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Abstract

Federated Tensor Factorization for Collaborative Health Data Analytics
By Jing Ma

Modern healthcare systems are collecting a huge volume of healthcare data from a
large number of individuals with various medical procedures, medications, diagnosis,
lab tests and so on. Tensor factorization has been demonstrated as an efficient
approach for computational phenotyping, where massive electronic health records
(EHRs) are converted to concise and meaningful clinical concepts. However, the
EHR data is also fragmented and is always distributed among independent medical
institutions, and they are prohibited from being shared and exchanged. Recently,
federated learning offers a paradigm for collaborative learning among different entities,
which seemingly provides an ideal potential to further enhance the tensor factorization-
based collaborative phenotyping to handle sensitive personal health data. This poses
challenges to preserving the privacy of the exchanged intermediary results in order
to protect the sensitive patient information. Meanwhile, efforts still need to be
made to overcome the limitations of the federated tensor factorization, including the
restrictions to the classic tensor factorization, high communication cost and reduced
accuracy. Furthermore, it is essential to develop the decentralization techniques for
federated tensor factorization to deal with the vulnerability of the central server to
malfunction and external attacks. To deal with these challenging problems, we propose
1) a privacy-preserving collaborative tensor factorization method for computational
phenotyping which is able to deal with heterogeneous data with rigorous privacy
guarantee and achieves less communication cost and comparable accuracy; 2) a
communication efficient federated generalized tensor factorization, which is flexible
enough to choose from a variate of losses to best suit different types of data in practice;
3) a communication efficient decentralized generalized tensor factorization method
which enables the absence of the central server and further reduces the communication
cost.
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Chapter 1

Introduction

1.1 Motivations

Electronic Health Records (EHRs) have become an important source of comprehensive

information for patients’ clinical histories. In recent years, the widespread adoption

of EHR systems has facilitated the rapid accumulation of patients’ clinical data

from numerous medical institutions – enabling not only more accurate capturing of

patients’ medical information and clinical decision support [23], but also improving

workflow efficiency and patient care quality [85]. Computational phenotyping is the

process of transforming the noisy, massive EHR data into meaningful medical concepts

(i.e., phenotypes), which characterize a patient’s clinical behavior and corresponding

treatments, and not only can be used to assist with in-depth medical decision making

(precision medicine, influenza surveillance, drug discovery, etc.), speedup biomedical

discovery, improve the quality of healthcare treatment [90, 72], but also can be

further applied to multiple downstream tasks such as Genome-wide association studies

(GWAS) [53, 61] and risk prediction of a certain disease [27].

Yet, extracting precise and meaningful phenotypes from EHRs can be challenging

due to the fact that the observations of EHRs are usually high-dimensional and



2

heterogeneous, which reduce the interpretability and research quality for scientists

[90]. Traditional phenotyping approaches require the involvement of medical domain

experts, which is time-consuming and labor-intensive. Recently, unsupervised learning

methods have been demonstrated as a more efficient approach for computational

phenotyping. Although these methods do not require experts to manually label the

data, they require large volumes of EHR data. Meanwhile, the sensitive nature of

health data prohibits it from being collected and exchanged among health institutions.

Recently, tensor factorization has risen to be a popular unsupervised computational

phenotyping approach [45, 88, 36, 35, 62] as illustrated in Fig. 1.1 (left). Benefited

from the capability of succinctly representing the multidimensional data [46], tensors

are able to capture the interactions between multiple sources (e.g, specific procedures

that are used to treat a disease) and identify patient subgroups and extract concise

and potentially more interpretable results by utilizing the multi-way structure of a

tensor. Tensors also have a wide range of applications beyond health data analyt-

ics, e.g., recommender systems [42], spatio-temporal data analysis [63], computer

vision [86], and signal processing [77]. The CANDECOMP/PARAFAC or canonical

polyadic (CP) tensor factorization (TF) [11, 31] and its generalization Generalized

CANDECOMP/PARAFAC (GTF) [37] are fundamental tools for analyzing the tensors.

Despite their effectiveness and wide applications, the scalability is often a major issue

preventing it from being applied to larger scale health datasets, which are commonly

encountered nowadays. To improve the scalability of TF, distributed tensor factoriza-

tion (DTF) methods [16, 75, 102, 9, 45, 62, 32] are capable of processing large tensors

that cannot be dealt by a single machine.

One existing barrier for high-throughput tensor factorization is that EHRs are

fragmented and distributed among independent medical institutions, where healthcare

practises are different due to heterogeneous patients populations. One of the reasons

is that different hospitals or medical sites differ in the way they manage patients
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(a) Illustration of EHR tensor and pheno-
type extraction via tensor factorization [36].

(b) Illustration of collaborative phenotyping
via federated tensor factorization [45].

Figure 1.1: Illustration of Tensor Factorization and Federated Tensor Factorization
for Collaborative Computational Phenotyping

[93]. Moreover, effective phenotyping requires a large amount of data to guarantee its

reliance and generalizability. Simply analyzing data from single source leads to poor

accuracy and bias, which in turn reduces the quality and efficiency of patients’ care.

Recent studies have suggested that the integration of health records can provide

more benefits [29], which motivated the application of federated tensor learning

framework [45] as a better DTF paradigm for decentralized data in terms of privacy

protection, while maintaining similar computational and storage scalability. It avoids

communicating both the raw tensor and individual mode related variables to the server,

which shares the same spirit of the more general federated learning [40], i.e., to learn

a joint model across all the clients without communicating individual-level data. By

avoiding sharing the raw tensor and the patient mode related variables (e.g., patient

factor and partial gradient along the patient mode), Federated Tensor Factorization

(FTF) offers better patient privacy protection. Fig. 1.1 (right) illustrates the FTF for

collaborative phenotyping.

Recent work [45] proposed a federated tensor factorization model (TRIP) and

applied it to the federated phenotyping. This work suffered from six major limitations:

1) There is no rigorous privacy guarantees with the transmission of the intermediate

results. 2) There is no mechanism to deal with the non-iid data (i.e., heterogeneous

distribution of patients among different medical institutions). 3) TRIP alters the
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original objective function by introducing extra terms to enforcing consensus of factors

among all clients: it introduces linear constraint and transforms the objective function

to Lagrangian dual formulation. These terms can lead the extracted factors to deviate

from the centralized solution, thus negatively impacting the phenotyping accuracy. 4)

Each communication round of TRIP incurs high communication cost since it requires

sending all factors in full precision along with the communication of the Lagrangian

dual variables, which doubles the communication cost. 5) TRIP is limited to the

CP model and applies least square solver as its client side local updater, which is

difficult to be extended to more general losses other than least square loss. 6) The

existence of the central server makes the federated learning system vulnerable to

malfunctions and malicious adversaries, which will lead to inaccurate model training

and leakage of sensitive data. Overall, we summarize the challenges of federated tensor

factorization for collaborative phenotyping from 4 perspectives, including privacy,

efficiency, and decentralization as 3 major problems, and the utility as the problem

that is accompanied with the 3 major problems.

1.2 Research Contributions

In this dissertation, we develop federated tensor factorization models which target the

3 major aspects. 1) To deal with the privacy issue, we propose a privacy-preserving

efficient federated tensor factorization framework, which offers rigorous privacy guar-

antee. 2) To deal with the communication efficiency problem, we propose algorithms

to aggressively reduce the uplink communication cost with theoretical convergence

preservation. 3) To deal with the central server single-point-failure issue, we propose

the algorithm that requires no central server for coordination. Overall, we also incorpo-

rate multiple techniques to further enhance the utility of the model. Our contributions

are briefly summarized as follows:
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1.2.1 Privacy-preserving Efficient Federated Tensor Factor-

ization

We propose DPFact, a differentially private collaborative tensor factorization frame-

work based on Elastic Averaging Stochastic Gradient Descent (EASGD) for computa-

tional phenotyping. DPFact tackles the privacy issue with a well-designed data-sharing

strategy, combined with the rigorous zero-concentrated differential privacy (zCDP)

technique which is a strictly stronger definition than (ε, δ)-differential privacy consid-

ered as the dominant standard for strong privacy protection. We briefly summarize

our contributions as:

• Efficiency. DPFact achieves higher accuracy and better convergence than the

state-of-the-art federated learning method TRIP. It also reduces the communi-

cation cost by the elimination of auxiliary parameters in the ADMM approach.

• Utility. By incorporating a l2,1 regularization term, DPFact can jointly decom-

pose local tensors with different distribution patterns and discover both the

globally shared and the distinct, site-specific phenotypes.

• Privacy. DPFact provides rigorous privacy protection by applying the zCDP

mechanism, which guarantees that there is no inadvertent patient information

leakage in the process of intermediary results exchange with high probability

which is quantified by privacy parameters.



6

1.2.2 Federated Generalized Tensor Factorization with Im-

proved Communication Efficiency

We study the under explored communication efficiency problem in federated (and more

broadly the distributed) generalized tensor factorization for collaborative phenotyping.

We propose FedGTF-EF and FedGTF-EF-PC as communication efficient federated

generalized tensor factorization algorithms. We summarize our contribution from the

perspective of communication and convergence rate:

• Communication reduction. First, we design a two-level per-round communication

reduction strategy and propose FedGTF-EF. For the block-level, we utilize

the block randomization, which enables each client to send only the partial

gradient of the sampled block, rather than the full gradient of all blocks. For

the element-level, we introduce gradient compression techniques to compress

each element of the communicated partial gradient from the floating point

representation to low-precision representation. We further reduce the number of

communication rounds by introducing periodic communication into and propose

FedGTF-EF-PC, in which the clients send the update to the server after τ > 1

local iterations.

• Convergence rate. We analyze the convergence of FedGTF-EF and obtain

the O( 1√
T

) rate after T iterations under common and mild assumptions. The

convergence is equivalent to the distributed stochastic gradient descent (SGD)

with full precision gradient communication and distributed SGD with gradient

compression and error-feedback [103]. In addition, we analyze the convergence of

FedGTF-EF-PC and obtain the same convergence O( 1√
T

) rate with FedGTF-

EF under the same set of assumptions. Overall, our proposed FedGTF-EF-PC

can reduce up to 1− 1
32Dτ

uplink communication cost if the Sign compressor

(Def.3.2.1) is used.



7

1.2.3 Decentralized Communication-efficient Generalized Ten-

sor Factorization

We study the communication reduction technique for distributed tensor factorization

under the decentralized setting. We propose CiderTF and CiderTF m, which involves

further communication reduction compared with FedGTF-EF-PC, while achieving

comparable convergence rate. We summarize our contribution as:

• Communication reduction. Besides the three-level communication introduced

in FedGTF-EF-PC, we further introduce an event-triggered communication

technique to reduce the communication cost (CiderTF). In this way, besides the

periodic communication, each node will only communicate the compressed model

updates when the change of its local parameters is beyond a certain threshold.

• We further incorporate the Nesterov’s momentum to each client’s local gra-

dient updates and propose CiderTF m to improve the convergence and the

generalization.

1.3 Organization

The rest of this dissertation is organized as follows. Chapter 2 introduces a privacy-

preserving federated tensor factorization framework based on EASGD for optimization

and differential privacy for privacy guarantee. Chapter 3 proposes the federated tensor

factorization frameworks to further reduce the communication cost from three levels

with theoretical convergence guarantee. Chapter 4 extend the work in Chapter 3 to

the decentralized settings, and further reduce the communication cost and offers faster

convergence by incorporating Nesterov’s momentum. Finally, Chapter 5 concludes

the dissertation and discusses the future directions of the work.
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Chapter 2

Privacy-preserving Efficient

Federated Tensor Factorization
1

In this chapter, we target the privacy issue, which is the main challenge for federated

tensor factorization. In addition, the proposed algorithm is able to handle the data

heterogeneity and reduce the communication cost.

2.1 Introduction

Recent studies have suggested that the integration of health records can provide more

benefits [29], which motivated the application of federated tensor learning framework

[45]. It can mitigate privacy issues under the distributed data setting while achieves

high global accuracy and data harmonization via federated computation. But this

method has inherent limitations of federated learning: 1) high communication cost; 2)

reduced accuracy due to local non-IID data (i.e., patient heterogeneity); and 3) no

formal privacy guarantee of the intermediary results shared between local sites and

1This chapter is based on the following earlier work [62]: © Jing Ma [2019]. This is the author’s
version of the work. It is posted here for your personal use. Not for redistribution. The definitive
version was published in Proceedings of the 28th ACM International Conference on Information and
Knowledge Management (CIKM ’19). Association for Computing Machinery, New York, NY, USA,
1291–1300, DOI: https://doi.org/10.1145/3357384.3357878.
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the server, which makes patient data at risk of leakage.

In this chapter, we propose DPFact, a differentially private collaborative tensor

factorization framework based on Elastic Averaging Stochastic Gradient Descent

(EASGD) for computational phenotyping. DPFact assumes all sites share a common

model which can be learnt jointly from each site through communication with a

central parameter server. Each site performs its own tensor factorization task to

discover both common and distinct latent components, while benefiting from the

intermediary results generated by other sites. The intermediary results uploaded

still contain sensitive information about the patients. Several studies have shown

that machine learning models can be used to extract sensitive information used in

the input training data through membership inference attacks or model inversion

attacks both in the centralized setting [76, 24] and federated setting [34]. Since we

assume the central server and participants are honest-but-curious, hence a formal

differential privacy guarantee is desired. DPFact tackles the privacy issue with a

well-designed data-sharing strategy, combined with the rigorous zero-concentrated

differential privacy (zCDP) technique [20, 99] which is a strictly stronger definition

than (ε, δ)-differential privacy considered as the dominant standard for strong privacy

protection [21, 22, 20]. DPFact offers the following advances to the state-of-the-art

federated tensor factorization algorithm.

1) Efficiency. DPFact achieves higher accuracy and faster convergence rate than

the state-of-the-art federated learning method. It also beats the federated learning

method in achieving lower communication cost thanks to the elimination of auxiliary

parameters (e.g., in the ADMM approach) and allows each local site to perform most

of the computation.

2) Utility. DPFact supports phenotype discovery even with a rigorous privacy

guarantee. By incorporating a l2,1 regularization term, DPFact can jointly decompose

local tensors with different distribution patterns and discover both the globally shared
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and the distinct, site-specific phenotypes.

3) Privacy. DPFact is a privacy-preserving collaborative tensor factorization

framework. By applying zCDP mechanisms, it guarantees that there is no inadver-

tent patient information leakage in the exchange of intermediary results with high

probability which is quantified by privacy parameters.

We evaluate DPFact on two publicly-available large EHR datasets and a synthetic

dataset. The performance of DPFact is assessed from the following three aspects

including efficiency measured by accuracy and communication cost, utility measured

by phenotype discovery ability and the evaluation on the effect of privacy.

2.2 Preliminaries and Backgrounds

This section describes the preliminaries used in this chapter, including tensor factor-

ization, (ε, δ)-differential privacy, and zCDP.

2.2.1 Tensor Factorization

Definition 2.2.1. (Khatri-Rao product). Khatri-Rao product is the “columnwise”

Kronecker product of two matrices A ∈ RI×R and B ∈ RJ×R. The result is a matrix

of size (IJ ×R) and defined by

A�B = [a1 ⊗ b1 · · · aR ⊗ bR]

Here, ⊗ denotes the Kronecker product. The Kronecker product of two vectors a ∈ RI ,

b ∈ RJ is

a⊗ b =


a1b

...

aIb


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Definition 2.2.2. (CANDECOMP-PARAFAC Decomposition). The CANDECOMP-

PARAFAC (CP) decomposition approximates the original tensor O by the sum of R

rank-one tensors. It can be expressed as

O ≈ X =
R∑
r=1

a(1)
:r ◦ · · · ◦ a(N)

:r , (2.1)

where R is the rank of tensor O, a
(n)
:r represents the rth column of A(n) for n =

1, · · · , N and r = 1, · · · , R. A(n) is the n-mode factor matrix consisting of R columns

representing R latent components which can be represented as

A(n) =
[
a

(n)
:1 · · · a

(n)
:R

]
,

so that A(n) is of size In ×R for n = 1, · · · , N , and the equation of (2.1) can also be

represented as

[[A(1), · · · , A(N)]] =
R∑
r=1

a(1)
:r ◦ · · · ◦ a(N)

:r . (2.2)

Note that in this formulation, the scalar weights for each rank-one tensor are assumed

to be absorbed into the factors.

In the way of a three-mode tensor O ∈ RI×J×K , the CP decomposition can be

represented as

O ≈ X =
R∑
r=1

a:r ◦ b:r ◦ c:r, (2.3)

where a:r ∈ RI , b:r ∈ RJ , c:r ∈ RK are the r-th column vectors within the three factor

matrices A ∈ RI×R, B ∈ RJ×R, C ∈ RK×R.

2.2.2 Differential Privacy

Differential privacy [22, 20] has been demonstrated as a strong standard to provide

privacy guarantees for algorithms on aggregate database analysis, which in our case
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is a collaborative tensor factorization algorithm analyzing distributed tensors with

differential privacy.

Definition 2.2.3. ((ε-δ)-Differential Privacy) [22]. Let D and D′ be two neigh-

boring datasets that differ in at most one entry. A randomized algorithm A is

(ε-δ)-differentially private if for all S ⊆ Range(A):

Pr [A(D) ∈ S] ≤ eεPr [A(D′) ∈ S] + δ,

where A(D) represents the output of A with an input of D.

The above definition suggests that with a small ε, an adversary almost cannot

distinguish the outputs of an algorithm with two neighboring datasets D and D′

as its inputs, while δ allows a small probability of failing to provide this guarantee.

Differential privacy is defined using a pair of neighboring databases which in our work

are two tensors and differ in only one entry.

Definition 2.2.4. (L2-sensitivity) [22]. For two neighboring datasets D and D′

differing in at most one entry, the L2-sensitivity of an algorithm A is the maximum

change in the l2-norm of the output value of algorithm A regarding the two neighboring

datasets:

∆2(A) = sup
D,D′
‖A(D)−A(D′)‖2.

Theorem 2.2.1. ((Gaussian Mechanism)) [22]. Let ε ∈ (0, 1) be arbitrary. For

c2 > 2 ln(1.25/δ), the Gaussian Mechanism with parameter σ ≥ c∆2(A)/ε, adding

noise scaled to N (0, σ2) to each component of the output of algorithm A, is (ε-δ)-

differentially private.
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2.2.3 Concentrated Differential Privacy

Concentrated differential privacy (CDP) is introduced by Dwork and Rothblum [20] as

a generalization of differential privacy which provides sharper analysis of many privacy-

preserving computations. Bun and Steinke [10] propose an alternative formulation of

CDP called ”zero-concentrated differential privacy” (zCDP) which utilizes the Rényi

divergence between probability distributions to measure the requirement of the privacy

loss random variable to be sub-gaussian and provides tighter privacy analysis.

Definition 2.2.5. (Zero-Concentrated Differential Privacy (zCDP) [10]) A random-

ized mechanismA is ρ-zero concentrated differentially private if for any two neighboring

databases D and D′ differing in at most one entry and all α ∈ (1,∞),

Dα (A(D)‖A (D′)) , 1

α− 1
log
(
E
[
e(α−1)L(o)

])
≤ ρα,

where Dα (A(D)‖A (D′)) is called α-Rényi divergence between the distributions of

A(D) and A (D′), and L(o) is the privacy loss random variable which is defined as:

L
(o)
(A(D)||A(D′)) , log

Pr(A(D) = o)

Pr (A (D′) = o)
.

The following propositions of zCDP will be used in this chapter.

Proposition 2.2.1. [10] The Gaussian mechanism with noise N (0, σ2) where σ =√
1/(2ρ)∆2 satisfies ρ-zCDP.

Proposition 2.2.2. [10] If a randomized mechanism A is ρ-CDP, then A is (ε′,

δ)-DP for any δ with ε′ = ρ+
√

4ρ log(1/δ); For A to satisfy (ε, δ)-DP, it suffices to

satisfy ρ-zCDP by setting ρ ≈ ε2

4 log(1/δ)
.

Proposition 2.2.3. ((Serial composition [10])) Let A : Dn → Y and A′ : Dn → Z be

randomized algorithms. Suppose A is ρ-zCDP and A′ is ρ′-zCDP. Define A′′ : Dn →

Y ×Z by A′′ = (A,A′). Then A′′ is (ρ+ ρ′)-zCDP.
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Proposition 2.2.4. ((Parallel composition [99])) Suppose that a mechanism A

consists of a sequence of T adaptive mechanisms, A1, . . . ,AT , where each At :

Πiter−1
j=1 Oj × Dt → Oiter and At satisfies ρt-zCDP. Let D1, . . . ,DT be a randomized

partition of the input D. The mechanism A(D) = (A1 (D1) , . . . ,AT (DT )) satisfies

1
T

∑T
t=1 ρt-zCDP.

2.2.4 Related Works

Tensor Factorization

Tensor analysis is an active research topic and has been widely applied to health-

care data [45, 88, 36], especially for computational phenotyping. Moreover, several

algorithms have been developed to scale tensor factorization. GigaTensor [41] used

MapReduce for large scale CP tensor decomposition that exploits the sparseness of

the real world tensors. DFacTo [16] improves GigaTensor by exploring properties

related to the Khatri-Rao Product and achieves faster computation time and better

scalability. FlexiFaCT [9] is a scalable MapReduce algorithm for coupled matrix-tensor

decomposition using stochastic gradient descent (SGD). ADMM has also been proved

to be an efficient algorithm for distributed tensor factorization [45]. However, the

above proposed algorithms have the same potential limitation: the distributed data

exhibits the same pattern at different local sites. That means each local tensor can be

treated as a random sample from the global tensor. Thus, the algorithms are unable

to model the scenario where the distribution pattern may be different at each sites.

This is common in healthcare as different units (or clinics and hospitals) will have

different patient populations, and may not exhibit all the computational phenotypes.

