer gene segments. Reassortment has

the largest effect on mutation accumulation at intermediate viral population sizes that

are large enough to effectively select against individual mutations but small enough to

be vulnerable to Muller’s ratchet, 1/s < V < eU/s/s (Lynch et al., 1995, Barton and

Otto, 2005). At larger viral population sizes, the ratchet clicks very slowly even in

non-reassorting viruses, and therefore reassortment provides little benefit (Fig. 2.3B,

right side) (Muller, 1964).

The higher MOI is, the more opportunities viruses have to reassort. Even when

cellular coinfection and therefore reassortment is rare (MOI < 1), it can substantially

slow Muller’s ratchet (Fig. 2.3A, and middle of panel B), consistent with findings

from the population genetic literature (Bell, 1988, Charlesworth et al., 1993, Cohen
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Figure 2.3: Genome segmentation slows the accumulation of deleterious mutations. In (A)–
(D), the per genome mutation rate is U = 1 and the fitness cost of mutations is s = 0.2.
Each data point is the average across 20 replicate simulations with error bars showing
the standard error. Red dashed lines in (C) and (D) show the theoretical expectation of
mutation accumulation at selective neutrality (Ut). Blue dashed lines in (B)–(D) show the
expectation of mutation accumulation for an infinite viral population size at its mutation-
selection balance (U/s). (A) Average number of deleterious mutations accumulated over
time at a viral population size V = 1000 and a cell population size of C = 10000 for varying
numbers of segments. (B)–(D) show the average number of deleterious mutations harbored
by a viral population at generation t = 150 under different parameters. (B) Reassortment
slows mutation accumulation in small populations subject to Muller’s ratchet. MOI (=
V /C) is kept constant at 0.1 by scaling linearly the cell population size C proportionally
with the viral population size V . (C)–(D)Mutation accumulation is slowest at intermediate
MOI ≈ 0.3 (dashed green vertical line), balancing the effects of reassortment and phenotypic
hiding. In (C), MOI is varied by changing C, while in (D) it is varied by changing V . At
high MOI ≫ 1, phenotypic hiding is nearly complete and mutations accumulate at close to
the neutral rate.

et al., 2006). But higher reassortment rates are more effective at slowing the ratchet.

In Figure 2.3C, we keep the viral population size (i.e., drift) the same as we test

different sized cell populations to modulate MOI. As coinfection events become more
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common at moderate MOI, segmented genomes accumulate fewer deleterious muta-

tions than their unsegmented counterparts. However, segmented genomes are still

vulnerable to the impacts of phenotypic hiding. When cellular coinfection is frequent

(MOI > 1) and phenotypic hiding causes selection to be ineffective against single

mutations, mutations accumulate nearly neutrally and reassortment provides little

benefit (Fig. 2.2C and D, right sides). Hence, coinfection is a double-edged sword

in populations with segmented genomes because sex and phenotypic hiding change

the effective magnitude of selection in opposing directions. The opposing effects cre-

ate an optimum MOI somewhat less than 1, at which reassortment is frequent but

phenotypic hiding only mildly reduces the effectiveness of selection.

2.4.2 Stochastic heterogeneity increases deleterious mutation

accumulation

As described in the Model section above, we consider the effect of heterogeneity

driven by host cell characteristic by integrating individual cell heterogeneity with

virus-driven differences in cellular fitness using draws from a gamma distribution,

parameterized with dispersion parameter k. As expected, simulations with k ≳ 1

behave like the ones described above that do not incorporate stochastic heterogeneity

(Fig. 2.4). However, for k ≪ 1, more deleterious mutations accumulate under all

simulated conditions (Fig. 2.4A and Supplementary Figure A.2). This is because

the increased stochasticity reduces the efficacy of purifying selection. This has little

effect under very high mean MOI ≫ 1, because phenotypic hiding already weakens

selection such that mutations accumulate at nearly the neutral rate, but it can greatly

increase mutation accumulation at lower MOI where selection would otherwise be

strong enough to halt mutation accumulation.
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Figure 2.4: Stochastic heterogeneity increases deleterious mutation accumulation. All
panels show mean number of deleterious mutations after t = 20 generations of within-host
infection. Stochastic heterogeneity is parametrized by k, with k ≪ 1 corresponding to
strong heterogeneity and k = ∞ corresponding to the base model without heterogeneity.
(A) Stochastic heterogeneity has the largest effect at low MOI. At high MOI, phenotypic
hiding makes selection ineffective even in the absence of heterogeneity. (B) Same sim-
ulated data as (A), but shown as a function of the predicted effective viral population
size Ve = V/(1 + 1/k). The collapse of the different curves on the left side of the plot
shows that Ve accurately captures the effect of heterogeneity on mutation accumulation in
the regime where stochasticity is strong − small populations. In both panels, each data
point shown is the average of 20 replicate simulations with error bars showing the stan-
dard error (with the exception of the three largest population sizes in which show only a
single simulation). Red dashed lines show the theoretical expected mutation accumulation
at selective neutrality (Ut). Blue dashed lines show the average number of mutations for
an infinite viral population size at its mutation-selection balance (U/s). Parameters are
C = 1000, U = 1, s = 0.2, y = 1.

Calculations of viral effective population size show that the impacts of

stochastic heterogeneity do not impact mutation accumulation at high

MOI

The effect of stochastic cellular heterogeneity on mutation accumulation can be better

understood by quantifying the effective viral population size, Ve in these simulations.

Stochastic heterogeneity in cellular virus production increases the variance in offspring
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number among virions σ2, and thereby decreases the viral effective population size,

given by

Ve ≡ V/σ2 (2.5)

where σ2 is more generally the variance in the offspring distribution (Ewens, 1982).

We can calculate σ2 at low MOI (≪ 1) where almost all cells are infected with

either zero or one virion. Assuming that the population is large and ignoring fitness

differences between virions, the offspring distribution is a gamma-Poisson mixture

(i.e., a negative binomial) with a mean of 1 (because V is constant) and variance

σ2 = 1+1/k since each infected cell produces a gamma-distributed number of virions

(each cell with a different mean) and the virions infect an approximately Poisson-

distributed number of cells in the next generation. When the number of virions is

small, this somewhat overestimates the variance, i.e., underestimates Ve, because the

Poisson approximation to the binomial offspring distribution allows one individual to

have more offspring than there are total virions in the population. Even when the

number of virions is large, our formula also overestimates the variance if MOI is large,

because the noise in cellular output is shared among coinfecting virions. However,

this effect only becomes appreciable when the number of cells is very small.

In the left sides of Figure 2.4 A and B, we see that our calculated viral effective

population size Ve is indeed the relevant quantity for evolution at low MOI: viral

populations with very different census sizes V but equal effective sizes Ve accumulate

mutations are the same rate. However, this breaks down at high MOI (right sides of

2.4 A and B), where census size is the better predictor of evolution. This is because

the primary factor reducing the effectiveness of selection is phenotypic hiding, which

depends on the census size (through MOI) rather than the amount of stochasticity

in reproduction. Note that for the smallest simulated population sizes and k values

we still see that our approximate formula for Ve collapses the different curves, even

though our approximations are breaking down and the formula is giving unbiological



21

values of Ve < 1.

2.4.3 Input-dependent viral populations accumulate slightly

more mutations at intermediate MOI

We next performed simulations under cellular heterogeneity that stems from differ-

ences in viral input. When we assumed that viral output scaled linearly with viral

input, we found slightly more mutations accumulated compared to the base model

at intermediate MOI (Fig. 2.5 and Supplementary Figure A.3). In contrast, at both

high and low MOIs, there were no appreciable differences observed from the base

model. To understand these results, note that at low MOI (≪ 1), almost all in-

fected cells are infected by only a single virion, so the input-output relationship is

irrelevant (Supplementary Figure A.3A). At very high MOI (≫ 1), phenotypic hiding

is nearly complete and mutations accumulate near the neutral rate in both models

(Supplementary Figure A.3B). At intermediate MOI, however, there is a mix of singly

infected cells, where virions do not experience phenotypic hiding, and multiply in-

fected cells, where virions experience phenotypic hiding. With viral output scaling

linearly with viral input, the multiply infected cells contribute more viral progeny to

the next generation, thereby increasing the representation of viral genomes that have

experienced relaxed selection.

2.4.4 Relaxed selection under phenotypic hiding is robust to

the form of the fitness function

Above, we assume that the cellular fitness at gene i, ωi, is determined by the average

fitness of the infecting virions at the gene (Eqn. (2.2)); here we consider alternative

models. If we think of the virions infecting a cell as being analogous to the homologous

chromosomes of a polyploid individual, our model above assumes that there is no
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Figure 2.5: Input-dependent cellular fitness values increase the rate of deleterious muta-
tion accumulation slightly at intermediate MOI. The black line show results from the base
model. The yellow line shows simulations where cellular fitness W ′

c depends both on the
amount of viral input mc to the host cell and the average fitness of the viral genomes in the
host cell Wc. We use the per genome mutation rate U = 1 and the fitness cost of mutations
s = 0.2. Each data point shown is the average across 20 replicate simulations with error
bars showing the standard error. Red dashed lines show the theoretical expectation of mu-
tation accumulation at selective neutrality (Ut). Blue dashed lines show the expectation of
mutation accumulation for an infinite viral population size at its mutation-selection balance
(U/s). (A) Average number of mutations harbored by an individual virion at generation
t = 20. The cell population size is kept constant at C = 1000 and virus population sizes
are modified to change MOI.

“dominance”. Here we consider the two limiting possibilities of completely “recessive”

or completely “dominant” deleterious mutations, in which the overall fitness of a gene

is equal to the fitness of the fittest or least fit infecting copy of the gene, respectively.

Fig. 2.6 shows that our qualitative results on the effects of phenotypic hiding

are robust to the form of the fitness function. At low MOI, coinfection is rare,

so the alternative fitness functions necessarily produce results that are essentially

identical to the base case (Fig. 2.6B and C, MOI ≪ 1; Supplementary Figures A.4
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and A.5). At very high MOI, simulations assuming either recessive or dominant

mutations both undergo phenotypic hiding and accumulate at nearly the neutral

rate, as in the base case (Fig. 2.6B and C, MOI ≫ 1). At intermediate MOI, the

primary quantitative difference appears to be that the reduced selection on recessive

mutations allows them to accumulate more rapidly (Fig. 2.6B and C, MOI ≈ 1).

Interestingly, selection against dominant mutations is also less effective than in the

base case for somewhat large MOI ≈ 30. The different fitness functions also do

not change the qualitative effect of stochastic heterogeneity in increasing mutation

accumulation (Supplementary Figures A.4 and A.5).

While the qualitative patterns of mutation accumulation are unchanged, the fit-

ness function can have a larger effect on the distribution of mutations within the pop-

ulation. For recessive mutations, the distribution of the number of mutations across

virions is more prone to transient bimodality, with one cluster of high-fitness viri-

ons and another of low-fitness ones that rely on coinfection to reproduce themselves;

see Fig. 2.6A for an example. We think transient bimodality occurs because pheno-

typic hiding allows highly-loaded individuals to cheat, and occasionally rise to high

frequencies. Simulations where deleterious mutations are recessive are more likely

to allow this phenomenon because the least-fit individuals are hidden from selective

forces when they coinfect with individuals near the most-fit peak of the distribution

of mutations. However, these dynamics are not the focus of the present work, as more

investigation of these bimodal events requires a deeper analysis at longer time scales

across a range of MOI.

2.5 Discussion

Here we consider how cellular coinfection in viral infections impacts deleterious mu-

tation accumulation using an in silico simulation model. Using our model, we were
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Figure 2.6: Different fitness functions change the distribution of mutations but have only a
mild affect on the pattern of phenotypic hiding. In all panels, green indicates that cellular
fitness is determined by the most fit virion to infect the cell, i.e., mutations are “recessive”.
Pink indicates results from simulations in which cellular fitness is determined by the least
fit virion to infect the cell, i.e., mutations are “dominant”. Grey indicates the base case
(“incomplete dominance”) shown in previous figures. (A) Distributions of numbers of
mutations per virion from a single time point of a simulation with V = 1668 and C = 1000
for each model. The recessive mutations have a bimodal distribution, with individuals
tending to either have a low load or a very high one. (B) The virus population size is
kept constant at V = 1000 and cell population size C is modified to change MOI. Recessive
mutations accumulate the most rapidly, particularly at intermediate MOI, while dominant
mutations accumulate at nearly the base rate. (C) The cell population size is kept constant
at C = 1000 and the virus population size V is modified to change MOI. Recessive mutations
accumulate more rapidly than the base case, as do dominant mutations for MOI ≈ 30. In
all panels, U = 1 and s = 0.2. Each data point in B and C is the average across 20
replicate simulations with error bars showing the standard error. Red dashed lines show
the theoretical expectation of mutation accumulation at selective neutrality (Ut). Blue
dashed lines show the expected number of mutations for an infinite viral population size at
its mutation-selection balance (U/s).

able to recapitulate previous results of relaxed selection that occurs under regimes

of phenotypic hiding (Wilke and Novella, 2003a, Froissart et al., 2004, Novella et al.,
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2004). We then extended these findings by showing that the heterogeneity inherent

to viral infections, including cellular heterogeneity and differences in production of

virions due to variation in number of infecting viral particles, increases the rates of

deleterious mutation accumulation during viral infections.

Segmentation and reassortment reduce the rate of deleterious mutation accumula-

tion among genes by allowing more fit genotypes to jointly reproduce progeny that do

not contain all of the deleterious mutations harbored by their parents (Turner, 2003).

However, our simulations indicate that phenotypic hiding can drastically reduce this

benefit of segmented genomes (Fig. 2.3C). We show that intermediate levels of coin-

fection (MOI ≈ 0.3) are optimal for segmented viral populations since they allow

sex to occur frequently enough to reduce mutation accumulation without significant

levels of phenotypic hiding. While we focused on a genetic architecture based on

influenza virus and therefore did not incorporate recombination into our model, we

expect that recombination would give the same qualitative results as those we report

for reassortment.

While our extensions to the base model have incorporated some realism, our model

remains highly simplified. In particular, there are two key features of natural infec-

tions which impact population dynamics that we did not incorporate. First, many

infections show substantial spatial structure (reviewed in Gallagher et al. (2018)).

This could result in high MOI hotspots, increasing the potential for both pheno-

typic hiding and, in segmented viruses, reassortment. However, spatial structure

also means that coinfecting virions are likely to be close relatives, reducing both the

negative impact of phenotypic hiding and the benefits of reassortment.

The second aspect of natural infections not considered in our model is that we

assume a constant viral population size, while natural infections expand from a small

inoculum. Population expansion has been shown to increase the number of segre-

gating deleterious mutations in the population but also decreases the per individual



26

number of deleterious mutations (Gazave et al., 2013). We do not know how pop-

ulation expansion would interact with cellular coinfection. Interpreting our results

using Figure 2.2C indicates that if a viral population were to grow in a limited cell

population, it would experience three stages. First at low MOI, selection would be at

the individual level in a small population susceptible to drift. Then, selection would

become more effective over the course of an infection as viral population size increases

up until intermediate MOI. Finally, at high population sizes, the population would

experience high levels of phenotypic hiding due to the density of viruses infecting

cells, thus reducing the efficacy of selection. On the other hand, it is unclear what

would happen if the viral population were to continue to colonize new tissue as it

grew such that MOI remained roughly constant.

One possible genetic extension of our model would be to include epistasis among

mutations. Positive epistasis would result in additional mutations accumulating be-

cause the fitness effect of adding a new mutation decreases with each subsequent

mutation. Negative epistasis would have the opposite effect: selection would be more

strict and thus fewer mutations would accumulate. However, neither form of epistasis

should have much effect on mutation accumulation at high MOI where phenotypic

hiding renders mutations effectively neutral.

Phenotypic hiding can be seen as an example of social interactions between viruses

at the intracellular level. The emerging field of “sociovirology” examines how such

interactions between viruses, including during cellular coinfection, can have an impact

on the evolution of viral populations (Vignuzzi et al., 2006, Andino and Domingo,

2015, Bordeŕıa et al., 2015, Dı́az-Muñoz et al., 2017, Sanjuán, 2017, Aguilera and Pfeif-

fer, 2019). The importance of coinfection in viral evolution has been demonstrated

empirically (Chao et al., 1997, Turner et al., 1999, Wilke and Novella, 2003a, Froissart

et al., 2004). Specifically, cellular MOI depends on viral traits such as aggregation via

collective infectious units (reviewed in Sanjuán (2017)), while other traits may limit
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coinfection via superinfection exclusion (Sun and Brooke, 2018). Some of the other

modern work in the field also highlights the role of heterogeneity (Andreu-Moreno

and Sanjuán, 2018, Sun and Brooke, 2018). However, while much of sociovirology

focuses on positive selection, our work shows that interactions among virions also

have large effects on the ability of purifying selection to shape the evolution of viral

populations.

Data Availability

The code used to produce the data shown in this paper was written and imple-

mented in MATLAB R2020a and is available at https://github.com/allmanbrent/

coinfection_heterogeneity. Visualization was performed using R version 4.0.1.

Acknowledgments

BEA thank members of the Koelle lab, Molly Gallagher, Jeremy Harris, for helpful

comments on implementation of the model.

Funding

BEA was supported by the NSF National Science Foundation Graduate Research

Fellowship Program (grant #DGE-1444932) and by the NSF iPoLS Student Research

Network, (grant #1806833). DBW was supported by a Simons Investigator Award

in the Mathematical Modeling of Living Systems.

