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Abstract

A blessing and a curse of dimensionality: using quantum computers to
simulate strongly correlated fermionic systems

By Nicholas H. Stair

In this dissertation, we develop and demonstrate need for novel
quantum computational algorithms for simulating molecular sys-
tems with strong electronic correlations. First we explore the limita-
tions of classical algorithms for strongly correlated electronic struc-
ture problems. To this end, we test the performance of selected
configuration interaction (sCI), singular value decomposition full CI
(SVD-FCI), and the density matrix renormalization group (DMRG)
using a novel set of one, two, and three-dimensional hydrogen mod-
els. We find that although a significant reduction in pre-factor can
be achieved, a reduction from exponential to polynomial scaling was
not observed for any of the three methods in the general case, mo-
tivating the development of quantum algorithms for strong correla-
tion. We then introduce a novel quantum Krylov (QK) algorithm,
amenable to the simulation of molecular systems. The algorithm
uses unitary Hamiltonian time evolution to build a basis of states
(stored on a quantum computer) that are equivalent to a classical
Krylov basis in a small time-step limit. We apply the QK algo-
rithm, and a selected multi-reference variant (MRSQK) to H6, H8,
and BeH2 and find that chemical accuracy can be achieved with a
Krylov basis orders of magnitude smaller than that of the full CI
(FCI) space. We then introduce another novel quantum simulation
algorithm deemed the projective quantum eigensolver (PQE), which
is amenable to noisy intermediate-scale quantum (NISQ) hardware.
The approach seeks to solve the Schrödinger equation by zeroing its
projections onto an orthogonal space of excited determinants. We
compare PQE to the variational quantum eigensolver (VQE), both
using disentangled unitary coupled cluster ansatz and find that the
former is more computationally resource efficient when tested on
H6 and BeH2. We also introduce a selected ansatz variant of PQE
and show that it compares favorably to classical sCI and DMRG.
Finally, we showcase our novel open-source quantum simulation
package QFORTE which facilitated the work presented in this dis-
sertation and will be used for future algorithmic developments and
comparative studies.



A blessing and a curse of dimensionality: using quantum computers to
simulate strongly correlated fermionic systems

By

Nicholas H. Stair
B.S. Chemistry, California Polytechnic State University SLO, 2017
B.A. Physics, California Polytechnic State University SLO, 2017

Advisor: Francesco Evangelista, Ph.D

A dissertation submitted to the Faculty of the
James T. Laney School of Graduate Studies of Emory University

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

in Chemistry
2021



Acknowledgement

There are too many people deserving of thanks and acknowledgment to put down on a
single page, but I will do my best. I never would have started down this path without an
excellent start from the science department at Paso Robles High School. I will always be
grateful to Anthony Overton for pushing me toward chemistry and Cal Poly, to Mike Serpa
for teaching me calculus and how to learn things I don’t understand right away, to Dave
Boicourt for fostering my desire to be an educator (and for many rad surf sessions), and to
the many other fantastic PRHS instructors I had the privilege of studying under.

My time at Cal Poly was unforgettable, a period where I learned as much about myself
as the natural world. I want to thank Dr. Michael Heying for giving me an great intro-
duction to working on chemical theory, without which I would not have set my sights on
graduate school. I also want to thank Dr. Ashley McDonald for her advice to study elec-
tronic structure, and for putting me in contact with a talented new professor working on the
other side of the country.

On that note, I want to thank my research advisor here at Emory, Dr. Francesco Evan-
gelista. Thank you Francesco for being a model scientist, your passion for new ideas will
continue to be an inspiration, and I will always remember that "creativity isn’t something
you’re born with, it is something you have to practice at." Thanks also to my committee
members Dr. Joel Bowman, and Dr. Michael Heaven for their help and advice over the last
four years. A special thanks to the past and present members of the Evangelista Lab for
their camaraderie, and in particular to Dr. Jeff Schriber for many hours of caffeinated (and
inebriated) conversations about strong correlation, multi-reference methods, orbital rota-
tions, scientific philosophy, climbing, bike-commuting, beer die, and staying in graduate
school.

I once told Francesco that finishing my PhD was a meditative exercise. I think this is
still the case, but there are several people in my life who helped me through the parts that
were more of an exercise in patience than in meditation. I want to say thanks to the friends
I made at emory, and to the many friends I was fortunate enough to stay close with despite
a large physical distance. Thank you to my wonderful parents Gary and Penny Stair for
whom supporting me has always been first-nature. Thanks mom and dad for listening to
me and encouraging fortitude. Thank you Oatly for being my COVID-era desk mate, and
for making me go outside every day at lunch. Katie, without you this would have been
impossible, you will forever have my thanks and my love. You were here for the best and
the worst of things, thank you so much for contributing to my life all of your insightful
thoughts, your bad jokes, your good jokes, your patience, and your inspiring capacity for
growth.

Finally I want to say a special thanks to Dr. Seth Bush who is a real-life super hero
fighting the injustice of public ignorance. You have been an enormous inspiration and I can
only aspire to have a career as impactful as yours!

– Nick



Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The electronic structure problem . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 The antisymmetry of fermionic wave functions . . . . . . . . . . 3
1.2.2 Slater determinants as mean-field wave functions . . . . . . . . . 5
1.2.3 Second quantization . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Electron correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.1 Exact diagonalization and the curse of dimensionality . . . . . . . 10
1.3.2 Static and dynamical correlation . . . . . . . . . . . . . . . . . . 12
1.3.3 Classical methods for strong correlation . . . . . . . . . . . . . . 14

1.4 Quantum computers: the blessing of dimensionality . . . . . . . . . . . . 18
1.4.1 Quantum bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4.2 Quantum circuits . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.4.3 Determination of expectation values . . . . . . . . . . . . . . . . 22
1.4.4 The fermionic encoding problem . . . . . . . . . . . . . . . . . . 24
1.4.5 Operators in the qubit basis . . . . . . . . . . . . . . . . . . . . . 25

1.5 Quantum algorithms for electronic structure . . . . . . . . . . . . . . . . 26
1.5.1 Algorithms based on Hamiltonian dynamics . . . . . . . . . . . . 27
1.5.2 Quantum variational optimization algorithms . . . . . . . . . . . 33

1.6 Prospectus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2 Exploring Hilbert space on a budget. . . . . . . . . . . . . . . . . . . . . . 55
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.2.1 Definition of the accuracy volume . . . . . . . . . . . . . . . . . 60
2.2.2 Overview of the computational methods . . . . . . . . . . . . . . 61
2.2.3 Metrics of strong electronic correlation. . . . . . . . . . . . . . . 66

2.3 Computational details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.4 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.4.1 Ground and low-lying electronic states . . . . . . . . . . . . . . . 73
2.4.2 Spin correlation and frustration . . . . . . . . . . . . . . . . . . . 76
2.4.3 Performance of sCI, SVD-FCI, and DMRG . . . . . . . . . . . . 78
2.4.4 Comparison with other electronic structure methods . . . . . . . . 82

2.5 Scaling of the accuracy volume and size consistency. . . . . . . . . . . . 84
2.6 Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . . . 87



TABLE OF CONTENTS

3 A quantum Krylov algorithm for strongly correlated electrons . . . . . . . 104
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.2.1 Choice of the unitary operators . . . . . . . . . . . . . . . . . . . 109
3.2.2 Efficient evaluation of off-diagonal matrix elements . . . . . . . . 111
3.2.3 Reference selection . . . . . . . . . . . . . . . . . . . . . . . . . 114
3.2.4 Analysis of computational cost . . . . . . . . . . . . . . . . . . . 116

3.3 Computational details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
3.4 Numerical studies and discussion . . . . . . . . . . . . . . . . . . . . . . 117
3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4 Simulating many-body systems with a projective quantum eigensolver . . 132
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.2.1 The projective quantum eigensolver approach . . . . . . . . . . . 135
4.2.2 Traditional and disentangled unitary coupled-cluster ansätze . . . 137
4.2.3 Numerical solution of the UCC-PQE amplitude equation . . . . . 140
4.2.4 Efficient measurement of the residual elements . . . . . . . . . . 141
4.2.5 Efficient operator selection . . . . . . . . . . . . . . . . . . . . . 142
4.2.6 Outline of the selected PQE algorithm . . . . . . . . . . . . . . . 145

4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
4.3.1 Comparison of PQE and VQE with a disentangled UCC ansatz . . 147
4.3.2 Effect of stochastic errors on the convergence of PQE and VQE. . 149
4.3.3 Selected PQE based on a full dUCC operator pool . . . . . . . . . 151

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
4.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

4.5.1 Gradient of the PQE energy. . . . . . . . . . . . . . . . . . . . . 160
4.5.2 Derivation of the UCC-PQE update equations . . . . . . . . . . . 162
4.5.3 Additional numerical comparison of PQE and VQE . . . . . . . . 163
4.5.4 Formal comparison of PQE and VQE . . . . . . . . . . . . . . . 163
4.5.5 Reduced-cost estimation of the approximate residual in selected

PQE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

5 QForte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
5.2 Key data structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

5.2.1 The state-vector simulator. . . . . . . . . . . . . . . . . . . . . . 181
5.2.2 The QubitOperator and SQOperator classes . . . . . . . . . . . . 184
5.2.3 The molecule class . . . . . . . . . . . . . . . . . . . . . . . . . 185

5.3 Overview of algorithms implemented . . . . . . . . . . . . . . . . . . . 186
5.3.1 dUCC variational quantum eigensolver . . . . . . . . . . . . . . . 186
5.3.2 dUCC projective quantum eigensolver . . . . . . . . . . . . . . . 188
5.3.3 Quantum imaginary time evolution . . . . . . . . . . . . . . . . . 190
5.3.4 Quantum Krylov . . . . . . . . . . . . . . . . . . . . . . . . . . 192

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193



TABLE OF CONTENTS

6 Conclusions and future directions . . . . . . . . . . . . . . . . . . . . . . . 198



List of Figures

1.1 Graphical depiction of the FCI wave function coefficients described in
Eq. (1.26) for a linear H10 chain at r=1.0Å (left) and r=1.5Å (right). Coef-
ficients are arranged as a matrix indexed by α and β spin-orbital occupa-
tions. Coefficients with a magnitude greater than 10−3 are shown by yellow
pixels, and coefficients with a magnitude less than 10−8 are represented by
purple pixels. The calculations used to produce the figures utilized a mini-
mal STO-6G basis, resulting in a total of 62,504 coefficients. . . . . . . 14

1.2 Molecular orbital energies from restricted Hartree-Fock (top) and total en-
ergy from RHF, MP2, CCSD(T), and FCI (bottom) over the symmetric
dissociation of linear H10. All calculations employed a STO-6G basis. . 15

1.3 Circuit diagram for the construction of the bell state from the vacuum |00〉.
Note the use of the vertical line with a dot connected to the control qubit to
denote the c-X̂1,0 (CNOT) gate. . . . . . . . . . . . . . . . . . . . . . 22

1.4 Circuit diagram for a unitary of the form eiθ`P̂̀ , commonly used in many
quantum simulation algorithms. . . . . . . . . . . . . . . . . . . . . . 26

1.5 A schematic of the QPE algorithm using three ancilla qubits, correspond-
ing to three binary digits of eigenvalue readout. The ancialla qubits are
first initialized to a superposition with a Hadamard gate. After the inverse
quantum Fourier transform, the ancialla register readout gives the binary
decimal representation of the phase ϕ j, such that the energy eigenvalue is
computed by E j = −(2π/t)ϕ j = −(2π/t)0.z1z2z3..., were zi is the mea-
sured state (0 or 1) of the ith ancilla qubit. . . . . . . . . . . . . . . . . 30

2.1 Structure of the H10 model systems studied in this work. Geometries are
parameterized by the nearest-neighbor H–H distance (r), indicated by green
dashed lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.2 Density of states with fixed electron number convoluted with a Gaussian
function [Dg(E), defined in Eq. (2.32)] computed from the 50 lowest sin-
glet, triplet, and quintet states of the H10 systems at an H–H distance (A)
r = 1 Å and (B) r = 1.5 Å. The density of states was convoluted with a
Gaussian function of exponent α = 105 E−2

h . . . . . . . . . . . . . . . 75



LIST OF FIGURES

2.3 Spin correlation density Ai(r) of the H10 models at an H–H distance r =
1.25 Å plotted for (A) the edge and central localized MO sites of the hy-
drogen chain, (B) the symmetry unique site of the hydrogen ring, (C) the
four symmetry unique sites of the H10 sheet, and (D) the two symmetry
unique sites of the H10 pyramid. Positive and negative values of Ai(r) are
indicated in red and blue, respectively, and in each plot the localized orbital
φi is denoted by an asterisk. . . . . . . . . . . . . . . . . . . . . . . . . 76

2.4 Ground-state of the four H10 models at an H–H distance r = 1.5 Å. Energy
error with respect to FCI vs. number of parameters (Npar) of approximate
methods. The gray shaded region represents chemically accurate energies
(error less than 1mEh). . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.5 Ground-state of the four H10 models at an H–H distance r = 1.5 Å. Density
cumulant error ‖∆λλλ 2‖F with respect to FCI vs. number of parameters (Npar)
of approximate methods. . . . . . . . . . . . . . . . . . . . . . . . . . 80

2.6 Ground-state potential energy curves of the four H10 models. Energy error
(∆E) with respect to FCI for various electronic structure methods as a func-
tion of the H–H distance (r). The gray shaded region indicates the range of
r for which the restricted Hartree–Fock solution is stable. . . . . . . . . 83

2.7 Accuracy volume (VX ) for various approximate methods as a function of
the number of number of hydrogen atoms (n) for the four Hn models. For
comparison we also report the number of FCI determinants (in C1 symme-
try) and the curve n4. The 12, 14, and 16 hydrogen chains, rings, sheets,
and pyramids are extensions of the H10 models in that the additional hydro-
gens are placed within the same lattice structure. Unless otherwise noted,
all results employ canonical RHF orbitals. . . . . . . . . . . . . . . . . 88

3.1 Schematic illustration of the multireference selected quantum Krylov
(MRSQK) algorithm. (A) An approximate real-time dynamics using a
single Slater determinant reference (Φ0) is used to generate a trial state
(Ψ̃). (B) Measurements of the determinants that comprise the trial state are
used to determine the probability of hopping (Pµ ) to other determinants.
This information is employed to build two new reference states, Φ1 and
Φ2. (C) Finally, three real-time evolutions starting from the references
(Φ0,Φ1,Φ2) generate a set of 12 Krylov states ψα , which are used to
diagonalize the Hamiltonian and obtain the energy of the state Ψ. . . . . 110

3.2 General circuit for measuring non-hermitian operators of the form〈
0̄
∣∣Û†
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Chapter 1

Introduction

"Nature isn’t classical, dammit, and if you want to make a simulation of
nature, you’d better make it quantum mechanical, and by golly it’s a

wonderful problem, because it doesn’t look so easy."

-Richard Feynman

1.1 Introduction

It is interesting to consider what the foundational figures of quantum mechanics would

find most compelling about the current state of the field. In addition to our continued ex-

ploration of fundamental theories, would they be impressed with our progress "making

soluble1" the equations which bear their names? Could Dirac have predicted after his 1929

statement on the complexity of quantum equations that, only few decades later, elegant

mathematical approximations paired with large-scale digital computation would allow the-

oreticians to predict properties and structures of molecules on-par with experimental stud-

ies?2, 3 Would Schrödinger be surprised that nearly 100 years after he reproduced Bohr’s

results for the Hydrogen spectrum using the now conventional framework of quantum me-

chanics,4 quantum computers would be used to study the electronic structure of Hydrogen

systems?5 Perhaps they would be most impressed by the ways in which their ideas, and the

colossal body of subsequent work, have changed the everyday lives of nearly every person

on the planet through the development of technologies like transistors, integrated circuits,
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and lasers.6

This dissertation is only a shadow of the colossus, and is concerned with how quantum

computers, or computers which rely on quantum bits and quantum logic gates, can be used

to determine the properties of quantum systems with many interacting bodies. It has a

particular focus on hybrid quantum-classical algorithms well suited to simulate systems

for which the interactions between bodies are strong. While much of the work presented in

this dissertation is applicable to general many-body systems, the language used and systems

studied are conventional in the field of (classical) quantum chemistry. Nature isn’t classical

dammit,7 and finally, neither are computers!

1.2 The electronic structure problem

In quantum chemistry, one is usually interested in predicting the properties of ground or

low-lying electronic states for a molecular system accurately enough to gain scientific in-

sight. In practice this involves the solving the non-relativistic, time-independent, electronic

Schrödinger equation

ĤΨ j = E jΨ j. (1.1)

Although simple in print, this equation encapsulates an astoundingly rich physics. The

system’s eigenstates Ψ j, referred to as wave functions, and its energy eigenvalues E j corre-

spond to the Hamiltonian operator Ĥ, which incorporates the energetic interactions of the

system’s constituents. A general (molecular) Hamiltonian includes kinetic energy terms for

electrons and nuclei as well as potential energy terms for (i) inter-nucleus interactions, (ii)

inter-electron interactions, and (iii) electron-nucleus interactions. However, as pointed out

by Born and Oppenheimer, and elaborated upon by Sutcliffe,8 the tremendous discrepancy

between the mass of the electron and the mass of the nuclei allows a critical simplification

to the Hamiltonian where one can neglect the nuclear kinetic energy term and the inter-

nucleus potential. Under this approximation the electrons interact only in a field of fixed
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nuclear potential and the so-called electronic Hamiltonian is given by

Ĥ =− h̄2

2me
∑

i
∇

2
i −

qe

4πεo
∑
iI

qI

riI
+

q2
e

4πεo
∑

i, j>i

1
ri j

, (1.2)

where h̄ is Plank’s constant divided by 2π , me is the electron mass, qe is the electron charge

and εo is the permittivity of free space. In the rest of this dissertation we will use only

atomic units in which the aforementioned constants are all equal to one. The indices i and

j are over electrons, and the index I is over nuclei such that riI and denotes the distance

between electron i and nucleus I while ri j denotes the distance between electrons i and j.

The n-electron wave function Ψ for a system with Hamiltonian Ĥ therefore depends

explicitly on the real-space coordinates of the electrons {ri}, (i.e. Ψ = Ψ(r1,r2, ...,rn)).

However, even under the Born-Oppenheimer approximation, Ψ is also parametrically a

function of the m nuclear coordinates {RI} because they effect the static field through

which the electrons move. Because one integrates over the the electronic coordinates to

determine the expectation value of the electronic energy Eelec = 〈Ψ|Ĥ|Ψ〉, the total energy

of the system Etot depends only on the nuclear coordinates. It is given by the sum of the

electronic energy and and the trivially calculated nuclear-repulsion energy Enuc as

Etot(R1,R2, ...,Rm) = Eelec(R1,R2, ...,Rm)+Enuc(R1,R2, ...,Rm). (1.3)

It is the total energy as a function of the nuclear coordinates that is of primary interest in

quantum chemistry as it is the key to determining the potential energy surface and extract-

ing the wealth of chemical insight it offers.

1.2.1 The antisymmetry of fermionic wave functions

It was recognized by early in the history of quantum mechanics by Pauli9 that that two

or more electrons would not occupy the the same quantum state, although surprisingly,

rigorous investigation of a proof is still an area of research.10 His now famous exclusion

principle gave at least a heuristic explanation for the structure of the periodic table, and
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also suggested the existence of a mysterious "non-classical" quantum number, shortly after

determined to be the particle’s spin.11

The principle has foundational importance to the quantum mechanics of many interact-

ing, but indistinguishable, bodies. To show this, first consider a single-particle state φp(x1)

defined as

φ2a+δ σ

β
(x1) = ψa(r1)χσ (ω1) (1.4)

where r1 is the spatial coordinate of a particle, ω1 is the spin coordinate of the particle,

x1 = (r1,ω1) is a compound spatial and spin coordinate of the particle. Additionally, ψa

is a so-called spatial orbital characterized by a unique set of three quantum numbers, and

χσ is a spin function indexed by σ which can indicate either spin up (σ = α) or spin

down (σ = β ) (at least if the particle is an electron), and δ σ

β
is a Kronecker delta function

to stagger the spin to spatial orbital indexing. In the context on indistinguishability, a

two-electron wave function Ψ(x1,x2) cannot be written as a simple product of the single-

particle states φp(x1) and φq(x2). Instead, one must consider the wave function as either a

symmetric (+) or an antisymmetric (−) linear combination

Ψ(x1,x2) = φp(x1)φq(x2)±φp(x2)φq(x1). (1.5)

It follows almost from inspection that only the antisymmetric solution satisfies Pauli’s ex-

clusion principle. In other words, if φp = φq, then then two electrons occupy the same state,

and the total wave function

Ψ(x1,x2) = φp(x1)φp(x2)−φp(x2)φp(x1) = 0, (1.6)

is zero over all space regardless of the electronic coordinates. It is therefore antisymmetric

wave functions which form the basis for many-body quantum chemistry.
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1.2.2 Slater determinants as mean-field wave functions

A generalization of the two-electron wave function discussed above was originally pro-

posed by Heisenberg,12 but it was the subsequent work of Hartree,13, 14 Slater,15 and Fock16

which established the determinant

Φ(x1,x2, ...,xn) =
1√
n!

∣∣∣∣∣∣∣∣∣

φ1(x1) φ1(x2) . . . φ1(xn)
φ2(x1) φ2(x2) . . . φ2(xn)

...
... . . . ...

φn(x1) φn(x2) . . . φn(xn)

∣∣∣∣∣∣∣∣∣
(1.7)

(which now bears Slater’s name), as the basic building block for wave functions in many-

electron quantum mechanics. While a single Slater determinant does not exactly solve the

electronic Schrödinger equation [Eq. (1.1)], its construction suggests naturally the ques-

tion: what is the best single determinant, and how could it be determined? The variational

principle, at least in the context of quantum mechanics, implies that the energy of any trial

state is lower bound by the energy of the ground eigenstate E0 = 〈Ψ0|Ĥ|Ψ0〉. Early work

in this regard was concerned with finding a single determinant (now known as the Hartree-

Fock determinant ΦHF), comprised of a set of single-particle states {φp}, for which the

energy expectation value EHF = 〈ΦHF|Ĥ|ΦHF〉 was minimized, and therefore closest to the

true ground state eigenvalue. The variational flexibility in the determinant arises when the

single-particle state φp(x) is given as an expansion of atomic basis functions ϕµ(x) as

φp(x) = ∑
µ

Cµ pϕµ(x), (1.8)

such that the coefficients Cµ p appearing in the Hartree-Fock determinant are varied to min-

imize EHF.

The work of Hartree, Fock, and later Roothaan17 made possible a practical proce-

dure for determining the coefficients Cµ p that minimize EHF and characterize the so-called

Hartree-Fock or mean-field solution. The term mean-field stems from the principle that

the optimal single-particle states φp(x1) which compose the Hartree-Fock determinant

[Eq. (1.7)], are found by assuming each electron interacts in the average field created by



CHAPTER 1. INTRODUCTION 6

the other electrons. The iterative Hartree-Fock procedure requires that one compute three

initial quantities: (i) the overlap integrals Sµν , (ii) the one-electron integrals 〈µ|ν〉, and (iii)

the two-electron integrals 〈µν |λσ〉. The overlap integrals are given simply by

Sµν =
∫

ϕ
∗
µ(x1)ϕν(x1)dx1. (1.9)

The one electron integrals are given by the expectation value of the one electron operator ĥ

as

〈µ| ĥ |ν〉=
∫

ϕ
∗
µ(x1)

[
− 1

2
∇

2
r1
−∑

I

ZI

|r1−RI|

]
ϕν(x1)dx1, (1.10)

where the index I is over the nuclei, ZI denotes the nuclear charge (in atomic units), and RI

is the nuclear position. Finally, the two electron integral is given by

〈µν |λσ〉=
∫ ∫

ϕ
∗
µ(x1)ϕ

∗
ν(x2)

[
1

|r1− r2|

]
ϕλ (x1)ϕσ (x2)dx1dx2, (1.11)

noting the integration over the (spin and spatial) coordinates of two electrons. Although the

details of the iterative Hartree-Fock procedure are an important aspect of quantum chem-

istry, it is not central to the content of this dissertation and we therefore point the reader to

the excellent introductory text by Szabo and Ostlund for farther details.18 We will, however,

return to our discussion about Slater determinants and electron integrals in the following

subsection(s).

Integral transforms

Because it will be salient future discussions regarding second quantization and quan-

tum simulation algorithms, it is important to point out under certain circumstance one

needs to transform the atomic-orbital electron integrals indexed by µ,ν ,λ ,σ (Eqs. (1.10)

and (1.11)) into an alternative basis. For example, if one wants to transform the two-

electron integrals to the basis of mean-field molecular orbitals φp [Eq. (1.8)] indexed by

p,q,r,s one can perform

〈pq|rs〉= ∑
pqrs

∑
µνλσ

Cµ pCνqCλ rCσs 〈µν |λσ〉 , (1.12)
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noting that in practice only a five fold summation with scaling
[
O(n5)

]
is necessary rather

than the eight fold summation
[
O(n8)

]
which is shown for clarity. An analogous transform

exists for the one-electron integrals.

1.2.3 Second quantization

Thus far, we have considered wave functions as functions of the real-space coordinates

of the bodies they represent. These functions are given by projections of a quantum state

(vector) onto a position basis. For example, consider the wave function ψ(x) of a particle

along a one-dimensional spatial coordinate x, given as

ψ(x) = 〈x|ψ〉=
∫

ψ(x)〈x|x̃〉dx̃, (1.13)

where |x〉 is a vector with a continuous index indicative of a position x, and the infinitely

large set of vectors {|x〉} are orthonormal. While wave functions in position space are

perhaps the most intuitive way to understand many-body quantum mechanics, it is often

more convenient to use the state vector notation (|ψ〉 in the example above), also referred

to as "bra-ket" notation as coined by Dirac. In this way, any general many-body state |Ψ〉

can be expressed a complex vector in Hilbert (or Fock) space. A single n-electron Slater

determinant Φ [Eq. (1.7)] can be represented in this notation as a tensor product of the

single-particle states
∣∣φp
〉

given by

|Φ〉= |φ1〉⊗ |φ2〉⊗ ...⊗|φn〉= |φ1φ2...φn〉 . (1.14)

While this notation is powerful and concise, one must also account for the previously

discussed (anti)symmetry conditions. In the state vector notation, a determinant for a two

electron system for example needs to satisfy:

∣∣φpφq
〉
=±

∣∣φqφp
〉
. (1.15)

This can be accomplished, as was first done by Dirac and Fock, by introducing a set of
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operators that preserve either the bosonic symmetry or fermionic antisymmetry of the state.

These operators, known as the creation (â†
p) and annihilation operators (âp), pertain to

single-particle state φp. In the case of fermions, which we shall now focus on exclusively,

these operators obey the following anti-commutation relationships:

[
âp, â†

q
]
+
= âpâ†

q + â†
qâp = δ

q
p , (1.16)

[
âp, âq

]
+
= 0, (1.17)

and
[
â†

p, â
†
q
]
+
= 0. (1.18)

An occupied single-particle state
∣∣φp
〉

can then be constructed, for example, by applying

the creation operator â†
p to the vacuum state |−〉 such that

∣∣φp
〉
= â†

p |−〉 . (1.19)

Similarly, one can annihilate a particle in state
∣∣φp
〉

to get back the vacuum via

|−〉= âp
∣∣φp
〉
. (1.20)

A final important aspect of the fermionic operators is that (i) annihilating the vacuum (i.e.

âp |−〉), or creating a particle in an already occupied state (i.e. â†
p
∣∣φp
〉
) zeros the state. This

formalism is referred to as second quantization, and allows one to concisely represent both

fermionic operators and many-body states. In the following subsections we will use second

quantization to describe both the quantum chemistry Hamiltonian and the many-body states

that are its eigenvectors.

The second quantized Hamiltonian

Armed with the rules of second quantization, one can the re-write the electronic struc-

ture Hamiltonian [Eq. (1.2)] using the fermionic operators as

Ĥ = ∑
pq
〈p|q〉 â†

pâq +
1
4 ∑

pqrs
〈pq| |rs〉 â†

pâ†
qâsâr, (1.21)
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where 〈p| ĥ |q〉 and 〈pq| |rs〉= 〈pq|rs〉−〈pq|sr〉 are the one-electron and anti-symmetrized

two-electron integrals, respectively. Here we use the indices p,q,r,s to denote the integrals

transformed to the Hartree-Fock molecular orbital basis because they are needed as a start-

ing point for most quantum simulation algorithms. We note however that the Hamiltonian

is invariant (iso-spectral) to rotations of the orbitals.

The particle number representation

It is also important to discuss here, for the sake of future dialog on the representation of

states with quantum computers, the so-called particle number (also refered to as occupation

number) representation of states. The particle number representation of a state is equivalent

to the occupied state representation given in Eq. (1.14), but uses a slightly different nota-

tion. Rather than denoting a determinant |Φ〉with an occupied set of n single-particle states

|φ1φ2...φn〉, one denotes it in terms of the occupations nm ∈ {1,0} of all m single-particle

states as

|Φ〉= |n〉= |n1n2 . . .nm〉 , (1.22)

where n is simply a vector of occupations (n1,n2, . . . ,nn). For example, the Hartree-Fock

state |ΦHF〉 (comprised of the n < m lowest energy single-particle states φ1, . . . ,φn) is de-

noted by

|ΦHF〉= |1112 . . .1n0n+10n+2 . . .0m〉 , (1.23)

where the subscript indices are only shown here for clarity. Analogously, the vacuum |−〉

is given by a ket of m zeros.

1.3 Electron correlation

Thus far we have only described in detail approximate solutions of the n-electron

Schrödinger equation [Eq. (1.1)] given by a single determinant. Although the mean-field

solution usually captures a very large fraction of the total electronic energy, the exact

electronic energy is always lower because the motion of the electrons is correlated. To
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paraphrase Stanton and Bartlett,19 "average electronic interactions don’t keep electrons as

separated as instantaneous interactions do." Incorporating into an approximate theory the

flexibility of occupying single-particle states with higher kinetic energy (i.e. in higher

energy orbitals), allows one to recover more of the instantaneous interactions. Such an

approach gives rise to multi-determinantal wave functions which can capture more (or all)

of the electronic correlation effects. In the following subsections we will describe an exact

determinantal expansion of the wave function that solves Eq. (1.1), discuss some of the

more nuanced aspects of electronic correlation, and review several algorithms which can

treat different regimes of correlation.

1.3.1 Exact diagonalization and the curse of dimensionality

Here we will attempt to outline the exact solution to the electronic structure problem,

that is, the whole enchilada. It is important to note that a truly exact solution to Eq. (1.1),

that is to say one which would mach a perfect experimental value, would require a complete

set of basis functions {ϕµ} with infinite dimension. Needless to say using an infinite set

in practice is impossible, and therefore, any "exact" solution is restricted to a finite set of

m basis functions in practical applications. Here and in the remainder of this dissertation

usage of a finite basis set is always assumed.

We will begin by considering that the Hartree-Fock procedure produces m mean-field

single-particle states {φ1,φ2, ...,φm}, but the Hartree-Fock determinant ΦHF is comprised

of only the n < m lowest energy single-particle states {φ1,φ2, ...,φn}. It is completely valid

to then construct "excited" determinants from a subset of any n occupied states as

|ΦI〉= |φi1φi2...φin〉 (1.24)

where ii < i2 < · · ·< in are the original single-particle state indices and I = (i1, i2, . . . , in) is

a compound index for a specific determinant. Note also that all determinants constructed

in this way are orthonormal such that 〈ΦI|Φ′I〉= δ I′
I so long as the single-particle states are
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as well.

The basic idea of the configuration interaction (CI) method20 is then to diagonalize

the Hamiltonian matrix H in a basis {ΦI} of NI determinants, comprised of the Hartree-

Fock determinant and some set of NI−1 excited determinants. The matrix elements of the

Hamiltonian in the basis {ΦI} are then given by

HIJ = 〈ΦI| Ĥ |ΦJ〉 , (1.25)

and Schrödinger’s equation takes the form of a matrix eigenvalue problem HC = ~EC. The

elements (CI) of the eigenvectors ~CI , for example of the ground state (CI ∈ ~C0 = C(0)), give

coefficients in a determinantal expansion of the CI wave function. If the set of expansion

determinants contains all possible NFCI combinations of n electrons in m states, then the

the CI is considered full and the basis spans the entire Hilbert space. It follows that the full

CI (FCI) state is given by

|ΨFCI〉=
NFCI

∑
I

CI |ΦI〉 . (1.26)

The variational principal implies that the FCI state is the best possible approximation to

the true ground state in a finite basis, capturing the entirety of electronic correlations by

allowing for maximum flexibility to account for instantaneous interactions.

Despite the importance of FCI for our theoretical understanding of the electronic struc-

ture problem and for benchmarking approximate methods, it is intractable for all but the

smallest of molecular systems.21 The issue, also referred to as the curse of dimensionality,

is that the dimension of the Hilbert space (and the size NFCI of the full determinantal basis

{ΦI}) scales as a binomial coefficient in n and m. Despite a long history of impressive algo-

rithmic improvements22–24 and the aid of massively parallel subroutine implementations,25

the largest FCI computation to date only included 22 electrons in 22 (spatial) orbitals.

Such is the objective of modern electronic structure theory: to accurately determine the

properties of electronic states at a computational cost somewhere between Hartree-Fock

theory and FCI. As we will discuss in the following subsections, the success of approxi-
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mate methods is also strongly tied to the degree of electronic correlation, raising important

questions about the compactness of classical wave function representations and the usage

of quantum computational algorithms.

1.3.2 Static and dynamical correlation

As previously mentioned, it is due to electronic correlations that a single determinant is

insufficient to exactly describe solutions to Schrödinger’s equation. In fact, the difference

between the exact FCI energy (E0) and and the Hartree-Fock energy (EHF) is referred to as

the correlation energy26

Ecorr = E0−EHF, (1.27)

and is the most widely used metric to describe the strength of electronic correlation. It has

become common to partition the correlations mainly19, 27 into two classes:28, 29 dynamical

(or weak) correlations and static (or strong) correlations, although it is important to note

that there exists no rigorous physical distinction.

Dynamical correlation refers to the predominantly local repulsion effects which dimin-

ish the value of the wave function when two electrons are near one another, resulting in

a reduction in energy. In cases where the total correlation effects are predominantly dy-

namical, the Hartree-Fock determinant is usually a good approximation to the FCI state.

The total correlation energy can be (mostly) recovered by perturbative corrections to the

Hartree-Fock state, or by allowing excitations to determinants with only a small number

of excited electrons. These approaches characterize the class of single-reference electronic

structure methods including (but certainly not limited to), 2nd-order Møller–Plesset pertur-

bation theory30 (MP2), finite-order CI,20 coupled cluster31, 32 (CC) approaches, or stochas-

tic methods.33 Many examples, such as ground-state energies for molecular systems at (or

near) equilibrium geometries, predominantly exhibit dynamical correlations and are there-

fore well described by the aforementioned techniques.

Static or "strong" correlation, which is of principal importance to the work in this dis-
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sertation, is a phenomenon largely related to orbital degeneracies and is (in general) much

more challenging to deal with using approximate theories. In the orbital picture, for exam-

ple, long-range electronic interactions cause electrons to become localized on atoms when

the orbital energies are near-degenerate, such as in bond breaking. This type of correlation

is considered to be strong or static. In such cases the energetic cost of promoting electrons

into higher states can become small relative to the local repulsion energies. Analogously, in

the condensed matter community, strong correlation is commonly thought of as the regime

in which the Hubbard model Hamiltonian34 has a much larger on-site repulsion coefficient,

than site-hopping coefficient.

