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Abstract

Interpretable Brain Network Analysis with Graph Neural Networks
By Wei Dai

Human brains are at the center of complicated neurobiological systems in which
neurons, circuits, and systems communicate in mysterious ways. Understanding the
brain’s structure and functional processes has long been a fascinating topic of study
in neuroscience and clinical disease treatment. One of the most often used paradigms
in neuroscience is network mapping of the human brain’s connections. Graph Neural
Networks (GNNs) have lately gained popularity as a tool for representing complicated
network data. However, as a deep model, graph neural networks have limited inter-
pretability. In healthcare, decisions are often critical, and it is hard for researchers to
trust the model if the model is not explainable. To allow effective use of deep models in
healthcare, we present an interpretable model IBGNN for analyzing disorder-specific
salient areas of interest and significant linkages.

Another obstacle to the wide use of GNNs in brain network analysis is the difficulty
of performance tuning and comparisons. There has not been a systematic study of
how different designs of brain networks will affect the performance of GNNs for brain
networks. To tune the interpretable model we made, we present BrainGB, a bench-
mark for brain network analysis with GNNs. We modularize the implementation
designs so that different variants of GNNs can be tested. We use the designed frame-
work to conduct extensive experiments and summarize the best practices in GNN
designs for brain networks. To support the development of brain network analysis,
we host a website at https://brainnet.us/ with models, tutorials and examples.
We maintain an open-source framework for GNN testing and design on brain net-
works, which is also available on the website. We anticipate that this research will
offer valuable empirical evidence as well as insights for future research in this exciting
new field.

GNNs are known to have defects like over-smoothing and over-squashing. To
further improve the performance of the interpretable model, we further present a
transformer based deep model, specifically designed for brain network analysis. To
utilize the clustered nature of the brain network, we add a differential pooling layer,
which provides enhanced performance and potential interpretability.

https://brainnet.us/
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Chapter 1

Introduction

A graph is a popular form of structured data as it captures multiple objects and their

relationships simultaneously. They are widely used for representing complex systems

of related entities [28]. For example, using the Amazon product co-purchasing network

[2], one can model the relationships between any of the two products through nearly

three million labels. Brain networks are a special kind of graph. In brain networks,

the anatomical areas are represented as nodes, while connectivities between regions

are represented as links. Recent neuroscience and brain imaging research have come

to the conclusion that interconnections between brain areas are essential variables in

neural development and disease analysis [16]. As a result, previous works have widely

studied brain networks’ prediction power for certain diseases and other special traits.

Brain networks feature a smaller number of nodes than most other graphs. Study

shows human brains under fMRI images can be divided into multiple functional re-

gions, called Region of Interests (ROI) [13]. Depending on the division criteria, the

number of areas differs in size. However, most division methods, like Automated

Anatomical Labeling (AAL) [60], and Freesurfer-generated cortical/subcortical gray

matter regions [6], divide the human brain into less than 100 regions, a number much

smaller than most other graph datasets. This feature makes it easy to make predic-
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tions with a small memory footprint while also presenting challenges of extracting

useful information from a small sample data.

Brain networks have several traits worth designers of graph neural networks to

give special adaptations. For example, in a particular dataset, the node count for a

sample is usually fixed. Plus, each node corresponds to a specific Region of Interest,

which gives it special meanings. Furthermore, the connections between nodes are

weighted, which offers another dimensionality of data that most graph datasets don’t

have. These traits, if properly used, can be of great help in model design.

Shallow models, such as graph kernels [30] and tensor factorization [41], have been

widely researched in previous work on brain network analysis. Deep learning models,

on the other hand, have exploded in popularity in the field of machine learning,

with promising results in tasks such as image, video, and audio processing. While

traditional machine learning models, like recurrent neural networks and convolutional

networks (CNNs) [36] can handle grid-like or sequence data, they cannot handle brain

networks, for graphs cannot be directly represented by grid or sequence-like structures.

Recently, Graph Neural Networks (GNNs) are getting more and more attention

due to their predicting power and their ability to utilize graph data [69]. Graph

Convolutional networks first emerged as a promising way to utilize graphical data

and extract useful information [34]. However, traditional graph neural networks lack

transparency in predictions. This is fatal when it comes to decision-critical areas like

disease analysis. While several explanation methods for GNNs have been proposed,

the majority of them produce one explanation for each sample. This explanation

is not desirable for brain network analysis, as researchers usually want to know the

contribution of each region of the brain to the prediction, an important piece of

information not provided by the existing explanation networks. It is recognized that

subjects having the same disease share similar brain network patterns. Moreover,

none of the existing GNN interpretation models utilizes the unique property of brain
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networks.

Another defect of traditional GNN models like graph convolutional networks is

that they are known to suffer from over-smoothing [25]. Throughout the training

process, the model repeatedly aggregates local information from layer to layer, which

will result in loss of local information if too many layers are stacked [80]. Besides,

it also suffers from over-squashing, and information from distant nodes does not

propagate well.

Besides graph neural networks, neural networks from other areas also suffer from

similar issues. For example, recurrent neural networks (RNN) exhibit the over-

squashing issue. To address these problems, transformers, as introduced by Vaswani

et al. in 2017, combines a sequence of decoders and encoders and utilize positional

encoding to keep track of the position of an input token in the sequence of input data

[62]. This design effectively solves the problem of over-squashing and can handle input

of any length. Several ideas have been proposed to generalize the transformer model

to the graph neural networks, including the Graphorformer [72] and the Spectral At-

tention Network (SAN) [35]. As there is no inherent positional structure in graphs,

the two models utilize positional encoding, as in the original transformer model, in

different creative ways. The Graphorformer model uses spatial encoding, treating the

shortest path distance (SPD) between the two nodes as their distances. The SAN, on

the other hand, utilizes the spectral decomposition of a graph, treating eigenvalues

and eigenvectors as positional encodings. However, a limitation of both models is

that they are not able to make use of the properties of the brain networks.

Another obstacle to brain network research development is that there is no uni-

fied framework for performance testing, and no known work has been released that

indicates what design works the best. Models developed for brain networks are

highly customizable. Different node features, message passing mechanisms and pool-

ing strategies can be used, and the combination of them are numerous. It is very



4

time-consuming and energy inefficient to try all possible combinations.

To fix the interpretability problem, we propose an interpretable framework that

provide disorder-specific biomarkers for connectome-based brain disorder analysis.

The structure of the model is shown in Figure 3.1. It comprises two modules: a

backbone prediction model and an explanation generator. The backbone prediction

model is a message-passing GNN that gives special adaptation to brain networks. The

explanation generator, on the other hand, learns a globally shared mask to highlight

disorder-specific biomarkers. The learned shared mask is then applied to the original

data, creating filtered data that only contain connections that are important for

predictions. The filtered data is then fed into the backbone model to tune it, allowing

it to make more accurate predictions.