Conflicts of Interest

The authors report no conflicts of interest.

https://github.com/allmanbrent/coinfection_heterogeneity
https://github.com/allmanbrent/coinfection_heterogeneity


28

Appendix A

Supplementary Materials to

Chapter 2



29

A.1 Base Model Comparison Against Gordo and

Charlesworth (2000)

Figure A.1: The results from our base model are not well-predicted by existing mod-
els. Panel shows the mean number of deleterious mutations after t = 150 generations as
simulated by our base model (black) and as predicted by Gordo and Charlesworth (2000)
(orange) under equivalent viral population sizes. Each data point in black is the average
of 20 replicate simulations with error bars showing the standard error. Red dashed lines
show the theoretical expected mutation accumulation at selective neutrality (Ut). Blue
dashed lines show the average number of mutations for an infinite viral population size at
its mutation-selection balance (U/s). Parameters are U = 1, s = 0.2, y = 1, with values of
k indicated by color. (A) The cell population size is kept constant at C = 1000 and the
virus population size V is modified to change MOI.
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A.2 Stochastic Heterogeneity

Figure A.2: Stochastic heterogeneity increases deleterious mutation accumulation at low
and intermediate MOI, but not at high MOI. All panels show mean number of deleterious
mutations after t = 20 generations. Each data point shown is the average of 20 replicate
simulations with error bars showing the standard error. Red dashed lines show the theoreti-
cal expected mutation accumulation at selective neutrality (Ut). Blue dashed lines show the
average number of mutations for an infinite viral population size at its mutation-selection
balance (U/s). Parameters are U = 1, s = 0.2, y = 1, with values of k indicated by color.
(A) At a constant MOI of 0.1, stochastic heterogeneity increases mutation accumulation.
(B) In these simulations, the virus population size is kept constant at V = 1000 and cell
population sizes are modified to change MOI. Different k in (A) and (B) show that addi-
tional stochastic heterogeneity (small k) leads to additional mutation accumulation until
phenotypic hiding is prominent.
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A.3 Input-Dependent Heterogeneity

Figure A.3: Input-dependent cellular fitness values minimally affect mutation accumulation
patterns. The black line represents simulations where there is no input-output relationship
(i.e. the base model). The yellow line shows simulations where we have implemented our
input-dependent model. We use the per genome mutation rate U = 1 and the fitness cost of
mutations s = 0.2. Each data point shown is the average across 20 replicate simulations with
error bars showing the standard error. Red dashed lines show the theoretical expectation of
mutation accumulation at selective neutrality (Ut). Blue dashed lines show the expectation
of mutation accumulation for an infinite viral population size at its mutation-selection
balance (U/s). (A) Average number of mutations harbored by an individual virion at
generation t = 20. Here, cell population sizes are changed accordingly across simulated viral
population sizes to maintain an MOI of 0.1. (B) Average number of mutations harbored
by an individual virion at generation t = 20. The virus population size is kept constant at
V = 1000 and cell population sizes are modified to change MOI.
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A.4 Stochastic Heterogeneity Impacts Are Consis-

tent Across Alternative Fitness Functions

A.4.1 Simulated mutations are assumed to be “dominant”

Figure A.4: Stochastic heterogeneity increases deleterious mutation accumulation when
genic fitness takes the form ωi = min{ωi,1, . . . , ωi,m} as described in the Methods of the
main text. All panels show mean number of deleterious mutations after t = 20 generations
of within-host infection. Each data point shown is the average of 20 replicate simulations
with error bars showing the standard error. Red dashed lines show the theoretical expected
mutation accumulation at selective neutrality (Ut). Blue dashed lines show the average
number of mutations for an infinite viral population size at its mutation-selection balance
(U/s). Parameters are U = 1, s = 0.2, y = 1, with values of k indicated by color. (A)
Stochastic heterogeneity has the largest effect at low MOI. At high MOI, phenotypic hiding
makes selection ineffective even in the absence of heterogeneity. (B) Same simulated data as
(A), but shown as a function of the predicted effective viral population size Ve = V/(1+1/k).
The collapse of the different curves on the left side of the plot shows that Ve accurately
captures the effect of heterogeneity on mutation accumulation in the regime where stochas-
ticity is strong − small populations.
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A.4.2 Simulated mutations are assumed to be “recessive”

Figure A.5: Stochastic heterogeneity increases deleterious mutation accumulation when
genic fitness takes the form ωi = max{ωi,1, . . . , ωi,m} as described in the Methods of the
main text. All panels show mean number of deleterious mutations after t = 20 generations
of within-host infection. Each data point shown is the average of 20 replicate simulations
with error bars showing the standard error. Red dashed lines show the theoretical expected
mutation accumulation at selective neutrality (Ut). Blue dashed lines show the average
number of mutations for an infinite viral population size at its mutation-selection balance
(U/s). Parameters are U = 1, s = 0.2, y = 1, with values of k indicated by color. (B)
Stochastic heterogeneity has the largest effect at low MOI. At high MOI, phenotypic hiding
makes selection ineffective even in the absence of heterogeneity. (B) Same simulated data as
(A), but shown as a function of the predicted effective viral population size Ve = V/(1+1/k).
The collapse of the different curves on the left side of the plot shows that Ve accurately
captures the effect of heterogeneity on mutation accumulation in the regime where stochas-
ticity is strong − small populations.
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Chapter 3

Fitness estimation for viral

variants in the context of cellular

coinfection

In the following publication, we develop a model of viral variant growth that accounts

for our previously described assumptions around public goods within host cells. We

then use this model in both deterministic and stochastic simulations to fit model

parameters to experimental influenza A virus infections in ferret hosts (Wilker et al.,

2013). Specifically, we leverage a priori estimates of MOI to inform estimates of the

fitness of a viral variant.
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Abstract: Animal models are frequently used to characterize the within-host dynamics of emerging
zoonotic viruses. More recent studies have also deep-sequenced longitudinal viral samples originating
from experimental challenges to gain a better understanding of how these viruses may evolve in vivo
and between transmission events. These studies have often identified nucleotide variants that can
replicate more efficiently within hosts and also transmit more effectively between hosts. Quantifying
the degree to which a mutation impacts viral fitness within a host can improve identification of
variants that are of particular epidemiological concern and our ability to anticipate viral adaptation at
the population level. While methods have been developed to quantify the fitness effects of mutations
using observed changes in allele frequencies over the course of a host’s infection, none of the
existing methods account for the possibility of cellular coinfection. Here, we develop mathematical
models to project variant allele frequency changes in the context of cellular coinfection and, further,
integrate these models with statistical inference approaches to demonstrate how variant fitness
can be estimated alongside cellular multiplicity of infection. We apply our approaches to empirical
longitudinally sampled H5N1 sequence data from ferrets. Our results indicate that previous studies
may have significantly underestimated the within-host fitness advantage of viral variants. These
findings underscore the importance of considering the process of cellular coinfection when studying
within-host viral evolutionary dynamics.

Keywords: within-host dynamics; viral evolution; influenza H5N1; viral modeling

1. Introduction

Zoonotic pathogens are often poorly adapted to their spillover hosts. Viral adap-
tation, however, can occur during epidemiological spread following spillover, resulting
in increases in viral transmission potential as the pathogen establishes itself in the host
population [1]. This was observed most notably in influenza viruses that have successfully
established in humans (e.g., [2,3]). The pandemic coronavirus SARS-CoV-2 provides a
more recent example, with variant lineages that are better adapted to human hosts (such as
D614G [4]) emerging and replacing earlier viral lineages. Viral adaptations that improve
transmission potential often arise from their effect on within-host replication dynamics.
For example, mutations that enable viruses to replicate more efficiently within hosts (in
particular, in transmission-relevant tissues) could enhance transmission potential, as could
mutations that allow for a more effective evasion of the host immune response.

In vivo studies could in principle be used to identify mutations that improve viral fit-
ness in a spillover host. For example, experiments using the ferret animal model identified
a set of influenza A subtype H5N1 mutations that increase viral replication within the nasal
turbinate of hosts (a transmission-relevant tissue) and also increase transmissibility [5,6].
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The fitness effects of mutations such as these have been estimated by interfacing quanti-
tative models with data on how variants carrying these mutations change in frequency
over the course of infection [7–9]. However, these approaches assume that fitness is an
individual-level property of a variant. While this may be the case when cells are only singly
infected, many viral infections involve significant levels of cellular coinfection. For exam-
ple, due to incomplete viral genomes, influenza viruses heavily rely on complementation
to produce viral progeny [10–12]. High levels of cellular coinfection in other viruses, such
as HIV, is also likely, given the pervasiveness of recombinant genomes that are identified
during viral sequencing [13,14].

Cellular coinfection can impede the ability of high-fitness variants to rise to high
frequencies within an infected host. This is because of the phenomenon of ‘phenotypic
hiding’ [15,16]. Phenotypic hiding comes about as a consequence of viral protein products
being shared within coinfected cells. Delivery of a viral genome carrying a highly beneficial
mutation results in the production of a viral protein that can provide a replicative benefit
to all of the viral genomes present in the coinfected cell. Similarly, a viral genome carrying
a deleterious (and potentially even lethal) mutation can be rescued by protein products
derived from coinfecting viral genomes. Cellular coinfection thus results in natural selec-
tion no longer acting on individual viral genomes, but instead on viral collectives. This
effectively reduces the strength of selection, such that deleterious mutations are purged
more slowly [17] and beneficial mutations are also fixed more slowly [18]. As a result,
the extent of cellular coinfection impacts the dynamics of allele frequency changes in an
infection and affects fitness inference.

Here, we first develop a set of mathematical models to project changes in the allele
frequencies of viral variants within infected hosts. Our models specifically allow for
cellular coinfection and the effect of phenotypic hiding on allele frequency changes. Using
Bayesian inference approaches, we then demonstrate how these mathematical models can
be interfaced with longitudinally sampled allele frequency data to jointly estimate the
relative fitness of a variant and cellular multiplicity of infection levels. Finally, we apply
our developed methods to estimate the fitness effect of an adaptive mutation that was
identified in an influenza H5N1 experimental challenge study performed using the ferret
animal model. Our findings indicate that the fitness effect of this mutation is considerably
higher than previously estimated and that cellular coinfection precipitously slowed down
the rate of within-host influenza virus adaptation.

2. Materials and Methods
2.1. Deterministic Within-Host Evolution Model

Several studies have used longitudinal allele frequency data to estimate the relative
fitness of a mutant allele over a wild-type allele within an infected host or from passage
studies [9,19,20]. None of these models, however, account for the impact that cellular
coinfection can have on variant allele frequency changes over time. To accommodate
cellular coinfection, we first start with an evolutionary model that projects allele frequencies
from one viral generation to the next in the absence of coinfection:

qm(tg+1
)
=

qm(tg
)
eσm

qm
(
tg
)
eσm +

(
1 − qm

(
tg
))

eσw
(1)

where qm(tg
)

is the frequency of the variant (mutant) allele in viral generation g, σm
(with range −∞ to ∞) is the selective advantage/disadvantage of the focal mutation,
and eσm (with range ≥0) is the relative fitness of the variant allele over the wild-type allele.
The fitness of the wild-type allele (eσw ) is defined as 1. This model is a simplification of a
model first presented in [9]. That model considers an arbitrary number of viral haplotypes
and further incorporates de novo mutation in its projection of allele frequencies. Here, we
ignore de novo mutation over the course of infection and limit our analysis to two viral
haplotypes: a wild-type viral genotype and a variant genotype carrying a mutant allele
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at a single locus. We adopt these simplifications to focus attention on the effect of cellular
coinfection in within-host evolution.

To extend this initial model to allow for the effect of cellular coinfection, we first
assume that viral genomes enter cells independently of other viral genomes. Under this
assumption, viral genomes are distributed across cells according to a Poisson distribution.
Given a mean overall cellular multiplicity of infection (MOI) of M, the variant’s mean MOI
in viral generation tg is simply given by Mm = qm(tg

)
M and the wild-type virus’s mean

MOI is simply given by Mw = (1 − qm(tg
)
)M. The probability that a cell is infected with k

variant viral genomes and l wild-type viral genomes is then:

P(k, l) =

(
e−Mm(Mm)k

k!

)(
e−Mw(Mw)l

l!

)
(2)

Under the assumption that viral protein products within cells have additive effects,
the fitness of a viral genome present in a cell carrying k variant viral genomes and l
wild-type viral genomes is given by:

F(k, l) =
k

k + l
eσm +

l
k + l

eσw (3)

Note that this fitness does not depend on whether the focal genome is a variant viral
genome or a wild-type viral genome, since all viral genomes within a cell share their
protein products and thus have the same fitness.

The realized mean fitness of a viral variant in the context of cellular coinfection is
calculated by taking a fitness average of the viral variant across its cellular contexts:

eσm =
∑∞

k=0 ∑∞
l=0 kP(k, l)F(k, l)

Mm
(4)

Similarly, and the realized mean fitness of the wild-type virus in the context of cellular
coinfection is given by:

eσw =
∑∞

k=0 ∑∞
l=0 lP(k, l)F(k, l)

Mw
(5)

Examination of these equations indicates that the realized mean fitness of the viral
variant and of the wild-type virus approach eσm and eσw , respectively, as cellular MOI
becomes small, as expected. As cellular MOI becomes large, eσm and eσw converge in their
values, as expected.

Variant allele frequency changes in the context of cellular coinfection can then be
projected using a modified version of Equation (1), where realized mean fitnesses replace
individual-level viral fitnesses:

qm(tg+1
)
=

qm(tg
)
eσm

qm
(
tg
)
eσm +

(
1 − qm

(
tg
))

eσw
(6)

2.2. Stochastic Within-Host Evolution Model

A recent study highlighted the important role that stochastic processes can play in
shaping patterns of within-host viral evolution [21]. The extent to which in vivo viral
evolution is governed by stochastic processes can be quantified by the within-host effective
viral population size, which we here refer to as Ne. Low values of Ne indicate that genetic
drift plays a large role in shaping within-host viral populations, while high values of
Ne indicate that genetic drift plays a more minor role. The within-host effective viral
population size Ne for seasonal influenza A viruses has recently been estimated as being on
the order of 30–70 [22]. Given estimates such as these, we develop here a stochastic version
of the within-host evolutionary model presented in the previous section. For simplicity,
in the equations below, we use N rather than Ne to denote the effective viral population size.
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With a variant allele frequency of qm(tg) in generation tg, the variant’s effective population
size is given by:

Nm(tg) = Nqm(tg) (7)

and the effective population size of the wild-type virus in generation tg is given by:

Nw(tg) = N
(
1 − qm(tg)

)
(8)

Defining the number of target cells as C, the mean cellular multiplicity of infection is
given by N/C, the mean cellular MOI of variant virus is given by Nm/C, and the mean
cellular MOI of the wild-type virus is given by Nw/C. Under the same assumption as before
that viral genomes enter cells independently of one another, we stochastically determine
the distribution of variant viruses across target cells using a multinomial distribution with
the event probability of being in a cell given by 1/C (for all C cells) and the number of
trials given by the variant population size Nm. We similarly stochastically determine the
distribution of wild-type viruses across target cells using a multinomial distribution with
the event probability of being in a cell given by 1/C (for all C cells) and the number of
trials given by the wild-type viral population size Nw. The mean fitness of a viral variant
in the context of cellular coinfection can then be calculated in a manner similar to the one
specified in Equation (4). With F(ki, li) as the fitness of a viral genome present in cell i with
ki variant viral genomes and li wild-type viral genomes, the mean fitness of a viral variant
is obtained by considering the stochastically realized viral content in each cell:

eσm =
∑C

i=1 kiF(ki, li)
Nm

(9)

Similarly, the mean fitness of the wild-type virus is given by:

eσw =
∑C

i=1 liF(ki, li)
Nw

(10)

We then use Equation (6) to project the frequency of the viral variant in the next
generation. Calling this projected frequency pm(tg+1

)
, we generate a stochastic realization

of this frequency by letting the variant effective population size Nm be drawn from a
binomial distribution with N trials and a probability of success of pm(tg+1

)
. The realized

frequency of the viral variant, qm(tg+1
)
, in generation tg+1 is then given by Nm/N.

2.3. Simulated Data

We simulated the models described above to ascertain the effect of cellular coinfection
on variant allele frequency changes at various levels of coinfection. We also simulated
mock datasets and used them to test the statistical inference methods described in detail
below. We simulated one mock dataset using the deterministic within-host evolution
model, with observed variant allele frequencies that include measurement noise (noise
that is due to an inaccurate measuring process, rather than underlying noise in the viral
dynamic process) . To implement measurement noise, we let the observed variant allele
frequency in generation tg, qm

o (tg), be drawn from a beta distribution with shape parameter
α = νqm(tg) and shape parameter β = ν(1 − qm(tg)):

qm
o (tg) ∼ Beta(νqm(tg), ν(1 − qm(tg)))

where ν quantifies the degree of measurement noise. The parameter ν is constrained to
be positive, with higher values corresponding to less measurement noise. We simulated
a second mock dataset using the stochastic within-host model, similarly assuming beta-
distributed measurement noise.
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2.4. Empirical H5N1 Data

As an application of the approaches developed here, we used longitudinal allele fre-
quency data from an influenza A subtype H5N1 experimental challenge study in ferrets [23].
We specifically focused on inferring the relative fitness of a single nucleotide variant on
the hemagglutinin gene segment (G788A) in the VN1203-HA(4)-CA04 virus. This variant
was present in the viral inoculum stock at a frequency of 4.40% and increased in frequency
over the course of infection in each of the four ferrets that were challenged with this in-
oculum. Although G788A allele frequencies were measured in [23] on days 1, 3, and 5
post-inoculation, we excluded the day 5 samples from our analyses. This is because up to
(and including) day 3, the viral population in each of the four ferrets exhibited low levels
of genetic diversity, with G788A being the only variant present at substantial frequencies.
By day 5, additional variants on the hemagglutinin gene segment had emerged, with some
reaching high frequencies. Because there is genetic linkage between these later variants
and G788A, the G788A frequency changes between days 3 and 5 are likely due in part
to selection acting on these later variants. Because our model does not reconstruct viral
haplotypes or consider epistatic interactions between loci, we thus decided to exclude day
5 from our analysis to be able to focus more specifically on estimating the fitness of G788A
in the context of cellular coinfection.

2.5. Statistical Inference

The deterministic within-host model contains four parameters: the relative fitness of
the variant virus (eσm ) over the wild-type virus, the mean cellular multiplicity of infection
(M), the initial frequency of the variant virus in a host (qm(t0)), and the magnitude of mea-
surement noise (ν). When interfacing this model with longitudinal allele frequency data, we
estimate the first three parameters but do not estimate ν. We do not estimate ν because it can
be parameterized from allele frequency measurements from replicate samples. To estimate
eσm , M, and qm(t0), we rely on Markov Chain Monte Carlo (MCMC) approaches.

The stochastic within-host evolution model contains the same four parameters as the
deterministic model, and one additional parameter: the effective viral population size N.
(The number of target cells C is not an additional parameter because it is given by the
product of the effective viral population size N and the mean cellular MOI M.) We use
particle MCMC (pMCMC) [24] to infer eσm , M, and qm(t0), and set ν and N as given. Particle
MCMC is a Bayesian inference approach that combines particle filtering with MCMC to
estimate parameters of stochastic state-space models and to reconstruct unobserved state
variables. This statistical inference method is increasingly used in the infectious disease
modeling community [25,26] but as of yet has not been applied to within-host viral models.

For both the deterministic and stochastic within-host models, let P(qm
o (tg)) be the

probability of observing a variant allele frequency of qm
o in generation tg. This probability

is given by the beta probability density function, with shape parameters νqm
sim(tg) and

ν(1 − qm
sim(tg)), evaluated at qm

o (tg), where qm
sim(tg) is the model-simulated allele frequency

in generation tg. This simulated variant allele frequency depends on parameters eσm , M,
and qm(t0), and for the stochastic model also N. For the deterministic model, the likelihood
of the model is then given by:

∏
g

P(qm
o (tg)) (11)

where g indexes the generation times of all the measured variant allele frequency data
points. For the stochastic model, P(qm

o (tg)) is used to calculate the particle weights in the
pMCMC algorithm.

Statistical inference code was implemented using Python 3.7.4 and Matlab R2020A
and is available from https://github.com/koellelab/withinhost_fitnessInference.
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3. Results
3.1. The Extent of Cellular Coinfection Impacts Variant Frequency Dynamics

The within-host models developed above differ from previous models focused on within-
host viral evolution by incorporating the possibility of cellular coinfection and its effects on
variant frequency dynamics. Simulations of our deterministic model show, as expected, that
a beneficial mutation does not increase in frequency as rapidly when cellular coinfection
levels are high compared to when they are low (Figure 1A). Our simulations also show that
a deleterious mutation does not decrease in frequency as rapidly when cellular coinfection
levels are high compared to when they are low (Figure 1B). Both of these effects are a direct
consequence of phenotypic hiding that occurs in cells that are infected by more than one
viral genome.

Figure 1. Model simulations showing changes in variant frequencies over viral generations. (A) Frequency changes of
a beneficial mutation under the deterministic within-host model, parameterized at different mean cellular multiplici-
ties of infection M. For all simulations shown, the variant’s fitness is eσm = 1.1 and its initial frequency is qm(t0) = 0.4.
(B) Frequency changes of a deleterious mutation under the deterministic within-host model, parameterized at different mean
cellular multiplicities of infection M. For all simulations shown, the variant’s fitness is eσm = 0.9 and its initial frequency is
qm(t0) = 0.4. In (A,B), we consider MOI values of 0.1, 1, 5, and 20. Labeled as ‘No coinfection’, we also plot simulations
of the model presented in Equation (1), which assumes that fitness is an individual-level property of a viral genome.
(C) Frequency changes of a beneficial mutation (red; eσm = 1.1) and of a deleterious mutation (blue; eσm = 0.9) under the
stochastic within-host model, parameterized with a mean cellular MOI of 5. Dashed lines show 10 stochastic realizations
under each parameterization. Solid lines show simulations of the deterministic model under the same parameterization.
Stochastic simulations used an effective viral population size of N = 1000. (D) Frequency changes of mutations, as in (C),
only using an effective viral population size of N = 100.