Differential Private Factorization

Differential privacy is widely applied to machine learning areas, especially ma-

trix/tensor factorization, as well as on different distributed optimization frameworks
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and deep learning problems. Regarding tensor decomposition, there are four ways

to enforce differential privacy: input perturbation, output perturbation, objective

perturbation and the gradient perturbation. [38] proposed an objective perturbation

method for matrix factorization in recommendation systems. [57] proposed a new

idea that sampling from the posterior distribution of a Bayesian model can sufficiently

guarantee differential privacy. [8] compared the four different perturbation method

on matrix factorization and drew the conclusion that input perturbation is the most

efficient method that has the least privacy loss on recommendation systems. [89]

is the first proposed differentially private tensor decomposition work. It proposed

a noise calibrated tensor power method. Our goal in this chapter is to develop a

distributed framework where data is stored at different sources, and try to preserve

the privacy during knowledge transfer. Nevertheless, these works are based on a

centralized framework. [45] developed a federated tensor factorization framework, but

it simply preserves privacy by avoiding direct patient information sharing, rather than

by applying rigorous differential privacy techniques.

2.3 DPFact

In this section, we first provide a general overview and then present detailed formulation

of the optimization problem.

2.3.1 Overview

DPFact is a distributed tensor factorization model that preserves differential privacy.

Our goal is to learn computational phenotypes from horizontally partitioned patient

data (e.g., each hospital has its own patient data with the same medical features). Since

we assume the central server and participants are honest-but-curious which means

they will not deviate from the prescribed protocol but they are curious about others
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secrets and try to find out as much as possible about them. Therefore the patient data

cannot be collected at a centralized location to construct a global tensor O. Instead,

we assume that there are T local sites and a central server that communicates the

intermediary results between the local sites. Each site performs tensor factorization on

the local data and shares privacy-preserving intermediary results with the centralized

server (Fig. 2.1).

Figure 2.1: Algorithm Overview

The patient data at each site is used to construct a local observed tensor, O[t].

For simplicity and illustration purposes, we discuss a three-mode tensor situation

where the modes are patients, procedures, and diagnoses but DPFact generalizes to N

modes. The T sites jointly decompose their local tensor into three factor matrices: a

patient factor matrix A[t] and two feature factor matrices B[t] and C[t]. We assume

that the factor matrices on the non-patient modes (i.e., B[t],C[t]) are the same across

the T sites, thus sharing the same computational phenotypes. To achieve consensus

of the shared factor matrices, the non-patient feature factor matrices are shared in a

privacy-preserving manner with the central server by adding Gaussian noise to each

uploaded factor matrix.

Although the collaborative tensor problem for computational phenotyping has



17

been previously discussed [45], DPFact provides three important contributions:

(1) Efficiency: We adopt a communication-efficient stochastic gradient descent

(SGD) algorithm for collaborative learning which allows each site to transmit less

information to the centralized server while still achieving an accurate decomposition.

(2) Heterogeneity: A traditional global consensus model requires learning the

same shared model from multiple sources. However, different data sources may have

distinct patterns and properties (e.g., disease prevalence may differ between Georgia

and Texas). We propose using the l2,1-norm to achieve global consensus among the

sites while capturing site-specific factors.

(3) Differential Privacy Guarantees: We preserve the privacy of intermediary

results by adding Gaussian noise to each non-patient factor matrix prior to sharing

with the parameter server. This masks any particular entry in the factor matrices and

prevents inadvertent privacy leakage. A rigorous privacy analysis based on zCDP is

performed to ensure strong privacy protection for the patients.

2.3.2 Formulation

Under a single (centralized) model, CP decomposition of the observed tensor O results

in a factorized tensor X that contains the R most prevalent computational phenotypes.

We represent the centralized tensor as T separate horizontal partitions, O[1], · · · ,O[T ].

Thus, the global function can be expressed as the sum of T separable functions with

respect to each local factorized tensor X [t] [45]:

min
X
L =

1

2
||O − X ||2F =

T∑
t=1

1

2

∥∥O[t] −X [t]
∥∥2

F
. (2.4)

Since the goal is to uncover computational phenotypes that are shared across all

sites, we restrict the sites to factorize the observed local tensors O[t] such that the

non-patient factor matrices are the same. Therefore, the global optimization problem
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is formulated as:

min
T∑
t=1

1

2

∥∥∥O[t] − [[A[t],B[t],C[t]]]
∥∥∥2

F

s.t. B[1] = B[2] = · · · = B[T ]

C[1] = C[2] = · · · = C[T ].

This can be reformulated as a global consensus optimization, which decomposes

the original problem into T local subproblems by introducing two auxiliary variables,

B̂, Ĉ, to represent the global factor matrices. A quadratic penalty is placed between

the local and global factor matrices to achieve global consensus among the T different

sites. Thus, the local optimization problem at site t is:

min
1

2

∥∥∥O[t] − [[A[t],B[t],C[t]]]
∥∥∥2

F

+
γ

2

∥∥∥B[t] − B̂
∥∥∥2

F
+
γ

2

∥∥∥C[t] − Ĉ
∥∥∥2

F
.

(2.5)

2.3.3 Heterogeneous Patient Populations

The global consensus model assumes that the patient populations are the same across

different sites. However, this may be too restrictive as some locations can have

distinctive patterns. For example, patients from the cardiac coronary unit may have

unique characteristics that are different from the surgical care unit. DPFact utilizes

the l2,1-norm regularization, to allow flexibility for each site to “turn off” one or

more computational phenotypes. For an arbitrary matrix W ∈ Rm×n, its l2,1-norm is

defined as:

‖W‖2,1 =
m∑
i=1

√√√√ n∑
j=1

W2
ij. (2.6)

From the definition, we can see that the l2,1-norm controls the row sparsity of matrix

W. As a result, the l2,1-norm is commonly used in multi-task feature learning to
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perform feature selection as it can induce structural sparsity [30, 55, 96, 67].

DPFact adopts a multi-task perspective, where each local decomposition is viewed

as a separate task. Under this approach, each site is not required to be characterized

by all R computational phenotypes. To achieve this, we introduce the l2,1-norm on the

transpose of the patient factor matrices, A[t], to induce sparsity on the columns. The

idea is that if a specific phenotype is barely present in any of the patients (2-norm

of the column is close to 0), the regularization will encourage all the column entries

to be 0. This can be used to capture the heterogeneity in the patient populations

without violating the global consensus assumption. Thus the DPFact optimization

problem is:

min
T∑
t=1

(
1

2

∥∥∥O[t] − [[A[t],B[t],C[t]]]
∥∥∥2

F
+
γ

2

∥∥∥B[t] − B̂
∥∥∥2

F

+
γ

2

∥∥∥C[t] − Ĉ
∥∥∥2

F
+ µ
∥∥∥(A[t])>

∥∥∥
2,1

).

(2.7)

The quadratic penalty, γ, provides an elastic force to achieve global consensus between

the local factor matrices and the global factor matrices whereas the l2,1-norm penalty,

µ, encourages sites to share similar sparsity patterns.

2.4 DPFact Optimization

DPFact adopts the Elastics Averaging SGD (EASGD) [101] approach to solve the

optimization problem (2.7). EASGD is a communication-efficient algorithm for collab-

orative learning and has been shown to be more stable than the Alternating Direction

Method of Multipliers (ADMM) with regard to parameter selection. Moreover, SGD-

based approaches scale well to sparse tensors, as the computation is bounded by the

number of non-zeros.

Using the EASGD approach, the global consensus optimization problem is solved
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alternatively between the local sites and the central server. Each site performs

multiple rounds of local tensor decomposition and updates their local factor matrices.

The site then only shares the most updated non-patient mode matrices with output

perturbation to prevent revealing of sensitive information. The patient factor matrix

is never shared with the central server to avoid direct leakage of patient membership

information. The server then aggregates the updated local factor matrices to update

the global factor matrices and sends the new global factor matrices back to each

site. This process is iteratively repeated until there are no changes in the local factor

matrices. The entire DPFact decomposition process is summarized in Algorithm 1.

Algorithm 1: DPFact

Input: O, τ η, γ, µ, σ, ρ.
1 Randomly initialize the global feature factor matrices B, C and local feature

factor matrices B[t], C[t].
2 while B[t], C[t] not converge do
3 if Hospital then
4 for k = 1, · · · , τ do
5 Shuffle tensor elements;
6 for observation i do

7 Update A[t] using (2.13);

8 Update B[t], C[t] using (2.17);

9 end

10 Proximal update for newA[t] using (2.14);

11 end

12 Calibrate Gaussian noise matrix M[t]
B and M[t]

C as N (0,∆2
2/(2ρ)) for

each factor matrix;
13 Update factor matrices privB

[t] and privC
[t] using (2.18);

14 Send privB
[t], privC

[t] to Server.

15 end
16 if Server then

17 Collect privB
[t], privC

[t] from each hospital;

18 Update B̂, Ĉ using (2.19);

19 Send B̂, Ĉ back to hospitals.

20 end

21 end
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2.4.1 Local Factors Update

Each site updates the local factors by solving the following subproblem:

min
1

2

∥∥∥O[t] − [[A[t],B[t],C[t]]]
∥∥∥2

F
+
γ

2

∥∥∥B[t] − B̂
∥∥∥2

F

+
γ

2

∥∥∥C[t] − Ĉ
∥∥∥2

F
+ µ
∥∥∥(A[t])>

∥∥∥
2,1
.

(2.8)

EASGD helps reduce the communication cost by allowing sites to perform multiple

iterations (each iteration is one pass of the local data) before sending the updated

factor matrices. We further extend the local optimization updates using permutation-

based SGD (P-SGD), a practical form of SGD [91]. In P-SGD, instead of randomly

sampling one instance from the tensor at a time, the non-zero elements are first shuffled

within the tensor. The algorithm then cycles through these elements to update the

latent factors. At each local site, the shuffling and cycling process is repeated τ times,

hereby referred to as a τ -pass P-SGD. There are two benefits of adopting the P-SGD

approach: 1) the resulting algorithm is more computationally effective as it eliminates

some of the randomness of the basic SGD algorithm. 2) it provides a mechanism to

properly estimate the total privacy budget (see Section 2.4.2).

Patient Factor Matrix

For site t, the patient factor matrix A[t] is updated by minimizing the objective

function using the local factorized tensor, X [t] and the l2,1-norm:

min
A[t]

1

2

∥∥∥O[t] − [[A[t],B[t],C[t]]]
∥∥∥2

F︸ ︷︷ ︸
F

+µ
∥∥∥(A[t])>

∥∥∥
2,1︸ ︷︷ ︸

H

. (2.9)

While the l2,1-norm is desirable from a modeling perspective, it also results in a

non-differentiable optimization problem. The local optimization problem (2.9) can be

seen as a combination of a differentiable function F and a non-differentiable function
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H. Thus, we propose using the proximal gradient descent method to solve local

optimization problem for the patient mode. Proximal gradient method can be applied

in our case since the gradient of the differentiable function F is Lipschitz continuous

with a Lipschitz constant L (see Appendix for details).

Using the proximal gradient method, the factor matrix A[t] is iteratively updated

via the proximal operator:

newA[t] = proxηH

(
A[t] − η∇F(A[t])

)
, (2.10)

where η > 0 is the step size at each local iteration. The proximal operator is computed

by solving the following equation:

proxηH(Θ) = arg min
Θ

(
1

2η
‖Θ− Θ̂‖+H(Θ)

)
, (2.11)

where Θ̂ = A[t] − η∇F(A[t]) is the updated matrix. It has been shown that if ∇F

is Lipschitz continuous with constant L, the proximal gradient descent method will

converge for step size η < 2/L [17]. For the l2,1-norm, the closed form solution can be

computed using the soft-thresholding operator:

proxηH(Θ̂) = Θ̂r:

(
1− µ

‖Θ̂r:‖2

)
+

, (2.12)

where r ∈ (0, R] and r represents the r-th column of the factor matrix Θ̂, and (z)+

denotes the maximum of 0 and z. Thus, if the norm of the r-th column of the patient

matrix is small, the proximal operator will “turn off” that column.

The gradient of the smooth part can be derived with respect to each row in the

patient mode factor matrix, A[t]. The update rule for each row is:

a
[t]
i: ← a

[t]
i: − η

[(
a

[t]
i: (b

[t]
j: ∗ c

[t]
k:)
>
−O[t]

ijk

)(
b

[t]
j: ∗ c

[t]
k:

)]
(2.13)
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After one pass through all entries in a local tensor to update the patient factor

matrix, the second step is to use proximal operator (2.12) to update the patient factor

matrix A[t]:

newA[t] = proxηH(A[t]). (2.14)

Feature Factor Matrices

The local feature factor matrices, B[t] and C[t], are updated based on the following

objective functions:

min
B[t]

fb =
1

2

∥∥∥O[t] − [[A[t],B[t],C[t]]]
∥∥∥2

F
+
γ

2

∥∥∥B[t] − B̂
∥∥∥2

F
,

min
C[t]

fc =
1

2

∥∥∥O[t] − [[A[t],B[t],C[t]]]
∥∥∥2

F
+
γ

2

∥∥∥C[t] − Ĉ
∥∥∥2

F
.

(2.15)

The partial derivatives of fb, fc with respect to b
[t]
j: and c

[t]
k: , the j-th and k-th row of

the B[t] and C[t] factor matrices, respectively, are computed.

∂fb

∂b
[t]
j:

=
[(

a
[t]
i: (b

[t]
j: ∗ c

[t]
k:)
>
−O[t]

ijk

)(
a

[t]
i: ∗ c

[t]
k:

)]
∂fc

∂c
[t]
k:

=
[(

a
[t]
i: (b

[t]
j: ∗ c

[t]
k:)
>
−O[t]

ijk

)(
a

[t]
i: ∗ b

[t]
j:

)]
.

(2.16)

B[t] and C[t] are then updated row by row by adding up the partial derivative of the

quadratic penalty term and the partial derivative with respect to b
[t]
j: and c

[t]
k: shown

in (2.16).

b
[t]
j: ← b

[t]
j: − η

[
∂fn

∂b
[t]
j:

+ γ
(
b

[t]
j: − b̂j:

)]
;

c
[t]
k: ← c

[t]
k: − η

[
∂fn

∂c
[t]
k:

+ γ
(
c

[t]
k: − ĉk:

)]
.

(2.17)

Each site simultaneously does several rounds (τ) of the local factor updates. After

τ rounds are completed, the feature factor matrices will be perturbed with Gaussian
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noise and sent to central server.

Privacy-Preserving Output Perturbation

Although the feature factor matrices do not directly contain patient information, it

may inadvertently violate patient privacy (e.g., a rare disease that is only present in a

small number of patients). To protect the patient information from being speculated

by semi-honest server, we perturb the feature mode factor matrices using the Gaussian

mechanism, a common building block to perturb the output and achieve rigorous

differential privacy guarantee.

The Gaussian mechanism adds zero-mean Gaussian noise with standard deviation

σ = ∆2
2/(2ρ) to each element of the output [10]. Thus, the noise matrix M can

be calibrated for each factor matrices B[t] and C[t] based on their L2-sensitivity to

construct privacy-preserving feature factor matrices:

privB
[t] ← B[t] +M[t]

B ,

privC
[t] ← C[t] +M[t]

C ,

(2.18)

As a result, each factor matrix that is shared with the central server satisfies ρ-zCDP

by Proposition 2.7. A detailed privacy analysis for the overall privacy guarentee is

provided in the next subsection.

2.4.2 Privacy Analysis

In this section we analyze the overall privacy guarantee of Algorithm 1. The analysis

is based on the following knowledge of the optimization problem: 1) each local site

performs a τ -pass P-SGD update per epoch; 2) for the local objective function f in

(2.15), when fixing two of the factor matrices, the objective function becomes a convex

optimization problem for the other factor matrix.
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L2-sensitivity

The objective function (2.15) satisfies L− Lipschitz, with Lipschitz constant L the

tight upper bound of the gradient. For a τ -pass P-SGD, having constant learning rate

η = ηk ≤ 2
β

(k = 1, ..., τ , β is the Lipschitz constant of the gradient of (2.15) regarding

B[t] or C[t], see Appendix for β calculation), the L2-sensitivity of this optimization

problem in (2.15) is calculated as ∆2(f) = 2τLη [91].

Overall Privacy Guarantee

The overall privacy guarantee of Algorithm 1 is analyzed under the zCDP definition

which provides tighter privacy bound than strong composition theorem [21] for multiple

folds Gaussian mechanism [10, 99]. The total ρ-zCDP will be transferred to (ε, δ)-DP

in the end using Proposition 2.8.

Theorem 2.4.1. Algorithm 1 is (ε, δ)-differentially private if we choose the input

privacy budget for each factor matrix per epoch as

ρ =
ε2

8E log(1/δ)

where E is the number of epochs when the algorithm is converged.

Proof. Let the “base” zCDP parameter be ρb, B[t] and C[t] together cost 2Eρb after E

epochs by Proposition 2.9. All T user nodes cost 1
T

∑T
t=1 2Eρb = 2Eρb by the parallel

composition theorem in Proposition 2.10. By the connection of zCDP and (ε, δ)-DP in

Proposition 2.8, we get ρb = ε2

8E log(1/δ)
, which concludes our proof.

2.4.3 Global Variables Update

The server receives T local feature matrix updates, and then updates the global feature

matrices according to the same objective function in (2.5). The gradient for the global
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feature matrices B̂ and Ĉ are:

B̂← B̂ + η

T∑
t=1

γ
(
privB

[t] − B̂
)

Ĉ← Ĉ + η

T∑
t=1

γ
(
privC

[t] − Ĉ
)
.

(2.19)

The update makes the global phenotypes similar to the local phenotypes at the T

local sites. The server then sends the global information, B̂, Ĉ to each site for the

next epoch.

2.5 Experimental Evaluation

We evaluate DPFact on three aspects: 1) efficiency based on accuracy and commu-

nication cost; 2) utility of the phenotype discovery; and 3) impact of privacy. The

evaluation is performed on both real-world datasets and synthetic datasets.

2.5.1 Experimental Settings

Dataset

We evaluated DPFact on one synthetic dataset and two real-world datasets, MIMIC-III

[39] and the CMS DE-SynPUF dataset. Each of the dataset has different sizes, sparsity

(i.e., % of non-zero elements), and skewness in distribution (i.e., some sites have more

patients).

MIMIC-III. This is a publicly-available intensive care unit (ICU) dataset collected

from 2001 to 2012. We construct 6 local tensors with different sizes representing

patients from different ICUs. Each tensor element represents the number of co-

occurrence of diagnoses and procedures from the same patient within a 30-day time

window. For better interpretability, we adopt the rule in [44] and select 202 procedures

ICD-9 codes and 316 diagnoses codes that have the highest frequency. The resulting
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tensor is 40, 662 patients × 202 procedures × 316 diagnoses with a non-zero ratio of

4.0382× 10−6.

CMS. This is a publicly-available Data Entrepreneurs’ Synthetic Public Use File

(DE-SynPUF) from 2008 to 2010. We randomly choose 5 samples out of the 20

samples of the outpatient data to construct 5 local tensors with patients, procedures

and diagnoses. Different from MIMIC-III, we make each local tensor the same size.

There are 82,307 patients with 2,532 procedures and 10,983 diagnoses within a 30-day

time window. We apply the same rule in selecting ICD-9 codes. By concatenating the

5 local tensors, we obtain a big tensor with 3.1678× 10−7 non-zero ratio.

Synthetic Dataset. We also construct tensors from synthetic data. In order to test

different dimensions and sparsities, we construct a tensor of size 5000 × 300 × 800

with a sparsity rate of 10−5 and then horizontally partition it into 5 equal parts.

Baselines

We compare our DPFact framework with two centralized baseline methods and an

existing state-of-the-art federated tensor factorization method as described below.

CP-ALS: A widely used, centralized model that solves tensor decomposition using

an alternating least squares approach. Data from multiple sources are combined to

construct the global tensor.

SGD: A centralized method that solves the tensor decomposition use the stochastic

gradient descent-based approach. This is equivalent to DPFact with a single site and

no regularization (T = 1, γ = 0, µ = 0). We consider this a counterpart to the CP-ALS

method.

TRIP [45]: A federated tensor factorization framework that enforces a shared global

model and does not offer any differential privacy guarantee. TRIP utilizes the consensus

ADMM approach to decompose the problem into local subproblems.
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(a) MIMIC-III: ICU (b) CMS (c) Synthetic

Figure 2.2: Average RMSE on (a) MIMIC-III, (b) CMS, (c) Synthetic datasets using
5 random initializations.

Implementation Details

DPFact is implemented in MatlabR2018b with the Tensor Toolbox Version 2.6 [4] for

tensor computing and the Parallel Computing Toolbox of Matlab. The experiments

were conducted on m5.4xlarge instances of AWS EC2 with 8 workers. For prediction

task, we build the logistic regression model with Scikit-learn library of Python 2.7.

For reproducibility purpose, we made our code publicly available2.

Parameter Configuration

Hyper-parameter settings include quadratic penalty parameter γ, l2,1 regularization

term µ, learning rate η, and the input per-epoch, per-factor matrix privacy budget ρ.

The rank R is set to 50 to allow some site-specific phenotypes to be captured.

Quadratic penalty parameter γ. The quadratic penalty term can be viewed as an

elastic force between the local factor matrices and the global factor matrices. Smaller

γ allows more exploration of the local factors but will result in slower convergence.

To balance the trade-off between convergence and stability, we choose γ = 5 after grid

search through γ = {2, 5, 8, 10}.

l2,1-regularization term µ. We evaluate the performance of DPFact with different µ

for different ICU types as they differ in the Lipschitz constants. Smaller µ has minimal

2https://github.com/jma78/DPFact.
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# of Sites MIMIC-III CMS Synthetic

1 18.73 22.89 1.55
5 93.62 114.42 7.75
10 189.83 228.83 15.50

Table 2.1: Communication cost of DPFact for different number of sites (Seconds)

effect on the column sparsity, as there are no columns that are set to 0, while higher

µ will ”turn off” a large portion of the factors and prevent DPFact from generating

useful phenotypes. Based on Fig. A.1, we choose µ = {1, 1.8, 3.2, 1.8, 1.5, 0.6} for

TSICU, SICU, MICU, CSRU, CCU, NICU respectively for MIMIC-III to maintain

noticeable differences in the column magnitude and the flexibility to have at least one

unshared column (see Appendix for details). Similarly, we choose µ = 2 equally for

each site for CMS and µ = 0.5 equally for each site for the synthetic dataset.