A consequence of degeneracy and strong correlation, now in the perspective of the

many-body state, is that the wave function takes on a pronounced multi determinantal

character, such that the Hartree-Fock determinant is not a good overall approximation.

Figure 1.1 is a graphical illustration of this phenomenon, showing a representation of the

FCI coefficients in Eq. (1.26) organized as a matrix for two different geometries of linear

H10. Specifically, one can see that at the near equilibrium geometry (r = 1.0) the wave

function is dominated by just a small number of determinants (including the Hartree-Fock

determinant), but that once stretched, much of the sparsity is lost and a large number of

determinants become important, as indicated by the density of yellow pixels.

The success or failure of single-reference approaches is therefore largely contingent

on the degree of degeneracy in the orbitals. A common indicator in particular is the en-

ergy gap between the highest occupied molecular orbital (HOMO) and the lowest unoc-

cupied molecular orbital (LUMO). Figure 1.2 simultaneously depicts (top) the increase of

orbital degeneracy and vanishing HOMO-LUMO gap, and (bottom) the breakdown of sev-

eral single-reference methods during the dissociation of linear H10, a now paradigmatic

model system for strong correlation.35–38 Despite almost exactly reproducing the FCI en-

ergy near equilibrium-geometry, coupled cluster with single, double and perturbative triple

excitations39 [CCSD(T)] (often referred to as the "gold standard" in quantum chemistry)
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Figure 1.1: Graphical depiction of the FCI wave function coefficients described in
Eq. (1.26) for a linear H10 chain at r=1.0Å (left) and r=1.5Å (right). Coefficients are
arranged as a matrix indexed by α and β spin-orbital occupations. Coefficients with a
magnitude greater than 10−3 are shown by yellow pixels, and coefficients with a magni-
tude less than 10−8 are represented by purple pixels. The calculations used to produce the
figures utilized a minimal STO-6G basis, resulting in a total of 62,504 coefficients.

fails catastrophically in the strong correlation regime.

1.3.3 Classical methods for strong correlation

While the physical principles that give rise to correlation are simple – instantaneous

coulombic interactions – the effects of those interactions are very elaborate, and give rise

to a myriad of unique physical phenomena and result in complex electronic structures.

Computational study of such phenomena and complex states, including bond breaking and

photochemical processes,28, 40 molecular magnetism,41 high-temperature superconductiv-

ity,42 metal-insulator transitions,43 and others,44–46 is therefore still an important challenge
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Figure 1.2: Molecular orbital energies from restricted Hartree-Fock (top) and total energy
from RHF, MP2, CCSD(T), and FCI (bottom) over the symmetric dissociation of linear
H10. All calculations employed a STO-6G basis.

in modern computational science.

The last several decades have seen tremendous development of classical computational

approaches aimed at treating strong correlation. The first examples the authors are aware

of are the works of Ruedenberg47, 48 on the multi-configurational self consistent field (MC-

SCF) method, which considered performing CI with excitations containing the valence

orbitals paired with a self-consistent orbital reoptimization. Soon after, Roos49 considered

MCSCF which included what he called the active orbitals (rather than strictly valence) and

coined the now-conventional term complete active space SCF (CASSCF). Unfortunately,

CAS methods suffer from the same scaling as FCI, and are limited in practice to calcula-

tions with approximately 18 electrons in 18 spatial orbitals (18e, 18o). This limitation has

motivated the development of several lower-cost alternatives.
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One CAS alternative that is still based on CI theory, is the class of selected CI (sCI)

methods. Selected CI methods approximate the FCI solution using a subset of the full

determinant space but are (generally) not restricted to a fixed excitation order, and mainly

differ in how the ideal subset is determined. The earliest examples of sCI,50–54 some of

which predate MCSCF, were originally intend to reduce the cost of CI with only singly and

doubly excited determinants rather than to act as an alternative to FCI or CAS methods. In

recent years, however, sCI has received renewed attention as an alternative to FCI with new

deterministic,55–66 stochastic,67–72 and semistochastic73–76 variants being proposed.

Another family of FCI alternatives, closely related to sCI, is that of determinant-

based Monte Carlo methods,77–84 which generally attempt to sample from the integrated

imaginary-time Schrödinger equation. The most notable of these approaches, FCI quantum

Monte Carlo (FCIQMC),77, 79 considers a so-called walker formalism where the wave

function is approximated from the long-imaginary-time dynamics of the walkers. The

success of FCIQMC is in its avoidance of the fermionic sign problem, and its ability to be

implemented on massively parallel architectures.85–91

Other approaches, which are not explicitly based on a determinantal expansion of the

wave function, have also been explored to treat strong correlation. One such method, the

variational two-body reduced density matrix92–96 (V2RDM) algorithm, seeks to determine

(as the name implies) the optimized elements of the one and two-body RDM elements,

rather than the explicit wave function coefficients. The appeal of these methods is that, in-

principle, one is able to recover the exact energy with only the one- and two-body RDMs

which scale as O(m2) and O(m4), where m is the number of spin orbitals, rather than

as a binomial coefficient in n and m. The challenge for V2RDM methods, however, is

enforcing that the optimized RDMs are representable by a physical n-electron fermionic

wave function, which leads to a constrained semi-definite optimization problem.

A final important class of algorithms able to treat strong correlation, and arguably the

most successful, are those which optimize the wave function cast as a tensor network state97
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(TNS). Conceptually, TNSs are given by the FCI coefficient vector [Eq. (1.26)], decom-

posed into a product of tensors (ideally chosen to reflect the geometry of a system)98 that

can be truncated to a reduced rank with minimal loss of information. The advantage of

TNSs is their ability to maximally exploit locality in quantum systems subject to an en-

tanglement area law,98, 99 such that very low rank tensors can accurately represent even

strongly correlated states. In the case that the tensors have three indices (two once a con-

figuration is specified) the wave function is given by a matrix product state100–102 (MPS),

the variational ansatz optimized via the density matrix renormalization group103 (DMRG)

algorithm. DMRG for example, which is ideally suited to optimize MPSs for one di-

mensional systems, has allowed for very large active space calculations on the order of

100 orbitals for quasi-linear molecular systems.104–113 Other tensor networks, such as the

projected entangled pair states114 (PEPS), and tree tensor network states115–117 (TTNS),

are in principle well suited to compactly represent the wave functions of two and three-

dimensional systems, but in practice are challenging to optimize due to the high computa-

tional cost of general tensor contraction.

A note on the compactness of classical wave function representations

Despite the impressive theoretical and algorithmic advances highlighted in this sub-

section, there still exists no general and computationally affordable method to accurately

treat strongly correlated systems. It is important to point out that at large enough system

sizes (say on the order of 103 or 104 electrons and orbitals) all the methods described here

would generally be incapable of even storing the parameters (coefficients, cluster ampli-

tudes, RDM or tensor elements) used to characterize the approximate wave function, much

less optimizing them. Moreover, as demonstrated in Fig. 1.1, the onset of strong electronic

correlations greatly exasperates this problem, as a far greater fraction of the total Hilbert

space becomes important. These factors are investigated numerically in Chapter 2 and ul-

timately motivate the development of quantum algorithms and hardware capable of storing

the information pertaining to molecular wave functions.
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1.4 Quantum computers: the blessing of dimensionality

Although the initial concept of a quantum Turing machine was introduced by Paul

Benioff in 1980,118 Richard Feynman is commonly considered the first to propose usage of

such a device to simulate quantum systems.7 A a so-called quantum computer is a device

that, like a classical computer, takes in some body of information (an input say with size

n), performs well-defined manipulations to – or with – that information (via an algorithm),

and produces some useful information (an output). The term computational complexity

can likewise be used for both classical and quantum algorithms, and describes how the

required resources for space (related to the number of bits), and for time (related to the

number of physical operations) scale with respect to the input size n. Concisely put, the

crucial difference between a classical and a quantum machine, however, is that a quantum

device is able to utilize superpositions of (usually binary) bit states |1〉 and |0〉, rather than

exclusive bit states |1〉 or |0〉 at a given instant in time. The objective of any quantum

computational algorithm is then to solve some problem, for example the determination of

low-lying eigenstates and their properties, with significantly lower scaling for space and

time requirements than would be required for an optimal classical algorithm.

As discussed in the previous section, (near) exact determination of low-lying eigen-

states and their properties is still a problem with exponential complexity on classical com-

puters, particularly for systems that exhibit strong correlation effects. The advent of large-

scale programmable quantum computers would therefore mark a paradigm shift for the

simulation of quantum mechanical systems. Efficient quantum algorithms – those which

have only polynomially scaling space and time complexity – for determining such prop-

erties are of principle interest to chemistry, condensed matter physics, and materials sci-

ence.119–122 The potential of quantum computation has motivated rapid development of a

wide range of algorithms (including those introduced in this dissertation), and experimen-

tal breakthroughs121, 123–127 including the first demonstration of quantum advantage over a

classical machine.128
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In the following subsections we will review the fundamental aspects of quantum com-

puting and quantum simulation, and review of many of the most important algorithmic

developments in the field. We hope that the reader finds these overviews illuminating and

we will attempt to convey how the advantage of using a quantum device arises, and what

the potential challenges may yet be.

1.4.1 Quantum bits

Consider first that the most fundamental form of information on a classical machine is

a binary bit bp, the state of which can be represented as

∣∣bp
〉
∈
{
|0〉 , |1〉

}
, (1.28)

where,

|0〉 ≡
(

1
0

)
, (1.29)

and

|1〉 ≡
(

0
1

)
(1.30)

are orthonormal basis-vectors. A classical configuration of m bits |B〉 is given by the tensor

product

|B〉= |b0〉⊗ |b1〉⊗ · · ·⊗ |bm−1〉= |b1b2 . . .bm−1〉 . (1.31)

The bit configuration (string) can then be used so store any computational object of interest,

for example a double precision number, which would require m = 64 classical bits. One

may also write (manipulate) values of the bits and/or read the values bm with essentially

100 percent certainty (which is not the case for quantum bits as we will soon discuss). It

also is important here to note that although |B〉 can represent 2m different configurations, it

can only represent one configuration at a given instant in time!

As briefly stated in the previous subsection, a quantum device is able to utilize the phe-

nomena of superposition and entanglement to store information. This can be expressed by

considering the state
∣∣qp
〉

of a so-called quantum bit (or "qubit") expressed by the super-
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position
∣∣qp
〉
= α |0〉= β |1〉 , (1.32)

where α and β are complex normalized probability amplitudes (i.e. |α|2 + |β |2 = 1). A

consequence of the superimposed bit states is that, when the value of
∣∣qp
〉

is read, it is

collapses to |0〉 with probability |α|2 and to |1〉 with probability |β |2.

A general configuration of quantum bits |Q〉 can be likewise be represented by a tensor

product of individual superimposed qubit states
∣∣qp
〉

in analogy to Eq. (1.31). However, if

more than a single qubit is used (m > 1), then |Q〉 can also represent entangled states, that

is, (normalized) states of the form

|Q〉= ∑
{qo,...,qm−1}

Cqo,...,qm−1 |qo . . .qm−1〉 , (1.33)

which (in the general case) cannot be written as a simple product state. A canonical exam-

ple of such a state is the Bell state129 |Qbell〉= 1√
2
|00〉+ 1√

2
|11〉, which can’t be expressed

as a simple product of |q0〉⊗ |q1〉. The potential of quantum-computing then lies in the

ability to "store" the information content held in the 2m probability amplitudes Cqo,...,qm−1

simultaneously with only m physical qubits, thus exemplifying a blessing of dimensional-

ity!

1.4.2 Quantum circuits

Now that we have outlined the basic principles of storing information using quantum

bits, it is appropriate to describe how this information can be manipulated to execute al-

gorithms. In the model of programable quantum computing,130 this is done via (quantum)

circuits constructed from a set of quantum logic gates, analogous to classical logic gates.

Because the quantum state |Q〉 that exists on the quantum device is a physical entity, it must

be normalized and, therefore, any quantum circuit used to alter |Q〉 must act as a unitary

operation Û (defined such that Û†Û = 1). In other words, the action of any quantum circuit
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has the form

|Qafter〉= Û |Qbefore〉 . (1.34)

It is a remarkable result that any unitary circuit can be represented by a small

universal gate set131 comprised of operations acting only on one and two-qubits. Some

of the most common single-qubit gates, especially in quantum simulation, are the Pauli

gates, the Hadamard gate, and the z-rotation gate depicted in Tab 1.1. It is also very

Table 1.1: List of common single-qubit quantum gates used in quantum simulation algo-
rithms. Note that these gates will often be subscripted such as X̂p to denote that the action
is on the pth qubit.

gate name gate symbol matrix representation

Pauli X (NOT) X̂
(

0 1
1 0

)

Pauli Y Ŷ
(

0 i
−i 0

)

Pauli Z Ẑ
(

1 0
0 −1

)

Hadamard Ĥ 1√
2

(
1 1
1 −1

)

Z Rotation R̂z(θ)

(
e
−iθ

2 0
0 e

iθ
2

)

common to consider a controlled two-qubit operations [c-Ûtarget,control], which only

applies Û to configurations of the form
∣∣. . .qtarget . . .1controll . . .

〉
, but leaves configurations

∣∣. . .qqtarget . . .0controll . . .
〉

unchanged. An important example is the controlled application

of the Pauli X gate (denoted c-X̂ or CNOT), which is the analog of the the classical

controlled NOT gate.

Any product the quantum gates described here gives a unitary circuit, and one can con-

struct entangled states from unentangled states via their application. For example, consider

how one could construct the Bell state |Qbell〉 with a two-qubit quantum computer initial-
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ized to the state |00〉 by applying

c-X̂1,0Ĥ0 |00〉= 1√
2
|00〉+ 1√

2
|11〉 . (1.35)

As a supplement to mathematical formulas, circuit diagrams often provide a convenient

graphical representation of their execution order and gate composition. A diagram for the

above construction of the bell state via application of a Hadamard gate, followed by a

CNOT is given in Fig. 1.3. Circuit diagrams depict the execution of the gates from left to

|0〉 X̂

|0〉 H •
Figure 1.3: Circuit diagram for the construction of the bell state from the vacuum |00〉.
Note the use of the vertical line with a dot connected to the control qubit to denote the
c-X̂1,0 (CNOT) gate.

right, and gates that can be executed in parallel are often drawn in a single column.

The one and two-qubit gates described here are directly executable as physical opera-

tions on quantum hardware, for example, they can be applied as timed microwave pulses

which drive the rotation of qubit states. The total runtime for the execution of a quantum

circuit (i.e. how long it takes) is linearly proportional to the depth of the circuit, given

by the number of non-parallel operations (elementary gates) it requires. The challenge in

practice then becomes to construct algorithmically useful circuits with shallow depths, or

with depths that scale favorably with input size.

1.4.3 Determination of expectation values

The final aspect which merits discussion before an overview quantum simulation can

be given, is how to numerically determine expectation values λ of some operator Ô with

respect to the state of the quantum computer |Q〉 given by

λ = 〈Q|Ô|Q〉 . (1.36)
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In practice one can only measure expectation values in the basis {|0〉 , |1〉} (often referred

to as the computational basis), which are the eigenvectors of the Pauli Z gate. As a conse-

quence, any operator Ô comprised of anything other than a product of Ẑ operators, must be

transformed into the computational basis as

Ô = V̂ †ÔzV̂ , (1.37)

where Ôz is a product of Ẑ operators corresponding to unique qubits, and V̂ is a unitary

operator that performs the similarity transformation.

The number of individual measurements M required to determine λ is related to the

variance of the operator

Var[Ô] = 〈Q| Ô2 |Q〉−
(
〈Q| Ô |Q〉

)2
, (1.38)

which is zero in the case that |Q〉 is an eigenvector of Ô. The exact relationship is given by

M =
Var[Ô]

ε2 , (1.39)

where ε is the precision to which one wants to numerically determine λ .

So far we have only considered operators Ô with only a single term, but commonly in

quantum simulation, one wants to determine the expectation value for an operator Ô given

by a sum of individual operators P̂̀ , each comprised of a product of Pauli operators σ̂k such

that

Ô = ∑
`

P̂̀ = ∑
`

(
∏

k
σ̂
(`)
k

)
(1.40)

and,

〈Q| Ô |Q〉= ∑
`

〈Q| P̂̀ |Q〉= ∑
`

(
∏

k
〈Q|V̂ (`)†

k Ẑ(`)
k V̂ (`)

k |Q〉
)
. (1.41)

In this case, k = (p, [X ,Y, or Z]) is a compound index over the products in a term P̂̀ and

denotes both the qubit (p) and specific Pauli gate. The transformation unitary V̂ (`)
k is a one

qubit gate that transforms X̂ or Ŷ into Ẑ.
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1.4.4 The fermionic encoding problem

As described in is Sec. 1.2.3, many-body quantum mechanics is often written using

the language of second quantization. In the case of quantum chemistry, this implies heavy

usage of the Fermionic annihilation and creation operators. If one is interested in quantum

computational algorithms for the simulation of electronic systems, there then exists the

challenge of representing fermionic operators with quantum gates. This problem is referred

to as the fermionic encoding or fermionic mapping problem, and arises due to the need to

preserve the anti-symmetry conditions of fermionic wave functions, and the properties of

changing state occupation numbers.

The most commonly employed strategy, and the one employed in works presented in

this dissertation, was actually outlined by Pascal Jordan and Eugene Wigner almost a cen-

tury ago.132 In the aptly-named Jordan-Wigner transformation, the fermionic annihilation

(âp) and creation (â†
p) operators are represented by strings of operators as

âp =
1
2

(
X̂p + iŶp

)
Ẑp−1 . . . Ẑ0, (1.42)

and,

â†
p =

1
2

(
X̂p− iŶp

)
Ẑp−1 . . . Ẑ0, (1.43)

where X̂p, Ŷp, and Ẑp are the Pauli operators (acting on the pth qubit) discussed in the

previous subsections. A convenient feature of the Jordan-Wigner encoding is that, for an

m spin-orbital system with determinants given in the occupation number representation

[Sec. 1.2.3] |ΦI〉 = |n〉 = |no . . .nm〉, the determinants map directly to m-qubit quantum

basis states |q〉= |qo . . .qm〉. Conceptually, one can then think of the (X̂p + iŶp) term as an

operator that changes the occupation of spin-orbital φp (now represented by a single-qubit

state 0 or 1), and the product Ẑp−1 . . . Ẑ0 as an operator that keeps track of the fermionic

sign changes. The Ẑ product term also has two significant consequences: (i) it breaks

the locality of the fermionic operation on only spin-orbital p, and (ii) it implies that the

number of elementary gates needed to implement a single fermionic operation for a system
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of m spin orbitals scales (at worst) as O(m). As a result, many algorithms that utilize the

Jordan-Wigner transformation have an additional factor of m in their scaling.

Developing alternative fermionic encodings that reduce quantum computational over-

head is very much an active area of research. The most promising alternatives include

the so-called parity encoding,133 Bravyi-Kitaev134 (BK) encoding (as well as several of its

more-recent variants),135–137 and other techniques which employ auxiliary qubits.138, 139 In

brief, the BK family of encodings attempts to represent information of both the occupation

and parity locally, resulting in an elementary gate scaling of O(log(m)).

1.4.5 Operators in the qubit basis

With the simple expressions given by Eqs. (1.42) and (1.43) (or any of the alternative

encodings), one can represent a large variety of states on a quantum device built from

second quantized operators. Here we will clarify some of the notation often used in the

quantum simulation literature as it will be used throughout the rest of this dissertation.

Firstly, it is important to note that the the second quantized Hamiltonian [Eq. (1.44)]

can be written as a sum of products P̂̀ = ∏
n`
k σ̂

(`)
k of the Pauli operators (X̂ , Ŷ , or Ẑ). The

so-called "qubit" Hamiltonian is then given by

Ĥ =
N`

∑
`

θ`P̂̀ , (1.44)

where θ` is a one or two-electron integral (multiplied by a fraction), and N` is the number

of terms (scaling as O(m4)). As will be described in future sections, other operators such

as the coupled cluster T̂ operator140 may be expressed in a very similar fashion.

Importantly, it is very common in quantum algorithms to consider the application of

quantum circuits that represent terms of the form

eiθ`P̂̀ =

(
n`

∏
k

V̂ (`)
k

)†(n`−1

∏
k

c-X̂ (`)
k,k+1

)†

R̂z(2θ`)

(
n`−1

∏
k

c-X̂ (`)
k,k+1

)(
n`

∏
k

V̂ (`)
k

)
, (1.45)

where n` is the number of qubits the term P̂̀ acts on, and where we use similar notation
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to that used in Eq. (1.41). In brief, the three components of the circuit–the V̂ (`)
k terms,

the CNOT gates, and the rotation gate–are respectively rationalized by: (i) the need to

transform any X̂ and Ŷ Pauli’s to the computational basis, (ii) the need to keep track of

the parity from multiple Ẑ actions, and (iii) the need to rotate by a parametric amount. A

circuit for the exponential given in Eq. (1.45) is shown in Fig. 1.4.

∣∣∣∣qp(`)1

〉
V̂ (`)†

1
• • V̂ (`)

1
∣∣∣∣qp(`)2

〉
V̂ (`)†

2 X̂ • • X̂ V̂ (`)
2

∣∣∣∣qp(`)3

〉
V̂ (`)†

3 X̂ X̂ V̂ (`)
3

...
...

...
...

...
...

...
...

...
...∣∣∣∣qp(`)n`−1

〉
V̂ (`)†

n`−1 • • V̂ (`)
n`−1

∣∣∣∣qp(`)n`

〉
V̂ (`)†

n` X̂ R̂z(2θ`) X̂ V̂ (`)
n`

Figure 1.4: Circuit diagram for a unitary of the form eiθ`P̂̀ , commonly used in many quan-
tum simulation algorithms.

1.5 Quantum algorithms for electronic structure

As discussed in Sec. 1.2, the primary challenge of the electronic structure problem is

to determine the eigenvalues and properties (usually) of the low-lying states of a quantum

system. In this section we present an overview of the two primary classes of quantum

algorithms amenable to solving the electronic structure problem: (i) those based on Hamil-

tonian dynamics, and (ii) those based on variational minimization. While both classes of

algorithm will play a central role in the present and future of quantum simulation, it is

important to note that today’s quantum computers, often referred to as noisy intermediate-

scale quantum141 (NISQ) devices, are in their infancy and are largely relegated to the latter

category. Additionally, because strong correlation effects are likewise an important aspect
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of this dissertation, particular focus will be given to quantum algorithms amenable to thier

treatment.

1.5.1 Algorithms based on Hamiltonian dynamics

The first class of algorithms we will discuss are those which rely, at least as a critical

subroutine, on application of the time evolution operator e−itĤ for a Hamiltonian Ĥ, not-

ing that this operation has exponential complexity on a classical device. This operation

acts as the critical subroutine in the majority of state-of-the-art quantum algorithms includ-

ing quantum phase estimation,142, 143 quantum Krylov diagonalization,144–147 and quantum

imaginary time evolution148, 149 (in an approximate way).

Due to the central importance of efficient Hamiltonian dynamics to quantum phase

estimation, the past two decades have seen great improvements reducing the circuit depths

required for the application of the time evolution operator. The earliest and most common

strategy for writing the time evolution operator as a quantum circuit is to approximate the

exponential sum as a product formula.150 The Trotter-Suzuki decomposition151, 152 of the

operator (with r Trotter steps) has become a mainstay in this regard, and is given by

e−itĤ = e−it ∑` θ`P̂̀ ≈
(

∏
`

e
−itθ` P̂̀

r

)r

+O

(
t2

r

)
, (1.46)

noting the use of the Hamiltonian written in terms its Pauli operator form [Eq. (1.44)].

The circuit for the so-called Trotter operator product can be obtained via Eq. (1.45). It is

obvious from Eq. (1.46) that the accuracy of the Trotter approximation is controlled by the

variable r, which is commonly referred to as the Trotter number, or the number of Trotter

steps.

There are then two components which contribute to the total circuit-depth scaling in

Trotter based approximations: primitive depth and repetition-depth. These come respec-

tively from (i) the number of terms in the two-body Hamiltonian and, (ii) the required

number (r) of repeated time-evolutions necessary to keep the so-called Trotter error at
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fixed precision. The need to preserve the fermionic anti-commutation relations in a qubit

representation [as discussed in Sec. 1.4.4] adds an additional scaling factor of O(m) using

the Jordan-Wigner transformation132 or O(log(m)) using the Bravyi-Kitaev transforma-

tion134 generally be added to the primitive depth. The primitive depth unitary is then given

by the most approximate case where r = 1. Here we show the first-order Trotter approxi-

mation for simplicity, but the second-order approximation is used more commonly and is

generally agreed to offer the best trade off between depth and error mitigation for small

time steps.

In recent years, attempts to reduce the scaling of the primitive depth circuits have in-

cluded exploitation of local orbital structure,153 leverage of low-rank154 or sparse155, 156

representations of the Hamiltonian, optimally reordering the Hamiltonian terms,157 and

utilization of plane-wave158 or discontinuous Galerkin159 basis sets. On the front of reduc-

ing the repetition depth, less progress has been made, and is largely relegated to analysis

demonstrating tighter bounds, or arguing based on empirical results that current bounds are

a significant overestimation.160 Table 1.2 gives an overview of some of the most significant

advances in Trotterized time evolution approaches.

Table 1.2: A variety of recent quantum algorithms that rely on Trotterization. Algorithms
are reported with primitive (do), repetition (r), and total circuit depth scaling with number of
single-particle states (spin-orbitals) m and number of particles n. The notation O denotes a
rigorous upper bound, Θ denotes an upper bound specific to the algorithmic implementation
(restricted to operators of a particular rank), and Ω represents a lower bound. A tilde over
a bound [Õ] indicates suppression of poly-logarithmic factors, and the approximate symbol
inside a bound [O(≈)] indicates that the scaling was obtained only empirically.

Reference Representation Algorithm Primitive depth do Repetitions r Total
Aspuru-Guzik et al.120 JW Gaussian Trotter QPE O(poly(m)) O(poly(m)) O(poly(m))
Kassal et al.161 Real space Trotter QPE O(poly(m)) O(poly(m)) O(poly(m))
Whitfield et al.162 JW Gaussian Trotter QPE Θ(m5) O(poly(m)) O(poly(m))
Seeley et al.133 BK Gaussian Trotter QPE Θ̃(m4) O(poly(m)) O(poly(m))
Wecker et al.163 JW Gaussian Trotter QPE Θ(m5) O(m5) O(m10)
Hastings et al.164 JW Gaussian Trotter QPE Θ(m4) O(m4) O(m8)
Poulin et al.165 JW Gaussian TrotterQPE Θ(m4) O(≈ m2) O(≈ m6)
McClean et al.153 BK Gaussian Trotter QPE Θ̃(m2) O(m4) Õ(m6)
Babbush et al.160 JW Gaussian Trotter QPE Θ(m4) O(≈ m) O(≈ m5)
Babbush et al.158 JW Plane wave Trotter QPE Θ(m) O(n1.83m0.67) O(n1.83m1.67)

Advancements for reduced scaling have also been achieved by considering Taylor se-
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ries expansions of the time evolution operator,166, 167 or via a strategy know as qubitiza-

tion,168–170 at the cost of increasing the number of ancilla qubits required for the linear

combination of unitiaries171 subroutine. Although these non-product-formula strategies

are not considered heavily in this dissertation, it should be noted that they do represent the

current state-of-the-art in terms of time complexity for Hamiltonian time evolution. Of par-

ticular note is the very recent work of Lee et. al.,172 who have combined the techniques of

tensor hyper-contraction173 with qubitizaiton, allowing for an (estimated) simulation time

of large transition-metal complexes on the order of days.

Quantum phase estimation

In the late 1990’s, Abrams and Lloyd142, 143 used Kitaev’s quantum phase estimation

(QPE) algorithm174 in conjunction with Hamiltonian time evolution to demonstrate the first

polynomially scaling algorithm for eigenvalue determination. In the quantum simulation

literature, the combined approach is (somewhat confusingly) also referred to as quantum

phase estimation, although Kitaev’s article describes a general approach for estimating

eigenvalues as global phases.

The quantum phase estimation algorithm can be separated into three distinct subrou-

tines: (i) preparation of the trial state, (ii) controlled time evolution of the Hamiltonian,

and (iii) application of the inverse quantum Fourier transform.175, 176 Figure 1.5 shows

a schematic of the QPE algorithm where the top wire represents the main register and

the three |0〉 states represent ancillary (ancialla) qubits. QPE has been realized experi-

mentally and is largely believed to be the algorithm which could be used to demonstrate

quantum supremacy for simulation of quantum many-body systems.177 Preparation of the

trial state |Φ〉 can be accomplished via adiabatic techniques,178, 179 or variational meth-

ods,180, 181 such that some preparation unitary Ûprep acts on an unentangled state
∣∣0̄
〉

to

produce |Φ〉 = Ûprep
∣∣0̄
〉
. The primary purpose of the state preparation step is to find |Φ〉

such that its overlap with a true eigenstate
∣∣Ψ j
〉

is close to unity, i.e. |〈Φ|Ψ j〉|2 ≈ 1. If, for

example, the trial state is a good approximation to the ground state |Ψ0〉, one can consider
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it written as a linear expansion of eigenstates |Φ〉= ∑ j C j
∣∣Ψ j
〉

with |C0|2 ≈ 1.

While efficient preparation of the trial states is an ongoing area of research,182, 183 the

most costly subroutine of QPE is by far the (controlled) Hamiltonian time evolution. Time

evolving the the trial state gives

e−itĤ |Φ〉= |Φ(t)〉= e−itĤ
(

∑
j

C j
∣∣Ψ j
〉)

= ∑
i

C je−itE j
∣∣Ψ j
〉
. (1.47)

In the case where the trial state is an exact eigenstate, information about the eigenvalue E j

is then encoded in the global phase, the binary representation (within modulo 2π) can then

be read out using the inverse quantum Fourier transform. In the case that the trial state is

not an exact eigenstate, the QPE procedure will result in the binary readout of E j with a

success probability proportional to the expansion coefficient C j.

Quantum Imaginary time evolution

An alternative algorithm to QPE that likewise utilizes Hamiltonian time evolution is the

quantum imaginary time evolution (QITE) algorithm.148, 149 The quantum imaginary time

evolution algorithm is based on the principle that the ground state can be found by evolving

a trial state |Φ〉 with the imaginary time evolution operator e−β Ĥ in the infinite time-step

limit, such that a factor of 1/
√

c(β ) = 1/
√
〈Φ0|e−2β Ĥ |Φ〉 normalizes the evolved state.

The imaginary time evolution operator is non-unitary, making it impractical for implemen-

∣∣0̄
〉

Ûprep e−iĤ(20t) e−iĤ(21t) e−iĤ(22t)

|0〉 H •

QFT †

1st

|0〉 H • 2nd

|0〉 H • 3rd

Figure 1.5: A schematic of the QPE algorithm using three ancilla qubits, corresponding
to three binary digits of eigenvalue readout. The ancialla qubits are first initialized to a
superposition with a Hadamard gate. After the inverse quantum Fourier transform, the
ancialla register readout gives the binary decimal representation of the phase ϕ j, such that
the energy eigenvalue is computed by E j =−(2π/t)ϕ j =−(2π/t)0.z1z2z3..., were zi is the
measured state (0 or 1) of the ith ancilla qubit.
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tation on quantum computers. However, one may approximate the action of the imaginary

time evolution operator with time step β using a unitary operation of the form

c(β )−1/2e−β Ĥ |Φ〉 ≈ |ψ(β )〉 ≡ e−iβ Â |Φ〉 , (1.48)

where Â is Hermitian. Approximating both sides to first order and left multiplying by Â†

and 〈Φ|, respectively, gives

c(β )−1/2 〈Φ| Â†Ĥ |Φ〉 ≈ −i〈Φ| Â†Â |Φ〉 , (1.49)

the principal equation of QITE. The Hermitian operator Â can be written as a linear expan-

sion of Pauli operator products ρ̂µ =∏l σ̂
(l)
µl such that Â=∑µ∈P αµ ρ̂µ . Here, P is a subset

with dimension M of all possible 4Nqb Pauli operator products Q, µ ≡ (µ1,µ2, ..,µNqb) is a

multi-index describing a unique Pauli operator product, and µl ∈ {I,X ,Y,Z}. Inserting the

above from of Â into Eq. (5.29) gives

c(β )−1/2 〈Φ| ∑
µ∈P

αµ ρ̂
†
µĤ |Φ〉 ≈ −i〈Φ| ∑

µ,ν∈P
αµαν ρ̂

†
µ ρ̂ν |Φ〉 , (1.50)

from which one seeks to solve the M dimensional linear system Sααα = b. The elements of

S, and b, as well as the value of c(β ) can be determined via measurement of symmetric

expectation values such that

Sµν = 〈Φ| ρ̂†
µ ρ̂ν |Φ〉 , (1.51)

bµ =
−i√
c(β )

〈Φ| ρ̂†
µĤ |Φ〉 , (1.52)

and,

c(β )≈ 1−2β 〈Φ| Ĥ |Φ〉 . (1.53)

The QITE formalism has also recently been extended184 to non-local Hamiltonians using a

fermionic basis.

Another important extension to QITE, also discussed in the original article,148 is

the so-called Lanczos variant, or quantum Lanczos (QL). In QL, one wants utilize
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the QITE subroutine to determine the matrix elements Smn = 〈ψ(βm)|ψ(βn)〉 and

Hmn = 〈ψ(βm)| Ĥ |ψ(βn)〉 of a generalized eigenvalue problem Hc = ScE, where

βm = m∆β are different integer m durations of imaginary time evolution. A convenient

feature of QL is that the matrix elements can be (approximately) evaluated in terms of the

normalization coefficients c, such that

Smn ≈ 〈Φ|e−m∆β Âe−n∆β Â |Φ〉= c(βm)c(βn)

c2(βk)
(1.54)

and,

Hmn ≈ 〈Φ|e−m∆β Â|Ĥ|e−n∆β Â |Φ〉= c(βm)c(βn)

c2(βk)
〈ψ(βk)|Ĥ|ψ(βk)〉 (1.55)

where 2k = m+n. This is significant because it implies that all of the quantities needed for

QL can be determined without ancilla qubits, making its implementation on NISQ devices

a possibility.

Quantum Krylov diagonalization

Quantum Krylov diagonalization (QKD) techniques are another recently developed

family of algorithms that relies on Hamiltonian time evolution.144–147 Chapter 3 in fact

introduces the first (concurrently with Parrish and McMahon144) example of this type of

method, which is largely inspired by the quantum Lanczos148 method described above, but

where real time evolution is used instead of imaginary. In QKD, a general state is written

as a linear combination of the basis {ψn} generated from Hamiltonian evolutions of time

tn = n∆t as

|Ψ〉= ∑
n

cn |ψn〉=
s

∑
n=0

cne−itnĤ |Φ〉 . (1.56)

Variational minimization of the energy for state Ψ leads to a generalized eigenvalue prob-

lem Hc = ScE, where the elements of the overlap matrix (S) and Hamiltonian (H) are

given by Smn = 〈ψm|ψn〉 and Hmn = 〈ψm| Ĥ |ψn〉, respectively. The quantum circuits used

to evaluate S and H are a variant of the now-commonplace Hadamard Test.185 The basis of

states Ks(ψn) generated by real-time evolution spans a classical Krylov space. Consider

a linear combination of the elements of Ks(ψn) and expand the exponential into a Taylor
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series keeping terms up to order (∆t)s

|Ψ〉=
s

∑
n=0

cne−in∆tĤ |Φ〉

=
s

∑
k=0

( s

∑
n=0

(−in∆t)k

k!
cn

)
Ĥk |Φ〉+O(∆ts+1)

=
s

∑
k=0

( s

∑
n=0

Mkncn

)
Ĥk |Φ〉+O(∆ts+1)

(1.57)

The square matrix M is invertible, and therefore, the coefficients cn may be chosen to

represent any combination of the classical Krylov basis {Ĥk |Φ〉} with k = 0, . . . ,s, up to

higher-order terms. This observation has resulted in very recent work farther expanding on

the formalism.186 It has also recently been pointed out in subsequent work by Klymko et

al.147 that a linear combination of time-evolved states [Eq. (1.56)] can cancel the phases of

unwanted eigenstates, implying that the method should in principle work even beyond the

short time-step limit.