Our stochastic within-host evolution model recapitulates the general patterns ob-
served in simulations of the deterministic model, with demographic stochasticity playing a
more pronounced role at lower effective viral population sizes, as expected (Figure 1C,D).
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3.2. Statistical Estimation of Variant Fitness Using the Deterministic Within-Host Model
3.2.1. Statistical Inference with Simulated Data

We first aimed to determine if longitudinal allele frequency data could be used to infer
variant fitness in the context of cellular coinfection under the assumption of deterministic
within-host evolutionary dynamics. We therefore first generated a mock dataset by forward
simulating the deterministic model and adding measurement noise (Figure 2A). Prior to
applying the MCMC methods described above to this mock dataset, we assessed the
identifiability of the two parameters of greatest biological interest: variant fitness eσm

and mean cellular mulitiplicity of infection M. We did this by setting the magnitude
of measurement noise ν and the initial mutant allele frequency qm(tg = 0) to their true
values and plotting the model likelihood over a range of MOIs and over a range of variant
fitnesses. Our results indicate that there is a likelihood ‘ridge’ from low MOI-low fitness
parameter combinations to high MOI-high fitness parameter combinations (Figure 2B).
The presence of this likelihood ridge is expected, given that higher variant fitness in the
context of higher MOI compensates for the phenotypic hiding phenomenon that does not
occur at lower MOI.

Figure 2. Variant fitness estimation under the assumption of deterministic evolutionary dynamics. (A) Mock data (red
dots) generated from a forward simulation of the deterministic within-host evolution model with added measurement
noise. The underlying deterministic dynamics are shown with a red line. The model is parameterized with variant fitness
of eσm = 1.5, a mean cellular MOI of M = 2.0, and an initial frequency of the variant of qm(t0) = 0.10. Measurement
(observation) noise is set to ν = 100. Grey lines show 10 model simulations, with parameters drawn from the MCMC
posterior distributions. (B) Log-likelihood landscape, showing the log-likelihood of the model over a broad range of MOI
and variant fitness values. When calculating these likelihoods, the initial frequency of the variant and the measurement noise
were fixed at their true values. The red dot shows the true set of parameters used to simulate the mock data. The yellow
dot shows the parameter combination yielding the highest log-likelihood. White boundary lines show the 95% confidence
interval of parameter estimates. (C) Posterior distribution for the initial frequency of the variant. (D) Posterior distribution
for the mean cellular multiplicity of infection M. (E) Posterior distribution for variant fitness. In (C–E), black solid lines
show the median values of the posterior density, black dashed lines show the 95% credible intervals, and red solid lines
show the true values.
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Given this likelihood ridge, it would be difficult to use MCMC to obtain posterior
distributions of the model parameters without an informative prior on either variant fitness
or MOI. We decided, for the sake of illustration, to adopt a prior on MOI. Specifically, we
assumed a lognormal prior on MOI, with a mean of log(2) and a standard deviation of
0.5. We ran the MCMC chain for 20,000 iterations (Figure S1). Posterior distributions for
the initial frequency of the variant, MOI, and variant fitness are shown in Figure 2C–E.
All true parameters fell within the 95% credible intervals of the estimated parameter
values. In Figure 2A, we further plot 10 forward simulations, parameterized with draws
from the posterior distributions, alongside the mock data. These results indicate that the
deterministic within-host evolution model can be successfully interfaced with longitudinal
variant allele frequency data to infer model parameters using MCMC.

3.2.2. Statistical Inference with Experimental H5N1 Challenge Study

We now apply the same MCMC approaches to experimental data from an influenza
A subtype H5N1 challenge study performed in ferrets. Figure 3A shows the frequencies
of the G788A variant that was present in the inoculum stock at a frequency of 4.40%
and increased in all four of the experimentally infected ferrets. For the reasons provided
above, we used only days 1 and 3 for estimation of variant fitness. We also used the
measured stock frequency of 4.40% as the day 0 data point for all ferrets. While technically
the stock frequency and the ferrets’ day 0 data points constitute very different samples,
we felt comfortable with this assumption because of the likely very large transmission
bottleneck size between the inoculum and index ferrets. Although an estimate of this
transmission bottleneck size is not reported on in [23], a study using barcoded virus found
that three-quarters of viral barcodes present in the inoculum were transmitted to index
(donor) ferrets in experimental challenges that used 104 plaque-forming units (p.f.u.) of
virus inoculum [27], which is two orders of magnitude less virus than used in [23]. In the
barcoded virus study, some of the barcodes that were transmitted had frequencies as low
as 0.5% in the stock, indicating that the transmission bottleneck size was likely hundreds
to thousands of virions. Under the assumption of random sampling of virions from the
stock, this means that the frequency of G788A on day 0 of the ferrets was likely very close
to 4.40%, with measurement noise significantly outweighing any noise stemming from the
wide transmission bottleneck. Indeed, calculations involving the binomial distribution (for
the transmission bottleneck) and the beta distribution (for measurement noise) indicate that
measurement noise dominates transmission bottleneck process noise when the bottleneck
size is larger than the measurement noise parameter ν. With a bottleneck size in the
hundreds to thousands and the value of ν we use for this dataset (see below), measurement
noise is much larger than transmission bottleneck size noise, therefore allowing us to make
the assumption that the day 0 allele frequencies of G788A in the ferrets is equal to the stock
frequency of G788A.

In fitting our model to these data, we first converted days post inoculation to viral
generations by assuming an 8 h influenza virus generation time based on [28]. Replicate
samples for this experiment were not available, so we set the degree of measurement noise
ν to 100, but consider the sensitivity of our results to this value (see below). We used an
informative prior on the mean cellular MOI, specifically a lognormal prior with a mean of
log(4) and a standard deviation of 0.4. We used this prior based on studies that indicate
that 3–4 virions are generally required to yield progeny virus from an infected cell [11].
However, we note that a wide range of estimates exist in the literature on the extent of viral
complementation required for successful influenza virus progeny production, with findings
indicating that this depends on the host cell type and on the viral strain considered [10,12].
We ran the MCMC chain for 20,000 iterations (Figure S2). Posterior distributions for mean
cellular MOI and variant fitness are shown in Figure 3B,C, respectively. The joint density
plot of MOI and variant fitness (Figure 3D) indicates that there is a positive correlation
between these two parameters, consistent with our findings on simulated data (Figure 2B).
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Posterior distributions for the initial frequencies of the variant in each ferret are shown
in Figure S3.

Figure 3. Fitness estimation for variant G788A, assuming deterministic within-host dynamics. (A) Measured G788A allele
frequencies over the course of infection for 4 experimentally infected ferrets. Days 0 (stock frequency), 1, and 3 are used
in the estimation of variant fitness. (B) Posterior distribution for the mean cellular multiplicity of infection. (C) Posterior
distribution for variant fitness. In (B,C), black solid lines show the median values of the posterior densities and black dashed
lines show the 95% credible intervals. (D) Joint density plot for MOI and variant fitness.

The results shown in Figure 3B indicate that cellular MOI is relatively high, al-
though the informative prior used played a large role in shaping this parameter’s posterior
distribution. Our estimate of variant fitness (relative to wild-type fitness) lies between 2.11
and 7.91, with a median value of 3.15. This stands in stark contrast to a previous fitness
estimate for this variant of approximately e0.35 = 1.42 [9]. However, this previous estimate
was based on a model that did not consider cellular coinfection. With high levels of coin-
fection thought to occur in within-host influenza virus infections [11] and our inference of
relatively high cellular MOI (Figure 3B), higher fitness was inferred for G788A to be able to
account for its observed rapid rise in the context of phenotypic hiding. Indeed, the joint
density plot shown in Figure 3D indicates that if we had constrained MOIs to be lower
(closer in line with the estimates from [10]), our variant fitness estimates would have been
considerably closer to those previously inferred for G788A.

Our inferred fitness estimate of ∼2–8 for G788A may initially seem unreasonably large.
However, several studies that have estimated variant fitness using in vitro experiments
have arrived at estimates of similar magnitude. For example, a recent in vitro study of
dengue virus evolution performed at low MOI found that, of the beneficial mutations that
were identified, some had relative fitness effects exceeding 2 [29]. An in vitro study focused
on HIV similarly found that beneficial mutations could have pronounced effects on viral
fitness, with the largest estimated relative fitness of a single mutation being 6.6 [30]. These
studies show that the fitness effects of viral mutations can be quite high, particularly when
under strong selection pressure. While our relative fitness estimate of ∼2–8 for G788A
falls in the range of other estimates present in the viral literature, there are also studies
that have inferred lower fitness values for beneficial mutations. For example, the highest
relative fitness value estimated for an influenza B mutation that conferred resistance to a
neuraminidase inhibitor was 1.8 [31].

The results presented in Figure 3 assume measurement noise ν of 100 and a viral
generation time of 8 h. To ascertain the effects of these assumptions on our results, we first
re-estimated MOI, variant fitness, and initial variant frequencies under the assumption of
both higher (ν = 25) and lower (ν = 400) levels of measurement noise (Figures S4 and S5).
With higher levels of measurement noise, 95% credible interval ranges for MOI and variant
fitness were both wider than when measurement noise was set to ν = 100. In contrast,
with lower measurement noise, 95% credible interval ranges for MOI and variant fitness
were both considerably more narrow than when measurement noise was set to ν = 100,
with variant fitness estimates falling in the range of 2.25–3.6. At both higher and lower
levels of measurement noise, median estimates for MOI and variant fitness were not con-
siderably impacted. We also considered the sensitivity of our results to the viral generation
time assumed (Figures S6 and S7). With a shorter generation time of 6 h, the posterior
distribution for MOI remained similar to one inferred using a viral generation time of 8 h.
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However, variant fitness estimates were lower, with the 95% credible interval range of
1.66–3.47 and a median value of 2.36. With a longer generation time of 12 h, the posterior
distribution for MOI again remained similar to one inferred using a viral generation time
of 8 h. Variant fitness estimates using a 12 h viral generation time were considerably higher,
however, with the 95% credible interval range of 2.88–9.31 and a median value of 4.58.
These results underscore the importance of accurately parameterizing the viral generation
time when performing variant fitness estimation.

In Figure 4, we show 10 forward simulations of the deterministic model, parameterized
using draws from the posterior distributions. These indicate that the model, simulated using
parameter estimates inferred from MCMC, reproduces observed G788A allele frequency
patterns on days 0, 1, and 3 (the days included in the statistical analyses). The model,
however, significantly over-predicts G788A frequencies on day 5 in ferret 15 and ferret 21
(Figure 4B,D). It is interesting to note that in both ferrets 15 and 21, one additional variant
(G738A) rose to high frequencies between days 3 and 5. Previous work has inferred a
large relative fitness value for this variant (e0.9 = 2.5) as well as (slightly negative) epistatic
interactions between it and G788A [9]. Haplotype reconstruction indicates that the ‘A’
allele at site 738 arose in the genetic background of the ‘G’ allele at site 788 [9,23]. With the
‘A’ allele at site 738 conferring a large fitness advantage, and its genetic linkage to the ‘G’
allele at site 788, we would anticipate that this mutation would slow or even reverse the
rise of variant G788A between days 3 and 5 in these ferrets due to this process of clonal
interference. Indeed, our model projections significantly overestimate the frequency of
G788A on day 5 in both of these ferrets, indicating that selection efficiently acted on G738A,
impeding the projected increase in the frequency of G788A between days 3 and 5. It is also
interesting to examine the dynamics of additional variants in ferrets 13 and 17, where the
model predicts G788A frequencies relatively well on day 5, although this data point was
not used during model fitting. Ferret 13 had one other variant arising between day 3 and
day 5 (variant G496T). A previous study using these data inferred a large relative fitness
value for this variant (e0.7 = 2.0) [9]. Our model simulations, however, projected the allele
frequency of G788A on day 5 well in the absence of considering this variant. As such, we
would predict that this G496T variant had lower relative fitness than previously estimated.
Ferret 17 also had one other variant rising to high frequencies between day 3 and day 5
(variant C736A). It is unclear whether previous work inferred this mutation to be strongly
beneficial or strongly deleterious, since A736C (rather than C736A) was the mutation
identified as being under positive selection. Regardless, our model slightly over-projects
the frequency of G788A on day 5, such that we expect C736A to have contributed to some
extent to allele frequency changes of G788A through linkage effects.

Figure 4. Deterministic model simulations (grey lines) and observed data points (red dots) are shown for (A) ferret 13,
(B) ferret 15, (C) ferret 17, and (D) ferret 21. Only days 0, 1, and 3 were used in model fitting. Parameters for the model
simulations were drawn from the posterior distributions of the parameters. Purple lines show model simulations under the
same parameterizations of variant fitness and initial variant frequencies as the grey lines, but simulated in the absence of
cellular coinfection. These no-coinfection projections were simulated using Equation (1).

In Figure 4, we further plot model simulations that assume no cellular coinfection.
Specifically, we simulate Equation (1) where the dynamics are driven by the variant’s
individual-level fitness eσm rather than by eσm . The frequency of G788A rises consid-
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erably faster in these simulations compared to those that incorporate cellular coinfec-
tion. This indicates that the speed of within-host viral adaptation is severely reduced by
cellular coinfection.

3.3. Statistical Estimation of Variant Fitness Using the Stochastic Within-Host Evolution Model
3.3.1. Statistical Inference with Simulated Data

The within-host evolutionary dynamics of viral pathogens may not be appropriately
described by a deterministic model, even though viral population sizes within infected indi-
viduals over the course of infection are often times very large. Indeed, recent studies have
highlighted the role that stochastic processes play in within-host viral dynamics [21,22].
We therefore next aimed to determine if longitudinal allele frequency data could be used to
infer variant fitness in the context of cellular coinfection under a model of within-host evo-
lution that incorporated stochastic effects. As described above, we incorporated stochastic
effects by implementing the within-host model with a small effective viral population
size, specified by the parameter N. As such, we are modeling demographic stochasticity,
with genetic drift being the driver of random changes in variant allele frequencies. We
generated a mock within-host dataset by forward-simulating the stochastic model and
adding measurement noise (Figure 5A). This dataset was generated under the same param-
eterization as the deterministic dataset shown in Figure 2A, with stochastic effects included
by setting the viral population size N to 100.

Figure 5. Variant fitness estimation under the assumption of stochastic evolutionary dynamics. (A) Mock data (red dots)
generated from a forward simulation of the stochastic within-host evolution model with added measurement noise. The under-
lying stochastic dynamics are shown with a red line. The model is parameterized with variant fitness of eσm = 1.5, a mean
cellular MOI of M = 2.0, an initial frequency of the variant of qm(t0) = 0.10. Measurement (observation) noise is set to
ν = 100. The viral effective population size is set to N = 100. Grey lines show the dynamics of 10 reconstructed allele frequency
trajectories. These trajectories are unobserved state variables that have been reconstructed using pMCMC. (B) Posterior
distribution for the initial frequency of the variant. (C) Posterior distribution for the mean cellular multiplicity of infection M.
(D) Posterior distribution for variant fitness. In (B–D), black solid lines show the median values of the posterior densities, black
dashed lines show the 95% credible intervals, and red solid lines show the true values. 200 particles were used in the pMCMC.
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Using the same prior on MOI as with the deterministic analysis and under the assump-
tion that ν and N are known, we ran the MCMC chain for 50,000 iterations (Figure S8).
Posterior distributions for the initial frequency of the variant, mean cellular MOI, and vari-
ant fitness are shown in Figure 5B–D. All true parameters fell within the 95% credible
intervals of the estimated parameter values. In Figure 5A, we plot 10 reconstructed variant
allele frequency trajectories. These results indicate that the stochastic within-host evolution
model can be successfully interfaced with longitudinal variant allele frequency data to
infer model parameters and underlying variant frequency dynamics using pMCMC.

3.3.2. Statistical Inference with Experimental H5N1 Challenge Study Data

We now apply the same pMCMC approaches to the H5N1 experimental data ana-
lyzed already using the deterministic model. We again used only days 0, 1, and 3 for
estimation of variant fitness, assumed a viral generation time of 8 h, and set the degree
of measurement noise ν to 100. We used the same informative prior on the mean cellular
multiplicity of infection M. We set the effective viral population size to N = 100 in our
analyses, but consider a scenario of even higher stochasticity below. We ran the pMCMC
chain for 50,000 iterations (Figure S9). Posterior distributions for mean cellular MOI and
variant fitness are shown in Figure 6A,B, respectively. The joint density plot of MOI and
variant fitness (Figure S10) again indicates that there is a positive correlation between these
parameters, consistent with the results from our analysis using the deterministic model.
Posterior distributions for the initial frequencies of the variant in each ferret are shown in
Figure S11. Our results are consistent with the findings from our deterministic analysis: we
estimate that the fitness of the G788A variant is considerably (2–10.5 times) higher than that
of the wild-type virus. These results are robust to higher levels of stochasticity; we show,
for example, the posterior distributions for M and variant fitness under the assumption
that the viral effective population size N is 40 (Figure S12).

Figure 6. Fitness estimation for variant G788A, assuming stochastic within-host dynamics. (A) Posterior distribution for the
mean cellular multiplicity of infection M. (B) Posterior distribution for variant fitness. In (A,B) the model was parameterized
with an effective viral population size of N = 100. In (A,B) black solid lines show the median values of the posterior densities
and black dashed lines show the 95% credible intervals.

4. Discussion

Here, we developed mathematical within-host models that can take into consideration
cellular coinfection when projecting changes in viral allele frequencies over the course
of an infection. We further described and demonstrated how these evolutionary models
can be statistically interfaced with viral sequence data to jointly estimate variant fitness
relative to the wild-type allele along with the mean cellular multiplicity of infection. Our
results indicate that ignoring the possibility of cellular coinfection can result in significant
underestimation of a variant’s selective advantage. This is important because a variant
with a much higher selective advantage, once established monomorphically within a
host, is expected to have a more precipitous impact on within-host viral dynamics than a
variant with a smaller selective advantage. We might, for example, expect a variant with
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a higher selective advantage to result in higher peak viral loads and potentially longer
durations of infection. This would impact both symptom development as well as onward
transmission potential.

Our models, like all models, make some simplifying assumptions. First, we assume
low viral diversity, with diversity comprising just one locus and two alleles (a wild-type
and a variant allele). We chose to model evolution at a single locus to highlight the impor-
tant contribution that cellular coinfection may play in the within-host evolution of viral
pathogens. Our application to the G788A mutation in the H5N1 experimental challenge
study in ferrets satisfied this assumption between days 0 through 3. Because other sites
became polymorphic in each of the four studied ferrets by day 5, we excluded this time
point from our statistical analyses. To consider the effect of cellular coinfection within
a system with higher levels of genetic diversity, and the possibility of new variants aris-
ing over the course of infection, the models developed here should be extended using
approaches developed already in [9]. These approaches include inference of viral haplo-
types and the incorporation of de novo mutations into the presented model structures.
With these additions, full genetic linkage between loci can be considered, and epistatic
interactions between loci can also be inferred. Our models, as presented here, however,
could still be applied to higher diversity viral systems if recombination occurred freely
between loci, as may be the case between influenza gene segments or some viruses with
high recombination rates.

A second assumption present in the current formulation of our models is that viral
fitness is additive: if a coinfected cell harbors both variant and wild-type viral genomes,
then the fitness of each viral genome is not only assumed to be equal, but also equal to the
arithmetic mean fitness of the involved genomes. This may be a good assumption if the
focal mutation impacts, for example, polymerase activity, with the viral polymerase protein
being used for the replication of all viral genomes. However, it may also be the case that a
mutation has a disproportionate effect on intracellular viral fitness. Future work should
therefore examine the impact of a mutation’s ‘dominance’ [32] on in vivo viral evolution.

A third assumption is one that is somewhat less transparent in the structure of our
models, namely that we assume that there is no intracellular viral competition for host
cell machinery. This assumption is reflected in the calculation of a variant allele’s mean
fitness (eσm ). A single viral genome’s fitness in a cell depends on the genotypes of the
other genomes present in the cell, but not on the cellular multiplicity of infection directly.
If a variant genome is in a cell alone or with a large number of other variant genomes,
for example, its fitness will be the same. However, if host cell machinery is limiting, one
would expect the per genome fitness—which can be interpreted here as per capita viral
yield or reproductive success—to be lower in highly coinfected cells. Indeed, empirical
studies with influenza virus indicates that there is a saturating relationship between viral
input and viral output from a cell [33]: at low cellular MOI, doubling the viral input yields
a doubling of viral output, such that viral competition is not readily apparent; at high MOI,
however, doubling the viral input does not appreciably change the overall viral output,
indicative of limiting host cell machinery. Future work should therefore also examine the
impact of intracellular viral competition on within-host viral evolution and extend models
such as the ones we presented here to account for intracellular viral competition.