To mitigate the over-smoothing and over-squashing problem of GNNs, we fur-

ther present a transformer model adapted to the brain networks. In our model, the

positional encoding is calculated using the node index, which effectively utilizes the

brain network’s property of a fixed number of nodes. Brain networks are known to be

divided into communities, with stronger within-community connections than inter-

community connections. To utilize this feature, we added hierarchical pooling to the

framework, reducing the node into clusters before making final predictions, further

enhancing the performance.

As we finalize the model design, the difficulty in performance testing becomes

an issue. To fix this problem once and for all, we propose a unified brain network

benchmark framework, which enables researchers in the area of brain networks to test

their models using different variants in design, helping them to find the best design

that fits their model. We run tests to find the best setting for our backbone model

and present all test results for model design reference.
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1.1 Problem Definition

Our problem is formulated as follows: Suppose we have a weighted brain network

G = (V , E ,W ), where V = {vi}ni=1 is the node (ROI) set of size n, E = V × V is

the edge set, and W ∈ Rn×n is the weighted adjacency matrix describing connection

strengths between ROIs, we wish to find a prediction y, a scalar classification, through

a GNN model M.
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Chapter 2

Background

2.1 Brain Networks

Brain networks are a special kind of graph with the anatomical areas represented as

nodes and connectivities between regions defined as links [48]. Brain networks have

gotten a lot of attention in recent years in neuroimaging research to better under-

stand human brain architecture across diverse groups of people [57, 76]. Numerous

discoveries in neuroscience research suggest that neural circuits are intimately linked

to brain processes, with abnormalities in these neural circuits being discovered in

diseased people [66, 37].

Brain networks are constructed from different sources, such as Diffusion Tensor

Imaging (DTI) and functional Magnetic Resonance Imaging (fMRI) [4, 81]. As a

result, an effective study of the brain connectivities of various label groups is crucial

for understanding the biological structures and functions of the complex neural sys-

tem [46, 71, 55]. Previous models of brain networks are primarily shallow, such as

graph kernels [30] and tensor factorization [26, 42]. These models have proven to be

incapable of modeling the complex graph structures of the brain networks [17].
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2.2 Generic GNN Models

GNNs (Graph Neural Networks) have fundamentally changed graph modeling and

analysis for real-world networked data [34], knowledge graphs [53], protein or gene

interaction networks [70], and recommendation systems [67]. We give an introduction

to two types of GNNs: spectral graph neural networks and spatial graph neural

networks.

2.2.1 Spectral Graph Neural Networks

The original graph neural network was motivated by CNN. One of the successful first

attempts was introduced by Bruna et al. in 2013, a year after the convolutional neural

network was introduced [3]. In the paper, they presented two construction methods,

one based upon a hierarchical clustering of the domain and another based on the

spectrum of the graph Laplacian. The latter became the base of many subsequent

works on graph neural networks. In their work, they first revisited the idea of graph

Laplacian

L = I −D−1/2WD−1/2 (2.1)

Given this formula, they defined the smoothness functional vector ||∇x||2W at a

node i as

∥∇x∥2W =
∑
i

∑
j

Wij[x(i) − x(j)]2 , (2.2)

This leads to a question: how can we maximize the smoothness vector? It turns

out the smoothest vector is always an eigenvector of the laplacian L. If we know the

eigenvector matrix V, the transformation can be defined as:
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xk+1,j = h

(
V

fk−1∑
i=1

Fk,i,jV
Txk,i

)
(j = 1 . . . fk) , (2.3)

where Fk,i,j is a diagonal matrix and h is an activation function. The construction

looks quite simple and straightforward. However, as pointed out by Zhang et al., this

construction requires O(n3) time to calculate the eigenvectors, a costly computation

for large graphs [79].

Many variants have been proposed to address this computational cost issue. One

of the most famous variants is called GCN, proposed by Thomas N. Kipf and Max

Welling at ICLR 2017 [34]. They simplified the calculation by defining the activation

as

H(l+1) = σ
(
D̃− 1

2 ÃD̃− 1
2H(l)W (l)

)
. (2.4)

where Ã = A+ IN is the adjacency matrix of a graph with added self connections,

IN is the identity matrix, l is the layer index, and D̃, W (l) are weight matrices to

be trained. Since the eigenvector computation is avoided, the computational cost is

greatly reduced.

In recent years, attention mechanisms are gaining increasing in popularity. Since

attention mechanisms put unequal focus on each input, it performs better under noisy

data and accepts inputs of almost any variable size. Many attempts to apply atten-

tion mechanisms to graph neural networks. One popular model is Graph Attention

Network (GAT), designed by Velickovic et al. [63]. In their proposed model, the

coefficient is calculated as

αij =
exp

(
LeakyReLU

(
a⃗T [Wh⃗i∥Wh⃗j]

))
∑

k∈Ni
exp

(
LeakyReLU

(
a⃗T [Wh⃗i∥Wh⃗k]

)) (2.5)

In the formula, Wh⃗i,Wh⃗j,Wh⃗k are weight matrices assigned to each node, in-
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dicating ”attention,” or importance, of each node. This self-attention mechanism,

similar to Recurrent Neural Networks, allows the model to focus on important nodes.

An advantage of this attention model over other similar works is its computational

complexity. Since the equation above does not involve eigendecomposition or other

costly matrix operations, the computation cost of a feature is linear with respect to

the number of nodes and edges.

2.2.2 Spatial Graph Neural Networks

Since the spectral models are dependent on the Laplacian matrix, there are certain

limitations. For example, if the eigenfunctions of the two graphs are different, it is

hard to generalize the model from one graph to another [79]. As a result, spatial

models that are independent of the eigenfunctions are proposed.

Spatial graph neural network models also originated from the classic convolutional

neural networks (CNN) [36]. CNN models primarily deal with grid-like data, such as

images [79]. These models are usually unsuitable for graphical data, as the neighbor-

hood nodes and spatial order usually differ from sample to sample. In order to solve

this issue, Gao et al. proposed a model called Learnable Graph Convolutional Layer

(LGCL) [21]. In their paper, the propagation rule is formulated as

X l = g(Xl, A, k)

where the A is the adjacency matrix, g(·) performs the k-largest node selection

to transform generic graphs to data of grid-like structures. After X l is formulated

as a grid structure, the model then performs a regular 1-D CNN, and c(·) denotes a

regular 1-D CNN that aggregates neighboring information and outputs a new feature

vector for each node:
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xl+1 = c(X l)

Through the k-largest node selection, the data is generalized into a matrix of fixed

size, making it easier to generalize.