1.5.2 Quantum variational optimization algorithms

Largely due to the prospect of using NISQ devices in a meaningful way121, 123, 124, 126, 127

(to perform simulation of non-trivial systems), the past decade has seen the emergence

of low-depth variational quantum algorithms187 (VQA). The most prolific subclass of

VQAs is the variational quantum eigensolver (VQE),180, 181 which is primarily used to

simulate ground states of quantum systems, but has been extended to treat excited-states as

well.188–191 The VQE approach is considered a hybrid quantum-classical algorithm, and is

characterized by an iterative three phase procedure: (i) preparation of a trial state using a

parameterized unitary ansatz, (ii) measurement of the expectation value of the Hamiltonian

(and optionally the energy gradients), and (iii) updating of the parameters using a classical

optimization algorithm. Below we will describe each of these steps in detail as well as

advances in the literature.

In the first phase of VQE, one considers a unitary circuit Û(θθθ) characterized by the

vector of classical parameters θθθ . This unitary (often referred to as an ansatz) is used to
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rotate an easily prepared reference state |Φ0〉 (such as the Hartree-Fock state) into the

entangled VQE state

|ΨVQE〉= Û(θθθ) |Φ0〉 . (1.58)

The specific form used for the ansatz is, on its own, the subject of a large body of

work. Notable examples include ansatz based on unitary coupled cluster (UCC) theory

theory192–196 (discussed in more detail in Sec. 1.5.2), but more recently have included

so-called hardware-efficient121 and qubit-space197 UCC variants as well. The so-called

variational Hamiltonian ansatz,198–200 which attempts to approximate adiabatic state

relaxation to the ground state, and ansatz inspired by tensor networks201–203 have also

recently been considered.

The second step of VQE is the determination of the Hamiltonian expectation value

given by

E(θθθ) = 〈Φ|Û†(θθθ)ĤÛ(θθθ) |Φ〉 . (1.59)

This is usually accomplished by the process of operator averaging181 [see Sec. 1.4.3], for

which the bound on number of measurements M scales inherently as O(Γ/ε2), where Γ is

the norm of the Hamiltonian and and ε is the desired precision in the expectation value. As

such a large body of work has been concerned with improving measurement efficiency in

VQE, either by grouping commuting Pauli operators,121, 181, 204, 205 or employing alterna-

tive bases.158, 159 One may also wish to evaluate the energy gradients

gµ =
∂EVQE

∂θµ

, (1.60)

with respect to a specific parameter θµ . Evaluation of the gradients on a quantum device can

be accomplished with206 or without207, 208 ancilla qubits, but is still rather costly in either

case. This observation in part has motivated our development of the projective quantum

eigensolver introduced in Chapter 4, which does not require determination of the gradients

to optimize the wave function.

The final step in VQE is to update the parameter vector by using a classical (usu-



CHAPTER 1. INTRODUCTION 35

ally non-linear) optimization algorithm. Several optimization strategies have found pop-

ularity in preliminary studies including the Broyden–Fletcher–Goldfarb–Shannon algo-

rithm,209–212 or its limited-memory variant.213 However, due to the many sources of noise

present during the first two steps of VQE, it has also become favorable to employ stochas-

tic gradient decent methods214, 215 or gradient free approaches such as the simultaneous

perturbation stochastic approximation algorithm.216

Although the primary applications of VQAs has been the simulation of physical sys-

tems, it is important to note that their application encompass more general optimization

problems.217 Notable examples include application of quantum approximate optimization

algorithm218 to the combinatorial constraint satisfaction,219 and max-cut220 problems, but

many additional applications for mathematical problems such as linear systems,221, 222 in-

teger factorization223 and others have also been proposed.

VQE ansatz inspired by UCC

The original,180 and still most widely used ansatz in VQE is based on the cluster oper-

ator140 T̂ defined as

T̂ = ∑
µ

tµ τ̂µ = ∑
i j···∈occ

∑
ab···∈vir

tab...
i j... â†

aâ†
b . . . â jâi, (1.61)

assuming the reference state is an easily-prepared single determinant |Φ0〉 = |φ1φ2 · · ·〉

(such as the Hartree-Fock determinant) specified by occupied spin orbitals {φi} and un-

occupied (virtual) spin orbitals {φa}. Note that the operator τ̂µ ≡ τ̂ab···
i j··· = â†

aâ†
b · · · â jâi is

a particle-hole excitation operator who’s action turns the reference determinant |Φ0〉 into

the excited determinant
∣∣Φµ

〉
. In traditional coupled cluster theory,31, 32 the exponential of

the cluster operator eT̂ is employed. However, it is the unitary variant of coupled cluster

theory,192–196 that is of interest in the context of VQE, because the operator

ÛUCC(t) = eT̂−T̂ †
= e∑µ tµ κ̂µ , (1.62)
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where the operators κ̂µ = τ̂µ − τ̂
†
µ are anti-Hermitian, is implementable on a quantum de-

vice.

In principle it is possible to construct a circuit that exactly implements the action of

the UCC operator defined in Eq. (1.62), but in practice it is common to use a unitary with

a simpler, and shallower, circuit. This is frequently accomplished using a factorized (or

disentangled) form of the UCC ansatz (dUCC)

ÛdUCC(t) = ∏
µ

etµ κ̂µ . (1.63)

We note that the disentangled treatment is equivalent to utilizing a single-step first order

Trotter approximation [see Eq. (1.46)] of ÛUCC, but that recent analysis224 suggests that

ÛdUCC(t) should be viewed as an entirely separate ansatz rather than simply a Trotter ap-

proximation to ÛUCC.

In recent years, the UCC formalism (as used with VQE) has been investigated with

generalized operators,225 strategies for optimizing the compilation of fermionic opera-

tors,154, 226, 227 and the usage of exclusively qubit operators (deemed qubit CC [QCC])

which omit antisymmetry constraints.197

Adaptive VQE ansatz

A subclass of VQE algorithms of particular importance to this dissertation is that of

adaptive ansatz algorithms, because of their suitability for the treatment of strong corre-

lation. Generally speaking, these approaches incorporate an additional iterative layer of

"macro-iterations" in which the VQE unitary [Eq. (1.58)] is appended at each iteration k.

Adaptive procedures are often capable of constructing a compact unitaries (both in terms

of circuit-depth and number of classical parameters) that can systematically approach a

rotation of |Φ0〉 into an exact eigenstate.

The first and most prominent of these adaptive approaches is the adaptive derivative

assembled pseudo-trotterized (ADAPT)-VQE.228 In ADAPT-VQE, the unitary ansatz at
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macro-iteration k is defined as

Û (k)
ADAPT(t) =

k

∏
ν

et(k)ν κ̂
(k)
ν , (1.64)

where ν is likewise a compound index corresponding to unique operators κ̂ν in a pool P

of generalized single and double excitation/de-excitation operators (although as the authors

discuss it is possible to construct P in a variety of ways). Note that the parameters t(k)ν

are re-optimized at each macro-iteration. New operators are determined from the pool by

computing the energy gradient

gν = 〈ΨVQE| [Ĥ, κ̂ν ] |ΨVQE〉 , (1.65)

with respect to tν of each operator in P and selecting the operator with the largest gradient

magnitude to place at the end of the ansatz in the next iteration. The ADAPT-VQE algo-

rithm has been shown, as we will discuss in more detail in Chapter 4, to be capable of pro-

ducing accurate trial states with low-depth circuits. The success of ADAPT has addition-

ally inspired a variety of subsequent algorithms such as the iterative qubit CC (iQCC),229

its own qubit operator variant.230

1.6 Prospectus

In Chapter 2 we provide a detailed analysis of the performance of various classical elec-

tronic structure methods in the regime of strong electronic correlation using a benchmark

set of multi-dimensional hydrogen lattices. Each of the employed classical algorithms is

able to systematically approach the FCI solution using an increasing number of variational

parameters. The study motivates the need for quantum (or hybrid quantum-classical) al-

gorithms which are able to treat strong correlation using a tractable number of classical

parameters. In Chapter 3 we introduce our novel quantum Krylov algorithm, which solves

the Schrödinger equation in a non-orthogonal many-body basis generated by integer time

evolutions of a reference state. We apply this method to a group of small molecular sys-
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tems in the regime of strong correlation and compare it to ADAPT-VQE.228 In Chapter 3

we demonstrate the usage of a novel projective quantum eigensolver (PQE) as an alternative

to VQE for optimizing disentangled unitary coupled cluster wave functions. We compare

our PQE method to VQE optimized with analytical gradients and the BFGS optimization

algorithm. We also introduce a selected variant of PQE and test its performance relative

to classical algorithms using the same strongly correlated benchmark models introduced

in Chapter 2. In Chapter 5, we discuss the quantum computer simulator and algorithms

library QFORTE, which we developed to facilitate the work presented in this dissertation

and beyond. Finally, in Chapter 6 we discuss the conclusions of our studies and briefly

consider directions of future work.
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Chapter 2

Exploring Hilbert space on a budget

2.1 Introduction

An outstanding challenge in modern electronic structure theory is solving the many-

body Schrödinger equation for strongly correlated electrons. The availability of accurate

computational methods for strongly correlated systems is imperative to study a myriad of

important phenomena such as bond breaking and photochemical processes,1, 2 molecular

magnetism,3 high-temperature superconductivity,4 and many others.5–8 In brief, strong

correlation arises when the cost of promoting electrons to higher energy orbitals is small in

comparison to the electron pairing energy (Coulombic repulsion). Consequently, strongly

correlated electrons cannot be qualitatively described by a mean-field picture because the

wave function may contain nontrivial contributions from many Slater determinants.9, 10 In

this situation, electronic structure methods that build upon a mean-field reference cannot

effectively approximate the wave function with a polynomial number of parameters and,

therefore, often yield inaccurate energies and molecular properties.

The full configuration interaction (FCI) expansion captures all correlation effects for

N electrons in L spatial orbitals. Restricting FCI to a complete active space (CAS), with

(CASSCF)11 or without (CASCI) orbital optimization is also a common strategy when

strong correlation effects are limited to few orbitals. However, the size of the FCI (or

CASSCF) determinant space scales like a binomial coefficient in N and L, making these
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methods intractable for most systems of chemical interest12 containing more than approx-

imately 18 electrons in 18 orbitals (18e,18o)—although massively-parallel computations

have recently managed to push this figure to (22e,22o).13

Fortunately, for many ground and low-lying states, the complexity of the wave function

is reduced by symmetry restrictions, sparsity bread by non-interacting determinants, and

regular structure resulting from the local nature of Coulombic correlation. Much work has

thus been devoted to the development of methods that can exploit sparsity or use decompo-

sition techniques to compactly approximate the wave function. However, it is not generally

known what approaches are the most efficient (i.e., which ones can reach a target accuracy

using the fewest parameters) given the physical dimension of the system, the degree of

correlation strength, and choice of molecular orbitals.

Understanding the degree to which different wave functions may be compressed is im-

portant to guide future development of both classical and quantum computational meth-

ods.14 In particular, there is a growing need for benchmark sets that may be used to

compare classical and new quantum algorithms in various regimes of electron correla-

tion. Since many classes of emerging quantum algorithms—such as variational quantum

eigensolvers15–18 and quantum subspace diagonalization techniques19–22—use parameter-

ized ansätze, one way to compare them to classical algorithms is to quantify their efficiency

in terms of classical resources needed to achieve a target energy accuracy. Such character-

ization is also useful in answering whether or not a quantum algorithm has an advantage

over a purely classical approach.

The goal of this work is to examine how to best compress the FCI wave function of

strongly correlated systems using classical methods. To this end, we introduce a bench-

mark set and a simple metric to analyze the performance of a method. We consider three

families of deterministic methods that systematically approach FCI in a near-continuous

fashion: i) selected CI (sCI),23–26 ii) singular value decomposition FCI (SVD-FCI) (related

to the methods discussed in Refs. 27–29), and iii) the density matrix renormalization group
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(DMRG).30 These exemplify different strategies to approximate the exact wave function;

however, they all converge to the exact energy in the limit of no truncation, and their accu-

racy can be controlled by a single parameter.

Selected CI schemes approximate the FCI solution using a subset of the full determi-

nant space. Therefore, they are most efficient when the exact wave function has a sparse

structure. Contrary to other forms of truncated CI, selected CI methods identify an optimal

determinant basis using an iterative selection procedure that gradually expands the deter-

minant space. Although selected CI23–26 was proposed decades ago, in recent years it has

received renewed attention with new deterministic,31–42 stochastic,43–48 and semistochas-

tic49–52 variants being proposed. The closely related family of determinant-based Monte

Carlo methods53–60 has also been explored.

The singular value decomposition finds use in several areas of quantum chemistry as a

way to achieve low-loss compression of data.61–68 The SVD can be applied to compress

the FCI state once the coefficient vector is reshaped as a matrix, a representation naturally

suggested by string-based CI algorithms.69 Taylor has proposed to reduce the memory

requirements of FCI by performing a SVD decomposition at each iteration of the Davidson

procedure.28 Another method that employs a compressed representation of the FCI vector

is rank-reduced FCI (RR-FCI), originally proposed by Koch27 and recently extended by

Fales and co-workers.29 RR-FCI approximates the FCI solution with a polar decomposition

of the FCI vector (represented as a matrix) combined with variational minimization of the

energy. We note that both Taylor’s “gzip” approach and RR-FCI approaches cannot be

justified on the basis of a symmetry or a physical principle, although a variant of RR-FCI

that exploits locality has been proposed (see Ref. 70).

Tensor network states (TNSs) represent a broad family of methods that approximate the

FCI coefficients (viewed as a tensor) with a collection of tensors connected by contractions.

The simplest type of TNS is a matrix product state (MPS), the underlying ansatz71–73 of the

density matrix renormalization group (DMRG).30 MPSs are able to maximally exploit local
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orbital entanglement, that is, for states that satisfy an area law for the entanglement entropy,

MPSs can yield near-exact results in 1D and quasi-1D systems.74, 75 The generalization of

the MPS ansatz to two- (2D) and three-dimensional (3D) TNS using high-order tensor fac-

torizations is also an active area of research.75–77 In practice, the variational optimization

of TNSs suffers from very high scaling and is less efficient relative to MPSs. DMRG (as

applied to quantum chemistry),78–82 has been tremendously successful in describing the

ground states of quasi-linear molecular systems. For example, DMRG has enabled the

investigation of long hydrogen chains,78, 83–86 oligoacenes,87–89 and large biochemically-

relevant transition metal complexes with up to 100 orbitals.90, 91

To test the performance of electronic structure theories in the strongly correlated

regime, we have introduced a benchmark set of one, two, and three-dimensional (3D)

hydrogen systems. These systems model strongly correlated electrons in significantly

different regimes and dimensionalities, and allow us to explore the physics of Mott

insulators and spin frustrated systems in 2- and 3D. 1D hydrogen systems have recently

been the subject of comprehensive benchmark studies aimed at treating strong correlation

in real materials.92–94 Hydrogen lattices with localized spins are also related to the more

fundamental Heisenberg and Hubbard models, exhibiting similar spin correlation patterns

and band structures. Our benchmark set contains four H10 models: the well-investigated

1D chain and ring, as well as a 2D triangular lattice (referred to as “sheet” throughout the

paper), and a 3D close-packed pyramid. For each model, we consider both the effect of the

H–H distance on the strength of correlation, and the use of different molecular orbital bases

(delocalized/localized). We characterize these models by computing various metrics of

correlation, including the norm of the two-body cumulant, the total quantum information,

and spin-spin correlation functions. Additionally, to investigate the compression efficiency

as a function of system size, we also consider H12, H14 , and H16 analogs of the four

models.

Since the methods considered here play an important role as substitutes for FCI in
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multireference treatments of electron correlation,95–100 we are particularly interested in as-

sessing their performance when applied only to valence orbitals. To simulate this scenario,

our computations employ a minimal basis set. Note, that this treatment may be considered

equivalent to diagonalizing a valence effective Hamiltonian101 with interactions modified

by dynamical correlation effects. It is important to point out that since we only consider

zero-temperature quantum chemistry approaches, we focus in particular on regimes of elec-

tron correlation that range from weak to medium/strong. We intentionally avoid the limit

of infinite H–H separation, because all the models considered here develop a massively

degenerate ground state containing 210 states. At large separation, it is ludicrous to charac-

terize a ground state, and one should instead seek to compute thermal averages employing

a finite-temperature approach.102–104

To compare the performance of each method, we evaluate the error in the energy and the

two-body density cumulant as a function of the number of variational parameters. These er-

rors measure how well electronic correlation effects are preserved in the compression, and

therefore can indicate the quality of an approximate wave function and its properties. From

this information, we extract a single metric, the accuracy volume, which measures the num-

ber of variational parameters necessary to achieve a target energy error. Although the accu-

racy volume does not take into account the actual cost of a computation, this metric serves

as a proxy for the computational resources required by each method, independently of im-

plementation details. We also compare the energy errors produced with Hartree–Fock the-

ory, second-order Møller–Plesset many-body perturbation theory (MP2), coupled cluster

theory with singles and doubles (CCSD),105 CCSD with perturbative triples [CCSD(T)],106

the completely renormalized CC approach with perturbative triples [CR-CC(2,3)],107 and

the variational two-particle reduced density matrix (V2RDM) method.108–112 We have col-

lected the data generated in this study in an online repository113 in the hope that it will be

useful in future studies.

The remainder of this article is organized as follows: Sec. 4.2 defines the accuracy
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volume, summarizes the three methods compared in this study, and defines the metrics

used to assess correlation strength in the hydrogen model systems. Section 2.3 provides

the computational details of our study. Numerical results are reported in Sec. 4.3, and

Sec. 4.4 summarizes our findings and discusses their relevance in the context of classical

and quantum algorithms for strongly correlated systems.

2.2 Theory

2.2.1 Definition of the accuracy volume

For a systematically improvable method X we indicate the energy computed using Npar

parameters as EX(Npar). We then define the accuracy volume, VX(α), to be the smallest

number of parameters such that the error per electron with respect to the FCI energy (EFCI)

is less than or equal to 10−α :

VX(α) = Npar :
|EX(Npar)−EFCI|

N
≤ 10−α Eh. (2.1)

For convenience, in the rest of the paper we always assume the target energy error is 1 mEh

for the H10 systems, which corresponds to a 0.1 mEh error per electron (α = 4) and use the

more compact symbol VX instead. For methods that exploit the sparsity of the FCI wave

function (e.g., selected CI), the accuracy volume is a measure of the number of Slater de-

terminants or configuration state functions (equal to the number of parameters). This literal

interpretation of the accuracy volume does not extend to approximation schemes based on

tensor decomposition, in which case it only reflects the total number of parameters em-

ployed. We intend the accuracy volume to be used as a performance metric of a method,

since it approximately measures the computational resources (memory and CPU) neces-

sary to achieve a target accuracy. Because the accuracy volume can be equally applied to

purely classical and hybrid quantum-classical methods, it provides a straightforward way

to compare the two on more equal footing. Our definition of VX [Eq. (2.1)] considers the

energy error per electron to allow the comparison of systems with different numbers of
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electrons. This approach is consistent with the fact that approximate methods that are size

consistent, when applied to noninteracting fragments, give an error that is additive in the

error of each fragment. We also choose to define VX as the absolute number of parameters,

as opposed to the fraction of the total Hilbert space, since the former is proportional to

the computational resources required by a method. In contrast, a comparison based on the

fraction of Hilbert space parameters employed by a method would be dependent on the ex-

ploitable symmetries for the orbitals that are chosen (e.g. symmetry adapted delocalized vs.

localized orbitals) making comparisons of different computations less indicative of actual

computational resources.

2.2.2 Overview of the computational methods

Given a basis of K spin orbitals {ψp} with p = 1, . . . ,K, we indicate a generic

N-electron determinant |ψi1 · · ·ψiN 〉 using the notation |ΦI〉 where the multindex

I = (i1, . . . , iN) represents an ordered list of indices (i1 < i2 < .. . < iN). The set of

N-electron determinants (HN) forms a Hilbert space of dimension |HN |= NH . Using this

notation, the FCI wave function is written as a linear combination of determinants, each

parameterized by a coefficient (Ci1,...,iN ≡CI)

|ΨFCI〉=
K

∑
i1<i2<...<iN

Ci1···iN |Φi1···iN 〉=
NH

∑
I

CI |ΦI〉 . (2.2)

An equivalent way to express the FCI wave function employs occupation vectors. In

this representation, each determinant |ΦI〉 is associated with a vector of length K, |n〉 =

|n1,n2, . . . ,nK〉, where ni ∈ {0,1} is the occupation number of spin orbital ψi. The FCI

wave function represented in the occupation vector form is given by

|ΨFCI〉= ∑
{ni}

Cn1...nK |n1 . . .nK〉= ∑
n

Cn |n〉 (2.3)

where the sum over all occupation vectors ({ni} ≡ n) is restricted to N-electron determi-

nants (∑i n j = N) of given spin and spatial symmetry.
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Selected CI

Selected CI methods approximate the FCI wave function using a subset M (model

space) of the full determinant space

|ΨsCI〉= ∑
I∈M

C̃I |ΦI〉 . (2.4)

All flavors of selected CI aim to approximate the FCI vector with the smallest number of

elements and differ primarily in the way they determine the set M . For sCI methods, we

report Npar as the size of the space M (or equivalently, the size of the vector C̃I).

The first approach we consider consists of an a posteriori selected CI (ap-sCI) com-

pression of the exact FCI wave function. This compressed representation is obtained by

sorting the determinants according to their weight wI = |CI|2, and discarding elements with

the smallest weight while satisfying the condition

∑
I /∈M
|CI|2 < τsCI. (2.5)

The compressed ap-sCI vector C̃I is then normalized and the energy is computed as the

expectation value of the Hamiltonian. Even though this compression scheme does not

yield a variationally optimal solution, the error in the ap-sCI energy is quadratic in the

wave function error. Still, this ideal (albeit impractical) version of selected CI is useful

in assessing the error introduced by the different selection schemes used in practical sCI

approaches.

The second approach we consider, the adaptive configuration interaction (ACI),40, 42

identifies the space M via an iterative procedure that seeks to control the energy error.

ACI is unique in the regime of selected CI methods as it aims to approximate the FCI

energy within a user-specified error tolerance σ

EACI(σ)−EFCI ≈ σ , (2.6)

where EACI(σ) is the ACI energy. In ACI, the model space is divided into two spaces
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M = P ∪Q, where P contains the most important determinants and Q contains singly

and doubly excited determinants spawned from P . New candidate determinants (ΦA) for

the model space are selected from the singly and doubly excited determinants generated

from the current P space. Each candidate determinant is ranked by its energy contribu-

tion, ε(ΦA), a quantity estimated by diagonalizing the Hamiltonian in the basis of the ACI

wave function at the current iteration and ΦA. To determine an improved model space,

the candidate determinants are sorted according to |ε(ΦA)| and unimportant elements are

removed until the sum of their estimated energy is less than or equal to σ

∑
ΦI /∈M

|ε(ΦI)| ≤ σ . (2.7)

Optionally, additional determinants are included in M at each iteration to ensure spin com-

pleteness.

After adding these determinants, the Hamiltonian is diagonalized and a new P space is

formed by coarse graining M according to their weight using a cumulative metric similar

to Eq. (2.7). The course graining step increases the overall efficiency of the procedure and

reduces the dependency of the final solution on the initial guess (usually the HF determinant

or a small CASCI).

The final ACI energy is computed by diagonalization of the Hamiltonian in the model

space basis. However, during the selection process it is possible to accumulate the estimate

of the energy contributions from the discarded determinants (EPT2) and this quantity can be

added to the ACI energy to obtain an improved energy (EACI+PT2).

Singular value decomposition FCI

In this work we consider an a posteriori rank reduction of the FCI tensor obtained via

a singular value decomposition (SVD-FCI). Our approach is essentially identical to the

“gzip” treatment used by Taylor (Ref. 28) with the caveat that we only perform SVD of the

final converged wave function rather than at each FCI iteration. The SVD-FCI approach is

also inspired by the the rank-reduced FCI method (RR-FCI).27, 29 However, because we do
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not variationally optimize the SVD-FCI wave function, RR-FCI would yield lower energies

than SVD-FCI for a specified rank (particularly at low ranks).

SVD-FCI starts from a string-based representation of the FCI wave function,114 in

which each determinant is labeled by separate multi-indices (strings) for alpha and beta

electrons (Iα and Iβ ), and the determinant |ΦI〉 =
∣∣∣ΦIα

ΦIβ

〉
factorizes into products of al-

pha (ΦIα
) and beta (ΦIβ

) spin orbitals. Consequently, the FCI vector CI is represented as a

matrix indexed by string configurations (Iα /Iβ ), (C)Iα Iβ
= CIα Iβ

, and the wave function is

written as

|ΨFCI〉=
Nα

∑
Iα

Nβ

∑
Iβ

CIα Iβ

∣∣∣ΦIα
ΦIβ

〉
, (2.8)

where Nα and Nβ are the number of alpha and beta strings, respectively. While the original

RR-FCI algorithm is based on variational minimization of the energy, in this work we

consider only an a posteriori compression. To this end we perform the singular value

decomposition of the FCI coefficient matrix, C = USV, where we assume that the entries

of C are real. To find the most compact reduced-rank approximations of C we reconstruct

an approximate matrix C̃SVD defined as

C̃SVD = US̃V, (2.9)

where S̃ is a truncated version of S. Assuming the singular values si = Sii are sorted in

decreasing order, we keep in S̃ the diagonals s1, . . . ,sR such that the sum of the square of

the elements excluded is less than a user-provided threshold (τSVD)

∑
i=R+1

s2
i < τSVD. (2.10)

Therefore, R represents the rank of C̃SVD and the error in the FCI wave function is given

by

‖C− C̃SVD‖F <
√

τSVD, (2.11)
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where ‖ · ‖F is the Frobenius norm. The SVD-FCI energy is computed as

ESVD-FCI = (C̃SVD)†HC̃SVD, (2.12)

and although it does not correspond to the optimal energy for a wave function of rank R,

this estimate deviates from the variational energy by a quadratic term. For SVD-FCI, we

calculate the number of parameters as Npar = R(Nα +Nβ ), where we have assumed that the

singular values S̃ are folded into either U or V. Note that with no truncation, the SVD-FCI

requires twice the number of parameters as the size of the Hilbert space. We also point out

that since the FCI wave function is invariant with respect to unitary rotations of the orbitals,

the rank R SVD approximation yields the same approximate wave function in any orbital

basis. However, the number of parameters may differ from one orbital basis to another if

symmetry is employed and the SVD is applied only to the non-zero blocks of C.

Density-matrix renormalization group

The matrix product state representation at the basis of the DMRG is a conceptually

different form of compression that aims to exploit the local character of entanglement. A

MPS decomposition of the FCI tensor in the occupation number representation is given by

Cn1...nK ≈CDMRG
n1...nK

= An1
1 An2

2 · · ·A
nK
K , (2.13)

where, for a given value of the occupation number n j, a generic term An j
j is a M×M matrix,

except for the first and last terms which are a row and a column vector of size M, respec-

tively. Given an occupation number pattern (n), the corresponding tensor element Cn1...nK

is approximated by the product of all the An j
j matrices. Quantum chemistry implemen-

tations of DMRG exploit the symmetry group of the Hamiltonian (particle number, spin,

point group) to induce a block-sparse structure in the MPS tensors An j
j , with consequent

reduction in computational and storage costs. We calculate Npar for DMRG as the sum of

the number of parameters in each site tensor An j
j in the converged MPS, taking into account

the block structure induced by symmetries (assuming at most abelian point groups).



CHAPTER 2. EXPLORING HILBERT SPACE ON A BUDGET 66

Formally, the MPS representation can be derived by performing a series of successive

SVDs on the FCI tensor (appropriately reshaped), at each step retaining only M terms.

Therefore, it is exact in the limit of M → NH . In practice, the DMRG method directly

builds the MPS representations via a sweep algorithm using a fixed value of M specified

by the user. For chemical applications, the quality of the MPS as a function of M is con-

trolled by two choices: the type (localized vs. delocalized) and ordering of the orbitals.

These aspects present a challenge for practical calculations since different orbital types and

orderings can dramatically affect the final outcome of a calculation. Although there are

rules of thumb for specific cases—such as choosing localized orbitals ordered to be spa-

tially adjacent for elongated molecules115—the choice of these parameters is generally a

non-trivial problem beyond 1D. Various approaches to ordering delocalized orbitals have

also been explored.116–119

2.2.3 Metrics of strong electronic correlation

Metrics based on mean-field and coupled cluster wave functions

In computational quantum chemistry, the prevailing measure of electronic correlation

is the correlation energy. This metric dates back to the work of Löwdin120 and is defined

as the difference between the FCI and mean-field (EMF) energy

Ecorr = EFCI−EMF. (2.14)

The correlation energy may be further partitioned into dynamical and non-dynamical con-

tributions, as proposed by Sinanoǧlu and others.121, 122

One can similarly estimate correlation effects from the magnitude of the overlap of

the Hartree–Fock determinant with the normalized FCI wave function, |CHF|= |〈ΦHF|Ψ〉|.

This metric has been discussed as a diagnostic tool for determining the quality of single-

reference electron correlation methods.123 However, for infinite systems |CHF| → 0, so this

metric is probably suited only for comparing systems with the same number of electrons.

In the context of coupled cluster theory, several diagnostics have been introduced. The
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D1 diagnostic captures deficiencies in the reference, and is defined as the 2-norm of the

matrix of singles cluster amplitudes (T)ia = ta
i , where the indices i and a span the occupied

and virtual orbitals, respectively. This metric is defined as

D1 = ‖T‖2 =

√
λmax(TTT ), (2.15)

where λmax(TTT ) indicates the largest eigenvalue of the matrix TTT . The D2 diagnostic is

a measure of correlation, and it is similarly defined using doubles amplitudes (tab
i j ) with the

above equation modified to make this metric orbital invariant.124

Measures based on the two-body density cumulant

The norm of the two-body cumulant (λλλ 2) has become a well established metric of

correlation.125–129 This quantity is the portion of the two-body density matrix γγγ2 that is

not separable into one-body contributions, and it is defined as

λ
rs
pq = γ

rs
pq− γ

r
pγ

s
q + γ

r
pγ

q
s , (2.16)

where γ
p
q and γrs

pq are the one- and two-body reduced density matrices:

γ
p
q = 〈Ψ|a†

paq |Ψ〉 , γ
pq
rs = 〈Ψ|a†

pa†
qasar |Ψ〉 . (2.17)

The information contained in λλλ 2 can be distilled down to a single value metric via its

Frobenius norm:

‖λλλ 2‖F =
√

∑
pqrs
|λ rs

pq|2, (2.18)

which captures both spin entanglement and Coulombic correlation effects,127, 129 and is null

for a single determinant. The two-body density cumulant also has a direct connection to

the number of effectively unpaired electrons, which itself has been used as a metric of cor-

relation.130–132 For two non-interacting fragments A and B with no interfragment spin en-

tanglement, the square Frobenius norm is additive,127, 129 that is ‖λλλ 2(A)‖2
F +‖λλλ 2(B)‖2

F =

‖λλλ 2(A · · ·B)‖2
F, where “A · · ·B” indicates A and B at infinite separation. Therefore, in our

comparison of the models we report the square Frobenius norm.
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Moreover, the two body cumulant is directly related to the definition of the intrinsic

correlation energy (ICE) proposed by Kutzelnigg.10 By expressing the energy in terms of

1- and 2-RDMs and expanding the latter in terms of the two-body cumulants, one may

rewrite the two-body contribution to the total energy as a sum of Coulombic, exchange,

and correlation contributions, E2 = ECoul + Eex + EICE. Here, EICE is a pure two-body

potential energy term which may be expressed using the two-body cumulant represented in

coordinate space [λ2(1,2;1,2)] as

EICE =
1
4 ∑

pqrs
λ

pq
rs 〈rs‖pq〉= 1

2

∫
λ2(1,2;1,2)

r12
dτ1dτ2. (2.19)

This intrinsic correlation energy has the advantage of being defined irrespective of a refer-

ence mean-field wave function.

Spin correlation metrics

We also characterize electronic states using various metrics based on the spin-spin cor-

relation function as they are helpful n diagnosing spin frustration. The spin-spin correlation

function (Ai j), defined as

Ai j = 〈Ŝi · Ŝ j〉−〈Ŝi〉 · 〈Ŝ j〉, (2.20)

measures the irreducible correlation of total spin (Ŝi) for two localized spatial orbitals φi

and φ j. In this work we employ Pipek–Mezey localized orbitals133 to define spin-spin

correlation metrics. We also compute the spin-spin correlation density Ai(r), which can

be used to graphically represent the spatial correlations of spin with respect to a localized

orbital φi. For well localized atomic orbitals, Ai(r) can be approximated as

Ai(r) = 〈Ŝi · Ŝ(r)〉−〈Ŝi〉 · 〈Ŝ(r)〉 ≈∑
j

Ai j|φ j(r)|2, (2.21)

where Ŝ(r) is the total spin operator in real space, |φ j(r)|2 is the spatial density of the j-th

orbital, and Ai j are elements of the spin-spin correlation function.

Additionally, we consider three scalar metrics introduced in previous molecular spin
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frustration studies: i) the sum of the absolute value of the spin-spin correlations 〈S2〉abs,134

〈S2〉abs = ∑
i j
|〈Ŝi · Ŝ j〉|, (2.22)

ii) the sum of the absolute value of the long range spin-spin correlations 〈S2〉abs,lr,

〈S2〉abs,lr = 〈S2〉abs−∑
i
|〈Ŝi · Ŝi〉|−2 ∑

〈kl〉
|〈Ŝk · Ŝl〉|, (2.23)

and iii) the sum of the nearest-neighbor spin-spin interactions 〈S2〉nn,

〈S2〉nn = ∑
〈kl〉
〈Ŝk · Ŝl〉, (2.24)

where i and j index all orbital sites, and 〈kl〉 is a double sum over nearest neighbor orbital

sites.

Metrics based on quantum information theory

Metrics inspired by quantum information theory have also been recently used to investi-

gate various phenomena related to strong correlation and entanglement,135 and find several

applications in computational chemistry.118, 119, 136–138

We consider two quantities, the single-orbital entanglement entropy (SOEE) and the

total quantum information (Itot), both of which can be derived from the 1- and 2-RDMs. The

SOEE describes the entanglement of a spatial orbital φi with the remaining bath orbitals.