Learning rate η. The learning rate η must be the same for local sites and the

parameter server. The optimal η was found after grid searching in the range [10−5,

10−1]. We choose 10−2, 10−3, and 10−2 for MIMIC-III, CMS, and synthetic data

respectively.

Privacy budget ρ. We choose the per-epoch privacy budget under the zCDP

definition for each factor matrix as ρ = 10−3 for MIMIC-III, CMS, and synthetic

dataset. By Theorem 4.1, the total privacy guarantee is (1.2, 10−4), (1.9, 10−4), and

(1.7, 10−4) under the (ε, δ)-DP definition for MIMIC-III, CMS, and synthetic dataset

respectively when DPFact converges (we choose δ to be 10−4).

Number of sites T . To gain more knowledge on how communication cost would be

reduced regarding the number of sites, we evaluate the communication cost when the

number of sites (T ) are increased. To simulate a larger number of sites, we randomly

partition the global observed tensor into 1, 5, and 10 sites for the three datasets.

Table A.2 shows that the communication cost of DPFact scales proportionally with

the number of sites.



30

Algorithm MIMIC-III CMS Synthetic

TRIP 175.26 183.72 9.77
DPFact 93.62 114.42 7.75

Table 2.2: Communication Cost of DPFact and TRIP (Seconds)

2.5.2 Result Analysis

Efficiency

Accuracy. Accuracy is evaluated using the root mean square error (RMSE) between

the global observed tensor and a horizontal concatenation of each factorized local

tensor. Fig. 2.2 illustrates the RMSE as a function of the number of epochs. We

observe that DPFact converges to a smaller RMSE than CP-ALS and TRIP. SGD

achieves the lowest RMSE as DPFact suffers some utility loss by sharing differentially

private intermediary results.

Communication Cost. The communication cost is measured based on the total

number of communicated bytes divided by the data transfer rate (assumed as 15

MB/second). As CP-ALS and SGD are both centralized models, only TRIP and

DPFact are compared.

Table 2.2 summarizes the communication cost on all the datasets. DPFact reduces

the cost by 46.6%, 37.7%, and 20.7% on MIMIC-III, CMS, and synthetic data,

respectively. This is achieved by allowing more local exploration at each site (multiple

passes of the data) and transmitting fewer auxiliary variables. Moreover, the reduced

communication cost does not result in higher RMSE (see Fig. 2.2).

Utility

The utility of DPFact is measured by the predictive power of the discovered phenotypes.

A logistic regression model is fit using the patients’ membership values (i.e., A
[t]
i: , Âi:

of size 1×R) as features to predict in-hospital mortality. We use a 60-40 train-test
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Rank CP-ALS TRIP
DPFact

DPFact w/o l2,1 w/o DP

10 0.7516 0.7130 0.7319 0.5189 0.7401
20 0.7573 0.7596 0.7751 0.6886 0.7763
30 0.7488 0.7644 0.7679 0.6977 0.7705
40 0.7603 0.7574 0.7737 0.7137 0.7756
50 0.7643 0.7633 0.7759 0.7212 0.7790
60 0.7648 0.7588 0.7758 0.7312 0.7763

Table 2.3: Predictive performance (AUC) comparison for (1) CP-ALS, (2) TRIP, (3)
DPFact, (4) DPFact without l2,1-norm (w/o l2,1), (5) non-private DPFact (w/o DP).

split and evaluated the model using area under the receiver operating characteristic

curve (AUC).

Global Patterns. Table 2.3 shows the AUC for DPFact, CP-ALS (centralized),

and TRIP (distributed) as a function of the rank (R). From the results, we observe

that DPFact outperforms both baseline methods for achieving the highest AUC. This

suggests that DPFact captures similar global phenotypes as the other two methods.

We note that DPFact has a slightly lower AUC than CP-ALS for a rank of 10, as the

l2,1-regularization effect is not prominent.

Site-Specific Patterns. Besides achieving the highest predictive performance, DP-

Fact also can be used to discover site-specific patterns. As an example, we focus on

the neonatal ICU (NICU) which has a drastically different population than the other

5 ICUs. The ability to capture NICU-specific phenotypes can be seen in the AUC

comparison with TRIP (Fig. 2.3(a)). DPFact consistently achieves higher AUC for

NICU patients. The importance of the l2,1-regularization term is also illustrated in

Table 2.3. DPFact with the l2,1-regularization is more stable and achieves higher AUC

compared without the regularization term (µ = 0).

Table 2.4 illustrates the top 5 phenotypes with respect to the magnitude of the

logistic regression coefficient (mortality risk related to the phenotype) for NICU. The

phenotypes are named according to the non-zero procedures and diagnoses. A high λ
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Phenotypes Coef p-value λ Prevalence

25: Congenital heart defect -2.1865 0.005 198 34.32
29: Anemia 3.5047 <0.001 77 13.22
30: Acute kidney injury 5.8806 <0.001 68 23.38
34: Pneumonia -5.1050 <0.001 37 37.58
35: Respiratory failure -0.9141 <0.001 85 24.40

Table 2.4: Top 5 representative phenotypes from NICU based on the factor weights,
λr = ‖A:r‖F‖B:r‖F‖C:r‖F . Prevalence is the proportion of patients who have non-zero
membership to the phenotype.

and prevalence means this phenotype is common. From the results, we observe that

heart disease, respiratory failure, and pneumonia are more common but less associated

with mortality risk (negative coefficient). However, acute kidney injury (AKI) and

anemia are less prevalent and highly associated with death. In particular, AKI has

the highest risk of in-hospital death, which is consistent with other reported results

[98]. Table 2.5(a) shows an NICU-specific phenotype, which differs slightly from the

corresponding global phenotype showing in table 2.5(b).

(a) AUC comparison (b) Factor Match Score (FMS)

Figure 2.3: (a) Predictive performance (AUC) comparison for NICU between (1)
TRIP, (2) DPFact. (b) Factor Match Score (FMS) under different privacy budget (ε).

Privacy

We investigated the impact of differential privacy by comparing DPFact with its

non-private version. The main difference is that non-private DPFact does not perturb
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Table 2.5: Example of the representative phenotypes. (a) NICU-specific phenotype
of Congenital heart defect; (b) and (c) are the globally shared phenotype of Heart
failure, showing the difference of DPFact and non-private DPFact.

(a) NICU-specific Phenotypes discovered by DPFact

Procedures Diagnoses
Cardiac catheterization Ventricular fibrillation
Insertion of non-drug-eluting coronary Unspecified congenital anomaly of heart
artery stent(s) Benign essential hypertension
Prophylactic administration of vaccine
against other disease

(b) Globally shared phenotype discovered by DPFact

Procedures Diagnoses
Attachment of pedicle or flap graft Rheumatic heart failure
Right heart cardiac catheterization Ventricular fibrillation
Procedure on two vessels Benign essential hypertension
Other endovascular procedures on other
vessels

Paroxysmal ventricular tachycardia

Insertion of non-drug-eluting coronary
artery

Nephritis and nephropathy

stent(s)

(c) Globally shared phenotype discovered by non-private DPFact

Procedures Diagnoses
Right heart cardiac catheterization Hypopotassemia
Attachment of pedicle or flap graft Rheumatic heart failure
Excision or destruction of other lesion
or tissue

Benign essential hypertension

of heart, open approach Paroxysmal ventricular tachycardia
Systolic heart failure
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the local feature factor matrices that are transferred to the server. We use the factor

match score (FMS) [15] to compare the similarity between the phenotype discovered

using DPFact and non-private DPFact. FMS defined as:

score(X̄ ) =
1

R

∑
r

(
1−

∣∣ξr − ξ̄r∣∣
max

{
ξr, ξ̄r

}) ∏
x=a,b,c

xTr x̄r
‖xr‖‖x̄r‖

,

ξr =
∏

x=a,b,c

‖xr‖, ξ̄r =
∏

x=a,b,c

‖x̄r‖

where X̄ = [[Ā, B̄, C̄]] is the estimated factors and X = [[A,B,C]] is the true factors.

xr is the rth column of factor matrices.

We treat the non-private version DPFact factors as the benchmark for DPFact fac-

tors. Fig. 2.3(b) shows how the FMS changes with an increase of the privacy budget.

As the privacy budget becomes larger, the FMS increases accordingly and will gradu-

ally approximate 1, which means the discovered phenotypes between the two methods

are equivalent. This result indicates that when a stricter privacy constraint is enforced,

it may negatively impact the quality of the phenotypes. Thus, there is a practical

need to balance the trade-off between privacy and phenotype quality.

Table 2.5 presents a comparison between the top 1 (highest factor weight λr)

phenotype DPFact-derived phenotype and the closest phenotype derived by its non-

private version. We observe that DPFact contains several additional noisy procedure

and diagnosis elements than the non-private DPFact version. These extra elements

are the results of adding noise to the feature factor matrices. This is also supported in

Table 2.3 as the non-private DPFact has better predictive performance than DPFact.

Thus, the output perturbation process may interfere with the interpretability and

meaningfulness of the derived phenotype. However, there is still some utility from the

DPFact-derived phenotype as experts can still distinguish this phenotype to be a heart

failure phenotype. Therefore, DPFact still retains the ability to perform phenotype

discovery.



35

Chapter 3

Federated Generalized Tensor

Factorization with Improved

Communication Efficiency
1

In this chapter, we further increase the communication efficiency compared with

DPFact (Chapter 2) and support the flexibility of choosing different loss functions

according to data distributions. In addition, we also incorporate computational

efficient techniques and provide theoretical guarantees for convergence.

3.1 Introduction

Tensor factorization incurs high computational complexity and storage complexity due

to the computation of the MTTKRP operation and the formation of the matricized

tensor. Besides computational complexity and alleviating storage usage which are

the focus of most existing DTF methods, the communication overhead can be a third

1This chapter is based on earlier work [64] published in Proceedings of the Web Confer-
ence 2021 (WWW ’21). Association for Computing Machinery, New York, NY, USA, 171–182.
DOI:https://doi.org/10.1145/3442381.3449832 © [2021] International World Wide Web Conference
Committee, published under Creative Commons CC-BY 4.0 License.
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important bottleneck, especially for the federated setting, where the participating

institutions do not have a dedicated communication network for communication

purposes, e.g., hospitals, clinics. Considering the asymmetric bandwidths, the uplink

communication (i.e. the communication from the client to the server) can quickly

become the bottleneck preventing these clients from participating in the FTF. In

federated computational phenotyping, due to the great variety of the attributes

(e.g., types of medication can be thousands), the high dimensional tensor incurs

high communications cost to communicate the intermediate variables during each

communication cycle.

In this chapter, we investigate how to reduce the uplink communication cost of

the federated tensor factorization-based collaborative phenotyping with guaranteed

convergence and quality preservation. It is a challenging task, especially considering

the communication efficiency issue is under studied in the broader distributed tensor

factorization literature. To be more flexible and suitable for a variety of applications,

we consider the federated generalized tensor factorization (FGTF), which greatly

extends the existing federated classic TF [45, 62].

First, we aim to reduce the uplink communication cost in each communication

round. We design a two-level per-round communication reduction strategy: block-level

and element-level, which reduce (1− 1
D

) and over 96.8% of the uplink communication,

correspondingly, where D is the number of blocks. For the block-level, we exploit

the multi-factor structure of TF/GTF by utilizing the randomized block update. It

enables each client to send only the partial gradient of the sampled block, rather than

the full gradient of all blocks. For the element-level, we introduce gradient compression

techniques, which have found success in deep learning training [43, 103, 5, 92, 3], to

compress each element of the communicated partial gradient from the floating point

representation to low-precision representation. Since there exists error between the

true partial gradient and the compressed one, the convergence can be slower and the
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output quality can be lower. We further introduce the error-feedback mechanism [43]

which records such error and feeds it back to restore the shift.

With both levels of per-round communication reduction, we propose the federated

GTF with communication compression and error-feedback (FedGTF-EF). We ana-

lyze the convergence of FedGTF-EF and obtain the O( 1√
T

) rate after T iterations

(Thm.3.4.1) under common and mild assumptions (Assumptions 3.4.1–3.4.5). The

convergence is equivalent to the distributed stochastic gradient descent (SGD) with

full precision gradient communication and distributed SGD with gradient compression

and error-feedback [103]. In addition, since constraints and nonsmooth regularizations

are common in GTF, we further extend the convergence result to the proximal setting

(3.4.2) where the additional “simple regularizer” in Assumption 3.4.6 is satisfied.

Compared to the existing analysis with gradient compression and error-feedback, our

convergence analysis accounts for both the block randomized update strategy and the

proximal operation.

Second, we reduce the number of communication rounds to further reduce the

uplink communication. To do so, we introduce periodic communication [80, 54, 5] into

FedGTF-EF and denote this algorithm as FedGTF-EF-PC, in which the clients

send the update to the server after τ > 1 local iterations instead of communicating

after every iteration. A key question is whether the periodic communication will

slow down the convergence. If so, the number of iterations will increase and the

overall number of communications may not reduce. We analyze the convergence of

FedGTF-EF-PC in Thm. 3.4.3 and obtain the same convergence O( 1√
T

) rate with

FedGTF-EF under the same set of assumptions. This indicates that FedGTF-EF-

PC can indeed further reduce the uplink communication cost by 1− 1
τ
. As a result,

our proposed FedGTF-EF-PC can reduce up to 1− 1
32Dτ

uplink communication cost

if the Sign compressor (Def.3.2.1) is used.

Third, we evaluate FedGTF-EF and FedGTF-EF-PC in the federated collabo-



38

rative phenotyping task. We conduct experiments on two real-world EHR datasets,

which show that the proposed method can effectively reduce uplink communication

cost (99.90% reduction), without compromising convergence and factorization quality.

3.2 Preliminaries and Background

3.2.1 Notation

The frequently used notation in this chapter is summarized in Table 4.1. We denote an

order D tensor by X ∈ RI1×...×ID , its (i1, ..., iD)-th element by MATLAB representation

X (i1, ..., iD). Let I denote the index set of all tensor entries, |I| = IΠ =
∏D

d=1 Id.

The mode-d unfolding (also called matricization) is denoted by X<d> ∈ RId×IΠ/Id ,

where (X<d>)(id, j) and X (i1, i2, ..., iD) has the index mapping: j = 1 +
∑D

k=1,
k 6=d

(ik−

1)Jk, Jk =
∏k−1

q=1,
q 6=d

Iq. Each column X<d>(:, j) is called a mode-d fiber of X .

3.2.2 Generalized Tensor Factorization

As illustrated in Fig. 1.1 (left), let us consider the EHR tensor X ∈ RI1×,...,×ID , which

consists of patient mode (I1), diagnosis mode (I2), medication mode (I3), and so

on. The regularized Generalized CANDECOMP-PARAFAC (GTF) [37] extracts the

phenotypes by decomposing the EHR tensor into R phenotyps, where each consists

of a patient factor, diagnosis factor, and a medication factor. GTF has the following

objective function:

arg min
A
F (A,X ) =

∑
i∈I

f(A(i),X (i)) +
D∑
d=1

rd(A(d)),

s.t. A =
R∑
i=1

A(1)(:, i) ◦ ... ◦A(D)(:, i),

(3.1)

which breaks down into three parts:



39

1. Factorization constraint: The constraint of A =
∑R

i=1 A(1)(:, i) ◦ ... ◦ A(D)(:, i)

approximates the low-rank CP tensor A ∈ RI1×,...,×ID as the sum of R rank-one

tensors, where A(d) ∈ RId×R is the d-th factor matrix and A(d)(:, i) is its i-th column.

For phenotyping, A(1),A(2),A(3) correspond to the patient factor, diagnosis factor,

and medication factor, correspondingly.

2. Element-wise loss function: f(A(i),X (i)) is the element-wise loss between the

low-rank CP tensor A and the input tensor X . For the classic CP [11, 31],

f(A(i),X (i)) := 1
2
(A(i) − X (i))2, which is the least square loss. GCP is more

generalized in the sense that the loss function can take other forms to best suit

the property of the input tensor. For example, f(·) can be chosen based on

the distribution of the tensor entries, e.g. logit loss for binary data: flogit =

log(1+A(i))−X (i)A(i), for all i ∈ I, or f(·) can be the Huber loss for robustness

purpose.

3. Regularization: rd(·) is the regularization applied to the factor Ad, which can

be the smooth ‖A(d)‖2
F norm or the nonsmooth ‖A(d)‖1 norm. In practice, the

regularization can improve the interpretability of the phenotypes.

Existing federated computational phenotyping. Two recent papers [45] and [62]

consider Federated Tensor Factorization and apply it to the federated phenotyping.

They have the following limitations. 1) Both are limited to the CP model and

[45] applies least square solver as its client side local updater, which is difficult

to be extended to more general losses other than least square loss. 2) Although

extensible to using infrequent communication, each communication round still incurs

high communication cost since both requires sending all factors in full precision. In

addition, [45] also requires communication of the Lagrangian dual variables which

doubles the communication cost. 3) Both alter the original objective function by

introducing extra terms to enforcing consensus of factors among all clients: [45]
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introduces linear constraint and transforms it to Lagrangian dual formulation while

[62] introduces elastic penalty terms. These terms can lead the extracted factors

to deviate from the centralized solution, thus negatively impacting the phenotyping

accuracy.

3.2.3 SGD with Gradient Compression, Error-Feedback and

Periodic Communication

Gradient Compression. Recently, one of the most successful approaches to miti-

gating the communication overhead is via gradient compression, which compresses the

gradient to be communicated from the full precision representation (e.g. float or double

number representation) to a much lower precision representation (e.g. aggressively

compressed to 1-bit). The following definition introduces one of the most popular

compressors:

Definition 3.2.1. (Sign Compressor) For an input tensor x ∈ Rd, its compression via

Sign(·) is Sign(x) = ‖x‖1/d · sign(x), where sign takes the sign of each element of x.

Error-Feedback. Due to aggressive compression, the algorithm can converge slower

(or even diverge) compared to the full precision counterpart. The main cause is the

error between the full precision gradient and the compressed one. Error-feedback

[43, 103, 81] is a technique that memorizes this error in the current iteration and feeds

it back to the gradient of the next iteration. By doing so, it can rigorously guarantee

uncompromised convergence compared to the full-precision SGD.

Periodic Communication. Instead of reducing the communication cost per-communication

round, periodic communication or local SGD [80, 54] reduces it by decreasing the

communication frequency in hope that the total number of communications rounds

can be reduced. Each clients will execute τ > 1 local updates before communicating

to the server. [5] shows that it is possible to combine communication compression and
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periodic communication together. [81] provides a unified framework by error-feedback

to analyze the convergence of gradient compression and local SGD.

3.3 Proposed Methods

Under the federated setting as illustrated in Fig. 1.1 (right), the EHR tensor X ∈

RI1×,...,×ID will be collectively held by K institutions. The k-th client’s local tensor is

denoted by X k ∈ RI
1k
×I2×...×ID , which contains information about I1k individuals, such

that
∑K

k=1 I1k = I1. That is, we consider the horizontally partitioned setting where

different hospitals share the same feature space. We also note that there are related

works addressing other settings like vertically partitioned settings [95, 59, 13, 58] which

are complementary to our work. The aim of the federated computational phenotying

is to collaboratively compute the phenotyes from EHR tensor across K institutions

without sharing the raw tensor and patient mode variables. The objective function of

the federated GTF is as follows

argmin
(A(1),...,A(D))

K∑
k=1

F (A,X k) +
D∑
d=1

rd(A(d)),

s.t. A = A(1) ◦ ... ◦A(D).

(3.2)

In fact, the above formulation can be extended to general multi-block problems as

well. Thus, our algorithms are not limited to federated GTF problems but also to

other nonconvex problems possessing a multi-block decision variable structure, e.g.

[100]. In the following, we propose the federated generalized tensor factorization with

communication efficiency improvements via block randomization, gradient compression,

error feedback and periodic communication. The execution of the proposed algorithm

is illustrated in Fig. 3.1.
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Figure 3.1: Illustration of the execution of FedGTF-EF and FedGTF-EF-PC.

3.3.1 FedGTF-EF: Communication Efficient GTF with Block

Randomization, Gradient Compression and Error-Feedback

Algorithm 2: FedGTF-EF: Communication Efficient GTF with Block Ran-
domization, Gradient Compression and Error-Feedback

Input: X , γ[t],A[0], randomized block sampling sequence dξ[0], ..., dξ[T ];
1: for t = 0, ..., T do
2: On Each Client Nodes k ∈ 1, ...,K:
3: if d = d(ξ)[t] then

4: Compute stochastic gradient Gk
(d)[t] by eq.(4.6);

5: Pk
(d)[t] = γ[t]Gk

(d)[t] + Ek
(d)[t]; %% error feedback

6: ∆k
(d)[t] = Compress(Pk

(d)[t]), Send ∆k
(d)[t] (i.e. ∆k

(dξ[t])
[t]) to the server; %%

compression
7: Receive 1

K

∑K
k=1 ∆k

(d)[t] (i.e. 1
K

∑K
k=1 ∆k

(dξ[t])
[t]) from the server;

8: Smooth regularization case: A(d)[t+ 1] = A(d)[t]− 1
K

∑K
k=1 ∆k

(d)[t]; %% update
factor

9: Nonsmooth regularization case: A(d)[t+ 1] = Proxrd(A(d)[t]− 1
K

∑K
k=1 ∆k

(d)[t]);

10: Ek
(d)[t+ 1] = Pk

(d)[t]−∆k
(d)[t]; %% update error memory

11: else if d 6= dξ[t] then
12: A(d)[t+ 1] = A(d)[t], Ek

(d)[t+ 1] = Ek
(d)[t]; %% unselected blocks are kept

unchanged
13: end if
14: On Server Node:
15: Receive ∆k

(dξ[t])
[t] from all client nodes; Broadcast 1

K

∑K
k=1 ∆k

(dξ[t])
[t] to all client

nodes;
16: end for

We reduce the uplink communication in each communication round at two levels:

block-level and element-level. The detailed algorithm is displayed in Algorithm 2 with

functionalities of key steps annotated. At the block-level, to avoid sending all factors,
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we use a randomized block (i.e., randomized factor) update, which only requires the

communication of the partial gradient of the factor being sampled (the computation

of the partial gradient will be detailed in Sec.3.3.3). At the element-level, we compress

each element of the communication to a low-precision representation before sending

to the server (Line 6). Each client k keeps D local pairs of Pk
(d) (the error-shifted

full-precision partial gradient), ∆k
(d) (the compressed gradient to be communicated),

Ek
(d) (error record between the full precision gradient and the compressed gradient),

for all d = 1, ..., D factors. Depending on whether the regularizer is smooth or not,

either simple gradient descent (Line 8) or proximal gradient descent (Line 9) can be

chosen to update the sampled factor, respectively.

