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Abstract

A Comparison Study on Low Rank Matrix Completion Algorithms in Image and
Painting Restoration
By Jiasheng Sheng

Low rank matrix completion solves prevalent real life problems including image
restoration, movie recommendation and photo depth enhancement. However, there is
not a systematic comparison and evaluation for different low rank matrix completion
algorithms. This thesis aims to focus on painting restoration and analyze the run-
ning time and relative Frobenius norm for three different algorithm: Singular Value
Thresholding (SVT), Iteratively Reweighted Least Squares (IRLS) and Low-rank Ma-
trix Fit (LMaFit). Using custom testing images generated from a publicly available
dataset of contemporary abstract paintings, it is observed that the LMaFit algorithm
has the fastest running time but the worst accuracy. SVT has similar accuracy as
IRLS but has faster running time. However, IRLS has more options for parameter
tuning than SVT, especially the rank of desired matrix. So each algorithm has its
own benefits and drawbacks in terms of image restoration or denoising.
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Chapter 1

Introduction

Matrix completion, by its name, means to fill out the empty entries in a given matrix.

Low-rank matrix completion is to fill out the empty entries in a matrix while minimiz-

ing the rank of the completed matrix. This chapter will introduce the reason for the

low-rank constraint and some real-life applications on low-rank matrix completion.

Later in this chapter, some previous studies will be introduced. At last, the dataset

used in this thesis and some data preprocessing methods will be discussed.

1.1 Introduction

Low rank matrix completion problems are more prevalent in our life than we can

imagine. One of the most prominent examples is the 2006 Netflix Prize of 1 million

dollars for the first person or team who could increase by at least 10% the performance

of Netflix’s recommendation system [22]. The problem setup was a large matrix with

each column representing a user and each row representing that user’s rating for all

Netflix movies. This is a huge matrix with millions of users and tens of thousands of

movies; the matrix is also composed with largely empty spaces because it is impossible

for a user to watch every single movie on Netflix. The goal is to predict a user’s rating

for an unseen movie to better give recommendations to users. The only logical way is



2

to try to group users with similar movie tastes and then predict a new rating based

on existing users’ ratings. The low rank constraint becomes apparent for the need of

linearly dependent columns if we want to match as many similar columns as possible.

One of the solutions for the Netflix prize is using matrix factorization, which projects

a large problem into a smaller space [28].

The low rank matrix completion problem is also applied in image processing such

as image and video denoising [4, 13] because we want to complete a matrix without

noise. Figure 1.1 shows an example of a recovered image after applying the Singular

Value Thresholding algorithm (which will be described in Chapter 2) to a given noisy

image.

Original picture 50% data left Recovered picture

Figure 1.1: A sample demo of matrix completion with Singular Value Thresholding
Algorithm.

Low-rank matrix completion not only works in dealing with noise, it also works

with image inpainting [32], which means trying to recover a picture where there

are more contiguous missing pixels instead of randomly distributed errors due to

noise. Some other applications include enhancing the depth of a camera shot image

[19]. Another interesting application of low-rank matrix completion is to predict the

emotion in abstract painting by trying to recover a special block matrix that contains

a feature matrix of an image and its corresponding recognized emotion matrix [1].
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1.2 Problem Setup

With the understanding of why it may be important to impose a low rank constraint

on the matrix completion problem, the problem can be set up with the equation

below:

minimize rank(X)

subject to PΩ(X) = PΩ(M)
(1.1)

X is the recovered matrix we want to compute and M is the noisy matrix with initial

data. The operator PΩ(X) means to select all entries in matrix X in the region of

Ω. In this case, PΩ(X) = PΩ(M) simply means the given entries in data matrix M

should be the same in the recovered matrix X with the region Ω being the matrix

indices of given data.

One brute force way to solve this problem is to try to find a valid solution by

iterating over all possible ranks [23]. Specifically, start with assuming the original

matrix is rank 1 (i.e., rank(M) = 1), and then try to solve the system with all linearly

dependent columns Mi = c ·Mj. If no solution is found, then assume rank(M) = 2

and then try to solve the system with Mi = c ·Mj + d ·Mk. However, this brute force

approach requires exponential running time, and is not feasible for a large problem.

The time complexity is O(n2n) for an n by n matrix because it takes n iterations for

maximum rank = n and there are O(2n) computations in each iteration. Problem

(1.1) by itself is a difficult non-convex problem to solve, so some transformation is

required to make the problem tractable. The most researched heuristic for the low

rank minimization problem is to minimize the nuclear norm of the matrix [23]. The

nuclear norm ∥ · ∥∗ is the sum of all singular values of a matrix, and the nuclear norm

is also a convex function that can be optimized efficiently [26]. The optimization
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problem takes the form:

minimize ∥X∥∗

subject to PΩ(X) = PΩ(M)
(1.2)

This problem setup gives rise to the following three algorithms that are going to be

discussed in this thesis: Singular Value Thresholding (SVT) [2], Iterativly Reweighted

Least Square (IRLS) [5] and Low-rank Matrix Fit (LMaFit) [31].

