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Abstract

Inverse Problems in Hyperspectral Imaging

By
Sebastian Berisha

In hyperpsectral imaging, multiple images of the same scene are obtained over a con-
tiguous range of wavelengths in the electromagnetic spectrum. Hyperspectral images
represent observations of a scene at many different wavelengths and most impor-
tantly associate to each pixel in the imaged scene a full spectral vector or spectral
signature. However, due to the presence of spectral mixtures (at different scales)
in the scene and/or low spatial resolution of the hyperspectral sensor, the acquired
spectral vectors of each pixel are actually a mixture of the spectra of the various
materials present in the spatial coverage area of the corresponding pixel. Spectral
unmixing is an important task in hyperspectral data analysis that aims to separate
the measured pixel spectra into a set of spectral signatures of constituent materials
(endmembers) and their corresponding fractional abundances, which represent the
contribution percentage of the spectrum of each material present in the pixel. The
blurring introduced by the hyperspectral imaging system and/or seeing conditions
contributes furthermore to the overall mixing of the spectrum of different materials.
Thus, hyperspectral unmixing and deblurring are necessary to be able to effectively
perform hyperspectral image processing tasks.

This thesis presents a numerical approach for deblurring and sparse unmixing of
ground-based astronomical images of space objects taken through the atmosphere at
multiple wavelengths with narrow spectral channels. A major challenge for deblur-
ring hyperspectral images is that of estimating the overall blurring operator, taking
into account the fact that the blurring operator point spread function (PSF) can
be wavelength dependent and depend on the imaging system as well as the effects
of atmospheric turbulence on the arriving wavefront. Thus, we begin by develop-
ing an iterative approach to solve separable nonlinear least squares problems arising
in the estimation of hyperspectral PSF parameters. A variable projection Gauss-
Newton method is used to solve the nonlinear least squares problem. Our analysis
shows that the Jacobian can be potentially very ill-conditioned. To deal with this
ill-conditioning, we use a combination of subset selection and regularization. Exper-
imental results related to hyperspectral PSF parameter identification and star spec-
trum reconstruction illustrate the effectiveness of the resulting numerical scheme.
We then combine our hyperpsectral PSF estimation method with hyperpsectral de-
blurring and sparse unmixing by deriving a numerical scheme using multiple PSFs.
Our approach is based on a preconditioned alternating direction method of multipli-
ers. The effectiveness of our method is illustrated with numerical experiments on a
commonly used test example, a simulated hyperspectral image of the Hubble Space
Telescope satellite.
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Variable Definitions

Nm number of endmembers

Nw number of spectral bands or wavelengths

i pixel index

Np number of pixels in an image

γ the ellipticity parameter in the elliptical Moffat function

Θ the rotation angle in the elliptical Moffat function

sλ the unknown intensity of the star spectrum at wavelength λ

p the number of parameters used to define the hyperspectral PSF

Nm number of attenuating materials to be modeled

µ1 sparsity regularization term

µ2 total variation regularization term

Dv first order difference matrix in the vertical direction

Dh first order difference matrix in the horizontal direction

ei the ith unit vector

H the overall hyperspectral blurring matrix

N the matrix representing the errors or noise

X the fractional abundances matrix of endmembers

φλ vector of unknown parameters corresponding to wavelength λ

hλ a vector representing the vectorized form of an exact original image of

an isolated star corresponding to wavelength λ

gλ a vector representing the vectorized form of an observed, blurred, and

noisy image of an isolated star corresponding to wavelength λ

G the observed hyperspectral data matrix (each row contains the

observed spectrum of a given pixel)

M spectral library which contains spectral signatures of endmembers
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Chapter 1

Introduction

Information about the material composition of an object is contained most unequiv-

ocally in the spectral profiles of the brightness at the different surface pixels of the

object. By acquiring the surface brightness distribution in narrow spectral channels,

as in hyperspectral image (HSI) data cubes, and by performing spectral unmixing on

such data cubes, one can infer the material identity as a function of position on the

object surface [45]. A major advantage of hyperspectral imaging (HSI) over tradi-

tional imaging methods is its ability to perform object identification and classification

in image scenes which contain objects that are too small to be detected by spatial

imaging methods. A disadvantage is the fact that the improved ability to acquire

HSI data over a large number of wavelengths poses data storage and data processing

challenges.

A considerable amount of research has been done to develope hyperspectral image

processing methods for HSI data compression, spectral signature identification of

constituent materials, and determination of their corresponding fractional abundances

[20, 35, 43, 53, 54, 71, 75, 90, 95, 116, 145, 147]. HSI is used in a wide range of

applications, such as remote surveillance, astrophysics, medical imaging, geophysics,

agriculture, and mineral exploration [94, 115, 131].
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Knowledge of the data acquisition system is required to effectively perform HSI

processing tasks. In particular, the data acquisition system introduces blurring which

can be modeled by a convolution kernel or a point spread function (PSF). Moreover,

the convolution of the PSF with the source data increases the mixing of the spectrum

of different objects present in the imaged scene. A major challenge for deblurring HSIs

consists in the estimation of the overall blurring operator H , taking into account the

fact that the blurring operator PSF can vary over the images in the HSI data cube.

That is, the blurring can be wavelength dependent and depends on the imaging

system as well as the effects of atmospheric turbulence on the arriving wavefront,

see e.g., [87, 127, 132, 141]. In addition, the observing conditions change with the

data and thus the PSFs cannot be obtained by a single calibration of the optical

instrument, but instead have to be estimated for each HSI datacube.

In [133] the authors assume the model of the PSF is a linear combination of

Gaussian functions and thus their blur identification process corresponds to finding

the scalar weights for each of the Gaussian functions. More recently a hyperspectral

Multi Unit Spectroscopic Explorer (MUSE) system has been installed on the Very

Large Telescope (VLT) and deployed by the European Southern Observatory (ESO)

at the Paranal Observatory in Chile. The MUSE system will collect up to 4, 000

bands, and research is ongoing to develop methods for estimation of the wavelength

dependent PSFs for deblurring the resulting HSI datacube for ground-based astro-

physical observations, see e.g. [127, 141]. In particular, Soules et al. [132] consider

the restoration of hyperspectral astronomical data with spectrally varying blur, but

assume that the spectrally varying PSF defining the spectrally varying convolution

has already been provided by other means, and defer the PSF estimation to a later

time.

An important method in hyperpsectral data analysis is hyperspectral unmix-

ing [19, 143, 76, 75, 21, 74]. The goal of hypersectral unmixing is to find the un-
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derlying materials present in each pixel of the observed scene. A widely used spectral

mixing model is the linear mixture model which assumes that the measured mixed

spectrum of a pixel can be expressed as a linear combination of the spectral signatures

of “pure” materials, also called endmembers. The spectra of endmembers is measured

in laboratory settings. Given the observed HSI data and a spectral library of end-

members, the aim becomes to estimate the fractional abundances of endmembers in

each mixed pixel, i.e. determine the percentage contribution of endmembers in the

coverage area of every pixel. Hyperspectral unmixing can be challenging due to low

spatial resolution, spectral mixtures which can happen at different scales, blurring

caused by the data acquisition system and/or atmospheric conditions, potentially

large spectral libraries and/or the lack of a priori knowledge regarding the endmem-

bers present in the scene. Since the number of endmembers present in a pixel is very

small compared to the growing dimensionality of spectral libraries it is often desirable

to use optimization techniques to enforce sparsity constraints in the solution of the

hyperspectral unmixing problem.

Several methods have been developed for hyperspectral unmixing; for a compre-

hensive overview see [21]. Iordache et. al [75] also include spatial information in the

formulation of the sparse hyperspectral unmixing problem. In particular, the authors

exploit the spatial-contextual information present in HSIs by using total variation

(TV) regularization. If we incorporate a blurring operator in the problem formula-

tion for hyperspectral unmixing then we have to solve a hyperspectral unmixing and

deblurring problem. Zhao et.al. [147] have studied TV in sparse hypersectral un-

mixing and deblurring by incorporating a blurring operator for dealing with blurring

effects. However, they assume that the blurring is homogenous, i.e. it is the same

at all wavelengths. Nevertheless, as previously mentioned, it is a known fact that

hyperspectral PSFs are generally wavelength dependent.

The HSI problems discussed in this work can be modeled as inverse problems.
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The hyperspectral PSF identification problem is the inverse problem of determining

a set of parameters which define the overall hyperspectral PSF whereas hyperpsec-

tral unmixing and deblurring is the inverse problem of determining the fractional

abundances of the spectrally pure components present in the mixed spectra of each

pixel.

Therefore, we begin this thesis by discussing some computational approaches to

compute approximate solutions of inverse problems. We consider two common mod-

els: a linear model and a separable nonlinear model. Several regularization approaches

are described in Section 1.1.1. In Section 1.1.3 we discuss some considerations for pre-

conditioning of ill-posed problems. For a more extended survey of these methods that

also includes image iterative restoration methods for constrained and unconstrained

problems, see [13].

1.1 Inverse Problems

Inverse problems arise in many areas of science and engineering, such as astronomy,

astrophysics, medical imaging, parameter identification, geophysics, inverse scatter-

ing, heat conduction, and signal processing [46, 67, 69, 142, 3, 108]. A classical

example of an inverse problem in imaging is the image restoration problem. The

goal of this problem is to reconstruct an approximation of the true image from the

observed image that is blurred and noisy. Moreover, in many cases it is also necessary

to estimate the parameters of the blurring operator from the observed data.

The general forward model of an inverse problem can take the form

g = K(φtrue)ftrue + η (1.1)

where g ∈ Rm is a known (observed data) vector, K(φtrue) ∈ Rm×n is an operator

defined by a parameter vector φtrue ∈ Rp, ftrue ∈ Rn is a vector representing the
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true data, and η ∈ Rm is unknown noise and error present in the observed data. In

general, some of the tasks associated with the inverse problems of the above form

include

• Given K(·) and g, find an approximation to ftrue.

• Given ftrue (or an approximation of it) and g, find an approximation to φtrue.

• Given g, find an approximation to ftrue and to φtrue.

In the case when the operator K(·) can be represented as a matrix then K is

called the coefficient matrix. The numerical treatment of inverse problems becomes

more difficult when the coefficient matrix has a very large condition number, i.e. the

problem we are trying to solve is very ill-conditioned. Many linear inverse problems

can be characterized as rank-deficient or ill-posed problems [67].

If the coefficient matrix in the formulation of the inverse problem has a cluster of

small singular values and there is a well defined gap between large and small singular

values then the inverse problem is (numerically, or approximately) rank-deficient. In

these type of problems one or more columns or rows of the coefficient matrix are

nearly linear combinations of some or all of the remaining columns or rows. An

approach for the numerical solution of rank-deficient problems consists of extracting

the linearly independent information in the coefficient matrix, i.e. transforming the

rank-deficient coefficient matrix into a more well-conditioned matrix.

Ill-posed problems are characterized by having a coefficient matrix whose singular

values decay gradually to zero, lacking a well-defined gap between large and small

singular values. This implies that there is no notion of numerical rank for the coeffi-

cient matrix. The definition of well-posed and ill-posed inverse problems goes back to

Hadamard [63]. Hadamard defined a problem as ill-posed if a solution to the problem

does not exist, or is not unique, or does not depend continuously on the data; that

is, small changes in the data can lead to large changes in the solution. In general,



7

when computing approximate solutions of ill-posed problems, the goal is to find a

balance between the norm of the residual, the norm of the solution, and/or a priori

expectations for the computed solution.

The typical approach to solving ill-posed systems is to use numerical regularization

methods which stabilize the solution by including appropriate additional information

in the problem formulation. The approaches to solving both rank-deficient and ill-

posed problems, share many of the same regularization algorithms. Many inverse

problems are large scale and computationally demanding and thus the numerical

regularization methods used to solve them have to be both reliable and efficient.

1.1.1 Regularization

In this section, we discuss regularization approaches for linear discrete inverse prob-

lems. Here, we discuss regularization for linear inverse problems in image restoration.

So, without loss of generality, for now we assume that K ≡ K(φ) is known exactly

(we return to the case where K(φ) needs to be estimated in Section 1.1.2). The

discrete forward model for the digital image restoration problem can be written as

g = Kftrue + η , (1.2)

where ftrue ∈ Rmn is the true object, g ∈ Rmn is the observed image, η ∈ Rmn is

additive noise,K ∈ Rmn×mn is a matrix defined by the PSF which models the blurring

operation, and the images are assumed to have m× n pixels. In the case of spatially

invariant blur the image restoration problem is often referred to as deconvolution.

Here we assume thatK and g are known and the goal is to compute an approximation

of ftrue. A major challenge, that arises when we want to compute an approximation

to the true solution, is that the matrix K can be severely ill-conditioned.
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1.1.1.1 SVD Analysis

The Singular Value Decomposition (SVD) can be used to analyze the discrete inverse

solution of problem (1.2). Let gtrue = Kftrue be the noise-free blurred image. Then

the SVD of K is defined as

K = UΣV > ,

where K ∈ RN×N , U ∈ RN×N (whose columns ui are the left singular vectors

of K) and V ∈ RN×N (whose columns vi are the right singular vectors of K)

are orthogonal matrices, Σ ∈ RN×N is a diagonal matrix with entries satisfying

σ1 ≥ σ2 ≥ · · · ≥ σN ≥ 0, and N = mn. Discrete problems of the form (1.2) inherit

the following properties:

• The singular values, σi of the coefficient matrix K decay to, and cluster at 0,

without a significant gap to indicate numerical rank.