2.3 Brain Specific GNN Models

As we discussed above, the brain networks have many features that could be utilized

by neural networks. For example, with prior clinical knowledge, we know there may

be some latent features in the brain networks that are difficult to be captured by

standard neural networks. To capture these latent features, Suk et al. proposed

a latent feature representation with a stacked auto-encoder (SAE) [58]. However,

the work provides a limited improvement on the classification model itself. One of

the first specialized models on the brain networks is BrainNetCNN [31] proposed by

Kawahara et al. in 2017.

2.3.1 BrainNetCNN

The most important improvement in BrainNetCNN is the three kinds of layers they

proposed. They introduced edge-to-edge, edge-to-node and node-to-graph layers,

claiming it will better leverage the topological locality of structural brain networks

than other models. Graphical data go through all three kinds of layers sequentially,

eventually feeding into a fully connected layer for classification or regression tasks. In

the edge-to-edge (E2E) layer, each edge, represented by a position in the adjacency

matrix, is learned and expanded. The output is defined as a filtered adjacency matrix

Al+1,n
i,j =

M l∑
m=1

|Ω|∑
k=1

rl,m,n
k Al,m

i,k + cl,m,n
k Al,m

k,j (2.6)
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where c and r are learnable weights of the nth filter.

Subsequent to E2E filters are the edge-to-node (E2N) layers. In this layer, the

adjacency matrices are squashed into nodes representations, defined as follows

al+1,n
i =

M l∑
m=1

|Ω|∑
k=1

rl,m,n
k Al,m

i,k + cl,m,n
k Al,m

k,j (2.7)

The right-hand side of this is exactly the same as the one in the E2E layer. The

left side, however, is a one-dimensional vector with a size equal to the size of the node

instead of a 2D vector with the same size as the adjacency matrix.

The node-to-graph layer, as its name suggests, further reduces the dimension from

node representation to graph representation

al+1,n =
M l∑
m=1

|Ω|∑
k=1

wl,m,n
i al,mi (2.8)

This reduces the result a from a vector of node size to a single scalar.

2.3.2 BrainGNN

In 2021, Li et. al proposed another interesting brain network-specialized GNN model

called BrainGNN [38]. They utilized one of the most important prior knowledge of

the brain networks: region of interests (ROIs). As mentioned in the introduction

section, each node in a brain network is assigned a specific ROI, and each ROI has

a specific clinical meaning. Therefore, utilizing such a feature would be great for

training and interpretation of the results.

In order to leverage this information, they proposed Ra-GConv layer, defined as

follows

vec(W
(l)
i ) = f

(l)
MLP (ri) = Θ

(l)
2 relu(Θ

(l)
1 ri) + b(l) (2.9)

where ri is node i’s regional information. Θ1,Θ2 are weight parameters in MLP
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and b(l) is the bias term.

The Ra-GConv layer, combined with dropout layers in between and MLP layers

on each end, defines the BrainGNN model. Since it utilizes the ROI information,

it outperforms the previous model, BrainNetCNN, in the two classification task, as

stated by Li et al. Another advantage is that it provides interpretability, as each node

(ROI) corresponds to a specific region in a brain.
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Chapter 3

Our Models

3.1 Interpretable GCN and GAT based Model

3.1.1 The Backbone Prediction Model

Explanation Generator

Shared mask 		
across all
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Enhanced BackboneBackbone
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Figure 3.1: An illustration of our message passing GNN model

In a brain network, the edge weights between nodes are formulated by the signal

correlation between brain regions. The correlations are not necessarily non-negative,

which is a problem for traditional GCNs.

We fixes the problem of negative edge weights and effectively utilizes the edge

weights through an special edge-weight-aware message passing algorithm. Specifi-

cally, we first construct a message vector mij ∈ Rd for all edges by concatenating
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embeddings of a node Vi, its neighbor Vj with its the edge weight wij:

m
(l)
ij = MLP

([
h

(l)
i ; h

(l)
j ; wij

])
, (3.1)

where l is the index of the GNN layer. For each node Vi, we then aggregate messages

from all its neighbors Ni using the following propagation rule:

h
(l)
i = ξ

 ∑
Vj∈Ni∪{Vi}

m
(l−1)
ij

 , (3.2)

where ξ is a non-linear activation function like ReLU, and h
(0)
i is initialized with node

feature xi.

After stacking L layers, we employ a readout function summarizing all node em-

beddings to obtain a graph-level embedding g. Formally, we instantiate this function

with another MLP and residual connections:

z =
∑
i∈V

h
(L)
i , g = MLP(z) + z. (3.3)

We train the model with supervised cross-entropy loss defined as

Lclass =
1

n

n∑
i=1

c∑
j=1

−yi,j log (ŷi,j) ,

where n is the number of samples and c represents the number of classes.

3.1.2 The Explanation Generator

A popular approach to generate explanations for GNNs is to find an explanation

graph G′ that maximizes mutual information with the label distribution. The model

GNNExplainer proposed by Ying et al. defines the explanation graph G′ as a subgraph

of G [74]. In some other designs, G′ is some alternations of G [44, 77]. Previous
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methods either produce a unique explanation for each subject or provide only model-

level explanations (e.g., GAT [64]) that cannot offer disease-specific insights. With the

unique features of brain networks and the characteristics of disease analysis, a shared

explanation graph G′ across all samples is more desirable as it captures common

patterns for disease-specific analysis.

To address this issue, we design a learnable globally shared edge mask M ∈ Rn×n

and apply it to individual brain networks across all subjects in a dataset.

Formally, we train the shared edge mask M by maximizing the mutual information

between the backbone predictions ŷ on the original graph G = (V , E ,W ) and ŷ′ on

the masked graph G′ = (V , E ,W ′), where W ′ = W ⊙ σ(M ). ⊙ denotes element-

wise multiplication, and σ denotes the sigmoid function that standardizes the mask

to [0, 1]n×n. This objective of mutual information maximization can be formulated

as:

Lmask = min
M

−
c∑

i=1

1[ŷ = i] logPΦ (ŷ′ = ŷ | G′) ,

where PΦ (ŷ′ = ŷ | G′) denotes the conditional probability that the backbone model

Φ’s prediction ŷ′ on the masked graph G′ is consistent with the prediction ŷ on the

original graph G.

To encourage the discreteness of the edge weight value in the trained mask, we

further apply a sparsity loss

Lsparsity =
∑
i,j

Mi,j

defined as the sum of mask parameters to obtain a compact explanation, and

another element-wise entropy loss

Lentropy = −(M log(M ) + (1 −M ) log(1 −M ))
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to encourage weight value discreteness in the mask.

Our final training objective is

L = Lclass + αLmask + βLsparsity + γLentropy,

where Lclass is the supervised prediction loss from the backbone model. We normalize

the four losses through hyper-parameters α, β and γ so that one loss will not dominate

the training process.

After the training is complete, our explanation generator will output an edge mask

M that highlights prominent brain network connections for disease predictions. We

use the edge mask to investigate disease-specific neurological biomarkers and salient

ROIs across all graphs on test datasets.