For a given spatial orbital φi, we can write four occupation patterns for the corresponding

α and β spin orbitals |p〉 ≡
∣∣∣niα niβ

〉
∈ {|00〉 , |01〉 , |10〉 , |11〉}, which we label with the

index p = 1,2,3,4. The reduced density matrix ρ i
pq = Trbath[〈p|Ψ〉〈Ψ|q〉] is computed by

projecting the wave function onto single-orbital configurations |q〉 and |p〉 of orbital φi and

tracing out all other degrees of freedom. For states with fixed number of electrons, this
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matrix is diagonal with elements given by

ρ
i
11 = 1− γ

iα
iα − γ

iβ
iβ + γ

iα iβ
iα iβ , (2.25)

ρ
i
22 = γ

iα
iα − γ

iα iβ
iα iβ , (2.26)

ρ
i
33 = γ

iβ
iβ − γ

iα iβ
iα iβ , (2.27)

ρ
i
44 = γ

iα iβ
iα iβ . (2.28)

The SOEE of orbital φi is then computed as the Shannon entropy with respect to the four

occupations

Si =−
4

∑
p=1

ρ
i
pp ln

(
ρ

i
pp
)
. (2.29)

The total quantum information (Itot) is given as the sum of the SOEEs for all spatial

orbitals

Itot =
L

∑
i=1

Si. (2.30)

Large values of Itot indicate departure from integer orbital occupations and are associated

with strong correlation effects.139 We note, however, that the value of Itot is not invariant

with respect to unitary rotations of the orbitals, and therefore, will depend on the type of

orbital basis employed in a computation.

2.3 Computational details

The ground-state singlet energies and two-body density cumulants of the model sys-

tems were calculated using FCI, ACI, and DMRG. The ap-sCI and SVD-FCI wave func-

tions were obtained from FCI wave functions as described in Sec. 2.2.2. All computations

employed self consistent field (SCF) orbitals obtained with the open-source quantum chem-

istry package PSI4140, 141 and used a STO-6G basis set.142 Canonical (delocalized) orbitals

were computed using restricted Hartree–Fock (RHF). Localized orbitals were obtained by

first performing a restricted open-shell Hartree-Fock (ROHF) computation using maximum

multiplicity (e.g., S = 5 for H10) and then localizing the orbitals with the Pipek–Mezey
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(PM)133 procedure (allowing rotations among all orbitals).

Computations based on canonical RHF orbitals were run in D2h symmetry for the H10

chain, ring, and sheet and in C2v symmetry for the H10 pyramid. The H12, H14, and H16

analogs of the four systems were run with the same symmetry as their H10 counterparts

with the exception of the H14 pyramid, which used D2h symmetry. All computations using

localized orbitals were performed in C1 symmetry.

MP2, CCSD, and CCSD(T) computations were performed using the PSI4, while

V2RDM calculations employed the open source V2RDM-CASSCF plugin.112 CR-

CC(2,3) computations were performed using GAMESS.143 FCI and ACI computations

were performed using our open-source code FORTE.144 All ACI computations included

additional determinants to ensure spin completeness of the P and Q spaces. The

rank-reduction procedure used for SVD-FCI and the a posteriori determinant screening

procedure for ap-sCI were implemented in a development version of FORTE.

Density matrix renormalization group calculations were performed with CHEMPS2.145

DMRG calculations associated with a particular final value of M were preceded by three

preliminary computations with smaller bond dimension and added noise. This procedure

has been shown to make the overall DMRG calculation converge more rapidly and produce

more accurate results.78, 146 In the first two preliminary computations M is set to 150,

500, 500, and 500 (for H10, H12, H14, and H16 respectively) to build an initialization for

the last two instructions with a larger value of M. In cases where the final value of M is

less than the values specified above, the same value of M is used for the three preliminary

calculations and for the final calculation. As mentioned already, due to the block structure

of the DMRG tensors induced by symmetries, the final MPS in general does not correspond

to a set of dense matrices of dimension M2. For DMRG calculations using a localized basis,

orbitals for the 1D chain and ring were ordered to be spatially consecutive. Localized

orbitals for the 2D sheet and 3D pyramid systems used a Fiedler vector ordering derived

from the two electron integrals to account fo physical proximity and orbital overlap.82
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Figure 2.1: Structure of the H10 model systems studied in this work. Geometries are pa-
rameterized by the nearest-neighbor H–H distance (r), indicated by green dashed lines.

For canonical MOs, orbitals were grouped into blocks by irreducible representation and

(within each irreducible representation) ordered energetically. For calculations using D2h

symmetry, the irreducible representation blocks were ordered as Ag, B1u, B3u, B2g, B2u, B3g,

B1g, Au such that blocks corresponding to bonding and anti-bonding orbitals were adjacent

on the DMRG lattice. This strategy has been shown to be successful for several DMRG

studies81, 147–149 and is rationalized by quantum information principles.119 For calculations

using symmetries other than D2h, the ordering of the irreducible representations followed

Cotton’s ordering.

2.4 Results

In this section we analyze the results of our study for the H10 models. Fig. 2.1 shows

the structure of the four H10 model systems. The geometry of each model is controlled by

a parameter r which determines the nearest neighbor H–H distance (in Å). The geometries

of all models, raw data for the potential energy curves, and energy errors are collected in a

GitHub repository.113

The r values considered here (0.75–2.0 Å) cover both the weak and strong electron

correlation regimes of each model. This point can be quantified by estimating the U/t ratio
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Table 2.1: Properties of the singlet ground state of the four H10 systems at different values
of the H–H distance (r). Summary of correlation metrics: correlation energy (Ecorr), the
squared Frobenius norm of the two-body density cumulant (‖λλλ 2‖2

F), coupled-cluster ampli-
tude diagnostics (D1 and D2), magnitude of the Hartree Fock coefficient in the normalized
FCI expansion (|CHF|), and total quantum information in a RHF canonical basis (Id

tot) and a
localized basis (Il

tot). For the H10 pyramid at r = 2.0 Å, the data reported correspond to an
excited state adiabatically connected to the ground state at smaller values of r.

System r / Å EFCI / Eh Ecorr / Eh EICE / Eh ‖λλλ 2‖2
F D1 D2 |CHF| Id

tot Il
tot

H10 1D Chain

0.75 −5.228560 −0.1082 −0.2628 0.61 0.018 0.202 0.96 1.24 13.74
1.00 −5.415393 −0.1678 −0.4351 1.46 0.015 0.302 0.91 2.57 13.52
1.50 −5.036293 −0.4038 −1.0662 6.11 0.010 0.696 0.67 7.42 11.99
2.00 −4.790989 −0.7912 −1.6754 13.27 - - 0.37 11.78 9.22

H10 1D Ring

0.75 −5.151378 −0.1026 −0.2323 0.43 0.000 0.122 0.97 1.01 13.81
1.00 −5.422958 −0.1475 −0.3650 1.02 0.000 0.189 0.94 2.05 13.67
1.50 −5.048052 −0.3616 −1.0197 5.96 0.000 0.643 0.67 7.28 12.24
2.00 −4.794398 −0.7678 −1.6659 13.64 - - 0.32 11.87 9.35

H10 2D Sheet

0.75 −3.917633 −0.1040 −0.2325 0.35 0.008 0.107 0.98 0.85 13.65
1.00 −4.891538 −0.1393 −0.3262 0.71 0.014 0.159 0.95 1.58 13.56
1.50 −4.903192 −0.2868 −0.7820 2.85 0.038 0.337 0.79 5.47 12.92
2.00 −4.739235 −0.6886 −1.6949 9.22 - - 0.21 12.36 9.44

H10 3D Pyramid

0.75 −2.853673 −0.1737 −0.4151 1.13 0.015 0.320 0.93 1.77 13.54
1.00 −4.269379 −0.2397 −0.5811 2.28 0.031 0.486 0.84 3.13 13.40
1.50 −4.733459 −0.4051 −0.9765 3.54 0.067 0.635 0.62 6.88 12.67
2.00* −4.694062 −0.7480 −1.7252 3.59 0.093 0.685 0.25 12.62 9.48

of the Hubbard Hamiltonian:

Ĥ =−t ∑
i,σ

(
â†

i,σ âi+1,σ + â†
i+1,σ âi,σ

)
+U ∑

i
n̂i↑n̂i↓, (2.31)

where t and U are obtained by fitting the excitations energies (for singlet and triplet states)

of the Hubbard dimer to those of the H2 molecule with bond length r. Using this approach,

we find that U/t ranges from about 0.94 at r = 0.75 Å to 8.55 at r = 2.0 Å.

2.4.1 Ground and low-lying electronic states

We have found a variety of interesting characteristics in the ground and low lying ex-

cited states of the H10 model systems. Metrics of correlation for the ground state of the four

H10 systems as a function of the r are reported in Tab. 2.1. As expected, the numbers show

an increase in correlation as r increases across all four systems. However, when comparing

different systems, there are interesting discrepancies between the metrics. For example,

at r = 1.5 Å the 1D chain has the second largest absolute value of Ecorr (0.4038 Eh), the
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largest absolute value of intrinsic correlation energy (1.066 Eh), a high ‖λλλ 2‖2
F value (6.11),

and the largest D2 value (0.70); however, this system unexpectedly displays a relatively

large weight of the Hartree–Fock determinant (|CHF| = 0.67). A comparison of the ring

with the chain, shows that the former is slightly less correlated than the latter. In the case

of the 2D sheet at r = 1.5 Å, all metrics of correlation indicate that this system has the

smallest degree of electron correlation. In contrast, the 3D pyramid displays the strongest

correlation effects, yielding the largest absolute value of Ecorr (0.4051 Eh), a large intrinsic

correlation energy (0.9765 Eh), and the smallest HF determinant weight ( |CHF| = 0.62).

However, strong correlation in the 3D system is not reflected in the value of ‖λλλ 2‖2
F (3.54),

which is smaller than that of both 1D systems (≈ 6). The quantum information metric (in

a delocalized basis) Id
tot paints a similar picture: the pyramid total information lies in be-

tween that of the 1D systems and the less correlated 2D system. However, in a localized

basis, the same metric Il
tot decreases for all systems as a function of r. This behavior is

interesting as it suggests that quantum information metrics could potentially be useful for

choosing orbitals to use with various approximate methods. As discussed in more detail in

Sec. 2.4.2, the low value of ‖λλλ 2‖2
F observed for the 3D pyramid is likely a consequence of

spin frustration, which results in a rapid decay of spin correlation functions. We also note

that after r = 1.5 Å the ground state of the 3D pyramid crosses several low-lying singlet

states and by r = 2.0 Å it corresponds to the third excited state of Ag symmetry.

The small discrepancies observed in the various metrics can be owed to the fact that they

measure different aspects of correlation. While Ecorr and |CHF| quantify the deficiency of

the mean-field treatment (measured in both energetic and wave function terms), quantities

like ‖λλλ 2‖2
F and Itot capture only statistical aspects of correlation. The intrinsic correlation

energy (EICE) appears to offer a good compromise between the mean-field and statical

measures of correlation; nevertheless, its value is significantly larger than the Ecorr values

and captures contributions due to Coulomb repulsion (i.e., absent Coulomb repulsion, EICE

is zero even for a correlated state). The D1 and D2 metrics measure the importance of orbital
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rotations (D1) and correlation effects (D2) in the CCSD wave function. In particular, since

D1 is not directly related to electron correlation, its behavior is very different from that

of D2, with the latter growing with r in all models. In contrast, D1 decreases in the 1D

chain, it is identically zero in the 1D ring due to the different symmetry of singly excited

determinants, and it grows with r in the 2D and 3D models.

Another common approach to diagnose the onset of strong correlation is symmetry

breaking of the Hartree–Fock solution. The Coulson–Fischer point (here defined in terms

of the restricted→ unrestricted symmetry breaking) of the chain and ring models is found

at r = 0.85 Å and 1.05 Å, respectively. Consistent with the lower degree of correlation in

the 2D sheet, the corresponding UHF solution exhibits spin-contamination at a point farther

out in the dissociation curve (1.35 Å). Instead, the 3D pyramid exhibits symmetry breaking

at the smallest distance (0.70 Å) compared to the other three systems.
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Figure 2.2: Density of states with fixed electron number convoluted with a Gaussian func-
tion [Dg(E), defined in Eq. (2.32)] computed from the 50 lowest singlet, triplet, and quintet
states of the H10 systems at an H–H distance (A) r = 1 Å and (B) r = 1.5 Å. The density of
states was convoluted with a Gaussian function of exponent α = 105 E−2

h .

Lastly, we characterize the strength of correlations by computing the density of states

(DOS) with fixed particle number [D(E)]. For convenience, we convolute the density of
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states with a Gaussian function of exponent α and shift the energies by the ground state

energy (E0). This convoluted DOS is expressed in terms of excitation energies ∆Ei =

Ei−E0, where Ei are energies of singlet, triplet, and quintet electronic excited states, and

it is given by

Dg(E) = ∑
i

exp
(
−α(∆Ei−E)2). (2.32)

Note that this quantity is different from the DOS computed for electron attached/detached

states.

Figure 2.2 shows the energy spectra in the range 0–0.5 Eh (0–13.6 eV) relative to the

ground state from computations of the lowest 50 singlet, triplet, and quintet states of the

H10 systems. At shorter bond lengths (r = 1.0 Å), the 1D and 2D systems show large gaps

between the ground state and the lowest triplet state. However, this gap closes significantly

in the 3D pyramid to ca. 0.044 Eh. At longer bond lengths (r = 1.5 Å), the singlet-triplet

gap decreases for all systems. Interestingly, the 3D pyramid shows an almost zero gap (ca.

0.007 Eh) and several singlet near-degenerate states accumulate near the ground state.

2.4.2 Spin correlation and frustration

A
*

*

* *

* *

* *

*

C

B

D

Figure 2.3: Spin correlation density Ai(r) of the H10 models at an H–H distance r = 1.25 Å
plotted for (A) the edge and central localized MO sites of the hydrogen chain, (B) the
symmetry unique site of the hydrogen ring, (C) the four symmetry unique sites of the H10
sheet, and (D) the two symmetry unique sites of the H10 pyramid. Positive and negative
values of Ai(r) are indicated in red and blue, respectively, and in each plot the localized
orbital φi is denoted by an asterisk.

We have found that there are signs of spin frustration in the 2D sheet and 3D pyramid

models. Frustration is indicated by the inability to satisfy antiferromagnetic interactions—
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a condition which is not mathematically rigorous but that has, nonetheless, been used to

define systems as spin frustrated150—and the lack of long range antiferromagnetic ordering

beyond nearest-neighbor interactions.

The spin-spin correlation densities shown in Fig. 2.3 A and B indicate clear antiferro-

magnetic ordering beyond nearest neighbors in the 1D chain and ring. Each localized spin

is anti-correlated with its nearest neighbor, as depicted by the adjacent red and blue shad-

ing. Fig. 2.3 C shows spin-spin correlation density for the four symmetry unique sites in

the 2D sheet. In contrast to the 1D models, it can be seen that there is no way to simultane-

ously satisfy all antiferromagnetic interactions for the 2D sheet, and consequentially, spin

correlations decay more rapidly. This is also the case for the 3D pyramid (see Fig. 2.3 D),

for which each site is anti-correlated with all other sites, suggesting no antiferromagnetic

ordering beyond nearest neighbors. Tab. 2.2 summarizes spin correlation properties for the

H10, H12, and H14 systems at r = 1.5 Å. As is the case with the 2-body cumulant norm,

the H10 1D chain and ring systems have larger absolute spin correlation 〈S2〉abs (17.42 and

18.66, respectively) than the 2D or 3D systems (11.55 and 10.86, respectively). The short-

range nature of spin correlation of the 2D and 3D H10 systems is also indicated by their

smaller value of 〈S2〉abs,lr (2.46 and 3.04), compared to the 1D systems (5.25 and 6.51,

for the chain and ring respectively). These results are consistent with the spin correlation

density analysis in Figs. 2.3. We note that the scaling of 〈S2〉abs and 〈S2〉abs,lr with n for the

sheet and pyramid systems is (in most cases) linear or super-linear, which is not expected

for systems absent of long range spin ordering. However, this is likely because the lattice

sizes considered are still relatively small, and the addition of two hydrogens at a time does

not extend the lattices in a completely uniform manner, thus altering (possibly greatly) the

frustrated character. It is also possible to observe a lack of long-range correlation and or-

dering for the 2D sheet and 3D pyramid by considering the radial distribution of spin-spin

correlations and absolute spin-spin correlations.

It is evident from the various metrics of correlation, the DOS plots, and our analysis of
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Table 2.2: Ground-state of the four Hn systems at an H–H distance r = 1.50 Å. Sum of the
absolute value of the spin-spin correlations (〈S2〉abs), the sum of the absolute value of the
long range spin-spin correlations (〈S2〉abs,lr), and the sum of the nearest neighbor spin-spin
interactions (〈S2〉nn). See Eqs. (2.22)–(2.24) for the definition of these metrics.

System n 〈S2〉abs 〈S2〉abs,lr 〈S2〉nn

Hn Chain
10 17.42 5.25 −3.10
12 21.77 7.18 −3.72
14 26.29 9.27 −4.35

Hn Ring
10 18.66 6.51 −3.16
12 24.13 9.39 −3.84
14 28.95 11.91 −4.42

Hn Sheet
10 11.55 2.46 −1.94
12 14.31 2.59 −2.66
14 17.16 3.63 −3.06

Hn Pyramid
10 10.86 3.04 −1.19
12 18.06 4.02 −3.63
14 18.30 5.94 −2.40

spin correlation, that the H10 lattices display a broad range of correlation regimes. There-

fore, we believe it is important to consider the 2D and 3D models in future benchmarks

of electronic structure methods because they capture some aspect of the physics of spin

frustration that are not displayed by 1D hydrogen models.

2.4.3 Performance of sCI, SVD-FCI, and DMRG

Having characterized the nature of the ground state of the H10 models we now proceed

to analyze the efficiency with which sCI, SVD-FCI, and DMRG approximate the wave

functions of these systems.

In Fig. 2.4 we plot the energy error [EX(Npar)− EFCI] as a function of the number

of variational parameters for the H10 systems in the regime of strong electron correlation

(r = 1.5 Å). The accuracy volume may be obtained from these plots by finding the number

of parameters corresponding to a 1 mEh error. When using canonical orbitals, we see that

DMRG affords the most compact representation, although Vap-sCI and VACI+PT2 are within a

factor of 1.5–2 of VDMRG. ACI without the PT2 correction always requires more variational

parameters to match the accuracy of ap-sCI and ACI+PT2, and VACI is 2–3 times VDMRG.
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Figure 2.4: Ground-state of the four H10 models at an H–H distance r = 1.5 Å. Energy
error with respect to FCI vs. number of parameters (Npar) of approximate methods. The
gray shaded region represents chemically accurate energies (error less than 1mEh).

For all four H10 systems, SVD-FCI exhibits the worst efficiency, although only by a small

margin, such that VSVD-FCI is 2–4 times greater than VDMRG. Note that we include two

sets of results for DMRG: the lowest energy eigenvalue found during all DMRG sweep

optimizations (labeled DMRG, see Ref. 145 for details), and the energy obtained from the

reduced density matrices of the final MPS (indicated with DMRG*). When a large bond

number M is used, the two energy values are nearly identical, but for smaller values of M,

the DMRG* value may be slightly higher than the DMRG one.

When using localized orbitals, we see that DMRG again produces the most compact

representation and by a much larger margin for all four H10 systems. In particular, for the

1D chain VDMRG is two orders of magnitude lower than all other methods. Comparing the

accuracy volume of DMRG with different orbital bases, one notices that the localized basis

is more efficient in the 1D systems, while the delocalized basis leads to smaller VDMRG

for the 3D model. For the 2D model, the localized and canonical basis yield comparable

VDMRG values. The advantage of using canonical orbitals is inconsistent with previous

findings,82 and it is likely due to the size of the systems considered here. In this case, the

compression afforded by using a localized basis is outweighed by the advantages of using
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Figure 2.5: Ground-state of the four H10 models at an H–H distance r = 1.5 Å. Density
cumulant error ‖∆λλλ 2‖F with respect to FCI vs. number of parameters (Npar) of approximate
methods.

point group symmetry. When comparing results across canonical and localized orbitals for

the other methods, we find that the accuracy volume is always smaller in the delocalized

basis, so there is no advantage to orbital localization. This is in agreement with past obser-

vations100 that localization is beneficial for sCI methods only after a certain system size is

reached. It is interesting to observe that the accuracy volume for DMRG and sCI mirrors

the behavior of the total quantum information for both delocalized and localized bases (see

Tab. 2.1), suggesting that this metric may be useful for determining the best orbital basis to

use at a given geometry.

We note that for the sheet and pyramid, there are a few values of σ for which the

ACI results do not converge monotonically and lead to small bumps. We have also en-

countered cases where the iterative ACI algorithm finds the first excited state due to near-

degeneracies, an issue that may be resolved using a state-averaged version of the method.42

These incorrect energies were not included in Fig. 2.4.

Fig. 2.5 shows plots of Npar vs. the two-body cumulant error ‖∆λλλ 2‖F for the four

H10 systems at r = 1.5 Å. These plots do not include ACI+PT2 results since second-order

corrections to the ACI 1- and 2-RDMs were not available. We find similar trends for the
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Table 2.3: Accuracy volume (VX ) computed for the ground state of the H10 models for
various methods. Values are reported for both localized and delocalized molecular orbital
bases. The Hilbert space size (|HN |) for all models in C1 symmetry is 63504. Hilbert
space sizes with the largest abelian symmetry exploited in the computations are reported in
the table. ACI+PT2 values with a < sign indicate that the energy error with the reported
number of parameters is significantly lower than 1.0 mEh. Finding more precise values of
VX for ACI+PT2 is challenging as the energy error is not monotonic as a function of σ .

Delocalized (RHF Canonical) Localized (Pipek–Mezey)
System |HN | r / Å ap-sCI ACI ACI+PT2 SVD-FCI DMRG ap-sCI ACI ACI+PT2 SVD-FCI DMRG

1D Chain 31752
(D2h)

0.75 1491 2066 <335 5292 2600 41872 46882 45052 10584 468
1.00 5122 6978 <2156 10584 4896 35962 42332 39510 21168 388
1.25 11201 14231 7347 17136 9598 29148 35306 30732 34272 376
1.50 18176 22989 16356 26964 12674 20424 26008 20564 53928 176

1D Ring 15912
(D2h)

0.75 577 873 <181 2784 740 53358 56244 53448 11088 3359
1.00 2019 2803 663 5328 1522 49982 53364 50084 21168 3164
1.25 4791 6384 2701 9492 2663 45452 49537 43486 37800 2688
1.50 8520 11056 7895 16296 4034 36450 41254 34134 65016 1884

2D Sheet 15912
(D2h)

0.75 766 1102 <218 2532 1117 53252 59470 58050 10080 4649
1.00 1899 2809 <718 4296 1853 51822 58256 56252 17136 4071
1.25 4139 5283 3478 7848 2626 50318 57036 53852 31248 4113
1.50 8667 11122 6468 15156 4218 47916 54466 49540 60480 4192

3D Pyramid 15912
(C2v)

0.75 1478 2115 <787 4044 1630 44062 56232 55452 16128 10832
1.00 2755 3605 <1607 7056 2250 45812 55986 55078 28224 12556
1.25 4997 6530 2869 9864 2927 45844 56348 52728 39312 10998
1.50 8097 10519 6457 13152 3495 43932 53280 48580 52416 9489

efficiency to represent λλλ 2 as we do for the energy, with the caveat that in a canonical basis,

ap-sCI generally gives the best compression efficiency. It can be seen that with canonical

orbitals, ap-sCI actually preserves the accuracy of the two-body density cumulant after

compression better than DMRG does for the 1D chain, and similarly to DMRG for the

other three systems. There is also a larger disparity in the performance of ap-sCI and ACI

for cumulant compression performance, which can be attributed to two reasons. First, ACI

adds additional determinants at each iteration to ensure spin completeness (the compressed

ap-sCI wave function is not guaranteed to be an eigenfunction of spin). Second, ACI selects

determinants according to their energetic contribution, and not explicitly their contribution

to the wave function. SVD-FCI is the least efficient in compressing the wave function for

the 1D systems, but does nearly as well as ACI for the 2D sheet and 3D pyramid. However,

it possible that if variational optimization is used for SVD-FCI the cumulant error may

increase, similarly to the behavior observed for ACI. When using localized orbitals, it can
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be seen that DMRG likewise shows the best compression efficiency with respect to ‖∆λλλ 2‖F,

especially for the 1D chain and ring systems.

As shown in Tab. 2.1 of Sec. 2.4.1, the degree of correlation for all models increases as

the H–H distance r becomes larger. In Tab. 2.3 we can see that in a delocalized basis the

complexity of the wave function, as gauged by VX , also increases as r becomes larger, such

that all methods require a larger number of parameters to achieve chemical accuracy. In a

localized basis VDMRG, Vap-sCI, and VACI decrease with increasing r, suggesting that these

methods can exploit the local character of correlation, although in most cases not enough to

outweigh the benefits of symmetry-adapted delocalized orbitals. In a delocalized basis, we

note that for small values of r the ACI+PT2 produces very accurate results with very few

parameters, outperforming DMRG using just a few hundred determinants. It is interesting

to note that compression efficiency for SVD-FCI decreases dramatically as r increases,

suggesting that the method is not able to take advantage of local correlation. Additionally,

it can be seen that at more contracted geometries (smaller values of r), there is less of a

disparity between the compression performance of the various approaches.

2.4.4 Comparison with other electronic structure methods

It is interesting to use the H10 models to benchmark the robustness and accuracy of

conventional methods that employ a fixed number of parameters. Fig. 2.6 compares the

energy errors relative to FCI for RHF, MP2, CCSD, CCSD(T), CR-CC(2,3), V2RDM with

the two-body positive-semidefinite P, Q, and G conditions (V2RDM-PQG), and V2RDM-

PQG with additional three-body positive semidefinite T2 conditions (V2RDM-PQGT2).

RHF deviates significantly from FCI for all four systems, even near the H2 equilibrium

geometry (re = 0.74 Å), where it gives errors of approximately 80–100 mEh. MP2 reduces

the energy error near re to about 10 mEh. While the RHF and MP2 energies do not diverge,

they do not capture the dissociation of the H10 systems even qualitatively, giving energy

errors well over 100–200 mEh for r ≥ 1.6 Å.
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Figure 2.6: Ground-state potential energy curves of the four H10 models. Energy error
(∆E) with respect to FCI for various electronic structure methods as a function of the H–
H distance (r). The gray shaded region indicates the range of r for which the restricted
Hartree–Fock solution is stable.

The three coupled cluster variants—CCSD, CCSD(T), and CR-CC(2,3)— achieve

chemical accuracy for the 1D chain and ring systems for r ≤ 1.0 Å, and diverge beginning

around r ≥ 1.5 Å, past the Coulson–Fisher point. Performance for CCSD, CCSD(T), and

CR-CC(2,3) is slightly worse for the 2D sheet and 3D pyramid, where chemical accuracy

is only achieved for r ≤ 0.75 Å, and divergence is seen once again at larger values of r.

For all four systems, when r > 1.25 Å, the magnitude of the HF coefficient |CHF| in the

FCI wave function is less (or significantly less) than 0.9. It is worth mentioning here,

however, that a handful of hydrogen systems have been investigated with variants of CC
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that provide stable results relative to the examples in Fig. 2.6. Namely, the paired coupled

cluster doubles (pCCD)151 and the singlet pCCD (CCD0).152

The V2RDM approaches achieve the best descriptions of the potential energy surfaces

compared to the other methods used in this section. Enforcing the PQG conditions during

the optimization gives a good qualitative description of the dissociations, but still produces

large quantitative errors in the range of 10–50 mEh for the 1D chain and ring systems and

50–200 mEh errors for the 2D sheet and 3D pyramid. Enforcing the additional T2 condi-

tion improves the V2RDM results significantly, such that energy errors for the chain and

ring systems at r = 1.50 Å are 3.0 mEh and 7.4 mEh, respectively. It can be seen, how-

ever, that for the 2D sheet and 3D pyramid, V2RDM-PQGT2 fails to produce chemically

accurate results by a large margin, with errors of the order of 10–50 mEh at stretched ge-

ometries. Interestingly, the performance of V2RDM is far less sensitive to r than RHF,

MP2, or CC as indicated by smaller values of nonparallelism error (the maximum error

minus the minimum error over the entire range of r). Additionally, the error for V2RDM

has a maximum in the re-coupling region (r ≈ 1.5 Å), while all other methods generally

decrease in accuracy with increasing r.

2.5 Scaling of the accuracy volume and size consistency

In this section we discuss some of the formal properties of the methods and present

numerical results concerning scaling of the accuracy volume and size consistency. We

begin by comparing the scaling with respect to system size. sCI may be considered a zero-

dimensional ansatz, in the sense that it is particularly efficient in the description of few

electrons in many virtual orbitals, especially due to the PT2 correction. If one demands

that the sCI energy is size consistent for a set non-interacting fragments A · · ·B · · ·C · · · ,

one concludes that the number of parameters grows as NANBNC . . .. In other words, the

sCI accuracy volume (per electron) grows exponentially with the number of electrons N

(albeit with a smaller prefactor than FCI), VsCI ∝ exp(N). In practice we find this to be the
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case for ACI using localized orbitals. To achieve an accuracy of approximately 10−4 Eh

per electron for a system of five non-interacting H2 molecules requires 2380 parameters,

rather than the 20 parameters required by a product state built from solutions for each H2

molecule.

Our analysis also suggests that the SVD-FCI approach suffers from exponential growth

of the accuracy volume (independently from dimensionality), although, to the best of our

knowledge a formal analysis has not been reported. Even in the best case scenario, the

number of parameters for a rank 1 SVD-FCI approximation scales as NSVD-FCI ∝ 2
√

NH ,

which implies VSVD-FCI ≥ 2
√

NH . We likewise observe that for the same system of disso-

ciated hydrogens, SVD-FCI requires 14616 parameters to achieve approximately 10−4 Eh

per electron. Like the result for sCI, this indicates that SVD-FCI with a fixed number of

parameters is not size consistent.

In the case of a DMRG, a MPS with bond dimension M can describe a system with en-

tanglement entropy S bound by the condition S ≤ log2 M,75 or equivalently, exp(S)≤CM,

with C a constant. For gapped systems of dimensionality D that satisfy an area law, the

entanglement entropy is expected to scale as S ∝ LD−1 (plus logarithmic corrections for

non-gapped systems), where L is the length scale of the system.153 Therefore, in DMRG

the bond dimension M scales at most as exp
(
γLD−1)∝ exp

(
γN(D−1)/D

)
. Similarly, we es-

timate that the accuracy volume of DMRG scales as VDMRG ∝ NM2 =N exp
(

2γN(D−1)/D
)

.

For one dimensional systems (D = 1) VDMRG is independent of system size and the ground

state can be well approximated by a finite bond dimension. Beyond one dimension, this

analysis suggests that the DMRG bond dimension grows exponentially. However, for D =

2, DMRG is already exponentially more efficient than sCI since VDMRG ∝ N exp
(

2γN1/2
)

. This in practice implies that DMRG is still applicable without exponential cost to both

one-dimensional and “thin” two-dimensional problems.154

DMRG is formally size consistent, giving additively separable energies for non-

interacting fragments A · · ·B, so long as the orbitals are localized on either A or B.79, 115
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If the orbitals in the DMRG lattice are ordered by subsystem ([A · · ·B]) then the wave

function for noninteracting fragments becomes a product state of the MPS on A and B.

Then a MPS obtained by concatenating the MPS of A and B with a bond of dimension

one (M = 1) is sufficient to represent the product state and satisfy size consistency. This

implies that the V A+B
DMRG for a system of non-interacting fragments is approximately equal

to V A
DMRG +V B

DMRG. In practice we have found this to be nearly true, a product state for a

system of five non-interacting H2 molecules has 20 parameters, and DMRG can reproduce

the FCI energy exactly with a bond dimension as small as M = 3 (with 60 parameters). In

principle DMRG should be able to achieve this result already with M = 2, but we find that

instead it converges to a local minimum rather than the FCI energy.

Finally, we present numerical results for the scaling with system size of the accuracy

volume for analogous of our four model systems with upt to up to sixteen hydrogens. In

Fig. 2.7, we plot the accuracy volume for n = 10, 12, 14, 16 at r = 1.5 Å, corresponding

to absolute energy errors of 1.0, 1.2, 1.4, and 1.6 mEh, respectively. For comparison,

we have also included the size of the FCI space (in C1 symmetry) and a curve with n4

scaling, which is proportional to the number of Hamiltonian matrix elements. We note

that the ground states of the H12 ring, H16 ring, and H16 sheet have symmetries (B1g),

(B1g), and (B3u), respectivly, different from that of all other systems (Ag). Additionally,

we note a small dip in the curve for the 3D systems at 14 hydrogens, which we attribute

to the different symmetry used for that lattice, D2h as opposed to C2v. It can be seen

that DMRG again provides the best compression of the wave function as measured by the

accuracy of the energy for different systems sizes. In a localized basis, a polynomial fit of

VDMRG as a function of the number of hydrogens (n) gives a scaling proportional to n2.1

for the chain and n3.3 for the ring, demonstrating the advantage of this methods for one-

dimensional systems. It is also worth pointing out that for the larger systems (H12–H16), it

is advantageous (though still exponentially scaling) to use localized orbitals with DMRG

even for the 2D systems. This result is consistent with other DMRG studies comparing
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localized vs. canonical orbitals for finite 2D arene systems.82 For all the other methods,

VX in a delocalized basis appears to scale exponentially with a prefactor smaller than that

of FCI.

It may be helpful to the reader to note that for all the systems considered here we find

that in many cases the FCI computations are still faster than ACI and DMRG even up to

16 electrons. On a single node, FCI computations run in about 1 second up to 3 hours for

the H10–H16 systems, whereas the implementation of DMRG used in this work can take

up to 1–2 days on a single node for the more challenging 2D and 3D systems. We observe

the most striking difference in the case of DMRG applied to the 1D systems, where even a

very accurate computation in a localized basis can take on the order of 1 second even for

H16.

2.6 Conclusions and future work

This work accomplishes two main goals. Firstly, we propose a series of benchmark

hydrogen models with a tunable degree of correlation that cover a wide range of electronic

structures. These include 1D hydrogen chains and rings with antiferromagnetic ground

states, a 2D triangular lattice (sheet) with spin frustrated interactions, and a 3D pyramid

system that displays both spin frustration and a vanishing energy gap (dense manifold of

near-degenerate states). We analyze these systems with various correlation metrics and by

computing their low-energy spectra and spin-spin correlation functions. The models are

found to have drastically different electronic structures depending on the physical dimen-

sion. In particular, since 2D and 3D systems exhibit some of the fingerprints of spin frustra-

tion and they are not efficiently approximated with MPS, they nicely complement bench-

mark sets based on 1D lattices. Our comparison of different metrics of correlation also

highlights the importance of using multiple descriptors to characterize electronic states, as

our results clearly show that they measure different aspects of correlation.

Secondly, using the hydrogen models, we compare the performance of selected CI,
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Figure 2.7: Accuracy volume (VX ) for various approximate methods as a function of the
number of number of hydrogen atoms (n) for the four Hn models. For comparison we also
report the number of FCI determinants (in C1 symmetry) and the curve n4. The 12, 14,
and 16 hydrogen chains, rings, sheets, and pyramids are extensions of the H10 models in
that the additional hydrogens are placed within the same lattice structure. Unless otherwise
noted, all results employ canonical RHF orbitals.