There is another heuristic that transforms the rank minimization problem, which

is to minimize the residual Frobenius-norm of the completed matrix. The Frobenius

norm ∥ · ∥F is the square root of the sum of entries squared, ∥A∥F =
√∑

i

∑
j A

2
ij.

So this problem setup is:

minimizeX∥PΩ(M)−PΩ(X)∥2F . (1.3)

This setup can be solved by first factoring X into two smaller dimension matrices

and then applying a robust gradient descent algorithm for the optimization problem

[20]. There is also a study that uses manifold learning with a deep learning approach

to solve this Frobenius-norm setup as well [21].

This paper is going to focus on the minimize nuclear norm setup (1.2). The

performance for each algorithm will be measured in terms of error and running time,

and the error evaluation for the result will be the relative Frobenius-norm residual,

which can be defined as error = ∥I−X∥F
∥I∥F

where I is the original matrix without noise

and X is the recovered matrix.

The focus of this paper is image denoising, more specifically on images of paint-

ings. Some old paintings that were not maintained properly will have small cracks

and imperfections, which can be treated as noise. There are already many stud-

ies on painting restoration in the field of signal processing [24, 8]. Specifically, the
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texture and paint stroke can be restored without being blurred using a patch based

anisotropic-diffusion technique [25]. However, previous studies on painting restora-

tion lacks the use of matrix completion techniques. Thus, investigating on applying

matrix completion algorithms for painting restoration is an interesting application to

look into.

1.3 Dataset

Figure 1.2: Sample simple (top) and hard (bottom) pictures from MART dataset.

This study uses a publicly available dataset containing images of paintings from the

Museum of Modern and Contemporary Art of Trento and Rovereto (MART), hence

the name MART dataset [33]. The MART dataset contains a selection of 500 con-
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temporary paintings from the beginning of 20th century. All paintings in the dataset

is created by a mixture of over 80 professor artists. All of the paintings are abstract

paintings, meaning there is a variety of shapes and texture on each painting that can

either be structured or unstructured.

Figure 1.3: Flow chart of data processing.

All images from the MART dataset are colored images that have three color chan-

nels, red green and blue (RGB), which need to be converted to greyscale data matrix

with one channel of floating point numbers. Also there is no need to rescale each

image because most images are less than 1000*1000 pixels, which is small enough

for doing numerical experiments efficiently. To test each algorithm’s performance

on different problems, each test case generates three “observed” matrices with only

80%, 50% and 20% of the total pixels left from the original image (for each image,

a certain percentage of randomly selected elements are changed to 0). So in theory,

a matrix with 80% of the total data should be easier to recover than a matrix with

only 20% of the total data. Due to the nature of abstract painting, the images in the

MART dataset were manually divided into two classes: simple and hard. We loosely

define simple to mean there is a clear structure of the painting or there are a lot of

repeated patterns; hard images mean there is no clear structure and the composition

of painting is mostly random. Each algorithm will be tested separately for simple

and hard images. In total, there are 240 images in the simple group and 260 images

in the hard group.
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To show the result in a visual way, the two images below will be displayed as the

sample picture in this thesis.

Original 80% remaining 50% remaining 20% remaining

Figure 1.4: Sample simple (top) and hard (bottom) demonstration images.
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Chapter 2

Singular Value Thresholding

The general formulation of a convex reduced problem for matrix rank minimization is

the nuclear norm minimization, which is introduced in chapter 1 and can be written

as the below format

minimize ∥X∥∗

subject to PΩ(X) = PΩ(M)

The singular value thresholding (SVT) algorithm is based on singular value de-

composition (SVD). The SVD of a matrix X is X = UΣV ⊤. For an n1 × n2 matrix

X, U is an n1 × n1 orthogonal matrix, V is an n2 × n2 orthogonal matrix and Σ is a

diagonal matrix with singular values on the diagonal. The SVT algorithm uses a soft

thresholding on the singular values on a matrix in each iteration. Let X = UΣV ⊤,

and the threshold operator D on matrix X is defined in the original paper [2]:

Dτ (X) = UDτ (Σ)V
⊤, Dτ(Σ) = diag({σi − τ}+), (2.1)

where the operator {c}+ is defined as {c}+ = max(c, 0). Thus, if the value σi − τ

is smaller than τ , the value is set to zero. So in essence, the operator D shrinks the

singular values of a matrix.

The iteration step uses two matrices X and Y , the threshold τ and a step size δk
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that varies for each iteration,

Xk = Dτ (Y
k−1)

Y k = Y k−1 + δkPΩ(M −Xk)
(2.2)

and this iterative step converges to a new problem setup, and the actual proof is in

section 4 of the original paper [2]:

minimize τ∥X∥∗ + 1
2
∥X∥2F

subject to PΩ(X) = PΩ(M)
(2.3)

An alternative form of problem (2.3) can be represented via a Lagrangian approach,

which offers another intuition to the original problem [15]. It can also be shown that

(2.3) is able to converge to the original problem (1.2) when τ → ∞. An intuitive

way to view this is that problem (2.3) divides the problem with a weighted sum for

nuclear norm and Frobenuis-norm. If the weight for the nuclear norm is significantly

larger than the weight of the Frobenuis-norm, the problem is essentially the nuclear

norm setup.