• Smaller singular values σi correspond with more oscillation in the singular vec-

tors vi.

• The spectral components |ui>gtrue|, decay on average faster than the singular

values σi. In particular, for large σi, we expect |ui>gtrue| > |ui>η| and therefore

ui
>g dominates. For small σi, |ui>gtrue| → 0 as σi → 0 and so ui

>η dominates.

This is called the discrete Picard condition [67].

Notice that if K is nonsingular then

K−1 = V Σ−1U> =

[
v1 v2 · · · vN

]


1
σ1

1
σ2

. . .

1
σN





u1
>

u2
>

...

uN
>
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=

[
v1 v2 · · · vN

]


u1
>

σ1

u2
>

σ2

...

uN
>

σN


=

N∑
i=1

1

σi
viui

>.

Now we can use the previously mentioned properties to see the effect of the error

term η on the inverse solution

finv = K−1g = V Σ−1U>g =
N∑
i=1

1

σi
viui

>g =
N∑
i=1

ui
>g

σi
vi =

N∑
i=1

ui
>(gtrue + η)

σi
vi

=
N∑
i=1

ui
>gtrue

σi
vi +

N∑
i=1

ui
>η

σi
vi = ftrue + error.

The above relation shows that division by small σi magnifies the noise and the

high frequencies in the error term. As a result, finv can be a very poor approxima-

tion of the true solution, ftrue. This analysis indicates that the incorporation of some

form of regularization is necessary in order to compute an accurate and meaningful

approximation of ftrue. Some common and well-known techniques used to enforce

regularization include: Tikhonov regularization, Wiener filtering, and/or the incor-

poration of nonnegativity constraints [46, 67, 68, 142]. In the rest of this subsection,

we review some of the regularization methods that are used throughout this thesis.

1.1.1.2 Regularization by Filtering

Filtering is one class of regularization methods that can be formulated as a modifica-

tion of the inverse solution [67]. In regularization by filtering, instead of computing

the naive inverse solution

finv =
N∑
i=1

ui
>g

σi
vi , (1.3)
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we compute the filtered solution

ffilt =
N∑
i=1

ωi
ui
>g

σi
vi , (1.4)

where 0 ≤ ωi ≤ 1.

In the above definition, a decision has to made about what is meant by “large”

and “small” singular values. The filtered solution formulation implies that the filter

factors are used to dampen the components corresponding to the small singular values

whereas the components of the solution corresponding to the large singular values

are reconstructed. There exist different choices for the filter factors, ωi, and these

choices lead to different regularization methods. Some of the popular choices are the

truncated SVD, Tikhonov, and Wiener filters [67, 78, 142]. Some examples for the

choice of filter factors ωi include

• Truncated SVD filters: ωi =

 1 if σi > tol

0 if σi ≤ tol
, where tol is predetermined.

• Tikhonov filters: ωi =
σ2
i

σ2
i+α2 , for some α ∈ [σmin, σmax].

• Exponential Filters: ωi = 1 − e−
σ2i
α2 , where α is typically in the interval

[σmin, σmax].

1.1.1.3 Spectral Value Decomposition

If K is a normal matrix, the SVD can be replaced with the spectral value decompo-

sition,

K = QHΛQ ,

where Λ is a diagonal matrix, and QH is the Hermitian transpose of Q, with QHQ =

I. The columns of Q are the eigenvectors and the diagonal elements of Λ are the

eigenvalues ofK. IfK has a spectral factorization, then it can be used, in place of the
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SVD, to implement the filtering methods described above. The advantage is that it is

sometimes more computationally convenient to compute a spectral value decomposi-

tion than it is to compute a singular value decomposition. We use this decomposition

in this thesis in the case of spatially invariant blur with periodic boundary conditions.

In this case the eigenvalues are obtained by taking a Fourier transform of the PSF,

the eigenvectors of K are the Fourier vectors, and fast Fourier transforms (FFT) can

be used for operations involving Q and QH .

1.1.1.4 Variational Regularization

If it is not computationally feasible to use a singular value or spectral value decompo-

sition based filtering method then we can use another class of regularization methods

for linear inverse problems, which is known as variational regularization and has the

form

min
f

{
‖g −Kf‖2

2 + α2J (f)
}
, (1.5)

The regularization operator J and the regularization parameter α must be chosen

and the choice depends on the application. Some choices for the regularization oper-

ator, J , include:

• Tikhonov regularization [61, 136, 135, 137]: J (f) = ‖Lf‖2
2

• Total variation (TV) [32, 123, 142]: J (f) =

∥∥∥∥√(Dhf)2 + (Dvf)2

∥∥∥∥
1

or J (f) =

∥∥∥∥√(Dhf)2 + (Dvf)2

∥∥∥∥
2

• Sparsity constraints [29, 51, 140]: J (f) = ‖Φf‖1.

For Tikhonov regularization, L is typically chosen to be the identity matrix, or

a discrete approximation to a derivative operator, such as the Laplacian. For TV,

the matrices Dh and Dv represent discrete approximations of horizontal and vertical

derivatives of the 2D image f , and the approach extends to 3D images in a straight-
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forward way. The 1-norm definition of TV is known as anisotropic TV whereas the

2-norm definition is referred to as isotropic TV. Implementing total variation in an

efficient and stable way is nontrivial for some problems [32, 142]. For sparsity con-

straints, the matrix Φ represents a basis in which the image, f , is sparse and its

choice depends on the structure of the image f . There is a lot of ongoing research on

the usage of sparsity constraints for regularization [51].

1.1.1.5 Iterative Regularization

Another class of regularization methods is based on iterative regularization. Iterative

regularization is enforced using iterative methods which can be applied directly to

the least squares problem

min
f
‖g −Kf‖2.

However, we have to be careful about the number of iterations used to run the

iterative methods. If we apply an iterative method directly to the above least squares

problem then the iteration will converge to the naive inverse solution, finv = K−1g,

which is typically a poor approximation of ftrue. In cases where the inverse problem

satisfies the Picard condition, many iterative methods exhibit a semi-convergence

behavior with respect to the relative error,

‖fk − ftrue‖2

‖ftrue‖2

,

where fk is the approximate solution at the kth iteration. The semi-convergence be-

havior occurs when in the early iterations the relative error begins to decrease and,

after some “optimal” iteration, the error then begins to increase. The reason for this

behavior is that at the early iterations the components of the solution corresponding

to large singular values are reconstructed and then after the “optimal” iteration the

components corresponding to small singular values are reconstructed. Thus, the com-
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puted solution is dominated by noise and error. If we terminate the iteration when

the error is low, then we obtain a regularized approximation of the solution.

Some of the advantages of using iterative methods include: efficiency (for spa-

tially invariant as well as spatially variant blurs), the ability to incorporate a variety

of regularization techniques and boundary conditions, and the ability to incorpo-

rate additional constraints, such as nonnegativity [10, 104]. Iterative regularization

methods have the disadvantage that it might be difficult to determine an “optimal”

stopping iteration, since the relative errors cannot be computed without knowing the

true solution. However, it is possible to incorporate a regularization operator using

the variational approach, and apply an iterative method to the resulting minimization

problem. In this sense, iterative methods have many advantages over simple filtering

techniques [14, 86, 88].

1.1.1.6 Regularization Parameter

In each of the regularization methods discussed above, we must chose a regulariza-

tion parameter. In order to choose the “right” parameter, we often need to make

assumptions about the statistical distribution of the noise. Some approaches assume

additional prior information such as an estimate of ||η||22. Other approaches attempt

to extract noise information directly from the measured data.

In the variational form, one has to choose the scalar α, where as for iterative

regularization methods the index where the iteration is terminated plays the role

of the regularization parameter. In either case, it is a nontrivial matter to choose

an “optimal” regularization parameter. Some methods for choosing regularization

parameters include: generalized cross validation (GCV) [58], discrepancy principle

[46], L-curve [67], L-ribbon [24], and many others [46, 67, 142]. However, in many

cases it may be necessary to solve the problem for a variety of parameters, and use

knowledge of the application to help decide which solution is best.
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1.1.2 Separable Nonlinear Inverse Problems

In this section, we consider the inverse problem (1.1) when the matrix K(φ) is not

known exactly, and the goal is to compute approximations for both φ and f . We

assume that it is possible to obtain initial guesses of the unknowns φ and f . For this

problem, if we consider the variational form of the standard Tikhonov regularization

then a nonlinear least squares problem can be formulated as

min
f ,φ

{
‖g −K (φ)f‖2

2 + α2‖f‖2
2

}
= min

f ,φ

∥∥∥∥∥∥∥
g

0

−
K (φ)

αI

f
∥∥∥∥∥∥∥

2

2

(1.6)

The above equation can be rewritten as

min
z
ψ(z) = min

z
||ζ(z)||22 (1.7)

where

ζ(z) = ζ (f ,φ) =

g
0

−
K (φ)

αI

f , z =

f
φ


Some approaches for solving this problem include the fully coupled joint optimiza-

tion approach, the partially coupled approach (variable projection), and the decoupled

approach (the block coordinate descent). Here, we discuss the former two approaches

in more detail and briefly touch upon the decoupled approach.

1.1.2.1 Solution Methods

Separable nonlinear inverse problems can be solved using an iterative method such as

the Gauss-Newton method [41, 81, 109, 111]. In each iteration of the Gauss-Newton

algorithm the solution vector is updated in the form

zk+1 = zk + dk ,
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with the step direction given by

dk = −
(
ψ̂′′(zk)

)−1

ψ′(zk)

where ψ̂′′ is an approximation of the Hessian ψ′′.

The first derivative of the cost function ψ(·) is given by ψ′(zk) = Jψ
>ζ, and ψ′′ is

is approximated by ψ̂′′ = J>
ψJψ, where

Jψ =

[
∂ζ (f ,φ)

∂f

∂ζ (f ,φ)

∂φ

]
,

is the Jacobian matrix. Let r =

g
0

−
K (φ)

αI

f . Then the search direction dk at

each Gauss-Newton iteration is computed by solving a least squares problem of the

form

min
d
||Jψd− r||22 (1.8)

In general, a Gauss-Newton algorithm to solve problem (1.7) has the form:
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General Gauss-Newton Algorithm

given: g

choose: initial guess for z0 =

f0

φ0


step length parameter τ

for k = 1, 2, · · · , until stop

compute rk =

g
0

−
K (φk)

αI

fk
solve

dk = min
d
||Jψd− rk||22

where

Jψ =

[
∂ζ (fk,φk)

∂fk

∂ζ (fk,φk)

∂φk

]
set zk+1 = zk + τkdk, where τk has to be chosen.

end for

A computational challenge associated with the general Gauss-Newton approach

consists in constructing and solving systems of the form (1.8). This can be compu-

tationally expensive because of the size of Jψ and it also might require some form of

regularization when Jψ is ill-conditioned or rank deficient. Moreover, effective pre-

conditioners for (1.8) may be difficult to find and the regularization parameter α has

to be either specified a priori or estimated within each iteration.

The general Gauss-Newton method is a fully coupled approach for solving non-

linear inverse problems. A key disadvantage of these type of approaches consists in

not taking algorithmic advantage of the fact that the objective function is linear in
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f . These type of approaches can be very slow because the step size at each iteration

can be very small due to the nonlinearity induced by φ.

Another approach for solving problem (1.6) is the block coordinate descent algo-

rithm. This iterative algorithm fully decouples the problem by solving two minimiza-

tion problems in each iteration. The first minimization problem consists of solving

a linear least squares problem for f using a fixed initial guess for φ. In the second

minimization problem, the variable f obtained in the first problem is fixed and a

new φ is obtained by solving a nonlinear least squares problem. Thus, the coordinate

descent method explicitly separates the variables f and φ. A major drawback of this

approach is slow convergence in problems with tightly coupled variables [109].

A third approach to solve the separable nonlinear least squares problem in Equa-

tion (1.6) is the variable projection method [56, 57, 80, 112, 124]. Notice that the

nonlinear least squares problem (1.6) is linear in f and nonlinear in φ. Morever, in

most cases φ contains relatively few parameters compared to f . The variable pro-

jection method exploits this structure of the problem by implicitly eliminating the

linear parameters f and obtaining a reduced cost functional which is dependent only

on the nonlinear term φ. The reduced cost functional is then minimized using the

Gauss-Newton method. In particular, let f(φ) be the solution of the least squares

problem

min
f
ψ (f ,φ) = min

f

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
g

0

−
K (φ)

αI

f
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

2

. (1.9)

Now, consider the minimization problem for the reduced cost functional

min
φ
υ(φ) = min

φ
ψ (f(φ),φ)

To apply the Gauss-Newton algorithm to minimize the reduced cost functional we
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need the first derivate of υ(φ)

υ′(φ) =
df(φ)

dφ

∂ψ

∂f(φ)
+
∂ψ

∂φ

Since f is the solution to the linear problem (1.9) then
∂ψ

∂f(φ)
= 0. Thus

υ′(φ) =
∂ψ

∂φ
= Jυ

>ζ

The Jacobian of the reduced cost functional can be written as

Jυ =
∂

∂φ
[K(φ)f ] .

The Jacobian matrix Jυ has to be evaluated analytically or it can be approximated

by a finite-difference approach.