3.1.3 The Overall Framework

Our model is trained in three stages.

1. Our backbone model is trained on the original graph data.

2. The explanation generator learns a globally-shared edge mask overall training

graphs, using the learned backbone model and its prediction as input.

3. We apply the learned global mask M on the original training graphs G to

generate filtered graphs G′, which are then used to tune the backbone model.

Using this three-step technique, we enhance the prediction model and generate a

common explanation mask for model interpretation.
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3.2 Brain Transformer

In recent years, transformers have gained increasing popularity because of their per-

formance. We present a transformer model specifically adapted for the brain networks

in this work.

3.2.1 Model Structure

Brain Transformer

Self-Attention Layer 

Differentiable Pooling

Clustered Node 
Representations

GNN
Si 

MLP
Wi 

Xi Xi 

To Adj. Matrix 

Add Pos. Encoding

Xi 

Y′i

Ai 

A′i , S′i

Feed Forward & Norm
H′i

Figure 3.2: An illustration of our transformer model

Our model structure is shown in Figure 3.2. Before feeding into the model, each

row of the adjacency matrix Wi is prepended with a node identity vector Ni

Xi = [Ni;Wi].

whether Xi ∈ Rn×2n is the input of the model. Vector Ni is a one-hot vector of

length n with only the value of its node index (row index) being set to one.

Xi is then simultaneously fed into the self-attention layer and the Assignment

GNN layer of the Brain Transformer model. The self-attention layer is similar to the

”Scaled Dot-Product Attention” detailed in the original transformer model [62]. The
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Qi, Ki, Vi matrices are calculated as

Qi = WqXi (3.4)

Ki = WkXi (3.5)

Vi = WvXi (3.6)

where Wq,Wk,Wv ∈ R2n×n are learnable weight matrices. Then, the attention is

calculated as a normalized product of Qi, Ki, Vi

Ai = Attention(Q,K, V ) = softmax(
QiK

T
i√

dik
)Vi

where dik is the dimension of Ki. The Assignment GNN, on the other hand, cal-

culates the assignment matrix Si ∈ Rn×c, where c is a hyperparameter that indicates

the cluster count we wish the model to find

Si = GNN(xi)

Both the assignment matrix Si and the attention matrix Ai are fed into the dif-

ferential pooling layer [73], where Si and Ai are processed as follows

A′
i = softmax(S)T · Ai (3.7)

A layer norm is then applied to the pooled output A′
i

H ′
i = LayerNorm(A′

i)

The layer norm is defined as the difference between the input and the expected
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value of the input over each dimension, divided by the variance of the input

LayerNorm(A′
i) =

A′
i − E[A′

i]√
V ar[A′

i] + ϵ
∗ γ + β.

The γ, β are two learnable parameters, initalized to 1 and 0 respectively [1].

After the layer norm, a 2-layer MLP feed-forward layer follows, with ReLu acti-

vation in between

H ′
i = Linear(ReLu(Linear(Hi)))

At last, an MLP layer is followed to generate a graph-level prediction Y ′
i

Y ′
i = MLP (H ′

i)

A performance evaluation of the Brain Transformer model is detailed in Section

5.2.
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Chapter 4

Benchmarks and Model

Optimizations

As we finalize the model design, performance testing becomes an issue. Graph neural

networks feature numerous design variants, and each modification in design can result

in a drastic change in the model’s performance. To tackle this challenge, we provide

a unified brain network benchmark framework, BrainGB, that allows brain network

researchers to test their models using a variety of design variants to find the best

design for their model. Experiments are conducted to discover the optimal parameters

for our backbone model, and the results are presented for model design purposes. The

framework is open-sourced, and all instructions are available at https://brainnet.

us/.

The initialization of ROI features is the first step in applying GNNs to brain

networks, followed by the forward pass, which consists of two phases: message passing

and pooling. The learned graph-level representation may subsequently be used to

analyze brain diseases. We ran experiments on various designs of each part and

reported the result in table 4.1.

https://brainnet.us/
https://brainnet.us/


21

4.1 Node Feature Construction

The superior performances of graph neural networks are mainly established when

there are natural node features for each node in the graph. This is true for many

other graphs like social networks, where each node (account) is characterized by its

posts, likes and profiles. However, in brain network analysis, natural node properties

are not available. Researchers in the graph machine learning area have investigated

numerous feasible techniques to initialize node characteristics in order to use GNNs on

non-attributed graphs [10, 14]. We tested the following node features and categorized

them as positional or structural:

• Identity : A unique one-hot feature vector is initialized for each node [75]. We

implement this by providing each node with a zero vector of length n (n is the

number of nodes in the graph) and set the value at node’s index i to 1.

• Eigen: An eigen-decomposition is performed on the weighted matrix. The

eigenvectors are then used to generate a k -dimensional feature vector for each

node [29].

• Degree: The degree of each node is obtained as the node feature. This feature

captures structural information of brain regions, and the structural similarity

of two areas in their immediate vicinity will be partially represented in the

initialized node characteristics.

• Degree profile: This method utilizes existing local statistical measures on degree

profiles [5]. Each feature xi of node vi on graph Gn is computed as

xi = [deg(vi) ∥ min(Di) ∥ max(Di)

∥ mean(Di) ∥ std(Di)],

(4.1)

where Di = {deg(vi) | (i, j) ∈ En} describes the degree of node vi’s one-hop
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neighborhood and ∥ denotes concatenation.

• Connection profile: The node’s corresponding row in the adjacency matrix is

used. This outputs a n-dimensional vector where n is the number of nodes.

For a particular node i, mi,j, the feature value at index j is zero if there is no

connection between i and j; the value is the edge weight between i and j if there

is an connection between the two nodes.

4.2 Message Passing Mechanisms

Message passing GNNs’ ability to learn structures lies in their message-passing schemes,

in which the node representation is repeatedly updated by collecting neighbor charac-

teristics over local connections. In each step l, the node representation hl
i is updated

through a message vector ml
i based on

ml
i =

∑
j∈Ni

mij =
∑
j∈Ni

Ml

(
hl

i,h
l
j, wij

)
, (4.2)

hl+1
i = Ul

(
hl

i,m
l
i

)
, (4.3)

where Ni denotes the neighbors of node vi in graph G, wij represents the edge

weights between node vi and vj, Ml is the message function. In addition, Ul here

stands for the update function, and the number of running steps L is defined by the

number of GNN layers.

Both permutation equivariance and inductive bias may be used to design the

message passing mechanism and achieve good generalization on new networks. In the

case of brain networks, we primarily focus on message functions that are beneficial

for graph-level predictions. We discuss the influence of different message vector mij

designs including:
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• Edge weighted : The message mij passed from node vj to node vi is the weighted

representation of node vj, that is

mij = hj · wij (4.4)

The weight wij is given by the edge weight between the two nodes. If all edges

have equal weights and wij = 1/Ni, this message passing mechanism is equivalent

to the original Graph Convolutional Network (GCN) introduced by Kipf and

Welling in 2016 [34].