Algorithm 3: FedGTF-EF-PC: Further Reducing Communication Cost by
Periodic Communication

Input: X , γ[t],A[0],Ak[0] = A[0],∀k = 1, ...,K, randomized block sampling sequence
dξ[0], ..., dξ[T ];

1: for t = 0, ..., T do
2: On Each Client Nodes k ∈ 1, ...,K:
3: if d = d(ξ)[t] then

4: Compute stochastic gradient Gk
(d)[t] by eq.(4.6);

5: Ak
(d)[t+ 1

2 ] = Ak
(d)[t]−γ[t]Gk

(d)[t]; %% local update by stochastic gradient descent

6: if (t mod τ) 6= 0 then
7: Ek

(d)[t+ 1] = Ek
(d)[t], Ak

(d)[t+ 1] = Ak
(d)[t+ 1

2 ], Ag
(d)[t+ 1] = Ag

(d)[t]; %% no
communication

8: else
9: Pk

(d)[t] = (Ag
(d)[t]−Ak

(d)[t+ 1
2 ]) + Ek

(d)[t]; %% error feedback to accumulated
update

10: ∆k
(d)[t] = Compress(Pk

(d)[t]), Send ∆k
(d)[t] (i.e. ∆k

(dξ[t])
[t]) to the server;

11: Receive Ag
(d)[t+ 1] from the server, Ak

(d)[t+ 1] = Ag
(d)[t+ 1]; %% compression

12: end if
13: Ek

(d)[t+ 1] = Pk
(d)[t]−∆k

(d)[t]; %% update error memory

14: else if d 6= dξ[t] then
15: Ak

(d)[t+ 1] = Ak
(d)[t], Ek

(d)[t+ 1] = Ek
(d)[t];

16: end if
17: On Server Node:
18: Receive ∆k

(dξ[t])
[t] from all client nodes; Broadcast

Ag
(dξ[t])

[t+ 1] = Ag
(dξ[t])

[t]− 1
K

∑K
k=1 ∆k

(dξ[t])
[t] to all client nodes;

19: end for
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3.3.2 FedGTF-EF-PC: Further Communication Reduction by

Periodic Communication

We further reduce the uplink communication cost by introducing a third communication

compression level: round level. That is, we decrease the communication frequency

from one iteration per-communication to τ > 1 iterations per-communication, which

manifests a periodic communication behaviour [80, 54, 5]. The detailed algorithm is

provided in Algorithm 3. The major difference with Algorithm 2 is that each client

compresses and sends the collective updates across τ iterations (Line 9-10), instead

of the partial gradient in a single iteration. The error feedback (Line 9) and error

memory (Line 7, 13) are adjusted accordingly.

3.3.3 Efficient Partial Stochastic Gradient Computation for

FedGTF

After presenting the overall algorithms, we now present an efficient partial stochastic

gradient computation subroutine to compute Gk
(d)[t] in Step 1 of Fig. 3.1 and Line 4

of Algorithm 2 and 3. The first mode (i.e., I1) is the individual mode (e.g., patient

mode) which can be kept local to each client. Thus, when dξ[t] = 1, we skip the

communication, which not only further reduces the communication cost, but also is

beneficial to the privacy since the individual-level information is not shared.

Next, we specify the computation of the partial stochastic gradient Gk
(d)[t] based

on the efficient fiber sampling technique [6, 25]. The deterministic partial gradient is

∇A(d)
F (A) = Y<d>Hd [37], where Hd ∈ RIΠ/Id×R is the mode-d Khatri-Rao product

of the all factors except the d-th, i.e. Hd = A(D) � ...�A(d+1) �A(d−1)...�A(1); and

Y<d> is the d-unfolding of the element-wise partial gradient Y ∈ RI1×...×ID , where

Y(i) = ∂f(A(i),X (i))
∂A(i)

, for all i ∈ I. We approximate ∇A(d)
F (A) by sampling |S| fibers

(i.e. |S| columns of Y(d)) and the corresponding |S| rows of Hd, where S denotes the
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index of the sampled fibers. The stochastic partial gradient is then

G(d)[t] = Y<d>(:,S)Hd(S, :), (3.3)

where both Y<d>(:,S) and Hd(S, :) can be efficiently computed, because: 1) the

computation of Y<d>(:,S) only involves Id × |S| element-wise partial gradient com-

putation [47] and 2) the computation of Hd(S, :) can be obtained without forming

the full Khatri-Rao product of Hd [77]. For the s-th row of Hd, its index (is1, ..., i
s
D)

can be obtained by the index mapping in Section 3.2.1. Then, H(s, :) = A(1)(i
s
1, :

) ~ ...~ A(d−1)(i
s
d−1, :) ~ A(d+1)(i

s
d+1, :) ~ ...~ A(D)(i

s
D, :), where ~ is the Hadamard

product. Finally, the local stochastic gradient Gk
(d)[t] can be efficiently computed by

substituting its local tensor partition Yk and local factors Ak
(d) into eq.(3.3), which

gives

Gk
(d)[t] = Yk

<d>(:,S)Hk
d(S, :), (3.4)

where Hk(s, :) = Ak
(1)(i

s
1, :) ~ ... ~ Ak

(d−1)(i
s
d−1, :) ~ Ak

(d+1)(i
s
d+1, :) ~ ... ~ Ak

(D)(i
s
D, :).

According to the complexity analysis, our gradient computation in eq.(4.6) matches

the state-of-the-art efficiency of GTF computation, e.g., [25].

3.4 Algorithm Analysis

This section presents the convergence analysis and complexity analysis of FedGTF-EF

and FedGTF-EF-PC. A proof sketch of the convergence analysis is provided in the

Appendix.

3.4.1 Convergence Analysis

Assumptions. In order to analyze the convergence, we make the following as-

sumptions which are common to many machine learning problems [5, 25, 103, 81].
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Let the randomness of computing stochastic gradient of G(dξ[t])[t] be ζ[t], the ran-

domness of sampling the block be ξ[t], the filtration upon iteration t be F [t] =

{ζ[0], ξ[0], ..., ζ[t− 1], ξ[t− 1]}.

Assumption 3.4.1. (Block-wise Smoothness of the Loss Function) F (·) is L(d)-block-

wise smooth, for d = 1, ..., D, i.e. for all A,B, F (B) ≤ F (A) + 〈∇A(d)
,B(d) −A(d)〉+

L(d)

2
‖B(d) −A(d)‖2

F .

Assumption 3.4.2. (Unbiased Gradient Estimation) The stochastic gradient is unbi-

ased: Eζ[t]
[
Gk
dξ[t]

[t]
∣∣∣F [t], ξ[t]

]
= ∇A(dξ[t])

F (A[t]).

Assumption 3.4.3. (Bounded Variance) The stochastic gradient has bounded vari-

ance:

Eζ[t]
[∥∥Gk

(dξ[t])
[t]−∇A(dξ [t])

F (A[t])
∥∥2

F

∣∣∣F [t], ξ[t]
]
≤ σ2

d.

Assumption 3.4.4. (Bounded Gradient) ‖∇A(d)
F (A[t])‖2

F ≤ ω2
d.

Assumption 3.4.5. (δ-approximated Compression [43]) An operator Compress :

Rd → Rd is an δ-approximate compressor for δ ∈ (0, 1] if ‖Compress(x) − x‖2
2 ≤

(1− δ)‖x‖2
2.

Many compressors satisfy the above condition [5]: top-k or random k-sparsification,

stochastic k-level quantization, stochastic rotated quantization and the Sign compres-

sor in Definition 2.3.

Assumption 3.4.6. (Simple Regularization Function) The regularization functions

rd(·), d = 1, ..., D, are convex, lower semi-continuous and admit closed-form proximal

operator:

Proxrd(Bd) = argminA(d)

1
2
‖A(d) −B(d)‖2

F + rd(A(d)).

Many common regularizations satisfy this assumption, for example, the `1-norm

for inducing sparsity which has the soft-thresholding operator as its proximal operator.
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Convergence Analysis of Algorithm 2

Smooth regularization case. To prove the convergence, we extend the delayed

gradient perspective in [43] to our block randomized setting by introducing the

following virtual variables only for the proof: Ã(d)[t] := A(d)[t]− 1
K

∑K
k=1 Ek

(d)[t]. Then,

we have the following virtual recurrence: if d = dξ[t], Ã(d)[t + 1] = A(d)[t + 1] −
1
K

∑K
k=1 E(d)[t+ 1] = Ã(d)[t]− γ[t] 1

K

∑K
k=1 Gk

(d)[t]; else if d 6= dξ[t], Ã(d)[t+ 1] = Ã(d)[t].

Thus, the recurrence can be viewed as the block randomized SGD with the variable

Ã(d)[t] which corresponds to A(d)[t] with delayed information 1
K

∑K
k=1 Ek

(d)[t] added.

The convergence of Algorithm 2 applied to the smooth smooth regularization is as

follows.

Theorem 3.4.1. Suppose that Assumptions 3.4.1-3.4.5 hold. Let (A(1)[t], ...,A(D)[t])

be the iterates of Algorithm 2 with Line 8. Let γ = min{ 1
2L
, %
√
T+1/

√
K+

(1−δ)1/3

δ2/3
T 1/3
}, for

some % > 0. We have

E[
1

D

D∑
d=1

‖∇A(d)
F (A[Output])‖2F ]

≤ 8L

T + 1
(F (A[0])− F ∗) +

[4

%
(F (A[0])− F ∗) +

2Lσ2%

D

] 1√
M(T + 1)

+
[4

%
(F (A[0])− F ∗) +

8L2%2(σ2 + ω2)

D

] (1− δ)1/3

δ2/3(T + 1)2/3
,

where A[Output] = (A(1)[Output], ...,A(D)[Output]) is sampled from A[0] to A[T ]

with uniform distribution, F ∗ is the optimal value, σ2 =
∑D

d=1 σ
2
d and ω2 =

∑D
d=1 ω

2
d.

Remark 1. Under the similar assumptions, our convergence rate matches the rates of

the distributed synchronize SGD and the distributed SGD with gradient compression

and error-feedback [103]. Thus, we can further reduce computation and uplink

communication from a full-length gradient update and communication [103, 5] to a

single randomized block of the partial gradient update and communication without
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slowing down the convergence rate.

Nonsmooth regularization case. This case corresponds to the execution of Line 9

in Algorithm 2. An appropriate optimally condition is based on the generalized gradient

measure [70, 94, 71, 25]: G̃(d)[t] = 1
γ[t]

(A(d) − Proxγ[t],rd(A(d)[t]− γ[t]∇A(d)
F (A[t]))).

The following theorem shows the convergence of Algorithm 2 for the nonsmooth

regularization case.

Theorem 3.4.2. Suppose that Assumptions 3.4.1-3.4.6 hold.

Let (A(1)[t], ...,A(D)[t]) be the iterates of Algorithm 2 with proximal operator (Line 9).

Assume γ[t] = 1
4L

. We have

E
[ D∑
d=1

1

D
‖G̃(d)[Output]‖2

F

]
≤ 16L

T + 1
(Φ(A[0])− Φ∗)

+
4σ2

DK
+

32(1− δ)
Dδ2

(σ2 + ω2),

(3.5)

where A[Output] is sampled from A[0] to A[T ] with uniform distribution, Φ(A[0]) =

F (A[0]) +
∑D

d=1 rd(A[0]) and Φ∗ is the optimal value.

Remark 2. In the nonsmooth regularization case, the above convergence result is

weaker than the previous smooth case in that we only ensure the difference between

the initial loss and the optimal value will get smaller, but the generalized gradient

is not guaranteed to approach 0 given that the variance and gradient norm related

terms will dominate with increasing T . However, our empirical results show that the

algorithm is able to converge to small losses.

Convergence Analysis of Algorithm 3

Now, we provide the convergence rate of Algorithm 3 by extending the proof in [5] to

the block randomized setting, which is obtained under the same assumptions with

Theorem 3.4.1. The main idea for the analysis is to introduce the virtual sequence of
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Ãavg
(d) [t+ 1] = Ãavg

(d) [t]− γ[t] 1
K

∑R
k=1 G

k
(d)[t] and build an iterative descent relation for

it. Meanwhile, we keep track of the error between the true and virtual averages of

Aavg
(d) [t]− Ãavg

(d) [t], and the deviation between the local variables and the true average of

Aavg[t]−Ak[t]. Since both deviations are well-bounded, it means Ak[t],Aavg[t], Ãavg
(d) [t]

are close to each other. Finally, we can obtain the convergence result for the true

sequence Ak[t] by substituting the deviations into the descent relation obtained for

Ãavg
(d) [t].

Theorem 3.4.3. Suppose that Assumptions 3.4.1-3.4.5 hold. Let

(Ak
(1)[t], ...,A

k
(D)[t]) be the iterates of Algorithm 2, for k = 1, ..., K and t = 0, ..., T .

Let γ[t] = C√
T+1

with 0 < C ≤ 1
L

. We have

E[

D∑
d=1

1

D
‖∇A(d)

F (A[Output])‖2F ] ≤ (4C[F (A[0])− F ∗] + 2CLσ2)
1√
T + 1

+
(32C2L2(1− δ2)(σ2 + ω2)

Dδ2
+

8C2L2(σ2 + ω2)

DK

) τ2

T + 1
,

where A[Output] = (A(1)[Output], ...,A(D)[Output]) is sampled from Ak[0] to Ak[T ],

for all k = 1, ..., K, with uniform distribution, F ∗ is the optimal value, σ2 =
∑D

d=1 σ
2
d

and ω2 =
∑D

d=1 ω
2
d.

Remark 3. Algorithm 3 maintains the same convergence rate ofO( 1√
T+1

) as Algorithm

2, despite the periodic communication. The communication gap τ only affects the term

with order O( 1
T+1

), which is insignificant compared to the O( 1√
T+1

) overall convergence

rate. Thus, without increasing the iteration complexity, the periodic communication

can further reduce communication cost.

3.4.2 Complexity Analysis

We provide the computation, storage and communication complexities for FedGTF-EF

and FedGTF-EF-PC given |S| fibers being sampled by each client and the rank of the

GTF being R.
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Figure 3.2: Loss decrease with respect to 1) computation time measured by seconds
(column 1, 3 for Bernoulli Logit Loss and Least Square Loss respectively); 2) uplink
communication cost measured by number of bytes (column 2, 4 for Bernoulli Logit
Loss and Least Square Loss respectively). Top: 3-rd order CMS; Middle: 4-th order
CMS; Bottom: MIMIC-III.

Computational Complexity. Our method is very efficient when compared to the

following methods: 1) the classic CP-ALS and the full gradient descent-based GTF,

which cost O(DR
∏D

d=1 Id); 2) the sampled randomized CP-ALS in [6] and SGD-based

GTF in [37] with the same number of elements sampled, which cost O(RS|
∑D

d=1 Id);

and 3) the same complexity as the full precision block randomized SGD-based TF

[25].

Theorem 3.4.4. The per-iteration computational complexity of Algorithm FedGTF-

EF and FedGTF-EF-PC for each client is

O( 1
D

(
∑D

d=1 Id)R|S|).

Communication Complexity. Assume we are using the Sign compressor and

comparing with full precision distributed SGD with all blocks communicated. Let

D = 4, τ = 8, FedGTF-EF and FedGTF-EF-PC reduces up to 99.22% and 99.90%

uplink communications. In general, we have:

Theorem 3.4.5. FedGTF-EF reduces up to 1 − 1
32D

uplink communication and
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FedGTF-EF-PC reduces up to 1− 1
32Dτ

uplink communication.

Storage Complexity. The fiber sampling based stochastic partial gradient avoids

forming the whole element-wise partial gradient tensor Y , which reduces the storage for

this step from O(
∏D

d=1 Id) to O(|S| 1
D

∑D
d=1 Id), thus achieving the same cost efficiency

with sampling-based random CP-ALS [6], full precision SGD [37] and block randomized

full precision SGD [25].

3.4.3 Privacy Analysis

FedGTF-EF offers privacy preservation by keeping the patient information securely

at each local site, and letting each client hold its own data. Privacy loss is reduced

through the use of block and element level communication, where less information

is disclosed through the data exchange process. FedGTF-EF-PC further reduces the

privacy loss through the use of the periodic communication strategy, which reduce the

communication frequency, and in turn results in less information disclosure.

3.5 Experiment

3.5.1 Experimental Setup

Datasets. We consider two real-world EHR datasets2, as well as a synthetic dataset,

which are introduced below,

i). CMS [1] : A publicly available healthcare dataset with patients’ information

protected. We adopt the rules in [45] to select the top 500 frequently observed diagnoses,

procedures, and medications to form a 4th order tensor of size 125, 961×500×500×500

and a 3rd order tensor of size 91999× 500× 500 (with medication mode omitted).

ii). MIMIC-III [39] : It is a publicly available relational dataset that describes the

2Code available at: https://github.com/jma78/FedGTF-EF
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Table 3.1: Comparison of algorithms in ablation study.
Algorithm Element-level

Reduction
Block-level
Reduction

Round-level
Reduction

Convergence
Guarantee

Compression
Ratio

DistBrasCPD 7 3 7 7 1− 1/D
DistBrasCPD-comp 3 3 7 7 1− 1/32D
DistSGD-EF 7 7 7 7 0
DistSGD-EF-comp 3 7 7 7 1− 1/32
FedGTF-EF 3 3 7 3 1− 1/32D
FedGTF-EF-PC 3 3 3 3 1− 1/32Dτ

patients information of the Intensive Care Units (ICUs). Similar to CMS dataset, we

form a 4 mode tensor representing patients-diagnoses-procedures-medications with

size 34, 272× 500× 500× 500.

iii). Synthetic data : Synthetic data with size 4000× 500× 500× 500 is generated

as follows: for the nonzero entries, their values are sampled from uniform distribution

for the least square loss setting and from binomial distribution for the logit loss setting,

while positions of the non-zero entries are the same for both loss settings which are

uniformly sampled from all entries with 10−4 non-zero ratio.
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Figure 3.3: Ablation Study on 3-rd order CMS for Bernoulli Logit Loss.

Algorithms for comparison. We consider two different loss functions: the Bernoulli

logit loss flogit and the least square loss. For the Bernoulli logit loss, we compare

with: i) GCP (centralized) [47]; ii) BrasCPD (centralized) [25]; iii) Centralized

versions of FedGTF-EF, iv) FedGTF-EF-cyclic and v) FedGTF-EF-prox. For

the least square loss, we compare with: i) BrasCPD (centralized) [25]; ii) FlexiFact

[9, 32]: a distributed tensor factorization algorithm; iii) TRIP [45]: a federated tensor
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Figure 3.4: Comparison of different number of workers on 3-rd order CMS for Bernoulli
Logit Loss.

factorization algorithm optimized with ADMM, which has deterministic per-iteration

update solved in closed-form; iv) DPFact [62]: a federated SGD algorithm designed

for collaborative tensor factorization. For fair comparison, we remove the differential

privacy part of DPFact and substitute the l2,1 regularization with the l1 regularization

as a new variant, DPFact-prox.

Ablation study. We conduct ablation studies to illustrate the contribution of each

communication reduction mechanism to the overall communication efficiency, which

includes i) DistBrasCPD: the distributed version of BrasCPD [25] or FGTF with

only the block-randomized technique; ii) DistBrasCPD-comp: FGTF with both block-

randomized and gradient compression techniques; iii) DistSGD-EF: distributed SGD

with error-feedback that communicates full gradients and all blocks; iv) DistSGD-EF-

comp: DistSGD-EF with gradient compression. Table 4.2 summarize the comparison

with the proposed algorithms.

For our proposed algorithms, in addition to FedGTF-EF and FedGTF-EF-PC, we

consider two variants: FedGTF-EF-cyclic (a variant of FedGTF-EF with cyclic mode

updates), FedGTF-EF-prox (FedGTF-EF with l1 regularization). We vary the value

of τ in {2, 4, 6, 8} for FedGTF-EF-PC.
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Figure 3.5: tSNE visualization of the patient representation learned by BrasCPD
(left) and FedGTF-EF-PC(τ = 8) (right). Each point represents a patient which
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3.5.2 Experiment results

Our experiments show that FedGTF-EF and FedGTF-EF-PC are able to greatly

improve the communication efficiency without slowing down the convergence and de-

teriorating the factorization quality. In detail, we have the following four observations:

i) FedGTF-EF and its variants reduce loss faster with much less communication cost,

for both the Bernoulli Logit Loss (Fig. 3.2 first two columns) and the Least Square

loss (Fig. 3.2 last two columns) compared to the baseline methods. The communica-

tion cost per communication round is further reduced by increasing the local update

iterations τ from 2 to 8 without hurting the performance of the Bernoulli logit loss and

with a slightly worse loss for the least square loss. ii) FedGTF-EF, FedGTF-EF-PC

and their variants are computationally efficient due to the fiber-sampling technique,

i.e., they use lower computation cost compared to the baselines. By Fig. 3.2, for

both objective functions, FedGTF-EF-PC, FedGTF-EF and its variants converges

to similar losses as their centralized counterparts, while cost less time because more

workers are involved in the updating process for the federated setting. Note that

although TRIP converges faster in terms of time, but it tends to be trapped into
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bad local minima caused potentially by its deterministic per-iteration update. iii)

FedGTF-EF, FedGTF-EF-PC and their variants converge to similar losses as the

centralized counterpart, which indicates communication efficiency can be improved

without sacrificing the factorization quality. iv) FedGTF-EF and FedGTF-EF-PC

converge faster in terms of running time with more workers. As shown in Fig. 3.2

upper left and Fig. 4.4, with the number of workers increased from 8 to 16, the time

for FedGTF-EF to converge reduces 65.58%.

