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Abstract 

 

Incubation Periods of Dengue Viruses 

By Miranda Chan 

 

 

Dengue viruses are major contributors to illness and death throughout the tropical 

and subtropical regions of the world. Understanding the dynamics of dengue virus 

infection is critical to surveillance and control activities. Here we focus on the timing of 

two critical processes: the extrinsic incubation period (EIP), the time between a mosquito 

taking an infectious blood meal and becoming infectious to humans; and the intrinsic 

incubation period (IIP), the time between an infectious mosquito bite and the onset of 

illness in a human. We performed a literature review to identify data on the extrinsic and 

intrinsic incubation periods of dengue viruses in Aedes aegypti mosquitoes and humans, 

respectively. For the EIP, we also collected data on temperature as the effects of 

temperature on the EIP are well known if not well defined. We used these data for a 

statistical meta-analysis using Bayesian censored time-to-event models. The EIP model 

with the best fit, i.e. the lowest deviance information criterion (DIC) value, was the log-

normal model with a median EIP estimate at 30°C of 13.5 days (95% credible interval of 

11.3—16.2). The IIP model with the best fit was the Weibull model with the median 

estimate of 5.9 days (95% credible interval of 5.6—6.1 days).  The results are robust 

estimates of incubation periods, their distributions, and their uncertainty. These should be 

useful in clinical diagnosis, outbreak investigation, prevention and control programming, 

and mathematical modeling of transmission. 
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INTRODUCTION 

 

Dengue viruses (DENV) are the most common arboviral cause of illness and death in the 

tropics and subtropics (1).  Over the past 50 years, geographic expansion of areas where 

transmission occurs and increased transmission intensity has lead to a 30 fold increase in 

the reported incidence of dengue globally (2). Now, nearly two fifths of the world’s 

population is at risk of infection from one of the four DENV serotypes (DENV-1 to 

DENV-4) (2). Furthermore, the increased incidence has been accompanied by an increase 

in clinically severe disease (3, 4).  

 

The four related, but antigenically distinct DENV serotypes belong to the Flaviviradae 

family.  DENV infections are often asymptomatic, but many result in dengue fever, a flu-

like illness with fever, headache, joint and muscle pain, and rash, and some result in 

severe disease which may include extensive bleeding, plasma leakage, and death (2). The 

more severe manifestations of dengue are associated with secondary DENV infections of 

heterologous serotypes (5, 6). Infection severity likely also depends on specific strains or 

genotypes within each serotype (5, 7).  

 

In this paper, we focus on the extrinsic and intrinsic incubation periods of DENV 

infections. These time periods are the viral incubation periods from infection of the 

mosquito or human to the mosquito becoming infectious or the human becoming sick, 

respectively. Though not well characterized, they are important determinants of DENV 

transmission dynamics as they are critical for clinical diagnosis, outbreak investigation, 
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implementation of prevention and control programming, and mathematical modeling of 

DENV transmission.  

 

The extrinsic incubation period (EIP) begins with a mosquito taking an infectious blood 

meal from a viremic human host.  DENV present in the blood meal then invades the 

midgut, replicates, and eventually disseminates throughout the mosquito which becomes 

infectious once virus reaches the salivary glands (8). The EIP for DENV, like other 

flaviviruses (9-11), is dependent on ambient temperature. At higher temperatures within 

the viable temperature range of the vector, DENV replicates faster and the EIP is shorter 

(12, 13). While variability in the EIP is widely recognized, the temperature-sensitivity 

has not been well characterized and the EIP is most frequently referred to a static range of 

8–12 days (2, 14). 

 

The intrinsic incubation period (IIP) is the time between an infectious mosquito bite and 

the onset of disease in the human host. Though not temperature-sensitive, the IIP does 

vary and is regularly cited in the literature as ranges such as 2–7 days by the World 

Health Organization (2) or 3–10 days by the Centers for Disease Control (14). 