• Bin concat : The edge weight of all edges are split into buckets with equal ranges.

The index of the bucket the edge assigned to, calling it bt, is then used as an

additional edge representation. The bucket representation bt is then appended

to the original node representation hj. A MLP layer is then followed.

mij = MLP(hj ∥ bt). (4.5)

This message passing mechanism assigns the same representation to edges with

similar edge weights.

• Edge weight concat : We concatenate the node representation hj with stacked

edge weight wij. We stack them instead of just appending one copy of the edge

weight mainly due to the fact that the node representation hj is usually a vector

of a greater size than the edge weight (a scalar). If we use one copy of the edge

weight in the message passing, we observe that it does not have enough impact

on the overall training process. A MLP layer is then followed

wij = ∥d1 wij = wij ∥ wij ∥ . . . ∥ wij, (4.6)

mij = MLP(hj ∥ wij). (4.7)
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d is the stacking dimension, which is equal to the dimension of the node repre-

sentation hj to ensure they have similar impact on the result.

• Node edge concat : We wish to explore whether it is useful to preserve the

original representation as a part of the message passing. In this message passing

mechanism, we concatenate the source node representation hj with the target

node representation hi, which is then appended by the edge weight wij between

the two nodes. An MLP layer is then followed.

mij = MLP(hi ∥ hj ∥ wij). (4.8)

Since the original representation is preserved, this message passing mechanism

could potentially mitigate the over-smoothing problem of GNNs.

• Node concat : This message passing function is similar to the node edge concat,

but we removed the edge weight to test the impact of edge weight in message

passing:

mij = MLP(hi ∥ hj). (4.9)

4.3 Attention-Enhanced Message Passing

In recent years, the attention mechanism has become increasingly popular [62]. It is

based on the fact that while processing enormous volumes of data, human cognitive

systems prefer to choose to concentrate on the vital elements as needed while paying

little attention to less important parts. Studies from the area of natural language

processing [12] and computer vision [24] have shown that attention mechanism can

effectively enhance models’ efficiency and accuracy. The attention mechanism can

also be applied to GNNs. A popular implementation is the Graph Attention Network
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introduced by Veličković et al. in 2017 [63].

An important feature of the brain network is the edge weights that represents the

correlation between region of interest. However, traditional graph attention mecha-

nisms do not take edge weights into account. In this experiment, we design several

attention mechanisms that make use of the edge weights.

In the following equations, the αij, the attention factor, is calculated from a single-

layer feed-forward neural network parameterized by a weight vector a. The result is

then followed by the LeakyReLU nonlinearity σ,

αij =
exp

(
σ
(
a⊤ [Θxi ∥ Θxj]

))∑
k∈N (i)∪{i} exp (σ (a⊤ [Θxi ∥ Θxk]))

, (4.10)

where Θ represents a learnable linear transformation matrix. This aligns with the

attention calculation from the GAT model [63].

• Attention weighted : This is the attention mechanism employed by the orginal

GAT paper.

mij = hj · αij (4.11)

• Edge weighted w/ attn: In this attention function, the attention weighted mech-

anism from Eq. 4.11 is further weighted by the edge weights between the two

nodes.

mij = hj · αij · wij (4.12)

• Attention edge sum: This is similar to Edge weighted w/ attn, except that the



26

attention weight and the edge weight are added instead of multiplied.

mij = hj · (αij + wij) (4.13)

• Node edge concat w/ attn: We enhance the node edge concat message passing

mechanism with attentions. The source node representation is weighted by the

attention function. An MLP layer is followed.

mij = MLP(hi ∥ (hj · αij) ∥ wij). (4.14)

• Node concat w/ attn: Similar to the message passing counterpart, we remove

the edge weight in the Node edge concat w/ attn function to see the impact of

edge weights. We multiply the attention score αij between node vi and node vj

with the node representation hj. A MLP layer is then followed.

mj = MLP(hi ∥ (hj · αij)). (4.15)

4.4 Pooling Strategies

In the second phase of GNNs, the model computes a feature vector for the whole

graph gn using the pooling strategy R, where

gn = R ({hi | vi ∈ Gn}) . (4.16)
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The pooling function R is similar to the pooling function employed in the convo-

lutional neural networks. It is independent of the message passing mechanism in

the previous stage. We compare three popular pooling operators and compare their

performances [23, 47]:

• Mean pooling : The node features are averaged to obtain the graph embedding.

For each single graph Gn, the graph-level representation is computed as

gn =
1

M

M∑
k=1

hk. (4.17)

where M is the number of nodes in the graph.

• Sum pooling : The node features are added to obtain the graph embedding. For

each single graph Gn, the graph-level representation is computed as

gn =
M∑
k=1

hk. (4.18)

• Concat pooling : The node features are concatenated to obtain the graph em-

bedding. For each single graph Gn, the graph-level representation is computed

as

gn = ∥Mk=1 hi = h1 ∥ h2 ∥ . . . ∥ hk. (4.19)

We also utilized the hierarchical pooling [73] in the transformer experiments. How-

ever, we are not including it in this experiment due to the great difference between

the designs, which makes modular implementation and fair comparison difficult.
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4.5 Datasets

We tested all model designs on four datasets: HIV, PNC, ABCD and PPMI. The

PPMI dataset is constructed from Diffusion Magnetic Resonance Imaging (dMRI),

while the rest three are constructed using the Functional magnetic resonance imaging

(fMRI). All datasets are publicly available for download, either directly or on request.

• Human Immunodeficiency Virus Infection (HIV): This dataset is collected from

the Chicago Early HIV Infection Study at Northwestern University. The dataset

includes fMRI imaging of 70 subjects, split equally into 35 early HIV patients

and 35 negative controls. The preprocessing includes realignment to the first

volume, followed by normalization, slice timing correction, spatial smoothness,

band-pass filtering, and linear trend removal of the time series. We focus on the

116 anatomical ROIs [61] and extract a sequence of time courses from them.

Finally, the cerebellum part is filtered out, and brain networks with 90 cerebral

regions are constructed, with links representing the correlations between ROIs.

• Philadelphia Neuroimaging Cohort (PNC)1: This fMRI dataset is from the

Brain Behavior Laboratory at the University of Pennsylvania and the Children’s

Hospital of Philadelphia. 289 (57.46%) of the 503 included subjects are female,

indicating this dataset is balanced across genders. The regions are parcellated

based on the 264-node atlas defined by Power et al. [50]. The preprocessing

includes slice timing correction, normalization, motion correction, removal of

linear trends, bandpass filtering, and spatial smoothing. In the resulting data,

each sample contains 264 nodes with time-series data collected through 120 time

steps. We focus on the 232 nodes in the Power’s atlas associated with major

resting-state functional modules [56].