Finally, our model assumes that the mean cellular multiplicity of infection (MOI) is
fixed across viral generations and that virion entry into cells is governed by a Poisson
process. In terms of the former assumption, it is conceivable that MOI might change over
the course of an infection. For example, at the beginning of a viral infection, MOI may be
low because a very small viral population is initiating infection in a large environment of
host cells. As viruses replicate within their host, viral population sizes increase and the
number of target cells decreases. This may result in more individual-level selection at the
beginning of the infection (due to low MOI), followed by a greater degree of phenotypic
hiding later on in the infection (due to higher MOI). To accommodate these changes in MOI,
the structures of the within-host models presented here would not need to be significantly
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altered; MOI could simply be made into a time-varying parameter. For simplicity, we
here instead decided to assume that MOI is fixed over the course of infection, in part
because of the lack of empirical data to inform MOI at multiple time points over the
course of an infection. A further argument against incorporating dynamic changes in MOI
is that spatially structured within-host viral dynamics, such as those characterized for
influenza [34], may result in cellular MOIs that are more uniform over time than expected
from a spatially unstructured setting. In terms of the latter assumption (Poisson-distributed
virions), there are several reasons why this assumption may not be met. Virions could
aggregate, such that virion entry into cells is not an independent process. Cells could also
be heterogeneous with respect to their susceptibility to infection, for example due to their
cell cycle state or due to antiviral states triggered by interferon. Both of these factors would
result in virions being overdispersed across cells, rather than Poisson-distributed. While
considering different assumptions of how virions are distributed across cells is beyond the
scope of this study, future work should address the effect of viral overdispersion on variant
fitness estimation.

Despite these limiting assumptions, a general takeaway from the evolutionary models
presented here is that cellular coinfection will slow down the rate of viral adaptation
within hosts when adaptation occurs through selection acting on single point mutations
(or insertions/deletions) as we considered here. (A caveat here is that cellular coinfection
could accelerate viral adaptation if it heavily relies on genetic exchange, i.e., recombination
or reassortment.) Slower rates of viral adaptation is good news from the perspective of the
host population, as this will also slow down viral adaptation at the population-level. This
finding has clear implications for emerging zoonotic viruses that are adapting to a new
host population. Analogously, cellular coinfection will result in less effective purging of
deleterious mutations. By making natural selection a weaker evolutionary force, cellular
coinfection may thus be one reason why stochastic processes appear to dominate within-
host viral dynamics and why selection does not seem to act efficiently over the course of
an acute infection for viruses such as seasonal influenza [21,35]. There are other factors,
however, that may also limit the ability for positive selection to act efficiently within hosts.
For example, the temporal asynchrony between the timing of the immune response and
when virus diversification occurs may explain why antigenic immune escape variants do
not readily arise in individuals with some pre-existing immunity [36]. A second takeaway is
that variants whose fitness levels (relative to wild-type) have been quantified using models
that do not include cellular coinfection may have significantly underestimated variant
fitness. Underestimation of variant fitness may underestimate the effect of a mutation
on viral replication dynamics once those dynamics involve only the variant virus. Our
results—that the fitness effect of certain mutations can be large—speak to the adaptive
potential of these viruses to new or changing host populations, even if adaptation may
occur more slowly than might be expected.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/v13071216/s1: Figure S1: MCMC trace plots for parameters estimated by interfacing the
deterministic within-host model with the simulated data. Figure S2: MCMC trace plots for parameters
estimated by interfacing the deterministic within-host model with the influenza H5N1 experimental
challenge study data. Figure S3: Posterior distributions of initial G788A frequencies from fitting the
deterministic model. Figure S4: Parameter estimation for variant G788A, assuming deterministic
within-host dynamics and a larger amount of measurement noise. Figure S5: Parameter estimation for
variant G788A, assuming deterministic within-host dynamics and a smaller amount of measurement
noise. Figure S6: Parameter estimation for variant G788A, assuming deterministic within-host
dynamics and a viral generation time of 6 hours. Figure S7: Parameter estimation for variant G788A,
assuming deterministic within-host dynamics and a viral generation time of 12 hours. Figure S8:
MCMC trace plots for parameters estimated by interfacing the stochastic within-host model with the
simulated data. Figure S9: MCMC trace plots for parameters estimated by interfacing the stochastic
within-host model with the influenza H5N1 experimental challenge study data. Figure S10: Joint
density of MOI versus variant fitness for the stochastic model fit to the influenza H5N1 experimental
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challenge study data. Figure S11: Posterior distributions of initial G788A frequencies from fitting the
stochastic within-host model. Figure S12: Fitness estimation for variant G788A, assuming stochastic
within-host dynamics, parameterized with an effective viral population size of N = 40.
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Chapter 4

Detecting intra-patient single

nucleotide variants of SARS-CoV-2

in chronically infected

immunocompromised patients

The following chapter is a publication recently accepted in the New England Journal

of Medicine. While there are experiments presented here, my contributions were cen-

tered around analyzing the sequencing data that was collected from immunocompro-

mised patients infected with SARS-CoV-2. Specifically, we detected minor variants

circulating in these patients, some of which have been implicated in immune escape.
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Abstract 
 
Background: 

SARS-CoV-2 mutations conferring escape from neutralizing antibodies can arise 
in immunocompromised patients with prolonged infection, but the conditions that 
facilitate immune escape are still not fully understood.  
 
Methods: 

We characterized endogenous immune responses, within-host SARS-CoV-2 
evolution, and autologous neutralization of the viral variants that arose in five 
immunocompromised patients with prolonged infection and B cell deficiencies.  
 
Results: 

In two patients treated with the monoclonal antibody bamlanivimab, viral 
resistance to autologous serum arose early and persisted for several months, 
accompanied by ongoing evolution in the spike protein. These patients exhibited 
deficiencies in both T and B cell arms, and one patient succumbed to disease. In 
contrast, we did not observe spike mutations in immunologically important regions in 
patients who did not receive exogenous antibodies or who received convalescent 
plasma and had intact T cell responses to SARS-CoV-2.  
 
Conclusions: 

Our results underscore the potential importance of multiple factors – the absence 
of an effective endogenous immune response, persistent virus replication, and selective 
pressure such as single-agent bamlanivimab – in promoting the emergence of SARS-
CoV-2 mutations associated with immune evasion. These findings highlight the need for 
larger clinical studies in immunocompromised populations to better understand the 
ramifications of different therapies. Our results also confirm that patients with B cell 
deficiencies can elicit effector T cells and may suggest an important role for T cells in 
controlling infection, which is relevant to vaccines and therapeutics. 
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Introduction 
Immunocompromised patients can develop months-long infection with SARS-

CoV-2, providing opportunities for within-host virus evolution and the emergence of 
immune escape mutations. Prior studies have identified immunologically important 
mutations in SARS-CoV-2 sequences from immunocompromised patients, particularly 
within the spike protein, which is required for entry and is the target of currently 
approved vaccines. For example, spike mutations in the angiotensin converting enzyme 
2 (ACE2) receptor binding motif (RBM) such as E484K and Q493K1,2 and deletions in 
the spike N terminal domain (NTD)3,4 have been identified in immunocompromised 
patients with prolonged infection. These mutations have been found to confer partial 
resistance to neutralizing antibodies5–9 and are also are found in SARS-CoV-2 variants 
of concern. In part due to this, it has been hypothesized that prolonged SARS-CoV-2 
infection in immunocompromised patients may contribute to the emergence of variants 
with global impact10,11. 

However, immunologically important mutations do not arise in all 
immunocompromised patients with prolonged infection, and the lack of adaptive 
immune responses makes it possible that an additional selective pressure is required, 
such as exogenous antibody treatment. Understanding conditions that promote the 
emergence of immunologically important SARS-CoV-2 mutations in 
immunocompromised patients is critically important to both guiding treatment and 
potentially preventing the emergence of new SARS-CoV-2 variants. Here, we 
investigated the interplay between exogenous antibody treatment, endogenous humoral 
and cellular immune responses, and within-host virus evolution in five 
immunocompromised patients with prolonged SARS-CoV-2 infection. 
 
Results  

 
Overview of clinical courses 

We identified five immunocompromised patients with persistent (> 30 days) 
SARS-CoV-2 infection (Table 1, Figure 1). All had a history of underlying malignancy 
and four were treated with immunosuppressive regimens including rituximab, while the 
other patient (P4) had Good Syndrome, resulting in hypogammaglobulinemia, B-cell 
deficiency, and CD4/CD8 T-cell imbalance. The duration of positive PCR tests for 
SARS-CoV-2 ranged from 42 to 302 days from the time of first positive test (d42-d302). 
Patients had persistently low SARS-CoV-2 PCR cycle threshold (CT) values throughout 
infection, as well as detectable subgenomic RNA (Figure 1). Two patients (P2 and P3) 
were treated with the single-agent monoclonal antibody (mAb) bamlanivimab soon after 
SARS-CoV-2 infection (d4 and d8, respectively). Two other patients were treated with 
high-titer convalescent plasma (CP): P4 at d0 and d104, and P5 at d196. Two patients 
(P3 and P4) received intravenous immunoglobulin (IVIG) as part of treatment for their 
underlying condition. All patients were treated with remdesivir and all but one (P1) were 
treated with steroids; there were no known changes to the patients’ baseline 
immunosuppressive regimens. All but one patient (P2) ultimately recovered.  
 
Detailed clinical courses 
Patient 1: 
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This patient was a 60-69-year-old man with a history of relapsed B-cell acute 
lymphoblastic leukemia who underwent peripheral stem cell transplant (PBSCT) 18 
months prior to his COVID-19 diagnosis. His post-PBSCT course was complicated by 
chronic graft-versus-host disease (GVHD) of the skin and gastrointestinal tract for which 
he was maintained on tacrolimus and rituximab infusions every 8 weeks. His last dose 
of rituximab was 9 days prior to his COVID-19 diagnosis, and he received rituximab 
again 47 days after his initial positive test. He initially presented with 3 days of nausea, 
vomiting, cough, and sore throat and was diagnosed with COVID-19 via 
nasopharyngeal (NP) PCR (cycle threshold [CT] unknown). He was not hypoxemic and 
chest X-ray showed no acute abnormalities. He was treated symptomatically and did 
not receive antivirals or undergo changes in immunosuppression, and he was 
discharged one day after admission. His symptoms initially resolved, but he developed 
recurrent cough and progressive shortness of breath and presented to the emergency 
department for further evaluation 29 days following his previous discharge. At that time, 
he was hypoxemic to 84% on room air, and chest CT showed peripheral areas of 
ground glass opacity and changes compatible with diffuse alveolar damage. His SARS-
CoV-2 NP PCR was again positive, with CT 26. This was felt to reflect ongoing COVID-
19 infection, and he received a 5-day course of remdesivir. His symptoms improved 
over several days and he was discharged without supplemental oxygen 10 days after 
admission. He had no functional limitations at follow-up 3 months after the second 
hospitalization.  
 
Patient 2: 

This patient was a 40-49-year-old woman diagnosed with stage IV diffuse large 
B-cell lymphoma 2 months prior to her COVID-19 infection, for which she had been 
treated with 2 cycles of R-CHOP; she last received rituximab 7 days prior to her COVID-
19 diagnosis. Several days after the second cycle she developed cough and shortness 
of breath and was diagnosed with COVID-19 via NP PCR (CT unknown). On day 4 of 
illness, she was treated with bamlanivimab and clinically improved, and she 
subsequently received cycle 3 of R-CHOP 17 days later. She then developed fever and 
progressive shortness of breath prompting readmission 7 days following cycle 3 of R-
CHOP. SARS-CoV-2 NP PCR was again positive with CT 18, and chest CT showed 
patchy groundglass opacities. IgG antibodies to the SARS-CoV-2 receptor binding 
domain were positive, and this was felt to reflect previous receipt of bamlanivimab. She 
was treated with 5 days of remdesivir and 10 days of dexamethasone. She was 
readmitted again one week later with worsening chills, shortness of breath, and 
hypoxemia. SARS-CoV-2 testing via NP PCR was again positive (CT 15), and chest CT 
showed worsened opacities. She was treated with another 5-day course of remdesivir 
and steroid pulse then taper for possible organizing pneumonia. She was discharged 
after a 7 day hospitalization but was again admitted 7 days later for dyspnea and 
hypoxia to 86%. SARS-CoV-2 testing via NP PCR was positive (CT 16), and chest CT 
showed progression of bilateral patchy opacities. She was continued on 
methylprednisolone, and her course was complicated by Pneumocystis jirovecii 
pneumonia despite prophylaxis, progressive respiratory failure requiring mechanical 
ventilation, CMV viremia, and renal failure. SARS-CoV-2 NP PCR obtained on day 22 of 
hospitalization was positive with a CT 16, and she died on hospital day 33. 
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Patient 3: 

This patient was a 30-39-year-old woman with prior history of myelodysplastic 
syndrome who had undergone matched related PBSCT 3 years prior to her COVID-19 
diagnosis. Her post-transplant course was complicated by chronic GVHD of the 
gastrointestinal tract, skin, and eyes, as well as CMV enteritis, and she was maintained 
on rituximab (last dose approximately 3 months prior to COVID-19 diagnosis), 
mycophenolate mofetil, prednisone, and monthly intravenous immunoglobulin infusions. 
She tested positive for COVID-19 via NP PCR (CT unknown) after exposure to a known 
case; she had no symptoms at that time and received bamlanivimab 8 days later. 
Approximately 2 weeks after monoclonal antibody administration, she developed 
shortness of breath and hypoxia requiring hospital admission. A SARS-CoV-2 NP PCR 
was positive (CT unknown) and chest CT showed multifocal groundglass opacities with 
areas of tree-in-bud nodularity. Given concern for pulmonary GVHD, she underwent 
bronchoscopy with transbronchial biopsy; BAL cultures were negative, and histology 
was unrevealing. She did not receive any treatment for COVID-19 during that 
admission, and no changes were made to her immunosuppression. One week following 
discharge, she was readmitted for worsening shortness of breath and fever. A repeat 
SARS-CoV-2 NP PCR was positive (CT 23), and chest CT showed progression of 
patchy peripheral bilateral opacities. She was treated with 5 days of remdesivir and 10 
days of dexamethasone. Repeat NP PCR after 5 days of remdesivir was positive with 
CT 19. She was discharged, initially improved, but developed worsening shortness of 
breath after steroids were tapered, prompting readmission 3 weeks later. SARS-CoV-2 
NP PCR was again positive (CT 23), and chest CT showed new bilateral scattered 
groundglass opacities. Her clinical picture and radiographic findings were felt to reflect 
SARS-CoV-2 related inflammatory changes, and she was discharged home on a 4-
week dexamethasone taper which was converted to a maintance dose of prednisone. 
She did well from a pulmonary standpoint, but was readmitted three months later and 
again seven months later, both times with CMV enteritis. During the first of those 
readmissions, at 260 days after her first PCR test, a clinical lymphocyte panel showed 
immune deficiencies in both T and B cell arms (534 CD3+ T cells/uL blood; 263 CD4+ T 
cells/uL blood; 294 CD8+ T cells/uL blood; 2 CD19+ B cells uL/blood). The patient’s 
SARS-CoV-2 NP PCR was positive on both admisssions (CT 34 and 26), but she did not 
exhibit any respiratory symptoms. She continued to follow up with Infectious Diseases 
as an outpatient and eventually tested negative by home rapid antigen test 12 months 
after initial diagnosis.   
 
Patient 4: 

This patient was a 40-49-year-old man with prior history of thymoma and 
subsequent thymectomy who developed cough, fever, and shortness of breath and was 
diagnosed with COVID-19 at another institution via NP PCR (CT unknown). At that time, 
he was noted to be hypoxemic and was treated for COVID-19 with convalescent 
plasma, remdesivir, and steroids with clinical improvement. However, approximately 2 
weeks later, his symptoms worsened and he was readmitted to the same facility. At that 
time, he was was presumptively treated for bacterial pneumonia with antibiotics but did 
not receive any dedicated treatment for COVID-19, and he was discharged on 
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supplemental oxygen. Approximately 2 weeks later, he experienced recrudescence of 
fever, chills, cough, and shortness of breath and was hospitalized at the same facility; 
he was treated with antibiotics for possible bacterial pneumonia and was discharged on 
a steroid taper. He was subsequently admitted to our facility given lack of improvement. 
At that time, SARS-CoV-2 NP PCR was positive (CT 23), and extensive testing for 
secondary bacterial and fungal infections was negative. Given concern for persistent 
SARS-CoV-2 infection, he received 10 days of remdesivir and dexamethasone. His 
laboratory evaluation was otherwise significant for hypogammaglobulinemia, B-cell 
dysregulation, an abnormal CD4/CD8 ratio, and lack of lymphocyte response to tetanus 
and Candida antigens. In the context of these findings and prior thymoma, he was 
diagnosed with Good Syndrome and was treated with IVIG. Approximately 3 weeks 
later, he was again readmitted to our center with acute hypoxic respiratory failure due to 
COVID-19. SARS-CoV-2 NP PCR was positive (CT 23). At that time, he was treated with 
10 days of remdesivir and dexamethasone and received two doses of convalescent 
plasma for the management of SARS-CoV-2 infection; he also received a dose of IVIG 
for Good Syndrome. Convalescent plasma was found to be high titer either based 
on signal-to-cutoff (S/C) ratio ≥ 9.5 on the VITROS Anti-SARSCoV-2 IgG assay (Ortho 
Clinical Diagnostics, Raritan, NJ) or a cut off index ≥ 109 or a titer of ≥ 132 U/mL on 
the Elecsys Anti-SARSCoV-2 assay (Roche Diagnostics International Ltd, Rotkreuz, 
Switzerland). He was seen in follow up approximately 3.5 months following discharge; 
at that time, he was doing well and continued on monthly IVIG for his underlying 
immunodeficiency state.  
 
Patient 5: 

This patient was a 40-49-year-old man with marginal zone lymphoma diagnosed 
approximately 3 years before developing COVID-19. At the time of his lymphoma 
diagnosis, he was treated with bendamustine and rituximab and achieved remission; 
thereafter, he was continued on monthly maintenance rituximab for approximately 2 
years. One month after stopping rituximab, he developed cough and shortness of breath 
and was diagnosed with COVID-19; the details surrounding his initial diagnosis and 
treatment are unknown. He continued to have dyspnea on exertion and exertional 
hypoxemia three months following his COVID-19 diagnosis. He underwent video-
assisted thoracoscopic biopsy, and pathology showed changes compatible with 
organizing pneumonia secondary to COVID-19; there was no evidence of superimposed 
infectious or malignant process. He was treated with prednisone (40mg daily), but did 
not have any improvement in symptoms over the next 4 months. In this context, he was 
admitted to our facility for ongoing management. At that time, SARS-CoV-2 NP PCR 
was positive (CT 22), and chest CT showed patchy multifocal and confluent groundglass 
opacities. Given concern for persistent COVID-19 infection in the setting of B-cell 
depleting therapy, he received a 5-day course of remdesivir and a dose of convalescent 
plasma. Convalescent plasma was found to be high titer either based on signal-to-cutoff 
(S/C) ratio ≥ 9.5 on the VITROS Anti-SARSCoV-2 IgG assay (Ortho Clinical 
Diagnostics, Raritan, NJ) or a cut off index ≥ 109 or a titer of ≥ 132 U/mL on the Elecsys 
Anti-SARSCoV-2 assay (Roche Diagnostics International Ltd, Rotkreuz, Switzerland). A 
subsequent SARS-CoV-2 NP PCR obtained 8 days following admission and completion 
of SARS-CoV-2-directed therapies was again positive (CT 32). He improved 
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symptomatically and was discharged home. He was seen in outpatient follow up 
approximately 2.5 months later and had remained off steroids and supplemental 
oxygen.  