In general, the variable projection Gauss-Newton algorithm has the form:
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Variable Projection Gauss-Newton Algorithm

given: g

choose: initial guess f0

step length parameter τ

initial guess for parameter vector φ0

for k = 1, 2, · · · , until stop

choose αk

compute rk =

g
0

−
K (φk)

αI

fk
solve

fk = arg min
f

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
g

0

−
K (φk)

αkI

f
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

dk = arg min
d
||Jυd− rk||2

where

Jυ =
∂

∂φ
[K(φ)fk]

set φk+1 = φk + τkdk, where τk has to be chosen.

end for

It should be noted that the variable projection method is usually the best method

for solving separable nonlinear least squares problems. However, a drawback is that

the derivates may be difficult to compute.
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1.1.3 Preconditioning

Preconditioning techniques are used in many areas of scientific computation to ac-

celerate convergence and improve the reliability of iterative methods. Much effort

has been put in the development of effective preconditionining techniques for the

solution of well-posed problems [12, 60, 125]. In the case of the preconditioning of

ill-posed inverse problems special considerations have to be taken into account to

avoid convergence to a poor approximate solution. Preconditioned iterative regular-

ization schemes for overcoming the difficulties associated with ill-posed problems in

image deblurring have been proposed: for applications where the blurring operator

is known [65, 66, 106], for image restoration problems with spatially variant blurs

[102, 103, 105], and multi-frame problems [30]. In general, the additional cost associ-

ated with constructing and using preconditioners in iterative methods is acceptable

and justified if the overall number of iterations is reduced substantially and/or the

preconditioner can be reused or updated easily throughout the iterations.

Preconditioning is a technique that attempts to improve certain spectral proper-

ties of the matrix K, which in general dictate the speed of convergence of iterative

methods. Preconditioning is often presented in the context of solving linear systems

of the form

Kf = g.

Preconditioning refers to the process of transforming the above linear systems into

other systems with more favorable spectral properties for accelerating convergence of

the iterative solution. Suppose R is a nonsingular matrix. Then instead of applying

the iterative method to the above linear system, we apply it to a modified system

K̂f̂ = ĝ, where

Right preconditioning: K̂ = KR−1, f̂ = Rf , ĝ = g

Left preconditioning: K̂ = R−>K, f̂ = f , ĝ = R−>g
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In the implementation of iterative methods, the most common operations involved

are matrix-vector multiplications with K̂. Hence we would like to construct a matrix,

R, that satisfies the following properties:

• It should be relatively inexpensive to construct R. In general, this is a one time

cost since it is common that the coefficient matrix is the same or varies slowly

throughout the iterations.

• It should be relatively inexpensive to solve linear systems of the form Rz = w

and R>z = w. Solving linear system with R and R> is usually required at

each iteration.

• The preconditioned system should satisfy K̂ = KR−1 ≈ I or K̂ = R−>K ≈ I.

This property usually determines the speed of convergence.

1.1.3.1 Considerations for Ill-posed Inverse Problems

In general, we want to design a preconditioner such that K̂ ≈ I, i.e. the singular

values of K̂ are clustered at 1. Note that this implies that R ≈ K or R> ≈ K>.

Solving linear systems with R and R> can magnify the noise. Thus, this approach

does not work well for ill-posed problems. In particular, if we apply an iterative

method directly to the unregularized least squares problems

min
f
‖g −Kf‖2 ,

as in the case of iterative regularization, then clustering all singular values around 1

will likely lead to very poor reconstructions. Recall that the SVD analysis outlined in

Section 1.1.1 suggests that the large singular values correspond to signal information

we want to reconstruct, while small singular values correspond to noise information

that we do not want to reconstruct. Clustering all singular values around 1 mixes the
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signal and noise information together. Thus, it is impossible for the iterative method

to distinguish between signal information and noise information. Hence we get fast

convergence to the noisy inverse solution. We can apply two possible remedies to

avoid this problem:

• Apply the iterative method to the Tikhonov regularized least squares problem

min
f

∥∥∥∥∥∥∥
 g

0

−
 K

αL

f
∥∥∥∥∥∥∥

2

Here, we first have to choose α andL and then find a preconditioner for

 K

αL

.

• Choose R so that only the large singular values of K̂ are clustered at 1. If we

denote the singular values of K̂ by σ̂i and the singular values of K by σi then

in this case

σ̂i =

 1 for i = 1, · · · , l

σi for i = l + 1, · · · , N
.

Another consideration we have to take into account when applying a precondi-

tioner to an ill-posed inverse problem is the statistical characteristics of the problem.

Consider the inverse problem

g = Kf + η .

Then, after applying left preconditioning, the problem is modified as

R−>g = R−>Kf +R−>η .

From the above relation, we can see that the statistical characteristics of the data and

noise of the original problem are modified after applying the left preconditioner, R.
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Therefore, care must be taken especially if the iterative method assumes particular

statistical distribution of data and noise.

1.2 Outline of Work

In the rest of this work, we use some of the approaches discussed in this chapter to

solve inverse problems in HSI. In particular, we use a regularized separable nonlinear

least squares framework and a conjugate gradient preconditioner for our work on

hyperpsectral imaging. We begin by giving a brief overview of hyperpsectral imaging

in Chapter 2.

In Chapter 3, we consider a hyperspectral PSF parameter identification problem.

We explain in detail our formulation of the problem and show our approaches for

finding the PSF parameters. Several regularization methods are used to solve the

Jacobian system within the Gauss-Newton iteration. In particular, we solve the

nonlinear system using a variable projection Gauss-Newton method and we solve the

Jacobian using different regularization schemes such as subset selection [59], Tikhonov

regularization, and truncated SVD.

Chapter 4 considers a hyperspectral unmixing and deblurring problem using wave-

length varying PSFs. We use the estimated hyperpsectral PSFs from Chapter 3 in

our numerical scheme for hyperspectral unmixing and deblurring with multiple PSFs.

We present our formulation of the problem and we solve the problem using an Alter-

nating Direction Method of Multipliers (ADMM) with sparsity constraints and TV

regularization. One of the subproblems in the ADMM method for the multiple PSF

case is solved using a preconditioned conjugate gradient method.

In Chapter 5 we show the numerical results of our approaches for solving the

hyperspectral PSF parameter identification problem and the sparse hyperspectral
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unmixing and deblurring problem. Some concluding remarks are provided in Chapter

6.

1.3 Contributions

The work presented in this dissertation describes a number of contributions as follows:

• Hyperspectral PSF parameter estimation:

– We have used a regularized variable projection Gauss-Newton method for

solving the hyperspectral PSF parameter identification problem. Our ap-

proach allows for a joint estimation approach without prior estima-

tion of the noise variance and star spectrum.

– We have applied subset selection with Tikhonov regularization to

improve the conditioning of the Jacobian system for finding the hyperspec-

tral parameters for the elliptical Moffat PSF.

– We have provided a theoretical analysis for the conditioning of the Ja-

cobian matrix.

– We have implemented our approach in MATLAB.

• Hyperspectral unmixing and deblurring:

– We have considered the case when ground-based HSIs of objects are taken

through the atmosphere at multiple wavelengths with narrow spectral

channels.

– We have exploited properties of Kronecker product to formulate and

solve the problem for the multiple PSF case.

– We have shown that the number of iterations can be significantly reduced

by using a simple conjugate gradient preconditioner to solve an im-

portant subproblem in the ADMM method.
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– We have verified the accuracy and effectiveness of our method with numer-

ical experiments on a simulated hyperspectral image of the Hubble Space

Telescope satellite.

• Other work we have done, which is not explicitly described in this thesis, relates

to software development for the material described in Chapter 1 (see [13] for a

full detailed discussion):

– We have described a variety of iterative methods that can be used for

image restoration.

– We have compared their performance on a variety of test problems.

– We have described preconditioning techniques that can be used to accel-

erate convergence.

– We have provided MATLAB software implementing image restoration meth-

ods. The software can be found at http://www.mathcs.emory.edu/~nagy/

RestoreTools.

– We have implemented the iterative methods in C++ utilizing the Trilinos

framework.

http://www.mathcs.emory.edu/~nagy/RestoreTools
http://www.mathcs.emory.edu/~nagy/RestoreTools
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Chapter 2

Hyperspectral Imaging

Hyperspectral remote sensing is a technology that extracts information from objects

on the Earth’s surface, or in orbit around the Earth, based on the object’s measured

radiance at many narrow spectral bands. As a result of recording the radiance of the

scene at different wavelengths of light, multiple images of the same scene are created

over continuous narrow spectral bands. The product is the so-called hyperspectral

image (HSI). Hyperspectral remote sensing has been developed significantly and,

thus, the availability of hyperspectral data has greatly increased in the last decade.

The increased ability of hyperspectral sensors to collect data at hundreds or even

thousands of wavelengths has dramatically increased precision in image classification

tasks. Hyperspectral imaging is used in a broad range of commercial and government

related applications, such as remote monitoring of the environment, food safety, re-

mote urban monitoring, pharmaceutical process monitoring, agriculture, mineralogy,

chemical and oils spills, remote surveillance, astrophysics, medicine, and many other

security and defense areas [45, 121, 33, 94, 73].

In this chapter we explain briefly some basic concepts in hyperspectral imaging

(HSI). We start by discussing the electromagnetic spectrum and wavelengths in Sec-

tion 2.1. The structure of the HSI data is described in Section 2.2. In Section 2.3
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we provide a brief explanation of how the HSI data are collected by imaging spec-

trometers. The key feature of HSI data, the spectral reflectance or spectral signature,

is explained in Section 2.4. Some factors that contribute to the mixing of the ob-

served spectra are given in Section 2.5. Hyperpsectral mixing models are discussed

in Section 2.6.

2.1 Electromagnetic Spectrum

Hyperspectral remote sensing devices measure the interaction of objects with elec-

tromagnetic energy. According to wave theory, electromagnetic radiation is energy

that propagates in the form of electromagnetic waves. Electromagnetic waves are

vibrations of magnetic and electric fields that are both perpendicular to the direc-

tion of propagation and travel at the speed of light. Electromagnetic waves can be

characterized in terms of wavelength, frequency, and energy. A wavelength is the

distance between any two points of the electromagnetic wave before the shape of the

wave repeats. Wavelengths are inversely proportional to frequencies. Another theory,

namely particle theory, defines the electromagnetic radiation as energy composed of

discrete units called photons or quanta.

Figure 2.1: The electromagnetic spectrum.
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The energy of a photon is directly proportional to its frequency and inversely pro-

portional to its wavelength. The particle theory gives more insight into the interaction

of electromagnetic radiation with the matter [1]. The electromagnetic spectrum rep-

resents the entire family of electromagnetic radiation. It can be generally classified

into cosmic rays, gamma-rays, X-rays, ultraviolet light, visible light, infrared light,

microwaves, radio waves, and terahertz radiation. In principle, the range of the elec-

tromagnetic spectrum is infinite and continuous. Figures 2.1 and 2.2 illustrate the

electromagnetic spectrum and wavelength.

one wavelength

Speed = Frequency × Wavelength

Figure 2.2: Wavelength illustration.

The visible wavelength region is the first significant window in which the energy

can significantly pass through the atmosphere. This is the light which is detected

by our eyes. The primary colors of the visible wavelength region are red, green, and

blue. The blue wavelengths are substantially attenuated by atmospheric scattering.

The atmosphere and glass lenses also cause significant absorption and/or scattering

of the very short wavelengths such as ultraviolet. There is much less interference by

the atmosphere for the green, red, and near-infrared wavelengths.

Different objects interact in different ways with electromagnetic radiation and thus

an object’s response to electromagnetic radiation can provide significant clues about
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its chemical and physical composition. For example, the near-infrared wavelengths

provide important clues for the structure of plant leaves. In geological applications,

the middle infrared wavelengths are very useful. The thermal region of the electromag-

netic spectrum has been proven to be useful in monitoring: the spatial distribution

of heat from industrial activity, fires, and soil moisture conditions. The microwave

region of the spectrum is very useful in environmental remote sensing, specifically in

active radar imaging. This region of the spectrum is also usable at night and it is

able to penetrate through the clouds. The radio region of the spectrum is used in

meteorology and commercial broadcasting. For a more detailed discussion see [44, 1].

Thus, combination of the information gained at different wavelengths significantly

increases the ability to discriminate different materials.

2.2 Structure of HSI Data

Traditional imaging systems collect imaging data at one panchromatic band or at

three color bands (red, green, blue) covering the visible electromagnetic spectrum [128].

In spectral imaging the data is collected at many spectral bands or wavelengths across

the entire electromagnetic spectrum. Multispectral imaging systems acquire image

data in a few and relatively broad wavelength bands [131]. In HSI, the images are

acquired at hundreds or even thousands of narrow adjacent spectral bands. The most

important characteristic that distinguishes HSI from other imaging systems consists

of the fact that it associates a continuous spectrum to each pixel.

Spectral imaging data represents measured intensities of the electromagnetic ra-

diation reflected from the materials present in an imaged scene. The recorded re-

flectance intensities vary with respect to different wavelengths across the spectral

range. Spectral data can be visualized as a cube of images, where each slice of the

cube consists of an image of the same scene corresponding to a particular wavelength.
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Figure 2.3: Structure of a hyperspectral data cube and spectral signature of a pixel.
The measured images at different wavelengths are stacked to form a 3D hyperpsectral
data cube with spatial information in the x and y dimensions and spectral information
across the z dimension. The spectral vectors along the z axis represent the spectral
signatures of each pixel.

Let S denote the spectral cube. Then Sijk is the measured reflection at the kth wave-

length of the pixel at the (i, j) spatial position. Thus, each vertical slice of the spectral

cube along the z axis contains the reflection intensities of all pixels in the image at

a particular wavelength, while each horizontal slice of the spectral cube along the y

axis contains the reflections of a row of pixels of the image at all wavelengths.