From the ablation study (Fig. 4.5), we can see: i) Block-randomized update

and gradient compression can greatly reduce the communication cost by 75.00%

and 96.88%, respectively. Therefore, gradient compression plays a more important

role in communication reduction. ii) With both block-randomized and gradient

compression, FedGTF-EF achieves a gradient reduction of 98.90% over FGTF. iii)

Periodic communication further reduces the communication cost over FGTF by 99.94%,

99.97, 99.98%, and 99.99% with {2, 4, 6, 8} rounds of local communications respectively.

Finally, we evaluate the quality of the federated factorization factors by considering

the patient subgroup identification following [68], as illustrated in Fig. 3.5. We

use tSNE to map the R dimensional vectors into the 2 dimensional space. We first

identify the top 3 phenotypes that have the largest factor weights, which are the

phenotypes #4,#5,#10 in Fig. 3.5 (phenotype details are shown in Table 3.2). Then,

we color the patients by assigning each patient to one of the top 3 phenotypes using

the largest patient weight among the top 3 along the representation vector. Fig. 3.5

shows FedGTF-EF-PC with τ = 8 local updates has comparable performance to the

centralized baseline BrasCPD in clustering the patients with the same phenotype

together. This demonstrates that our method can achieve communication compression

without sacrificing the factorization quality.
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Table 3.2: Top 3 phenptypes extracted by FedGTF-EF-PC(τ = 8) on MIMIC-III data.
Red, blue, and green indicate diagnoses, procedures, and medication, respectively.

P10: Diabetic Heart Failure

Diabetes mellitus without mention of complication
Background diabetic retinopathy
Acute systolic heart failure
Acute on chronic systolic heart failure
Chronic diastolic heart failure
Acute on chronic combined systolic and diastolic heart failure
Insertion of one vascular stent
Open heart valvuloplasty of tricuspid valve without replacement
Operations on other structures adjacent to valves of heart
(Aorto)coronary bypass of three coronary arteries
Captopril (ACE inhibitor), Insulin, Pyridostigmine Bromide,
Isosorbide Dinitrate

P5: Hypertensive Heart Failure

Pure hypercholesterolemia
Cardiac tamponade
Ventricular fibrillation
Cardiac arrest
Acute systolic heart failure
Percutaneous insertion of carotid artery stent(s)
Pericardiocentesis
Extracorporeal circulation auxiliary to open heart surgery
Other endovascular procedures on other vessels
Rosuvastatin Calcium, Isosorbide Dinitrate, Hydrochlorothiazide,
Digoxin, Clonidine HCl

P4: Peripheral Arterial Disease

Congestive heart failure
Atherosclerosis of native arteries of the extremities
– with intermittent claudication
Acute venous embolism and thrombosis of
–superficial veins of upper extremity
Insertion of drug-eluting coronary artery stent(s)
(Aorto)coronary bypass of two coronary arteries
Interruption of the vena cava
Suture of artery
Angioplasty of other non-coronary vessel(s)
Carvedilol, Metoprolol succinate, Amiodarone HCl, Nitroglycerin,
Calcium Chloride
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Chapter 4

Decentralized

Communication-efficient

Generalized Tensor Factorization

In this chapter, we extend the work in Chapter 3 to the decentralized setting, and

further reduce the communication cost at the round level via an event-driven commu-

nication strategy. Moreover, we also incorporate Nesterov’s momentum to accelerate

the training.

4.1 Introduction

Under the federated learning settings, the central server is the most important compu-

tation resource as it is in charge of coordinating the clients (i.e., picking random clients

to communicate at each iteration), aggregating the clients’ intermediate results, and

updating the global model. This shows that federated learning systems heavily rely on

the central server. However, a single server might have several shortcomings: 1) limited

connectivity and bandwidth, which restrict the server from collecting data from as

many clients as possible; 2) vulnerability to malfunctions, which will cause inaccurate
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model updates, or even learning failures; and 3) exposure to external attacks and

malicious adversaries, which will lead to sensitive information leakage (thus, under the

federated settings, a server is usually assumed to be honest-but-curious [45, 62]). Due

to the above limitations, it is obvious that traditional Federated Tensor Factorization

suffers from the bottleneck of the central server regarding the communication latency

and bandwidth, and is exposed to high risk of single-point-failure. To avoid relying on

the server as the only source of computation, decentralization has been proposed as a

solution to this single-point-failure issue [50, 51]. Decentralized federated learning is

designed without the participation of the central server, while each client will rely on its

own computation resources and communicate only with its neighbors in a peer-to-peer

manner. Besides the necessities of a decentralized communication topology, it is also

worth noting that the network capacity between clients are usually much smaller than

the datacenter in many real-world applications [87]. Therefore it is necessary that the

clients communicate the model updates efficiently with limited cost.

In this chapter, we study the decentralized optimization of tensor factorization

under the horizontal data partition setting, and propose CiderTF, a Communication-

effIcient DEcentralized geneRalized Tensor Factorization algorithm for collaborative

analysis over a communication network. To enable more flexibility on choosing

different loss functions under various scenarios, we extend the classic Federated Tensor

Factorization into a more Generalized Tensor Factorization. To the best of our

knowledge, this chapter is the first one proposing a decentralized generalized tensor

factorization, let alone considering the decentralized setting with communication

efficiency. Our contributions are briefly summarized as follows.

First, we develop a decentralized tensor factorization framework which employs

four levels of communication reduction strategies to the decentralized optimization of

tensor factorization to reduce the communication cost over the communication network.

At the element-level, we utilize gradient compression techniques [43, 103, 5, 3, 73]
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to reduce the number of bytes transmitted between clients by converting the partial

gradient from the floating point representation to low-precision representation. At the

block-level, we apply the randomized block coordinate descent [7, 26, 66] for the factor

updates, which only requires sampling one mode from all modes of a tensor for the

update per round and communicating only one mode factor updates with the neighbors.

At the round-level, we adopt a periodic communication strategy [80, 54, 5] to reduce

the communication frequency by allowing each client to perform τ > 1 local update

rounds before communicating with its neighbors. In addition, at the communication

event-level, we apply an event-triggered communication strategy [56, 19, 78] to boost

the communication reduction at the round level.

Second, we further incorporate Nesterov’s momentum into the local updates of

CiderTF and propose CiderTF m, in order to achieve better generalization and faster

convergence.

Third, we conduct comprehensive experiments on both real-world and synthetic

datasets to corroborate the theoretical communication reduction and the convergence

of CiderTF. Experiment results demonstrate that CiderTF achieves comparable con-

vergence performance with the communication reduction of 99.99%. Furthermore, we

conduct an extensive case study on MIMIC-III data with regard to the factorization

quality from both quantitative and qualitative aspects. The resulting factor matrices

highly resembles the factors extracted by the centralized tensor factorization baseline

with significantly less communication cost. The CiderTF extracted phenotypes are

shown to be highly interpretable according to a clinician.

4.2 Preliminaries and Background

In this section, we summarize the frequently used definitions and notations, and

introduce the background knowledge of tensor factorization, the related communication
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Table 4.1: Symbols and notations used in this chapter
Symbol Definition

x,X,X Vector, Matrix, Tensor
X<d> Mode-d matricization of X
‖ · ‖1 `1-norm
‖ · ‖F Frobenius norm
~ Hadamard (element-wise) multiplication
� Khatri Rao product
◦ Outer product
〈·, ·〉 Inner product

reduction techniques, and decentralized optimization.

4.2.1 Notations and Operators

For a D-th order tensor X ∈ RI1×...×ID , the tensor entry indexed by (i1, ..., iD) is

denoted by the MATLAB representation X (i1, ..., iD). Let I denote the index set of all

tensor entries, |I| = IΠ =
∏D

d=1 Id. The mode-d unfolding (also called matricization)

is denoted by X<d> ∈ RId×IΠ/Id .

Definition 4.2.1. (MTTKRP). The MTTKRP operation stands for the matricized

tensor times Khatri-Rao product. Given a tensor Y ∈ RI1×...×ID , its mode-d matri-

cization is Y<d>, [A(1), ...,A(D)] is the set of CP factor matrices. Hd ∈ RIΠ/Id×R is

defined as

Hd = A(D) � ...�A(d+1) �A(d−1)...�A(1),

where � is the Khatri-Rao product. The MTTKRP operation can thus be defined as

the matrix product between Y<d> and Hd as Y<d> ·Hd.

4.2.2 Communication Reduction

Gradient compression. Communication can be a primary bottleneck of the effi-

ciency of the distributed training, especially in federated learning since the connection

between clients and the server usually operates at low speeds (∼1 Mbps) ([73]), and
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the uplink bandwidth is generally slower than the downlink bandwidth. Gradient

compression based methods can compress the communicated information that are

transmitted from clients and the server by reducing the number of bits.

Periodic communication. Periodic communication, which is also known as local

SGD [80, 54], has been developed in order to overcome the communication bottleneck

in distributed training. Instead of keeping different clients in frequent synchronization,

periodic communication allows clients to perform τ > 1 local updates before commu-

nicating, which reduces the communication frequency. Most recently, [5] explored the

combination of periodic communication with various gradient compression strategies,

[81] introduced the error-feedback to analyze the convergence rate for the biased

gradient compression and local SGD.

Event-triggered communication. The event-triggering mechanism was first pro-

posed in the control community [18, 33, 74], and then was extended to be used in

distributed optimization [14, 19]. Most recently, [78, 79] were proposed which study

the combination of the event-driven lazy communication with gradient compression

under the decentralized settings.

4.2.3 Decentralized Optimization

Decentralized optimization algorithms have been widely studied from multiple domains

considering the limited bandwidth, communication latency, and data privacy of the

distributed networks. In the machine learning domain, D-PSGD [51] was first proposed

for the non-convex setting as a decentralized version of SGD with linear speedup, where

K is the number of workers, and T is the total number of iterations. [84] extended

D-PSGD to the data heterogeneity settings. [49] provided a unified framework for the

gossip-based decentralized SGD with theoretical convergence analysis for

In addition, there are multiple works investigating the communication reduction in

decentralized optimization. [83] proposed DCD/ECD-PSGD which quantize the model
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updates with high precision quantizers. [48] proposed CHOCO-SGD, which is the first

work that supports arbitrary compressors. [60] expanded the scope of the applicable

quantizers and supported 1-bit quantizer with no additional memory required. [78]

further reduced the communication cost with an event-driven communication strategy.

Figure 4.1: Ring topology (left) and star topology (right).

4.3 Proposed Method

We study the decentralized generalized tensor factorization, where the EHR tensor

X ∈ RI1×,...,×ID is horizontally partitioned along the patient mode into K small local

tensors X k ∈ RI
1k
×I2×...×ID , k = 1, · · · , K, which are distributed among K institutions.

The aim is to collaboratively learn the phenotypes through communicating with the

neighboring clients in the decentralized network without the coordination of the

central server. We propose to solve the decentralized optimization using the gossip-

based algorithm with multiple communication reduction techniques, including block

randomization, gradient compression, periodic communication, and event-triggered

communication.

4.3.1 Problem Formulation

In the decentralized tensor factorization setting, the communication topology is

represented by an undirected graph G = (V ,E), where V := {1, 2, ..., K} denotes the
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set of clients participating in the communication network. Each node k in the graph

represents a client. The neighbors of client k is denoted as k := {(k, j) : (k, j) ∈ E}.

There is a connectivity matrix W ∈ RK×K , the (k, j)-th entry wkj ∈ [0, 1],∀(k, j) ∈ E

in which denotes the weights of edge (k, j) ∈ E and measures how much the client k

is impacted by client j. If the graph is symmetric, then wkj = wjk, while if there is no

connection between client k and client j, then wkj = 0. We assume the connectivity

matrix W is symmetric and doubly stochastic where each row and column sums to

one (
∑

k wkj =
∑

j wjk = 1).

Each client in the decentralized communication graph will hold a local tensor X k,

which can be seen as the horizontal partition of a global tensor X . The aim for the

decentralized federated learning is to jointly factorize the local tensors X k to get the

globally shared feature factor matrices A(2), ...,A(D), and the individual mode factor

matrices Ak
(1) from all clients

X =


X 1

...

XK

 ≈


A1 = A1
(1) ◦A(2) ◦ ... ◦A(D)

...

AK = AK
(1) ◦A(2) ◦ ... ◦A(D)

 . (4.1)

The objective function for the decentralized generalized tensor factorization is shown

as

argmin
(A(1),...,A(D))

K∑
k=1

F (A,X k),

s.t. A = A(1) ◦ ... ◦A(D),

(4.2)

which can be further extended to other multiblock optimization problems which are

not limited to tensor factorization [100].
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Algorithm 4: CiderTF: Decentralized Generalized Tensor Factorization with
Compressed, Block-randomized, Periodic, and Event-triggered Communica-
tion

Input: Input tensor X , constant learning rate γ[t], A[0],Ak[0] = A[0], ∀k = 1, ...,K,
randomized block sampling sequence dξ[0], ..., dξ[T ], event-triggering threshold λ[t];

1: for t = 0, ..., T do
2: On Each Client Nodes k ∈ 1, ...,K:
3: if d = d(ξ)[t] then

4: Compute stochastic gradient Gk
(d)[t] by eq. (4.6);

5: Ak
(d)[t+ 1

2 ] = Ak
(d)[t]− γ[t]Gk

(d)[t];

6: if (t mod τ) 6= 0 then
7: No communication:

Ak
(d)[t+ 1] = Ak

(d)[t+ 1
2 ], Âk

(d)[t+ 1] = Âk
(d)[t];

8: else
9: for j ∈N k ∪ k do

10: if ‖Ak
(d)[t+ 1

2 ]− Âk
(d)[t]‖

2
F ≥ λ[t](γ[t])2 then

11: ∆k
(d)[t] = Compress(Ak

(d)[t+ 1
2 ]− Âk

(d)[t]);
12: else
13: ∆k

(d)[t] = 0Ik×R;
14: end if
15: Send ∆k

(d)[t] to all j and receive ∆j
(d)[t] from all j, where j ∈N k;

16: Âj
(d)[t+ 1] = Âj

(d)[t] + ∆j
(d)[t];

17: end for
18: Ak

(d)[t+ 1] = Ak
(d)[t+ 1

2 ] + %
∑

j∈N k wkj(Â
j
(d)[t+ 1]− Âk

(d)[t+ 1]);
19: end if
20: else if d 6= dξ[t] then

21: Ak
(d)[t+ 1] = Ak

(d)[t], Âk
(d)[t+ 1] = Âk

(d)[t];
22: end if
23: end for
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4.3.2 CiderTF: Decentralized Generalized Tensor Factoriza-

tion with Compressed, Block-randomized, Periodic, and

Event-triggered Communication

Overview

We propose CiderTF, a decentralized tensor factorization framework which achieves

communication efficiency through four levels of communication reduction. We utilize

the widely used sign compressor [81, 82] (Def. 3.2.1) for gradient compression.

Moreover, we apply the block randomization for the factor updates, which can

not only reduce the computational complexity per iteration, but also eliminate the

need of sending full factor matrices. Furthermore, we reduce the communication

frequency via the combination of the periodic communication and the event-triggered

communication strategies. Each client only need to check for the triggering condition

every τ iterations, and will only need to communicate the compressed updates when

the triggering condition is satisfied.

The detailed algorithm is shown in Algorithm 4 with the key steps annotated. In

CiderTF, each client k ∈ [K] maintains the local factor matrices Ak
(d) from each mode

d = 1, ..., D. The goal is to achieve consensus on the feature mode factor matrices

Ak
(d),∀d = 2, ..., D. Therefore, besides the local factor matrices, each client also need

to maintain the estimation of the local factor matrices Aj
(d) from both itself k and

its neighbors N k (j ∈N k ∪ k). The sequence of the randomized sampling blocks for

every round t = 1, ..., T is denoted as dξ[0], ..., dξ[T ]. At every round for the sampled

block dξ[t], each client checks for the triggering condition for every τ iterations at

the communication round (line 10). The triggering threshold is set to be λ[t]. When

the difference between the updated factor and the local estimation is larger than the

threshold, each client will send and receive the compressed updates to its neighbors.

While if the triggering condition is not satisfied, then the clients will just communicate
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a matrix of zero instead (line 10-14). After receiving the compressed updates from all

its neighbors, each client will first update the local estimation of the factor matrices

Âj
(d)[t + 1], j ∈ N k ∪ k (line 16), and conduct the consensus step and update the

local factors Ak
(d)[t + 1] through the decentralized consensus step (line 18). At the

non-communication round, each client will just keep updating the local factor matrices

(line 6-7). For the rest of the blocks not selected, they will remain the same at the

last round (line 20-22).

Optimization

At each iteration, each client k first needs to compute the GCP gradient as the partial

derivative with regard to the factor matrix Ak
(d) using the MTTKRP operator

∂F (Ak,X k)

∂Ak
(d)[t]

= Yk
<d>Hk

d, (4.3)

where each element of the matrix Y<d> is defined as

Yk(i) =
∂f(Ak(i),X k(i))

∂Ak(i)
,∀i ∈ I, (4.4)

and Hk
d denotes the Khatri-Rao product of mode d of the factor matrices as is shown

in definition 4.2.1. Then the local factor matrix is updated with the gradient descent

step

Ak
(d)[t+

1

2
] = Ak

(d)[t]− γ[t]
∂F (Ak,X k)

∂Ak
(d)[t]

. (4.5)

Fiber Sampling. Note that the computational complexity of the full gradient

∂F (Ak,Xk)

∂Ak
(d)

[t]
is O(R

∏D
d=1 Id), which is the bottleneck of the traditional gradient based

optimization for tensor factorization, especially for EHR tensors where each dimension

can be very large. In order to tackle the time complexity of computing the gradient,

we propose to utilize an efficient fiber sampling technique [6, 26], which randomly
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samples |Sd| fibers from mode d. The fiber sampling technique provides efficient

computation of Hk
d(Sd, :), where only fibers are sampled, and Hk

d(Sd, :) is computed

without forming Hk
d explicitly, but only the s-th rows of Hk

d are required to be

computed as the Hadamard product (~) of the certain rows of the factor matrices at

time t as Hk
d(s, :) = Ak

(1)(i
s
1, :)~ ...~Ak

(d−1)(i
s
d−1, :)~Ak

(d+1)(i
s
d+1, :)~ ...~Ak

(D)(i
s
D, :),

where the indices of rows of the factor matrices are obtained from the index mapping

{is1, ..., isD}, s ∈ Sd. Fiber sampling also allows us to avoid forming the full matricization

of Y<d>, but only need to form Yk
<d>(:,Sd) with size Id×|S| [47]. Therefore, the local

partial stochastic gradient, which is denoted as Gk
(d)[t], is considered as an unbiased

estimation of the gradient ∂F (Ak,Xk)

∂Ak
(d)

[t]
, and can be efficiently computed with the fiber

sampling technique as

Gk
(d)[t] = Yk

<d>(:,Sd)Hk
d(Sd, :), (4.6)

Block randomization. Besides fiber sampling, we utilize the block randomization

[26] to further improve the computation efficiency. Under block randomization, we

randomly select a mode to update at each round, instead of updating all modes. In

other words, for every epoch, there is a random variable dξ[t] ∈ {1, ..., D} representing

the selected mode, and the probability of each mode to be updated at each round is

Pr(dξ[t] = d) =
1

D
. (4.7)

Specially for CiderTF, we always keep the patient mode (i.e. the 1-st mode) securely

at local to avoid directly sharing patient related information, thus when dξ[t] = 1,

we skip the communication of this round, and only update the local patient mode

factors. This not only improves the computation efficiency of the optimization, but

also reduces the communication cost at the block level.
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4.3.3 CiderTF m: CiderTF with Nesterov’s momentum

We further propose CiderTF m with Nesterov’s momentum incorporated in the local

SGD update step to speedup the convergence and achieve less total communication

bits. After computing the partial stochastic gradient Gk
(d)[t] (line 4), we update the

momentum velocity component as

Mk
(d)[t] = Gk

(d)[t] + β
η[t− 1]

η[t]
Mk

(d)[t− 1] (4.8)

where β is the momentum parameter. The intermediate factor matrix will be updated

as

Ak
(d)[t+

1

2
] = Ak

(d)[t]− γ[t](Gk
(d)[t] + βMk

(d)[t]) (4.9)

4.3.4 Complexity Analysis

We analyze the complexity from the perspective of computation, communication, and

memory cost.

Computational Complexity

Theorem 4.3.1. The per-iteration computational complexity of CiderTF for each

client is O( 1
D

(
∑D

d=1 Id)R|S|).

For each client, assume |Sd| are the same for all d as |S|, the computational

complexity per-iteration of the partial stochastic gradient Gk
(d)[t] = Yk

<d>(:,Sd)Hk
d(Sd, :

) consists of three parts: 1) computing the matricization with fiber sampling Yk
<d>(:,Sd)

takes O(Id|S|); 2) computing the Khatri-Rao product with fiber sampled factor

matrices Hk
d(Sd, :) takes O(R|S|(D− 1)); 3) the matrix multiplication between Yk

<d>(:

,Sd) and Hk
d(Sd, :) takesO(|S|RId). In addition, the factor matrix updates is conducted

per iteration with the size of O(IdR), where Id is the number of element of mode
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d, and R is the rank of the decomposed tensor. Overall, the total computational

complexity is summarized as O( 1
D

(
∑D

d=1 Id)R|S|).

Communication Complexity

Theorem 4.3.2. CiderTF reduces a lower bound of 1− 1
32Dτ

communication.