 
Immune responses 

Multiple immune measurements underscored the impact of exogenous antibody 
treatment and the lack of an endogenous antibody response in these patients. Both 
patients who received bamlanivimab within 8 days (P2 and P3) had high serum IgG 
titers to a pre-fusion stabilized spike trimer of reference virus Wuhan-Hu-1 and potent 
pseudovirus neutralizing serum titers to the reference virus at the earliest time points 
tested (d33 and d55, respectively) (Figure 2). They retained elevated, though 
decreasing, anti-spike IgG and neutralizing antibody titers through the last time points 
tested (d77 and d83, respectively). Of the two patients who received CP, P5 had low but 
detectable anti-spike IgG and neutralizing antibody titers at d200, four days after 
receiving CP. By contrast, P4, who received CP at the onset of infection, did not have 
detectable anti-spike IgG or detectable neutralizing antibody titers to the reference virus 
at d82 and d101. P1 did not receive exogenous antibody treatment, and anti-spike IgG 
and neutralizing antibody titers were negative at d37, indicating a lack of endogenous 
immune response. 

We examined the peripheral cellular immune compartment for the three 
immunocompromised patients for whom whole blood samples were available. 
Immunocompromised patients P2, P4, and P5 had lower frequencies of lymphocytes 
within peripheral blood mononuclear cells (PBMC; 2.4% for P2; 62.3% ad 38.7% for P4 
at d82 and d101; 24.0% for P5) compared to healthy controls (59.9% and 68.4%) 
(Figure 3). Age-matched patients hospitalized with COVID-19 also had low frequencies 
of lymphocytes within PBMC (48.3% and 31.1%) (Figure 3), consistent with clinical 
lymphopenia described with COVID-1912,13. 

The three immunocompromised patients had low to undetectable frequencies of 
CD19+ B cells within the lymphocyte population (0.19% for P2, 0.01% for P4 at d82 and 
d101, and 0.01% for P5) compared to healthy controls (8.93% and 4.44%) or COVID-19 
controls (21.89% and 32.91%) (Figure 3). We were not able to measure cellular 
responses for P3 due to severe anemia, however the patient received rituximab 3 
months prior to infection, and at d260 still exhibited clinically low T and B cell counts. 
Thus, basic immune phenotyping data suggest that the antibody responses against 
reference SARS-CoV-2 virus observed in P2, P3, and P5 were due to exogenous 
treatment rather than an endogenous immune response.  

Although patients P2, P4, and P5 all had CD3+, CD4+, and CD8+ T cells, only P4 
and P5 had robust SARS-CoV-2 specific T cell responses to SARS-CoV-2 peptide 
pools (Figure 4). This response was predominantly effector CD8+ T cells secreting 
antiviral IFNg or both IFNg and TNF following ex vivo PBMC stimulation with pools 
containing spike peptides, but also included multi-functional CD4+ T cell responses 
against pools containing spike peptides for P5. Both P4 at d82 and d101 and P5 at 
d200 exhibited higher magnitude SARS-CoV-2 CD8+ T cells responses than either age-
matched COVID-19 control at d13 or d18. In contrast, P2 at d66 and the healthy 
controls had only baseline levels of SARS-CoV-2 specific T cell responses (Figure 5, 
Figure 6). All subjects elicited T cell responses to a positive control antigen. 
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Intra-patient SARS-CoV-2 evolution 

To assess within-patient SARS-CoV-2 diversity and evolution, we performed 
high-depth viral sequencing from residual nasopharyngeal samples collected across 1-6 
time points per patient (Figure 1). Phylogenetic analysis of consensus SARS-CoV-2 
sequences indicated that patients were infected with viral lineages circulating in the 
community (Figure 7). Sequences belonged to SARS-CoV-2 lineages B.1.2 (P1, P2, 
and P3), B.1.568 (P4), and B.1.493 (P5). Longitudinal samples were available from 
patients P2, P3, and P4, and consensus sequences from each were monophyletic, 
reflecting within-host evolution. Compared to the first available time point, between 4 
and 26 consensus single nucleotide polymorphisms (SNPs) arose within each patient, 
most of which were nonsynonymous and many of which occurred in the spike protein 
(Figure 8).  

Through analysis of deep sequencing data, we identified intra-sample single 
nucleotide variants (iSNVs) present at >2% frequency in the patients with longitudinal 
samples available (P2-P4). We identified both iSNVs and fixed mutations in spike 
regions known to be associated with immune escape (Figure 9) . P2 and P3 (treated 
with bamlanivimab) experienced rapid evolution in the spike RBM, the target of 
bamlanivimab. Specifically, in P2, RBM substitution Q493R (compared to Wuhan-Hu-1) 
was present at d28 but reverted to the ancestral Q493 just 11 days later, at d39. At the 
same time, substitution S494P arose at the adjacent amino acid position. Both sites 
remained monomorphic until d75, when Q493R and S494 were again observed at 
frequencies of 20-25%. RBM substitution E484K also arose in P2 between d28 and d39 
and remained detectable thereafter, but only at intermediate frequencies (29-45%), with 
the ancestral E484 remaining dominant. Evolution at site 484 also occurred in P3, in 
whom E484Q was fixed at d51, transiently became polymorphic with E484K at d56 
(66% frequency E484K, 34% frequency E484Q), reverted to fixed with E484Q at d79, 
d91, and d101, and was fixed with E484K at d302. Thus, in both P2 and P3, substitution 
E484K was present either intermittently or at intermediate frequency.  

We also observed changes in the spike NTD, a target of some potently 
neutralizing antibodies4 but not bamlanivimab (Figure 9). In P2, a proline residue 
rapidly replaced the serine residue at site 272 between d28 and d39, with a low level of 
serine circulation apparent again at d75. In P3, NTD deletion V143-Y144 was present 
throughout infection, accompanied by adjacent substitution Y145D at all time points but 
the last. In addition, there were transient deletions of the upstream 5 amino acids (138-
142) at d56, the upstream 1 amino acid (142) at d101, and the upstream 2 amino acids 
(141-142) at d302. These deletions occurred in the NTD recurrent deletion region 2 
(RDR2)4, where similar deletions have been observed in other immunocompromised 
patients1,2,14–16.  

In contrast to the virus evolution observed in two patients treated with 
bamlanivimab, we did not detect consensus-level mutations or iSNVs in the RBM or 
NTD for P4 at either d77, d100, or d109 (Figure 8, Figure 9), after CP treatments at d0 
and d104. For each of the other two patients, only one sample was available. P1, who 
was not treated with exogenous antibodies, did not have consensus-level spike RMB or 
NTD mutations at d30, but did have substitution Q677P in the spike S1 subunit. P5 was 
infected for substantially longer and did not have consensus-level spike RBM or NTD 
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mutations prior to treatment with CP at d192. Only one iSNV was observed in P1, and 
none in P5, which may have been due to low sequencing depth (Table 2). Overall, we 
thus observed the emergence of spike mutations associated with immune evasion in 
only the patients undergoing bamlanivimab treatment.  

 
Neutralization of autologous spike variants 

To assess whether the variant spike proteins from P1, P2, and P3 were 
recognized by antibodies in autologous serum, we constructed SARS-CoV-2 
pseudoviruses using replication incompetent lentiviruses expressing spike from the 
reference virus Wuhan-Hu-1, as well as the spike variants. All pseudoviruses infected a 
human cell line expressing ACE2 and could be neutralized by the human-derived anti-
SARS-CoV-2 mAb CC12.117 (Figure 10).  

Sera from patient P1, who did not receive exogenous antibody treatment, could 
not neutralize either pseudovirus containing autologous spike protein from d30, or 
reference virus, suggesting this patient did not elicit SARS-CoV-2 neutralizing 
antibodies. In contrast, sera or plasma from P2 and P3 neutralized the reference virus, 
but not pseudovirus containing autologous spikes (Figure 11). Specifically, five P2 
samples from d33-d77 were unable to neutralize pseudovirus with spike from either d28 
(containing P272S and Q493R) – or d39 (containing S494P, with or without E484K). 
Two P3 samples from d55 and d83 were unable to neutralize pseudovirus with the spike 
from either d51 (containing VY143del, Y145D, and E484Q) or d56 (containing 
DPFLGVY138del, Y145D, and E484K). These results suggest that, in P2 and P3 
(treated with bamlanivimab), spike mutations conferring resistance to neutralization by 
serum containing active mAb had already emerged by the first sampled time point (d28 
and d51, respectively). Moreover, the virus remained resistant to serum neutralization 
after continued spike evolution.    
 
Discussion 

Our results underscore the complex interplay between antibody-based treatment, 
endogenous immune responses, and within-host SARS-CoV-2 evolution in 
immunocompromised patients with prolonged SARS-CoV-2 infection. By examining viral 
evolution and both humoral and cellular immune responses from multiple patients, our 
study represents one of the most comprehensive investigations to date.  

Overall, our results suggest that persistent infection itself may not be sufficient to 
promote the emergence of immunologically relevant spike mutations. Instead, 
opportunities for immune escape arise when persistent virus replication is combined 
with selective pressure such as single-agent mAb treatment and the absence of 
effective endogenous immune responses. We detected viruses with neutralization 
resistant spike mutations 1-2 months after treatment with bamlanivimab, suggesting that 
escape from neutralization by exogenously supplied antibody may be a key factor in 
allowing persistent infection, and supporting the possibility that mAbs may contribute to 
the emergence of resistance mutations at the population level. Due to concerns about 
the emergence of resistance mutations, the FDA emergency use authorization for 
single-agent bamlanivimab therapy was revoked, and patients have subsequently been 
treated with alternative single or multi-agent mAb therapies. Multi-agent mAb therapy is 
theoretically less likely to select for neutralization resistance18, though it has been 
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reported19,20. Although some previous studies have indicated that convalescent plasma 
may also exert selective pressure during longitudinal SARS-CoV-2 infection3,15,16, others 
have not21, and we did not observe escape mutations in the two patients who were 
treated with CP. This is potentially due to the timing of treatment compared to sample 
collection, or a lower effective antibody titer of CP compared to mAb therapy.  

Based on the rapid emergence of spike mutations that did not confer changes in 
neutralization susceptibility, we propose that selective pressures other than single-agent 
bamlanivimab therapy were also at play in our patients with longitudinal infection. For 
example, in P2, the original spike variant with RBM substitution Q493R rapidly reverted 
to Q493, while over the same time, replacement with S494P occurred at the adjacent 
site. Both variants were neutralization resistant, consistent with prior reports22,23. 
Because the Q493/S494P variant rapidly rose in frequency and persisted throughout 
infection, it likely had a fitness advantage compared to Q493R/S494. One plausible 
explanation is ACE2 affinity, since S494P has similar binding compared to wild-type 
virus23,24, whereas Q493R is predicted to have weaker binding25. Supporting the higher 
fitness of S494P, it is much more common at a population level than Q493R, with 
12,664 sequences26 compared to 252 sequences27 worldwide as of 2021-11-19. 
Underscoring the importance of complex fitness tradeoffs, spike RBM mutation E484K 
was detected at sub-consensus levels in P2 and transiently in P3. In both patients, 
E484K arose in the setting of existing neutralization resistance and did not alter the 
virus’ neutralization profile. It may not have achieved fixation due to potentially weaker 
binding to ACE224, but its persistence at intermediate frequency could suggest 
cooperative interactions between variants28. 

Finally, we observed deletions of fluctuating length in the spike NTD RDR24 in 
one patient (P3). NTD deletions are most often reported in patients treated with CP2,14–

16, unlike our patient, but they also have been reported in immunocompromised patients 
without exogenous antibody treatment29, as well as in publicly available sequences, not 
all of which are likely to be from immunocompromised patients4, and in one 
immunocompetent patient30. Similar to our results, prior studies have observed NTD 
and RBM mutations arising as minor variants2 and/or transiently1. Overall therefore, it is 
apparent that SARS-CoV-2 has multiple pathways available to achieve neutralization 
resistance, and additional selective pressures are important in determining within-host 
evolution in patients with longitudinal infection. 

Interestingly, both patients in whom we did not observe spike RBM or NTD 
mutations (P4 and P5) were treated with CP and had SARS-CoV-2-specific T cell 
responses. P4 and P5 clinically improved soon after CP treatment, however larger 
studies have not demonstrated a benefit to CP, and it is no longer recommended for 
treatment31. Thus, our results raise interesting questions about the role of CD8+ T cells 
in immunocompromised patients. First, our results confirm that patients with B cell 
deficiencies can elicit effector T cells32. Other studies have observed functional SARS-
CoV-2-specific CD4+ and CD8+ T cell responses in patients with B cell deficiencies, 
including higher magnitude CD8+ than CD4+ T cell responses1,32,33. However, those 
studies were smaller or did not also examine humoral responses. Second, our results 
suggest that CD8+ T cells may be critical to the resolution of SARS-CoV-2 infection, as 
suggested by other studies of immunocompromised patients34. Specifically, we 
observed clinical recovery in P4, who had no detectable neutralizing antibody response 
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but did have a functional SARS-CoV-2-specific CD8+ T cell response, and in P5, who 
had functional SARS-CoV-2 specific CD4+ and CD8+T cell responses. By contrast, P2 
succumbed to disease, after exhibiting no detectable neutralizing antibody response to 
autologous virus and only baseline SARS-CoV-2-specific T cell responses. 

Notably, both P4 and P5 demonstrated higher magnitude CD8+ T cell responses 
than age-matched immunocompetent patients hospitalized with COVID-19. There are a 
number of possible explanations for this, the most parsimonious of which is disparate 
timing of sampling with respect to disease onset: d82-200 for P4 and P5 versus d13-18 
for the COVID-19 controls. Thus, sampling may have occurred prior to peak T cell 
responses in the COVID-19 controls, or there may have been a difference in quality of 
the T cells elicited during acute versus late infection. Indeed, despite highly variable 
cellular responses to SARS-CoV-2 in COVID-19 patients, studies with larger cohorts 
found that a hyperactivated/exhausted T cell “immunotype” was associated with acute 
severe disease and that the quality of T cell responses differed in acute versus 
convalescent phases35,36. Further work is needed to characterize the phenotype of 
responding T cells in COVID-19 patients with B cell deficiencies. 

Limitations to our study include a small number of patients and the use of 
convenience samples. Larger clinical studies in immunocompromised populations are 
needed, including serial sampling to further elucidate therapies that promote immune 
evasion. Our work and others’ emphasize the need to both protect 
immunocompromised patients from acquiring infection, and to prevent the forward 
spread of viruses with immune escape mutations. Such needs might be met with broad 
spectrum monoclonal antibodies and next generation SARS-CoV-2 vaccines that induce 
potent neutralizing antibody responses to prevent infection and memory CD8+ T cell 
responses to control breakthrough.  

 
Methods 

This study was approved by the institutional review board at Emory University 
under protocols STUDY00000260, 00022371, and 00045821. Clinical data was 
obtained by electronic medical review. Residual nasopharyngeal (NP) swab and serum 
samples were obtained from the Emory Medical Labs. Whole blood samples were 
obtained after patient enrollment and consent. 
 
SARS-CoV-2 molecular testing, genome sequencing, and analysis 

Total nucleic acid was extracted from NP swabs and tested for SARS-CoV-2 total 
RNA (using an N2 target) as well as subgenomic RNA as previously described37. 
Samples underwent DNase treatment (ArcticZymes, Tromso, Norway), random 
hexamer cDNA synthesis (Invitrogen, New England Biolabs), Nextera XT library 
indexing and amplification (Illumina), and Illumina sequencing. As a negative control, 
water was included with each batch of samples starting from DNase. As a positive 
control, in vitro transcribed ERCC spike-ins (NIST) were added to each sample prior to 
cDNA synthesis. In order to analyze intra-sample single nucleotide variants (iSNVs) in 
patients with more than one time point available, duplicate libraries were made from 
extracted total nucleic acid from each sample. Reads from both libraries were merged 
and underwent reference-based SARS-CoV-2 genome assembly using reference 
NC_045512.1 (viral-ngs version 2.1.19.0-rc119). Sequences from immunocompromised 
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patients were aligned with 301 reference sequences collected from patients within the 
Emory Healthcare System between 1/1/2021 and 4/30/2021 using MAFFT as 
implemented in geneious (geneious.com). A maximum-likelihood tree was constructed 
using a general time reversible model with empirical base frequencies and a 3 rate 
model in IQ-TREE version 2.0 with 1,000 ultrafast boostraps38 and visualized in FigTree 
(http://tree.bio.ed.ac.uk/software/figtree). 

To identify iSNVs, reads were mapped to reference sequence NC_045512.1 
using minimap2, variants were called using vphaser2 with maximum strand bias of 5, 
and variants annotated with SNPeff, all as implemented in viral-ngs version 2.1.19.0-
rc119. Reads containing iSNVs were manually inspected in genious (geneious.com), 
and iSNVs were removed from further consideration if they were primarily found in the 
same position across all metagenomic sequencing reads, suggesting an artefact of 
Nextera library construction. To minimize false-positives from PCR or sequencing error, 
iSNVs are only reported if they were present in two replicate libraries from each sample 
and had a total frequency greater than 2%39.  
 
Materials 

293T cells were purchased from ATCC (CRL-3216). A HeLa cell line transduced 
to stably express the human ACE2 receptor (ACE2-HeLa) was generously provided by 
David Nemazee17. Anti-SARS-CoV-2 neutralizing monoclonal IgG CC12.1 was 
generously provided by Dennis R. Burton and the International AIDS Vaccine 
Initiative17. Purified SARS-CoV-2 cross-reactive, anti-SARS monoclonal antibody 
CR302240 was generously provided by Jens Wrammert. Plasmids pCMV ∆R8.2 
(replication defective HIV-1 backbone)41 pHR’ CMV-Luc (luciferase reporter plasmid)41 
VRC7480 (expresses SARS-CoV-2 Wuhan-Hu-1 full-length spike)42 and TMPRSS2 
(expresses human TMPRSS2)42 were generously provided by the Vaccine Research 
Center, NIAID/NIH under a Material Transfer Agreement with Emory University. Plasmid 
nCoV-2P-F3CH2S43 expressing a His-tagged, pre-fusion stabilized SARS-CoV-2 spike 
trimer from Wuhan-Hu-1 isolate was generously provided by Jason McLellan. 
Previously described peptide megapools44 containing 15-mers overlapping by 10 
residues of the SARS-CoV-2 spike ORF (CD4-S); 15-mers overlapping by 10 residues 
of all other non-spike SARS-CoV-2 ORFs (CD4-R); predicted HLA class I epitopes from 
SARS-CoV-2, including spike; and predicted HLA class I epitopes from SARS-CoV-2, 
not including spike, were generously provided by Alba Grifoni, Alessandro Sette, and 
Daniela Weiskopf. 
 
SARS-CoV-2 Wuhan-Hu-1 spike trimer protein expression 

Spike trimer plasmids were transiently transfected into Expi293 cells 
(ThermoFisher) with 5 mM kifunensine (Mfr), purified with His-Trap columns (Cytiva), 
trimers selected with a Superdex 200 gel filtration column (Mfr), and finished product 
dialyzed into 20 mM Tris pH 8.0, 200 mM sodium chloride, 0.02% sodium azide by the 
BioExpression and Fermentation Facility at the University of Georgia.  
 
Generation of autologous SARS-CoV-2 pseudovirus constructs 

Q5 Site-Directed Mutagenesis Kit (New England Biolabs) was used to introduce 
mutations in VRC7480 corresponding to SARS-CoV-2 variant spike proteins identified in 
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patients P1 (d30 psV), P2 (d28 psV, d39 psV, d39 + E484K psV), and P3 (d51 psV, d56 
psV). Primers for site-directed mutagenesis were designed using the NEBaseChanger 
online tool (http://nebasechanger.neb.com/) and manufacturer recommended protocol 
and thermocycling conditions were followed. Incorporation of mutations was verified by 
Sanger sequencing. Variant open reading frames were excised from the plasmid by 
restriction digest and ligated separately into the parental VRC7480 plasmid using the 
Quick Ligation Kit (NEB). The entire spike protein open reading frame of each resulting 
variant plasmid was verified by Sanger sequencing, then used for large-scale DNA 
purification and pseudovirus production. 
 
PBMC isolation and use 

PBMCs were separated from whole blood using BD Vacutainer® Mononuclear 
CPT sodium citrate tubes and stored in a liquid nitrogen tank. Cryopreserved PBMCs 
were thawed in a 37 °C water bath and washed with RPMI 1640 containing 10% fetal 
bovine serum (FBS, Gemini), 100 units/ml of penicillin, and 100 μg/ml of streptomycin 
(Gibco) referred to as R10 complete medium, as well as 2 units/ml RNase-free DNase I 
(Sigma). Before use, cells were counted and checked for viability using a Guava cell 
counter (Luminex). 
 