2.1 Choosing the Threshold

The choice of τ is another optimization problem to solve [18], and there are many

different perspectives on choosing the value of τ : a fixed choice of τ = 4√
3
was said

to have an optimal performance for a non-square matrix [6], and another choice of

τ is the minimum difference in the singular values [27]. In the original paper [2], τ

was set as 5 · √n1 · n2, with [n1, n2] = size of(M), and if there is a large difference

between n1 and n2, τ should be larger than 5 · √n1 · n2. Since a large τ in 2.3 means

the problem has less weight on the Frobenius norm and more weight on the nuclear

norm, the problem will be closer to 1.2 but with more error in computation since the
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singular values will shrink faster. Thus in general, the choice of threshold is between

2 · √n1 · n2 to 5 · √n1 · n2.

Although parameter tuning was not introduced in the original paper, in the actual

implementation, τ is a parameter that can be tuned to achieve maximum performance

for the SVT algorithm. Maybe there are ways to even vary the value of τ in each

iteration to fit problems better.

2.2 Choosing the Step Size and Stopping Criteria

The choice of step size δ can vary in each iteration, or it can be a fixed value for

a simpler computation. The iteration converges at step k as long as the step size δ

satisfies the following constraint [2]:

0 < δ < 2 · ∥X⋆ −Xk∥2F
∥PΩ(X⋆ −Xk)∥2F

(2.4)

Matrix X⋆ is the solution to the problem (2.3); that is the minimization of τ∥X∥∗ +
1
2
∥X∥2F . Too small of a step size will compromise the convergence speed, so a moderate

size δ = 1.2·p−1 is recommended, where p = # of known entries
total # of entries

is the percentage of known

entries. You can always decrease the step size and run more iterations if the result

does not converge.

Stopping criteria is chosen as a tolerance for the relative Frobenius-norm residual

∥PΩ(X
k −M)∥F

∥PΩ(M)∥F
< ϵ (2.5)

where M is the input matrix with known data, Xk is the approximation of X com-

puted at step k, and ϵ is the stopping tolerance.
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2.3 Algorithm

Putting the iterative steps (2.2) in an actual algorithm format, we obtain

input : data matrix M , initial step size δ, threshold τ , tolerance ϵ

output: completed matrix Xk

initialization: stopping flag flag = False, counter k = 0 and Y 0 = 0;

while !flag do

k = k + 1 ;

[Uk−1,Σk−1, V ⊤k−1] = svd(Y k−1) ;

Xk = Uk−1Dτ (Σ
k−1)V ⊤k−1;

Y k = Yk−1 + δ(PΩ(M −Xk));

flag = ∥PΩ(X
k−M)∥F

∥PΩ(M)∥F
< ϵ ;

end

Algorithm 1: SVT Algorithm

The limitation of this algorithm is that it computes an SVD of matrix Y , which is

slow when Y is large. Therefore, many other SVT based algorithms treat computing

the value of a matrix by the threshold operator (2.1) as a new problem [11]. One

easier solution is to try to accelerate the process of computing only a partial singular

value decomposition. For example, using the Lanczos SVD from PROPACK [16] to

compute the approximated SVD with smaller rank is faster than computing the whole

SVD, especially in a low rank setup. Another solution is to use polar decomposition

and matrix Newton iteration [3], but this approach is too complicated and is not

actually helpful with the accuracy of solving the matrix completion problem.

On the other hand, the benefit for the SVT algorithm is that it does not require

a guessed rank as input to the algorithm for the final completed matrix. For matrix



12

Figure 2.1: Relative residual Frobenius-norm (right) and run time (right) for test
images for the SVT algorithm. The upper row shows the result for simple test im-
ages and bottom row shows the result for hard test images. Each section has three
columns. The left most column shows the result for images with 80% remaining pix-
els, the middle shows result with 50% remaining and the right shows result with 20%
remaining.

factorization based methods, a rank is often required as an input to convert a large

matrix into two smaller matrices. In most cases, you do not know exactly what the

rank will be, so a guessed value as input to the algorithm might be inaccurate. Of

course, in some cases, there is a desired rank for the output matrix, and the SVT

algorithm does not have control in this situation.

2.4 Numerical Experiments

Using images from the MART dataset, each image was preprocessed with the steps

in 1.3. The machine used to conduct this numerical experiment is a 2017 MacBook

Pro with 16G memory. From Figure 2.1, it can be observed that the running time for

the SVT algorithm is fast. Images in the MART dataset are relatively small, so the

time for computing the SVD does not have a strong factor in the total running time.

There are some extreme values that take more than 500 seconds for simple and hard
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cases with only 20% of pixels left. The pattern for running time is that it generally

increases as the number of known entries decreases or as the problem becomes harder

and less structured. The relative residual Frobenius-norm is small for simple and

hard images with 80% and 50% data. The mean is less than 0.1, although there are

some values that are greater than 0.5. In general, even for hard problems with only

20% pixels left, the SVT algorithm works well.