SVD-FCI, and DMRG in various regimes of strong electron correlation. We focus in par-

ticular on determining the ability of each method to efficiently compress the information

content of the FCI wave function. To quantify this property, we introduce a new metric,

the accuracy volume (VX ), which corresponds to the minimum number of variational pa-

rameters necessary to achieve a target energy error (in our case, defined as 1mEh). As

expected, DMRG affords the most efficient representation for the 1D H10 chain and ring,

using at least an order of magnitude fewer parameters to achieve the same level of energy
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or two-body cumulant accuracy compared to the other methods. Nevertheless, this effi-

ciency is gradually lost when going from 1D to higher-dimensional systems. In contrast,

all flavors of sCI perform best in a delocalized basis but are generally less efficient than

DMRG. The SVD-FCI, which we use as a proxy for rank-reduced FCI, is generally found

to be the most inefficient approach to approximate the H10 wave functions. However, as

mentioned previously in Sec. 2.2.2, the variational optimization in RR-FCI would yield

lower accuracy volumes than SVD-FCI, likely making RR-FCI more competitive with sCI

and DMRG. We have similarly analyzed the ability of each method to accurately represent

electron distributions, namely the cumulant of the two-body density matrix. In this case,

the trends are similar to those observed for the energy, with the difference that sCI shows

better performance for the 2D and 3D systems in a delocalized basis.

In analyzing the compressibility of the wave functions for H12, H14, and H16 analogs

of the four H10 models, we have determined that DMRG consistently shows the smallest

accuracy volume, and that the performance of SVD-FCI is more on par with that of ap-sCI

for the larger systems, suggesting that future developments of RR-FCI methods such as

those in Refs. 27 and 29 are certainly worthwhile, especially for systems larger than those

considered in this study. Despite the significant reduction in the number of parameters rela-

tive to the FCI wave function afforded by selected CI, SVD-FCI, and DMRG, none of these

methods bring a reduction in scaling from exponential to polynomial in the general case.

Alternative methods, such as higher-dimensional tensor network states, quantum Monte

Carlo, and quantum computational algorithms, may be required to circumvent storage cost

of an exponentially scaling wave function.

We note that while the accuracy volume is a generally applicable metric for determin-

ing the performance of a method, the benchmark set considered here uses a minimal basis,

is restricted to small systems amenable to FCI computations, and does not include atoms

with more complex electronic structures. Therefore, one should be cautious in extrapolat-

ing the relative performance of the methods in the case of more complex systems. In future
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studies it might be also interesting to investigate the advantages of employing other orbitals

bases, like natural orbitals and split-localized orbitals. In addition, our work has focused

only two tensor decomposition methods. It would be interesting to examine the accuracy

volume of projected entangled-pair states,155 the multi-scale entanglement renormalization

ansatz,156 tree tensor network states,76, 77, 139 and other more general tensor network states.

With appropriate modifications, the accuracy volume is also applicable to stochastic meth-

ods,157, 158 both in real and determinant space, and could provide a way to compare these

approaches to deterministic methods like the ones considered in this work.

Our work does raise a few important questions as we (potentially) approach an era of

quantum advantage for molecular computations. Although quantum computational algo-

rithms are able to avoid the explicit storage of the wave function, they still suffer from

non-trivial classical computational overhead. For example, the quantum phase estima-

tion159, 160 (QPE) algorithm relies on time evolution of the Hamiltonian, which implies

a computational scaling and storage costs (ignoring the cost of state preparation) at least

proportional to K4 in a delocalized basis, although more efficient representations have been

recently proposed.161, 162 For the purpose of comparing the resource cost of classical and

quantum algorithms, in Fig. 2.7 we have also reported an estimate of the resources needed

by quantum algorithms computed as n4, where n is the number of hydrogen atoms (equal

to the number of spatial orbitals). This plot shows that classical compression approaches

use more than n4 parameters even with systems as small as 12 electrons. While this prefa-

tory comparison highlights the importance of quantum algorithm development even for

modestly sized systems, it also suggests a threshold for the maximum number of classical

parameters a quantum algorithm should employ. In other words, a successful quantum algo-

rithm should achieve a VX smaller (and with lower n-scaling) than state-of-the art classical

methods such as selected CI and DMRG for a given level of accuracy. The competitiveness

of any quantum algorithm could be tested for various regimes of correlation by comparing

the computational resources (classical variational parameters) required to achieve a 1 mEh
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energy error with those reported in Table 2.3.

In summary, this study has explored the limits of classical state-of-the-art electronic

structure methodologies as applied to strongly correlated electrons. The hydrogen bench-

mark set and the accuracy volume metric are two new tools that will be useful in guiding the

development of the next generation of classical and hybrid quantum-classical methods for

strongly correlated systems. An important open problem in electronic structure theory is

identifying the practical limits of classical methods and knowing under what circumstances

quantum algorithms can overcome these limits. This work approaches this problem from a

computational perspective and sheds some light on the first aspect; in future work we plan

to investigate the ability of various quantum algorithms to go beyond the limits of classical

methods.
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Chapter 3

A quantum Krylov algorithm for strongly correlated
electrons

Reprinted (adapted) with permission from Nicholas H. Stair, Renke Huang,
and Francesco A. Evangelista Journal of Chemical Theory and Computation

2020 16 (4), 2236-2245 DOI: 10.1021/acs.jctc.9b01125. Copyright 2020
American Chemical Society.

3.1 Introduction

Solving the electronic many-body Schrödinger equation for systems that display strong

correlation effects is a major challenge in physics and quantum chemistry.1 Quantum com-

putation2 offers a potential solution to the exponential scaling of the Hilbert space dimen-

sion with particle number. Recent advances in quantum hardware design, including an

early demonstrations of quantum speedup,3 have motivated the development of new quan-

tum algorithms that can be executed on so called noisy intermediate-scale quantum (NISQ)

devices, with less than 100 qubits and shallow circuits.4

Algorithms based on quantum phase estimation (QPE),5, 6 were the first proposed to

compute the ground state energies of fermionic many-body systems.7 QPE was later ap-

plied to molecular problems8 and has been implemented on a photonic quantum device.9

Though QPE is well suited for Hamiltonian simulation on large-scale fault-tolerant quan-

tum hardware, its application in the NISQ era presents several challenges due to the poor

gate fidelity and the limited coherence time of devices available in the foreseeable fu-
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ture.10, 11 As a result, hybrid quantum-classical algorithms requiring shallower circuits,

such as the variational quantum eigensolver (VQE)12, 13 and the quantum approximate op-

timization algorithm (QAOA)14 have recently received more attention.

In the VQE scheme, a complex trial wave function is optimized via an algorithm

that subdivides the work between a classical and quantum computer. In this approach,

the variational minimization of the energy is driven by a classical algorithm, while mea-

surement of the energy and gradients is deployed to a quantum computer. VQE was

originally implemented with the unitary coupled cluster (UCC)15–20 ansatz truncated to

single and double excitations.12, 13, 21–24 More recently, several groups have studied al-

ternative ansätze, including mean-field references,25 UCC with general singles and dou-

bles,26 hardware-efficient parameterizations,27 resource-efficient qubit-space UCC with 2-

qubit entanglers,28, 29 general UCC with adaptively selected unitaries,30 and linear-depth

fermionic Gaussian reference states.31 Efforts have also been made to extend the VQE

algorithm to compute excited states32–37 and approaches that combine variational methods

and phase estimation have been suggested.38, 39

Notwithstanding the significant impact of VQE schemes, they have two principal draw-

backs. Firstly, VQE methods require measurement of the energy or energy gradients with

respect to the variational parameters at each step of the optimization process. This results in

a significant number of queries of the optimization algorithm to the quantum device. Sec-

ondly, the optimization process in VQE is challenging due to the high nonlinearity of the

energy (considered as a function of the parameters), intrinsic accuracy limitation because of

the inexactness of the ansatz40 and stochastic errors that result from finite measurement and

loss of fidelity.41 As a consequence, the optimization process may be slow to convergence

and may reach a local minimum instead of the true ground state.

A third and emerging family of methods, which we refer to as Quantum Subspace

Diagonalization (QSD) schemes, diagonalize the Hamiltonian in a general nonorthogonal

basis of many-body states.32, 33, 42–46 There is a long tradition of using such a strategy in
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quantum chemistry.47–52 A natural way to extend it to quantum computing is to construct

a basis of states and measure the corresponding matrix elements with a quantum device,

and later solve the associated generalized eigenvalue problem via a classical computer.32

Compared to a fully classical approach, QSD schemes can take advantage of the ability of

quantum computers to store arbitrarily complex states.

QSD methods mainly differ in the way the many-body basis is generated. The quantum

subspace expansion (QSE) method of McClean and co-workers, diagonalizes the Hamilto-

nian in the basis of states â†
i â j |Ψ〉, where Ψ is a reference state prepared via VQE.32, 33, 42

Matrix element of the Hamiltonian in this basis are obtained by measuring the three- and

four-body density matrices. QSD approaches are particularly advantageous if the many-

body basis is constructed as a Krylov space43 and does not require extensive parameter

optimization. This is the case for the Quantum Lanczos (QLanczos) algorithm,43 where

the Hamiltonian is diagonalized in a basis of correlated states generated by imaginary-time

propagation.53 This basis is obtained from a single reference state by sampling at regular

intervals in imaginary time. In QLanczos, the imaginary-time propagator is written as a

unitary operation times a normalization factor, and a linear approximation is employed to

construct this representation. For each step in the imaginary-time propagation, a linear sys-

tem of equations must be solved for classically, requiring the measurement of the entries

of a matrix and a vector. Recently, a quantum equation-of-motion (QEOM) approach that

employs a QSD schema for computing excited states was also explored.46

Despite their potential, QSD methods suffer from a series of practical issues, which

are the focus of this work. The generalized eigenvalue problem associated with a given

nonorthogonal basis requires the efficient evaluation of off-diagonal matrix elements of the

form 〈ψα |Ô|ψβ 〉. While in the case of QSE and QLanczos these matrix elements are easily

computed,32, 43 in the general case their evaluation is more involved.44, 45 Another impor-

tant issue is the linear dependency of the basis generated in a QSD procedure. This issue

introduces numerical instabilities in the generalized eigenvalue problem and is potentially
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amplified by poor gate fidelity and measurement errors. Bases generated by variational op-

timization44 and real45 or imaginary43 time propagation are all plagued (to various degrees)

by linear dependencies.

In this work we formulate a QSD algorithm that addresses the two problems described

above. Firstly, we describe an efficient approach to evaluate the off-diagonal matrix ele-

ment required in QSD methods, with a cost that is essentially identical to that of computing

a diagonal matrix element. Secondly, to mitigate the linear dependency problem we con-

sider a multireference approach in which the Krylov space is constructed from an initial

set of orthogonal reference states. These references are selected via a scheme that exploits

quantum measurement to identify the most important determinants in a simple trial wave

function. The resulting multireference selected quantum Krylov (MRSQK) method is com-

bined with basis generation via real-time propagation43, 45 and benchmarked on a series of

problems involving strongly correlated electronic states.

While finalizing our manuscript, two papers appeared in preprint which are similar in

spirit to our work. Parrish and McMahon45 developed a quantum filter diagonalization

(QFD) formalism in which a basis of many-body states is generated via an approximate

real-time dynamics. QFD was inspired by classical filter diagonalization54–57 as well as

quantum time grid methods.58–61 In both our work and that of Parrish and McMahon, the

many-body basis is generated from a set of guess states. QFD, for example, was applied to

a 8-qubit ab initio exciton model in which the guess states were comprised of the ground

state and all single exciton states.45 Our work may be viewed as a variant of QFD with

selected references; however, a main difference is that in our approach the references are

determined in an automated fashion using quantum measurement to determine important

states. QFD and MRSQK also employ the same strategy for computing off-diagonal matrix

elements (a modified Hadamard test).62 In this work we provide detailed quantum circuits

to evaluate these quantities and show that the cost of this procedure is nearly identical

to that of computing the more trivial diagonal matrix elements. Our work also has some
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overlap with a paper by Huggins et al.44 in which they propose a non-orthgonal VQE

(NOVQE) scheme. In the NOVQE approach, the Krylov basis is generated from a set

of non-orthogonal VQE states, namely k-fold products of unitary paired coupled cluster

with generalized single and double excitations (k-UpCCGSD) employing a single Slater

determinant reference.63 Due to the variational optimization of each element of the many-

body basis, the Krylov space generated in the NOVQE method converges to the ground

state, which is likely to require a smaller number of basis states. In the NOVQE scheme,

the authors propose to compute off-diagonal matrix elements via an algorithm that avoids

controlled unitary operations, at the expense of requiring twice the number of qubits used

for the Hadamard test.

3.2 Theory

Consider a molecular Hamiltonian mapped to a set of qubits (Ĥ)

Ĥ = E0 +∑
`

h`V̂` (3.1)

where E0 is a scalar term, the index ` runs over all the terms in the Hamiltonian, h` is a

matrix element, and V̂` is the corresponding operator. Each operator V̂` in Ĥ is a tensor

product of N` Pauli operators (a Pauli string) that act on distinct qubits, V̂` =
⊗N`

k=1 σ
( jk)
lk

,

where lk ∈ {X ,Y,Z} labels the Pauli operator type and jk indicates the qubit upon which

said operator is applied.

To define the MRSQK method, we start by introducing a d-dimensional basis of refer-

ence states, M0 = {ΦI}, where each ΦI is a linear combination of Slater determinants (φµ )

with well defined spin and spatial symmetry

|ΦI〉= ∑
µ

dµI
∣∣φµ

〉
(3.2)

From this basis, we generate a nonorthogonal Krylov64, 65 space Ks(M0,Ûn) = {ψα ,α =

1, . . . ,N} by repeated application of a family of unitary operators Ûn (with n = 0,1, . . . ,s)
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to all the elements of M0. A generic element ψ
(n)
I ∈K is given by the action of Ûn on ΦI.

|ψα〉 ≡
∣∣∣ψ(n)

I

〉
= Ûn |ΦI〉 (3.3)

For convenience, we use the collective index α = (I,n) to identify an element of the basis.

The resulting Krylov space has dimension N = d(s+1).

In MRSQK, a general state is written as a linear combination of the basis {ψα} as

|Ψ〉= ∑
α

cα |ψα〉=
d

∑
I=1

s

∑
n=0

c(n)I Ûn |ΦI〉 (3.4)

Variational minimization of the energy of the state Ψ leads to the following generalized

eigenvalue problem

Hc = ScE, (3.5)

where the elements of the overlap matrix (S) and Hamiltonian (H) are given by

Sαβ = 〈ψα |ψβ 〉= 〈ΦI|Û†
mÛn|ΦJ〉, (3.6)

Hαβ = 〈ψα |Ĥ|ψβ 〉= 〈ΦI|Û†
mĤÛn|ΦJ〉 (3.7)

The formalism outlined above lends itself to a large number of quantum algorithms, de-

pending on: i) how the basis M0 is selected, ii) the particular choice of Ûn, and iii) the

quantum circuits used to evaluate S and H. In the following we describe the combination

that defines our multireference selected quantum Krylov approach and detail the efficient

algorithm used to evaluate off-diagonal overlap and Hamiltonian matrix elements and our

selection approach to generate the basis of references.

3.2.1 Choice of the unitary operators

In choosing the family of unitary operators Ûn there are two primary criteria we aim

to satisfy: i) that it generates a basis that well describes the eigenstates of Ĥ and ii) that

the corresponding quantum circuit is inexpensive to evaluate. These requirements give

considerable freedom, and a natural choice is a family of operators based on real-time
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Figure 3.1: Schematic illustration of the multireference selected quantum Krylov
(MRSQK) algorithm. (A) An approximate real-time dynamics using a single Slater de-
terminant reference (Φ0) is used to generate a trial state (Ψ̃). (B) Measurements of the
determinants that comprise the trial state are used to determine the probability of hopping
(Pµ ) to other determinants. This information is employed to build two new reference states,
Φ1 and Φ2. (C) Finally, three real-time evolutions starting from the references (Φ0,Φ1,Φ2)
generate a set of 12 Krylov states ψα , which are used to diagonalize the Hamiltonian and
obtain the energy of the state Ψ.

evolution, Ûn = exp
(
−itnĤ

)
, where tn = n∆t and ∆t is a fixed time step.

In fact, it is possible to show that for small ∆t, the basis of states Ks(ΦI,Ûn) generated

by real-time evolution spans a classical Krylov space. Consider a linear combination of the

elements of Ks(ΦI,Ûn) and expand the exponential into a Taylor series keeping terms up

to order (∆t)s

|Ψ〉=
s

∑
n=0

c(n)I e−in∆tĤ |ΦI〉

=
s

∑
k=0

( s

∑
n=0

(−in∆t)k

k!
c(n)I

)
Ĥk |ΦI〉+O(∆ts+1)

=
s

∑
k=0

( s

∑
n=0

Mknc(n)I

)
Ĥk |ΦI〉+O(∆ts+1)

(3.8)

The square matrix M is invertible, and therefore, the coefficients c(n)I may be chosen to

represent any combination of the classical Krylov basis {Ĥk |ΦI〉} with k = 0, . . . ,s, up

to higher-order terms. This analysis shows that working with small time steps should be

advantageous, as the quantum Krylov basis would reproduce the classical one. Indeed, this

is what we find in numerical experiments. In practice, however, small time steps make

the overlap matrix [Eq. (3.6)] nearly singular, which consequently reduces the numerical
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stability of the generalized eigenvalue problem. In MRSQK this issue is ameliorated by the

use of multiple references that are required to be orthogonal.

To realize the MRSQK method on a quantum computer, a quantum circuit is required

that can approximate the time-evolution operator. The analysis presented above, suggests

that it is important that any approximation to the real-time evolution operator must be suffi-

ciently accurate. Otherwise the approximate quantum Krylov basis will likely not span the

classical Krylov basis of the exact Hamiltonian, and consequently slow down the conver-

gence of the method. To approximate the real-time evolution one may follow standard ap-

proaches like the Trotter-Suzuki decomposition66, 67 or employ a truncated Taylor series.68

In this work we employ the former methodology, and consider the m-Trotter number (step)

approximation of non-commuting operators Â and B̂ given by

eÂ+B̂ ≈
(
e

Â
m e

B̂
m
)m (3.9)

which is exact in the limit of m→ ∞. When applied to the real-time propagator this corre-

sponds to the product

Ûn =

(
∏
`

Ûn,`(tn/m)

)m

=

(
∏
`

exp
(
−itnh`/mV̂`

)
)m

(3.10)

As shown in section 4.3, low Trotter number approximations (m = 1,2) yield large errors

in the computation of the ground state electronic energy.

3.2.2 Efficient evaluation of off-diagonal matrix elements

To efficiently measure the overlap and Hamiltonian matrix elements [Eqs. 3.6 and 3.7],

we augment the circuit used to build the basis with an ancillary qubit and construct the

state 1√
2
(|ψα〉⊗ |0〉+

∣∣ψβ

〉
⊗|1〉), and then obtain 〈ψα |ψβ 〉 by measuring the expectation

value of the operator 2σ+ = σX + iσY on the ancilla qubit.69 To produce the state |ψα〉 we

introduce the unitary operator Ûα defined as

Ûα = ÛnÛI (3.11)
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where ÛI generates the reference state |ΦI〉 from the zero state
∣∣0̄
〉
=
⊗ |0〉. The circuit

to measure off-diagonal matrix elements is shown in Fig. 3.2. We note that the use of a

modified Hadamard test to measure off-diagonal matrix elements employed in this work

and in Ref. 45, and the modified SWAP test used in Ref. 44, are particularly advantageous

when the unitary operator Ûα cannot be expanded as a small sum of polynomials of Pauli

operators (which is the case for real-time dynamics). In the case of a Hadamard test, this

advantage comes at the cost of using controlled versions of Ûα , and consequently, deeper

quantum circuits and the use of an ancilla qubit. When the operator Ûα can be written as

a small sum of Pauli strings, e.g., in the case of single excitations out of a VQE reference,

then it is more efficient to compute off-diagonal matrix elements by averaging over all

the Pauli terms of the Hamiltonian and the excitation operators that compose the Krylov

subspace, as is done in the original QSE approach.32

∣∣0̄
〉

Ûα Ûβ

|0〉 H X • X • 2σ+

Figure 3.2: General circuit for measuring non-hermitian operators of the form〈
0̄
∣∣Û†

αÛβ

∣∣0̄
〉
. In this circuit, the final measurement corresponds to separate measurements

of X and Y and the evaluation of the expectation value of 2σ+ = X + iY = 2 |0〉〈1|.

For Ûn constructed out of exponentials of Pauli strings a crucial simplification may

be employed that allows the efficient construction of the state 1√
2
(|ψα〉 ⊗ |0〉+

∣∣ψβ

〉
⊗

|1〉).70 First, we start by representing the product of Pauli operators in each of terms V̂` as

a unitarily-transformed Pauli string consisting of operators in the Z basis

V̂` =
N⊗̀

k=1

σ
( jk)
lk

= H`

N⊗̀

k=1

σ
( jk)
Z H` (3.12)

where H` is a product of single qubit gates that transform each σ
( jk)
lk

to σ
( jk)
Z .71 Conse-

quently, each term in Ûn,` = exp
(
−itnh`V̂`

)
can be written as

Ûn,` = H`

(
e−itnh`

⊗N`
k=1 σ

( jk)
Z
)
H` = Ũn,`RzN`

(2tnh`)Ũn,` (3.13)
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where in the second step we have used a well-known representation of the exponential

of Pauli strings composed of CNOT gates (collected in Ũn,`) and a Z rotation on the N`

qubit (RzN`
).69, 71 Using the following operator identity involving the controlled versions of

generic unitary operators Â and B̂ (c-Â and c-B̂, see Fig. 3.3).

(c-B̂†)(c-Â)(c-B̂) = B̂†(c-Â)B̂ (3.14)

We can rewrite the controlled unitary evolution operator (c-Ûn,`) required to evaluate over-

laps as

c-Ûn,` = Ũ†
n,`[c-RzN`

(2θn)]Ũn,` (3.15)

which requires only one extra controlled operation c-RzN`
(2θn), where θn = tnh`, at the

center of the circuit. Controlled unitaries evaluated in this way require at most 2N` single

qubit gates, 2N` CNOT gates, and a controlled single-qubit gate.

Next, we discuss the the implementation of the unitary that prepares reference states

from
∣∣0̄
〉

(ÛI). When ΦI is a single Slater determinant ÛI is a product of X gates. For

multideterminantal references, one can apply the linear combination of unitaries (LCU)

algorithm,72 or follow the procedure outlined by Tubman et al.73 This approach requires

only one ancilla qubit and O(nL) one- or two-qubit gates, where n is the number of qubits

and L the number of determinants in a particular reference Alternatively, one may target

references that are composed of a single configuration state functions74, 75 or two electron

geminals.76

It is easy to generalize these circuits to controlled versions; however, one may pay

the penalty of increasing the number of two-qubit gates (after factoring three qubit con-

trol gates into two-qubit ones). This suggests that the references ΦI should be chosen to

be compact multideterminantal wave functions, e.g., either single determinants or a small

linear combinations of determinants.

Evaluation of the Hamiltonian matrix elements Hαβ = ∑` h`〈ψα |V̂`|ψβ 〉 proceeds in an

analogous way by computing each term 〈ψα |V̂`|ψβ 〉 individually. The circuit employed
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is analogous to the one in Fig. 3.2 with the operator Ûβ by replaced by V̂`Ûβ . Since each

term V̂` contains only product of one qubit operators, the corresponding controlled operator

contains at most two-qubit operators. The evaluation of S and H lends itself to a high

degree of parallelism. As in VQE methods, evaluation of a single matrix element of H

may be parallelized over terms in the Hamiltonian. In addition, in the MRSQK, one may

parallelize over the N(N−1)/2 unique pairs of Krylov states ψα /ψβ . Note that techniques

used to ameliorate finite measurement errors in VQE77–81 approaches can also be applied

to MRSQK.

3.2.3 Reference selection

A third important aspect of the MRSQK algorithm is the procedure to select the ref-

erence configurations. Our approach exploits quantum measurement to identify a set of

configurations starting from a trial MRSQK wave function. Specifically, we first form and

diagonalize the Hamiltonian in the Krylov space Ks(Φ0,Ûn), where Φ0 is a single deter-

minant (e.g., a closed-shell Hartree–Fock determinant). The resulting trial wave function

Ψ̃ = ∑α ψα c̃α is used to construct a list of potential important determinants. Since the

probability of measuring a determinant φµ is equal to Pµ = |〈φµ |Ψ̃〉|2, one can in principle

form the state Ψ̃ on a quantum computer and directly measure the determinantal composi-

tion, which in the Jordan–Wigner mapping amounts to measuring the expectation value of

Z for all wave function qubits. In practice, we approximate Pµ by measuring each element

of the Krylov basis and estimating the total probability as a weighted sum over references

|ψ〉 B̂† Â B̂
|φ〉 • • •

=
|ψ〉 B̂† Â B̂
|φ〉 •

Figure 3.3: Circuit identity used to simplify the controlled version of Ûn,` [Eq. (3.14)]. ψ

is a multi-qubit register used to encode a quantum state and the last qubit is an ancilla.



CHAPTER 3. A QUANTUM KRYLOV ALGORITHM FOR STRONGLY
CORRELATED ELECTRONS 115

via

Pµ = |∑
α

〈φµ |ψα〉cα |2 ≈∑
α

|〈φµ |ψα〉|2|cα |2 (3.16)

Measurements are accumulated until we form a list of determinants of length equal to a

small multiple of the number of references we aim to select (e.g., 2d). In principle only a

small number of measurements are required because the values of Pµ need only be quali-

tatively correct such that the determinants can be sorted. It should be noted, however, that

using Eq. (5.39) as an importance criterion can lead to the overestimation of the importance

of certain determinants due to neglected sign cancellation. A comparison of the the approx-

imate sampling based on Eq. (5.39) and the exact weight of determinants in the MRSQK

wave function shows that the former method is sufficient to identify the most important

determinants (see Tab. S1 in the Supplemental Information). Alternatively, Ψ could be

directly represented on a quantum computer via the linear combination of unitaries (LCU)

algorithm,72 so that determinants would be sampled directly with their correct probabilities.

Once formed, the list of potentially important determinants is augmented to guarantee

that all spin arrangements of open-shell determinants are included. Next, we diagonalize

the Hamiltonian in this small determinant basis. At this stage we identify references in

the following way: closed-shell determinants are considered individually, while open-shell

determinants with the same spin occupation pattern are grouped together and their weight

summed. Lastly, we select d − 1 largest weighted references beyond the Hartree–Fock

state. References composed of open-shell determinants are normalized to one using the de-

terminant coefficients from the small classical CI. This procedure generates very compact

reference states that can be used with the algorithm for computing off-diagonal matrix ele-

ments discussed in section 3.2.2. It is worth noting that the above procedure could also be

generalized in such a way that important references are generated by an iterative algorithm

that starts from a single-determinant state. An adaptive strategy like this reduces the bias

introduced by selecting a starting Slater determinant reference and may be advantageous if

some of the important references are generated with low weights from a single-determinant
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state.

3.2.4 Analysis of computational cost

The quantum computational cost of the MRSQK algorithm is dominated by the appli-

cation of the Trotterized Hamiltonian circuits Ûn. The depth of these circuits scales at worst

O(mK4) where m is the trotter number and K is the number of molecular orbitals. At the

minimal Trotter number level (m = 1), the maximum circuit depth for MRSQK is com-

parable to that of UCC with generalized singles and doubles (employng the same Trotter

number), and far shallower than QPE. More importantly, the circuit depth of MRSQK is

independent of size of the Krylov basis one wishes to generate, allowing for a flexible trade

off-between quantum and classical cost (for a desired level of accuracy). For example,

in the NISQ device era, one may avoid larger circuit depths with MRSQK by employing

a modest Trotter number, but still achieve a high degree of accuracy by building a larger

Krylov space that will be diagonalized classically. In this way MRSQK has both the advan-

tage of selected CI to exploit wave function sparsity and the classical compression afforded

by its quantum computational subroutines. This flexibility is a feature that distinguishes

MRSQK from other QSD methods.

3.3 Computational details

The MRSQK method was implemented using both an exact second quantization for-

malism and a quantum computer simulator using the open-source package QFORTE.82 All

calculations used restricted Hartree–Fock (RHF) orbitals generated with PSI483 using a

minimal (STO-6G)84 basis. Molecular Hamiltonians for the hydrogen and BeH2 systems

were translated to a qubit representation via the Jordan–Wigner transformation as imple-

mented in OPENFERMION85 with default term ordering. For all calculations, references in

MRSQK were selected using initial QK calculations with s0 = 2 evolutions of the Hartree–

Fock determinant and a time step of ∆t = 0.25 a.u. Parameters such as the time time step
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(∆t), and number of evolutions per reference (s) used in MRSQK were chosen based on

energy accuracy and numerical stability. We also note that we take the Trotter approxima-

tion with m = 100 as a good approximation to the infinite m limit for the potential energy

curves we plot. Adaptive derivative-assembled pseudo-Trotter ansatz variational quantum

eigensolver (ADAPT-VQE)30 calculations were performed with a in-house code provided

by N. Mayhall.

3.4 Numerical studies and discussion

We benchmark the performance and comparative numerical stability of the MRSQK

algorithm with linear chains of six and eight hydrogen atoms, two canonical models for

one-dimensional materials with correlation strength modulated by bond length.86–88 We

utilize point-group symmetry, which results in a determinant space comprised of 200 and

2468 determinants for H6 and H8, respectively. We first consider H6 at a site-site distance

of 1.50 Å, which exhibits strong electron correlation, as indicated by the large correlation

Table 3.1: Ground-state energies (in Eh) of H6 and H8 at a site-site distance of 1.5 Å using
exact time-evolution. Energy and overlap condition number k(S) results are given for a
single determinant (QK) using N Krylov basis states and ∆t = 0.5. MRSQK results are
given for N = d(s+1) Krylov basis states using three steps (s = 3) and ∆t = 0.5 a.u. With
N greater than 12 states, the condition number for QK does not grow larger than 1018. This
is likely a result of limitations of double precision arithmetic.

N EQK k(SQK) EMRSQK k(SMRSQK)

H6 (rHH = 1.5 Å)
4 −3.015510 3.29×105 −3.015510 3.29×105

8 −3.019768 3.60×1011 −3.019301 4.86×105

12 −3.020172 1.61×1017 −3.019696 9.39×105

16 −3.020192 3.19×1017 −3.019835 5.68×106

20 −3.020198 3.86×1017 −3.019929 6.23×106

FCI −3.020198
H8 (rHH = 1.5 Å)

4 −4.017108 1.19×105 −4.017108 1.19×105

8 −4.026563 1.39×1010 −4.024268 1.50×105

12 −4.028000 5.11×1014 −4.025894 2.00×105

16 −4.028096 1.33×1017 −4.026042 2.51×105

20 – – −4.026387 4.27×105

24 – – −4.026457 4.44×105

FCI −4.028152
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energy (Ecorr =−0.24681 Eh) and the small weight of the Hartree–Fock determinant in the

FCI expansion (|CHF|2 = 0.634).

In Tab. 3.1 we show a comparison of the energy and overlap matrix condition number

for the single reference version of quantum Krylov (QK), taking only the HF determinant

as a reference, and MRSQK as a function of the total number of basis states. For H6 we

observe that in both the single and multireference cases, convergence to chemical accuracy

(error less than 1 kcal mol−1 = 1.594 mEh) is achieved with only 8 parameters, an order of

magnitude smaller than the size of FCI space. For the case N = 12, MRSQK identifies the

following three references

|Φ0〉= |220200〉

|Φ1〉= |200220〉

|Φ2〉=−0.302 |2 ↑↑↓↓ 0〉−0.302 |2 ↓↓↑↑ 0〉

+0.275 |2 ↑↓↑↓ 0〉+0.577 |2 ↑↓↓↑ 0〉

+0.577 |2 ↓↑↑↓ 0〉+0.275 |2 ↓↑↓↑ 0〉

(3.17)

where the orbitals are ordered according to (1ag, 2ag, 3ag, 1b1u, 2b1u, 3b1u) in the D2h

point group. These references are comprised of two closed-shell and six open-shell deter-

minants. If we perform a computation with a set of references consisting of eight individual

(uncontracted) determinants, the resulting Krylov space has dimension 32 and the corre-

sponding energy is −3.019797 Eh, which is only 0.1 mEh lower than the contracted result

(−3.019696). Turning to H8, we find that the single-reference QK energy converges to

chemical accuracy with only 12 parameters, two orders of magnitude fewer than FCI. For

the same example, the MRSQK energy error is 1.06 kcal mol−1 with 24 parameters, only

slightly higher than chemical accuracy.

The linear dependency of the basis for H6 and H8—as measured by the condition num-

ber of the overlap matrix [k(S)]—is significantly more pronounced in the single reference

QK than the MRSQK version. In the case of H6, even with a small Krylov basis (8 ele-
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ments), QK is potentially ill-conditioned [k(S) = 3.60×1011]. In the case of 12 (or more)

states, the QK eigenvalue problem is strongly ill-conditioned [k(S) = 1.16× 1017], while

MRSQK displays only a modest condition number, [k(S) = 9.39×105]. Importantly, QK

becomes ill-conditioned before reaching chemical accuracy, whereas MRSQK does not,

highlighting the importance of multireference approach for practical applications.

Table 3.2: Ground-state energies (in Eh) of H6 at a bond distance of 1.5 Å. MRSQK results
are given for N = d(s+ 1) Krylov basis states using three steps (s = 3) and ∆t = 0.5 a.u.
The quantity m indicates the Trotter number. For each value of N, selected configuration
interaction (sCI) results were obtained using N determinants with the largest absolute co-
efficient in the FCI wave function. ADAPT-VQE results show the energy with N cluster
amplitudes selected from the pool of spin-adapted generalized singles/doubles.

N E(m=∞)
MRSQK E(m=8)

MRSQK E(m=4)
MRSQK E(m=2)

MRSQK E(m=1)
MRSQK EsCI EADAPT−VQE

4 −3.015510 −3.014138 −3.009948 −2.998858 −2.982186 −2.845002 −2.906724
8 −3.019301 −3.018341 −3.015872 −3.010035 −3.001195 −2.909404 −2.983042

12 −3.019696 −3.018808 −3.016940 −3.013425 −3.008661 −2.926337 −2.995691
16 −3.019835 −3.018888 −3.017173 −3.014253 −3.010543 −2.954587 −3.002345
20 −3.019929 −3.019054 −3.017614 −3.015311 −3.011663 −2.961772 −3.008847

FCI −3.020198

Next, we assess the errors introduced by approximating the real-time dynamics with a

Trotter approximation. Table 3.2 shows the performance of MRSQK using various levels of

Trotter approximation for H6 at a bond distance of 1.5 Å. While using exact time evolution

affords the fastest energy convergence with respect to number of Krylov basis states, we

find that chemical accuracy can still be achieved using a Trotterized exponential. For exam-

ple, using a Trotter number m = 8, MRSQK gives an error of only 1.1 mEh with a basis of

20 Krylov states. In Table 3.2 we also show a comparison of MRSQK with selected config-

uration interaction (sCI) and the adaptive derivative-assembled pseudo-Trotter ansatz varia-

tional quantum eigensolver (ADAPT-VQE).30 For any Trotter number, MRSQK converges

significantly faster than sCI and the ADAPT-VQE method. For example, even with the

smallest Trotter number (m = 1) MRSQK with 20 Krylov states gives an error of 8.5 mEh,

while a sCI wave function with 20 determinants yields an error of 58.4 mEh (see Table (3.2)

for details of the determinant selection). In comparison, an ADAPT-VQE wave function

with 20 parameters yields an error of 11.4 mEh. These results demonstrate the ability of
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MRSQK to parameterize strongly correlated states efficiently using a small fraction of the

variational degrees of freedom.
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Figure 3.4: Potential energy curve (top) and error (bottom) for symmetric dissociation of
linear H6 in a STO-6G basis. MRSQK computations use ∆t = 0.5 a.u., three time steps
(s = 3), and five references (d = 5) corresponding to 20 Krylov basis states. The number
of Trotter steps (m) is indicated in parentheses, while those from exact time evolution are
labeled (m = ∞).