1https://www.nitrc.org/projects/pnc/

https://www.nitrc.org/projects/pnc/
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• Parkinson’s Progression Markers Initiative (PPMI)2: This dataset is a part

of a collaborative study for Parkinson’s Research to improve PD therapeutics.

We consider the DTI acquisition of 754 subjects, 596 of which are Parkin-

son’s disease patients while 158 are healthy controls. The raw data are first

aligned to correct for head motion and eddy current distortions. Then the

non-brain parts are removed, and the skull-stripped images are linearly aligned

and registered. The brain network is rebuilt using the deterministic 2nd-order

Runge-Kutta (RK2) whole-brain tractography technique employing 84 ROIs

from T1-weighted structural MRI [78].

• Adolescent Brain Cognitive Development Study (ABCD)3: This research enrolls

children aged 9 to 10 years old in 21 locations across the United States. Re-

peated imaging scans, as well as intensive psychological and cognitive testing,

are used to track each child until early adulthood [7]. A total of 7,901 children

are involved in the study, with 3,961 (50.1%) of them being female. For the

baseline visit, we employ fMRI images, which are processed using the conven-

tional and open-source ABCD-HCP BIDS fMRI Pipeline 4. After processing,

each sample contains a connectivity matrix whose size is 360 × 360 and BOLD

time-series for each node. The region definition is based on the HCP 360 ROI

atlas [22].

4.6 Experimental Analysis and Insights

We present experimental data on brain networks constructed from real-world neu-

roimaging studies using various GNN modular architectures in this part. There are

375 alternative architectures created by varying each design dimension beneath each

2https://www.ppmi-info.org/
3https://nda.nih.gov/abcd
4https://github.com/DCAN-Labs/abcd-hcp-pipeline/

https://www.ppmi-info.org/
https://nda.nih.gov/abcd
https://github.com/DCAN-Labs/abcd-hcp-pipeline/
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module. Note that we are not attempting to cover all possible combinations, but

rather to rapidly identify a solid design decision for a certain dataset or downstream

job. We also compare our modular architecture to two common deep models, Brain-

NetCNN [32] and BrainGNN [39], for brain networks.

4.6.1 Performance Report

In each subsections below, the other designs of the model are kept as the best setting,

concluded from the experiments in other settings.

Node feature

Different node feature initialization methods are experimented with the same model

architecture. When test node features, we set node edge concat in Eq. 4.8 as the

message passing scheme, and concat pooling in Eq. 4.19 as the pooling strategy.

In our results, the connection profile outperforms all other datasets. It surpasses

the second best configuration, degree, by a margin of 33.99% on the ABCD dataset.

The connection profile node feature utilizes the edges connected to the node with

the edge weights as the inputs. This feature captures the full structural information

of the brain network and contains a wealth of information about paired connections

that can be utilized to parcellate the brain. We believe this contributes to the sucess

of the connection profile node feature.

From the result, we conclude that in the field of brain network analysis, struc-

tural information of the graph is more important than the positional ones. The the

structure node features (e.g., degree, connection profile) all perform better than the

positional ones (e.g. identity, eigen).
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Message passing

Different message passing methods are experimented with the same node feature and

pooling method. When testing message passings, we set connection profile as the

node feature, and concat pooling in Eq. 4.19 as the pooling strategy.

Our experiment demonstrates that the node concat message passing, detailed in

Equation 4.9, performs best across all datasets in terms of AUC. The second best,

node edge concat (Eq. 4.8), achieves a slightly better result in terms of accuracy and

F1 scores on the ABCD dataset. The performance advantage may be the result of

the mitigation of the over-smoothing problem of the GNNs. Since the local original

representation is preserved, the result of all node embedding being similar becomes

unlikely, and the over-smoothing problem is reduced. Out of our expectation, the

node edge concat performs worse than node concat, particularly on smaller datasets,

although their performance difference on larger datasets are similar. We suspect this

is due to the node feature, connection profile, we use. connection profile already

contains edge weights of all edges connecting to the source node, including the edge

weight of the message passing. Therefore, adding another copy of the same edge

weight does not bring extra benefit.

Attention-enhanced message passing

Different attention-enhanced message passing methods are tested with the same node

feature and pooling methods. We set connection profile as the node feature, and

concat pooling in Eq. 4.19 as the pooling strategy, the same setting as we tested the

non-attention message passing functions.

The distribution and order of the five variants are similar to the result in the

non-attention message passing. The node concat w/ attn (Eq. 4.15) and the node

edge concat w/ attn (Eq. 4.14) are two best results with similar performance across

all four datasets. On average, however, the attention-enhanced version of the message
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passing functions performs better than their non-attention counterparts, with up to

5.23% relative improvements at maximum. This confirms the previous findings that

the attention mechanisms are effective in GNNs. In addition, in the ABCD dataset,

the node edge concat w/ attn performs better than the node concat w/ attn one,

indicating that the additional information of edge weights may be beneficial in large

datasets.

Pooling strategies

Different pooling strategies are tested with the same message passing mechanism and

pooling method. When we test pooling strategies, we set connection profile as the

node feature, and node edge concat (Eq. 4.8) as the message passing scheme.

Out of all three pooling strategies, we find that the concat pooling yields the best

result across all datasets. This is likely because that the increased dimensionality

of information as a result of concat pooling is beneficial when the model makes a

final prediction. With concat pooling, the node representations of all brain nodes

are kept and are fed into the final classifier. The other two pooling methods, on the

other hands, combines the representation into one node, which result in some loss of

information.

Other Baselines

As shown in the result table, BrainGNN requires a greater amount of GPU memory

and result in out-of-memory (OOM) on large datasets. Using the best combination,

our modular model outperforms both BrainNetCNN and BrainGNN on small datasets

(HIV, PPMI) and performs similarly on larger ones. The best combination based on

our modular design outperforms both SOTA models of BrainNetCNN and BrainGNN

on small datasets (HIV, PPMI) and achieves comparable results with BrainNetCNN

on large datsets (PNC, ABCD). These findings highlight the need of carefully ex-
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perimenting with our modular GNN designs before moving on to more sophisticated

structures that may simply overfit certain datasets.
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Chapter 5

Results and Interpretation

Analysis

5.1 Experiment Results of Explainable GNN Net-

works

5.1.1 Datasets and Preprocessings

We evaluate our interpretable framework, namely IBGNN and IBGNN+, using three

real-world neuroimaging datasets of different modalities. The two datasets, HIV and

PPMI, are already introduced in section 4.5. We introduce the Bipolar dataset in the

section below.