SARS-CoV-2 pseudovirus neutralization assay 

Plasma and serum sample neutralizing activity was measured against SARS-
CoV-2 pseudoviruses constructed from HIV-1 lentiviruses carrying luciferase reporter 
genes and pseudotyped with full-length SARS-CoV-2 spike protein. The following 
neutralization assay was adapted from previously published methods42.  
 
Pseudovirus production 

Pseudoviruses were produced by seeding 16 million 293T cells (ATCC CRL-
3216) into DMEM with 10% heat-inactivated FBS and 1% GlutaMAX (ThermoFisher) 
(DMEM-10) in a T-150 flask the night prior to transfection and incubating at 37°C in a 
humidified 5% CO2 incubator. On the day of transfection, the HIV-1 lentiviral packaging 
plasmid, pCMV R8.2 (17.5 �g); luciferase reporter plasmid, pHR’ CMV-Luc (17.5 �g); 
VRC7480 expressing full length SARS-CoV-2 Wuhan-Hu-1 spike or patient variant 
spikes (1 �g); and a plasmid expressing human TMPRSS2 (0.3 �g) were co-transfected 
into cells using FuGENE6 transfection reagent (Promega). Flasks were incubated under 
the above conditions for 48-72 hours after transfection, and cell supernatant with 
pseudoviruses was removed, clarified by brief centrifugation, filtered (0.45 �m), and 
stored in aliquots at -80°C until use.  
 
Pseudovirus titration 

ACE2-HeLa cells were seeded in Nunc Edge 2.0 plates (ThermoFisher) at 5,000 
cells per well in DMEM-10 with 1% penicillin/streptomycin, and phosphate buffered 
saline (PBS) applied to the outer plate moats (replenished throughout the course of the 
experiment). Plates were stored at 37°C in a humidified 5% CO2 incubator. 
Approximately 24 hours later, SARS-CoV-2 pseudoviruses were diluted in a 2-fold 
dilution series in MEM with 5% FBS, 1% GlutaMAX, and 1% penicillin/streptomycin 
(MEM-5) and pre-incubated at 37°C for 45 minutes. DMEM-10 media was then removed 
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from plates with cells and 50 �l pseudovirus dilutions added onto ACE2-HeLa cells and 
incubated for two hours at 37°C. After the incubation, 150 �l MEM-5 media was added 
and plates incubated an additional 72 hours at 37°C. After 72 hours, media was 
removed, wells washed with PBS, and 25 �l Luciferase Cell Culture Lysis Reagent 
(Promega) added to wells with shaking for 15 minutes at room temperature. After 
shaking, lysates were clarified by centrifugation and 20 �l lysate added to 96-well black 
and white isoplates (Perkin-Elmer). Fifty �l luciferase substrate (Luciferase Assay 
System, Promega) was added and luminescence quantified in a BioTek Synergy 2.0 
microplate reader using a 5 second shake and a 5 second integration time with a gain of 
245 (Biotek Synergy Neo2). The mean background signal (average of signal in cell only 
wells) was subtracted from the signal of wells with pseudoviruses prior to determining 
mean pseudovirus relative light units (RLUs). The final dilution of SARS-CoV-2 
pseudoviruses yielding approximately 1,000,000-2,000,000 RLUs was selected for 
future experiments.  
 
Neutralization assay 

The same protocol was followed as for the titration above, except that 
pseudoviruses at 2X the final dilution were mixed with equal parts sample in a dilution 
series (1:15 starting dilution to achieve a final starting dilution of 1:30) in triplicate and 
preincubated at 37°C for 45 minutes in a humidified 5% CO2 incubator. To compare the 
ability of a serum, plasma, or mAb to neutralize different psV, the same input RLUs 
were used for each psV (e.g., 1,000,000 RLU of P1 d30 psV and 1,000,000 RLUs of 
Wuhan-Hu-1 psV).The pseudovirus-sample mixture was plated onto ACE2-HeLa cells 
and incubated for 2 hours at 37°C. Mean background signal (cell only wells) was 
subtracted from signal of wells containing pseudovirus or pseudovirus plus sample. 
Percent neutralization was determined using the following formula:  
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Percent neutralization curves were fitted with a 3-parameter non-linear regression 
(Prism v8) to determine the half-maximal inhibitory concentration (IC50).  
 
Samples that did not achieve 50% neutralization at 1:30 were assigned a reciprocal titer 
of �10 and were confirmed in triplicate at a single sample dilution of 1:30 in a separate, 
independent experiment (except that there was only enough P2 d55 serum to test at a 
single 1:60 dilution in a second experiment). Samples with >50% neutralization at 1:30 
were analyzed in two or more independent experiments with full serial dilutions. The 
SARS-CoV-2 neutralizing monoclonal antibody CC12.1 was used as a positive control 
for each experiment. For the negative control, sera pooled from six healthy subjects was 
utilized, where the individual negative control sera were collected in Atlanta, Georgia in 
March to April 2020 from persons with no COVID-19 history.  
 
SARS-CoV-2 Spike Trimer Capture ELISA 

The following ELISA was adapted from previously published methods17: 96-well 
half area, high binding plates (Corning #3690) were coated with anti-6x-His-tag 
monoclonal antibody (#MA1-21315MG, ThermoFisher) at 2 �g /mL in PBS at 4°C 
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overnight. After washing three times in PBS with 0.05% Tween (wash buffer), plates 
were blocked with 3% BSA in PBS for 1 hour at room temperature (RT). His-tagged 
spike trimers at 5 �g /mL in PBS with 1% BSA and 0.05% Tween (diluent) were 
incubated on plates for 90 minutes at RT. Plates were washed before heat-inactivated 
subject serum/plasma sample dilutions were applied to the plates for 90 minutes at RT. 
CR3022 was applied as a positive control. Pooled control sera from the six seronegative 
donors described above served as the negative control.  After sample incubation, plates 
were washed and alkaline phosphatase-conjugated goat-anti-human IgG (#109-055-
008, Jackson ImmunoResearch) in diluent was applied for 1 hour at RT. After washing, 
plates were developed with phosphatase substrate (Sigma) in staining buffer (40 mM 
sodium carbonate and 10 mM magnesium chloride hexahydrate, pH 9.8).  Absorbance 
was measured in a BioTek Synergy 2.0 microplate reader at 405 nm. Data were 
background-subtracted with absorbance from blank wells. Healthy control cutoffs were 
determined by measuring absorbances from six healthy control subject samples 
(described above) and applying the formula: Cutoff = mean + (standard deviation * 
2.177)45.  

Mean background-subtracted absorbances were plotted relative to sample 
dilutions and curves fitted with a four-parameter non-linear regression (Prism v8). To 
ascertain a precise endpoint titer (ET), curve data (best fit values for the bottom, top, 
logEC50, and hill slope) were processed by a MATLAB program designed to determine 
the sample dilution at which each regression curve intersected the healthy control cutoff 
value. Samples with background-subtracted absorbances below the healthy control 
cutoff were assigned an ET of 10. Samples with background-subtracted absorbances 
slightly above the healthy control cutoff but with poor curve fitting due to low signal were 
assigned an ET of 30. All samples were analyzed in at least two independent 
experiments. 
 
Immunophenotyping by flow cytometry  

Thawed Cryopreserved PBMCs were directly used for phenotypic staining. 
Approximately one million viable PBMCs were stained with Zombie aqua fixable cell 
viability dye (BioLegend) to exclude dead cells; washed with PBS containing 2% FBS, 
referred to as FACS buffer; surface-stained with the following fluorescent monoclonal 
antibodies: CD3 (clone SK7, BioLegend), CD4 (clone SK3, BioLegend), CD8 (clone 
SK1, BioLegend), CD19 (clone HIB19, eBioscience), CD20 (clone 2H7, BioLegend), 
CD45RA (clone HI100, BD), CCR7 (clone G043H7, BioLegend), CD27 (clone M-T271, 
BioLegend), CD38 (clone HB7, BioLegend). Flow cytometry data were collected on an 
LSR Fortessa (BD Biosciences) and analyzed using FlowJo software V10 (Tree Star). 
Patient P2 only had 0.5 million PBMC available for staining. 

 
Intracellular Cytokine Staining  

For measuring SARS-CoV-2-specific CD4 and CD8 T cell responses, thawed 
cryopreserved PBMCs were rested overnight in a 5% CO2 incubator at 37°C in R10 with 
DNase I. On day 2, approximately 1-2 million viable PBMCs per sample were stimulated 
for two hours at 37 °C in R10 with 1 �g/ml of CD4-S, CD4-R, CD8-A, or CD8-B, or 
negative control (R10 with equivalent peptide vehicle (DMSO)), or positive control (R10 
with 1 �g/ml Staphylococcal enterotoxin B (SEB, Sigma)) in the presence of anti-CD28 
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and anti-CD49d (BD Biosciences). After two hours, a cocktail protein transport inhibitor 
(eBioscience) was added and cells were cultured for an additional 4 hours at 37°C, then 
stored at 4°C overnight. On day 3, samples were stained with aqua cell viability dye to 
exclude dead cells, surface stained with CD3 (clone SK7, BioLegend), CD4 (clone SK3, 
BioLegend), CD8 (clone SK1, BioLegend), CCR7 (clone G043H7, BioLegend), and 
CD45RA (clone HI100, BD) for 25 minutes. After washing with FACS buffer and fixing 
and permeabilizing cells with Cytofix/Cytoperm (BD Biosciences), the cells were stained 
intracellularly with the following fluorescent monoclonal antibodies: CD154 (clone 
CD40L 24-31, BioLegend), IL-2 (clone MQ1-17H12, BD Biosciences), IFN-γ (clone 
4S.B3, eBioscience), TNF (clone Mab11, BD Biosciences). Flow cytometry data were 
collected on an LSR Fortessa (BD Biosciences) and analyzed using FlowJo software 
V10 (Tree Star). 

 
Interferon gamma ELISPOT  

Interferon gamma (IFN-γ ) ELISPOT was used to enumerate the number of 
individual T cells secreting IFN-γ  after approximately 0.2 million thawed cryopreserved 
PBMCs were stimulated with antigen. 96-well ELISPOT filter plates (Millipore, 
#MSIPS4W10) were coated with anti-human-IFN-γ  (clone 1-D1K, Mabtech) overnight 
at 4°C. Plates were washed and blocked with R10 1-2 hours at 37°C in a 5% 
CO2 incubator prior to use. Thawed and rested PBMC were resuspended in R10 at 0.2 
million cells/well and mixed with 1 μg/ml each of both SARS-CoV-2 CD4-S and CD4-R 
peptide megapools, a negative control (R10 only), or positive control (1 μg/ml SEB) in 
the presence of anti-CD28 and anti-CD49d and distributed into ELISPOT plates and 
incubated 21-24 hours at 37 °C. IFN-γ  spots were detected with biotinylated murine 
anti-human IFN-γ  antibody (clone 7-B6-1, Mabtech), followed by incubation with 
streptavidin-HRP (BD) and then developed using AEC substrate (EMD Millipore). 
Developed and dried ELISPOT plates were scanned and counted by using an 
automated ELISPOT counter (Cellular Technologies Limited). Each spot forming unit 
(SFU) indicates an IFN-γ secreting cell and is reported as the number of SFU per 
million PBMC. 
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Figures 
 
Fig. 1: Five immunocompromised patients experienced prolonged SARS-CoV-2 infection despite 
multiple treatments. Panels indicate the timing of hospital admissions (blue), treatments (dark pink) and 
SARS-CoV-2 molecular testing (medium pink) for patients P1 (A), P2 (B), P3 (C), P4 (D), and P5 (E). 
Timeline is not to scale. CT values shown are from confirmatory testing in the research laboratory to 
ensure consistency. Boxes with dark outlines and black swabs indicate nasopharyngeal samples used for 
SARS-CoV-2 sequencing, and blood drops indicate samples used for humoral or cellular analysis. 
Abbreviations: CMV = cytomegalovirus, CP = convalescent plasma, IVIG = intravenous immunoglobulin, 
R-CHOP = rituximab, cyclophosphamide, hydroxydanorubicin, vincristine sulfate, prednisone, mAb = 
monoclonal antibody (bamlanivimab), MV= mechanical ventilation, PCP = pneumocystis carinii 
pneumonia.  
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 19

Fig. 2: Antibody responses to SARS-CoV-2 reference isolate in immunocompromised patients 
reflect exogenous antibody treatments. A) Endpoint IgG titers to SARS-CoV-2 Wuhan-Hu-1 spike 
trimer in serum samples collected from immunocompromised patients at various time points post-
infection. B) Neutralizing titers of patient sera against a SARS-CoV-2 Wuhan-Hu-1 pseudovirus (psV) at 
various time points post-infection. PsV neutralizing titers represent the reciprocal serum dilution at which 
half-maximal psV neutralization was observed, or IC50. Data show geometric means and geometric SD 
from 2-5 independent experiments. The dotted line represents the limit of detection (LOD). 
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 20

Fig.3: Gating strategy used to identify patient frequencies of lymphocytes, B cells, and T cells 
PBMC from two healthy control subjects, immunocompromised patients P4 (d82 and d101) and P5 
(d200), and two age-matched patients hospitalized with COVID-19 (COVID-19 controls 1 and 2) were 
stained with a dye that penetrates dead cells and fluorescent antibodies against surface markers and 
analyzed by flow cytometry. B cells and T cells are identified by the lineage specific markers CD19 or 
CD3, respectively. 
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Fig. S4: Gating strategy used to identify SARS-CoV-2-specific CD4+ and CD8+ T cells Frequencies 
of non-naive CD4+ or CD8+ T cells responding to stimulation with a negative control (media with 
equivalent peptide vehicle) or peptide megapool containing predicted CD8+ T cell epitopes of SARS-CoV-
2 ORFs (including spike) as an example of antigen-specific responses, were identified by intracellular 
cytokine staining and flow cytometry.  
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Fig. 5: Patients P4 and P5 elicit functional CD8 and CD4 T cell responses against SARS-CoV-2 
PBMC isolated from patient P4 at d82 and d101 and from patient P5 at d200, as well as from a healthy 
control donor (HC2) and two age-matched patients hospitalized with COVID-19 (COVID 1 and 2) were 
stimulated with a peptide megapool containing A) 15-mers from the spike ORF, B) 15-mers from all other 
non-spike SARS-CoV-2 ORFs, C) predicted CD8+ T cell epitopes from ORFs, including spike, or D) 
predicted CD8+ T cell epitopes from non-spike ORFs; or E) a positive control antigen (Staphylococcus 
enterotoxin B, SEB); or a negative control (media with equivalent peptide vehicle). Frequencies of non-
naive T cells out of total CD154, IFN-�, TNF, or IL-2 expressing CD4+ or CD8+ T cells responding to each 
stimulation were measured by flow cytometry, and background responses subtracted. 
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Fig. 6: Patient P2 elicits background levels of SARS-CoV-2-specific T cell responses. PBMC from 
patient P2 at d66 and from a healthy control (HC1) were separately stimulated with a peptide megapool 
containing 15-mers against all SARS-CoV-2 ORFs, a negative control (media with equivalent peptide 
vehicle), or a positive control (staphylococcal enterotoxin B, a superantigen). IFN-�-secreting cells were 
detected by ELISPOT and quantified as spot-forming units (SFU) per well (numbers in red) and SFU per 
million PBMC (number in black). The assay limit of detection is �10 SFU/well. 
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Fig. 7: SARS-CoV-2 consensus sequences from each immunocompromised patient indicate 
infection from the community and no evidence for reinfection in patients with longitudinal 
samples. Maximum-likelihood tree includes consensus SARS-CoV-2 sequences from P1 (n = 1), P2 (n = 
4), P3 (n = 6), P4 (n = 3), and P5 (n = 1), as well as 301 reference sequences from patients within the 
Emory Healthcare system between 1/1/2021 and 4/30/2021. Sequences from each of the three patients 
with longitudinal samples form monophyletic clades, indicating no evidence for reinfection. 1,000 
bootstrap replicates were performed, and percent bootstrap support is shown for the most recent 
common ancestor of each immunocompromised patient with longitudinal sampling.  
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Fig. 8: Consensus-level SNPs across patients. Filled green squares show SNPs that reach the 
consensus level relative to the Wuhan-Hu-1 reference, annotated by gene and corresponding amino acid 
change (if applicable). Sites where within-patient consensus-level changes occur over the course of 
infection are ones that transition from green to unfilled squares or from unfilled squares to green squares. 
Abbreviations: non-coding region (NCR); leader protein (LP); nonstructural protein (nsp); RNA-dependent 
RNA polymerase (RdRp); 3C-like proteinase (3C-l.p.); 3'-to-5' exonuclease (exonuclease); 2'-O-ribose 
methyltransferase (2'-O-r.m.); ORF3a protein (ORF3a); envelope (E); membrane glycoprotein (M); 
ORF7a protein (ORF7a); ORF8 protein (ORF8); nucleocapsid phosphoprotein (NcPh); deletion from 
A21974 to 21994 (del1); deletion from D138-Y144 and Y145D (AA1); deletion from T21983 to 21994 
(del2); deletion from L141 to Y144 (AA2); deletion from T21986 to 21994 (del3); deletion from G142-Y144 
and Y145D (AA3); deletion from T2189 to 21994 (del4); deletion from V143-Y144 and Y145D (AA4). 
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44 C T X upstream NCR 17403 C A X A5713 helicase