To illustrate the ability of MRSQK to determine accurate ground-state potential energy

surfaces (PES) in the presence of strong correlation, we examine the dissociation of the H6

chain and linear BeH2. Figure 3.4 show the energy and error with respect to FCI for H6, for

restricted Hartree–Fock (RHF), second-order Møller–Plesset perturbation theory (MP2),

coupled cluster with singles and doubles (CCSD),89 and MRSQK with a Krylov basis of

20 states (s = 3, d = 5). With the onset of strong electron correlation, single-reference

methods (RHF, MP2, CCSD) fail to capture the the correct qualitative features of the PEC.

For example, CCSD produces very accurate results near the equilibrium geometry; how-

ever, it dips significantly below the FCI energy for bond distances greater than 1.5 Å. In
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contrast, MRSQK far outperforms CCSD even with the lowest Trotter number (m = 1) and

chemically accurate MRSQK results are obtained with m = 8.
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Figure 3.5: Potential energy curve (top) and error (bottom) for symmetric dissociation of
linear BeH2 in a STO-6G basis. MRSQK computations use ∆t = 2 a.u., four time steps
(s = 4), and six references (d = 6) corresponding to 30 Krylov basis states. The number
of Trotter steps (m) is indicated in parentheses, while those from exact time evolution are
labeled (m = ∞).

In Figure 3.5 we report the potential energy curve for the symmetric dissociation of

linear BeH2. For this problem, the size of the determinant space is 169. Like H6, BeH2 is

a challenging problem for single-reference methods, although CCSD shows smaller errors

(less than 10 mEh) throughout the entire curve. MRSQK computations on BeH2 employed

30 Krylov states generated by a space of six references and four time steps (s = 4). For

this problem, we found that using a larger time step provides more accurate results and

therefore, we report results using ∆t = 2 a.u. In the case of no Trotter approximation (m =

∞), the MRSQK error is less than 0.1 mEh across the entire potential energy curve. The

approximate MRSQK scheme based on four Trotter steps is already comparable in accuracy
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to CCSD, while using m= 8 the error falls within chemical accuracy. By analyzing the error

plot in the bottom half of Fig. 3.5, we see that there are small discontinuities in the curve

due to the selection of a different set of reference states. This problem, however, is common

to all selected CI methodologies,90–94 as well as ADAPT-VQE. These discontinuities may

be removed by employing references built from a fixed set of determinants.

3.5 Conclusions

In summary, the multireference selected quantum Krylov is a new quantum subspace

diagonalization algorithm for solving the electronic Schrödinger equation on NISQ de-

vices. MRSQK diagonalizes the Hamiltonian in a basis of many-body states generated by

real-time evolution of a set of orthogonal reference states. This approach has two major

advantages: (i) it requires no variational optimization of classical parameters, (ii) it avoids

the linear dependency problem that may plague other QSD methods. Benchmark compu-

tations on H6, H8, and BeH2 show that MRSQK with exact time-propagation converges

rapidly to the exact energy using a number of Krylov states that is a small fraction of the

full determinant space. When the real-time propagator is approximated via a Trotter de-

composition, modest Trotter numbers m = 4,8 are sufficient to ensure that truncation errors

yield chemically accurate potential energy curves. We also report a comparison of the con-

vergence of the energy of H6 for MRSQK, selected configuration interaction (sCI), and

the state-of-the-art ADAPT-VQE algorithm. In comparing sCI and MRSQK, the signif-

icantly faster convergence of the latter method indicates that the Krylov basis efficiently

captures the important multideterminantal features of the wave function. The comparison

with ADAPT-VQE shows that MRSQK can achieve a compact representation of the wave

function competitive even with an adaptive strategy that aims to minimize the number of

unitary rotations.

Together, these advantages make MRSQK a promising tool for treating strongly cor-

related electronic systems with quantum computation. However, there are several aspects
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of the MRSQK that deserve more consideration. The current reference selection strategy

may produce different sets of references as the molecular geometry is changed, which in

turn causes small discontinuities in potential energy curves. Selection procedures that, e.g.,

identify references from a small fixed set of orbitals could be used to address this issues.

In this work, we have selected fixed values for the time steps tn. Schemes in which the

time steps are treated as variational parameters may be able to represent states with a fewer

number of Krylov states and are worth exploring. Another important aspect is improving

the approximation to the real-time dynamics. Our results indicate that low Trotter number

approximations (m = 1,2) commonly used in other context introduce errors that are too

large. It would be desirable to explore the implementation of real-time dynamics via alter-

native methods, e.g. truncated Taylor series.68 An interesting alternative is to follow the

strategy of Ref. 95, which employs an unphysical dynamics generated by a simple func-

tion of the Hamiltonian. This dynamics still spans the classical Krylov space and may be

implemented with the same number of gates as a single Trotter number approximation.
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Chapter 4

Simulating many-body systems with a projective quantum
eigensolver

4.1 Introduction

Efficient quantum algorithms for determining the ground and excited states of many-

body systems are of fundamental interest to chemistry, condensed matter physics, and ma-

terials science.1–4 The ability of quantum devices to represent N-body states with qubits

scaling linearly in N make them particularly appealing for representing highly entangled

states, as is common in systems with strongly correlated electrons. Therefore, quantum

(and hybrid quantum-classical) algorithms offer an alternative to methods such as the den-

sity matrix renormalization group5 (DMRG), selected configuration interaction6, 7 (SCI),

determinant-based Monte-Carlo,8 variants of coupled-cluster (CC) theory9, 10 amenable to

treating strong correlation,11–14 and multireference CC (MRCC) methods.15–20 Although

these classical algorithms can accurately predicted energies and properties of certain classes

of strongly correlated systems, they still have high-order polynomial or exponential cost in

the general case.

Since Feynman’s proposal to use a controlled quantum system to carry out simula-

tions,21 significant algorithmic and experimental advances have been made. The earliest

demonstrations of quantum simulation for small molecules2 utilized the quantum phase

estimation algorithm22–24 with Suzuki–Trotter decomposed time evolution25, 26 of an adi-
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abatically prepared trial state. It is believed that some combination of these techniques

will permit the efficient simulation27–30 of certain classes of Hamiltonians,31 but that they

may require deep circuits with high fidelity, a requirement incompatible with current noisy

intermediate-scale quantum (NISQ) devices.32 Several low-depth quantum-classical hy-

brid algorithms have been developed for NISQ hardware. These algorithms prepare and

measure properties of many-body states on a quantum device, but they store and optimize

the parameters that define such states on a classical computer. The variational quantum

eigensolver (VQE) approach33–36 has been used in several landmark experiments, demon-

strating quantum calculations on non-trivial molecular systems.3, 37–41 In VQE, the ground

state is approximated by a normalized trial state
∣∣Ψ̃
〉
= Û(t) |Φ0〉, in which the unitary op-

erator Û(t) depends on the parameter vector t and Φ0 is (usually) an unentangled reference

state. The VQE energy (EVQE) is then obtained by minimization of the trial state energy

expectation value as

EVQE = min
t
〈Φ0|Û†(t)ĤÛ(t) |Φ0〉 . (4.1)

The VQE scheme employs an optimization algorithm running on a classical computer to

minimize the energy expectation value, with all inputs (energy/gradients) being evaluated

with the help of a quantum computer. An important advantage of VQE over classical many-

body methods is the ability to use trial states that cannot be represented efficiently on a

classical computer. VQE was initially implemented with an exponential operator ansatz in-

spired by unitary coupled-cluster (UCC) theory,42–48 but has more recently been extended

to hardware-efficient3 and qubit-space49 UCC variants as well. We exclusively use the

abbreviation UCC to refer to unitary coupled-cluster theory, and not unrestricted formula-

tions of conventional coupled-cluster methods,50 which historically share this abbreviation.

Other promising hybrid approaches include quantum imaginary time evolution,51, 52 and

quantum subspace diagonalization techniques.51, 53–56

Despite the indisputable importance of VQE in the field of quantum simulation, there

are a few drawbacks that make its practical application challenging to large-scale prob-
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lems. One such issue is the slow convergence of VQE due to noise in the measured energy

and gradients, and the large-scale nonlinear nature of the optimization problem. These

issues are compounded by the sizable number of total measurements needed for opera-

tor averaging.57 Another challenge is the potentially large number of classical parameters

and resulting circuit depth necessary to predict sufficiently accurate energies. These two

problems are likely exacerbated in systems with strongly correlated electrons.

Progress addressing these deficiencies of VQE has been made on several fronts.

For example, grouping commuting Pauli operators,3, 35, 58–60 utilizing integral factoriza-

tion strategies,61 and employing alternative bases29, 62 have been shown to reduce the

number of measurements needed for operator averaging. Concurrently, computationally

feasible approaches for measuring analytical gradients with quantum devices using the

parameter-shift rule,63 or its recent lower-cost variant,64 have allowed gradient-based

VQE to become potentially realizable on NISQ hardware. Other advances, of particular

importance to this work, include VQE ansätze constructed iteratively, as done in the

adaptive derivative-assembled pseudo-Trotterized VQE36 (ADAPT-VQE) and the iterative

qubit coupled-cluster65 (iQCC) methods. The primary advantage of ADAPT-VQE and

iQCC is their ability to produce compact ansätze that result in fewer classical parameters,

and shallower quantum circuits than those from UCC truncated to a given particle-hole

rank. However, these advantages come at the cost of a greater number of energy and

gradient evaluations for optimizing and selecting new unitary operators. Investigating

more efficient ways to select important operators is an ongoing area of research.66, 67

In this work, we present an alternative to VQE for optimizing the amplitudes of a fac-

torized form of the UCC ansatz (often referred to as Trotterized35 or quantum68 UCC),

given by a product of exponential operators rather than the exponential of a sum of op-

erators. We refer to this ansatz as disentangled UCC (UCC)—a terminology borrowed

from the field of Lie theory—to reflect the fact that it is not an approximation of UCC.69

Inspired by the projective approach used in classical coupled-cluster theory,10, 15 we pro-
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pose an alternative trial state optimization algorithm that we deem the projective quantum

eigensolver (PQE). PQE does not rely on variational minimization and therefore does not

require evaluation of the energy gradients. Instead, PQE requires only the evaluation of

residuals, that is, projections of the Schrödinger equations onto a linearly independent ba-

sis. As shown in this paper, residuals may be easily measured on NISQ devices with similar

or fewer measurements than analytical gradients, and require quantum circuits that contain

only one additional exponential term. We also propose a new selection scheme for identify-

ing important operators based on the residual vector. This selected variant of PQE (SPQE)

requires no pre-defined operator pool and employs only a small number of measurements to

identify important operators. To demonstrate the practical advantages of PQE, we perform

a comparison of VQE and PQE using a fixed UCC ansatz for several molecular systems in

the regime of weak and strong correlation, also considering the effect of stochastic noise.

Finally, we compare SPQE against the ADAPT-VQE approach, selected configuration in-

teraction, and the density matrix renormalization group.

4.2 Theory

4.2.1 The projective quantum eigensolver approach

In this work, we propose to obtain the ground state of a general many-body system

using a projective approach. Like in VQE, we approximate the ground state using a trial

state
∣∣Ψ̃(t)

〉
= Û(t) |Φ0〉. After inserting the definition of the trial state in the Schrödinger

equation and left-multiplying by Û†(t), we obtain the condition

Û†(t)ĤÛ(t) |Φ0〉= E |Φ0〉 . (4.2)

Projection onto the reference state Φ0 yields the PQE energy (EPQE)

EPQE(t) = 〈Φ0|Û†(t)ĤÛ(t) |Φ0〉 , (4.3)
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a quantity that is still an upper bound to the exact ground state energy. Projections onto

the complete set of orthonormal many-body basis functions complementary to Φ0, here

denoted as Q = {Φµ}, yields a set of residual conditions

rµ(t)≡
〈
Φµ

∣∣Û†(t)ĤÛ(t) |Φ0〉= 0 ∀Φµ ∈ Q, (4.4)

where rµ is an element of the residual vector and µ runs over all elements of the many-body

basis. Eqs. (4.3) and (5.20) form a system of nonlinear equations in the parameter vector t,

that may be solved via a classical iterative solver. For an approximate ansatz with number

of parameters less than the dimension of the Q space, Eq. (5.20) can be enforced only for a

subset of the residuals. Then, the complete projection space Q can be partitioned into two

sets: i) R, the space of basis functions Φµ for which rµ = 0 is enforced, and ii) S = Q \R

the complementary space for which rµ may not be null.

Figure 4.1 illustrates the connection between the PQE residual condition and the uncer-

tainty in the ground-state energy estimated via Eq. (4.3). By the Gershgorin circle theorem,

the difference between the exact (E) and the PQE (EPQE) ground-state energy, |EPQE−E|,

is bound by the radius ρ = ∑µ 6=0 |rµ |, where µ runs over the entire many-body basis, ex-

cluding the reference determinant. Therefore, when the residual is null (ρ = 0), the PQE

energy is exact. When the PQE equation is satisfied only by a subset of the many-body

basis—as in the case of an approximate trial state—the error |EPQE−E| is bound by the

sum of the absolute value of the residual elements |rν | with Φν ∈ S, for which the PQE

equation is not satisfied.

Note that the residual condition [Eq. (5.20)] is satisfied by any eigenstate, and the Ger-

shgorin circle theorem error bound applies also to excited states. A potential disadvantage

is that PQE could converge on an excited state (an issue we did not experience in this

study). However, this feature could be used to formulate excited state algorithms based on

PQE, which use the residual condition as a criterion for convergence and do not require

costly measurement of the variance, as is commonly done in VQE.35
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(b) Residual vector

(a) Transformed
Hamiltonian

(c) Error bound
(Gershgorin circle theorem)

Projection
space (R)

Projection
space

complement (S)

Figure 4.1: Connection between the norm of the PQE residual and the energy error via
the Gershgorin circle theorem. (a) Structure of the transformed Hamiltonian in the basis
of orthogonal states {Φµ}. (b) The residual vector is the first column of the transformed
Hamiltonian matrix (first element excluded). (c) The difference between the approximate
ground-state PQE energy (EPQE) and the exact eigenvalue (E) is bound by the radius ρ ,
which is equal to the 1-norm of the residual vector. The part of rµ that corresponds to
states in the projection manifold R is null for the PQE solution, while elements involving
projections on the space S = Q\R is generally nonzero and determines the value of ρ .

The PQE is a general approach, however, in the following, we will focus on its ap-

plications to interacting fermions using a disentangled (factorized) form of the unitary

coupled-cluster ansatz. We assume that our system is described by the general two-body

Hamiltonian

Ĥ = ∑
pq

hpqâ†
pâq +

1
4 ∑

pqrs
vpqrsâ†

pâ†
qâsâr, (4.5)

where âp (â†
q) is a fermionic annihilation (creation) operator, while hpq and vpqrs are one-

electron and antisymmetrized two-electron integrals, respectively.70

4.2.2 Traditional and disentangled unitary coupled-cluster ansätze

In UCC, the reference state is an easily-prepared single determinant |Φ0〉= |ψ1ψ2 · · ·〉

specified by the occupied spin orbitals {ψi}. A UCC unitary is parameterized using a pool

of anti-Hermitian operators P = {κ̂µ : µ = 1, . . . ,Npool
op }. A generic anti-Hermitian opera-

tor κ̂µ = τ̂µ − τ̂
†
µ is defined in terms of the particle-hole excitation operators τ̂µ ≡ τ̂ab···

i j··· =
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â†
aâ†

b · · · â jâi. Note that we have re-interpreted µ as the multi-index µ ≡ ((i, j, ..),(a,b, ..))

of unique excitations from hole/occupied (ψiψ j · · · ) to particle/unoccupied (ψaψb · · · ) spin

orbitals. Using this parameterization, when a cluster operator κ̂µ acts on the reference, it

generates elements of the many-body basis (excited determinants) of the form

∣∣Φµ

〉
= κ̂µ |Φ0〉=

∣∣∣Φab···
i j···
〉
, (4.6)

and since in the case of a UCC (or dUCC) ansatz there is a 1-to-1 correspondence between

operators and determinants, we may label them with the same index. Note that this operator

basis satisfies the orthonormality condition 〈Φ0| κ̂†
µ κ̂ν |Φ0〉=

〈
Φµ |Φν

∣∣Φµ |Φν

〉
= δµν .

In traditional UCC,42–46 the wave function is generated by an exponential operator

Û(t) = eσ̂ = e∑µ tµ κ̂µ , (4.7)

assuming the cluster amplitudes tµ are real. In principle it is possible to construct a circuit

that exactly implements the action of the UCC operator defined in Eq. (4.7), but in practice

it is common to use a unitary with a simpler, and shallower, circuit. This is frequently

accomplished using a factorized (disentangled) form of the UCC ansatz

Û(t) = ∏
µ

etµ κ̂µ . (4.8)

Because the operators κ̂µ do not commute, an ansatz of the disentangled form is

uniquely defined by an ordered set (or subset) of operators A = (κ̂µi : i = 1, . . . ,Nop) built

from the operator pool P . The operators in A are then used to form an ordered product

of exponential unitaries

Û(t) = etµ1 κ̂µ1 etµ2 κ̂µ2 · · ·etµNop
κ̂µNop , (4.9)

where tµi is the amplitude corresponding to the operator κ̂µi .

The disentangled UCC ansatz may be viewed as a first-order Suzuki–Trotter approxi-

mation to UCC; however, it was recently shown69 that this ansatz is substantially different
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from the one used in conventional UCC [Eq. (4.7)] as discussed in the electronic struc-

ture literature.42–46 An arbitrary quantum state can always be represented in the form of

Eq. (4.9) using particle-hole excitation/de-excitation operators.69 However, even when a

full operator pool (containing up to N-body particle/hole excitations) is considered, only

certain operator orderings A can represent any quantum state. Nevertheless, orderings that

do not satisfy this condition can exactly represent states that are close to the reference. In

this work we assume that all operators appear at most once in A , but the more general case

in which A contains repetitions has also been considered in other contexts.36, 71

For PQE formulated using a UCC or dUCC trial state, it is possible to show (see Ap-

pendix 4.5.1) that for an exact ansatz the residual condition [Eq. (5.20)] and the VQE

energy stationarity condition (∂EVQE/∂ tµ = 0) are equivalent. However, for an approxi-

mate ansatz we find that the gradient of the PQE energy contains a contribution due to the

nonzero residual elements corresponding to the subspace S:

∂EPQE(t)
∂ tµ

= 2Re ∑
Φν∈S

r∗ν 〈Φν |Û†(t)
∂Û(t)

∂ tµ
|Φ0〉 . (4.10)

Suppose that R is chosen to be the space of single and double excitations and S its comple-

ment. Then this result shows that even if rµ = 0 for all singles and doubles, the gradient of

EPQE with respect to singles and doubles may not be zero because residuals rν correspond-

ing to triple and higher excitations and the term 〈Φ0|Û†(t)∂Û(t)/∂ tµ |Φν〉 are generally

not null. Therefore, PQE and VQE energies obtained from approximate ansätze will be

different.

We note that the combination of PQE and dUCC produces energies that are additive

for non-interacting fragments (size consistent) when using a localized basis. This property

follows from the fact that dUCC excitation operators for non-interacting fragments act only

on orbitals localized on each fragment, and therefore, commute. Consequently, the dUCC

wave function is multiplicatively separable (as long as the order of the operators within a

fragment is preserved). We have verified numerically that dUCC with singles and doubles



CHAPTER 4. SIMULATING MANY-BODY SYSTEMS WITH A PROJECTIVE
QUANTUM EIGENSOLVER 140

trial states optimized with PQE energy are size consistent by performing calculations on

H4 + H2 separated at a 1000 Å and verified to within numerical convergence (10−10 Eh)

that the energy is additive in the fragments.

4.2.3 Numerical solution of the UCC-PQE amplitude equation

To realize the PQE scheme on a quantum computer, the reference state, the Hamilto-

nian, and the unitary must be represented in a qubit basis via a fermionic mapping. After

such a transformation, the Hamiltonian is a sum of the form Ĥ = ∑` h`Ô`, where h` is an

electron integral multiplied by a coefficient and Ô` = ∏i σ̂
q`i
j`i

is a unique product of σ̂x, σ̂y,

or σ̂z Pauli operators acting on qubits q`i . Similarly, each term in the unitary exp
(
tµ κ̂µ

)

may be implemented using a combination of one- and two-qubit operators following stan-

dard approaches.33–35

To solve the PQE equations we measure the residuals corresponding to the operators

contained in A on a quantum computer and update the parameter vector using a simple

quasi-Newton iteration approach

t(n+1)
µ = t(n)µ +

r(n)µ

∆µ

, (4.11)

where the superscript “(n)” indicates the amplitude at iteration n. The quantities ∆µ are

standard Møller–Plesset denominators ∆µ ≡ ∆ab···
i j··· = εi + ε j + . . .− εa− εb . . . where εi are

Hartree–Fock orbital energies. This update equation is derived in Appendix 4.5.2 using

Newton’s method and taking the leading contributions to the Jacobian to be the diagonal

elements of the Fock operator.72 It is further assumed that the amplitudes are small, so that

the Jacobian can be approximated by terms linear in the operators κ̂µ and issues with non-

commuting operators are avoided. Therefore, convergence of this quasi-Newton scheme is

not mathematically guaranteed if one or more amplitudes are large.

We found it useful to improve numerical stability and speed up convergence of the

PQE equations, to combine amplitude updates via Eq. (5.23) with the direct inversion of
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the iterative subspace (DIIS) convergence accelerator algorithm.73

It is important to note that the current formulation of PQE is compatible with any ansatz

such that the metric matrix

Sµiµ j = 〈Φ0| κ̂†
µi

κ̂µ j |Φ0〉 , ∀κ̂µi, κ̂µ j ∈A (4.12)

is the identity. In more general cases (e.g., when Sµiµ j is non-diagonal or singular), the

PQE formalism requires a generalization of the amplitude update equations or the use of

residual norm minimization instead of Eq. (5.20). These variants of PQE would allow

one to consider ansätze that contain repeated operators in A , employ general many-body

operators, or a basis of qubit operators. These extensions go beyond the scope of this work

and will be considered in future studies.

There are two advantages to the combination of the PQE and UCC described above.

Firstly, as we will show in the following subsection, one element of the residual vector

(rµ ) can be evaluated with essentially the same resources required to measure the energy

in VQE. Secondly, the magnitude of the residuals provides an indication of the importance

of an excitation operator κ̂µ , which in turn may be used to define a selection procedure to

form the sequence of unitiaries that enter in Û(t). The next two subsections describe these

two points in detail.

4.2.4 Efficient measurement of the residual elements

For a trial state built from the ordered pool A , the number of the residual elements that

must be measured is equal to the size of the pool |A |. The PQE residuals can be expressed

as the off-diagonal matrix elements of the operator H̄ = Û†(t)ĤÛ(t) as rµ =
〈
Φµ

∣∣ H̄ |Φ0〉

(we use this notation throughout the paper, but we note that we never explicitly form the

operator H̄ on a classical computer). Then, in principle, the residuals can be measured on a

quantum computer using a variant of the Hadamard test,74 but we have found an ancilla-free

procedure in which these matrix elements are computed by measuring diagonal quantities.
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Acting on the reference with the operator eθκ̂µ yields the state

∣∣Ωµ(θ)
〉
= eθκ̂µ |Φ0〉= cos(θ) |Φ0〉+ sin(θ)

∣∣Φµ

〉
, (4.13)

noting that the above expression is valid because κ̂µ |Φ0〉 =
∣∣Φµ

〉
and κ̂2

µ |Φ0〉 = −|Φ0〉

(see also47, 48). Taking the expectation value of the similarity transformed Hamiltonian

with respect to Ωµ(θ) using θ = π/4, and using the fact that the wave function is real,

leads to the following equation for the residual elements

rµ =
〈
Ωµ(π/4)

∣∣ H̄
∣∣Ωµ(π/4)

〉
− 1

2
Eµ −

1
2

E0, (4.14)

where E0 = 〈Φ0| H̄ |Φ0〉 and Eµ =
〈
Φµ

∣∣ H̄
∣∣Φµ

〉
. All of these quantities are expectation

values of H̄ with respect to reference states that are easily generated with short quantum

circuits. The evaluation of the exact residual via Eq. (4.14) has a cost similar to the evalu-

ation of exact gradients in VQE via the shift rule.63, 64

4.2.5 Efficient operator selection

In this section, we generalize the PQE method to utilize a flexible dUCC ansatz built

iteratively using a full operator pool. As shown in the case of VQE,36, 65 significantly

more compact and flexible approximations may be achieved if the operators that define the

unitary are selected according to an importance criterion. To formulate a selected version of

the PQE approach, we propose to combine information about the residual with a cumulative

importance criterion. Since the residuals rµ are zero if the trial state is an exact eigenstate

of the Hamiltonian, we propose to estimate the importance of the operators κ̂µ using the

magnitude of the residual (|rµ |). However, instead of evaluating the importance of all the

operators in the pool via operator averaging (like in gradient-based selection schemes36, 65),

we propose to sample a quantum state whose probability amplitudes encode the importance

of all operators up to rank N.

Suppose that we have determined a unitary Û that satisfies the residual condition rµ = 0
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for all κ̂µ in the current ordered set A . In our approach we prepare a (normalized) quantum

state of the form |r̃〉 = r̃0 |Φ0〉+∑µ r̃µ

∣∣Φµ

〉
, where the quantities r̃µ are approximately

proportional to the residuals rµ . When the state |r̃〉 is represented in a qubit basis, there

is a one-to-one mapping between elements of the computational basis and the states Φµ .

Therefore, a measurement of the state |r̃〉 in the qubit basis will yield one of the states

Φµ with probability Pµ = |r̃µ |2. Repeated measurement of the state |r̃〉 provides a way to

approximately determine the elements of the residual rµ with the largest magnitude, and

the corresponding operators κ̂µ that should be included in the unitary. When this strategy is

combined with an efficient way to prepare the state |r̃〉, it is much more cost effective than

evaluating all the elements of rµ not included in A via operator averaging [Eq. (4.14)].

Construction of the state |r̃〉 would require one to apply the Hamiltonian, which is not a

unitary operator. Therefore, we evaluate r̃ using the unitary operator e−i∆tĤ = 1− i∆tĤ +

O(∆t2) instead of Ĥ. By choosing a small time step, we can ensure that the nonlinear terms

and errors due to the approximate implementation of e−i∆tĤ (e.g., via Trotterization) do not

affect the residual to leading order in ∆t. The residual state can then be defined as

|r̃〉= Û†ei∆tĤÛ |Φ0〉

= (1+ i∆tÛ†ĤÛ) |Φ0〉+O(∆t2),
(4.15)

The time-evolution operator may be approximated via Trotterization25, 26 in combina-

tion with low-rank representations of the Hamiltonian.75 With a sufficiently large number

of measurements M of the state |r̃〉, we may approximate the values of the (normalized)

squared residuals as
∥∥r̃µ

∥∥≈ Nµ

M
, (4.16)

where Nµ is the number of times the state
∣∣Φµ

〉
is measured. Encoding the residual in a

single quantum state allows us to efficiently sample the entire operator pool without the

need to generate and store individual elements of the residual vector in memory. This

distinctive feature makes it possible to employ SPQE with a full operator pool that includes
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particle-hole excitation/de-excitation operators of arbitrary order.

To select important operators, we adopt a cumulative threshold approach that allows

us to add a batch of operators at a time. Our goal is to iteratively construct a unitary that

contains the fewest operators. This is realized in SPQE with a selection procedure that

adds the operators with the largest value of r̃µ to A (as motivated by the Gershgorin circle

theorem bounds discussed in Sec. 4.2.1), and excludes all other operators in such a way

that sum of their residuals squared is less than a threshold Ω2. Specifically, we enforce that

excluded

∑
κ̂µ /∈A

∥∥rµ

∥∥≈
excluded

∑
κ̂µ /∈A

∥∥r̃µ

∥∥
∆t2 ≤Ω

2, (4.17)

where we have used the fact that |r̃µ | ≈ ∆t|rµ |. In practice, we sort the operators in as-

cending order according to
∥∥r̃µ

∥∥, and starting from the first element, we discard operators

until Eq. (5.26) is satisfied. The remaining operators are appended to the end of A in or-

der of decreasing
∥∥r̃µ

∥∥. The resulting operator ordering is consistent with the following

renormalization transformation of the Hamiltonian

Ĥ→ e−tµ1 κ̂µ1 Ĥetµ1 = H̄1

→ e−tµ2 κ̂µ2 H̄1etµ2 κ̂µ2 = H̄2

→ ···

(4.18)

which begins with the largest many-body rotation and gradually continues with smaller

ones. Note that this ordering is the reverse of the one used in ADAPT-VQE and iQCC,

where operators with the largest gradient are applied first to the reference. In applications of

SPQE, we found that our operator ordering is more numerically robust and accurate than its

reverse. This selection procedure is easily integrated in the PQE algorithm by performing

a series of computations with increasingly larger ordered sets. When no new operators are

added to A , the computation is considered converged, and the final operator set satisfies

Eq. (5.26). The details of the selected PQE algorithm are discussed in Sec. 4.2.6.

Throughout this work, we ignore errors that arise from finite measurement of the ap-

proximate residual |r̃〉. However, since operator selection only requires an approximate
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determination of the residual magnitudes, it is not necessary to perform a large number of

measurements. Indeed, in Appendix 4.5.5, we discuss a simple strategy based on sampling

|r̃〉 a fixed number of times that can reproduce the results presented here.

4.2.6 Outline of the selected PQE algorithm

1. Initialize

2. Importance selection
Macro-iterations (k)

Micro-iterations (n)
3. Solution of the PQE equations

4. End

Measure state in the
computational basisPrepare

approximate
residual state

Update
macro-iteration

counter

Estimate
important
excitations

... ...

Update amplitudes

Compute PQE residual

Add new
operators to

the pool

Cannot
add new
operators

Test micro-iteration
convergence

Return
converged
energy and

stateQPU

QPU

QPU

Figure 4.2: Outline of the adaptive PQE algorithm. Steps labeled “QPU” indicate parts of
the algorithm that run on a quantum processing unit.

The combination of the PQE approach with the selection procedure described in

Sec. 4.2.5 leads to a very efficient flexible ansatz quantum algorithm, which we refer

to as selected PQE (SPQE). Finding the optimal selected PQE solution requires the

simultaneous solution of the residual conditions and the selection of important excitation

operators. To realize this scheme, we employ a procedure that alternates micro-iterations to

converge the residual equations (for the current ordered operator set) with macro-iterations

that perform importance selection of new operators. This procedure is illustrated in

Fig. 4.2 and consists of the following steps:

1. Initialization. The user provides the occupation numbers that define the reference

state Φ0. The procedure starts at macro-iteration number k = 0 with an empty oper-

ator set (A (0) = {}).

2. Importance selection. At macro-iteration k, perform M measurements in the com-
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putational basis for the the state
∣∣∣r̃(k)

〉
= Û (k)†ei∆tĤÛ (k) |Φ0〉. The number of times

the state Φµ is measured is accumulated in the variable Nµ . These numbers are con-

verted to estimates of the square residuals via Eq. (5.25), which are in turn used to

select important excitations not included in the current pool Ak. The current operator

set Ak and all the new selected operators are included in the new set Ak+1. When

forming this new ordered set, we append the new operators—sorted in decreasing

value of the approximate squared residual—to Ak. If the sum in Eq. (5.26) over all

approximate residuals is less than the threshold Ω2, such that no new operators are

added, then return the final energy.

3. Solution of the PQE equations. Using the new set Ak+1, solve the PQE equations

via quasi-Newton micro-iterations. These micro-iterations alternate the evaluation of

the residuals [Eq. (5.20)] and the amplitude update [Eq. (5.23)]. The micro-iterations

are considered converged when the norm of the residual vector ‖r‖ is less than a

user specified threshold ωr. Once converged, this step produces a new set of ampli-

tudes [t(k+1)] and the corresponding unitary [Û (k+1)], as well as the updated energy

[E(k+1)]. Increase the macro-iteration number by one (k← k+1) and go to Step 2.

All VQE and PQE methodologies were implemented in a development branch of the

open source package QFORTE , and utilize its state–vector simulator. All VQE calculations

use a micro-iteration convergence threshold ωg = 10−5 Eh for the gradient norm ‖g‖ and

all PQE calculations use a micro-iteration threshold ωr = 10−5 Eh for the residual norm

‖r‖. Note that when the κ̂µ operators are mapped to a qubit basis they can be expressed as

a sum of Pauli operator strings that commute,76 and therefore, a single operator etµ κ̂µ can

be implemented exactly as a product of exponentials without invoking the Trotter approxi-

mation.
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4.3 Results and Discussion

4.3.1 Comparison of PQE and VQE with a disentangled UCC ansatz
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Figure 4.3: dUCCSD energy convergence for linear H4–H10 chains in a STO-6G basis at (a)
rH−H = 0.75 Å, and (b) rH−H = 1.50 Å. |E(n)−E(n−1)| is the absolute value of the energy
change between subsequent iterations. Both plots compare PQE vs. VQE convergence with
respect to number of residual (for PQE) or gradient (for VQE) evaluations (Nres/grad).

Our initial goal is to compare the performance of PQE and VQE using a unitary

coupled-cluster trial state truncated at a given particle-hole excitation level. We test these

two methods on a family of linear hydrogen chains (with identical nearest-neighbor dis-

tance) ranging from four to ten atoms, both near their equilibrium geometries (rH-H = 0.75

Å) and stretched geometries (rH-H = 1.5 Å). Hydrogen models such as these have been

studied experimentally with VQE77 and have recently been used as a benchmark for both

quantum36, 55 and classical78–80 algorithms.

Figure 4.3 shows the energy convergence of PQE and VQE using a disentangled

UCC ansatz with singles and doubles (dUCCSD). All calculations employed restricted

Hartree-Fock (RHF) orbitals from the quantum chemistry package PSI4,81 and Pauli-

operator Hamiltonians obtained via the Jordan–Wigner transformation implemented in

QFORTE.82 To achieve optimal performance for both VQE and PQE, we employ the

Broyden–Fletcher–Goldfarb–Shannon (BFGS) algorithm83–86 (as implemented in the

SCIPY87 scientific computing library) with analytical gradients for VQE, and DIIS73 to
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accelerate amplitude convergence of PQE. These computations use the same operator

ordering for both approaches, with all amplitudes initialized to zero. The ordering of

the operators etµi κ̂µi entering Eq. (4.9) is defined by the binary representation of the

corresponding determinants
∣∣Φµi

〉
= τ̂µi |Φ0〉 in the occupation number representation.

Because the disentangled UCCSD state cannot exactly parameterize an eigenstate of

the Hamiltonian, the numerically converged PQE and VQE energies are not identical.

Nevertheless, for all the cases we examined the converged PQE and VQE energies differ

by less than 10−6 Eh.

Near the equilibrium geometry, we find that the PQE energy converges significantly

faster than the VQE energy with number of residual vs. gradient evaluations, respectively.