• Bipolar Disorder (BP): Bipolar Disorder (BP) dataset is collected using the dif-

fusion tensor imaging tractography. The dataset contains 52 bipolar I subjects

and 45 healthy controls. The FSL toolbox1 is used for preprocessing. We employ

distortion correction, noise filtering, and repetitive sampling from the distribu-

tions of principal diffusion directions for each voxel during the preprocessing

1https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
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Table 5.1: Experimental results (%) of IBGNN on three datasets

Method
HIV BP PPMI

Accuracy F1 AUC Accuracy F1 AUC Accuracy F1 AUC

M2E 57.14±19.17 53.71±19.80 57.50±18.71 52.56±13.86 51.65±13.38 52.42±13.83 78.69±1.78 45.81±4.17 50.39±2.59

MIC 54.29±18.95 53.63±19.44 55.42±19.10 62.67±20.92 63.00±21.61 61.79±21.74 79.11±2.16 49.65±5.10 52.39±2.94

MPCA 67.14±20.25 64.28±23.47 69.17±20.17 52.56±13.12 50.43±14.99 52.42±13.69 79.15±0.57 44.18±0.18 50.00±0.00

MK-SVM 65.71±7.00 62.08±7.49 65.83±7.41 57.00±8.89 41.08±13.44 53.75±8.00 79.15±0.57 44.18±0.18 50.00±0.00

GCN 70.00±12.51 68.35±13.28 73.58±9.49 55.56±13.86 50.71±11.75 61.55±28.77 78.55±1.58 47.87±4.40 59.43±8.64

GAT 71.43±11.66 69.79±10.83 77.17±9.42 63.34±9.15 60.42±7.56 67.07±5.98 79.02±1.25 45.85±3.16 64.40±6.87

PNA 57.14±12.78 45.09±19.62 57.14±12.78 63.71±11.34 55.54±14.06 60.30±11.89 79.36±1.84 51.76±10.32 54.71±6.77

BrainNetCNN 69.24±19.04 67.08±11.11 72.09±19.01 65.83±20.64 64.74±17.42 64.32±13.72 55.20±12.63 55.45±9.15 52.54±10.21

BrainGNN 74.29±12.10 73.49±10.75 75.00±10.56 68.00±12.45 62.33±13.01 74.20±12.93 69.17±0.00 44.19±0.00 45.26±3.65

IBGNN 82.14±10.81
* 82.02±10.86

* 86.86±11.65
* 73.19±12.20

* 72.87±12.09
* 83.64±9.61

* 79.82±1.47
* 51.58±4.66 70.65±6.55

*

IBGNN+ 84.29±12.94
* 83.86±13.42

* 88.57±10.89
* 76.33±13.00

* 76.13±13.01
* 84.61±9.08

* 79.55±1.67 56.58±7.43
* 72.76±6.73

*

stage. In each sample, 82 region is parcellated based on FreeSurfer-generated

cortical/subcortical gray matter regions [51].

5.1.2 Compared Methods

Our interpretable model include two variants: IBGNN and IBGNN+. The IBGNN+

is the variant trained with masked training data, with mask calculated through the

explainer. We compare the models with both shallow and deep models. Shallow meth-

ods include M2E [41], MPCA [43], MK-SVM [15], and MIC [54]. In MK-SVM, the

output graph-level embeddings are evaluated using logistic regression. Deep models

include GAT [65], GCN [34] and PNA [9]. We also test state-of-the-art deep models

specifically design for brain networks: BrainNetCNN [32] and BrainGNN [39].

5.1.3 Prediction Performance

The results are shown in Table 5.1. Accuracy, F1, and AUC were the metrics we

utilized to assess performance. Both of our suggested models outperform the shal-

low and deep baselines by a significant margin. Compared to shallow models like

MIC, our backbone model IBGNN beats them by a wide margin, with BP gains

of up to 11% performance advantage. Furthermore, the superiority of our suggested

model over previous SOTA deep models supports the usefulness of our brain network-



37

Table 5.2: Experimental results (%) of Brain Transformer on PPMI Dataset

Method
PPMI

Accuracy F1 AUC

M2E 78.69±1.78 45.81±4.17 50.39±2.59

MIC 79.11±2.16 49.65±5.10 52.39±2.94

MPCA 79.15±0.57 44.18±0.18 50.00±0.00

MK-SVM 79.15±0.57 44.18±0.18 50.00±0.00

GCN 78.55±1.58 47.87±4.40 59.43±8.64

GAT 79.02±1.25 45.85±3.16 64.40±6.87

PNA 79.36±1.84 51.76±10.32 54.71±6.77

BrainNetCNN 55.20±12.63 55.45±9.15 52.54±10.21

BrainGNN 69.17±0.00 44.19±0.00 45.26±3.65

IBGNN 79.82±1.47 51.58±4.66 70.65±6.55

IBGNN+ 79.55±1.67 56.58±7.43 72.76±6.73

BrainTransformer 81.94±1.3 - 70.12±8.40

oriented architecture. Moreover, the explanation enhanced model IBGNN+ is able to

provide a further performance enhancement of about 3%. IBGNN+ successfully high-

lights disorder-specific signals while simultaneously benefiting from restricting random

noises in particular graphs, as demonstrated by the performance gain achieved by us-

ing the explanation generator.

5.2 Experiment Results of Brain Transformer

5.2.1 Performance

The results of the Brain Transformer model are shown in Table 5.2. Accuracy, F1,

and AUC were the metrics we utilized to assess performance. The performance of

the transformer model is promising. In terms of accuracy, our transformer model

outperforms every shallow and deep baseline, with 2.12% advantage over the second

place, IBGNN. The AUC, on the other hand, outperforms every baseline except

IBGNN+, our enhanced GCN-based explainer framework.
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5.3 Neural System Mapping

Under a particular parcellation atlas, ROIs on brain networks can be partitioned

into neural systems based on their structural and functional roles, making it easier to

interpret given explanations from a neuroscience viewpoint. The ROI nodes described

on each dataset are mapped into eight commonly used neural systems, including the

Visual Network (VN), Auditory Network (AN), Bilateral Limbic Network (BLN),

Default Mode Network (DMN), Somato-Motor Network (SMN), Subcortical Network

(SN), Memory Network (MN), and Cognitive Control Network (CCN).

Like all graphs, brain networks are composed of nodes and edges, where nodes

represent the region of interests (ROIs), and edges represent the correlation between

them. We run an explainer on the test datasets and interpret the result from both

perspectives. For ROIs, we first apply the edge mask on all samples and sum the edge

weights connected to each node to get a node importance level. Then, we rank the

importance level and look for the most salient ROIs. For edges, we add all edges in

the filtered test dataset, calling it average graph. We then use the BrainNet Viewer

[68] to plot the average graph and look for the difference in edges.

5.3.1 Salient ROIs

In Figure 5.1, the ROI’s average relevance in the given group is represented by the

color of the areas. A high score is shown by the bright yellow color, whereas a poor

score is indicated by the dark red tint.