The use of Sign compressor will require each client k sending 1
D
R
∑D

d=2 Id bits to

each neighbor in N k with the block randomization in reducing the communication by

a factor of D. The periodic communication strategy helps reduce the communication

cost by 1
τ

and results in a total cost of 1
Dτ
R
∑D

d=2 Id. Then without the event-

triggering mechanism, there is a lower bound of communication reduction of 1− 1
32Dτ

,

compared with the decentralized SGD with full precision gradients which has the

per-iteration cost of 32(
∑D

d=1 Id). The event-triggering mechanism helps further reduce

the communication cost by an upper bound of 36× per epoch (an epoch contains

500 iterations for our experiments). The total communication reduction is 99.99%

compared with the full precision decentralized SGD based on experimental results.

Memory Complexity

Theorem 4.3.3. CiderTF has the memory complexity of O(|S| 1
D

∑D
d=1 Id).

The memory complexity savings of CiderTF comes from the fiber sampling tech-

nique, which eliminates the need for each client to form the whole mode-d matricized

tensor Yk
<d> with the size of

∏D
d=1 Id. Instead, each client only needs to form a

“sketched version” of Yk
<d>(:,Sd) with size Id × |S|. Thus the memory complexity is

reduced to O(|S| 1
D

∑D
d=1 Id).

Privacy Enhancement

CiderTF offers privacy enhancement through the elimination of the central server,

which reduces the risk of having ther server exposed to the external attacks and being
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the single failure point. It further provides the privacy preservation through making

the communication more efficient. By employing the block level, round level, and

event level communication reduction techniques, CiderTF will require less information

to be transmitted between clients. The application of the Nesterov’s momentum,

which helps increase the convergence speed, also helps reduce the information to be

exchanged. In addition, with the element level communication reduction technique,

since clients only need to transmit the low-precision version of the model updates

instead of the true values, it reveals less information, and thus enhances the privacy

of the algorithm.

4.4 Experiment

4.4.1 Experimental Settings

Datasets

We conduct experiments on two real-world datasets, including MIMIC-III [39] and

CMS [1], which are large volume, publicly available and de-identified. MIMIC-III data

contains more than fifty thousand of intensive care unit (ICU) stays from 2001-2012.

The CMS (DE-SynPUF) dataset is a realistic set of claim data with the highest degree

of protection on the patient information and has similar data structure as the real

CMS data. It contains more than six billion beneficiary records from 2008-2010. We

also generate a synthetic dataset with similar sparsity as the real-world datasets to

further testify the generalizability of our algorithm. To reduce the sparsity, we follow

the rules in [45] and select the top 500 diagnoses, procedures, and medications of

the most frequently observed records to form the tensors with patient mode 34,272,

125,961, and 4000 for MIMIC-III, CMS, and Synthetic data, respectively.



71

Baselines

We consider the centralized tensor factorization baselines. i) GCP [47] as the central-

ized baseline of the generalized tensor factorization; ii) BrasCPD [26] as the com-

putation efficient centralized tensor factorization baseline; iii) Centralized CiderTF,

CiderTF with K = 1 and uses error-feedback to adjust the compression error.

In addition, we implement the decentralized version SGD under the non-convex

settings as the decentralized baselines, since there is no existing decentralized tensor fac-

torization framework. i) D-PSGD [51, 49] as a pure decentralized version of stochastic

gradient descent (SGD); ii) SPARQ-SGD [78] as a decentralized communication-

efficient stochastic gradient descent framework which employs the gradient compression,

local SGD, and the event-triggered communication to reduce the communication cost;

iii) D-PSGDbras can be considered as D-PSGD with block randomization.

Parameter Settings

Experiments are performed on two kinds of objective functions including Bernoulli-

logit loss to fit the binary data and Least Square Loss to fit the data with Gaussian

distribution, which is also considered as standard CP decomposition.

We set the number of iterations per epoch as 500. We use a fixed learning rate γ[t],

which is determined through searching the grid of powers of 2. We follow the rule in

[78] to set the triggering threshold λ[t]. The triggering threshold is initialized as λ[0]

at the beginning, and will be increased by a constant factor αλ every m epochs until

convergence in order to prevent the clients satisfying the triggering condition every

epoch. We set λ[0] as 1
γ[t]

according to [78], and set αλ and m through grid search

within [1, 2] and [1, 5]. For CiderTF m, we set the momentum factor β as 0.9.
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4.4.2 Result Analysis

We form a decentralized communication topology as a ring, and have a default of eight

workers with data horizontally partitioned and distributed evenly across all the eight

clients.

Comparison to the Baselines

From Fig. 4.2, we have four major observations.

i) CiderTF converges to comparable losses as the centralized tensor fac-

torization baselines. CiderTF, with various number of local update rounds (τ =

{2, 4, 6, 8}), achieves similar losses at convergence compared with the centralized

tensor factorization algorithms. These results empirically validate the convergence of

CiderTF.

ii) CiderTF has less communication cost compared with the decentralized

baselines. To achieve the same loss, CiderTF takes 99.99% less communication cost

than D-PSGD, 75% less communication cost than SPARQ-SGD and 99.92% less

than D-PSGDbras. This communication reduction is achieved without sacrificing the

convergence rate compared with the decentralized SGD with full precision gradients.

iii) CiderTF is computationally efficient. From the 1, 3 columns of Fig. 4.2,

we observe that CiderTF is computationally efficient compared with GCP and D-

PSGD. This is because the fiber sampling technique and the block randomization helps

reduce the computational complexity, which also verifies the computational complexity

analysis in Sec. 4.3.4. CiderTF is also slightly more efficient than BrasCPD mainly

due to the scalability of the decentralized data distribution which helps parallelize the

local tensor factorization.

iv) Nesterov’s momentum can offer CiderTF m faster convergence, thus

will lead to less overall communication cost. From Fig. 4.2, we observe that

CiderTF m requires less epochs to converge, which in turn helps reduce the total
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communication bytes with little sacrifice of the accuracy.

GCP BrasCPD Centralized CiderTF D-PSGD D-PSGDbras SPARQ-SGD CiderTF ( =2) CiderTF ( =4) CiderTF ( =6) CiderTF ( =8) CiderTF_m
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Figure 4.2: Bernoulli-logit Loss (1-2 columns) and Least Square Loss (3-4 columns)
for ring topology with respect to time and communication. Centralized approaches
are marked with square, decentralized baselines are marked in triangle, CiderTF with
different number of local rounds are marked in solid lines. From top to bottom: CMS,
MIMIC-III, Synthetic dataset.

Impact of Topology

We also test CiderTF on two different topologies, including ring topology and the star

topology for the same number of workers (shown in Fig. 4.1). From the results in Fig.

4.3, we observe that different topologies do not affect the convergence performance and

both of them converge to similar losses for both Bernoulli-logit Loss and Least Square

Loss, which means that CiderTF can generalize to different kinds of communication

network topologies. Fig. 4.3 (left) illustrates that two topologies do not vary much

in the computation time, since the number of workers are the same. However, star

topology enjoys less communication cost because the total degree of the star topology
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is less than the ring topology (Fig. 4.3 right).
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Figure 4.3: Bernoulli-logit Loss (1-2 columns) and Least Square Loss (3-4 columns)
for ring topology (solid lines) and star topology (dashed lines) with respect to time
and communication. From top to bottom: CMS, MIMIC-III, Synthetic dataset.

Scalability

Moreover, we test the scalability of CiderTF. By increasing the number of clients from

K = 8 to K = 16 and K = 32 involved in the computation, we can observe linear

scalability in the computation time (Fig. 4.4 left) without sacrificing the accuracy.

However, as the number of clients increases, the communication cost will increase

accordingly (Fig. 4.4 right). Therefore, there exists a computation-communication

trade-off when increasing the number of clients involved in the decentralized tensor

factorization framework.



75

CiderTF ( =4)-8 workers
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Figure 4.4: Bernoulli-logit loss with respect to time and communication for MIMIC-III
data with 8, 16, and 32 workers for local update rounds τ = 4, 8.

Table 4.2: Comparison of the decentralized optimization algorithms in ablation study.
Algorithm Element-level Block-level Round-level Event-driven Compression Ratio

D-PSGD 7 7 7 7 0
D-PSGDbras 7 3 7 7 1− 1/D
D-PSGD+signSGD 3 7 7 7 1− 1/32
D-PSGDbras+signSGD 3 3 7 7 1− 1/32D
SPARQ-SGD 3 7 3 3 1− 1/32τ
CiderTF 3 3 3 3 1− 1/32Dτ
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Ablation Study

We conduct an ablation study to clarify the reduction of the communication cost.

We compare CiderTF with the following algorithms: 1) D-PSGD: decentralized SGD

with full gradient and full block and single round communication; 2) D-PSGDbras:

D-PSGD with block randomization; 3) D-PSGD+signSGD: D-PSGD with gradient

compression using sign compressor; 4) D-PSGDbras+signSGD: D-PSGD with block

randomization and gradient compression. The algorithm comparisons are summarized

in Table 4.2.

From Fig. 4.5, we observe that D-PSGD which communicates the full gradient

and blocks has the highest communication cost. Gradient compression plays the

most important role in reducing the communication cost, which reduces the actual

communication cost of MIMIC-III data of 96.88%. The block randomization further

reduces the communication cost to 75.00%. The application of the event-driven and

periodic communication helps reduce the communication with a lower bound of 87.5%

and up to an upper bound to 97.22%.
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Figure 4.5: Ablation study for decentralized optimization algorithms with different
levels of communication reduction.
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Comparison to Federated Tensor Factorization with Central Server

In order to compare the decentralized method to the federated algorithm with the

central server, we further conduct experiments to compare CiderTF under different

topologies with the federated tensor factorization algorithm FedGTF-EF-PC with

similar communication reduction techniques proposed in Chapter 3, while CiderTF

employs the event-driven technique to further reduce the communication cost. Fig.

4.6 shows the training curve with respect to the number of epochs and communication

cost. We can observe that CiderTF requires similar epochs (columns 1, 3) to converge

compared with FedGTF-EF-PC. For Bernoulli-logit loss, FedGTF-EF-PC has less

communication cost than CiderTF (column 2) because all the communication is

doubled for the decentralized optimization networks. However, we can also observe

that FedGTF-EF-PC has more communication cost for the square loss (column 4).

This indicates that the event-driven method can reduce the communication cost, which

offsets the communication caused by the decentralization.

4.4.3 Case Study on MIMIC-III

In order to validate the ability of extracting effective phenotypes using CiderTF, we

conduct a case study on MIMIC-III dataset. We evaluate the extracted phenotypes

from both quantitative and qualitative perspectives. From the quantitative aspect, we

use the Factor Match Score (FMS) [2] to measure the similarity of the factor matrices

of CiderTF with the centralized baseline BrasCPD. FMS ranges from 0 to 1 with the

best possible value of 1.

Fig. 4.7 indicates that CiderTF achieves the highest FMS of the decentralized

methods as it gradually approaches 1. This means that CiderTF can extract the factor

matrices similar to its centralized counterpart BrasCPD. We can also observe that

CiderTF approaches the centralized factors with the least time and communication

cost.
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Figure 4.6: Bernoulli-logit Loss (1-2 columns) and Least Square Loss (3-4 columns) for
CiderTF with ring topology (solid lines) and star topology (dashed lines), and FedGTF-
EF-PC (dash-dotted lines) with respect to number of epochs and communication cost.
From top to bottom: CMS, MIMIC-III, Synthetic dataset.
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Figure 4.7: Factor Match Scores (FMS) with respect to time and communication.
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Furthermore, from the the qualitative perspective, we evaluate the quality of

the phenotypes by patient subgroup identification ability. Following the precedent

set in [68], we first identify the top three phenotypes according to the phenotype

importance factor λr =
∥∥A(1)(:, r)

∥∥
F

∥∥A(2)(:, r)
∥∥
F
· · ·
∥∥A(D)(:, r)

∥∥
F

. We then group

the patients by assigning each according to the largest value among the top 3 along

the patient representation vector, and use tSNE to map the patient representation

into two-dimensional space. Fig. 4.3 shows that CiderTF (τ = 8) achieves comparable

patient subgroup identification ability as the centralized baseline BrasCPD. When

compared to the decentralized baselines with the same communication cost (since 1

epoch of D-PSGD and D-PSGDbras already incurs more communication cost, we show

the result after 1 epoch), CiderTF achieves better clustered subgroups, demonstrating

that CiderTF is able to better identify patient subgroups. In addition, the top 3

phenotypes extracted by CiderTF, shown in Table 4.4, are clinically meaningful and

interpretable as annotated by a pulmonary and critical care physician.
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Table 4.3: tSNE visualization of the patient subgroup identification with the extracted
phenotypes. Each point represents a patient which is colored according to the highest-
valued coordinate in the patient representation vector among the top 3 phenotypes
extracted based on the factor weights λr =

∥∥A(1)(:, r)
∥∥
F

∥∥A(2)(:, r)
∥∥
F
· · ·
∥∥A(D)(:, r)

∥∥
F

.

BrasCPD
D-PSGD

1 epoch: 109

D-PSGDbras
1 epoch: 107

SPARQ-SGD
3.2× 105

CiderTF (τ = 8)
105

CiderTF (τ = 8)
Total: 3.2× 105
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Table 4.4: phenptypes extracted by CiderTF (τ = 8) on MIMIC-III data. Dx, Px,
and Med indicate diagnoses, procedures, and medication.

P1: Acute myocardial infarction

Dx
Other and unspecified angina pectoris
Coronary atherosclerosis of autologous vein bypass graft
Old myocardial infarction

Px
(Aorto)coronary bypass of two coronary arteries
(Aorto)coronary bypass of three coronary arteries
Implant of pulsation balloon

Med
Diltiazem Hydrochloride Extended-Release
Metoprolol succinate, Rosuvastatin Calcium
Valsartan/hydrochlorothiazide, Losartan Potassium

P2: Respiratory failure

Dx
Acute respiratory failure, Hypoxemia,
Contusion of lung without mention of

open wound into thorax
Disruption of internal operation (surgical) wound

Px
Non-invasive mechanical ventilation
Continuous invasive mechanical ventilation for less than

96 consecutive hours

Med Dextrose, Albuminar-25, Plasmanate

P3: Intracranial hemorrhage or cerebral infarction

Dx
Pure hypercholesterolemia, Subdural hemorrhage
Cerebral artery occlusion

Px
Injection or infusion of thrombolytic agent
Control of hemorrhage

Med Ticagrelor, Atorvastatin Calcium
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this dissertation, we investigate the problem of Federated Tensor Factorization for

collaborative heath data analytics from multiple aspects.

From the aspect of privacy issue under the federated learning settings, we propose

DPFact, which is able to successfully tackle the privacy issue under the distributed set-

ting with limited privacy loss by the application of zCDP and the parallel composition

theorem. Moreover, our model recognizes that the learned global latent factors need

not be present at all sites, allowing the discovery of both shared and site-specific com-

putational phenotypes. Furthermore, by adopting a communication-efficient EASGD

algorithm, DPFact greatly reduces the communication overhead. Experiments on

real-world and synthetic datasets demonstrate that our model outperforms other

state-of-the-art methods in terms of communication cost, accuracy, and phenotype

discovery ability.

From the aspect of communication and computation efficiency, we proposed

FedGTF-EF/FedGTF-EF-PC with the flexibility of choosing different loss func-

tions according to the data distribution. FedGTF-EF employs the communication
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efficient designs of block randomized update and gradient compression with error-

feedback, which encompassed two levels of uplink communication reduction: reduced

number of blocks and reduced per-element communication. We further reduce the

communication rounds by periodic averaging to develop the FedGTF-EF-PC algorithm.

The convergence guarantee is provided under common assumptions applied not only

to generalized tensor factorization problems but also to more general machine learning

problems possessing a multi-block structure. Our algorithm can maintain low compu-

tational and storage complexity while occupying much lower uplink communication

cost. We demonstrate its superior efficiency and uncompromised quality on synthetic

and two real-world EHR datasets.

From the aspect of the topology of the healthcare network, we proposed CiderTF,

which is the first decentralized generalized tensor factorization framework. It employs

four levels of communication reduction with gradient compression, block randomization,

and periodic communication combined with an event-driven communication strategy.

Meanwhile, CiderTF enjoys low computational and memory complexity due to the

two levels of randomization: random fiber sampling and random block selection.

Experiments show that CiderTF preserves the quality of the extracted phenotypes

and converges to similar points as the decentralized SGD baselines with theoretical

guarantees.

5.2 Future Work

The proposed methods can be further extended from the following directions:

Federated Tensor Factorization with byzantine robustness. Under the

federated learning setting of FedGTF-EF/FedGTF-EF-PC for healthcare data analyt-

ics, the clients within the system would be susceptible to malicious attacks [65, 97, 28],

resulting in the attacked clients sending arbitrary information to the server. This
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would lead to the failure of the federated learning system (e.g. bad convergence, dissat-

isfactory performance, etc.), which is modeled as the Byzantine failure. It is important

that we develop a Byzantine-robust mechanism to guarantee the convergence of the

FTF framework.

Federated Tensor Factorization with heterogeneous data distributions.

We have proposed the efficient Federated Tensor Factorization frameworks (FedGTF-

EF/FedGTF-EF-PC and CiderTF) for the topologies with and without a central

server, where data is assumed to be horizontally distributed among multiple medical

institutions. However, this assumption is somewhat narrow for the real-world scenarios,

where data from different medical institutions may follow different distributions [69].

With the flexibility of the generalized TF, each client with different data distribution

will be able to employ different loss functions.

Asynchronization of FedGTF-EF/FedGTF-EF-PC and CiderTF. The

training of FedGTF-EF/FedGTF-EF-PC and CiderTF involves a periodic synchro-

nization step to update the global (averaged) model with the compressed updates to

achieve consensus. However, different clients (medical institutions) may have access

to different computation resources, meaning that some of the clients with sufficient

computation power can finish the computation faster than those with restricted com-

putation power, who can be recognized as stragglers [12, 52]. Current training of

FedGTF-EF/FedGTF-EF-PC and CiderTF requires all clients to be available for each

synchronization step, otherwise, the system has to wait for the stragglers. It would be

important to investigate the asynchronization of FedGTF-EF/FedGTF-EF-PC and

CiderTF to guarantee the convergence and reduce the idle training time.
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Appendix A

DPFact

This section provides supplementary information.

A.1 Lipschitz Constant

Below is the calculation of the Lipschitz constant in objective function (2.15), which

will be used for calculating β in section 2.4.2. Since B[t] and C[t] play the same role in

the objective function in (2.15), we take B[t] as an example. f(B[t]) can be rewritten

as

f(B[t]) =
1

2

∥∥∥O[t]
(n) −B[t]ΠB

∥∥∥2

F︸ ︷︷ ︸
FB

+
γ

2

∥∥B[t] −B
∥∥2

F︸ ︷︷ ︸
QB

, (A.1)

where O[t]
(n) is the matricization of the local observed tensor O[t], ΠB = C[t] �A[t].

Thus f(B[t]) is the combination of FB and QB. We provide analysis of Lipschitz

continuity of (A.1) separately for FB and QB. The analysis for FB could also be

adopted into equation (2.9) in section 2.4.1.

The gradient of FB(B[t]) is calculated as ∇FB(B[t]) = −O[t]
(n)ΠB + B[t]ΓB, where
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ΓB = (A[t]>A[t]) ∗ (C[t]>C[t]). Furthermore, for any B
[t]
1 ,B

[t]
2 ∈ R

j×n
+ , we have

∥∥∥∇FB(B
[t]
1 )−∇FB(B

[t]
2 )
∥∥∥
F

=
∥∥∥B[t]

1 ΓB −B[t]
2ΓB

∥∥∥
F

=
∥∥∥(B

[t]
1 −B

[t]
2 )ΓB

∥∥∥
F

≤ ‖ΓB‖F
∥∥∥B[t]

1 −B
[t]
2

∥∥∥
F
.

(A.2)

The gradient of QB is calculated as ∇QB(B[t]) = γB[t]. Similar to ∇FB(B[t]), for

any B
[t]
1 ,B

[t]
2 ∈ R

j×n
+ , we have

∥∥∥∇FB(B
[t]
1 )−∇FB(B

[t]
2 )
∥∥∥
F

=
∥∥∥γB

[t]
1 − γB

[t]
2

∥∥∥
F

=
∥∥∥γIj(B[t]

1 −B
[t]
2 )
∥∥∥
F

≤ ‖γIj‖F
∥∥∥B[t]

1 −B
[t]
2

∥∥∥
F

(A.3)

By combining the results in (A.2) and (A.3), we thus get the Lipschitz constant

of ∇f(B[t]) as the Frobenius norm of

(A[t]>A[t]) ∗ (C[t]>C[t]) + γIj.

A.2 L2,1 Regularization Parameter

Figure A.1 illustrates the effect of choosing different value of µ on the column norm of

the patient matrix for each ICUs in MIMIC-III dataset. We observe that smaller µ

has minimal effect on the column sparsity, as there are no columns that are set to 0.

However, if we set µ to be too high (i.e., µ = {5, 6, 8, 6, 5, 0.9} for each ICU respectively),

then it “turns off” a large portion of the factors and prevents DPFact from generating

useful phenotypes. Based on the figure, we choose µ = {1, 1.8, 3.2, 1.8, 1.5, 0.6} for

TSICU, SICU, MICU, CSRU, CCU, NICU respectively, as the optimal solution for

MIMIC-III as there are still noticeable differences in the column magnitude (i.e, the
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phenotypes have a natural ordering within each location) but also provides flexibility

to have at least one unshared column (see component 2 and 4).