If we denote the reflection intensities of a pixel (i, j) at Nw wavelengths by a vector

s(ij) =

[
sij(λ1) sij(λ2) · · · sij(λNw)

]T
then the vector s(ij) is often referred to as

the spectral signature of the pixel corresponding to the (i, j) spatial position. Thus,

spectral images not only represent observations of a scene at different wavelengths

but also associate to each pixel of the imaged scene a full spectral vector or spectral

signature. For comprehensive discussions see [21, 115, 129] and the references therein.

Figure 2.3 illustrates the concept of a hyperpsectral data cube and the spectral sig-

nature of a pixel. Figure 2.4 shows an example of a hyperspectral data cube. For
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HSI data cube Image at a single wavelength
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Figure 2.4: Visual depiction of an HSI datacube. The images and the HSI data in this
figure were obtained from the online tutorial: http://personalpages.manchester.
ac.uk/staff/david.foster/Tutorial_HSI2RGB/Tutorial_HSI2RGB.html.

illustration purposes the front image of the datacube is a false color image created by

transforming hyperspectral image reflectances into an RGB color image.

2.3 Measuring HSI Data

Hyperspectral data are measured by imaging sensors called spectrometers. Spec-

trometers have been developed as a result of the combination of two technologies:

spectroscopy and remote sensing. Spectroscopy studies light which is emitted by or

reflected from materials as a function of wavelength [131]. Optical remote sensing is

an imaging technology in which information about an object or a scene is acquired

without coming into physical contact with the object or scene [128]. A remote sensing

system consists of three main components: the scene, the sensor, and the processing

http://personalpages.manchester.ac.uk/staff/david.foster/Tutorial_HSI2RGB/Tutorial_HSI2RGB.html
http://personalpages.manchester.ac.uk/staff/david.foster/Tutorial_HSI2RGB/Tutorial_HSI2RGB.html
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algorithms. In this section we focus on the sensors used to measure spectral imaging

data.
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Figure 2.5: Visual depiction of the process of recording spectral data by an imaging
spectrometer. A spectrometer disperses light onto a two-dimensional array of detec-
tors. The result is spectral vectors, which contain hundreds or thousands of elements,
for each pixel in the scene.

A spectrometer measures the spectral reflectance of each material in the observed

scene. [128]. The basic elements of an imaging spectrometer consist of scan mirrors,

focusing lenses, collimating slit, dispersing element (grating or a prism), imaging

optics, and detectors. The incoming light first goes through scanning mirrors and

other optics. Then, using a dispersing element such as grating or prism, the light

is split into many narrow adjacent wavelength or spectral bands. The dispersed

light goes through additional imaging optics and then the energy in each band is

measured by separate detectors. The number of detectors used depends in the design

of the instrument and can vary from hundreds to even thousands. The range of the

wavelengths can vary also and can be as wide as from 400nm to 2, 500nm. Figure 2.5

illustrates the concept of recording hyperspectral data using an imaging spectrometer.
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A variety of platforms have been developed for capturing multispectral and hyper-

spectral data. Two of the most used airborne imaging spectrometer instruments are

the Hyperspectral Digital Imagery Collection Experiment (HYDICE) instrument [11]

and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)1. The spaceborne

imaging spectrometer instruments in use include HYPERION2, the Environmental

Mapping and Analysis Program (ENMAP)3, PRecursore IperSpettrale of the applica-

tion mission (PRISMA)4, Compact High Resolution Imaging Spectrometer (CHRIS)5,

and the Infrared Atmospheric Sounding Interferometer (IASI)6. More recently a new

hyperspectral instrument, namely the hyperspectral Multi Unit Spectroscopic Ex-

plorer (MUSE)7, has been developed and installed on the Very Large Telescope (VLT)

at the Paranal Observatory in Chile. The MUSE system will be used to study the

formation and evolution of distant galaxies and will be able collect hyperspectral data

up to 4, 000 spectral bands.

2.4 Spectral Reflectance

In general, there are three types of interactions between electromagnetic energy and

a material: reflection, absorption, and/or transmission [100]. The portion that is

returned to the sensor system is the reflected spectrum. The amount of reflected

light varies and depends on the chemical and physical characteristics of the material

as well as the number and the range of wavelengths measured by the sensor. As a

result of measuring the reflected spectrum over a range of wavelengths we obtain a

spectral response/reflectance pattern which is also called the spectral signature. If

we plot the reflectance intensities versus the wavelength then we obtain a spectral

1http://aviris.jpl.nasa.gov
2http://eo1.usgs.gov/sensors/hyperion
3http://www.enmap.org
4http://www.asi.it/en/activity/earth_observation/prisma_
5https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/proba
6http://smsc.cnes.fr/IASI
7http://muse.univ-lyon1.fr/?lang=en

http://aviris.jpl.nasa.gov
http://eo1.usgs.gov/sensors/hyperion
http://www.enmap.org
http://www.asi.it/en/activity/earth_observation/prisma_
https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/proba
http://smsc.cnes.fr/IASI
http://muse.univ-lyon1.fr/?lang=en
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reflectance curve that shows the degree to which electromagnetic energy is reflected

in the different regions of the spectrum.
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Figure 2.6: Spectral signatures of different materials commonly present in the Hubble
Space Telescope.

In HSI measurements, the spectral reflectance or spectral signature is a fundamen-

tal property and it is obtained for each pixel [1]. The spectral reflectance is defined

as the ratio of the reflected energy to incident energy as a function of wavelength

s(λ) = 100
ER(λ)

EI(λ)
,

where s(λ) is the spectral reflectance at a particular wavelength, ER(λ) is the energy of

wavelength reflected by an object, and EI(λ) is the energy of the wavelength incident

upon an object.

The light at different wavelengths is scattered or absorbed to different degrees.

Thus the reflectance intensities for most materials vary as a function of wavelength

and as a consequence different materials possess fairly unique spectral properties.
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Since a spectral signature consists of a set of reflectance values for each spectral

channel then it can also be interpreted as a vector in a spectral space RNw , where

Nw is the number of spectral channels.

If we compare only a few spectral reflectance curves then the spectral plots provide

a convenient way to visualize the difference in the spectral properties of different

materials. Figure 2.6 shows typical reflectance curves for common materials present

in the Hubble Space Telescope. The sharp downward deflections of the spectral

reflectance curves at specific wavelengths indicate that the material selectively absorbs

the incident light at those wavelengths. The bands at which the material absorbs the

incident light are commonly referred to as absorption bands. The comparison of

the overall shape of spectral signatures and the position and strength of absorption

bands allows us to identify and discriminate different materials that are present in

the observed scene. For a comprehensive discussion see [131].

The “pure” materials whose spectral reflectance at different wavelengths are mea-

sured in laboratory settings are called endmembers. Many hyperspectral signature

libraries have been created in lab conditions [44]. These libraries contain spectral

signatures of natural and man-made materials. [128]. Some of the most used and

publicly available spectral libraries include the ASTER Spectral Library8 and the

USGS Spectral Library9. ASTER is made available by NASA and it contains almost

2000 spectra of minerals, rocks, soils, man-made materials, water, and snow with

a spectral range of 0.4 to 14µm. The USGS Spectral Library is provided by the

United States Geological Survey Spectroscopy Lab and it consists of 500 spectra of

minerals and plants with a spectral range of 0.2 to 3µm. The reference spectra of

endmembers’ libraries can be used in the interpretation and analysis of hyperspectral

images [131, 119]. The increasing number of publicly available endmember libraries

has helped to increase the precision in matching endmember signatures to surface ma-

8http://speclib.jpl.nasa.gov
9http://speclab.cr.usgs.gov/spectral-lib.html

http://speclib.jpl.nasa.gov
http://speclab.cr.usgs.gov/spectral-lib.html
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terials. However, in real life applications hyperspectral sensors record rather mixed

spectra of different materials present in the scene. Environmental conditions, natural

variations in materials, atmospheric and sensor effects contribute to the mixing of the

spectra and make the task of analyzing HSIs more challenging.

2.5 Mixed Spectra

HSI sensors record raw data which represent the radiance of the observed scene [128].

The raw measured spectral radiance data by a sensor is composed not only of the

surface reflectance but is also affected by the the spectrum of the source illumination,

illumination geometry, shadowing, atmospheric effects, and the characteristics of the

sensor system. Thus, to obtain ground-leaving spectral reflectance values, which can

be used for further analysis and post processing algorithms, the sensor has to correct

for these factors so that spectral reflectance can be derived from measured radiance.

Figure 2.7: The light that reaches the hyperpsectral sensor is a combination of the
light emitted by the source of illumination and reflected by the observed target, light
which is scattered by aerosols and atmospheric gases and then reflected by the target,
light reflected by the surrounding objects and then reflected by the target, and the
light scattered by the aerosols and atmospheric gases without contact with the target.
In addition, the geometry or viewing angle of the source of illumination and sensor
noise have also a contaminating effect on the recorded radiance.



37

The pre-processing operations are generally grouped as radiometric calibration,

geometric corrections, and atmospheric corrections. The aim of pre-processing tech-

niques is to create a more faithful representation of the original scene. Radiometric

calibration is an operation that corrects the data for sensor irregularities and un-

wanted sensor or atmospheric noise. The geometric correction operation corrects

geometric distortions due to sensor-Earth geometry variations, and it converts data

to coordinates, such as latitude and longitude. Moreover, as the reflected light passes

through the atmosphere it gets absorbed and scattered by atmospheric gases and

aerosols. The interactions of light through the atmosphere are very complex and

challenging to model. For a detailed discussion on atmospheric correction see [101].

Figure 2.7 shows some possible factors that can affect the measured radiance of a

pixel.

Let us ignore for a moment the atmospheric effects, the sensor noise, and the

illumination geometry. Even if we assume that the sensor has corrected for all these

effects the observed spectrum of a given pixel in the scene is still not pure, i.e. it

does not contain only the spectrum of a single material. The reason is that the light

intensity of a given pixel, which is recorded by the sensor at different wavelengths, is

a mixture of the light scattered by the materials that constitute the pixel coverage

area. Thus, the measured spectrum of a pixel is a result of contribution of the spectra

of more than one material. This is especially the case when the size of the scene area

is large, i.e. when the spatial resolution of the sensor is low.

The spatial resolution of a sensor is given by its Field of View (FOV) and it

generally depends on the sensor design and the height of the sensor above the surface.

The spectral resolution of a sensor is determined by the bandwidth of the spectral

bands. The spectrum measured by a sensor is the average of the materials’ reflectances

within the sensor’s FOV [128]. Hyperspectral imaging sensors acquire spectral data

at many spectral bands with a narrow bandwidth and thus hyperspectral images
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in general are spectrally smooth. Moreover, the reflectance values in neighboring

locations and wavelengths are highly correlated.

As a result of the mixing of the spectra, it is not possible to identify the materials

present in a given pixel by simply looking at the recorded spectral signature of the

pixel [82, 128]. The ability to discriminate materials based on their spectral responses

is fundamental to performing hyperspectral imaging data analysis and exploitation

tasks. Thus, before we discuss methods to solve this problem, we first have to consider

the formulation of spectral mixing models.

2.6 Hyperspectral Mixing Models

There are two commonly used hyperspectral mixing models: the linear mixing model

(LMM) [147, 36] and the nonlinear mixing model(NLMM) [35, 42]. The LMM assumes

that the recorded light from a scene is linearly mixed within the sensor [21, 82]. The

general reason for this mixture is the insufficient spatial resolution of the sensor. Let

s =

[
s1 s2 · · · sNw

]
denote the measured spectral vector of a pixel. Then the

LMM for a pixel can be written as

s =
Nw∑
i=1

ximi + η,

where mi ∈ RNw is the spectral signature of the ith endmember, xi ≥ 0 is a scalar

representing the percentage that the ith material occupies inside the pixel (also known

as the fractional abundance), η ∈ RNw represents additive noise and other perturba-

tions, and Nw is the number of spectral bands or wavelengths. Since each xi represents

percentages they should be nonnegative. The other constraint that is usually imposed

on the fractional abundances is that the sum of abundances for a given pixel should

be 1. The goal in hyperspectral unmixing problems is to estimate the endmembers

mi present in mixed pixels and their respective fractional abundances, αi.
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Figure 2.8: Illustration of linear and nonlinear mixture models for a pixel. The
linear mixture model assumes minimal secondary reflection and minimal multiple
scattering effects in a pixel’s coverage area. The nonlinear mixture model assumes
that the observed spectrum of a given pixel is a result of multiple scattering effects
and microscopic mixing scales.

The LMM is a simple model that has been widely used in hyperspectral unmixing

problems. The LMM holds true especially in the case of macroscopic mixing scales

and when the incident light interacts with only one material [130, 70, 93]. Moreover,

it assumes minimal secondary reflections and/or multiple scattering effects. Despite

its apparent simplicity, the LMM is still an acceptable approximation model for many

real world scenarios. A major practical advantage of the LMM is its ease of imple-

mentation. Optimization techniques, which usually incorporate sparsity constraints

and other regularization methods, are used to solve hyperspectral unmixing problems

using the LMM and potentially very large spectral libraries of endmembers.