 

Despite the importance of the EIP and IIP, simple ranges poorly define the expected 

duration of each incubation period which can be more formally defined using statistical 

distributions. In the only similar work we are aware of, Nishiura and Halstead (15) 

analyzed data from two previous studies to fit a log-normal distribution of the IIP. Here 

we expand upon this work by collecting relevant data from a greater variety of previously 
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published studies and using Bayesian meta-analysis to define and parameterize multiple 

time-to-event models for the temperature-dependent EIP and the IIP. 
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METHODS 

 

Data 

Relevant literature was collected by searching the Pubmed, Ovid, and the Armed Forces 

Pest Management Board Literature Retrieval System databases using search terms 

including Aedes aegypti, dengue, experiment, import, incubation, transmission, 

temperature, and travel. Further material was found by reviewing references from 

identified papers.  

 

Studies used for the EIP analysis included all instances in which Ae. aegypti were fed on 

viremic humans or non-human primates and were later tested for their ability to transmit 

DENV at a known time interval. The maximum EIP for each mosquito was defined as the 

time from the infectious blood meal (the earliest in the case of multiple blood meals) to 

the first successful transmission of DENV. If transmissibility was tested and never 

successful, the maximum EIP is unknown. The minimum EIP was zero if the first 

transmission attempt was successful or, if not, the time from the last infectious blood 

meal to the last unsuccessful transmission experiment. Average ambient temperature data 

were recorded for each mosquito when available or estimated from the Climate Research 

Unit 30-year mean climatology dataset (CL 2.0) (16) based on geographic location and 

the time of year of the study. 

 

The IIP analysis was restricted to events in which humans became sick after being 

experimentally infected by Ae. aegypti or after exposure to DENV by travelling into or 

out of an area with ongoing dengue transmission. Transmission events involving 
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inoculation of humans and/or mosquitoes with dengue virus through injections and 

mosquitoes that fed on animal blood or artificial media were excluded, as these modes do 

not reflect natural transmission. In some cases, the IIP was directly observed. In other 

cases, the maximum and minimum IIP were defined as the time from the first and last 

exposures, respectively, to the onset of illness. 

 

Statistical Analysis 

 The EIP and IIP data were both analyzed using censored time-to-event models. For the 

IIP observations with a single exposure and a known time of illness onset, the data are 

uncensored. For observations of EIP or IIP defined by an interval, the event is interval-

censored, i.e. it is assumed that the event occurred sometime between the minimum and 

maximum times defined by the observations. Observations with only a minimum time are 

treated as right-censored data.  

 

For each incubation period, we analyzed four common time-to-event models: 

exponential, gamma, log-normal and Weibull.  The specific formulations of each are 

available in Table 1. To estimate the temperature dependence of the EIP, we incorporated 

a linear covariate for temperature assuming multiplicative hazards.  The analyses were 

performed in WinBUGS Version1.4 (17). Parameters were estimated based on 500,000 

samples after a burn-in of 10,000 samples. Models were checked for convergence and fit 

was assessed by comparing the relative deviance information criterion (DIC) for each 

model (18). 
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RESULTS 

 

Data 

 The EIP data included 201 observations, 114 interval-censored and 87 right-censored 

collected from 8 studies (13, 19-25).  The publication year of the studies ranged from 

1905 to 1987.  The average observed ambient temperature ranged from 14.9 to 35.0°C 

with a median temperature of 26°C.  The serotype representation included 55 (27.4%) 

DENV-1, 91(45.3%) DENV-2, zero DENV-3, 33 (16.4%) DENV-4, and 22 (10.9%) 

DENV of unknown serotype.  For the IIP, 189 observations were collected including 121 

uncensored observations, 52 interval-censored observations, and 16 right-censored 

observations.  These data were obtained from 35 studies published between the years 

1903 to 2010 (19, 21-54).  

 

Extrinsic Incubation Period 

 To characterize the EIP, we fit four time-to-event statistical models (exponential, 

gamma, log-normal and Weibull) with temperature as a covariate.  The median estimates 

of the EIP at 30°C ranged from 12.2 days in the Weibull model to 15.5 days in the 

exponential model (Table 2). Increased temperature was associated with decreased EIP.  

This association was statistically significant in all but the exponential model (Table 2).    