80% remaining 50% remaining 20% remaining

Figure 2.2: The original and recovered of a simple problem with 80%, 50% and 20%
remaining with the SVT algorithm.

With the actual recovered picture for a specific simple problem shown in Figure

2.2, we can observe that the recovered picture with only 20% of the data left loses

certain structure detail, as the diagonal edges become blurred. In the recovered

picture for a specific hard problem shown in Figure 2.3, the recovered picture with

80% and 50% of the data have similar results. This experiment does not include

parameter tuning for the threshold τ or the step-size δ, which can be another area to
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look into in the future.

80% remaining 50% remaining 20% remaining

Figure 2.3: The original and recovered of a hard problem with 80%, 50% and 20%
remaining with the SVT algorithm.
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Chapter 3

Iteratively Reweighted Least

Squares

The Iteratively Reweighted Least Squares (IRLS) algorithm is based on the problem

of minimizing the nuclear norm, similiar to the setup in the SVT algorithm (1.2),

minimize ∥X∥∗

subject to PΩ(X) = PΩ(M)
(3.1)

The whole intuition for IRLS is to transform the nuclear norm in (3.1) into a

Forbenius-norm, which can in-turn change into a 2-norm least squares problem. So

the first step is to envision a Frobenius-norm from the nuclear norm.

In the original paper [5], the Schatten q-norm is used, which is defined by:

∥X∥Sq = ∥σ(X)∥lnq = (
n∑

i=1

|σi(X)|q)1/q (3.2)

It is obvious that when q = 1, the Schatten q-norm is the same as the nuclear norm,
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which is just the sum of all singular values.

∥X∥S1 =
n∑

i=1

σi(X) = ∥X∥∗ (3.3)

The next step is to make a connection between trace, which is in the Frobenius-norm

since ∥X∥F = Tr(XX⊤)1/2 and singular values, which is in the Schatten q-norm.

We want to show

∥X∥Sq = (Tr(|X|q))1/q where |X| = (XX⊤)1/2 (3.4)

Proof. Let X = UΣV ⊤. |X| = (UΣV ⊤V ΣU⊤)1/2 = (UD2U⊤)1/2 where D =

diag(σi).

|X| = (UD2U⊤)1/2 = (UDDU⊤)1/2 = (UDU⊤UDU⊤)1/2 = UDU⊤

|X|q = UDqU⊤

Tr(|X|q) = Tr(Dq) =
∑
i

σq
i

From (3.2), ∥X∥Sq = (
n∑
i

|σi(X)|q)1/q = (Tr(|X|q))1/q

From equation (3.4), and (3.3)

∥X∥∗ = ∥X∥S1 = Tr((XX⊤)1/2) = Tr((XX⊤)−1/2(XX⊤)) = ∥W 1/2X∥2F , (3.5)

where W = (XX⊤)−1/2.

Then the problem of minimizing a nuclear norm becomes minimizing the Frobenius-

norm. The following iterative step can be defined as we update X and W in each
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iteration:

Xk+1 = minimize
X

∥(W k)1/2X∥2F

subject to PΩ(X) = PΩ(M)

W k+1 = (Xk+1(Xk+1)⊤)−1/2

(3.6)

3.1 Least Squares

To solve the minimization problem in (3.6), many methods can be used to transform

the Frobenius-norm into a 2-norm minimization least squares problem. One method

uses the Kronecker product. The Kronecker product ⊗ for two matrices X with size

n1 × n2 and Y with size m1 ×m2 is defined as

X ⊗ Y =



X1,1Y X1,2Y · · · X1,n2Y

X2,1Y X2,2Y

...
. . .

Xn1,1Y Xn1,n2Y


The result is a large matrix with size n1m1 × n2m2.

∥WX∥2F =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



W 0 · · · 0

0 W

...
. . .

0 W


·X

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

2

= ∥(I ⊗W ) ·X∥22

where X is vector with all columns of X stretched into a vector. X =



X1

X2

...

Xn


. Xi

denotes the ith column of matrix X. This is only a rudimentary approach in solving
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this problem since explicitly forming the Kronecker product of large matrices can take

up to much memory and is not efficient in computation. In some research, conjugate

gradient is widely adopted in solving this problem [12] along with the use of quotient

singular value decomposition and generalized inverses [29]. In iterative methods, like

conjugate gradient, the structure of Kronecker products can be efficiently exploited.

3.2 Choosing Threshold

In the iterative step (3.6), matrix W is updated in each iteration by matrix X. If X

is ill-conditioned, there might be a large error in the computation for each iteration.

Thus, a constraint on singular values must be put into matrix X to ensure that it is

not ill-conditioned. The threshold τ , which is similar to (2.1), but it is updated in

each iteration, instead of being a fixed value in the SVT algorithm. The approach

proposed in the IRLS paper [5] is

τ k = min {τ k−1, γσL(X
k)} (3.7)

in the kth iteration where γ = 1
n1
, n1 is the number of rows of matrix X, and σL(X

k)

is the Lth singular value of the current X where L is a constant that is larger than

the desired rank for the completed matrix: L ≥ r, r is the desired rank. The proof of

this setup is in section 2.3 of the IRLS paper [5]. The parameter L can be tuned to

maximize the performance of the algorithm but with the problem of unknown initial

rank.