The NLMM assumes that the source radiation is scattered multiple times before

it reaches the sensor [85, 144]. Using the NLMM the measured spectral vector of a

pixel can be formulated as

s = f(x,M ) + η ,

where x ∈ RNw is a vector containing the fractional abundances for a given pixel,
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M ∈ RNw×Nm is a library of spectral signatures of endmembers, Nm is the number

of endmembers, and f is a nonlinear function which defines the interaction between

the spectral vectors of endmembers and the fractional abundances. The nonlinear

function f can be estimated using kernel-based learning theory [34], physics-based

and statistical models [42, 2], and multi-layer perceptron (MLP) networks [85]. The

NLMM is a much more complicated model than the LMM and due to its complexity

has been explored less. Figure 2.8 illustrates visually the linear and nonlinear mixtures

of a pixel in an observed scene. For a detailed discussion of the LMM, the NLMM,

and spectral unmixing algorithms, see e.g. [82].
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Chapter 3

Estimation of Hyperspectral PSF

Parameters

In [141] the authors model the PSFs at different wavelengths by Moffat functions,

and they have proposed a method to estimate the PSF parameters from the HSI

data of an isolated star. The first step of their method consists of estimating the

star spectrum and the noise variance for each pixel in the HSI datacube by assuming

a local average along the wavelength dimension. After obtaining the star spectrum

and the noise variance the authors then estimate the PSF parameters. In this thesis,

we use the same PSF model described in [141]. We pose the hyperspectral PSF

estimation and star spectrum identification reconstruction problem in a nonlinear

least squares framework, which allows us to use a joint estimation approach. We

consider an iterative approach to solve the nonlinear least squares problem using all

the noisy measurements of an isolated star at all wavelengths.

We set up the mathematical framework in Section 3.1. Specifically, we describe

the data formation model, the PSF model used, and the general problem formulation

for multispectral wavelengths. In Section 3.2 we discuss the approach we use, based

on solving a separable nonlinear least squares problem, to jointly estimate the hyper-
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spectral PSF parameters and to reconstruct the star spectrum. The structure of the

Jacobian matrix is discussed in detail in Section 3.2.2.

3.1 Mathematical Framework

In this section we present the star image formation model, and describe the PSF

models often used in astronomical imaging. In particular, we consider a circular

Moffat function that can be used in cases when the blur is assumed to be spatially

invariant, and an elliptical model can be used for spatially variant blurs.

3.1.1 PSF Star Image Formation Model

We follow the noisy data model used in [141], where the image formation process

for an isolated star, often called a guide star in general ground-based astronomical

imaging, e.g. [122], observed at a particular wavelength can be written as:

gλ = hλsλ + ηλ

where gλ is a vector representing the vectorized form of an observed, blurred, and

noisy image of an isolated star corresponding to wavelength λ, hλ is a vector represent-

ing the vectorized form of an exact original image of the isolated star corresponding

to wavelength λ, and sλ is a scalar representing the unknown intensity of the star

spectrum at wavelength λ. In this model we assume that the sky background has

been subtracted from the observed isolated star images. Note that hλ also represents

the hyperspectral PSF, which is, in general, unknown. However, it is reasonable to

assume that a parametric model of hλ is known, where the parameters defining hλ

are wavelength dependent. That is, by assuming a parametrized formula for the PSF,
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the image formation model becomes

gλ = h(φλ)sλ + ηλ

where φλ is a vector of unknown parameters corresponding to wavelength λ. The

aim, then, is given measured data gλi at known wavelengths λ1, λ2, . . . , λNw , jointly

compute estimates of the unknowns φλi and sλi . Our approach will be to do this

by solving a nonlinear least squares problem; however, before we can describe this

approach, we need to first discuss parametric models for the PSFs h(φλ).

3.1.2 Circular Moffat

In [127] the authors have shown that a circular Moffat function can be used to ap-

proximate the PSF at any spatial and spectral position of a Multi Unit Spectroscopic

Explorer (MUSE) datacube. In particular, the circular variant of the Moffat function

has been used to approximate the PSF when MUSE is operated without adaptive

optics (AO) corrections.

The circular Moffat function is defined by a positive scale factor α and a shape

parameter β. In this case, φ =

[
α β

]T
, and the PSF has the form:

h(φ)ix,jy = h(α, β)ix,jy =

(
1 +

i2x + j2
y

α2

)−β
(3.1)

The flux of the Moffat function is
∫∫
hix,jy(α, β) dix djy = πα2

β−1
. A scaling factor

corresponding to the inverse of the flux of the Moffat function is introduced so that

the PSF entries sum to 1. The PSF normalization imposes boundary conditions on

the shape parameter, specifically 1 < β <∞.

It has been shown in [139] that the analytical approximation in (3.1) provides the

best fit to the PSF predicted from atmospheric turbulence theory when β ≈ 4.765. In
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Figure 3.1: Noise-free images of an isolated star modeled by the circular Moffat PSF
corresponding to wavelengths λ = 450, 550, 650, 750, 850, 950nm (top left to bottom
right, respectively).

Figure 3.2: A Moffat PSF as given in equation (4.5) with β = 3.31 , α0 = 2.51 , α1 =
−7.2 · 10−4, and λ = 465nm.



45

hyperspectral imaging the PSF is system dependent and it varies with wavelength. In

[141] the authors have shown that the variation of the PSF with respect to λ can be

modeled by fixing the shape parameter β as a constant, β(λ) = β0, and by varying the

scale parameter α linearly with respect to the wavelength, α(λ) = α0 + α1λ. Using

this model the parameter vector becomes φ =

[
α0 α1 β

]T
and the normalized

wavelength varying PSF takes the form:

h(φ)ix,jy ,λ = h(α0, α1, β)ix,jy ,λ =
β − 1

π(α0 + α1λ)

(
1 +

i2x + j2
y

(α0 + α1λ)2

)−β
(3.2)

Modeling the hyperspectral PSF at a particular wavelength by a circular Moffat

function provides a simple model involving only 3 parameters. In Figure 3.1 example

hyperspectral PSFs corresponding to different wavelengths are shown. A mesh plot

of the Moffat PSF corresponding to λ = 465nm and defined by the parameters φ =[
α0 α1 β

]T
=

[
2.51 −7.2 · 10−4 3.31

]T
is shown in Figure 3.2.

3.1.3 Elliptical Moffat

Although the circular Moffat function may be a good model for certain spatially

invariant blurs, it cannot be used in the more challenging situation when the blur

is spatially variant. For spatially variant blurs, we need to use an elliptical Moffat

function

h(φ)ix,jy = h(α, β, γ,Θ)ix,jy =

[
1 +

1

α2

(
i2r +

j2
r

γ2

)]−β
(3.3)

where γ is the ellipticity parameter, Θ is the rotation angle, and

ir
jr

 =

 cos(Θ) sin(Θ)

− sin(Θ) cos(Θ)


ix
jy

 .

The property h(α, β, γ,Θ)ix,jy = h(α, β, 1
γ
,Θ − π

2
)ix,jy imposes boundary condi-
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Figure 3.3: Image, and corresponding mesh plot, of an isolated star modeled by the
elliptical Moffat PSF with wavelength λ = 465nm and parameters: α0 = 3.75, α1 =
−2.99 · 10−3, α2 = −4.31 · 10−3, α3 = 1.98 · 10−6, β = 1.74, γ0 = 6.86 · 10−4, γ1 =
2.17 · 10−6.

tions on the ellipticity and rotation angle parameters, specifically: 1 ≤ γ < ∞ and

0 ≤ Θ < π
2
. In [127] the authors have proposed a model for the variation of the

elliptical Moffat PSF with respect to λ and the polar coordinates (ρ, θ) in the field of

view. We use the same model for the variation of the hyperspectral PSF parameters.

The ellipticity parameter, γ, is modeled with a bilinear variation, γ(λ, ρ) = 1 +

(γ0 + γ1λ)ρ. This implies that the hyperspectral PSFs will be more elliptical towards

the edges of the field of view and also more elliptical for red than for blue light. The

shape parameter, β, is kept as a constant while the variations of the scale parameter

α are modeled as a linear function of ρ and a quadratic function of λ, specifically:

α(λ, ρ) = α0 + α1ρ+ α2λ+ α3λ
2.

The orientation parameter, Θ, is modeled as a decreasing function of θ in the field

of view, specifically Θ = π
2
− θ. Figure 3.3 shows an example of an elliptical Moffat

PSF corresponding to wavelength λ = 465nm. Elliptical Moffat PSFs corresponding

to different locations in the field of view are shown in Figure 3.4.

Modeling the hyperspectral PSF at a particular wavelength by an elliptical Moffat
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Figure 3.4: The variations of the elliptical Moffat PSF (λ = 465nm) in the first
quadrant of the field of view.

function provides a model involving 7 parameters. In particular the parameter vector

becomes φ =

[
α0 α1 α2 α3 β γ0 γ1

]
. In the elliptical Moffat model the PSF

parameters vary with respect to the location of the star in the field of view and with

respect to the wavelength.

3.2 Optimization Problem

As described in the previous section, the hyperspectral imaging problem consists of

obtaining multiple images of the same object over a large number of wavelengths.

Suppose that each observed star image contains n × n pixels, which are stacked as

vectors of length Np = n2. Then the set of observed isolated star images at Nw

wavelengths can be written as:

gλi = hλisλi + ηλi , i = 1, 2, · · · , Nw
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where gλi ∈ RNp ,hλi ∈ RNp ,ηλi ∈ RNp , and sλi is a scalar representing the reflectance

of the star at a particular wavelength λi.

Since there is a one-to-one correspondence between λi and the index i, without

loss of generality, we will use the notation:

bi = gλi , hλi = hi, sλi = si, ηλi = ηi.

By stacking all observations, we obtain the overall image formation model as:

b = H(φ)s+ η

where

s =



s1

s2

...

sNw


and in the case of a circular Moffat PSF,

b =



b1

b2

...

bNw


, H(φ) =



h1 0 · · · 0

0 h2
...

...
. . .

0 · · · hNw


, φ =


α0

α1

β

 .

In the case of elliptical Moffat PSF, with Nw wavelengths and No orientations (i.e.,
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No polar coordinates (ρ`, θ`), ` = 1, 2, . . . , No) in the field of view, we have

b =



b
(1)
1

...

b
(No)
1

b
(1)
2

...

b
(No)
2

...

b
(1)
Nw

...

b
(No)
Nw



, H(φ) =



h
(1)
1 0 · · · 0

...
... · · · ...

h
(No)
1 0 · · · 0

0 h
(1)
2 · · · 0

...
... · · · ...

0 h
(No)
2 · · · 0

0 0 · · · 0

...
. . .

...

0 · · · h
(1)
Nw

...
. . .

...

0 · · · h
(No)
Nw



, φ =



α0

α1

α2

α3

β

γ0

γ1



.

In [141] the authors have proposed an estimation scheme consisting of two steps.

In the first step the star spectrum, s, and the noise, η, are estimated from the hyper-

spectral data. To estimate the star spectrum, the authors compute a local average

(spectral binning) of the HSI data cube using L wavelengths around a particular wave-

length. It is assumed that the PSF is constant for such wavelengths. The authors

use the data before subtraction of the sky spectrum as a rough estimator of the noise

variance and then compute a local average of this estimator along L wavelengths.

The estimated quantities s and η are then replaced in a quadratic criterion and the

PSF parameters are approximated by using a maximum likelihood estimator.

Here, we formulate the PSF parameter estimation and star spectrum reconstruc-

tion problem in a nonlinear least squares framework:

min
φ,s

(
f(φ, s) = ‖b−H(φ)s‖2

2

)
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This approach allows us to jointly estimate the PSF parameters and the star

spectrum without prior estimation of the noise variance. We do not assume the PSF

to be constant in any wavelength range. Moreover the tunning of the number L of

wavelengths used for spectral binning is avoided. We show that using this approach

the PSF parameters and star spectrum can be estimated with low relative errors even

in the presence of high noise levels.

Variable projection [57, 80, 124] is applied to the objective function, f(φ, s), to

obtain a nonlinear reduced cost functional. The variable projection method exploits

the separability of the nonlinear least squares problem by eliminating the linear term

s and optimizing only over the nonlinear term φ.

3.2.1 Variable Projection

We would like to find the PSF parameters φ and an approximation of the true star

spectrum s to minimize the function

f(φ, s) = ‖b−H(φ)s‖2
2

It can be observed that f depends nonlinearly on φ and linearly on s. We apply the

variable projection method to eliminate the linear variable s. That is, first consider

the linear least squares problem

min
s
f(φ, s) = min

s
‖b−H(φ)s‖2

2,

whose minimum is attained at

ŝ = H(φ)†b
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where H(φ)† is the pseudoinverse of H(φ). Using this mathematical representation

for s, we obtain a reduced cost functional that depends only on φ:

f̃(φ) = ‖b−H(φ)H(φ)†b‖2
2 = ‖(I −H(φ)H(φ)†)b‖2

2 (3.4)

For notational convenience, we drop “(φ)” in the following equations. Note that,

HTH =



hT1

hT2
. . .

hTN





h1

h2

. . .

hN


=



‖h1‖2
2

‖h2‖2
2

. . .

‖hN‖2
2


.

Thus,

HH† = H
(
HTH

)−1
HT =



h1hT1
‖h1‖22

h2h2

‖hT2 ‖22
. . .

hNh
T
N

‖hN‖22


and

P = I −HH† =



I − h1hT1
‖h1‖22

I − h2h2

‖h2‖22
. . .

I − hNh
T
N

‖hN‖22


,

where P is the projector onto the orthogonal complement of the range of H . With

this notation the minimization problem in (3.4) can be reposed as a nonlinear least

squares problem:

min
φ

(
f̃(φ) = ‖P (φ)b‖2

2

)
.