The model with the best fit, i.e. the lowest DIC, was the log-normal model. The median 

estimate for the EIP at 30°C was 13.5 days with a 95% credible interval of 11.3—16.2 

days. The distribution of the mean EIP at a 30°C is shown in Figure 1.  
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Intrinsic Incubation Period 

Exponential, gamma, log-normal and Weibull models were also fit to the IIP data. The 

median IIP estimates ranged from 5.9 days in the gamma and Weibull models to 6.5 days 

in the exponential model (Table 3). The model with the best fit was the Weibull model 

with the median IIP estimate of 5.9 days and a 95% credible interval of 5.6—6.1 days 

(Table 3).  
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DISCUSSION 

 

This study provides important insight into the transmission dynamics of dengue viruses 

by formally describing the statistical distributions of the extrinsic and intrinsic incubation 

periods.  The models support the inverse relation of temperature to EIP. 

 

The use of Bayesian analysis allowed us to describe and parameterize the statistical 

distributions of the DENV incubation periods.  Historical data on the incubation periods 

were limited in the literature, as investigations of these events often required dangerous, 

expensive and time intensive experimental studies.  Available studies were carefully 

examined to ensure the collected data were sufficient and relevant to our study.  Some 

studies were missing critical information and thus, were excluded.  In the case of missing 

temperature data, when geographic location and time of year of the study was available, 

temperature was estimated as described in the methods section.  Due to the estimation of 

some temperature data, there is some uncertainty of the temperature sensitivity in the EIP 

models.   Although incubation period data is difficult to measure and is scarce, the use of 

time-to-event models allowed the incorporation of time censored data into the analysis.  

The sample sizes were moderate (201 for EIP and 189 for IIP) and the use of Bayesian 

analysis does not require the assumption of large sample size for valid standard errors and 

confidence intervals as in classical statistical analysis.   

 

The estimates from the IIP analysis provide clinically useful information for physicians 

as knowledge of the likely time frame of exposure to symptoms can include or exclude 

dengue as a potential diagnosis.  Additionally, the time from infectious bite from a 
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mosquito to infectiousness in humans is important factor in dengue transmission.  

However, we were not able to analyze this due to limited data.  Knowledge of this time 

frame is significant, as infectious humans, who also include asymptomatic human cases, 

can infect mosquitoes and propagate epidemics. 

 

Similarly, the EIP analysis provides detailed understanding of the distributions of this 

critical time frame in dengue transmission.  However, the analysis does not include other 

important factors in the complex transmission of dengue, such as infectious dose.  All 

mosquitoes in the studies used here were infected by natural feeding in which the 

infectious dose is difficult to measure.  However, infective viral dose has been shown 

influence the EIP (8, 55).  Mosquitoes feeding on blood meals with a low viral dose 

compared to a high viral dose may require a longer EIP, since fewer viruses are present to 

infect, replicate, and subsequently disseminate to the salivary glands in the mosquito (8).   

 

Similar to previous findings with other flaviviruses (8, 11), the EIP of dengue viruses was 

inversely associated with temperature.  The addition of temperature in the EIP models 

allowed for the quantification of the temperature sensitivity with EIP.  The average 

lifespan of Ae. aegypti under optimal conditions is 30-50 days (56).  At cool 

temperatures, the mosquito is less likely to survive in the environment and the EIP may 

be greater than the lifespan of the mosquito.  Thus, at cooler temperatures, an infected 

mosquito has a greater potential to die before the EIP is completed and not perpetuate 

DENV transmission.  At warm temperatures, completion of the EIP is likely to occur as 

EIP is shorter and a smaller proportion of the mosquito lifespan.  Thus, warm 
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temperatures enhance DENV transmission as mosquitoes are able to infect humans 

earlier than at cool temperatures. However, at extreme hot temperatures the association of 

EIP with temperature is not valid due to the adverse effects of extreme hot temperatures 

on mosquito survival.  Extreme temperatures outside of this range are likely to kill the 

mosquito before EIP is completed.     