After computing the threshold for each iteration, the update process for W is ev-

ident. Because W = (XX⊤)−1/2, and let UΣV ⊤ be the singular value decomposition
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for matrix X, then assuming X is an n× n square matrix

XX⊤ = UΣ2U⊤

W = (XX⊤)−1/2

Dτ (W ) = U(Στ )
−1U⊤,

(3.8)

where Στ is the threshold operator for making all diagonal entries of Σ zeros if

the value is smaller than τ .

3.3 Algorithm

To sum up the previously discussed iterative steps, we obtain the following algorithm:

input : data matrix M , initial W = I, threshold τ , tolerance ϵ

output: completed matrix Xk

initialization: stopping flag flag = False, counter k = 0, and X0 = M ;

while !flag do

k = k + 1 ;

Xk = argminPΩ(X)=PΩ(M) ∥(W 1/2)k−1Xk−1∥2F ;

update τ with method of 3.7 ;

[U,Σ, V ⊤] = svd(X);

W k = U(Στ )
−1U⊤;

flag = ∥PΩ(X
k−M)∥F

∥PΩ(M)∥F
< ϵ ;

end

Algorithm 2: IRLS Algorithm
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Figure 3.1: Relative residual Frobenius-norm (left) and run time (right) for IRLS
algorithm. The upper row shows the result for simple test images and bottom row
shows the result for hard test images. Each section has three columns. The left most
column shows the result for images with 80% remaining pixels, the middle shows
result with 50% remaining and the right shows result with 20% remaining.

The algorithm has two parts, the first part is to solve an optimization problem

and the second part is to compute an SVD. Thus, the IRLS is much slower than

SVT, and requires more memory. Similar to that of the SVT algorithm, there are

ways to accelerate the computation for the SVD since only the first r singular values

are needed, where r is the desired rank of the completed matrix.
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3.4 Numerical Experiments

80% remaining 50% remaining 20% remaining

Figure 3.2: The original and recovered images of a simple problem with 80%, 50%
and 20% remaining with the IRLS algorithm.

In this experiment, the IRLS algorithm requires an input rank. So to ensure the

fairness across all numerical experiments, we used the rank output from the SVT

algorithm to feed into the IRLS algorithm. With the same setup and running the

same problem, the time for the IRLS algorithm is significantly longer. Especially

for the hard problem, where some take hours to finish. On the other hand, the

relative Frobenius-norm for the IRLS algorithm has some extreme values. Although

the majority of the simple problems’ relative residual Frobenius-norms fall within

0.2, in the case where only 20% of the original data are known, there are some values

greater than 1, which is completely false. The relative residual Frobenius-norm error

for a test case with only 20% known data without any process should be around
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0.8. For an algorithm to get an error greater than 1 is worse than not applying any

algorithm at all, so the error larger than 1 should not happen and it is false. The

algorithm performs worse in dealing with hard and less structured problems. Even

with 80% of the data, the algorithm still fails to converge, and the situation becomes

worse as the amount of initial data decreases.

The rank for simple problems with 80%, 50%, 20% remaining data is 18, 12, 9;

the rank for hard problems are 20, 13, 11 respectively. The simple problems work

great for 80% data remaining but still lacks clarity for only 20% data and a low rank

input. Maybe IRLS will perform better with better parameter tuning, but it will take

significantly more time.

80% remaining 50% remaining 20% remaining

Figure 3.3: The original and recovered hard problem with 80%, 50% and 20% re-
maining with the IRLS algorithm.
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Chapter 4

Low Rank Matrix Fitting

The problem of minimizing the nuclear norm (1.2) can have different formulations. For

the problem scheme below, the previous SVT and IRLS algorithms can be effective.

However, a common problem is the requirement of solving a threshold SVD sub-

problem, which can cost a lot of time especially for a large scale problem.

So instead of solving the problem of minimizing nuclear norm, the authors in the

paper [31] propose to factor matrix X into two smaller matrices J and K and then

solve a minimize Frobenius-norm problem:

minimize
J,K,Z

1

2
∥JK − Z∥2F , where X = JK

subject to PΩ(Z) = PΩ(M)

(4.1)

where X ∈ Rn1×n2 is the data matrix, J ∈ Rn1×r, K ∈ Rr×n2 and Z ∈ Rn1×n2 . r

should be the rank of data matrix X, but the rank is usually unknown so r is just a

guessed rank just like the initial rank for the IRLS algorithm. Matrix Z at the first

iteration is the data matrix, but it gets updated by matrix J and K in each iteration.

The usual practice of factoring X = JK is to first let K be the identity matrix and

J = ZKT
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4.1 Iterative Steps

The iterative step to solve (4.1) is rather simple since it just needs to iteratively

update J , K, Z respectively by solving an optimization problem in each iteration.