241 C T X X X X X X X X X X X X X X X upstream NCR 17483 C T X X X T5740I helicase

246 G A X upstream NCR 17866 G A X V5868I helicase

316 T G X X S17R LP 18424 A G X X X X X X X X X X N6054D exonuclease

521 G T V86F LP 18647 C T X X X X P6128L exonuclease

595 T C H110 LP 19009 G T X D6249Y exonuclease

1042 G T X L293F nsp2 19402 C T X X X H6380Y exonuclease

1059 C T X X X X X X X X X X X X X X T265I nsp2 19763 C T X T6500I endoRNAse

1347 C T X P361L nsp2 20520 T C X X X X D6752 endoRNAse

1630 A G X Q455 nsp2 21304 C T X X X X X X X X X X R7014C 2'-O-r.m.

2113 C T X X X X X X I616 nsp2 21606 G T C15F spike

2156 C T X L631F nsp2 21614 C T X L18F spike

2365 T C X X X X X X L700 nsp2 21811 C A X V83 spike

3037 C T X X X X X X X X X X X X X X X F924 nsp3 21846 C T T95I spike

3048 A G X D928G nsp3 21907 G T Q115H spike

3176 C T X X X P971S nsp3 21952 C T X V130 spike

4230 C T T1322I nsp3 21974 del1 G X AA1 spike

4233 A G X D1323G nsp3 21983 del2 - AA2 spike

4241 A G X X X I1326V nsp3 21988 del3 - X AA3 spike

4250 T C X X X Y1329H nsp3 21989 del4 - X X X AA4 spike

4574 A C X T1437P nsp3 22206 A G X D215G spike

5008 G T X X X X T1581 nsp3 22359 A G x Y266C spike

5014 T C X V1583 nsp3 22376 C T X P272S spike

5170 C T X Y1635 nsp3 23012 G A X X E484K spike

5175 C T X T1637I nsp3 23012 G C X X X X E484Q spike

5178 C T X X X X X X X T1638I nsp3 23040 A G X Q493R spike

5178 C A T1638N nsp4 23042 T C X X X S494P spike

5180 G A X X X D1839N nsp3 23243 C T X X X P561S spike

5629 G T T1788 nsp3 23284 T C X X X X X X D474 spike

5654 C T X X X L1797 nsp3 22306 C T X L582F spike

5830 G A X X X X X X K1855 nsp3 23380 C T X X X X D606 spike

6001 T A X I1912 nsp3 23403 A G X X X X X X X X X X X X X X X D614G spike

6025 T C X X X X X X Y1920 nsp3 23531 A G X N657D spike

6040 C T X F1925 nsp3 23592 A C X Q677P spike

6466 A G X X X X K2067 nsp3 23758 C T X X X X X X T732 spike

6896 C T X L2211 nsp3 25563 G T X X X X X X X X X X X X X X X Q57H ORF3a

7081 C T X X N2272 nsp3 25599 G T X W69C ORF3a

8083 G A X X X X M2606I nsp3 25907 G T X X X X X X X X X X X G172V ORF3a

9165 C T X T2967I nsp4 25913 G A X X X G174D ORF3a

9223 C T X H2986 nsp4 26020 G T X D210Y ORF3a

9653 G T X X X V3130F nsp5 26369 A G X Y42C E

10279 C T L3338 3C-l.p. 26527 C T X A2V M

10319 C T X X X X X X X X X X X L3352F 3C-l.p. 26530 A G X D3G M

10323 A G X X X K3353R 3C-l.p. 26590 T C X V23A M

10450 C T X X X P3395 3C-l.p. 26957 T C X L145 M

11083 G T X L3606F nsp6 27074 G T X X X X S184 M

11451 A G X Q3729R nsp6 27712 A G X I107V ORF7a

11916 C T X S3884L nsp7 27798 G T X A15S ORF7b

12049 C T X X X N3928 nsp7 27870 G T X E39* ORF7b

12439 C T X X X X P4058 nsp8 27916 G T X X X G8V ORF8

12455 C A X X X L4064I nsp8 27964 C T X X X X X X X X X X X S24L ORF9

12756 C A X T4164N nsp9 28253 C T X F120 ORF10

12775 T C A4170 nsp9 28328 G A X G19R N

12806 G A X X X X X X V4181I nsp9 28344 C T X T24I N

12970 C T X X X N4235 nsp9 28472 C T X X X X X X X X X X X P67S N

13887 C T X Y4541 RdRp 28603 C T X X X X F110 N

14408 C T X X X X X X X X X X X X X X P4715L RdRp 28606 C T X X X X X X Y111 N

14529 C T X X S4755 RdRp 28842 G T X X X S190I N

14805 C T X X X X Y4847 RdRp 28869 C T X X X X X X X X X X X P199L N

15276 T A X X X P5004 RdRp 29194 T C X F307 N

15591 T C X D5109 RdRp 29370 C T X X X X T366I N

16428 C T X X X Y5388 helicase 29377 T A X P368 N

17285 C T X X X S5674L helicase 29700 A G X X X X X X downstream NCR
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Fig. 9: SARS-CoV-2 spike mutations from five immunocompromised patients.Mutations in the 
SARS-CoV-2 spike gene for each patient and time point, compared to Wuhan-Hu-1. Shading denotes 
mutation frequency. For each mutation, the variant nucleotide listed in the ‘Observed’ row, and the amino 
acid mutation is listed below the plot. Gray text indicates synonymous mutations. Abbreviations: fs = 
frameshift, del = amino acid deletion, d1 = deletion from 21974-82; d2 = deletion from 21983-5; d3 = 
deletion from 21986-8; d4 = deletion from 21989-94; d5 = deletion from 21991-3. B) Mutations in the 
SARS-CoV-2 spike gene for all patients and time points, mapped to their locations on the genome. 
Abbreviations: NS = nonsynonymous, S = synonymous, Del = deletion, Ins = insertion, NTD = N terminal 
domain, RBD = receptor binding domain, FP = fusion peptide, HR1 = heptad repeat 1, HR2 = heptad 
repeat 2, TM = transmembrane, CT = C-terminal.  
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Fig. 10: Autologous variant pseudoviruses (psV) are infectious and neutralized by mAb CC12.1 A) 
Serial dilutions of transfection supernatants containing indicated psV were incubated with ACE2-
expressing cells and assessed for expression of a luciferase reporter plasmid as a measure of productive 
infection. All psV were infectious, as demonstrated by high levels of background-subtracted 
luminescence, quantified in relative light units (RLUs), on the y-axis. Variation in RLUs obtained for 
different psV is not necessarily indicative of differences in psV infectivity, as it could also reflect variation 
in transfection efficiencies. B) Graphs show the ability of mAb CC12.1 to neutralize SARS-CoV-2 psV with 
Wuhan-Hu-1 spike or spikes expressing mutations corresponding to autologous viral variants P1 d30, P2 
d28, P2 d39, P2 d39 + E484K (P2 minor variant), P3 d51, or P3 d56.  
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Fig. 11: Sera/plasma from patients in immunocompromised cohort cannot neutralize autologous 
viral variants. Graphs show the ability of sera/plasma from patients P1 (A), P2 (B), or P3 (C) at indicated 
time points post infection to neutralize SARS-CoV-2 pseudoviruses with Wuhan-Hu-1 spike or spikes 
expressing mutations corresponding to autologous viral variants P1 d30, P2 d28, P2 d39, P2 d39 + 
E484K (P2 minor variant), P3 d51, or P3 d56. A serum, plasma, or monoclonal antibody is designated 
non-neutralizing if it does not achieve 50% neutralization at the highest concentrations tested. Graphs 
represent the mean and SD of three replicates and are representative of at least two independent 
experiments. 
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Tables 
 
Table 1: Clinical features of five immunocompromised patients with persistent SARS-CoV-2 
infection. Abbreviations: ALL= acute lymphoblastic leukemia; cGVHD = chronic graft versus host 
disease; DLBCL = diffuse large B cell lymphoma; MDS = myelodysplastic syndrome; PBSCT = peripheral 
blood stem cell transplantation; R-CHOP = rituximab, cyclophosphamide, hydroxydanorubicin, vincristine 
sulfate, prednisone; MMF= mycophenolate mofetil; IVIG = intravenous immunoglobulin. 
 
 Age 

Range, 

Gender 

Underlying 

Condition 

Immuno- 

suppressive  

Treatment 

Bamlanivimab Convalescent 

Plasma 

Latest 

SARS-

CoV-2 

PCR+ 

Outcome 

P1 60-69, 

M 

B-cell ALL, 

PBSCT, cGVHD 

rituximab,  

tacrolimus 

N N d42  Recovery 

P2 40-49, 

F 

DLBCL R-CHOP Y (d4) N d75 Death 

P3 30-39, 

F 

MDS, PBSCT, 

cGVHD 

rituximab, MMF,  

prednisone 

Y (d8) N d302 Recovery 

P4 40-49, 

M 

thymoma,  

thymectomy,  

Good Syndrome 

N/A N Y (d0 and 

d104) 

d109 Recovery 

P5 40-49, 

M 

marginal zone 

lymphoma 

rituximab N Y (d196) d201 Recovery 
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Table 2: Sequencing metrics. Total reads indicates total number of metagenomic sequencing reads 
obtained per sample, and is the sum of at least two independent sequencing libraries. Coverage indicates 
percent SARS-CoV-2 genome coverage based on reference-based assembly to NC_045512.1, and 
mean depth indicates mean depth of coverage at each SARS-CoV-2 nucleotide position. 
  

Sample Total Reads Coverage Mean depth 
Patient 1    

    
d30: 706F  170,162,696 100% 141 

 
Patient 2 

   

    
d28: 705E  17,361,712  100% 4,656 

    
d39: 798T  20,598,872  100% 12,303 

    
d53: 962B  17,485,750  100% 7,907 

    
d75: 1064Z 15,756,412 100% 12,555 

 
Patient 3 

   

    
d51: 760H  326,861,238  100% 427 

    
d56: 769Q  19,928,108  100% 1,589 

    
d79: 997K  373,163,364  100% 641 

    
d91: 1034V 519,308,996 100% 3,031 

    
d101: 1100J  499,743,018  100% 432 

    
d302: 2641Q 239,745,572 100% 210 

 
Patient 4 

   

    
d77: 1063Y 376,481,746 100% 352 

    
d100: 1215U 353,338,568 100% 386 

    
d109: 1253G 188,162,712 100% 358 

 
Patient 5 

   

    
d192: 1183O  105,667,508  100% 185 
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5.1 Abstract

The within host evolution of SARS-CoV-2 is the primary setting where selection

acts on the virus, and is ultimately the source of viral variants that are more trans-

missible, prone to immune escape, or altered COVID-19 pathology. In particular,

immunocompromised hosts and hosts with chronic infections have been implicated as

a source for the emergence of variants of concern because selection has more time to

act on within host viral populations than in acute infections. Analyses of the diver-

sity that is generated in these hosts have revealed large amounts of viral diversity,

indeed, some of which confer immunologically relevant phenotypes. However, here

we underscore the importance of considering genetic linkage when interpreting the

dynamics of these intra-host single nucleotide variants (iSNVs). Using samples from

an immunocompromised host, we present the conclusions that one might draw about

the evolutionary dynamics within the host when assuming iSNVs are independent, in

contrast to narratives that include observed and inferred genetic linkage.
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5.2 Introduction

The evolution of viruses within their individual hosts is what gives rise to adaptations

that can impact entire host populations. For emerging pathogens like SARS-CoV-2,

the community is still working to understand how evolutionary forces within host af-

fect the adaptation of the virus. Experimental work on SARS-CoV-2 has found that

that mutations occur at a rate of 10−6 mutations/site/replication cycle, corresponding

to 0.03 mutations per replication across the roughly 30 kb viral genome (Amicone

et al., 2022). Inferred transmission bottlenecks between hosts of under 10 virions

(Lythgoe et al., 2021, Martin and Koelle, 2021, Braun et al., 2021, San et al., 2021)

and narrow bottlenecks between tissues at the within host level (Wang et al., 2021)

impose strong genetic drift on the viral population. While selection pressure from the

human immune system is generally weak over the course of an acute infection (Lyth-

goe et al., 2021, Braun et al., 2021), chronic infections in immunocompromised or

immunosuppressed individuals are thought to allow more opportunity for mutations

to arise and selection to act on them (Siqueira et al., 2021). Indeed, one prominent

hypothesis for the emergence of variants of concern (VOCs) such as Alpha and Omi-

cron is that they evolved in chronically infected individuals, where selection imposed

by the immune system or drug treatments had more time to act (Ghafari et al., 2022).

In these individuals, as well as in acute infections, multiple host tissues can be in-

fected and the diversity of viral subpopulations can vary across tissues (Wang et al.,

2021). This points towards the potential for compartmentalization that may occur

within hosts as a source of genetic diversity in a sampled tissue. Finally, re-infection

can be a potential source of additional genetic diversity and this phenomenon is more

likely to occur for hosts experiencing a long-term infection.

To characterize patterns of within-host SARS-CoV-2 evolution, many studies have

made use of repeated sampling of individuals over the course of their infection (Scherer

et al., 2022, Tonkin-Hill et al., 2021, Valesano et al., 2021, Wu et al., 2021). The ma-
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jority of these studies describe the dynamics of viral diversity by identifying intrahost

single nucleotide variant (iSNVs) from these samples and examining their frequency

dynamics over time. The within-host dynamics of iSNVs have been used to determine

whether particular iSNVs evolve in parallel across epidemiologically unlinked hosts

(Valesano et al., 2021) and to infer transmission clusters (Popa et al., 2020, San et al.,

2021). These iSNV data have also been used to infer transmission bottleneck sizes

(Popa et al., 2020, Martin and Koelle, 2021).

While identifying iSNVs and tracking their dynamics has greatly contributed to

our understanding of SARS-CoV-2 evolution over the last two years, assuming that

iSNVs evolve independently from one another can lead to erroneous inferences about

the fitness effects of single point mutations. This is because genetic linkage can be

present between loci, and selection acting on one locus can therefore impact iSNV

frequency dynamics at another locus. This process of genetic hitchhiking occurs most

commonly when iSNVs lie in close proximity to one another on the viral genome, such

that recombination between iSNV loci is rare and linkage disequilibrium can thus

persist over longer periods of time. Genetic linkage and the potential for hitchhiking

underscores the importance of not relying solely on a panel of iSNV frequencies for

evolutionary inference.

Some SARS-CoV-2 studies have gone further to look at genetic linkage. Most of

these studies that utilize haplotypes have focused on quantifying transmission bot-

tleneck sizes between hosts (Sekizuka et al., 2020, San et al., 2021), rather than

using them to dissect the evolutionary dynamics of SARS-CoV-2 within individual

hosts. Genetic linkage is also used for statistical inference of co-infection. Single

nucleotide polymorphisms (SNPs) that are clade-defining at the epidemiological level

(Manuto et al., 2022, Zhou et al., 2021) are utilized for constructing narratives around

intra-host evolution since clade-defining SNPs (cdSNPs) often occur together. The

assumption of cdSNPs being linked has also been used for detecting recombinant
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SARS-CoV-2 genomes (VanInsberghe et al., 2021). Additional methods for detect-

ing co-infection using genetic linkage use physical read data to identify co-occurring

iSNVs (Francisco Junior et al., 2022), thus reconstructing haplotypes. Others have

used haplotype analysis to refine analyses of within-host SARS-CoV-2 evolution, but

even these can be imperfect. To determine haplotypes across the entire genome,

statistical inference is used on iSNV frequencies. For example, Wu et al. (2021) as-

sert that two of their patients were re-infected because the dominant haplotype in

their first samples were replaced in their second samples. This was then confirmed

with phylogenetic analysis. Had they only relied on iSNV frequencies, they could

have attributed the presence of new haplotypes to de novo mutations on the original

background sequences.

Here, we provide an example of how incorporating a haplotype perspective can

fundamentally alter the interpretation of within-host viral evolutionary dynamics.

From a study of immunocompromised patients with chronic SARS-CoV-2 infections

(Scherer et al., 2022), we use short-read sequences from longitudinal samples to call

iSNVs and to both identify and infer haplotypes, and offer interpretations of their

frequency dynamics.

5.3 Methods

5.3.1 Data

We use nasopharyngeal swab samples from a single patient that were collected at

Emory University Hospital in Atlanta, Georgia as part of a larger study of five im-

munocompromised individuals experiencing chronic SARS-CoV-2 infection and pre-

senting with COVID-19 symptoms (Scherer et al., 2022). We chose Patient 2 as

our focal patient because high frequency intrahost single nucleotide variants (iSNVs)

called from this patient were close enough on the genome to observe physical haplo-
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types, rather than relying solely on statistically inferred haplotypes.

The patient was a 46-year old woman who first tested positive for SARS-CoV-2 on

January 4, 2021. We label this date as day 0 (d0) of their documented infection. The

patient’s course of treatment included monoclonal antibodies (bamlanivimab) on d4 of

infection and two courses of antiviral medication (remdesivir), administered between

d28 to d32 and again between d40 to d45 (Fig. 5.1A). The patient ultimately passed

away on d86 from disease-related complications. A more detailed clinical course for

this patient is available in the supplementary materials of (Scherer et al., 2022).

Samples for viral sequencing were collected on d28, d39, d53, and d75 of infec-

tion. Each of these samples had low SARS-CoV-2 PCR cycle threshold (Ct) values,

indicative of high viral loads (Fig. 5.1A). Two technical replicates of each sample

allowed for the creation of two duplicate libraries sequenced at high coverage using

Illumina technology. Additional details on the sequencing methodology and summary

statistics can be found in the supplementary materials of (Scherer et al., 2022).

Sequencing reads were then used to create consensus sequences using viral-ngs

(version 2.1.19.0-rc119) for reference-based assembly against the Wuhan reference

strain, NC 045512.1. Alignment of reads from each library against the consensus

sequence from d28 was done using bbmap (https://sourceforge.net/projects/

bbmap/). We used the d28 consensus sequence rather than the canonical Wuhan

reference strain to detect evolutionary changes from the sequence presumed to be most

closely related to the strain that initially infected the patient. We used the following

parameters when implementing bbmap: minratio=0.8, maxindel=100, ambig=toss,

minaveragequality=15, qin=33, maxlen=150.

5.3.2 Calling of intrahost single nucleotide variants

After aligning each library to the d28 consensus genome, the reads were then analyzed

using LoFreq (Wilm et al., 2012) to detect iSNVs relative to the d28 consensus. We

https://sourceforge.net/projects/bbmap/
https://sourceforge.net/projects/bbmap/
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Figure 5.1: Throughout the duration of the patient’s clinical course, four nasopharyngeal
swabs were used to collect samples for next-generation sequencing. (A) The four samples
collected from the patient that were sent for sequencing were collected on d28, d39, and
d53, and had low Ct values, shown next to their respective points. The patient received
two forms of treatment for their SARS-CoV-2 infection: monocolonal antibody treatment
(bamlanivimab; mAb), and antiviral medication (remdesivir). mAb administered on d4 is
denoted by the green Y-shaped icon. Remdesivir treatment from d28 to d32 and again
from d40 to d45 is indicated by the gray shaded regions. The patient succumbed to the
infection on d86, shown by the black X-shaped icon. (B) iSNV frequencies from the same
sample are plotted by library. Red dashed lines show the 2% frequency cutoff for calling an
iSNV. Red dotted lines show the 10% frequency cutoff for being considered high-frequency
iSNVs. iSNVs close to the black dashed one-to-one line indicate frequencies called from
each library are nearly equal. Red points are those that are included in the analysis within
this manuscript. The white points are excluded for being below the described frequency
thresholds or being designated as spurious.

compare the iSNVs called by LoFreq in each individual library and we consider iSNVs

that are called in each library above a 2% threshold as validated iSNVs (Fig. 5.1B).

The source of the discrepancies between libraries could be mismapped reads, stochas-

ticity of the sequencing platform, or uneven coverage between libraries.

We also merged the two libraries for each respective sample, and called iSNVs from

the merged set of reads using LoFreq. We further cleaned the data manually by look-

ing at the loci detected above 10% in the merged library, visualized using Geneious

Prime 2022.0.2. By library, we disposed of reads that were clearly mismapped, as
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indicated by roughly 10 or more variant nucleotides in a row. Reads with this charac-

teristic often had high homology elsewhere in the SARS-CoV-2 genome. Once these

reads were preened from the respective libraries, we ran LoFreq on each individual

library, and the merged libraries. Once again, iSNVs were validated only if detected

above 2% in both libraries individually (Fig. 5.1B). The frequencies reported here are

those from the merged lofreq calls. For this study, we further narrow the panel of

iSNVs by only considering those that have a frequency > 10% in one or more samples.

Amino acid changes were annotated using the software Nextclade (Aksamentov et al.,

2021).

5.3.3 Reconstruction of haplotypes

We used the aligned reads from the merged libraries to detect haplotypes. Using be-

spoke scripts, we identify reads with more than one validated iSNV present. Among

the reads that span these sites, we determine the number of reads that have each com-

bination of variant and reference nucleotides. We only identified haplotypes among

four sites (22999, 23027, 23029, 23050) because those were the only high frequency

iSNVs close enough to be located on the same reads. We then use these physically

observed haplotypes as the basis for evolutionary explanations of iSNV dynamics.

5.4 Results

Figure 5.1B shows the frequencies of called iSNVs by replicate library. While there is

generally high congruence between iSNV frequencies, some iSNVs are called in one of

the two libraries for a given sample. Most of the iSNVs called in only a single library

are present in that library at very low frequencies. Exceptions to this are evident on

d28 and d39, where iSNVs having frequencies of 40% (d28), 40% (d39) and 80% (d39)

in the first library are not called in the second library. Two of these iSNVs occur in
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the first 15 nucleotides of the alignment, which is prone to sequencing error. In the

other, there is no read support in the second library. Therefore, despite being called

at high frequency in one library, they did not meet our criteria for high quality iSNV

calls and we do not consider them further in the analysis.

At the first time of sampling, there are very few iSNVs present (Fig. 5.1B), so we

first compare the d28 consensus sequence to what is circulating in the population to

determine how much genetic change may have occurred since d0. Because these sites

become important later, we focus on the sites that we can observe physical linkage,

22999, 23027, 23029, 23050. The respective nucleotide identities from the consensus

genome on d28 are GGTA. Using the consensus sequences collected in Georgia during

the patient’s infection period, we can see that there are two dominant haplotypes at

our physically linked sites circulating at this time, GATA and GATT, with several

others circulating at low frequency (Fig. 5.2). At the beginning of the infection,

GATA is at high frequency, so it is feasible that a virus with these mutations initially

infected the patient. Under this assumption, the viral population within the patient

had at least one mutation sweep the population, since by d28, 23027G has fixed in

the host (Fig. 5.3B). This site is implicated in an amino acid change within spike

at site 493, which is a known target of bamlanivimab therapy (Guigon et al., 2022,

Focosi et al., 2021), which this patient received on d4 of their infection.