 

The analysis of the DENV incubation periods is valuable for clinical diagnosis, outbreak 

investigation and implementation of prevention and control programming, and 

mathematical modeling.  The use of IIP estimates presented here can inform physicians 

of dengue as a possible diagnosis in patients, particularly in travel-related cases in which 

patients have visited areas with on-going dengue transmission. IIP can also be used to 

guide outbreak investigations by pointing toward likely locations and time of exposure 

from index cases.  With this information, additional dengue cases may potentially be 

discovered or prevented.  The temperature-sensitive EIP estimates can inform public 

officials in the decision process of vector control.  When temperatures are cool, the use of 

insecticides may be more useful as mosquitoes are likely to die quicker from the control 

measures before completing the EIP.  The IIP and EIP measures can also be used in 

mathematical models to inform and evaluate control measures.  Additionally, the 

temperature-sensitive EIP estimates can be integrated into models of climate change to 

better assess the potential for climate change to influence future variations in dengue 

incidence. 
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TABLES 

 

Table 1: Time-to-event model distributions 

Distribution Probability Density 

Function f(t) 
Parameters Covariates 

 

Exponential te  
 λ = rate   1 Xx e   

Gamma 1

( )

v v tt e

v

  


 

 

λ = rate 

v = shape 

 

  Xx v e   

Weibull 1 vv tv t e   
 

λ = rate  

v = shape 
  Xx e   

Log-normal 

 

2(ln( ) ) 2

2

te

t

 



 



 

μ = mean 

τ = precision  
  Xx e   

 

Where for the extrinsic incubation period (EIP) models:             
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Table 2: 

Extrinsic incubation period of dengue viruses: Parameter estimates and goodness-of-fit measures for time-to-event models with temperature 

sensitivity 

 

Constant parameter 

 

  

Covariate coefficients    Mean extrinsic 

incubation period at 

30°C (95% CI*) 

 

Model Notation 

Value (95% 

CI*)   β0  (95% CI*) βT  (95% CI*)   DIC** 

Exponential - - - 

 

3.6 (1.5-5.5) -0.029 (-0.097-0.052) 

 

15.5 (11.5-22.0) 226 

Gamma shape (ν) 3.6 (2.4-5.5) 

 

4.1 (3.0-5.3) -0.0512 (-0.0961 to -0.0082) 

 

12.7 (10.5-15.2) 203 

Weibull shape (ν) 2.1 (1.7-2.6) 

 

-9.2 (-13.0 to -5.9) 0.130 (0.022-0.240) 

 

12.2 (10.1-14.8) 200 

Log-normal precision (τ) 3.3 (2.1-5.0)   1.34 (0.99-1.69) -0.0013 (-0.029 to -0.0013)   13.5 (11.3-16.2) 195 

*95% credible interval 

           **deviance information criterion 

           

 

 

 

Table 3: 

Intrinsic incubation period of dengue viruses: Parameter estimates and goodness-of-fit measures for time-to-event models 

 

Constant parameter 

 

Parameter   

Intrinsic incubation 

period 

  Model Notation Value  (95% CI*)   Notation Value (95% CI*)   Mean  (95% CI*)   DIC** 

Exponential - - - 

 

rate (λ) 0.16 (0.13-0.18) 

 

6.5 (5.5-7.6) 

 

766 

Gamma shape (ν) 14.4 (11.3-18.0) 

 

rate (λ) 2.4 (1.9-3.1) 

 

5.9 (5.7-6.2) 

 

536 

Weibull shape (ν) 3.9 (3.5-4.5) 

 

rate (λ) 0.00071 (0.00024-0.00064) 

 

5.9 (5.6-6.1) 

 

520 

Log-normal precision (τ) 12.5 (9.6-15.7)   mean (μ) 1.75 (1.70-1.79)   6.0 (5.7-6.3)   525 

*95% credible interval 

           **deviance information criterion 
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FIGURES  

 
Figure 1: Extrinsic incubation period distributions at 30°C 

 

 
Exponential Gamma 

  
Log-normal Weibull 
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Figure 2: Intrinsic incubation period distributions 
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