For example, in iteration k, the scheme is:

Jk = Zk−1(Kk−1)† = argminJ ∥Jk−1Kk−1 − Zk−1∥2F

Kk = (Jk)†Zk−1 = argminK ∥JkKk−1 − Zk−1∥2F

Zk = JkKk −PΩ(M − JkKk)

(4.2)

The dagger symbol K† means the Moore-Penrose pseudo-inverse of matrix K, K† =

(KTK)−1KT . The last step is to enforce the known entries to match those in data

matrix M . This scheme requires solving two optimization problems, which is not

optimal for computation speed. Thus, an alternative scheme can be used, and the

proof can be found in the original LMaFit paper [31]:

Jk = Zk−1K(k−1)⊤

Kk = argminK ∥JkKk−1 − Zk−1∥2F

Zk = JkKk −PΩ(M − JkKk)

(4.3)

This scheme uses the orthogonal projection in Lemma 2.1 in the original paper [5],

which states if Jk and Kk are generated by solving the two optimization problems

(4.2), then JkKk = Zk−1(Kk−1)⊤(Kk−1(Zk−1)⊤Zk−1(Kk−1)⊤)†(Kk−1(Zk−1)⊤)Zk−1.

Another alternative scheme also uses orthogonality and just simply computes

JkKk = V V ⊤Zk−1 where V has columns of an orthogonal basis of Zk−1(Kk−1)⊤.

This iterative scheme becomes extremely simple: just let Jk = V and Kk = V ⊤Zk−1

[Jk, R] = qr(Zk−1(Kk−1)⊤)

Kk = Jk⊤Zk−1

Zk = JkKk −PΩ(M − JkKk)

(4.4)



25

Using this iterative scheme is very fast because the only significant cost is to compute

the QR factorization of a matrix, which is generally much faster than computing an

SVD factorization.

4.2 Algorithm

To sum up the previously discussed iterative steps, we obtain the following algorithm:

input : data matrix M , rank r, tolerance ϵ, size [n1, n2] = size(M)

output: completed matrix Zk

initialization: stopping flag flag = False, counter k = 0, and

Z0 = M ,J0 = zeros(n1, r), K
0 = eye(r, n2);

while !flag do

k = k + 1 ;

update J, K with the above iterative method 4.2, 4.3, 4.4;

Zk = JkKk −PΩ(M − JkKk) ;

flag = ∥PΩ(Z
k−M)∥F

∥PΩ(M)∥F
< ϵ ;

end

Algorithm 3: LMaFit algorithm. In this algorithm, we use Matlab notation

where zeros denotes a matrix of all zeros and eye is the identity matrix.

This algorithm is basically a three point iteration and only J,K,Z gets updated

in each step.

4.3 Numerical Experiments

Using the same test images and running the QR factorization iteration scheme (4.4),

the running time is extremely fast. The run time does not depend on the number
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Figure 4.1: Relative Frobenius-norm (left) and run time (right) for LMaFit algorithm.
The upper row shows the result for simple test images and bottom row shows the
result for hard test images. Each section has three columns. The left most column
shows the result for images with 80% remaining pixels, the middle shows result with
50% remaining and the right shows result with 20% remaining.

of data remaining, and it only depends on the size of the problem. However, the

fast run time comes with some trade off: the relative Frobenius-norm is large. The

result of using the QR scheme (4.4) or using optimization scheme (4.3) is very similar

in terms of residual Frobenius-norm, so choosing a faster algorithm is optimal. For

simple problems, the majority of results fall below 0.2, but the number of outliers

increase as the input data decreases. The LMaFit algorithm works relatively well for

simple problems, and it does not work well with hard problems. The third quartile

for hard problems with 80% of remaining data is around 0.35, and the average for

problems with 20% remaining data is even more than 0.5. From the below visual

result, the imperfection of LMaFit’s result can be seen more clearly.
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80% remaining 50% remaining 20% remaining

Figure 4.2: The original and recovered images of a simple problem with 80%, 50%
and 20% remaining with LMaFit algorithm.

This experiment also uses the output rank from the SVT algorithm to feed in the

parameter to decide the matrix factorization size. The recovered result for simple

images only captures the general block structure and failed to illustrate the diagonal

lines. Even for 80% of remaining data, the result even loses the input image’s struc-

ture. The result of simple images shows a sign for overfitting because the bottom

part of the image, which is suppose to be just a solid shape, has been recovered with

a certain block structure.

The result for hard problems is even worse. The final image does not show any

defined clarity of the original image’s shape. So it is not hard to see why the relative

Frobenius-norm is around 0.5 for hard problems.
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80% remaining 50% remaining 20% remaining

Figure 4.3: The original and recovered images of a hard problem with 80%, 50% and
20% remaining with LMaFit algorithm.
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Chapter 5

Comparison Across Algorithms

SVT IRlS Lmafit

Figure 5.1: The recovered simple picture with 80% (top) and 20% (bottom) remaining
data for all three algorithms.

Now, three algorithms for low rank matrix completion have been introduced: Singular

Value Thresholding (Algorithm 1), Iteratively Reweighted Least Squares (Algorithm
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2) and Low-rank Matrix Fit (Algorithm 3). In terms of computational speed, the

LMaFit algorithm is the best because it only needs to compute a QR factorization.