For example, to converge the near-equilibrium H10 energy to 10−6 Eh, PQE requires only

seven residual evaluations, while VQE requires approximately 23 gradient evaluations. In

the case of VQE, we also observe that the number of required gradient evaluations grows

with system size, with H10 taking twice as many gradient vector evaluations than H4 to

converge. On the contrary, PQE computations converge with similar speed for all equilib-

rium hydrogen systems. Plots of the energy change vs. the norm of the residual/gradient

vector show similar trends and are reported in Appendix 4.5.3.

At the stretched geometry, strong correlation effects cause the disentangled UCCSD

trial state to perform more poorly with both PQE and VQE, yielding energy errors that

range from 1.39 mEh (for H4) to 13.59 mEh (for H10). We see that PQE converges slightly

more slowly in the stronger correlation regime, with stretched H10 requiring 13 residual

evaluations (instead of seven) to converge the energy to 10−6 Eh. However, PQE always

converges faster than VQE, with the latter requiring 19 gradient-vector evaluations to con-

verge stretched H10 to the same accuracy level. We also find similar trends in PQE and

VQE convergence for BeH2, for which convergence data can be found in Appendix 4.5.3.

In summary, this initial set of results suggests that for a given trial state, optimization

via PQE is faster than VQE and less dependent on the number of parameters to optimize.
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We expect this to be the case also for VQE based on numerical gradients or gradient-free

optimization methods, since these two variants are known to be slower compared to the the

BFGS approach adopted here.76

4.3.2 Effect of stochastic errors on the convergence of PQE and VQE
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Figure 4.4: Energy and residual/gradient norm (‖r‖)/(‖g‖) convergence of dUCCSDTQ
wave functions optimized with PQE/VQE with various amounts of stochastic noise added
to the residuals/gradients. Energy error is relative to FCI. σ controls the degree of noise and
is the standard deviation of the normal distribution, centered at the exact residual/gradient
value, from which all residuals/gradients used in the calculations are randomly sampled
[see Eq. (4.19)]. Values at each PQE/VQE iteration are averages over 50 runs on H4 at
rH−H = 1.0 Å. Error bars denote one standard deviation.
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The results presented in the previous section assumed error-free quantum gates and

arbitrarily precise measurements. However, in practice calculations performed on NISQ

hardware are affected by decoherence errors, poor gate fidelity, readout errors, and loss

of precision due to insufficient measurements. These sources of error will lead to incor-

rect gradients and residuals that are then passed to a classical optimizer. Therefore, it is

interesting to compare the resilience of PQE and VQE procedures when the residuals and

gradients are affected by stochastic errors.

To model the presence of errors, we modify the PQE procedure by adding to the residual

vector a stochastic error sampled from a Gaussian distribution with standard deviation σ

[N (0,σ2)]

rmeasured
µ = rµ +N (0,σ2). (4.19)

For VQE, we similarly add stochastic noise to the exact energy gradients. Using Eq. (4.19)

as a noise model mainly emulates errors that arise from finite measurement. Because the

inexact residuals rmeasured
µ are used to update the cluster amplitudes via Eq. (5.23), this noise

model also gives rise to control errors, or errors that refer to the difference between the

unitiaries for noiseless updated amplitudes Û(t) and noisy updated amplitudes Û(t+∆t).

Control errors due to finite measurement have been modeled this way in previous studies76

and will always propagate through optimization on physical hardware. We note, however,

that using Eq. (4.19) exclusively as a noise model is insufficient to capture more nuanced

or device-specific errors such as decoherence. We tested the performance of PQE and VQE

under noise by performing a batch of 50 computations on the linear H4 molecule with

nearest-neighbor distance set to 1.0 Å. We use the disentangled UCC ansatz with up to

quadruple excitations, which spans the full operator set for this system.

Figure 4.4 shows a comparison of PQE and VQE optimized with various levels of

noise, controlled by the magnitude of σ in Eq. (4.19). We find that for all values of σ > 0,

the energy convergence of PQE is essentially identical to that of noiseless PQE until some

point, after which the energy error hovers around a finite error. Similar behavior can be seen
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for convergence of the residual vector. We find that VQE has similar characteristics to PQE

in the presence of noise, but that it is able to achieve slightly more accurate energies for a

given σ value. For a given level of noise, however, VQE generally requires two to three

times the number of gradient evaluations as the number of residual evaluations required by

PQE. An important aspect of this comparison is that for a given value of σ both the residual

and gradient vectors yield comparable asymptotic errors in PQE and VQE, respectively.

Conversely, PQE and VQE computations of the comparable energy accuracy require similar

precision in the measurement of the residual and gradient vectors. In Appendix 4.5.4 we

use this result to estimate the relative cost of PQE and VQE via a formal analysis.

4.3.3 Selected PQE based on a full dUCC operator pool

Here we compare the results of selected PQE (SPQE) with an arbitrary order particle-

hole operator pool, and ADAPT-VQE, which unless otherwise noted, uses a generalized

singles and doubles pool (containing operators of the form â†
pâq and â†

pâ†
qâsâr, where the

indices p,q,r,s run over all spin orbitals). To test these methods, we compute the energy as

a function of bond distances for: 1) the symmetric dissociation of the linear BeH2 molecule

and 2) the symmetric dissociation of a chain of six hydrogen atoms. In both cases, as

the bond length increases there is a corresponding build up of strong correlation effects.

For each system, we report two sets of results for SPQE using the cumulative threshold

Ω = 10−1 and 10−2 Eh, and two sets of ADAPT-VQE results with gradient threshold 10−1

and 10−3 Eh (ε1 and ε3 in the original notation used by the authors). Since we later compare

these methods to classical approaches formulated in a determinant basis, we do not employ

a pool of spin-adapted operators.

The dissociation curve of BeH2 shown in Fig. 4.5 (a) demonstrates that both SPQE and

ADAPT-VQE are able to achieve significantly smaller energy errors than dUCCSD, while

using only 10–20 more parameters. Although the two approaches employ different selec-

tion schemes, the ADAPT-VQE(ε3) and SPQE(Ω = 10−2) approaches produce compact
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Figure 4.5: Ground state potential energy curve for the symmetric dissociation of (a) BeH2
and (b) H6 computed using a minimal (STO-6G) basis. The energy error relative to FCI
(top), number of classical parameters used (middle), and number of individual elements
of the gradient (for VQE) or residual (for PQE) evaluated (bottom) are given as a func-
tion of the Be–H and H–H bond length. Here, ADAPT-VQE uses a generalized singles
and doubles operator pool and is optimized with the BFGS algorithm, and gradient conver-
gence thresholds 10−1 (ε1) and 10−3 (ε3). SPQE results use macro-iteration convergence
thresholds Ω = 10−1 and 10−2. The top plots also show the energy error corresponding to
chemical accuracy, here defined as 1 kcal/mol ≈ 1.59 mEh.

trial states with a similar number of classical parameters and comparable errors. The same

trends are seen in symmetric dissociation curve of H6, which is shown in Fig. 4.5 (b). How-

ever, for this system we find that achieving sub-mEh accuracy—particularly with the onset

of strongly correlation at rH−H values greater than 1.5 Å, requires a number of parameters

that approaches the size of the full Hilbert space (200) for both ADAPT-VQE and SPQE.

The need to saturate Hilbert space to accurately describe H6 is likely due to how small
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this example is, and it speaks more to the ability of the trial states to produced compact

representations rather than the performance of these algorithms in optimizing such ansätze.

The most noticeable difference between SPQE and ADAPT-VQE can be seen in the bot-

tom panel of Fig. 4.5 (a)-(b): for trial states with comparable number of parameters, SPQE

requires significantly fewer residual element evaluations than gradient element evaluations

in ADAPT-VQE. For example, at a Be–H bond distance of 1.65 Å, both methods pro-

duce very similar energy errors using almost the same number of parameters, but ADAPT-

VQE(ε3) requires the evaluation of 35155 elements of the gradient, whereas SPQE(Ω =

10−2) requires only 1220 elements of the residual. Importantly, we note that the bottom

panels of Fig. 4.5 exclusively count the number of elements of the gradient or residual re-

quired by the optimization, and do not include the additional measurements required for

operator selection.

Table 4.1: Ground state of H6 computed using a minimal (STO-6G) basis with RHF orbital
convergence threshold of 10−10 Eh. Comparison of SPQE with threshold Ω and ADAPT-
VQE using the same number of parameters as SPQE. ADAPT-VQE results are computed
for both a generalized singles and doubles operator pool (GSD) and a particle hole singles
and doubles pool (SD). The properties reported are the energy error with respect to FCI
[∆E, in Eh ], the number of classical parameters used [Npar], the number of parameters
corresponding to three-body or higher excitations [NT+], the number of CNOT gates used
in the unitary [NCNOT] (not optimized), and the total number of residual or gradient element
evaluations [Nres or Ngrad]. r denotes the H-H nearest neighbor distance in Ångstrom.

SPQE (Ω = 10−1 Eh) ADAPT-VQE-GSD ADAPT-VQE-SD
r ∆E Npar NT+ NCNOT Nres ∆E Npar NCNOT Ngrad ∆E Npar NCNOT Ngrad

0.50 0.002153 30 0 2400 339 0.002152 30 2400 8378 0.002152 30 2400 8378
1.00 0.006050 32 0 2720 503 0.005872 32 2720 8399 0.005872 32 2720 8399
1.50 0.012487 36 0 2944 1103 0.011176 36 3040 8046 0.011176 36 3040 8046
2.00 0.015066 43 8 20272 1087 0.011204 43 3560 15176 0.010350 43 3312 12592

SPQE (Ω = 10−2 Eh) ADAPT-VQE-GSD ADAPT-VQE-SD
r ∆E Npar NT+ NCNOT Nres ∆E Npar NCNOT Ngrad ∆E Npar NCNOT Ngrad

0.50 0.000013 79 24 15568 1127 0.000012 79 6608 87506 0.000085 79 4608 29707
1.00 0.000031 105 46 33232 2076 0.000033 105 9244 166119 0.000064 105 8128 388182
1.50 0.000079 166 111 166032 6074 0.000004 166 14528 566143 0.000028 166 12576 1437917
2.00 0.000141 169 114 226768 9537 0.000018 169 14776 719390 0.000096 169 12944 1312127

Since ADAPT-VQE and SPQE select new operators from their pools using different

importance criteria, it is not possible to perform a direct comparison of their performance

using fixed thresholds. To facilitate this comparison, in Table 4.1 we report SPQE results
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using two values of Ω (10−1 and 10−2 Eh) together with ADAPT-VQE results obtained

using an ansatz with the same number of parameters as SPQE. We include ADAPT-VQE

results obtained using both a generalized singles and doubles operator pool (GSD), and

a particle-hole singles and doubles pool (SD). The results in Tab. 4.1 obtained with Ω =

10−1 Eh show SPQE and the two variants of ADAPT-VQE to perform equally well at all

bond distances. The second set of results obtained with a tighter threshold (Ω= 10−2) show

similar performance of the methods at short bond lengths, with two notable exceptions.

First, at rH−H = 2.0 Å ADAPT-VQE-GSD yields more accurate results than ADAPT-VQE-

SD and SPQE. At this point, the SPQE ansatz contains 55 singles and doubles, and 114

operators of higher rank, yielding an error of about 0.14 mEh, while ADAPT-VQE-GSD is

an order of magnitudes more accurate. Second, also at rH−H = 2.0 Å, SPQE uses only 9537

residual element evaluations, while ADAPT-VQE requires 719390 (GSD) and 1312127

(SD) gradient element evaluations. The evaluation of fewer residual elements in SQPE

will correspond to approximately the same savings in total number of measurements (see

Appendix 4.5.4).

A final important aspect to compare between SPQE and ADAPT-VQE is the number

of native CNOT gates, which we consider as a proxy for circuit depth. Tab. 4.1 reports the

number of CNOT gates for the converged trial states. These numbers overestimate the ac-

tual gate count since they ignore optimizations such as the cancellation of Jordan–Wigner

strings,88 especially for three- and higher-body operators. We see that at the larger thresh-

old values (Ω = 10−1 for SPQE and ε1 = 10−1 for ADAPT) the number of CNOTs for all

three approaches are relatively similar, and are generally within a factor of 2 of one an-

other. However, at tighter thresholds the SPQE circuit contains significantly more CNOT

gates than the one for ADAPT-VQE. For example, rH−H = 2.0 Å), 114 of the 169 opera-

tors used in SPQE are three-body or higher, while ADAPT-SD and ADAPT-GSD of course

only contain only up to two-body operators. Consequently, the SPQE(Ω = 10−2) circuit

contains more CNOT gates (226768) than ADAPT-VQE-GSD (14776). As discussed in
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Appendix 4.5.4, this large difference in CNOT count is due to the growth in cost to imple-

ment the exponential of n-body second-quantized operators as a function of n (and the lack

of circuit optimization). Nevertheless, it is important to note that the systems studied here

are not large enough to draw definitive conclusions about the relative performance of SPQE

and ADAPT-VQE. For example, the pool of generalized singles and doubles (GSD) for H6

contains 870 operators, a number significantly larger than the size of the full Hilbert space

(200). This scenario is unlike most systems of interest, where the number of generalized

singles and doubles is much less than the number of particle-hole operators. Unfortunately,

our attempts to compare numbers for systems larger than BeH2 and H6 were unsuccessful

due to the high computational cost of simulating ADAPT-VQE.

A second aspect we investigate, is the ability of the selected PQE approach to com-

pactly represent wave functions for systems displaying strong correlation effects, were

many-body methods commonly fail due to the breakdown of the mean-field approxima-

tion. We compare the performance of SPQE with ACI and DMRG using data generated in

our recent benchmark study of hydrogen systems.80 In this work, we characterize the re-

source requirements of a computational method X with the accuracy volume (VX ), defined

as the smallest number of parameters necessary to achieve a given energy error per electron

(here taken to be 10−4 Eh/electron). We consider three H10 model systems: a one dimen-

sional (1D) linear chain, a two dimensional (2D) triangular lattice and a three dimensional

(3D) close-packed pyramid. Using a minimal STO-6G basis and a 1 qubit to 1 spin-orbital

mapping, the 1D, 2D, and 3D H10 models are represented with 220 computational basis

states, but are restricted to 31752 and 15912, and 15912 determinants, respectively, after

accounting for spin and Abelian point–group symmetries.

Figure 4.6 (a) displays the SPQE, ACI, and DMRG energy error as a function of clas-

sical variational parameters for the 1D H10 system at a stretched bond length of rH−H =

1.50 Å. DMRG, which is ideally suited to simulate gapped 1D systems, affords the most

compact wave function for the 1D chain, with an accuracy volume of only 176 variational
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parameters (V 1D
DMRG = 176). The SPQE exponential ansatz is less compact than the DMRG

matrix product state, with an accuracy volume V 1D
SPQE = 3510 parameters. We observe that

the ACI wave function—a linear ansatz built by selecting the determinants with the largest

energy contributions—gives the least compact representation, such that V 1D
ACI = 22989 at

the same level of accuracy. When the ACI energy is augmented with a second-order per-

turbative correction—which accounts for determinants excluded from the wave-function

expansion—a more compact ansatz is sufficient to achieve an energy error of 10−3 Eh.

This suggests that it might be valuable to formulate a classical perturbative correction to

the SPQE energy to help capture even more correlation energy.

Results for the 2D H10 lattice [Fig. 4.6 (b)] show that SPQE yields a more compact

representation than DMRG or ACI until an energy error of approximately 1 mEh. For the

2D system the accuracy volume follows the order SPQE (4193) ≈ DMRG (4218) < ACI

(11122). We see however, that at energy errors less than 1 mEh DMRG still affords the most

compact representation for the 2D system. Finally, for the 3D H10 pyramid lattice shown in

Fig. 4.6 (c), we find that DMRG yields the most compact representation (V 3D
DMRG = 3549),

but not nearly by the same margin as for the 1D system. Again, we see that SPQE has a

significantly more compact wave function than ACI such that V 3D
SPQE = 5544 and V 3D

ACI =

10519. While further investigation of larger strongly–correlated systems will be necessary,

it is encouraging to see that SPQE performs similarly to or better than two state-of-the-art

classical methodologies when applied to the 2D and 3D H10 systems.

We have also included in Fig. 4.6 energy errors, with respect to the number of cluster

amplitudes, for several classical coupled-cluster variants. Specifically we have included

benchmark results from Ref.80 for CC with singles and doubles excitations89 (CCSD),

CCSD with perturbative triples90 [CCSD(T)], and the completely renormalized CC with

perturbative triples12 [CRCC(2,3)]. These CC methods are (generally) more computa-

tionally affordable than the other methods. In the 2D and 3D systems, CCSD performs

comparably to dUCC-SQPE (with the same number of parameters), while CCSD(T) and
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CRCC(2,3) produce more accurate energies. However, all coupled-cluster energies are

more than 10 mEh off from the FCI energy. Fig. 4.6 also reports results computed using

Mukherjee MRCC with singles and doubles (Mk-MRCCSD)91, 92 and Mk-MRCCSD aug-

mented with perturbative triples [Mk-MRCCSD(T)]93 using an active space containing the

highest occupied and lowest unoccupied Hartree–Fock orbitals. The Mk-MRCC results

improve upon single-reference coupled-cluster methods at the cost of doubling the number

of cluster amplitudes. The Mk-MRCC methods are particularly accurate for the 1D system,

where they produce errors of the order of 2–3 mEh. Despite the improvement shown by the

multireference CC methods, it is important to note that these methods have a computational

cost that scales exponentially with the number of active space determinants.

4.4 Conclusions

In this work, we present a new NISQ-friendly algorithm—the projective quantum

eigensolver (PQE)—to compute the ground state of a many-body problem using disen-

tangled (factorized) unitary coupled-cluster trial states. The PQE approach consists of a

nonlinear optimization problem whose solution requires the evaluation of projections of

the Schrödinger equation onto a many-body basis (residual vector) but still gives energies

that are a variational upper bound to the ground state energy. We show how to efficiently

evaluate the residual vector via measurement of simple expectation values, with a cost

that is twice that of an energy evaluation (per element). For small molecular systems,

we find that PQE and VQE with a fixed dUCCSD trial state converge to nearly identical

energies; however, the number of residual evaluations required by PQE is smaller than that

of the gradient evaluations needed by VQE. PQE shows similar resiliency as VQE and still

converges more rapidly in the presence of stochastic noise.

To treat strongly correlated electrons, we introduce a selected variant of PQE in which

the trial state is constructed iteratively by adding batches of important operators. The

resulting SPQE algorithm can construct efficient unitary circuits like ADAPT-VQE, but
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it requires orders of magnitude fewer residual element evaluations than gradient element

evaluations for the latter. In SPQE, the selection of new operators is done according to the

magnitude of the elements of the residual vector and is performed by sampling a quantum

state that directly encodes in its probability amplitudes the importance of the entire oper-

ator pool. Because the selection cost in SQPE is not affected by the size of the operator

pool, the unitary can include operators of rank up to the total number of particles.

Finally, we compare the energy convergence with the number of parameters for 1D,

2D, and 3D H10 lattices using SPQE and two classical methods well suited to treat strong

electronic correlation: the adaptive configuration interaction and the density matrix renor-

malization group. Given a target accuracy of up to approximately 1 mEh, we find that

SPQE produces significantly more compact trial states for the 2D system than ACI and is

comparable to DMRG. However, DMRG affords the most compact wave function parame-

terization in 1D, for accuracies below 1 mEh in 2D, and by a much smaller margin, in 3D.

Taken together, PQE and SPQE are very promising tools for studying many-body systems

both in the strong and weak correlation regimes using NISQ hardware.

In summary, the PQE approach is a viable and more economical alternative to varia-

tional quantum algorithms. In its current formulation, PQE can be applied to any trial state

generated by exponentiating a set of linearly independent operators with identity metric ma-

trix, as it is the case for disentangled unitary coupled-cluster ansätze. For these trial states,

any existing implementation of VQE could be easily extended to PQE, leveraging existing

techniques to reduce the number of measurements and exploiting symmetries.59, 60, 94 In-

teresting extensions of PQE include a generalization to unitaries that may contain repeated

operators, that use generalized excitations/de-excitations pools, and hardware-efficient an-

sätze. In particular, a promising research direction is the formulation of a selected PQE

using a basis of general one- and two-body operators, which could yield trial states with

lower circuit depth than the current formulation. Within the greater ecosystem of quantum

algorithms, PQE could be used to determine initial guess amplitudes for subsequent opti-
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mization via VQE. Additionally, similarly to VQE, PQE can be used as an alternative to

adiabatic approaches to prepare initial states for quantum phase estimation. Although we

only explore applications of PQE for quantum many-body simulation, the framework out-

lined by Eqs. (4.3) and (5.20) can be used to solve a variety of eigenvalue problems. With

appropriate modifications, for example, PQE could be employed to diagonalize covari-

ance matrices (after quantum encoding95, 96) for use in machine learning or data-analysis.

Moreover, because there is no requirement that the PQE (or SPQE) trial states have low-

entanglement, PQE could be used as an alternative to methods such as quantum principle

analysis,96 or variational quantum state diagonalization.97 Most importantly, the most im-

mediate impact of PQE could be speeding up quantum computations on current or near-

term devices.

4.5 Appendix

4.5.1 Gradient of the PQE energy

In this section, we derive an expression for the PQE energy gradient. This result permits

us to establish the equivalence of PQE and VQE for an exact UCC or dUCC ansatz, and to

characterize the gradient when PQE is used to optimize approximate trial states. Consider

the PQE energy expression using a UCC [Eq. (4.7)] or dUCC [Eq. (4.9)] ansatz EPQE(t) =

〈Φ0|Û†(t)ĤÛ(t) |Φ0〉. The derivative of EPQE(t) with respect to the parameter tµ is given

by

∂EPQE(t)
∂ tµ

= 2Re〈Φ0|Û†(t)Ĥ
∂Û(t)

∂ tµ
|Φ0〉

= 2Re〈Φ0| H̄Û†(t)
∂Û(t)

∂ tµ
|Φ0〉 ,

(4.20)

where we have inserted the identity Û†(t)Û(t) = 1 to rewrite this expression in terms of H̄.
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Next, we consider the resolution of the identity

1 = |Φ0〉〈Φ0|+ ∑
Φµ∈R

∣∣Φµ

〉〈
Φµ

∣∣+ ∑
Φν∈S
|Φν〉〈Φν | , (4.21)

where R is the set of determinants for which the residual condition rµ = 0 is enforced, while

S contains those determinants for which rν may not be equal to zero. After inserting this

resolution of the identity into Eq. (4.20) between H̄ and Û†(t) and simplifying the resulting

expression, we may express the gradient as

∂EPQE(t)
∂ tµ

= 2EPQE Re〈Φ0|Û†(t)
∂Û(t)

∂ tµ
|Φ0〉

+2Re ∑
Φµ∈R

r∗µ
〈
Φµ

∣∣Û†(t)
∂Û(t)

∂ tµ
|Φ0〉

+2Re ∑
Φν∈S

r∗ν 〈Φν |Û†(t)
∂Û(t)

∂ tµ
|Φ0〉 .

(4.22)

The first term in this expression is null since from 〈Φ0|Û†(t)Û(t) |Φ0〉 = 1 we can show

that the coefficient that multiplies the energy is null:

∂ 〈Φ0|Û†(t)Û(t) |Φ0〉
∂ tµ

= 2 Re〈Φ0|Û†(t)
∂Û(t)

∂ tµ
|Φ0〉= 0. (4.23)

The second term in Eq. (4.22) is null due to the residual condition. Applying these two

simplifications we arrive at the gradient expression [Eq. (4.10)] reported in Sec. 4.2.2, con-

taining only the last term of Eq. (4.22). The term 〈Φν |Û†(t)∂Û(t)
∂ tµ
|Φ0〉 that multiplies the

residual is generally non-null for both the UCC and dUCC ansätze. In the case of dUCC,

the term corresponding to the derivative with respect to i-th amplitude tµi , is given by:

〈Φν |Û†(t)
∂Û(t)
∂ tµi

|Φ0〉= 〈Φν |e−tµNop
κ̂µNop · · ·e−tµi+1 κ̂µi+1 κ̂µie

tµi+1 κ̂µi+1 · · ·etµNop
κ̂µNop |Φ0〉 .

(4.24)

The states to the left and right of the operator κ̂µi are general many-body states that poten-

tially span the entire Hilbert space, and therefore, this quantity is generally non-null. For

completeness, we also report the same expression for the case of traditional UCC, which
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may be obtained using the derivative of the exponential map:

〈Φν |Û†(t)
∂Û(t)
∂ tµi

|Φ0〉=
∫ 1

0
dx〈Φν |e(x−1)σ̂

κ̂µie
(1−x)σ̂ |Φ0〉 . (4.25)

4.5.2 Derivation of the UCC-PQE update equations

In this section, we provide a derivation of the amplitude update equation [Eq. (5.23)]

based on a quasi-Newton method for solving general nonlinear equations. To find update

equations that relate new amplitudes (t(n+1)) to the previous set (t(n)), we expand the resid-

ual equation [Eq. (5.20)] as a Taylor series centered around the current amplitude vector

displaced by an amount ∆t(n+1) = t(n+1)− t(n)

rµ(t(n+1)) = rµ(t(n)+∆t(n+1))

= rµ(t(n))+∑
ν

Jµν(t(n))∆t(n+1)
ν + . . . ,

(4.26)

where J is the Jacobian matrix, defined as Jµν(t) = ∂ rµ(t)/∂ tν . To avoid computing and

inverting the Jacobian, we seek a diagonal approximation to J. We first note that for both the

conventional UCC and the UCC ansätze, the similarity transformed Hamiltonian expanded

up to linear terms is of the form

Û†(t)ĤÛ(t) = Ĥ +∑
i

tµi[Ĥ, κ̂µi]+O(|t|2). (4.27)

We now invoke the Møller–Plesset partitioning of the Hamiltonian and assume that the

spin orbitals are canonical (i.e., they diagonalize the Hartree–Fock operator), allowing us

to write Ĥ = F̂(0) + V̂ (1), where F̂(0) = ∑p εpâ†
pâp is a zeroth-order diagonal one-body

operator, and V̂ (1) is a first-order operator that contains two-body terms. Approximating

the Jacobian with with the first two terms of Eq. (4.27) and retaining only the zeroth-order

contributions, we obtain the following diagonal approximation

Jµν(t) =
〈
Φµ

∣∣ [F̂(0), κ̂ν ] |Φ0〉=−∆µδµν , (4.28)
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where ∆µ = εi+ε j + . . .−εa−εb . . . is a standard Møller–Plesset denominator correspond-

ing to the excitation operator κ̂µ = â†
aâ†

b · · · â jâi− h.c.. Inserting the diagonal Jacobian in

the expanded residual we obtain

rµ(t(n+1)) = rµ(t(n))−∆µ∆t(n+1)
µ , (4.29)

which when solved for rµ(t(n+1)) = 0 yields the update equation [Eq. (5.23)].

4.5.3 Additional numerical comparison of PQE and VQE

Here we provide additional numerical comparison for PQE and VQE. Table 4.2

shows numerics for ground state energy convergence of BeH2 using dUCCSD-PQE and

dUCCSD-VQE. Figure 4.7 shows the energy converge of various hydrogen chain systems

with respect to the norm of the residual vector (for PQE) and gradient vector (for VQE).

For both Tab. 4.2 and Fig. 4.7 trends similar to those seen in Fig. 4.3 are observed.
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Figure 4.7: dUCCSD energy convergence for linear H4–H10 chains in a STO-6G basis at (a)
rH−H = 0.75 Å, and (b) rH−H = 1.50 Å. |E(n)−E(n−1)| is the absolute value of the energy
change between subsequent iterations. Both plots compare PQE vs VQE convergence with
respect to norm of the residual-vector (for PQE) or the norm of the gradient-vector (for
VQE).

4.5.4 Formal comparison of PQE and VQE

We begin by assuming the case of a fixed ansatz, and since in this case state prepara-

tion costs are the same, our analysis focuses on how many measurements are necessary to
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Table 4.2: Comparison of the convergence of the ground state energy of BeH2 computed
with PQE and VQE using a disentangled UCCSD trial state. For a method X = PQE or
VQE, this table reports the total energy (EX , in Eh), the energy change from the previ-
ous to the current iteration (E(n)

X − E(n−1)
X ), the number of residual/gradient evaluations

(N·X ), and the norm of the residual/gradient (‖ · ‖). The FCI energies at 1.0 and 2.0 Å are
−15.65068726 and −15.60861964 Eh, respectively. All calculations use a STO-6G basis.

Iteration EPQE E(n)
PQE−E(n−1)

PQE Nr−eval
PQE ‖rPQE‖ EVQE E(n)

VQE−E(n−1)
VQE Ng−eval

VQE ‖gVQE‖
BeH2 (rBe−H = 1.0 Å) UCCSD

1 −15.6480381687 −0.0233010440 1 0.2184453066 −15.6448482964 −0.0201111716 3 0.3114581416
2 −15.6500971948 −0.0020590260 2 0.0613327467 −15.6478816410 −0.0030333446 5 0.1481817759
3 −15.6504069826 −0.0003097878 3 0.0088860708 −15.6494462890 −0.0015646480 7 0.1065575796
4 −15.6504328168 −0.0000258343 4 0.0026511924 −15.6499421388 −0.0004958498 9 0.0634937794
5 −15.6504349587 −0.0000021418 5 0.0005328227 −15.6500470587 −0.0001049199 10 0.0893255742
6 −15.6504350041 −0.0000000454 6 0.0000763318 −15.6501955946 −0.0001485359 11 0.0657024179
7 −15.6504350044 −0.0000000003 7 0.0000086198 −15.6502874046 −0.0000918100 12 0.0690985413
8 −15.6503399456 −0.0000525410 13 0.0453884569
9 −15.6503962522 −0.0000563066 14 0.0249260915

10 −15.6504228495 −0.0000265973 16 0.0137252110
11 −15.6504302548 −0.0000074053 18 0.0073189453
12 −15.6504341054 −0.0000038506 20 0.0037260965
13 −15.6504346315 −0.0000005261 22 0.0023579786
14 −15.6504348973 −0.0000002657 24 0.0014145610
15 −15.6504349615 −0.0000000642 26 0.0008586922
16 −15.6504349766 −0.0000000151 28 0.0006710048
17 −15.6504349959 −0.0000000193 29 0.0003518429
18 −15.6504350027 −0.0000000068 31 0.0001962939
19 −15.6504350038 −0.0000000011 33 0.0001228873
20 −15.6504350044 −0.0000000005 34 0.0000505365
21 −15.6504350045 −0.0000000001 36 0.0000433400
22 −15.6504350047 −0.0000000002 37 0.0000200500

BeH2 (rBe−H = 2.0 Å) UCCSD

1 −15.5888292373 −0.0721251319 1 0.2551300809 −15.5797540529 −0.0630499476 3 0.7559489104
2 −15.6022316771 −0.0134024398 2 0.1072484292 −15.5993381767 −0.0195841238 5 0.2319720501
3 −15.6055237786 −0.0032921016 3 0.0175246100 −15.6027545167 −0.0034163400 7 0.1024944422
4 −15.6056880097 −0.0001642310 4 0.0076659595 −15.6041840035 −0.0014294868 9 0.1471217958
5 −15.6057527283 −0.0000647187 5 0.0051078803 −15.6050561955 −0.0008721920 10 0.0754837786
6 −15.6058044053 −0.0000516769 6 0.0012840244 −15.6052847256 −0.0002285301 12 0.0580899178
7 −15.6058068352 −0.0000024300 7 0.0002042506 −15.6055945458 −0.0003098202 13 0.0291205752
8 −15.6058068368 −0.0000000016 8 0.0000663613 −15.6056501930 −0.0000556471 15 0.0302968175
9 −15.6058068335 +0.0000000033 9 0.0000122091 −15.6057330619 −0.0000828689 16 0.0197063516

10 −15.6058068336 −0.0000000000 10 0.0000040077 −15.6057681510 −0.0000350891 18 0.0186569595
11 −15.6058033733 −0.0000352223 19 0.0069816557
12 −15.6058052286 −0.0000018553 21 0.0045627712
13 −15.6058057676 −0.0000005391 23 0.0036888638
14 −15.6058065558 −0.0000007882 24 0.0021623560
15 −15.6058067218 −0.0000001661 26 0.0015523193
16 −15.6058068503 −0.0000001285 27 0.0003628532
17 −15.6058068547 −0.0000000044 29 0.0002829316
18 −15.6058068601 −0.0000000054 30 0.0000872433
19 −15.6058068604 −0.0000000003 32 0.0000660842
20 −15.6058068607 −0.0000000002 33 0.0000166869

compute the gradients and residuals in the iterative optimization procedure.

The preferred approach to minimize the energy in VQE is via gradient-based algo-

rithms. The gradient of the UCC energy with respect to a cluster amplitude tµ is given

by

∂EVQE(t)
∂ tµ

=2Re〈Φ0|Û†(t)Ĥ
∂Û(t)

∂ tµ
|Φ0〉 (4.30)

Equation (4.30) has the form of an off-diagonal matrix element of the Hamiltonian, and
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Romero et al.76 showed that it may be measured on a quantum device using one ancilla

qubit and four time the cost of measuring the energy. With this algorithm, computing the

gradient vector so that the 2-norm of the error is within precision ε̄grad requires a total

number of measurements (mgrad) that is bound by the inequality76

mgrad ≤ 4Npar

(
∑` |h`|

)2

ε̄2
grad

. (4.31)

The total number of measurements, and proportionally the runtime, required for a VQE

calculation is dominated by the computation of the gradient vector and it is proportional

to the number of gradient vector evaluations (NVQE
grad ) required to converge the energy. This

implies that the total number of VQE measurements (mVQE) is bounded approximately by

mVQE ≤ NVQE
grad mgrad. (4.32)

This estimate ignores the evaluation of the VQE energy, which has a cost inferior to that

of computing one element of the gradient vector. More recently, Kottmann et al.64 showed

that the analytic gradient may be computed with a cost essentially equal to that of two

energy evaluations using the so-called parameter-shift-rule.63 This procedure avoids the

use of an ancilla qubit and the number of measurements required still satisfies the bound

expressed in Eq. (4.31).

In the case of PQE, the number of measurements mres needed to compute the residual

vector with precision ε̄res has an upper bound given by

mres ≤ 3Npar

(
∑` |h`|

)2

ε̄2
res

. (4.33)

This estimate takes into account the fact that the residual can be evaluated as the sum of

three terms (with different prefactors), and that E0 in Eq. (4.14) only needs to be measured

once. The total number of PQE measurements (mPQE) is bounded by

mPQE ≤ NPQE
res mres, (4.34)
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where NPQE
res is the number of PQE residual vector evaluations. Assuming that the energy

gradients in VQE and the residual in PQE are measured with the same precision (ε̄grad ≈

ε̄res), we estimate that mres ≈ 3
4mgrad. This result suggest that PQE should have a similar or

perhaps slightly smaller cost per iteration than VQE. However, a more important factor in

determining the relative performance of VQE and PQE is the number of residual/gradient

evaluations required, which as shown in Sec. 4.3, favors PQE over VQE.

A detailed comparison of the adaptive variants of VQE (e.g., ADAPT-VQE) and PQE is

more complex due to the significant differences in the form of the ansatz and the selection

procedure used in these two methods. At iteration k, the ADAPT-VQE approach selects

the operator κ̂µ with the largest absolute energy gradient. This selection scheme requires

evaluating the gradient g(k)µ for all the operators in the pool

g(k)µ =
〈

Ψ
(k)
∣∣∣ [Ĥ, κ̂µ ]

∣∣∣Ψ(k)
〉
. (4.35)

Because most sub-terms of the Hamiltonian will commute with κ̂µ , a relatively small num-

ber of
〈
κ̂µÔ`

∣∣κ̂µÔ`

〉
and

〈
Ô`κ̂µ

∣∣Ô`κ̂µ

〉
terms need to be measured. Both Ĥ and the op-

erator pool {κ̂µ} contain of the order N4 elements (assuming a pool of general one and

two-body operators).