The anterior cingulate, paracingulate, and inferior frontal gyri are shown to be

important ROIs for HIV disease. This aligns with the study by Ma et al., which states

that the regional homogeneity value of the anterior cingulate and paracingulate gyri

are decreased [45] in HIV patients. Another study by Li et al. also confirms that

lower gray matter volumes are found in the inferior frontal gyrus in HIV patients [40].
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(a) HIV HC (c) BP HC (e) PPMI HC

(b) HIV Patient (d) BP Patient (f) PPMI Patient

Figure 5.1: Visualization of salient ROIs on the explanation enhanced brain connec-
tion network

The individual-level visualizations in Figure 5.1(a)(b) show the difference between HC

and HIV patients in those salient ROIs.

For the BP dataset, we observe that the secondary visual cortex and medial to su-

perior temporal gyrus are salient ROIs. We confirm this result with existing research

that states BP patients’ visual processing functionalities have been affected by the

disease [52]. We also confirm the observation with the edge visualizations in Figure

5.1(c)(d).

The rostral middle frontal gyrus and superior frontal gyrus are shown to be impor-

tant ROIs in the PPMI dataset. The difference can be observed in Figure 5.1(e)(f).

The study also confirms that decreased connections in rostral medial frontal gyrus

and superior, middle, and inferior frontal gyri are observed in PPMI patients [33].

These observations identify potential biomarkers that could guide further study

for the three disorders.
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Healthy Control Patient

(a) HIV

Healthy Control Patient

(b) BP

Healthy Control Patient

(c) PPMI

Figure 5.2: Visualization of important connections on the explanation enhanced
brain connection network.

5.3.2 Edges

The explainer model generates a shared explanation mask M . The mask signals con-

nections within brain that are closely related to the disorder. We average the graphs

from the test dataset and apply the global mask to obtain an average explanation

graph. The explanation graph is then filtered so that only top 100 weighted edges

remain, calling it G′
s. We compare the explanation subgraphs G′

s of patients with

those of healthy controls and identify connections related to specific disorders.

Results are shown in Figure 5.2. Edges connecting nodes within the same neural

system (VN, AN, BLN, DMN, SMN, SN, MN, CCN) are colored accordingly. Edges

across multiple systems are colored gray. The weight of the edge are shown as the

width of the edge.

From the Figure 5.2(a), we observe that the explanation subgraph of HIV pa-

tients lacks connections within the DMN system and VN system. These patterns

are confirmed by the previous findings that the change in DMN and VN systems,

both within-system and inter-system, affects the visual processing difficulties for HIV
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patients [27, 20].

In the BP dataset, the healthy controls feature-rich interactions within the BLN

community. For the BP patients, however, the connections within that community

are much sparser. This observation signals pathological changes in the BLN system.

Previous studies support this observation [11, 18]. The studies conclude that the

parietal lobe, one of the brain’s primary lobes responsible for processing sensory

information received from the outside environment and is roughly located in the upper

back part of the skull, is mostly linked to Bipolar disorder attacks. The missing links

within the BLN system in our image are compatible with current medical knowledge,

as parietal lobe ROIs are encompassed in BLN under our parcellation.

Similarly, in the PPMI dataset, Parkinson’s patients’ experience decreased con-

nections within the SMN system. The SMN system contains primary sensorimotor,

premotor, and supplementary motor areas to facilitate voluntary movements. We

also confirm this observation with the previous studies, which state that Parkinson’s

patients experience significant alterations in sensorimotor areas [8]. We also find that

Parkinson’s patients have sparser connections within the DMN area than those of

healthy controls. This is also consistent with the cognition study on Parkinson’s

patients [59].
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Chapter 6

Conclusion

This paper provides a novel interpretable GNN framework for connectome-based brain

disease analysis that comprises a brain network-oriented GNN predictor and a globally

shared explanation generator. Experiments on real-world neuroscience datasets reveal

that our backbone and explanation augmented models have higher prediction ability,

and the produced explanation mask validates the disorder-specific interpretations.

One limitation of the model might be due to the limited size of neuroimaging datasets.

Small datasets limits models’ ability to effectively learn the common patterns, which

becomes more harmful as the model becomes more complex.

As we tune the GNN models, we find that no current work has been proposed

to run a fair comparison between GNN designs for brain networks. Therefore, we

present a unified, modular, scalable and reproducible framework for brain network

analysis. We tested various combinations of the GNN designs and summarized the

best practice for brain network analysis.

As GNNs suffer from over-smoothing and over-squashing problems, we present

a transformer-based model, Brain Transformer, and evaluate its performance. The

preliminary result proves the predicting power of the transformer model. We also

employ differential pooling, which provides potential interpretability and enhanced
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performance. A direct future direction is to utilize the attention score and cluster

result to interpret the clinical significance of the model’s result, including important

nodes, edges, and prominent node clusters. Many alterations of the DiffPool layer

can be trialed, and clustering-based layers, showing promising results in other areas,

can potentially offer a further increase in the performance of the DiffPool layer.
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Appendix A

Appendix

A.1 Implementation details

The proposed models discussed in this paper are implemented using PyTorch 1.10.2

[49] and PyTorch Geometric 2.0.3 [19]. A Quadro RTX 8000 GPU with 48GB

of memory is used for model training. Hyper-parameters are selected automat-

ically with an open-source AutoML toolkit NNI1. Please refer to our repository

for comprehensive parameter configurations. The metrics used to evaluate perfor-

mance are Accuracy, F1 score, and Area Under the ROC Curve (AUC), which are

widely used for disease identification. To indicate the robustness of each model, all

the reported results are the average performance of ten-fold cross-validation con-

ducted on different train/test splits. The explainer model is available at https:

//github.com/DDavid233/BrainNNExplainer_Submission. The BrainGB project

is available at https://github.com/HennyJie/BrainGB.

1https://github.com/microsoft/nni/

https://github.com/DDavid233/BrainNNExplainer_Submission
https://github.com/DDavid233/BrainNNExplainer_Submission
https://github.com/HennyJie/BrainGB
https://github.com/microsoft/nni/
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A.2 Ethical Statement

The research work is related to human studies. The HIV and Bipolar datasets em-

ployed in this study are owned by a third-party organization, where informed consent

was obtained for all subjects. The data processed is anonymous with no personally

identifiable information. The PPMI dataset is publicly available with restrictions. All

studies are conducted according to the Good Clinical Practice guidelines and U.S. 21

CFR Part 50 (Protection of Human Subjects) and under the approval of Institutional

Review Boards.

A.3 Collaborations

The IBGNN and BrainGB project is done in collaboration with Hejie Cui, where we

made roughly equal contributions. The Brain Transformer project is mainly my own

work.
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Liò, and Yoshua Bengio. Graph Attention Networks. In ICLR, 2018.
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