In terms of accuracy, the SVT and the IRLS algorithms are really similar to each other

in terms of relative residual Frobenius-norm. IRLS has a slightly closer range of result

and seems to be more stable in terms of convergence for a harder problem with less

known data, but the problem for IRLS is the slow speed. The IRLS algorithm requires

to solve a least squares problem and compute a singular value decomposition, which

is slow. From Figure 5.2, the difference in recovered pictures for the simple problem

with 80% and 20% of the original data can be easily observed.

SVT IRlS Lmafit

Figure 5.2: The recovered hard picture with 80% (top) and 20% (bottom) remaining
data for all three algorithms

For easy problems in general, the IRLS algorithm gives a result with more clarity
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especially in diagonal edges. Since the goal is low rank matrix completion, having a

more defined diagonal edge with low rank constraint means the image is recovered

well. In experiments with only 20% of original data, the IRLS and SVT algorithm

shows a relatively defined diagonal edge, where the IRLS algorithm produces more

contrast. The LMaFit algorithm does not produce a good result in terms of complet-

ing a diagonal shape. However, if the input rank for IRLS and LMaFit is higher, the

result might be better.

For a hard problem, the low rank matrix completion algorithm is not designed to

handle large unstructured data. These algorithms aim to complete new columns with

existing columns and not to generate a new column. Thus, for hard problems, the

recovered image has a certain vertical texture, which shows the effort of making the

image low-rank. However, hard problems can still be used as a test for algorithms’

performance. The SVT algorithm seems to have the best result for hard problems.

5.1 Problem of Negative Numbers

The above three algorithms do not have a constraint on negative values for the com-

pleted matrix. For SVT (Algorithm 1), the result from the SVD might contain nega-

tive values, and the same problem occurs with using linear solvers in the optimization

problem in IRLS (Algorithm2) and LMaFit (Algorithm 3). In some cases of matrix

completion, having negative values do not impose a problem. However, in the case of

completing an image, having negative values in the result does not make sense since

the pixel value should not be negative.

Thus, a solver that has nonnegative constraints can be incorporated when solving

a least squares problem. IRtools [7] in MATLAB is a toolbox that can be used for

this type of problem. The software package IR Tools provides implementations of a

range of iterative solvers for large-scale ill-conditioned linear systems where regulariza-
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tion is needed to stabilize computations. The solvers include iterative regularization

methods where the regularization is due to the semi-convergence of the iterations,

Tikhonov-type formulations where the regularization is explicitly formulated in the

form of a regularization term, and methods that can impose bound constraints on

computed solutions. The package also contains “hybrid” methods that use iterative

Krylov subspace methods combined with SVD-based direct regularization methods

on small subproblems at each iteration. The hybrid approach has the advantage that

regularization parameters can be estimated at each iteration. The software package

also contains a set of test problems that represent realistic large-scale problems found

in image reconstruction and several other applications, but we use only the solvers.

The solvers in the toolbox use the naming convention IRxxxx, where IR denotes “It-

erative Regularization”, and xxxx refers to a specific method. The methods we use

in this thesis are:

IRfista: Fast Iterative Soft-Thresholding Algorithm, is an accelerated gradient

descent like scheme.

IRmrnsd: Modified Residual Norm Steepest Descent, is a steepest descent scheme

that constrains solutions to have nonnegative values.

IRnnfcgls: Nonnegative Flexible Conjugate Gradient Method for Least Squares

Problems, is a Krylov subspace iterative method that constrains solutions to have

nonnegative values.

All of the methods solve least squares problems, so the original Frobenius-norm

must be transformed. Recall the original minimization problem isK = argminK ∥JK−

Z∥2F with the second iterative scheme (4.3).

In order to use the IRtools package, we need to rewrite this minimization problem

as a standard least squares matrix-vector formulation instead of the current matrix-

matrix formulation. The trick here is to use Kronecker products. Specifically, if we

write K and Z as
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K =

[
k1 k2 · · ·kn

]
, Z =

[
z1 z2 · · · zn

]
where kn is the nth column in matrix K and zn is the nth column in matrix Z. Then

this problem satisfies:

Jk1 = z1

Jk2 = z2

...

Jkn = zn

Then the problem can be easily transformed into:

[J ⊗ I]



k1

k2

...

kn


=



J 0 · · · 0

0 J · · · 0

...
...

. . .
...

0 0 · · · J





k1

k2

...

kn


=



Jk1

Jk2

...