We use the Gauss-Newton algorithm [81, 109, 111] to solve this problem.
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Algorithm: Gauss-Newton

given: b

choose: initial guess for φ

step length parameter τ

for i = 1, 2, · · · , until stop

solve

J(φ)TJ(φ)d = −J(φ)Tr

where

r = b−H(φ)s = P (φ)b

J = ∇ (P (φ)b) = ∇P (φ)b

Set φ = φ+ τd, where τ is chosen using line search.

end for

Set s = H(φ)†b.

The behavior of the Gauss-Newton method depends on the conditioning of the

Jacobian matrix, e.g. [109].

3.2.2 Jacobian Matrix

In this section we consider the structure and conditioning of the Jacobian matrix.

For separable nonlinear least squares problems, Golub and Pereyra [57] show that

it is convenient to calculate individual columns of the Jacobian, using derivatives of

H(φ). Specifically (we use similar notation as O’Leary and Rust [113]), for each

variable φk, define derivative matrices Dk to have (i, j) entries

[Dk]i,j =

[
∂Hj

∂φk

]
i

,
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where Hj is the jth column of H(φ). With this definition, the Jacobian can be

written as

J = −(C + F ) (3.5)

where the kth column of C is

ck = PDkH
†b = PDks, (3.6)

and the kth column of F is

fk =
(
PDkH

†)T b =
(
H†
)T
DT

kP
Tb =

(
H†
)T
DT

k r. (3.7)

The elliptical Moffat model is the more important case and thus in the rest of this

section we consider only the elliptical Moffat PSF. In this case, the ith entry of the

PSF corresponding to wavelength λj and `th orientation (ρ`, θ`) is

[
h

(`)
j

]
i

=

1 +

(
i2r + j2r

(1+(γ0+γ1λj)ρ`)2

)
(α0 + α1ρ` + α2λj + α3λ2

j)
2

−β .
The derivatives with respect to α0, α1, α2, α3, β, γ0, and γ1 are:

∂
[
h

(`)
j

]
i

∂α0

= 2β

(
i2r + j2r

(1+(γ0+γ1λj)ρ`)2

)
(α0 + α1ρ` + α2λj + α3λ2

j)
3

([
h

(`)
j

]
i

)−(β+1)

∂
[
h

(`)
j

]
i

∂α1

= ρl2β

(
i2r + j2r

(1+(γ0+γ1λ)ρl)2

)
(α0 + α1ρl + α2λj + α3λ2

j)
3

([
h

(`)
j

]
i

)−(β+1)

∂
[
h

(`)
j

]
i

∂α2

= λj2β

(
i2r + j2r

(1+(γ0+γ1λ)ρl)2

)
(α0 + α1ρl + α2λj + α3λ2

j)
3

([
h

(`)
j

]
i

)−(β+1)
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∂
[
h

(`)
j

]
i

∂α3

= λ2
j2β

(
i2r + j2r

(1+(γ0+γ1λ)ρl)2

)
(α0 + α1ρl + α2λj + α3λ2

j)
3

([
h

(`)
j

]
i

)−(β+1)

∂
[
h

(`)
j

]
i

∂β
=
([
h

(`)
j

]
i

)−β
ln

(([
h

(`)
j

]
i

)−1
)

∂
[
h

(`)
j

]
i

∂γ0

= 2ρ`β

j2r
(1+(γ0+γ1λj)ρ`)3

(α0 + α1ρ` + α2λj + α3λ2
j)

2

([
h

(`)
j

]
i

)−(β+1)

∂
[
h

(`)
j

]
i

∂γ1

= λj2ρlβ

j2r
(1+(γ0+γ1λ)ρl)3

(α0 + α1ρl + α2λj + α3λ2
j)

2

([
h

(`)
j

]
i

)−(β+1)

By identifying variables φk as

φT =

[
φ1 φ2 φ3 φ4 φ5 φ6 φ7

]
=

[
α0 α1 α2 α3 β γ0 γ1

]
,

the above derivatives define the entries of matrices D1, D2, D3, D4, D5, D6, and

D7. Observe that the derivatives satisfy the relations

∂
[
h

(`)
j

]
i

∂α1

= ρ`
∂
[
h

(`)
j

]
i

∂α0

,

∂
[
h

(`)
j

]
i

∂α2

= λj
∂
[
h

(`)
j

]
i

∂α0

,

∂
[
h

(`)
j

]
i

∂α3

= λ2
j

∂
[
h

(`)
j

]
i

∂α0

,

∂
[
h

(`)
j

]
i

∂γ1

= λj
∂
[
h

(`)
j

]
i

∂γ0

.
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Now,

D1 =



∂
[
h
(1)
1

]
∂α0

∂
[
h
(2)
1

]
∂α0

...

∂
[
h
(No)
1

]
∂α0

∂
[
h
(1)
2

]
∂α0

∂
[
h
(2)
2

]
∂α0

...

∂
[
h
(No)
2

]
∂α0

. . .

∂
[
h
(1)
Nw

]
∂α0

∂
[
h
(2)
Nw

]
∂α0

...

∂
[
h
(No)
Nw

]
∂α0
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From the derivative relations it follows that

D2 =



∂
[
h
(1)
1

]
∂α1

∂
[
h
(2)
1

]
∂α1

...

∂
[
h
(No)
1

]
∂α1

∂
[
h
(1)
2

]
∂α1

∂
[
h
(2)
2

]
∂α1

...

∂
[
h
(No)
2

]
∂α1

. . .

∂
[
h
(1)
Nw

]
∂α1

∂
[
h
(2)
Nw

]
∂α1

∂
[
h
(No)
Nw

]
∂α1



=



ρ1

∂
[
h
(1)
1

]
∂α1

ρ2

∂
[
h
(2)
1

]
∂α1

...

ρNo
∂
[
h
(No)
1

]
∂α1

ρ1

∂
[
h
(1)
2

]
∂α1

ρ2

∂
[
h
(2)
2

]
∂α1

...

ρNo
∂
[
h
(No)
2

]
∂α1

. . .

ρ1

∂
[
h
(1)
Nw

]
∂α1

ρ2

∂
[
h
(2)
Nw

]
∂α1

ρNo
∂
[
h
(No)
Nw

]
∂α1


Hence, the following relations hold

D2 = RD1

D3 = D1Λ

D4 = D1Λ
2

D7 = D6Λ

where

Λ = diag(λ1, λ2, . . . , λNw) and R = I ⊗ diag(ρ1, ρ2, . . . , ρNo) .
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These relations for Dk can be used, according to equations (3.5-3.7), to compute

the Jacobian. It is difficult to determine a precise analytical result regarding the

conditioning of the Jacobian. However, it is interesting to notice that since Λ is a

diagonal matrix, we can write

Λs = diag(s)λ , λ =

[
λ1 · · · λNw

]T
.

We can similarly write s = diag(s)1, where 1 is a vector of all ones. Using these

observations, we can write a subset of the columns of C as

[
c1 c3 c4

]
= PD1diag(s)

[
1 λ λ2

]
,

where λ2 =

[
λ2

1 · · · λ2
Nw

]T
. A similar observation can be made for the same

subset of columns of F , namely

[
f1 f3 f4

]
= (H†)Tdiag(DT

1 r)

[
1 λ λ2

]
.

The Vandermonde structure of these corresponding columns of J indicate the poten-

tial of ill-conditioning; our numerical experiments (see Chapter 5) verify that this is

the case. This structure also indicates that the conditioning of the Jacobian might

be improved by rescaling the wavelengths, but this was not the case for our numer-

ical experiments. We emphasize that the nonlinear dependency of the parameters is

difficult to analyze, but it is important that we implement some safeguards against

potential parameter dependency and ill-conditioning.

3.2.3 Subset Selection

It has been shown in [77] that subset selection can be applied for accurate and efficient

parameter estimation. In particular the authors show that subset selection is more
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numerically stable for use in nonlinear least squares problems than the approach of

the truncation of the Jacobian by singular value decomposition.

Let J(φ) ∈ RM×p, where M is the number of wavelengths multiplied by the size

of the vector representing a star image, and p is the number of parameters used to

define the hyperspectral PSF. Let 1 ≤ k ≤ p be a sampling parameter. We use

subset selection to choose k linearly independent columns of the Jacobian matrix

J(φ). Subset selection applied to the Jacobian matrix J(φ) produces a permutation

matrix Π such that

J(φ)Π =

[
J1 J2

]
,

where J1 contains k columns. The goal is to bring the k linearly independent columns

of J(φ) to the front. This results in identifying the “best” k parameters of the original

parameter set φ while keeping the rest of the p− k parameters unchanged. Thus we

solve the new Jacobian system

JT1 J1d = −JT1 r.

This guarantees that the nonlinear least squares problem we are trying to solve has a

full rank Jacobian. We use the Chan-Foster high-rank-revealing QR algorithm [31, 52]

for performing subset selection.
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Chapter 4

Deblurring and Sparse Unmixing

of Hyperspectral Images using

Multiple PSFs

Hyperspectral unmixing involves the computation of the fractional contribution of

elementary spectra, called endmembers. By assuming the measured spectrum of each

mixed pixel in an HSI is a linear combination of spectral signatures of endmembers,

the underlying image model can be formulated as a linear mixture of endmembers

with nonnegative and sparse coefficients

G = XM +N ,

where M ∈ RNm×Nw represents a spectral library containing Nm spectral signatures

of endmembers with Nw spectral bands or wavelengths, G ∈ RNp×Nw is the observed

data matrix (each row contains the observed spectrum of a given pixel), and X ∈

RNp×Nm contains the fractional abundances of endmembers (each column contains

the fractional abundances of a given endmember). Here, we assume X ∈ RNp×Nm is

a sparse matrix that contains the nonnegative fractional abundances of endmembers
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(each column contains the fractional abundances of a given endmember), and N ∈

RNp×Nw is the matrix collecting the errors or noise affecting the measurements at

each spectral band or wavelength, e.g. [45, 147]. If we assume that the data at each

wavelength has been degraded by a blurring operator, H , then the problem takes the

form

G = HXM +N .

Given a spectral library of the endmembers, M , and assuming that we have com-

puted a priori the parameters defining the blurring operator H , the goal becomes

to compute the nonnegative and sparse matrix of fractional abundances, X. This is

known as the hyperspectral unmixing and deblurring problem.

The work presented in this chapter is concerned with deblurring and spectrally

analyzing ground-based astronomical images of space objects. A numerical approach

is provided for deblurring and sparse unmixing of ground-based hyperspectral images

of objects taken through the atmosphere at multiple wavelengths with narrow spectral

channels. Here, the problem is quite challenging since the PSF depends on the imaging

system as well as the seeing conditions and is generally wavelength dependent. We

assume the hyperpsectral PSF has been estimated using numerical methods presented

in the previous chapter. We then derive a numerical scheme for deblurring and

unmixing of the HSI datacube using the estimated PSFs. Our approach is based on

a preconditioned alternating direction method of multipliers.

In Section 4.1 we review a numerical approach for deblurring and sparse unmixing

of HSI datacubes for the special case of a homogeneous PSF across the wavelengths,

based on work by Zhao et al. [147]. Our approach for hyperpsectral unmixing and

deblurring with multiple PSFs is presented in Section 4.2.
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4.1 Numerical Scheme for the Single PSF Case

In this section we describe and expand upon the numerical scheme used in [147]

for solving the hyperspectral image deblurring and unmixing problem by using the

Alternating Direction Method of Multipliers (ADMM) in the single PSF case. Here,

it is assumed that the blurring operator H is defined by a single PSF and each

column of XM is blurred by the same H . The authors in [147] have presented

a total variation (TV) regularization method for solving the deblurring and sparse

hyperspectral unmixing of the form

min
X≥0

1

2
||HXM −G||2F + µ1||X||1 + µ2TV (X)

whereH ∈ RNp×Np is is a blurring matrix constructed from a single Gaussian function

assuming periodic boundary conditions, and µ1, µ2 are two regularization terms used

to control the importance of the sparsity and the total variation terms. They present

numerical schemes for both isotropic and anisotropic total variation. For the isotropic

TV the above problem can be rewritten as

min
1

2
||HXM −G||2F + µ1||V ||1 + µ2

Np∑
i=1

Nm∑
j=1

||Wij||2 (4.1)

subject to

DhX = W (1),DvX = W (2),V = X,V ∈ K = {V ∈ RNp×Nm ,V ≥ 0} ,

where

Wi,j =

[
W

(1)
i,j ,W

(2)
i,j

]
∈ R1×2 ,

W
(1)
i,j = Di,hxj, W

(2)
i,j = Di,vxj, 1 ≤ i ≤ Np, 1 ≤ j ≤ Nm.
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Here, the matrices Dh and Dv represent the first order difference matrices in the

vertical and horizontal direction. The authors in [147] solve the above minimiza-

tion problem using an alternating direction method. The problem in (4.1) can be

decoupled by letting

f1(X) =
1

2
||HXM −G||2F

and

f2(Z) = XK(V ) + µ2

Np∑
i=1

Nm∑
j=1

||Wij||2 + µ1||V ||1

where

Z =

[
W (1) W (2) V

]
, XK =

 0 if V ∈ K

∞ otherwise

The constraints are expressed as

BX +CZ =


Dh

Dv

INp×Np

X − I3Np×3Np


W (1)

W (2)

V

 = 03Np×Nm

Furthermore, by attaching the Lagrange multiplier to the linear constraints the

augmented Lagrangian function of (4.1) is written as

L(X,Z,Λ) = f1(X) + f2(Z)+ < Λ,BX +CZ > +
β

2
||BX +CZ||2F ,

where

Λ =


Λ(1)