5.4.1 iSNV dynamics appear to indicate multiple targets of

selection

High-frequency iSNVs were identified across the SARS-CoV-2 genome, concentrated

in the spike gene (Fig. 5.3A, sites 21557 and above). While the majority of these

iSNVs were nonsynonymous, several were synonymous. Several iSNVs appear to

reach fixation between d28 and d39: T22363C, G23027A, and T23029C (Fig. 5.3B).

These three sites are all nonsynonymous, and so are likely to have phenotypic effects.
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Figure 5.2: Observed consensus-level combinations of mutations at a subset of sites cir-
culating in Georgia during the duration of the patient’s infection. (A) Sequences here
are taken from one week prior to symptom onset and first positive PCR test, to the final
sampled time point of the infection. Alignments to the d28 consensus were done using
Geneious. Complete Georgia consensus genomes were obtained from GISAID. Sites and
nucleotide identities presented here the same as Fig. 5.4A, 22999, 23027, 23029, and 23050.
The red dotted line indicates the first positive PCR test from the patient and each dashed
gray line shows the dates for sequenced patient samples.

Their rapid rise between d28 and d39 indicates that these iSNVs may be beneficial,

confer some fitness advantage within this immunocompromised host environment.

Two additional iSNVs emerge and rise to high frequencies (∼ 50%) between d28

and d39 (C7068T and G22999A). The fixation of these three iSNVs and the increase

in frequency of the latter two iSNVs occurred in concert with remdesivir treatment

administered from d28 to d32 of the infection period (Fig. 5.1A). With all of these

iSNVs being nonsynonymous, with the exception of 7068T, and their presence in

the spike region, it is likely that selection was imposed at these sites as a result of

treatment. Additional high-frequency iSNVs appear by d53 and d75. The frequencies
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of the iSNVs that are first detected on d58 rise by d75 (Fig. 5.3B). Together, the rapid

frequency increases of the 12 iSNVs shown in Fig. 5.3 indicates that positive selection

is likely acting on at least a subset of these iSNVs.

Between d53 and d75, the three iSNVs that previously appeared fixed each de-

creased in frequency. These frequency decreases were each accompanied by the reap-

pearance of the reference nucleotides at these sites (rather than the emergence of a

third nucleotide). Under the assumption of iSNV independence, their decline may

reflect changes in the within-host environment that would now favor the reference

nucleotides. Together, the detection and analysis of individual iSNVs in patient 2

indicates that at least 12 iSNVs are likely to confer a fitness advantage within the

context of this individual. Additionally, one could surmise that the patient may have

become reinfected with circulating SARS-CoV-2 virus, and that the drop in iSNV

frequencies at sites 22363, 23027, and 23029 resulted from a coinfection on d75.

5.4.2 Haplotype reconstruction casts doubts on independent

selection on individual iSNVs and points towards the

role of within-host reservoirs

Four of the high-frequency iSNVs shown in Fig. 5.3 (G22999A, G23027A, T23029C,

A23050T) lie within 51 nucleotides of one another. As such, reads spanning these

four sites could be used to determine haplotype frequencies across this region of the

genome. Based on these reads, we found that five distinct haplotypes were circulating

at appreciable levels within the patient (Table 5.1). Longitudinal dynamics of these

haplotype frequencies are visualized in Fig. 5.4A. Haplotype GGTA (present in the

consensus sequence of d28) is fixed on d28 but does not appear present 11 days later,

on d39 (Fig. 5.4A). On d39, there are instead two unique haplotypes detected (GACA

and AACA), which differ from one another by a single nucleotide (at site 22999), but
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largely clustered in the spike protein, and frequency dynamics over time are shown. (A)
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during the infection are presented along their position in the genome. Different shapes are
used to denote which day the iSNV was observed. (B) iSNV dynamics over time where
each iSNV has a unique color, marker, and line style. The colors used for each iSNV
coordinate with those seen in (A). The nucleotide changes were annotated using Nextclade
(Aksamentov et al., 2021) as follows: 2419: S723P; 7068: synonymous; 20467: S2338L;
21557: V3G; 21626: P26L; 22363: S272P; 22999: E484K; 23027: Q493R; 23029: S494P;
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each differ from the d28 GGTA haplotype by 2-3 nucleotides (for GACA, at sites

23027 and 23029; for AACA, at sites 22999, 23027, and 23029). One explanation

for these observed dynamics is that the G→A mutation at site 23027 and the T→C

mutation at site 23029 fixed shortly following d28, and that a third mutation (G→A at

site 22999) arose thereafter, and rose in frequency until d39. From d39 to 53, GACA

and AACA remain the only two haplotypes in circulation, with GACA increasing in

frequency and AACA decreasing. It is possible that the GACA and AACA haplotypes

were more fit under the selection regime imposed by the two courses of remdesivir

treatment (Fig. 5.1A), while GGTA is postulated to have been more fit under mAb

treatment. This is evidenced by the sera from this patient sampled between days 33
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and 77 being unable to neutralize virus containing mutations that were fixed by d28

(Scherer et al., 2022)

d28 d39 d53 d75

AACA 2 (0.001) 1799 (0.46) 625 (0.327) 1772 (0.265)

AACT 0 4 (0.001) 1 (0.001) 1 (0.0)

AATA 0 0 0 425 (0.064)

AATT 0 0 0 0

AGCA 0 0 0 0

AGCT 0 0 0 0

AGTA 0 1 (0.0) 0 0

AGTT 0 0 0 0

GACA 1 (0.001) 1934 (0.495) 1247 (0.653) 2732 (0.409)

GACT 0 5 (0.001) 2 (0.001) 3 (0.0)

GATA 1 (0.001) 0 2 (0.001) 3 (0.0)

GATT 0 0 0 2 (0.0)

GGCA 0 0 0 2 (0.0)

GGCT 0 0 0 1 (0.0)

GGTA 1800 (0.97) 0 0 461 (0.069)

GGTT 2 (0.001) 0 0 1155 (0.173)

Table 5.1: Observed haplotypes among sites 22999, 23027, 23029, and 23050 on
sequenced reads for each sample. For reads that span the four sites, we count the
occurrence of each possible haplotype, of which there are sixteen. Counts are shown
here, with the calculated frequency rounded to the nearest thousandth in parentheses.

Finally, two new haplotypes arise between d53 and d75, as well as the return of

the GGTA haplotype observed at d28 (Table 5.1, Fig. 5.4A). The GGTT haplotype

is only one mutation away from GGTA, while it is two and three mutations away

from the two dominant haplotypes on d39 and d53 (GACA and AACA, respectively).

In contrast, the other new haplotype on d75, AATA, is two mutations away from

GGTA and GACA, and only one mutation away from AACA. The most parsimonious

explanation for the emergence of GGTT and AATA on d75 is that GGTT is a direct

descendant from the wild-type GGTA while AATA is a descendant from AACA.
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However, it is curious that both the wild-type would return after being undetected

for nearly 50 days. For this reason, we investigated the possibility of re-infection

explaining the influx of haplotypes on d75 (GGTA, GGTT, and AATA).

Above, we presented SARS-CoV-2 variants circulating at the population level in

Georgia, focusing on the early phase of the infection and consensus-level differences.

However, we now want to determine whether the patient was re-infected by a virus

circulating during the latter portion of the infection. To do this, haplotypes can

be useful. Recall that the dominant haplotypes circulating during the infection are

GATA and GATT (Fig. 5.2A). Two of the three haplotypes that arise in the patient

on d75, GGTA and GGTT, are both one mutation away from GATA and GATT,

respectively. Were we to only focus on iSNVs, we would note that 23029T is absent

in the host on d53, but at very high frequency at the population level, and is the

common nucleotide between the invading d75 haplotypes, GGTA, GGTT, and AATA.

This may lead us to conclude that a virus with 23029T re-infected the host. Further,

two of these haplotypes have the 23027G variant, which is not circulating in the

population, apart from the patient sequence from d28. To produce a 23027G with

23029T haplotype via recombination between a re-infecting virus and an existing

AACA or GACA haplotype would be highly improbable since they are only two

nucleotides away from one another. Alternatively, back-mutation at these same sites

after re-infecting the host is another explanation with no observable evidence. Thus,

it is unlikely that re-infection can explain the arrival of the closely related GGTT

and GGTA haplotypes within our host since we would expect the middle two sites to

be linked and their combination is not observed in the population, despite one of the

loci being nearly fixed at the population level. We return to the most parsimonious

explanation, which is that GGTA was circulating below our limit of detection – or in

some reservoir tissue – and gave rise to the GGTT haplotype, while AATA descended

from the high-frequency AACA haplotype. We cannot rule out that AATA was
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the result of a re-infection since it was observed at the population level, but it was

circulating at very low frequencies.

Clearly a combination of haplotype and iSNV analysis can give us more informa-

tion to discern evolutionary patterns, so we now consider iSNV dynamics in concert

with our observed haplotypes to infer finer resolution haplotypes within the host

(Fig. 5.4B).

Between d28 and d39, three iSNVs reach fixation, and two of them (23027A and

23029C) are a part of observable haplotypes. The other is 22363C. It is difficult at

this point to discern what order the mutations fixed, but it may be possible that

23027A and 23029C were a part of a single multi-mutation event since they are so

close together. For now we assume 22363C fixed first. Following these fixation events,

7068T and 22999A reach approximately 50% frequency, with 7068T having slightly

higher frequency.

In the following time point, d53, the frequency of 22999A goes down while 7068T

goes up in frequency, along with the rise of several other iSNVs at other loci. It

is unlikely that iSNVs on that same background would rise and fall in frequency

concurrently, so we can infer that the variants at site 7068 and 22999 are on different

haplotypes. Similar arguments can follow for sites 2419 and 21557, where their very

similar iSNV frequencies from d39 to d53 rise while 22999 falls. For this reason,

variants at sites 2419 and 21557 likely evolved after 7068, but on the same background.

That background would have been GACA since 22999A is part of the AACA observed

haplotype. The variant at site 23562 may have also evolved on this new background

with 2419C and 21577G since it follows along the same trajectory but at a lower

frequency.

Finally, the two new observed haplotypes, GGTT and AATA, arise between d53

and d75, with the return of the wild-type haplotype GGTA. Along with the rise of

these haplotype frequencies is a continued rise in frequency of the remaining iSNVs at
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Figure 5.4: Observed and inferred haplotype frequencies. (A) Physical haplotypes ob-
served from short-read data (Table 5.1) shows there are at least five haplotypes circulating
within this patient during their infection. Here each color represents a different haplotype
as indicated in the legend at sites 22999, 23027, 23029, 23050. The height that each color
fills is the frequency of the corresponding haplotype. The “other” category was given by the
haplotypes that fell below the limit of detection individually. (B) Inferred haplotypes were
created by combining the observed haplotypes with iSNV frequency data. Different colors
indicate different haplotypes. Pointed edges from left to right indicate what background
the new haplotype evolved on. Dashed gray (top) and dark purple (bottom) lines show
putative reservoirs from which the next haplotype evolves or re-emerges.
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sites 2419, 20467, 21557, 21626, 23562, and 24782. Additionally, the fixed iSNVs at

sites 23027 and 23029 decrease in frequency at the same magnitude as 7068. Simul-

taneously, the iSNV at site 23050 rises in frequency, defining the GGTT haplotype.

Since we established earlier that re-infection is an unlikely explanation for the ar-

rival of the GGTT and AATA haplotypes, along with the return of GGTA (Fig. 5.2A),

we propose an alternative explanation. Given that SARS-CoV-2 is capable of infect-

ing many different tissues, the variant 22363T with the GGTA background may have

sequestered in a reservoir tissue that was unsampled during the infection period and

migrated back into the upper respiratory tract (Fig. 5.4B, purple dashed line). Mean-

while, while 22363C was fixing, we propose that GGTA was sequestered in a reservoir

before returning to detectable frequencies by d75. It would have brought along with

it the 22363T mutation and been a viable background for the evolution of the GGTT

haplotype.

The rise in frequency of these unique iSNV and haplotype combinations may have

been facilitated by the amount of time that remdesivir treatment had been halted.

Earlier we suggested that GGTA was less fit than the two haplotypes that replaced

it once remdesivir treatment commenced. Since there were 30 days between d75 and

when the antiviral treatment had stopped, it is possible that GGTA was then able to

invade from its reservoir. Alternatively, these genotype combinations were circulating

in the sampled area but were simply below our limit of detection.

Further interpretation that considers the clinical course for this patient can pro-

vide more context for why selection may be responsible for iSNV dynamics. For

example: monoclonal antibodies were administered early on in the infection and by

4 weeks later the population became relatively monomorphic from the strong selec-

tive force induced by treatment. However, low frequency variants were percolating.

Remdesivir treatment was administered which induced competition among several

existing haplotypes, one that remained relatively constant in frequency, and another
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that spawned two additional haplotypes. We know that remdesivir can inhibit bind-

ing on the spike protein in the receptor binding domain (RBD) (Szemiel et al., 2021,

Uddin et al., 2022), so it is possible that remdesivir treatment simultaneously selected

for the AACA and GACA haplotypes because all of these sites are within the RBD.

Continued selection from treatment may have targeted other loci, allowing them to

rise in frequency. However, they would have been in competition with one another

if they evolved on different haplotype backgrounds. This is evidenced by the rise in

frequency of some haplotypes with concomitant changes in iSNV frequencies.

5.5 Discussion

Chronic SARS-CoV-2 infections may be important sources of new variants of concern,

and thus be a driver of viral adaptation observed at the population level. Here we

examined the evolutionary dynamics of iSNVs and haplotypes independently, and

then considered their joint dynamics within a single immunocompromised patient. We

found that iSNV analysis revealed the fixation of multiple nonsynonymous mutations

in the spike region, with continued rises in frequency of additional nonsynonymous

iSNVs throughout the infection. Haplotype analysis revealed that despite the fixation

of multiple iSNVs, the population was likely not monomorphic at any point after the

first treatment of remdesivir administered to the patient. The timing of remdesivir

treatment with the appearance and disappearance of some haplotypes is suggestive of

an altered selection environment while the patient underwent the anti-viral treatment.

While iSNVs and consensus-level mutations compared to population-level sequences

provide some evidence that re-infection was unlikely to explain new and recurrent

iSNVs later on in the infection, haplotypes helped to confirm this, and further suggest

that migration from a within-host reservoir explains the appearance and reappearance

of iSNVs at low frequency.
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As we have shown, even a simple haplotype analysis can be useful in interpreting

the evolution of within-host variants. Others have used haplotypes to discern co-

infection events (Francisco Junior et al., 2022, VanInsberghe et al., 2021, Wu et al.,

2021), which singular iSNV data cannot do as reliably, particularly at low and in-

termediate frequencies. Haplotype reconstruction allowed us to identify whether re-

infection was an explanation for the return of a genotype that had not been observed

since much earlier on in the infection. Further, iSNVs occurring together makes it

more challenging to attribute a narrative of selection acting on individual iSNVs. For

example, the mutations we describe at sites 23027 and 23029 occur together almost

exclusively and each confer nonsynonymous amino acid changes. For this reason, we

cannot resolve the individual selective pressures on the two iSNVs, just the selective

pressure on the pair. This is often a limitation of observational studies such as these

(Scherer et al., 2022), because we must not only infer linkage among variants where

linkage cannot be observed directly, but the iSNVs and their linked pairs may differ

in their dynamics across hosts. So while we can make suggestive claims about the

source of selection and its outcomes, further study is needed to parse out selective

advantages of individual iSNVs.

While infection studies and immunological assays can assess the roles that treat-

ments play on particular mutations (Guigon et al., 2022, Focosi et al., 2021), and

some population studies can show us where mutations tend to recur (Lythgoe et al.,

2021, van Dorp et al., 2020) comprehensive analysis of mutation combinations rather

than individual mutations may present a higher resolution picture of the adaptive ad-

vantages among immunologically relevant variants across the SARS-CoV-2 genome.

Data Availability

The code used to reproduce the analysis shown in this paper is available at https:

//github.com/allmanbrent/SARS-CoV-2-haplotypes/settings. The data from

the patient are attributed to Scherer et al. (2022).

https://github.com/allmanbrent/SARS-CoV-2-haplotypes/settings
https://github.com/allmanbrent/SARS-CoV-2-haplotypes/settings
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Chapter 6

Conclusion

To conclude, we have presented multiple vignettes of within-host evolution of RNA

viruses, each contributing to our understanding of viral adaptation which has im-

plications for their pandemic potential. Two major themes have emerged from our

work: (i) cellular coinfection can reduce the efficacy of selection on mutations, and

(ii) genetic linkage reduces the efficacy of selection on single mutations, but pro-

vides additional information about evolutionary dynamics that individual mutations

cannot.

In Chapter 2, we explored the role that heterogeneity plays in deleterious mu-

tation accumulation in the context of cellular coinfection. While previous work has

shown that cellular coinfection can reduce the efficacy of selection on individual mu-

tations (Wilke and Novella, 2003b), our work also incorporates an infinite sites model

where many mutations contribute to viral fitness. As such, we are able to show that

genetic linkage leads to the accumulation of deleterious mutations, particularly when

selection is relaxed due to phenotypic hiding or reduced effective population sizes.

However, deleterious mutation accumulation can be mitigated when viral genomes

are segmented. Viral sex through recombination or reassortment reduces selection in-

terference between sites by creating progeny that aren’t clonal; beneficial mutations
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on different backgrounds can be brought together. In our study, this simply meant

that genes with fewer deleterious mutations can be inherited together if the the viral

parents coinfect the same cell.

We also extended our understanding of phenotypic hiding and the efficacy of

selection by fitting model parameters to allele frequency data. In Chapter 3, we

developed a model that described the frequency trajectory of a viral variant in a

Wright-Fisher population where cellular coinfection was possible. We showed the

utility of considering phenotypic hiding, since we concluded that fitness estimation

within hosts that does not consider cellular coinfection is likely underestimating the

magnitude of variant fitness. While our model needed a strong prior on MOI to get

a bounded range of variant fitness values, these data are available in many in vivo

systems and would almost always be available in in vitro settings.

Taken together, Chapters 2 and 3 contribute to the growing literature on so-

ciovirology because they consider the consequences of viruses of differing genotypes

interacting through coinfection, and the unique impacts these interactions can have

on viral progeny fitness. However, Chapter 2 also included considerations of genetic

linkage, which we demonstrated as being important for discerning selection and gene

flow in Chapters 4 and 5.

When censusing the diversity of within host viral populations, identifying mu-

tations that are driving evolutionary dynamics can be a challenge. In Chapter 4,

experiments were conducted to show that SARS-CoV-2 mutations that rose in fre-

quency after monoclonal antibody treatment did in fact confer a fitness advantage

by escaping immune pressure. In Chapter 5, haplotypes were utilized to help dis-

cern whether mutations may be favored by selection or arising through gene flow,

confounding inference on selective pressures. Each of these works used secondary

analyses on the same data to better inform adaptationist narratives of SARS-CoV-2

evolution within immunocompromised hosts.
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Future work in these areas should consider the role that spatial structure and pop-

ulation dynamics have in the evolution of viral variants within hosts. In particular,

if we want to further understand how cellular coinfection and phenotypic hiding can

relax selection, population expansion through space will be crucial for modeling re-

alistic evolutionary dynamics. The dispersion kernel associated with spread will also

be a key consideration. Viral populations that spread through small jumps in space

are more likely to encounter high MOI contexts. So under our model assumptions,

relaxed selection would be most prevalent if there was strong spatial structure within

viral hosts. However, others have suggested that coinfection can be beneficial for

viral fitness and diversity (Leeks et al., 2018). Additionally, we know that coinfection

can provide benefits such as genetic complementation for incomplete viral genomes,

increased production of viral progeny, and providing opportunities for reassortment

or recombination. The vast possibilities of interactions among these differing forces

provides rich lines of questioning from both experimentalists and modelers.
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