Jkn


=



z1

z2

...

zn


Thus, the least squares problem to solve is ∥[J ⊗ I]k − z∥2 where k is result we

want with K stretched to a vector by column, and z is a vector with Z stretched

into a vector by column as well. The use of IRmrnsd, IRfista, and IRnnfcgls all show

similiar residual Frobenius-norms. However, IRmrnsd has a relative lower running

time compared with the other two methods, so the result of IRmrnsd will be discussed

in this thesis. The modified LMaFit (Algorithm 4) just involves two extra steps of

transforming the shape of the matrix. The use of Kronecker products can cost too

much space for a large matrix, but the matrix for these experiments are all relative

small matrices so space is not a problem. Moreover, the iterative methods can be

implemented efficiently without explicitly forming any Kronecker products.
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5.2 Algorithm

The LMaFit algorithm, using the previously discussed modifications, can be changed

into the following new algorithm:

input : data matrix M , rank r, tolerance ϵ, size [n1, n2] = size(M)

output: completed matrix Zk

initialization: stopping flag flag = False, counter k = 0, and

Z0 = M ,J0 = zeros(n1, r), K
0 = eye(r, n2);

while !flag do

k = k + 1 ;

Jk = Zk−1Kk−1⊤ ;

ZT = reshape(Zk−1, [n1 · n2, 1]) ;

KT = IRmrnsd(J ⊗ I, ZT );

Kk = reshape(KT , [r, n2]);

Zk = JkKk −PΩ(M − JkKk) ;

flag = ∥PΩ(Z
k−M)∥F

∥PΩ(M)∥F
< ϵ ;

end

Algorithm 4: LMaFit Modified Algorithm

5.3 Modified LMaFit Result

From the plot of relative residual Frobenius-norm Figure 5.3, it is clear that the result

improves than the original LMaFit algorithm using QR factorization.



35

Figure 5.3: Relative Frobenius-norm (left) and run time (right) for the modified
LMaFit algorithm. The upper row shows the result for simple test images and bottom
row shows the result for hard test images. Each section has three columns. The left
most column shows the result for images with 80% remaining pixels, the middle shows
result with 50% remaining and the right shows result with 20% remaining.

80% remaining 50% remaining 20% remaining

Figure 5.4: The original and recovered simple problem with 80%, 50% and 20%
remaining with the modified LMaFit algorithm.
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However, just from looking at the recovered image, the modified algorithm does

not seem to improve much compared with the original LMaFit algorithm. Especially

for the hard problem, the recovered image from 20% original data left seems to have

the same bad clarity than the image recovered from the original LMaFit algorithm.

We make two remarks about this observation: firstly, this is only one of the images

amongst all testing data, so the result varies across different problems; secondly, the

modified algorithm has non-negative constraint, which improves the residual to some

extent.

80% remaining 50% remaining 20% remaining

Figure 5.5: The original and recovered hard problem with 80%, 50% and 20% re-
maining with the modified LMaFit algorithm.
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Chapter 6

Conclusions

This paper mainly discussed three low rank matrix completion algorithms: Singu-

lar Value Thresholding, Iteratively Reweighted Least Squares and Low-rank Matrix

Fit. The test problems are abstract paintings from the MART dataset. All images

were classified manually into simple and hard categories by the repetitiveness of the

painting’s structure. The result for the completed image is measured by the relative

Frobenius-norm residual with the original image.

Figure 6.1: Relative Frobenius-norm for all four algorithms.
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Amongst all four algorithms, total relative error shown in Figure 6.1 and total

running time shown in Figure 6.2. the LMaFit has the fastest running speed but the

least accurate result. The IRLS and SVT have similar results, but the SVT algorithm

is significantly faster than the IRLS algorithm, although the result for simple problem

is a little less accurate than the IRLS’ result. Thus, in general the SVT algorithm

is the algorithm of choice. The SVT algorithm has another advantage that there

is no rank needed as an input parameter. In most cases, the rank of the original

image is unknown, and a guess is often less optimal. Thus, with limited information,

the SVT algorithm will give the best result with relatively fast time. However, all

of the three algorithms do not have a non-negative constraint. Using the IRmrnsd

method from IRtools [7] to modify the LMaFit algorithm yields better results than

the original LMaFit algorithm. The benefit for this modified algorithm is the non-

negative constraint, but the result is still not as good as the SVT or IRLS algorithm.

Figure 6.2: Relative running time for all four algorithms.

There are certain areas of improvements for this study as well. The first problem is

assessing quality of the result. For a matrix, measuring with relative Frobenius-norm
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residual is a valid option because it compares the value for each entry. However,

in terms of measuring the quality of a recovered image, measuring pixel by pixel

might not be a good choice. For example, an image shifted by 1 pixel compared

to the original looks perfect but the relative Frobenius-norm residual may be large

because the pixel values are not aligned. There are some existing methods, such as

peak-signal-to-noise ratio (PSNR) or structural similarity index measure (SSIM) that

measures the quality of an image in terms of the amount of noise and degradation

[10]. A good recovered image has two aspects: a good quality and good similarity

to the original image. Thus, a weighted average of image quality and relative error

might be a better way to measure the result of the recovered image. Some previous

studies on image processing uses area under receiver operating characteristic curve

[9] and even can compare the similarity of features or structures in an image [34, 30].

Another area for this study to improve is to incorporate color. This thesis focuses

on the gray-scale image for a faster computation, but the gray-scale image is derived

from the three colored layers, red green and blue, of the original image. One way

to incorporate color is to use low-rank matrix completion method for each colored

layer, and then combine the layers together to form a color image. Another way is

just to treat the whole color image as a 3D array or as a tensor and then apply tensor

completion methods [17]. Some common methods for low-rank tensor completion

includes tSVD (tensor Singular Value Decomposition) [35], tensor factorization [36]

and Riemann optimization [14].
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