Figure A.1: Norm of each ICU with different regularization term µ
(y-axis is the norm, x-axis is the rank)

A.3 Phenotype Selection

Table A.1 provides information in supplementary for phenotype selection of the overall

pattern. Similar to table 2.4, among the 50 phenotypes generated by DPFact, we

selected 20 phenotypes that are statistically significant for mortality prediction. We

reported 6 representative phenotypes which has the highest factor weights (λ).
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Phenotypes Coef p-value λ Prevalence

2 1.46 <0.001 163 21.67
3: Hypertension -1.53 <0.001 249 20.57
6 -1.19 <0.001 145 23.53
7 -2.34 <0.001 49 18.17
8 2.89 <0.001 162 24.31
9 2.88 <0.001 116 22.81
14 -1.72 <0.001 94 18.25
16 2.29 <0.001 79 17.48
17 4.21 <0.001 166 21.96
18 3.66 <0.001 69 16.79
20 -1.51 <0.001 95 20.72
22 2.17 <0.001 137 19.19
25: Heart failure -6.56 <0.001 278 16.40
30: Acute kidney injury 0.46 <0.001 203 26.35
32 1.65 <0.001 109 18.73
37 1.42 <0.001 116 22.50
42: Gastritis and gastroduodenitis -2.24 <0.001 187 22.88
47: Cardiac surgery -2.94 <0.001 223 16.55
49 2.91 <0.001 113 22.73
50: Chronic ischemic heart disease 1.38 <0.001 207 27.45

Table A.1: Logistic regression results for phenotype selection

# of Sites MIMIC-III CMS Synthetic

1 18.73 22.89 1.55
5 93.62 114.42 7.75
10 189.83 228.83 15.50

Table A.2: Communication cost of DPFact for different number of sites (Seconds)
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Appendix B

FedGTF-EF/FedGTF-EF-PC

B.1 Additional Materials for Experiments

B.1.1 Parameter Settings

For MIMIC-III, CMS and synthetic datasets, each algorithm is run for 500 iterations

per epoch until converge, while for delicious dataset, each algorithm is run for 1000

iterations per epoch. For GCP algorithm, we tune the stepsize within the range of

{10−8, 10−9, 10−10, 10−11}, while for the rest algorithms, we tune the stepsize by grid

search through {22, 21, 20, 2−1, 2−2, ..., 2−11}. The parameter for the proximal operator

is set to 10−4 for all the algorithms with the proximal operators (FedGTF-EF-prox,

DPFact-prox). For all the federated algorithms, we by default horizontally partition

the tensor (along I1 mode) into 8 tensors without overlapping and distribute each of

them to 8 client nodes respectively. We also test different numbers of workers (16

workers and 32 workers), where the stepsizes are set to the same as for 8 workers. The

best stepsizes for each algorithms for different datasets are set as in Table B.1 and

B.2.

Each experiment is averaged over 5 repetitions. All experiments are run on Matlab

2019a on an r5.12xlarge instance of AWS EC2 with Tensor Toolbox Version 3.1 [4].
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Figure B.1: Bernoulli Logit Loss and Square Loss with respect to computation time
and communication for synthetic data.
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Figure B.2: Bernoulli logit loss (column 1,2) and Least Square loss (column 3,4)
decrease with respect to epochs.

B.1.2 Additional Experiments

Two additional groups of figures are presented here. Fig.B.1 shows the loss decrease

for both the Bernoulli loss and the Least Square loss with respect to time and

communication for the synthetic data. Fig.B.2 shows the Bernoulli loss and the Least

Square loss decrease with respect to epochs in supplementary to the figures showed in

the main paper with respects to time and communication. Similar conclusions can be

drawn with the real-world EHR datasets in the main paper. That is, the proposed

Table B.1: Best Stepsizes for the Bernoulli Logit Loss
Algorithm MIMIC-III 4th order CMS 3rd order CMS Synthetic
GCP 10−10 10−10 10−10 10−9

BrasCPD 2−4 2−1 2−4 2−5

Centralized FedGTF-EF 2−3 2−1 2−2 2−4

Centralized FedGTF-EF-cyclic 2−2 2−2 2−2 2−4

Centralized FedGTF-EF-prox 2−2 2−0 2−2 2−2

FedGTF-EF 2−3 2−2 2−2 2−4

FedGTF-EF-cyclic 2−4 2−2 2−2 2−4

FedGTF-EF-prox 2−2 2−3 2−4 2−1

FedGTF-EF-PC(τ = 2) 2−5 2−5 2−2 2−4

FedGTF-EF-PC(τ = 4) 2−5 2−5 2−2 2−4

FedGTF-EF-PC(τ = 6) 2−5 2−5 2−2 2−4

FedGTF-EF-PC(τ = 8) 2−5 2−5 2−2 2−4
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Table B.2: Best Stepsizes for the Least Square Loss
Algorithm MIMIC-III 4-th order CMS 3-rd order CMS Synthetic
BrasCPD 2−5 20 10−4 2−2

FlexiFact - - 2 -
DPFact 2−4 21 2−10 2−2

DPFact-prox 2−4 21 2−10 2−2

FedGTF-EF 2−4 20 2−11 2−2

FedGTF-EF-prox 2−5 20 2−10 2−2

FedGTF-EF-PC(τ = 2) 2−4 20 2−10 2−2

FedGTF-EF-PC(τ = 4) 2−4 20 2−10 2−2

FedGTF-EF-PC(τ = 6) 2−4 20 2−10 2−2

FedGTF-EF-PC(τ = 8) 2−4 20 2−10 2−2

algorithms achieve more efficient convergence than the centralized baselines under

the Bernoulli logit loss and the distributed baseline under the least square loss. It is

also more communication-efficient than the algorithms without gradient compressor

(BrasCPD distributed version) and without the block randomized mechanism (DPFact

and its variants).

B.2 Additional Materials for Convergence Analy-

sis of Algorithm 1

B.2.1 Proof of Theorem 4.1

For the smooth case, the proof follows [43] to regard the iteration with error feedback

as SGD with delayed variable. The new development is to allow randomized block-wise

update.

Auxiliary variables for the proof and iterative relation

The following auxillary variables and virtual iterations are introduced only for the

proof.

Ã(d)[t] := A(d)[t]−
1

K

K∑
k=1

Ek
(d)[t]. (B.1)

Given the auxiliary variable Ã(d)[t], we have the following iterative relation: if
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d = dξ[t],

Ã(d)[t+ 1] = A(d)[t+ 1]− 1

K

K∑
k=1

Ek
(d)[t+ 1]

=
(
A(d)[t]−

1

K

K∑
k=1

∆k
(d)[t]

)
− 1

K

K∑
k=1

Ek
(d)[t+ 1]

= A(d)[t]−
1

K

K∑
k=1

Pk
(d)[t]

= A(d)[t]−
( 1

K

K∑
k=1

Ek
(d)[t] + γ[t]

1

K

K∑
k=1

Gk
(d)[t]

)
= Ã(d)[t]− γ[t]

1

K

K∑
k=1

Gk
(d)[t];

(B.2)

else if d 6= dξ[t],

Ã(d)[t+ 1] = A(d)[t+ 1]− 1

K

K∑
k=1

Ek
(d)[t+ 1] = A(d)[t]−

1

K

K∑
k=1

Ek
(d)[t] = Ã(d)[t]. (B.3)

Additional Lemma

The following lemma extends Lemma 3 in [43] to our block randomized case.

Lemma B.2.1. (Bounding the expectation of the block-wise feedback error averaged

among client nodes) For d = 1, ..., D and for t = 0, ..., T , assuming constant step size

γ[t] = γ, we have

E
[
‖ 1

K

K∑
k=1

Ek
(d)[t+ 1]‖2

F

]
≤ 4(1− δ)

δ2
γ2(σ2

d + ω2
d). (B.4)
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Proof.

E
[
‖ 1

K

K∑
k=1

Ek
(d)[t+ 1]‖2F

]
≤ 1

K

K∑
k=1

E
[
‖Ek

(d)[t+ 1]‖2F
]

=
1

K

K∑
k=1

1

D
E
[
‖Pk

(d)[t]− Compress(Pk
(d)[t])‖

2
F

]
+ (1− 1

D
)E
[
‖Ek

(d)[t]‖
2
F

]
≤ 1

K

K∑
k=1

1

D
(1− δ)E

[
‖Pk

(d)[t]‖
2
F

]
+ (1− 1

D
)E
[
‖Ek

(d)[t]‖
2
F
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1
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k=1
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(1− δ)E

[
‖Ek

(d)[t] + γ[t]Gk
(d)[t]‖

2
F

]
+ (1− 1

D
)E
[
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(d)[t]‖
2
F
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(1− δ)(1 + η)E

[
‖Ek

(d)[t]‖
2
F

]
+ (γ[t])2 1

D
(1− δ)(1 + 1/η)E
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‖Gk

(d)[t]‖
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F
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+ (1− 1

D
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‖Ek
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F
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( 1

D
(1− δ)(1 + η) + (1− 1

D
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E
[
‖Ek

(d)[t]‖
2
F

]
+ (γ[t])2 1

D
(1− δ)(1 + 1/η)E

[
‖Gk

(d)[t]‖
2
F

]
.

(B.5)

Unrolling the above recursive relation and let γ[t] = γ, we have

1

K

K∑
k=1

E
[
‖Ek

(d)[t+ 1]‖2
F

]
≤ 1

K

K∑
k=1

( 1

D
(1− δ)(1 + η) + (1− 1

D
)
)t−i

(γ[i])2
( 1

D
(1− δ)(1 + 1/η)E

[
‖Gk

(d)[i]‖2
F

])
(B.6)
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Let γ[t] = γ and E
[
‖Gk

(d)[i]‖2
F

]
≤ σ2

d + ω2
d. We have

1

K

K∑
k=1

E
[
‖Ek

(d)[t+ 1]‖2F
]
≤ 1

K

K∑
k=1

t∑
i=0

( 1

D
(1− δ)(1 + η) + (1− 1

D
)
)t−i

·
(
γ2 1

D
(1− δ)(1 + 1/η)(σ2

d + ω2
d)
)

≤ 1

K

K∑
k=1

+∞∑
i=0

( 1

D
(1− δ)(1 + η) + (1− 1

D
)
)t−i(

γ2 1

D
(1− δ)(1 + 1/η)(σ2

d + ω2
d)
)

≤ (1− δ)(1 + 1/η)

1− [ 1
D (1− δ)(1 + η) + (1− 1

D )]
γ2 1

D
(σ2
d + ω2

d)

=
(1− δ)(1 + 1/η)

1− (1− δ)(1 + η)
γ2(σ2

d + ω2
d).

(B.7)

In the above, to satisfy 0 < (1− δ)(1 + η) < 1, let η = δ
2(1−δ) and 1 + 1

η
= 2−δ

δ
≤ 2

δ
,

we have

E
[
‖ 1

K

K∑
k=1

Ek
(d)[t+ 1]‖2

F

]
≤ 4(1− δ)

δ2
γ2(σ2

d + ω2
d). (B.8)

Main proof of Theorem 4.1

By block-wise Lipschitz smoothness assumption of the loss function:

F (Ã[t+ 1]) ≤ F (Ã[t]) + 〈∇A(dξ [t])
F (Ã[t]), Ã(dξ[t])[t+ 1]− Ã(dξ[t])[t]〉

+
Ldξ[t]

2
‖Ã(dξ[t])[t+ 1]− Ã(dξ[t])[t]‖

2
F

= F (Ã[t])− γ[t]〈∇A(dξ [t])
F (Ã[t]),

1

K

K∑
k=1

Gk
(dξ[t])

[t]〉+
Ldξ[t](γ[t])2

2
‖ 1

K

K∑
k=1

Gk
(dξ[t])

[t]‖2F .

(B.9)

By Assumption 4.2 that Eζ[t]
[

1
K

∑K
k=1 Gk

dξ[t]
[t]
∣∣∣F [t], ξ[t]

]
= ∇A(dξ[t])

F (A[t]), we
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have

Eζ[t]
[
‖ 1

K

K∑
k=1

Gk
(dξ[t])

[t]−∇A(dξ[t])
F (A[t])‖2F

∣∣∣F [t], ξ[t]
]

= Eζ[t]
[
‖ 1

K

K∑
k=1

Gk
(dξ[t])

[t]‖2F
∣∣∣F [t], ξ[t]

]
− ‖∇A(dξ [t])

F (A[t])‖2F .

(B.10)

Taking conditional expectation on both sides of eq.(B.9) with respect to filtration

F [t] and randomness of ζ[t] during the stochastic gradient computation and plugging

eq.(B.10) in, we have

Eζ[t]
[
F (Ã[t+ 1])

∣∣∣F [t], ξ[t]
]
≤ F (Ã[t])− γ[t]Eζ[t]

[
〈∇A(dξ [t])

F (Ã[t]),
1

K

K∑
k=1

Gk
(dξ[t])

[t]〉
∣∣∣F [t], ξ[t]

]
+
Ldξ[t](γ[t])2

2
Eζ[t]

[
‖ 1

K

K∑
k=1

Gk
(dξ[t])

[t]−∇A(dξ[t])
F (A[t])‖2F

∣∣∣F [t], ξ[t]
]

+
Ldξ[t](γ[t])2

2
‖∇A(dξ [t])

F (A[t])‖2F

≤ F (Ã[t])− γ[t]〈∇A(dξ [t])
F (Ã[t]),∇A(dξ[t])

F (A[t])〉

+
Ldξ[t](γ[t])2

2
‖∇A(dξ [t])

F (A[t])‖2F +
Ldξ[t](γ[t])2

2K
σ2
dξ[t]

= F (Ã[t])− γ[t]〈∇A(dξ[t])
F (A[t]),∇A(dξ[t])

F (A[t])〉

+ γ[t]〈∇A(dξ[t])
F (A[t])−∇A(dξ [t])

F (Ã[t]),∇A(dξ[t])
F (A[t])〉

+
Ldξ[t](γ[t])2

2
‖∇A(dξ [t])

F (A[t])‖2F +
Ldξ[t](γ[t])2

2K
σ2
dξ[t]

= F (Ã[t])− γ[t]
(

1−
Ldξ[t]γ[t]

2

)
‖∇A(dξ [t])

F (A[t])‖2F +
Ldξ[t](γ[t])2

2K
σ2
dξ[t]

+ γ[t]〈∇A(dξ[t])
F (A[t])−∇A(dξ [t])

F (Ã[t]),∇A(dξ[t])
F (A[t])〉.

(B.11)

We bound 〈∇A(dξ[t])
F (A[t])−∇A(dξ [t])

F (Ã[t]),∇A(dξ[t])
F (A[t])〉 by Young’s inequal-
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ity,

〈∇A(dξ[t])
F (A[t])−∇A(dξ [t])

F (Ã[t]),∇A(dξ[t])
F (A[t])〉

≤ 1

2ρ
‖∇A(dξ[t])

F (A[t])−∇A(dξ [t])
F (Ã[t])‖2

F +
ρ

2
‖∇A(dξ[t])

F (A[t])‖2
F

(B.12)

Plugging eq.(B.12) into eq.(B.11), we have

Eζ[t]
[
F (Ã[t+ 1])

∣∣∣F [t], ξ[t]
]
≤ F (Ã[t])− γ[t]

(
1−

Ldξ[t]γ[t] + ρ

2

)
‖∇A(dξ [t])

F (A[t])‖2F

+
Ldξ[t](γ[t])2

2K
σ2
dξ[t]

+
γ[t]

2ρ
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F (A[t])−∇A(dξ [t])
F (Ã[t])‖2F

≤ F (Ã[t])− γ[t]
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Ldξ[t]γ[t] + ρ

2

)
‖∇A(dξ [t])

F (A[t])‖2F

+
Ldξ[t](γ[t])2

2K
σ2
dξ[t]

+
L2
dξ[t]

γ[t]

2ρ
‖ 1

K

K∑
k=1

Ek
(dξ[t])

[t]‖2F .

(B.13)

Taking expectation with respect to ξ[t] conditioned on F [t] and substituting

L = max{L1, ..., LD}, σ2 =
∑D

d=1 σ
2
d in, we have

Eξ[t]
[
F (Ã[t+ 1])

∣∣∣F [t]
]
≤ F (Ã[t])− γ[t]

(
1− Lγ[t] + ρ

2

) 1

D

D∑
d=1

‖∇A(d)
F (A[t])‖2

F

+
L(γ[t]σ)2

2KD
+
L2γ[t]

2ρ

1

D

D∑
d=1

‖ 1

K

K∑
k=1

Ek
(d)[t]‖2

F .

(B.14)

By Lemma B.2.1 and let γ[t] = t, we have

Eξ[t]
[
F (Ã[t+ 1])

∣∣∣F [t]
]
≤ F (Ã[t])− γ

(
1− Lγ + ρ

2

) 1

D

D∑
d=1

‖∇A(d)
F (A[t])‖2

F

+
L(γσ)2

2KD
+

2L2γ3(1− δ)(σ2 + ω2)

ρDδ2
.

(B.15)
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Taking total expectation with respect to all the random variables in F [t], we have

E
[
F (Ã[t+ 1])

]
≤ E

[
F (Ã[t])

]
− γ
(

1− Lγ + ρ

2

)
E
[ 1

D

D∑
d=1

‖∇A(d)
F (A[t])‖2

F

]
+
L(γσ)2

2KD
+

2L2γ3(1− δ)(σ2 + ω2)

ρDδ2
.

(B.16)

Averaging the above from t = 0 to T and letting ρ < 2−Lγ, F ∗ the optimal value,

we have

1

T + 1

T∑
t=0

E
[ 1

D

D∑
d=1

‖∇A(d)
F (A[t])‖2

F

]
≤ 1

(T + 1)γ(1− Lγ+ρ
2

)

[
F (A[0])− F ∗

]
+

1

(1− Lγ+ρ
2

)

[Lγσ2

2KD
+

2L2γ2(1− δ)(σ2 + ω2)

ρDδ2

]
.

(B.17)

Let ρ = 1 and use E
[

1
D

∑D
d=1 ‖∇A(d)

F (A[Output])‖2
F

]
≤
∑T

t=0
1

T+1
E
[

1
D

∑D
d=1 ‖∇A(d)

F (A[t])‖2
F

]
,

we have

E
[ 1

D

D∑
d=1

‖∇A(d)
F (A[Output])‖2

F

]
≤ 2

(T + 1)γ(1− Lγ)

[
F (A[0])− F ∗

]
+

2

(1− Lγ)

[Lγσ2

2KD
+

2L2γ2(1− δ)(σ2 + ω2)

Dδ2

]
.

(B.18)

Finally, by letting γ = min{ 1
2L
, %
√
T+1/

√
K+

(1−δ)1/3

δ2/3
T 1/3
} for some % > 0, we complete the
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proof of Theorem 4.1:

E[
1

D

D∑
d=1

‖∇A(d)
F (A[Output])‖2F ] ≤ 8L

T + 1
(F (A[0])− F ∗) +

[4

%
(F (A[0])− F ∗)

+
2Lσ2%

D

] 1√
M(T + 1)

+
[4

%
(F (A[0])− F ∗) +

8L2%2(σ2 + ω2)

D

] (1− δ)1/3

δ2/3(T + 1)2/3
.

(B.19)

B.2.2 Proof of Theorem 4.2

Auxiliary variables for the proof and iterative relation

We derive the convergence by regarding the iteration as using inexact gradient, which

is different from the approach used for the smooth case which is regarded as using

delayed variable:

A(dξ[t])[t+ 1] = Prox
(
A(dξ[t])[t]−

1

K

K∑
k=1

∆k
(dξ[t])

[t]
)

= Prox
(
A(dξ[t])[t]−

1

K

K∑
k=1

(γ[t]Gk
(dξ[t])

[t] + Ek
(dξ[t])

[t]) +
1

K

K∑
k=1

(γ[t]Gk
(dξ[t])

[t] + Ek
(dξ[t])

[t])

− 1

K

K∑
k=1

∆k
(dξ[t])

[t]
)

= Prox
(
A(dk)[t]− γ[t]

1

K

K∑
k=1

Gk
(dξ[t])

[t]− 1

K

K∑
k=1

Ek
(dξ[t])

[t] +
1

K

K∑
k=1

(Pk
(dξ[t])

[t]−∆k
(dξ[t])

[t])
)

= Prox
(
A(dk)[t]− γ[t]

1

K

K∑
k=1

(
Gk

(dξ[t])
[t] +

1

γ[t]
(Ek

(dξ[t])
[t+ 1]−Ek

(dξ[t])
[t])
))
.

(B.20)
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We define the generalized gradient Z[t] = (Z(1)[t], ..., (Z(D)[t]), where

Z(d)[t] =
1

γ[t]

(
A(d)[t]− Proxr(d)(A(d)[t]− γ[t]∇A(d)

F (A[t]))
)

(B.21)

If d = dξ[t],

A(d)[t+ 1] = Proxr(d)(A(d)[t]− γ[t]∇A(d)
F (A[t])), (B.22)

else if d 6= dξ[t]

A(d)[t+ 1] = A(d)[t]. (B.23)

let

Φ(A[t]) = F (A[t]) + r(A[t]); (B.24)

Additional Lemma

We need the following Lemma 1 from [71].

Lemma B.2.2. Let y = Proxγr(x − γg), for some g. Then for y, the following

inequality holds,

r(y) + 〈y − z,g〉 ≤ r(z) +
1

2γ
[‖z− x‖2

2 − ‖y − x‖2
2 − ‖y − z‖2

2], (B.25)

for any z.

Main Proof of Theorem 4.2

By the block-wise smoothness of F ,

F (A[t+ 1]) ≤ F (A[t]) + 〈∇A(dξ [t])
F (A[t]),A(dξ[t])[t+ 1]−A(dξ[t])[t]〉

+
L(dξ[t])

2
‖A(dξ[t])[t+ 1]−A(dξ[t])[t]‖

2
F

(B.26)
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By the convexity of r(d)(·)

r(dξ[t])(A(dξ[t])[t+1])+〈∂r(dξ[t])(A(dξ[t])[t+1]),A(dξ[t])[t]−A(dξ[t])[t+1]〉 ≤ r(dk)(A(dξ[t])[t]).