Λ(2)

Λ(3)

 ∈ R3Np×Nm ,

β > 0 is the penalty parameter for violating the linear constraints, and < ·, · > is the

sum of the entries of the Hadamard product. With this formulation the hyperspectral
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unmixing and deblurring problem is solved using an alternating direction method

consisting of solving 3 subproblems at each iteration k:


Step 1: Xk+1 ← arg min L(X,Zk,Γk)

Step 2: Zk+1 ← arg min L(Xk+1,Z,Γk)

Step 3: Γk+1 ← Γk + β(BXk+1 +CZk+1)

The X-subproblem or Step 1 consists of solving

Xk+1 ← arg min

{
1

2
||HXM −G||2F+ < Λ,BX +CZ > +

β

2
||BX +CZ||2F

}
(4.2)

The above subproblem is the solution of the classical Sylvester matrix equation

H>HXMM> + βB>BX = H>GM> − βB>CZkB
>Γk. (4.3)

Similar alternating minimization schemes have been used for solving the hyper-

spectral unmixing problem in [75] and [90]. However, the key step of the alternating

minimization scheme presented in [147] consists in transforming the matrix equation

(4.3) to a linear system which has a closed-form solution. In particular the authors

in [147] reformulate the Sylvester matrix equation in (4.3) as

(MM> ⊗H>H + βI ⊗B>B)x = ĝ

where x = vec(X) and ĝ = vec(H>GM> − βB>CZkB
>Γk). Let M = UΣV >

be the singular value decomposition of M , and let H = F ∗ΓF and B>B = F ∗ΨF

be the Fourier decomposition of H . Here, we assume spatially invariant blur with

periodic boundary conditions. Now, the above linear system takes the form

(U ⊗ F ∗)(Σ2 ⊗ Γ2 + I ⊗Ψ2)(U> ⊗ F )x = ĝ
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and thus a direct solution is given by

x = (U> ⊗ F )(Σ2 ⊗ Γ2 + I ⊗Ψ2)−1(U ⊗ F ∗)ĝ

For a detailed description of the solution of steps 2 and 3 of the alternating minimiza-

tion approach see [147].

4.2 Numerical Scheme for the Multiple PSF Case

In this section we provide the problem formulation for the general case where each

column of the matrix XM is generally blurred by a different blurring operator. In

particular, the deblurring and hyperspectral unmixing problem with multiple PSFs

takes the form



H1 0 · · · 0

0 H2 · · · 0

... 0
. . .

...

0 · · · 0 HNw





XMe1

XMe2

...

XMeNw


=



g1

g2

...

gNw


(4.4)

where ei ∈ RNw is the ith unit vector, gi is the ith column of the observed matrix G,

and each blurring matrix Hi is constructed using different circular Moffat functions

whose parameters vary with wavelength. In particular, a blurring operator H for a

particular wavelength, λ, is represented by a circular Moffat function

H(α0, α1, β, λ) =
β − 1

π(α0 + α1λ)

(
1 +

i2 + j2

(α0 + α1λ)2

)−β
(4.5)

Moffat functions are widely used to paramaterize PSFs in astronomical imaging. The

parameters α0, α1 and β are the Moffat function shape parameters for the associated
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PSF and we assume that they have been estimated using the numerical approaches

presented in Chapter 3.

Notice that problem (4.4) can be rewritten as



H1XMe1

H2XMe2

...

HNwXMeNw


=



g1

g2

...

gNw


By utilizing Kronecker product properties the above equation can be reformulated as



(e1
>M> ⊗H1)x

(e2
>M> ⊗H2)x

...

(eNw
>M> ⊗HNw)x


=



g1

g2

...

gNw


where x = vec(X). Thus, the multiple PSF hyperspectral image deblurring and

unmixing problem can be formulated as

Hx = g

where

H =



m1
> ⊗H1

m2
> ⊗H2

...

mNw
> ⊗HNw


, x = vec(X), g =



g1

g2

...

gNw


Hence, the X-subproblem (4.2) for the multiple PSF formulation takes the form

Xk+1 ∈ arg min

{
1

2
||Hx− g||2F + < Λ,BX +CZ > +

β

2
||BX +CZ||2F

}
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If we set the gradient of the augmented Lagrangian for the X-subproblem to 0

then we obtain

H>Hx+ βB>BX = H>g − βB>CZkB
>Γk

The above equation can be rewritten as

(H>H + βI ⊗B>B)x = ĝ , (4.6)

where ĝ = vec(H1
>(g1m1

>) + · · ·+HNw
>(g1mNw

>)− βB>CZk −B>Γk). Notice

that

H>H =

[
m1 ⊗H1

> m2 ⊗H2
> · · · mNw ⊗HNw

>

]


m1
> ⊗H1

m2
> ⊗H2

...

mNw
> ⊗HNw


= m1m1

> ⊗H1
>H1 +m2m2

> ⊗H2
>H2 + · · ·+mNwmNw

> ⊗HNw
>HNw

Using the decompositions MM> = UΣ2U>, Hi
>Hi = F ∗Γ2

iF , and B>B =

F ∗Ψ2F equation (4.6) takes the form

(m1m1
>⊗F ∗Γ2

1F+m2m2
>⊗F ∗Γ2

2F+· · ·+mNwmNw
>⊗F ∗Γ2

NwF+I⊗F ∗Ψ2F )x = ĝ.

Thus, the X-subproblem to be solved for the multiple PSF case is

(I⊗F ∗)(m1m1
>⊗Γ2

1+m2m2
>⊗Γ2

2+· · ·+mNwmNw
>⊗Γ2

Nw+I⊗Ψ2)(I⊗F )x = ĝ.

Note that the middle part of the coefficient matrix in the above linear system is

not diagonal as in the single PSF case, and thus there is not an explicit solution of
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the X-subproblem for multiple PFSs. However, the coefficient matrix for multiple

PSFs is symmetric positive definite and thus we use the conjugate gradient method

to solve the X-subproblem for hyperspectral unmixing and deblurring using multiple

PSFs. Construction of a preconditioner is described next.

4.3 Conjugate Gradient Preconditioner

In the single PSF case there is only one PSF matrix and therefore only one matrix of

eigenvalues associated with its Fourier decomposition. In the multiple PSF case the

eigenvalues change from one PSF to another, according to wavelength, and thus we

cannot apply the same technique of direct inversion for solving the X-subproblem.

However, though the PSF eigenvalues change with wavelengths, the eigenvalues of

PSFs corresponding to adjacent wavelengths have similar values. Thus, we approx-

imate each Γi with a matrix that contains the average of all the eigenvalues corre-

sponding to different PSFs, which we denote by Γavg. We use Γavg to construct a pre-

conditioner. In this case we can rewrite the coefficient matrix for the X-subproblem

with multiple PSFs as

m1m1
>⊗F ∗Γ2

avgF+m2m2
>⊗F ∗Γ2

avgF+· · ·+mNwmNw
>⊗F ∗Γ2

avgF+I⊗F ∗Ψ2F

= (m1m1
> +m2m2

> + · · ·+mNwmNw
>)⊗ F ∗Γ2

avgF + I ⊗ F ∗Ψ2F

= MM> ⊗ F ∗Γ2
avgF + I ⊗ F ∗Ψ2F

= UΣ2U> ⊗ F ∗Γ2
avgF + I ⊗ F ∗Ψ2F .

This leads to the preconditioner

P = (U ⊗ F ∗)(Σ2 ⊗ Γ2
avg + I ⊗Ψ2)(U> ⊗ F ).
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We remark that the preconditioner P is computed once using the matrix of the

average of eigenvalues for all the PSFs. Thus, we do not need to consider the com-

putational costs of computing the Fourier decompositions of PSFs at each iteration.

Also, Ψ and the SVD of M are precomputed once and stored. Furthermore, the mid-

dle term of P is now diagonal, the left and right terms are unitary, and thus P can

be easily inverted. Hence, it is easy to solve linear systems with P and P−1. We use

the preconditioned conjugate gradient method to solve the hyperspectral unmixing

and deblurring problem for the multiple PSF case.

4.3.1 Approximation Quality of the Preconditioner

In this section, we consider the approximation quality of the preconditioner by looking

at the singular values of the original coefficient matrix and the preconditioned system.

Specifically, we consider the singular values of the matrix, H>H + βI ⊗ B>B, as

well as the singular values of the preconditioned matrix,(H>H + βI ⊗B>B)P−1.

Figure 4.1: Singular values for the non-preconditoned (left) and preconditioned (right)
systems with varying number of wavelengths.

Figure 4.1 shows the singular values for 10 preconditioned and non-preconditioned

systems. We used PSFs of size 10×10 and vary the number of wavelengths from 9 to
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99 with a 10nm step size. Note that the singular values of the preconditioned system

tend to cluster more towards to 1 compared to the non-preconditioned system. We

also noticed that the singular values of the preconditioned system show a tendency

to move away from 0. The behavior of the singular values is similar as the number of

wavelengths varies. Even though there is not a tight clustering of the singular values

around 1, as one would expect from an effective preconditioner, our numerical results

show that our simple preconditioner significantly reduces the number of necessary

iterations for the convergence of the conjugate gradient method.
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Chapter 5

Numerical Results

We now presents some results illustrating the use of effectiveness of our approaches on

hyperspectral PSF parameter estimation and hyperspectral unmixing and deblurring

problems. In Section 5.1 we show our results for the hyperspectal PSF parameter

estimation problem. In particular, we test our methods proposed in Chapter 3 for

the circular and elliptical Moffat PSF models. Section 5.1.3 shows our results for

hyperspectal unmixing and deblurring using multiple PSFs.

5.1 Hyperspectral PSF Parameter Estimation Re-

sults

In this section we illustrate the use of our approach on a parameter identification

and star spectrum reconstruction problem arising in hyperpsectral imaging. Different

levels of Gaussian white noise are added to the original star images. An example of

an isolated star observed at wavelength λ = 465nm with different levels of noise is

shown in Figure 5.1.
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Figure 5.1: Image of an isolated star observed at wavelength λ = 465nm. The top row
is the noise-free image. The bottom row shows the star image with different levels of
noise.
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Figure 5.2: The simulated true star spectrum, strue, for the wavelength range 465-
930nm.
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Recall from Chapter 3, we are minimizing:

f(φ, s) = ‖b−H(φ)s‖2
2

Our goal is to find the parameters defining the hyperspectral PSF (e.g. the top

row of Figure 5.1) and to reconstruct the star spectrum (e.g. Figure 5.2), given the

noisy measurements (e.g. the bottom row of Figure 5.1). The relative error at the kth

iteration is defined as

‖φk − φtrue‖2

‖φtrue‖2

,

for the hyperspectral PSF parameters, and

‖sk − strue‖2

‖strue‖2

,

for the star spectrum.

5.1.1 Circular Moffat Results

For the numerical experiments corresponding to the circular Moffat model we use 466

simulated noisy (10% Gaussian noise) PSFs corresponding to 466 wavelengths from

λ = 465nm to λ = 930nm with a step size of 1nm. For the real MUSE data up to

3700 wavelengths may be available [127]. The simulated noisy hyperspectral PSFs are

of size 64× 64. We use φtrue =

[
α0 α1 β

]
> =

[
2.42 −0.001 2.66

]
> to generate

the data and φ0 =

[
4.61 −0.0009 4.3

]
> as an initial guess.

Figure 5.3 shows a plot of the singular values of the Jacobian matrix associated

with the circular Moffat model. Note that the Jacobian matrix is ill-conditioned

(with a condition number of ≈ 105) and there is no clear gap between the second and

third singular values. We plot the objective function (Figure 5.4), the relative errors

for the PSF parameters (Figure 5.5), and the approximated star spectrum for the
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Figure 5.3: Singular values of the Jacobian matrix for the circular Moffat model.

first 100 wavelengths (Figure 5.6) for the variable projection Gauss-Newton method

where all three singular values are kept. We can observe that the objective function

decreases for a few iterations and then stagnates while the norm of the gradient

becomes significantly smaller.

The computed PSF parameters after running the Gauss-Newton algorithm for 20

iterations are φGN =

[
2.4155 −0.001 2.6533

]
> corresponding to a relative error

of 0.0022. The estimated star spectrum is a very close approximation of the true star

spectrum (Figure 5.6).
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Figure 5.4: Iteration history of the objective function and the norm of gradient for
the circular Moffat model.
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Figure 5.5: PSF parameter relative errors for the circular Moffat model.
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Figure 5.6: True and computed spectra for the first 100 wavelengths (from λ = 465
to λ = 564nm with a step size of 1nm between wavelengths) corresponding to the
circular Moffat model.

5.1.2 Elliptical Moffat Model

For the numerical experiments with the elliptical Moffat model we generate the data

using

φtrue =

[
3.75 −2.99 · 10−3 −4.31 · 10−3 1.98 · 10−6 1.74 6.86 · 10−4 2.17 · 10−6

]
>

as the exact parameter vector. However, to insure that all parameters have the same

order of magnitude we rewrite the vector of unknown parameters as

φ =

[
α0 α

′
1 · 10−3 α

′
2 · 10−3 α

′
3 · 10−6 β γ

′
0 · 10−4 γ

′
1 · 10−6

]
>

Thus we seek to find the parameters φ =

[
α0 α

′
1 α

′
2 α

′
3 β γ

′
0 γ

′
1

]
> which

best approximate the data. In this example the vector of true parameters becomes

φtrue =

[
3.75 −2.99 −4.31 1.98 1.74 6.86 2.17

]
>

and we use φ0 =

[
6.41 −1.07 −3.15 3.28 2.42 13.18 3.81

]
> as an initial guess.
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Figure 5.7: Singular values of the Jacobian matrix corresponding to the elliptical
Moffat model with 20 wavelengths and 25 orientations in the field of view.