(B.27)

and the optimality of A(dξ[t])[t+ 1] for Proxr(d)(A(d)[t]− γ∇A(d)
F (A[t])),

∂r(dξ[t])(A(dξ[t])[t+ 1]) +
1

γ[t]
(A(dξ[t])[t+ 1]− (A(dξ[t])[t]− γ[t]∇A(dξ [t])

F (A[t]))) = 0,

(B.28)

we have

r(dξ[t])(A(dξ[t])[t+ 1]) + 〈 1

γ[t]
(A(dξ[t])[t+ 1]− (A(dξ[t])[t]

− γ[t]∇A(dξ [t])
F (A[t]))),A(dξ[t])[t+ 1]−A(dξ[t])[t]〉

≤ r(dk)(A(dξ[t])[t]),

(B.29)

which amounts to

r(dξ[t])(A(dξ[t])[t+ 1]) +
1

γ[t]
‖A(dξ[t])[t+ 1]−A(dξ[t])[t]‖

2
F

+ 〈∇A(dξ [t])
F (A[t]),A(dξ[t])[t+ 1]−A(dξ[t])[t]〉

≤ r(dk)(A(dξ[t])[t]).

(B.30)

Thus,

F (A[t+1])+r(A[t+1]) ≤ F (A[t])+r(A[t])+(
L(dξ[t])

2
− 1

γ[t]
)‖A(dξ[t])[t+1]−A(dξ[t])[t]‖

2
F ,

(B.31)

which amounts to

Φ(A[t+ 1]) ≤ Φ(A[t]) + (
L(dξ[t])

2
− 1

γ[t]
)‖A(dξ[t])[t+ 1]−A(dξ[t])[t]‖

2
F . (B.32)



101

By Lemma B.2.2, we have

F (A(dξ[t])[t+ 1],A(−dξ[t])[t]) + r(dξ[t])(A(dξ[t])[t+ 1]) ≤ F (A(dξ[t])[t+ 1],A(−dξ[t])[t])

+ r(dξ[t])(A(dξ[t])[t+ 1]) + 〈A(dξ[t])[t+ 1]−A(dξ[t])[t+ 1],∇(dξ[t])F (A(dξ[t])[t])

− 1

K

K∑
k=1

(Gk
(dξ[t])

[t] +
1

γ[t]
(Ek

(dξ[t])
[t+ 1]− E(dkξ [t])[t]))〉

+ (
L(dξ[t])

2
− 1

2γ[t]
)‖A(dξ[t])[t+ 1]−A(dξ[t])[t]‖

2
F + (

L(dξ[t])

2
+

1

2γ[t]
)‖A(dξ[t])[t+ 1]−A(dξ[t])[t]‖

2
F

− 1

2γ[t]
‖A(dξ[t])[t+ 1]−A(dξ[t])[t+ 1]‖2

F .

(B.33)

For the second row in the above inequality, we further have:

〈A(dξ[t])[t+ 1]−A(dξ[t])[t+ 1],∇(dξ[t])F (A(dξ[t])[t])

− 1

K

K∑
k=1

(Gk
(dξ[t])

[t] +
1

γ[t]
(Ek

(dξ[t])
[t+ 1]− Ek

(dξ[t])
[t]))〉

= 〈A(dξ[t])[t+ 1]−A(dξ[t])[t+ 1],∇(dξ[t])F (A(dξ[t])[t])−
1

K

K∑
k=1

Gk
(dξ[t])

[t]〉

− 1

γ[t]
〈A(dξ[t])[t+ 1]−A(dξ[t])[t+ 1],

1

K

K∑
k=1

(Ek
(dξ[t])

[t+ 1]− Ek
(dξ[t])

[t])〉

≤ 1

2ρ1

‖A(dξ[t])[t+ 1]−A(dξ[t])[t+ 1]‖2
F +

ρ1

2
‖∇(dξ[t])F (A(dξ[t])[t])−

1

K

K∑
k=1

Gk
(dξ[t])

[t]‖2
F

+
1

2γ[t]ρ2

‖A(dξ[t])[t+ 1]−A(dξ[t])[t+ 1]‖2
F +

ρ2

2γ[t]
‖ 1

K

K∑
k=1

(Ek
(dξ[t])

[t+ 1]− Ek
(dξ[t])

[t])‖2
F

= (
1

2ρ1

+
1

2γ[t]ρ2

)‖A(dξ[t])[t+ 1]−A(dξ[t])[t+ 1]‖2
F +

ρ1

2
‖∇(dξ[t])F (A(dξ[t])[t])

− 1

K

K∑
k=1

Gk
(dξ[t])

[t]‖2
F +

ρ2

2γ[t]
‖ 1

K

K∑
k=1

(Ek
(dξ[t])

[t+ 1]− Ek
(dξ[t])

[t])‖2
F .

(B.34)
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By choosing ρ1 = 2γ[t] and ρ2 = 2, we further have

Φ(A[t+ 1]) ≤ Φ(A[t+ 1]) + γ[t]‖∇(dξ[t])F (A(dξ[t])[t])−
1

K

K∑
k=1

Gk
(dξ[t])

[t]‖2
F

+
1

γ[t]
‖ 1

K

K∑
k=1

(Ek
(dξ[t])

[t+ 1]− Ek
(dξ[t])

[t])‖2
F

+ (
L(dξ[t])

2
− 1

2γ[t]
)‖A(dξ[t])[t+ 1]−A(dξ[t])[t]‖

2
F

+ (
L(dξ[t])

2
+

1

2γ[t]
)‖A(dξ[t])[t+ 1]−A(dξ[t])[t]‖

2
F

(B.35)

Combining it with eq.(B.32) and let γ[t] ≤ 1
2L(dξ [t])

, we have

Φ(A[t+ 1]) ≤ Φ(A[t]) + (L(dξ[t]) −
1

2γ[t]
)‖A(dξ[t])[t+ 1]−A(dξ[t])[t]‖

2
F

+ γ[t]‖∇(dξ[t])F (A(dξ[t])[t])−
1

K

K∑
k=1

Gk
(dξ[t])

[t]‖2
F

+
1

γ[t]
‖ 1

K

K∑
k=1

(Ek
(dξ[t])

[t+ 1]− Ek
(dξ[t])

[t])‖2
F

≤ Φ(A[t]) + (L(dξ[t]) −
1

2γ[t]
)‖A(dξ[t])[t+ 1]−A(dξ[t])[t]‖

2
F

+ γ[t]
1

K

∑
k=1K

‖∇(dξ[t])F (A(dξ[t])[t])−Gk
(dξ[t])

[t]‖2
F

+
1

γ[t]

1

K

K∑
k=1

‖Ek
(dξ[t])

[t+ 1]− Ek
(dξ[t])

[t]‖2
F .

(B.36)

Taking conditional expectation on both sides with respect to ξ[t] conditioned on
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filtration F [t], we have

Eξ[t][Φ(A[t+ 1])|F [t]] ≤ Φ(A[t]) + (L(dξ[t]) −
1

2γ[t]
)Eξ[t][‖A(dξ[t])[t+ 1]−A(dξ[t])[t]‖

2
F |F [t]]

+ γ[t]
1

K

K∑
k=1

Eξ[t][‖∇(dξ[t])F (A(dξ[t])[t])−Gk
(dξ[t])

[t]‖2
F |F [t]]

+
1

γ[t]

1

K

K∑
k=1

Eξ[t][‖Ek
(dξ[t])

[t+ 1]− Ek
(dξ[t])

[t]‖2
F |F [t]]

≤ Φ(A[t]) + (L− 1

2γ[t]
)

1

D

D∑
d=1

‖‖A(d)[t+ 1]−A(d)[t]‖2
F

+
γ[t]σ2

D
+

1

γ[t]D

1

K

K∑
k=1

( D∑
d=1

(‖Ek
(d)[t+ 1]‖2

F + ‖Ek
(d)[t]‖2

F )
)

(B.37)

By Lemma B.2.1 and let γ[t] = t, we have

Φ(A[t+ 1]) ≤ Φ(A[t]) + (L− 1

2γ
)

1

D

D∑
d=1

‖‖A(d)[t+ 1]−A(d)[t]‖2
F

+
γσ2

D
+

1

D

8(1− δ)
δ2

γ(σ2 + ω2).

(B.38)

Taking total expectation (i.e. with respect to all random variables in F [t]), we

have

γ2(
1

2γ
− L)E[

D∑
d=1

1

D
E[‖(A(d)[t+ 1]−A(d)[t])/γ‖2F ] ≤ E[Φ(A[t])]− E[Φ(A[t+ 1])]

+
γσ2

D
+

1

D

8(1− δ)
δ2

γ(σ2 + ω2)

(B.39)

Averaging the above equation from t = 0 to T and by E
[∑D

d=1
1
D
‖G̃(d)[Output]‖2

F

]
≤

1
T+1

E[
∑D

d=1
1
D
‖G̃(d)[t]‖2

F ] = 1
T+1

E[
∑D

d=1
1
D
‖(A(d)[t+ 1]−A(d)[t])/γ‖2

F ], we have

E
[ D∑
d=1

1

D
‖G̃(d)[Output]‖2F

]
≤ 2

γ(1− 2γL)(T + 1)
(Φ(A0)− Φ∗)

+
2σ2

D(1− 2γL)
+

16(1− δ)
Dδ2(1− 2γL)

(σ2 + ω2).

(B.40)
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Finally, by setting γ = 1
4L

, we complete our proof:

E
[ D∑
d=1

1

D
‖G̃(d)[Output]‖2

F

]
≤ 16L

T + 1
(Φ(A[0])− Φ∗) +

4σ2

DK
+

32(1− δ)
Dδ2

(σ2 + ω2).

(B.41)
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B.3 Additional Materials for Convergence Analy-

sis of Algorithm 2

B.3.1 Proof of Theorem 4.3

This proof extends the proof of Theorem 1 in [5] to our block randomized case.

Auxillary variables for the proof and iterative relation

Let Ãk
(d)[t+1] = Ãk

(d)[t]−γ[t]Gk
(d)[t], with Ãk

(d)[0] = Ak
(d)[0]; Ãavg

(d) [t+1] = 1
K

∑K
k=1 Ãk

(d)[t+

1] = Ãavg
(d) [t] − γ[t] 1

K

∑R
k=1G

k
(d)[t]; Aavg

(d) [t] = 1
K

∑K
k=1 Ak

(d)[t]. It is easy to see that

Aavg
(d) [t]− Ãavg

(d) [t] = 1
K

∑K
k=1 Ek

(d)[t].

Additional Lemma

Lemma B.3.1. (Bounding the expectation of the block-wise feedback error averaged

among client nodes) For d = 1, ..., D and for t = 0, ..., T , assuming constant step size

γ[t] = γ, we have

E[‖ 1

K

K∑
k=1

Ek
(d)[t]‖2

F ] ≤ 4(1− δ2)(σ2
d + ω2

d)τ
2

δ2
(B.42)
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Proof. For t† mod τ = 0, we have

E[‖ 1

K

K∑
k=1

Ek
(d)[t

† + τ ]‖2
F ] ≤ 1

K

K∑
k=1

E[‖Ek
(d)[t

† + τ ]‖2
F ]

=
1

K

K∑
k=1

(1− 1

D
)E[‖Ek

(d)[t
† + τ − 1]‖2

F

+
1

D
E[‖Ek

(d)[t
† + τ − 1] + Ag

(d)[t
† + τ − 1]−Ak

(d)[t
† + τ − 1

2
]−∆k

(d)[t
† + τ − 1]‖2

F ]

≤ 1

K

K∑
k=1

(1− 1

D
)E[‖Ek

(d)[t
† + τ − 1]‖2

F

+
1

D
(1− δ)E[‖Ek

(d)[t
† + τ − 1] + Ag

(d)[t
† + τ − 1]−Ak

(d)[t
† + τ − 1

2
]‖2
F ]

=
1

K

K∑
k=1

(1− 1

D
)E[‖Ek

(d)[t
† + τ − 1]‖2

F

+
1

D
(1− δ)E[‖Ek

(d)[t
† + τ − 1] + Ak

(d)[t
†]−Ak

(d)[t
† + τ − 1

2
]‖2
F ]

≤ 1

K

K∑
k=1

(1− 1

D
)E[‖Ek

(d)[t
† + τ − 1]‖2

F

+
1

D
(1− δ)

(
E[(1 +

δ

2
)‖Ek

(d)[t
† + τ − 1]‖2

f ] + (1 +
2

δ
)E[‖Ak

(d)[t
†]−Ak

(d)[t
† + τ − 1

2
]‖2
F ]
)

≤ 1

K

K∑
k=1

(1− 1

D
)E[‖Ek

(d)[t
† + τ − 1]‖2

F

+
1

D
(1− δ

2
)E[(1 +

δ

2
)‖Ek

(d)[t
† + τ − 1]‖2

f ] +
1

D

2(1− δ2)

δ
E[‖Ak

(d)[t
†]−Ak

(d)[t
† + τ − 1

2
]‖2
F ]

≤ 1

K

K∑
k=1

(1− 1

D
)E[‖Ek

(d)[t
† + τ − 1]‖2

F

+
1

D
(1− δ

2
)E[(1 +

δ

2
)‖Ek

(d)[t
† + τ − 1]‖2

f ] +
1

D

2(1− δ2)

δ
(σ2

d + ω2
d)γ

2τ 2.

(B.43)

By unrolling the above recursion in a similar way as the proof of Lemma B.2.1, we

have

E[‖ 1

K

K∑
k=1

Ek
(d)[t

† + τ ]‖2
F ] ≤ 4(1− δ2)(σ2

d + ω2
d)τ

2

δ2
, (B.44)
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where the right hand side is indepednet on t, thus

E[‖ 1

K

K∑
k=1

Ek
(d)[t]‖2

F ] ≤ 4(1− δ2)(σ2
d + ω2

d)τ
2

δ2
, for t ∈ {1, ..., T}. (B.45)

Lemma B.3.2. (Lemma 7 in [5]) The deviation of the local sequences has the following

upper bound,

E[
K∑
k=1

‖Aavg[t]−Ak[t]‖2
F ] ≤ γτ 2(σ2 + ω2). (B.46)

Main proof of Theorem 4.3

By the block-wise Lipschitz smoothness assumption of the loss function:

F (Ãavg[t+ 1]) ≤ F (Ãavg[t]) + 〈∇dξ[t]F (Ãavg[t]), Ãavg[t+ 1]− Ãavg[t]〉

+
Ldξ[t]

2
‖Ãavg[t+ 1]− Ãavg[t]‖2

2

= F (Ãavg[t])− γ[t]〈∇dξ[t]F (Ãavg[t]),
K∑
k=1

Gk
(dξ[t])

[t]〉+
Ldξ[t](γ[t])2

2
‖

K∑
k=1

Gk
(dξ[t])

[t]‖2
2.

(B.47)

Taking conditional expectation with randomness in ζ[t] conditioned on F [t], ξ[t],
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we have

Eζ[t][F (Ãavg[t+ 1])] ≤ F (Ãavg[t])− γ[t]〈∇dξ[t]F (Ãavg[t]),
1

K

K∑
k=1

∇(dξ[t])F (Ak[t])〉

+
Ldξ[t](γ[t])2

2
Eζ[t]

[
‖ 1

K

K∑
k=1

(Gk
(dξ[t])

[t]−∇(dξ[t])F (Ak[t])‖2
F )
∣∣∣F [t], ξ[t]

]
+
Ldξ[t](γ[t])2

2
‖ 1

K

K∑
k=1

(∇(dξ[t])F (Ak[t]))‖2
F

= F (Ãavg[t])− γ[t]

2

(
‖∇dξ[t]F (Ãavg[t])‖2

F + ‖ 1

K

K∑
k=1

∇(dξ[t])F (Ak[t])‖2
F

− ‖∇dξ[t]F (Ãavg[t])− 1

K

K∑
k=1

∇(dξ[t])F (Ak[t])‖2
F

)
+
Ldξ[t](γ[t])2

2
‖ 1

K

K∑
k=1

∇(dξ[t])F (Ak[t])‖2
F +

Ldξ[t](γ[t])2

2K
σ2
dξ[t]

≤ F (Ãavg[t])− γ[t]

2

(
‖∇dξ[t]F (Ãavg[t])‖2

F − L2
dξ[t]
‖Ãavg

(dξ[t])
[t]− 1

K

K∑
k=1

Ak
(dξ[t])

[t]‖2
F

)
+
Ldξ[t](γ[t])2 − γ[t]

2
‖ 1

K

K∑
k=1

∇(dξ[t])F (Ak[t])‖2
F +

Ldξ[t](γ[t])2

2K
σ2
dξ[t]

≤ F (Ãavg[t])− γ[t]

2K

K∑
k=1

(
L2
dξ[t]
‖Ãavg

dξ[t]
[t]−Ak

dξ[t]
[t]‖2

F +
1

2
‖∇dξ[t]F (Ak[t])‖2

F

+ L2
dξ[t]
‖Ãavg

(dξ[t])
[t]−Ak

(dξ[t])
[t]‖2

F

)
+
Ldξ[t](γ[t])2 − γ[t]

2K
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k=1

‖∇(dξ[t])F (Ak[t])‖2
F +

Ldξ[t](γ[t])2

2K
σ2
dξ[t]

.
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Reorganizing terms and by γ[t] ≤ 1
Lξ[t]

, we have

γ[t]

4K

K∑
k=1

‖∇dξ[t]F (Ak[t])‖2
F ≤ F (Ãavg[t])− Eζ[t][F (Ãavg[t+ 1])]

+
γ[t]L2

dξ[t]

K

K∑
k=1

‖Ãavg
dξ[t]

[t]−Ak
dξ[t]

[t]‖2
F +

Ldξ[t](γ[t])2

2K
σ2
dξ[t]

.

(B.49)
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Taking expectation with respect to ξ[t] conditioned on F [t] and substituting

L = max{L1, ..., LD}, σ2 =
∑D

d=1 σ
2
d in, we have

γ[t]

4DK

K∑
k=1

D∑
d=1

‖∇dF (Ak[t])‖2
F ≤ Eξ[t][F (Ãavg[t])− Eζ[t][F (Ãavg[t+ 1])]]

+
γ[t]L2

DK

K∑
k=1

D∑
d=1

‖Ãavg
(d) [t]−Ak

(d)[t]‖2
F +

L(γ[t])2

2DK
σ2

= Eξ[t][F (Ãavg[t])− Eζ[t][F (Ãavg[t+ 1])]] +
L(γ[t])2

2DK
σ2

+
γ[t]L2

dξ[t]

DK

K∑
k=1

‖Ãavg[t]−Aavg[t] + Aavg[t]−Ak[t]‖2
F

≤ Eξ[t][F (Ãavg[t])− Eζ[t][F (Ãavg[t+ 1])]] +
L(γ[t])2

2DK
σ2

+
2γ[t]L2

D
‖Ãavg[t]−Aavg[t]‖2

F +
2γ[t]L2

DK

K∑
k=1

‖Aavg[t]−Ak[t]‖2
F

≤ Eξ[t][F (Ãavg[t])− Eζ[t][F (Ãavg[t+ 1])]] +
L(γ[t])2

2DK
σ2

+
2γ[t]L2

D

D∑
d=1

‖
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F +
2γ[t]L2

DK
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(B.50)

Taking total expectation with respect to all the random variables in F [t], by

Lemma B.3.1 and B.3.2 and setting γ[t] = γ, we have

γ

4DK
E[

K∑
k=1

D∑
d=1

‖∇dF (Ak[t])‖2
F ] ≤ E[F (Ãavg[t])]− E[F (Ãavg[t+ 1])]

+
Lσ2

2DK
γ2 +

8L2(1− δ2)(σ2 + ω2)τ 2

Dδ2
γ3 +

2L2(σ2 + ω2)τ 2

DK
γ3.

(B.51)
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Averaging the above from t = 0 to T and denoting F ∗ the optimal value, we have

1

DK(T + 1)

T∑
t=0

E[
K∑
k=1

D∑
d=1

‖∇dF (Ak[t])‖2
F ] ≤ 4

(T + 1)γ
[F (Ãavg[t])− F ∗]

+ 2Lσ2γ +
32L2(1− δ2)(σ2 + ω2)τ 2

Dδ2
γ2 +

8L2(σ2 + ω2)τ 2

D2K
γ2.

(B.52)

Let A[Output] be sampled from Ak[t] for t = 0, ..., T and k = 1, ..., K with

probability 1
K(T+1)

, and let γ = C√
T+1

, we have

E[
D∑
d=1

1

D
‖∇dF (A[Output])‖2

F ] ≤ 4C√
T + 1

[F (Ãavg[t])− F ∗]

+
2CLσ2

√
T + 1

+
32C2L2(1− δ2)(σ2 + ω2)τ 2

Dδ2(T + 1)
+

8C2L2(σ2 + ω2)τ 2

DK(T + 1)
.

(B.53)
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B.4 Additional Materials for Complexity Analysis

of Algorithm 1 & 2

B.4.1 Proof of Theorem 4.4 (Computational Complexity)

Proof. The per-iteration complexity for each client can be broken down as follows:

1) Gk
(d)[t] takesO(Id|S|)+R|S|(D−1)+|S|RId, where the first term is for computing

the sampled Y<d>(:, |S|), the second is for computing the sampled Hd(|S|, :) and the

third is for computing the matrix multiplication;

2) all other steps are element-wise operations of variable size Id × R, which takes

O(IdR). (Here, we assume the proximal operator is also element-wise (e.g., soft-

threholding) but it can take higher complexity if more computational demanding

proximal operator is used, e.g. singular value thresholding operator for the nuclear

norm regularization).

Finally, considering the randomness of sampling d, the averaged per-iteration per-client

computational complexity is O( 1
D

(
∑D

d=1 Id)R|S|)

B.4.2 Proof of Theorem 4.5 (Uplink Communication Com-

plexity)

Proof. For Algorithm 1, each client requires 32 + 1
D
R
∑D

d=2 Id bits per-iteration on

average for the uplink communication, where 32-bits is for sending the `1 norm

and the 1
D
R
∑D

d=2 Id is the average cost for communicating the sign of each element

of ∆k
(d). Compared to the full precision distributed SGD, the per-iteration uplink

communication cost reduction is 1 − 32+ 1
D
R
∑D
d=2 Id

32·(
∑D
d=1 Id)

≈ 1 − 1
32D

. Algorithm 2 further

reduces 1/τ of the communication upon Algorithm 1, which is approximately 1 −
1

32Dτ
.
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