We use 20 wavelengths with 25 orientations in the first quadrant of the field of view

for each wavelength.

Figure 5.7 shows a plot of the singular values of the Jacobian matrix associ-

ated with the elliptical Moffat model. Notice that the singular values decay grad-

ually without a well-determined gap between them, and that the Jacobian matrix

is ill-conditioned (cond(J) = 105). Thus the exact Gauss-Newton algorithm has

the potential to compute an incorrect step direction vector when solving the system

J>Jd = −J>r. To improve the step direction, as previously discussed, we attempt

to use subset selection, truncated SVD, and Tikhonov regularization.

For the computation using subset selection we use 6 most linearly independent

columns of the Jacobian matrix (note that in this example J has 7 columns). Subset

selection picks α3 to be the problematic parameter and thus we fix α3 at its initial

guess and we do not update it throughout the iterations. In the truncated SVD

approach we keep 6 singular values, i.e. we truncate only the smallest singular value

of the Jacobian matrix.
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Figure 5.8: PSF parameter relative errors corresponding to the elliptical Moffat
model. Left: parameter relative errors for subset selection, TSVD, and Tikhonov
regularization. Right: parameter relative errors for the combined approaches of ap-
plying subset selection and Tikhonov regularization (SS+TIK), TSVD and Tikhonov
regularization (TSVD+TIK), and for the approach of using subset selection to iden-
tify the problematic parameter (α3) and assume that we know the true value of that
parameter for the rest of the iterations (SST).
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Figure 5.9: Iteration history of the objective function and the norm of gradient for
the combined approach of subset selection and Tikhonov regularization.
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Figure 5.10: True and computed spectra for 20 wavelengths (from λ = 465nm to
λ = 484nm with a step size of 1nm between wavelengths), corresponding to the
elliptical Moffat model.

For the Tikhonov regularization approach we use the sixth singular value of the

Jacobian matrix as the regularization parameter. We plot the relative errors

‖φk − φtrue‖2

‖φtrue‖2

,

for the three approaches in the left part of Figure 5.8. One can observe that the

Tikhonov regularization method achieves the lowest relative errors. With Tikhonov

regularization the approximated parameters are:

φTIK =

[
3.8173 −2.9962 −4.5704 2.2541 1.7446 7.0326 2.1308

]
>.

If we assume that we know the exact value for α3 and apply subset selection (SST

in the right part of Figure 5.8) we achieve lower relative errors compared to fixing

α3 to its initial guess value. We also tried a combined approach by applying subset
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selection for the first 7 iterations and then for the rest of the iterations we solve the

Jacobian system using Tikhonov regularization. The basic idea is to apply subset

selection for the first few iterations so that we can provide a better initial guess for

Tikhonov regularization. For comparison purposes we applied the same combined

approach using truncated SVD and Tikhonov regularization.

The parameter relative errors are shown in the right part of Figure 5.8. We observe

that using subset selection and Tikhonov regularization (SS+TIK) accelerates the

convergence and also achieves lower relative errors compared to the other approaches.

After running subset selection with Tikhonov regularization for 100 iterations the

approximated parameter vector is

φSS+TIK =

[
3.771 −2.9962 −4.3749 2.0476 1.7446 7.0123 2.1351

]
>

Figure 5.9 shows the convergence history for the objective function and the norm

of the gradient corresponding to the SS+TIK approach. One can observe that gra-

dient norm decreases as the iterations proceed. The true star spectrum and the

approximated star spectrum using the SS+TIK approach are plotted in Figure 5.10.

5.1.3 Hyperspectral Unmixing and Deblurring Results

In this section we test the proposed numerical scheme for hyperspectral deblurring

and unmixing using single and multiple PSFs. We consider a simulated hyperspec-

tral image of the Hubble Space Telescope, which is also used for testing in [147].

Similar data was also used in [92] and [146]. The quality of the estimated fractional

abundances of endmembers is evaluated by using the relative error defined by:

||Xtrue −X||2
||Xtrue||2

,
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where Xtrue is the true fractional abundances of endmembers and X is the computed

fractional abundances of endmembers by the proposed method.

The signatures cover a band of spectra from 400nm to 2500 nm. We use 99 evenly

distributed sampling points, leading to a hyperspectral datacube of size 128× 128×

99. The synthetic map of the satellite image is shown in Figure 5.1. The spectral

signatures of the materials used in our experiment are shown in Figure 5.11. The

hyperspectral datacube is blurred by multiple circular Moffat point spread functions

(see Figure 5.12), i.e. each column of Y is blurred by a different circular Moffat

function corresponding to a particular wavelength. Note that as the wavelength, λ,

increases there is less blurring present in those columns compared to the blurring in

the columns observed at shorter wavelengths, as expected e.g. [79]. Gaussian white

noise in the level of 30dB is also added to the data cube.

In the experiments for the numerical scheme with multiple PSFs we use all the

PSFs for the reconstruction of the fractional abundances. In the single PSF scheme

we use an average of all the PSFs for reconstruction. That is, the columns of Y

are blurred with different PSFs in both cases and we use one PSF representing the

average of all PSFs for reconstruction in the single PSF numerical scheme. The plot

of relative errors is shown in Figure 5.13. One can observe that the use of multiple

PSFs provides lower relative reconstruction errors compared to the relative errors

obtained by the single PSF case. It is a known fact that the blurring varies with

different wavelengths. Figure 5.13 shows that by taking this fact into account we can

achieve much lower relative errors in the reconstruction of the fractional abundances.

The following values are used for the parameters in the alternating minimization

scheme: β = 10−2, µ1 = 10−1, µ2 = 5 · 10−4. The convergence of the alternating direc-

tion method is theoretically guaranteed as long as the penalty parameter β is positive,

see e.g. [147]. We note that the conjugate gradient method required 1, 000 iterations

for solving each X-subproblem (for multiple PSFs) at the same accuracy level as the
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Material Color Endmembers (%) Frac. Abundances (%)

Material 1 light gray Em. 1 (100) 11

Material 2 green Em. 2 (70), Em. 9 (30) 18

Material 3 red Em. 3 (100) 4

Material 4 dark gray Em. 4 (60), Em. 10 (40) 19

Material 5 brown Em. 5 (100) 7

Material 6 gold Em. 6 (40), Em. 11 (30), Em. 12 (30) 32

Material 7 blue Em. 7 (100) 3

Material 8 white Em. 8 (100) 6

Table 5.1: Top: Synthetic map representation of the hyperspectral satellite image.
Bottom: Materials, corresponding colors, fractional abundances of constituent end-
members, and fractional abundances of the materials used for the Hubble satellite
simulation.
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Figure 5.11: Spectral signatures of eight materials assigned to the simulated Hubble
Telescope model.
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Figure 5.12: First row: the true columns of Y observed at different wavelengths (from
left to right: 400nm, 1107.1nm, 1814.3nm). Second row: the circular Moffat PSFs
used to blur the columns of Y at different wavelengths. Third row: the corresponding
blurred and noisy columns of Y blurred with different Moffat PSFs corresponding to
different wavelengths.
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single PSF method. By using the preconditioner (presented in Chapter 4) we were

able to reduce the number of iterations required for convergence to 20. In Figure 5.14

we show the relative residual norms for the first 95 iterations of preconditioned con-

jugate gradient (PCG) and conjugate gradient (CG) without preconditioning. The

relative residual norms for PCG continue to decrease until they reach the default tol-

erance level of 10−6 whereas for CG the relative residual norms stagnate and oscillate

in the interval between 10−2 and 10−3. Figures 5.15 and 5.16 show the reconstructed

columns of X for both the single PSF and multiple PSF methods.
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Figure 5.13: Relative errors for the computed fractional abundances using a single
PSF and multiple PSFs.
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Figure 5.14: Relative residual norms for the first 95 iterations of PCG and CG.
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Figure 5.15: Fractional abundances for materials 1 to 4 (the first 4 materials in
Table 5.1). First column: true fractional abundances; second column: the estimated
fractional abundances using the single PSF approach; third column: the estimated
fractional abundances using the multiple PSF approach.
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Figure 5.16: Fractional abundances for materials 5 to 8 (the last 4 materials in Ta-
ble 5.1). First column: true fractional abundances; second column: the estimated
fractional abundances using the single PSF approach; third column: the estimated
fractional abundances using the multiple PSF approach.
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Figure 5.17: The true material spectral signatures (blue and −) and the computed
spectral signatures (red and −.) after applying the multiple PSF numerical scheme
on the blurred and noisy data.
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Figure 5.18: The true material spectral signatures (black and circle), the computed
spectral signatures (red and −.) after applying the multiple PSF numerical scheme
on the blurred and noisy data, and the observed blurred and noisy material spectral
signatures (blue and −). Note that the y-axis has not been scaled in order to show
more clearly the differences between spectral signatures in the three cases.
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Chapter 6

Conclusions and Future Work

We have described linear and separable nonlinear inverse problems using an image

restoration model problem. We discussed properties of ill-posed inverse problems and

explained why regularization is necessary to obtain a meaningful solution. We have

considered different regularization techniques for linear inverse problems. Precondi-

tioning of inverse problems was discussed and we explained some considerations that

should be taken into account in the case of preconditioning of ill-posed problems.

Hyperspectral imaging is now a mature technology which is finding applications

in many fields. We have explained some important concepts in hyperspectral imaging

ranging from the electromagnetic spectrum to the hyperspectral unmixing models

that are used for hyperspectral data analysis and exploitation.

Next we described an iterative approach for solving nonlinear least squares prob-

lems related to hyperpsectral imaging. Circular and elliptical Moffat function models

were used to define the spectrally and spatially varying hyperpsectral PSF. We ob-

served that the Jacobian matrix associated with the nonlinear least squares formula-

tion of the problem tends to be very ill-conditioned. This causes numerical instability

in the solution of the Jacobian system inside the Gauss-Newton iteration, which in

turn causes stagnation in the convergence history of relative errors for PSF param-
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eters and star spectrum. We have addressed this problem and have shown that by

combining a Gauss-Newton approach for minimizing a reduced cost functional with

subset selection and regularization, for improving the conditioning of the Jacobian

matrix, one can solve the large-scale nonlinear inverse problem for hyperpspectral

PSF parameter identification and star spectrum reconstruction with higher accuracy.

We have provided examples for simulated HSI data of an isolated star corresponding

to different noise levels and different number of wavelengths.

Our work shows that a variable projection Gauss-Newton scheme can be used to

estimate a wavelength varying PSF, from the hyperspectral datacube of an isolated

star, with satisfactory results on simulated data. This approach allows one to jointly

estimate the star spectrum and the hyperspectral PSF parameters without the need

to tune the number of wavelengths used for spectral binning. We show that using

subset selection to choose the most linearly independent columns of the Jacobian

matrix can make the computations more robust in the case of elliptical Moffat PSF.

Furthermore, our work indicates that combining subset selection with Tikhonov reg-

ularization avoids the need to know exactly the true value of one or more parameters.

The next important step would be to estimate the hyperspectral PSF parameters

from real MUSE data of isolated bright stars, which are known to be faintly sampled

spatially. In the future it is also important to account for noise from the imperfectly

subtracted sky background. The hyperpsectral PSF model we used in our work ne-

glects the MUSE instrument PSF and assumes that the data reduction software does

not introduce any bias. In order to obtain better results with realistic data, it is

important to take into consideration the possible degradations due to the instrument

PSF and the data reduction software.

In the second part of our work on hyperspectral imaging, we combined the pro-

posed hyperpsectral PSF estimation approach with hyperpsectral deblurring and

sparse unmixing schemes. Specifically, we were interested in studying hyperspectral
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unmixing and deblurring using the overall system dependent hyperspectral imaging

PSF (estimated at multiple wavelengths) for space object identification applications.

In particular, we considered deblurring and spectrally analyzing ground-based astro-

nomical images of space objects. A numerical approach was provided for deblurring

and sparse unmixing of ground-based hyperspectral images of objects taken through

the atmosphere at multiple wavelengths with narrow spectral channels. Here, the

problem is quite challenging since the point spread function (PSF) depends on the

imaging system as well as the seeing conditions and is generally wavelength depen-

dent. We provided a numerical method for joint deblurring and sparse unmixing in

order to spectrally analyze the image objects. Our work shows that the number of

iterations can be significantly reduced by using a simple conjugate gradient precondi-

tioner to solve the X-subproblem of the ADMM method for the multiple PSF case.

The method was illustrated with numerical experiments on a commonly used test

example, a simulated hyperspectral image of the Hubble Space Telescope satellite.

In this work we have assumed that the hyperpsectral PSF parameters have already

been estimated prior to performing hyperspectral deblurring and unmixing. In future

work we plan to estimate the hyperspectral PSF parameters and perform hyperspec-

tral unmixing directly from hyperspectral data. We will also estimate the instrument

PSF, which relates generally to axial optical aberrations, and combine this process

with our proposed deblurring and sparse unmixing method for the multiple PSF

case. We plan to use tensor decomposition to exploit the structure of the problem

in constructing the preconditioner. We will test our methods with astronomical data

collected by the AEOS Spectral Imaging Sensor (ASIS).
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