However, it has recently been pointed out67 that if the quantity [Ĥ, κ̂µ ] is decom-

posed in terms of the reduced density matrices, then one can determine the pool gradients

[Eq. (4.35)] with the evaluation of a number of Pauli terms that scales as N6 (again as-

suming a pool of general one and two-body operators). In ADAPT-VQE this cost must

then be multiplied by the number of iterations performed. It is important to note that the

ADAPT-VQE macro-iteration convergence threshold εα = 10−α is based on the norm of

the vector of pool gradients [Eq. (4.35)], such that ADAPT-VQE is considered converged

when ‖gpool‖ ≤ εα . The number of measurements of the approximate residual vector (|r̃〉)

for the purpose of selection in SPQE is a parameter of a computation. In Appendix 4.5.5,

we show that a probabilistic estimate for the number of measurements required to converge
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SPQE with a threshold of Ω is of the order of (∆tΩ)−2.

A trade-off of using three- and higher-body operators in SPQE is a greater circuit depth

since an operator κ̂ab···
i j··· of many-body rank n becomes a sum of 22n−1 Pauli strings after

Jordan–Wigner mapping to the qubit basis. Since all Pauli strings that are generated in

this mapping commute, the unitary exp
(

θ κ̂ab···
i j···
)

can be written as the product of 22n−1

exponentials of operators containing Pauli strings of length 2n.

To analyze the compromise between the rank of the operator pool and the compactness

of the ansatz in ADAPT-VQE and SPQE we consider the example of a three-body operator

exp
(

t κ̂abc
i jk

)
. In ADAPT-VQE this term may be approximated using general two-body

operators as

et κ̂abc
i jk = et [κ̂ae

i j ,κ̂
bc
ke ] ≈ et κ̂ae

i j et κ̂bc
ke e−t κ̂ae

i j e−t κ̂bc
ke , (4.36)

where the last term is a lowest-order Trotter approximation of the exponential of the com-

mutator [κ̂ae
i j , κ̂

bc
ke ] (with e 6= a,b,c). The last term in Eq. (4.36) is implemented as a circuit

that contains four different parameters and a product of 32 exponentials of Pauli strings

of length four. The same three-body excitation is represented in SPQE using a single pa-

rameter and a longer circuit as a product of 32 exponentials of Pauli strings of length six.

This comparison suggests, in accordance with the results of our study, that higher-body

operators are represented less efficiently with an arbitrary particle-hole operator pool than

a general singles and doubles operator pool.

4.5.5 Reduced-cost estimation of the approximate residual in selected
PQE

This appendix explores various methods to reduce the number of measurements M

required to compute the approximate the residuals r̃µ used in the selected PQE method

(see Sec. 4.2.5). Selection requires the identification of the elements of the approximate

residual that corresponds to projections onto excited determinants. However, for small

values of ∆t, the state |r̃〉 is dominated by the reference determinant Φ0, and consequently,
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the measurement of important missing excitations may become inefficient. In practice one
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Figure 4.8: SPQE energy convergence for H6 at a separation of rH−H = 1.0 Å, with
∆t = 0.05 au. Data sets with triangular markers denote exact operator selection and con-
vergence via Eqs. (5.25) and (5.26) for Ω = 1.0×10−1 (yellow) and Ω = 5.0×10−2 (dark
blue). Data sets with dots denote operator selection and convergence with a fixed number
of measurements MΩ = 4.0×104 (yellow) and MΩ = 1.6×105 (dark blue) calculated via
Eq. (4.37) for the corresponding Ω values.

can consider an alternative convergence criterion for SPQE based on performing a fixed

number of measurements MΩ on the state |r̃〉. In such an approach, at each iteration k,

the operators κ̂µ whose corresponding determinants
∣∣Φµ

〉
are measured at least once (over

all MΩ measurements) are added to A . Because the residual magnitudes go to zero as

the eigenstate is better approximated in successive k iterations, it becomes increasingly

unlikely that any determinants besides the reference |Φ0〉 will be measured. The SPQE

algorithm can then be considered converged when all MΩ measurements yield the reference

state. Starting from Eqs. (5.25) and (5.26), and making the assumption that at convergence

only a single determinant Φµ is measured that is not the reference (i.e., ∑µ Nµ = 1), one

can use a number of measurements

MΩ =
1

∆t2Ω2 , (4.37)

to probabilistically test convergence of the residual vector to within the threshold Ω. In

practice we find that using Eq. (4.37) works well compared to the exact threshold given

in Eq. (5.26). Figure 4.8 compares the energy convergence with number of selected op-
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erators/parameters using both convergence criterion corresponding to the same value of

Ω.
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Chapter 5

QForte

5.1 Introduction

The past decade has seen tremendous progress in the development quantum compu-

tational hardware, facilitating early demonstrations of quantum advantage,1 and numerous

non-trivial calculations for applications ranging from quantum simulation2–7 to constrained

optimization.8, 9 These advances have concurrently inspired rapid development of numer-

ous quantum algorithms amenable to both noisy intermediate scale quantum10 (NISQ), and

fault-tolerant devices.

In the field of quantum simulation, particularly for those algorithms designed to deter-

mine the ground and low-lying eigenstates of many-body systems, a variety of methods

now exist11, 12 which vary dramatically in quantum resource requirements, often with a

tradeoff between circuit depth and measurement overhead. Moreover, within the subclass

of hybrid quantum-classical approaches such the as variational quantum eigensolver13, 14

(VQE), and approaches such as quantum imaginary time evolution15 (QITE), one also con-

siders the accuracy of the unitary ansatz as well as the classical memory and computational

overhead associated with (i) the number of classical parameters utilized, (ii) the procedure

used to update/augment the parameters, and (iii) the potentially large number of iterations

needed to converge the the parameters (particularly in the presence of vanishing gradi-

ents16).
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While it is almost unheard-of to publish a new method in (classical) electronic struc-

ture without a detailed numerical comparison to existing algorithms, it is far more rare to

see such comparisons (with respect to some of the aforementioned resource requirements)

for quantum (or hybrid) algorithms. The lack of cross comparison, however, is largely

due to the lack of available software resources, as most implementations of new quantum

algorithms exists only as code written by independent research groups and are often not

publicly available without special request. Moreover, these independent implementations

rarely give detailed numerics for the quantum and classical resource counts such as the

number of classical parameters, the total number operators averaged over for determining

expectation values, and the circuit depths. To help ameliorate this issue, we introduce the

new open-source package QFORTE , the first black-box quantum algorithms library for

molecular electronic structure.

The software ecosystem for the development of new quantum algorithms is ever-

expanding. This is particularly true in the context of quantum algorithms for molecular

electronic structure, because there are many complex software challenges involved in

the complete pipeline that begins with specification of a molecular geometry and ends

(usually) with a specified algorithm’s numerical prediction of the eigenvalue(s). In order

to accomplish this task, one must first install a (usually open-source) classical electronic

structure package such as PYSCF or PSI4 to obtain the one (hpq) and two-electron

(νpqrs) integrals. Next, one must utilize a package for fermionic encoding such as

OPENFERMION, as well as appropriate application programming interfaces (API) such

as OPENFERMION-PYSCF or OPENFERMION-PSI4, to convert the fermionic operators

(such as the Hamiltonian)

Ĥ = ∑
pq

hpqâ†
pâq +

1
4 ∑

pqrs
vpqrsâ†

pâ†
qâsâr→ Ĥ = ∑

`

θ`P̂̀ (5.1)

to a so-called qubit representation given as a sum of products of Pauli operators P̂̀ . In

order to apply quantum circuits associated with the transformed operators (such as the time
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evolution unitary, or various ansatz used commonly in VQE) one is required to install one

of the numerous–often industry affiliated–backend quantum-computer simulators such as

IBM’s QISKIT,17 Google’s CIRQ18 or FQS,19 Microsoft’s Q#,20 or Rigetti’s PYQUILL;21

again with the appropriate API’s. In the outermost software layer exist packages such as

TEQUILA22 that serve as sandbox implantation tool which solve many of the interoperabil-

ity challenges associated with interfacing the aforementioned dependancies. While flexible

packages for sand-box development are undoubtably important, it is still usually left to the

user to implement a desired algorithm, which is generally a non-trivial task given the diver-

sity of quantum algorithms present in modern literature. A single-package (incorporating

all of the described steps) black-box implementation of such algorithms with which one can

easily specify a molecular geometry and desired quantum algorithm (as is the case for clas-

sical electronic structure packages) is highly desirable for researchers interested quickly

generating comparative results.

As previously mentioned, an additional challenge to black-box implementation of quan-

tum algorithms is their now significant level of diversity. Arguably the simplest and most

well established (hybrid) algorithm is the variational quantum eigensolver13, 14 (VQE),

in which (usually) the ground state is approximated by a normalized trial state
∣∣Ψ̃
〉
=

Û(θθθ) |Φ0〉, in which the circuit Û(θθθ) depends on the parameter vector θθθ and Φ0 is (usually)

an unentangled reference state. The VQE energy (EVQE) is then obtained by minimization

of the trial state energy expectation value as EVQE = minθθθ 〈Φ0|Û†(θθθ)Ĥ Û(θθθ) |Φ0〉, and

is repeatedly evaluated (often along with the energy gradients) in a classical optimization

loop. While implementation of the base VQE structure is straight forward for toy exam-

ples, automatic generation of the ansatz circuit is in general more complicated and obvi-

ously dependent on the inspiration for ansatz (i.e. disentangled unitary coupled cluster,3

hardware-efficient,3 Hamiltonian variational,23 qubit coupled cluster,24 etc. . . ). Moreover,

many hybrid approaches such as adaptive ansatz approaches25, 26 or subspace expansion

methods27 incorporate the basic VQE schema as a subroutine and require additional imple-
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mentation for determination of matrix elements to solve a generalized eigenvalue problem

and/or an additional algorithmic layer to extend the ansatz. Similar implementation chal-

lenges exist for algorithms that rely on (often controlled) Hamiltonian time evolution such

as quantum phase estimation28–30 (QPE), or subspace methods like quantum filter diagonal-

ization31 [also known as quantum Krylov32 (QK)]. For algorithms that measure projected

quantities such as quantum imaginary time evolution15 (QITE) and the projective quan-

tum eigensolver33 (PQE), one must additionally implement the (often iterative) parameter

update procedure.

Our new open-source package QFORTE is an end-to-end electronic structure package

for quantum algorithms, and is still capable of facilitating sand-box implementations of

new algorithms, only relying on a classical electronic structure package as a dependancy.

The remainder of this article is organized as follows. In Sec. 5.2 we will describe QFORTE

’s key data structures and its interface to PSI4. In Sec. 5.3 will discuss each of the quantum

algorithms currently implemented in QFORTE as well as some of their implementation

details in terms of the key data structures.

5.2 Key data structures

In order to facilitate simple molecular-geometry to quantum algorithm energy func-

tionality, QFORTE relies on several key data structures. The lowest level structures, which

include QFORTE ’s Computer (state-vector simulator) and Circuit class are all im-

plemented in C++, but are exposed in Python via Pybind11.34 Higher level data structures

such as the SystemFactory class which interfaces QFORTE to classical electronic struc-

ture packages, and the subclasses in which the actual algorithms are implemented are all

explicitly written in Python. Here we will give an overview of some of the most important

data structures for QFORTE ’s workflow pipeline using a now-canonical example of the H2

molecule.
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5.2.1 The state-vector simulator

An important aspect of QFORTE that distinguishes it from many other packages is its

incorporation of a dedicated state-vector simulator. State vector simulators, which store

a copy of the complex vector representing the quantum state on the device at all points

during a calculation, are among some of the most common quantum computer simulators

employed today. While many such simulators rely (mostly) on sparse tensor operations,

QFORTE takes an approach that closer resembles modern FCI implementations.35

The QuantumComputer class

The backbone of the QFORTE ’s state-vector simulator is the Computer class, which

stores a complex vector coeff_, as well as a vector of QubitBasis objects (both of

dimension 2nqb where nqb is the number of qubits). One can then apply a Gate, Circuit,

or QubitOperator to transform the state vector by modifying coeff_.

An example of how to instantiate a Computer with four qubits and print the represen-

tation is shown in Lst. 5.1.
1 nqb = 4
2 qcomp = qf.Computer(nqb)

Listing 5.1: Initializing a QuantumComputer object.

The QuantumGate class

Once a Computer is initialized, the state can be modified by applying Gates. The

Gate class is the most fundamental building block for all quantum algorithms in QFORTE

. Some of the most pertinent gates used quantum simulation are the Pauli gates (X , Y , and

Z), the Hadamard gate H (not to be confused with the Hamiltonian Ĥ ), the controlled

NOT [CNOT] gate, and the parametric z rotation gate Rz(θ). A full list of gates can be

found in the QFORTE documentation.

The Gate class has several important attributes including a string (label_) which

gives its identity, the integer target_ and control_ qubit indicies, and the matrix of

complex values gate_ that represents the operator. Instanciating a Gate is simple, and is

done via the gate() member function.
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List 5.2 shows how to instantiate the Pauli X̂ gate that will target the qubit q4.
1 target_idx = 4
2 X_4gate = qf.gate(’X’, target_idx)

Listing 5.2: Initializing a QuantumGate object.

List 5.3 shows a small example of using QFORTE ’s state-vector simulator to construct

the two-qubit Bell state

|ΨBell〉=
1√
2
|00〉+ 1√

2
|11〉 . (5.2)

Recall that the action of the controlled X Pauli gate [with target qubit q0, and control qubit

q1 (cX0,1)] is:

cX0,1 |00〉= |00〉 (5.3)

cX0,1 |01〉= |11〉 , (5.4)

cX0,1 |10〉= |10〉 , (5.5)

cX0,1 |11〉= |01〉 . (5.6)

Recall that the action of the Hadamrad gate H is:

H |0〉= 1√
2

(
|0〉+ |1〉

)
(5.7)

H |1〉= 1√
2

(
|0〉− |1〉

)
(5.8)

1 # Initialize a two-qubit QuantumComputer.
2 nqb = 2
3 qbell = qf.Computer(nqb)
4

5 # Initialize the gates needed to build the Bell state.
6 H_0 = qf.gate(’H’, 0)
7 cX_0_1 = qf.gate(’cX’, 1, 0)
8

9 # Apply the Hadamard gate.
10 qbell.apply_gate(H_0)
11

12 # Apply the CNOT (cX) gate.
13 qbell.apply_gate(cX_0_1)

Listing 5.3: Initializing a QuantumGate object.
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The QuantumCircuit class

In virtually any quantum algorithm it is necessary to apply many gates sequentially. A

so called quantum circuit, commonly referred to as a unitary (Û), is represented by a prod-

uct of quantum gates, making the overall circuit itself a unitary operation. The Circuit

class operates at one level above the Gate class and its primary attribute is the vector

gates_ of Gate objects.

Although any product of elementary gates technically constitutes a circuit, one of the

most important circuit structures in quantum simulation is that which represents unitaries

obtained by exponentiating a product of Pauli operators:

eiθ`P̂̀ =

(
n`

∏
k

V̂ (`)
k

)†(n`−1

∏
k

c-X̂ (`)
k,k+1

)†

R̂z(2θ`)

(
n`−1

∏
k

c-X̂ (`)
k,k+1

)(
n`

∏
k

V̂ (`)
k

)
, (5.9)

where

P̂̀ =
n`

∏
k

σ̂
(`)
k (5.10)

is a unique product of n` Pauli operators (X̂ , Ŷ , or Ẑ). In this case, k = (p, [X ,Y, or Z]) is a

compound index over the products in a term P̂̀ and denotes the qubit (p) and specific Pauli

gate. The transformation unitary V̂ (`)
k is a one qubit gate that transforms X̂ or Ŷ into Ẑ. An

example of how one would construct such a circuit in QFORTE is shown in Lst. 5.4.
1 # Construct the desired preliminary circuit (X3 Z2 Z1 Z0)
2 circ = qf.Circuit()
3 circ.add_gate(qf.gate(’Z’, 0))
4 circ.add_gate(qf.gate(’Z’, 1))
5 circ.add_gate(qf.gate(’Z’, 2))
6 circ.add_gate(qf.gate(’X’, 3))
7 print(’\n The origional unitary circuit \n’,circ.str())
8

9 # Define the factor (-i theta)
10 theta = 0.5
11 factor = -1.0j * theta
12

13 # Construct the unitary for the exponential.
14 Uexp, phase = exponentiate_single_term(factor, circ)
15 print(’\n The exponential unitary circuit \n’,Uexp.str())

Listing 5.4: Constructing the circuit corresponding to exp
(
−i0.5X̂3Ẑ2Ẑ1Ẑ0

)
.
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5.2.2 The QubitOperator and SQOperator classes

The outer-most operations class in QForte is the QubitOperator class. Again,

mathematically speaking, a generic quantum operator Ô is given by a linear combination

of N` unitaries (Û`) as

Ô = ∑
`

u`Û`, (5.11)

where u` is a complex coefficient. It is important to note that although applying a

QubitOperator to a state is possible in QFORTE , is in general it is not a physically

valid operation.

The key attribute of the QubitOperator class is terms_: a vector of pairs

of the form <complex::double, QuantumCircuit>. Importantly, the

QubitOperator class is used to represent objects such as the Hamiltonian Ĥ or

the cluster operator36 T̂ in QFORTE ’s algorithmic implementations.

QFORTE also supports operators in the form of second quantization, that is, operators

comprised of fermionic annihilation (âp) and creation (â†
p) operators. The SQOperator

class functions very similarly to the QubitOperator class, but utilizes a slightly differ-

ent syntax. We note that second quantized operators in QFORTE always assume that the

individual fermionic operators are normal ordered within a term. The second quantized op-

erators can then be transformed to the QubitOperator representation (given as a linear

combination of products of Pauli operators) via the Jordan-Wigner transformation.37 Un-

der this transformation, there is a one-to-one mapping between a spin orbital φp and qubit

qp such that the fermionic annihilation (âp) and creation (â†
p) operators are represented by

âp =
1
2

(
X̂p + iŶp

)
Ẑp−1 . . . Ẑ0, (5.12)

and,

â†
p =

1
2

(
X̂p− iŶp

)
Ẑp−1 . . . Ẑ0. (5.13)

Listing 5.5 shows how to instantiate a SQOperator and transform it into a
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QubitOperator.
1 # Initialize the second quantized operator
2 sq_op = qf.SQOperator()
3

4 # Construct the terms and add them to the list.
5 h1 = 0.5
6 h2 = -0.25j
7 sq_op.add_term(h1, [1], [2])
8 sq_op.add_term(h2, [4, 2], [3, 1])
9

10 # Transform to the qubit operator representation
11 pauli_op = sq_op.jw_transform()

Listing 5.5: Converting SQOperators into QuantumOperators.

5.2.3 The molecule class

As discussed in the introduction, the first task for implementing a quantum algorithm

for molecular electronic structure is to obtain the molecular Hamiltonian in the qubit op-

erator representation, based on a specified molecular geometry. In QFORTE this is all

accomplished using the system_factory and molecule classes. To begin, as shown

in Lst. 5.6, one simply imports the appropriate modules and specifies a geometry:
1 from qforte import *
2

3 # Define the reference and geometry lists.
4 geom = [(’H’, (0., 0., 0.0)), (’H’, (0., 0., 0.75))]
5

6 # Instantiate the system_factory object (also populates the integrals).
7 factory = system_factory(build_type=’psi4’, mol_geometry=geom, basis=’

sto-3g’)
8

9 # Get the molecule object.
10 H2mol = factory.get_molecule()

Listing 5.6: Initializing the QFORTE molecule object.

Once the molecule class has been populated the user has access to the molecular Hamil-

tonian both in second-quantization representation [as a SQOperator] and in a qubit repre-

sentation [as a QubitOperator] resulting from the Jordan-Wigner transformation. The

molecule object is a key data structure in QFORTE that is passed to all algorithms to per-

form a quantum computation.
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5.3 Overview of algorithms implemented

We consider the algorithms implemented in QFORTE partitioned into several over-

lapping categories. The first is variational hybrid algorithms13, 14, 38 in which a classical

optimizer is utilized to minimize the energy expectation value. The second category is

projective approaches15, 33 where projective quantities are measured on a quantum device

and then used to directly update or augment a classically parameterized unitary. The third

category is subspace diagonalization15, 27, 31, 32, 39 (QSD) in which a non-orthogonal many

body basis is generated from a family of unitaries, and the matrix elements of a generalized

eigenvalue problem are measured on a quantum device. And finally, there are those algo-

rithms derived from quantum phase estimation29, 30 where the eigenvalue of a time evolved

state is estimated by a binary readout of a set of ancialla qubits.

Currently, QFORTE contains black-box implementations of the following algorithms:

(i) variational quantum eigensolver13, 14 (VQE) and (ii) projective quantum eigensolver33

(PQE) both with a disentangled40 (factorized) unitary coupled cluster41–45 (dUCC) ansatz,

(iii) the adaptive derivative-assembled pseudo-trotter (ADAPT)-VQE,25 (iv) the selected

PQE33 (SPQE), (v) a variant of quantum imaginary time evolution15 (QITE) and its quan-

tum Lanczos15 (QL) extension, (vi) quantum Krylov31, 32 (QK) and (vii) its selected mul-

tireference variant32 (MRSQK) Each of these algorithms is implemented using the key

data structures described in Sec. 5.2 In the following subsections we will briefly discuss

the theoretical details of each of these methodologies.

5.3.1 dUCC variational quantum eigensolver

In the general VQE schema, one uses a unitary circuit Û(θθθ) parameterized by the vector

θθθ to construct a trial state of the form

|ΨVQE〉= Û(θθθ) |Φ0〉 (5.14)



CHAPTER 5. QFORTE 187

from an easily prepared reference state |Φ0〉 (such as the Hartree–Fock state). One then

wishes to minimize the energy expectation value of the state

E(θθθ) = 〈Φ|Û†(θθθ)Ĥ Û(θθθ) |Φ〉 . (5.15)

by iteratively averaging over the expectation value of each Hamiltonian sub-terms 〈h`P̂̀ 〉 to

determine E(θθθ) and employing a classical optimization algorithm to update the parameters.

In QFORTE we have implemented VQE with a disentangled (or factorized) UCC ansatz

ÛdUCC(t). We assume reference state is an easily prepared single determinant |Φ0〉 =

|φ1φ2 · · ·〉 (such as the Hartree–Fock determinant) specified by occupied spin orbitals {φi}

and unoccupied (virtual) spin orbitals {φa}. The operator τ̂µ ≡ τ̂ab···
i j··· = â†

aâ†
b · · · â jâi is a

particle-hole excitation operator who’s action turns the reference determinant |Φ0〉 into the

excited determinant
∣∣Φµ

〉
.

The dUCC ansatz is then constructed as a product of exponentiated anti-hermitian op-

erators κ̂µ ≡ τ̂µ − τ̂
†
µ as

ÛdUCC(t) = ∏
µ

etµ κ̂µ . (5.16)

The dUCC circuit is built automatically in QFORTE by initializing a list of SQOperators

that represent κ̂µ , transforming to a list of QuantumOperators via the Jordan-Wigner

transformation and constructing the circuit for the exponential each of sub-term [Eq. (5.9)].

Adaptive VQE

We have also implemented an adaptive variant of dUCC-VQE, namely the ADAPT-

VQE approach.25 In ADAPT-VQE, the unitary ansatz at maco-iteration k is defined as

Û (k)
ADAPT(t) =

k

∏
ν

et(k)ν κ̂
(k)
ν , (5.17)

where ν is likewise a compound index corresponding to operators κ̂ν in a pool P of

generalized single and double excitation/de-excitation operators (although in QFORTE is

possible to construct P in a variety of ways). The parameters t(k)ν are optimized at each

macro-iteration employing the general VQE schema. New operators are determined from
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the pool by computing the energy gradient

gν = 〈ΨVQE| [Ĥ , κ̂ν ] |ΨVQE〉 (5.18)

with respect to tν of each operator in P and selecting the operator with the largest gradient

magnitude to place at the end of the ansatz in the next iteration.

5.3.2 dUCC projective quantum eigensolver

In the dUCC projective quantum eigensolver approach we likewise consider a trail state

of the form |Ψ〉 = Û(ttt) |Φ0〉, where Û(ttt) is also defined by Eq. (5.16). In PQE we are

interested in solving Schrödinger equation for the trial-state left-multiplied by Û†(ttt),

Û†(t)Ĥ Û(t) |Φ0〉= E |Φ0〉 . (5.19)

Rather than accomplishing this via variational minimization (as is done in VQE), PQE

seeks to minimize the residual condition

rµ(t)≡
〈
Φµ

∣∣Û†(t)Ĥ Û(t) |Φ0〉= 0 ∀Φµ ∈ Q, (5.20)

where the residual rµ(ttt) is given by the projection of the Schrödinger equation onto a

determinant
∣∣Φµ

〉
= κ̂µ |Φ0〉 excited from the Hartree–Fock state. In practice we only

consider enforcing the residual condition for a subset Q of excited determinants (such as

all single and double excitations).

The residuals rµ can be easily determined from symmetric expectation values and can

therefore be measured via operator averaging on a quantum device. In this form they are

given by

rµ(ttt)=
〈
Ωµ

∣∣Û†(t)Ĥ Û(t)
∣∣Ωµ

〉
− 1

2
〈Φ0|Û†(t)Ĥ Û(t) |Φ0〉−

1
2
〈
Φµ

∣∣Û†(t)Ĥ Û(t)
∣∣Φµ

〉
,

(5.21)

where,
∣∣Ωµ

〉
= e

π

4 κ̂µ |Φ0〉=
1√
2
|Φ0〉+

1√
2

∣∣Φµ

〉
, (5.22)
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is an easily preparable (equal) superposition of |Φ0〉 and
∣∣Φµ

〉
.

One of the most important features of dUCC-PQE is that the parameter vector ttt can be

updated using a simple quasi-Newton iteration approach

t(n+1)
µ = t(n)µ +

r(n)µ

∆µ

, (5.23)

where the superscript “(n)” indicates the amplitude at iteration n. The quantities ∆µ are

standard Møller–Plesset denominators ∆µ ≡ ∆ab···
i j··· = εi + ε j + . . .− εa− εb . . . where εi are

Hartree–Fock orbital energies.

Selected PQE

The selected ansatz variation of PQE (SPQE) is also implemented in QFORTE and,

similarly to ADAPT, it utilizes a dUCC ansatz constructed iteratively from a (growing) set

of operators A . In brief, the selection procedure is done by construction of a normalized

state |r̃〉 defined as

|r̃〉= Û†(ttt)ei∆tĤ Û(ttt) |Φ0〉

= (1+ i∆tÛ†(ttt)Ĥ Û(ttt)) |Φ0〉+O(∆t2).
(5.24)

for which the square moduli of its probability amplitudes |Cµ |2≈ |
〈
Φµ

∣∣∆tÛ†(ttt)Ĥ Û(ttt) |Φ0〉 |2

are proportional to residuals rµ . In QFORTE the time step is taken as a parameter of

the calculation and the Suzuki-Trotter approximation46, 47 is used for the time evolution

operator. We may then approximate the values of the (normalized) squared residuals as

|r̃µ |2 ≈
Nµ

M
, (5.25)

where Nµ is the number of times the state
∣∣Φµ

〉
is measured from M preparations of |r̃〉. A

cumulative thresholding procedure is then utilized to add new operators κ̂µ (corresponding

to |r̃µ |2) to the ansatz, enforcing the condition

excluded

∑
κ̂µ /∈A

|rµ |2 ≈
excluded

∑
κ̂µ /∈A

|r̃µ |2
∆t2 ≤Ω

2, (5.26)



CHAPTER 5. QFORTE 190

where Ω is a user-specified convergence threshold parameter. This selection strategy is par-

ticularly appealing for strongly correlated systems because it does not require the candidate

operators κ̂µ to be restricted to any particular excitation order.

5.3.3 Quantum imaginary time evolution

The quantum imaginary time evolution algorithm is based on the principle that the

ground state can be found by evolving a trial state |Φ〉 with the imaginary time evolution

operator e−βĤ in the infinite time-step limit,

|Ψ0〉= lim
β→∞

1√
c(β )

e−βĤ |Φ〉 ;〈Ψ0|Φ〉 6= 0 (5.27)

such that a factor of 1/
√

c(β ) = 1/
√
〈Φ|e−2βĤ |Φ〉 normalizes the evolved state. The

imaginary time evolution operator is non-unitary, making it impractical for implementation

on quantum computers. However, one may approximate the action of the imaginary time

evolution operator with time step β using a unitary operation of the form.

c(β )−1/2e−βĤ |Φ〉 ≈ |ψ(β )〉 ≡ e−iβ Â |Φ〉 (5.28)

where Â is Hermetian. Approximating both sides to first order and Left multiplying by Â†

and 〈Φ|, respectively, gives

c(β )−1/2 〈Φ| Â†Ĥ |Φ〉 ≈ −i〈Φ| Â†Â |Φ〉 (5.29)

the principal equation of QITE. The Hermitian operator Â can be written as a linear expan-

sion of Pauli operator products ρ̂µ =∏l σ̂
(l)
µl such that Â=∑µ∈P αµ ρ̂µ . Here, P is a subset

with dimension M of all possible 4Nqb Pauli operator products Q, µ ≡ (µ1,µ2, ..,µNqb) is a

multi-index describing a unique Pauli operator product, and µl ∈ {I,X ,Y,Z}. Inserting the

above from of Â into Eq. (5.29) gives

c(β )−1/2 〈Φ| ∑
µ∈P

αµ ρ̂
†
µĤ |Φ〉 ≈ −i〈Φ| ∑

µ,ν∈P
αµαν ρ̂

†
µ ρ̂ν |Φ〉 (5.30)
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from which one seeks to solve the M dimensional linear system Sααα = b. The elements of

S, and b, as well as the value of c(β ) can be determined via measurement of symmetric

expectation values such that

Sµν = 〈Φ| ρ̂†
µ ρ̂ν |Φ〉 (5.31)

bµ =
−i√
c(β )

〈Φ| ρ̂†
µĤ |Φ〉 (5.32)

and,

c(β )≈ 1−2β 〈Φ|Ĥ |Φ〉 (5.33)

In QFORTE , the Pauli operator products used to populate P are generated automat-

ically from a user-specified manifold of second-quantized excitations/de-excitations as all

unique Jordan-Wigner transformed sub-terms containing an odd number of Ŷ gates. We

note that the QFORTE implementation of QITE differs for the "inexact QITE" described

by the original authors in which a subgroup of important Pauli operators is chosen for each

k-local hamiltonian term.

Quantum Lanczos

In quantum Lanczos, one wants utilize the QITE subroutine to determine the matrix

elements Smn = 〈ψ(βm)|ψ(βn)〉 and Hmn = 〈ψ(βm)|Ĥ |ψ(βn)〉 of a generalized eigenvalue

problem Hc = ScE, where βm = m∆β are different integer m durations of imaginary time

evolution. A convenient feature of QL is that the matrix elements can be (approximately)

evaluated in terms of the normalization coefficients c, such that

Smn ≈ 〈Φ|e−m∆β Âe−n∆β Â |Φ〉= c(βm)c(βn)

c2(βk)
(5.34)

and,

Hmn ≈ 〈Φ|e−m∆β Â|Ĥ |e−n∆β Â |Φ〉= c(βm)c(βn)

c2(βk)
〈ψ(βk)|Ĥ |ψ(βk)〉 (5.35)

where 2k = m+ n. This is significant without because it implies that all of the quantities

needed for QL can be determined without ancilla qubits.
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5.3.4 Quantum Krylov

In quantum Krylov diagonalization, a general state is written as a linear combination of

the basis {ψn} generated from Hamiltonian evolutions of time tn = n∆t as

|Ψ〉= ∑
α

cn |ψn〉=
s

∑
n=0

cne−itnĤ |Φ〉 . (5.36)

In QFORTE the quantum circuit used to approximate the time evolution is likewise gener-

ated via Eq. (5.9) using the Suzuki-Trotter decomposition

e−itĤ = e−it ∑` θ`P̂̀ ≈
(

∏
`

e
−itθ` P̂̀

r

)r

, (5.37)

with r Trotter steps. Variational minimization of the energy of the state Ψ leads to the

following generalized eigenvalue problem Hc = ScE, where the elements of the overlap

matrix (S) and Hamiltonian (H) are given by Smn = 〈ψm|ψn〉 and Hmn = 〈ψm|Ĥ |ψn〉,

respectively.

The quantum circuits used to evaluate S and H are implemented in QFORTE via a

variant of the now-commonplace Hadamard test.48 The basis of states Ks(ψn) generated by

real-time evolution spans a classical Krylov space in the small time-step limit. In QFORTE

the time step (∆t), number of time evolutions states (s), and number of Trotter steps (r) are

all given as user-specified values.

Multireference selected QK

A selected multireference variant of QK (MRSQK) is also implemented in QFORTE.

The base procedure is identical to that of QK described in the above section, but several

orthogonal reference states |ΦI〉 are included in the subspace and time evolved in order to

improve numerical stability and target states with multireference character. The MRSQK

wave function is thus given by

|Ψ〉= ∑
α

cα |ψα〉=
d

∑
I=1

s

∑
n=0

c(n)I e−itnĤ |ΦI〉 (5.38)
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In MRSQK, a preliminary single-reference QK calculation is performed in order to de-

termine the set of important references. The resulting single-reference QK wave function
∣∣Ψ̃
〉
= ∑n c̃n |ψn〉 is used to construct a list of determinants with importance value Pµ =

|〈φµ |Ψ̃〉|2, since the probability of measuring a determinant φµ is equal to Pµ = |〈φµ |Ψ̃〉|2.

In QFORTE , the quantity Pµ is approximated by measuring each element of the Krylov

basis and estimating the total probability as a weighted sum over references via

Pµ = |∑
α

〈φµ |ψα〉cα |2 ≈∑
α

|〈φµ |ψα〉|2|cα |2. (5.39)

Once formed, the list of the most important determinants is augmented to guarantee that

all spin arrangements of open-shell determinants are included, and the d most important

references are used in the MRSQK subspace. The number of references (d), the MRSQK

time step ∆tmr, the number of time evolutions per reference (s), and the parameters for the

preliminary single-reference QK calculation are all specified by the user at runtime.

5.4 Conclusion

In this article we introduce the unique open-source software package QFORTE to aid

in the development or quantum simulation algorithms for molecular electronic structure.

QFORTE ’s ability to facilitate black-box calculations with a wide variety of quantum al-

gorithms using only a classical electronic structure package as a dependency makes it ideal

tool for implementing and comparing quantum algorithms. Moreover, the easy-to-use data

structures (implemented as C++ classes exposed in Python) allow QFORTE to function as

an excellent platform for implementation of new quantum algorithms. We hope to con-

tinue implementing new algorithms and features in QFORTE so it will find wide usage with

a variety of research groups and as well as its place in the already impressive cohort of

open-source software for quantum simulation.
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Chapter 6

Conclusions and future directions

In this dissertation, we explore the limitations of classical algorithms for strongly corre-

lated electronic structure problems, outline the initial development of two novel categories

of quantum simulation algorithm, and discuss an novel tool for implementation of new

quantum methods. The studies presented here motivate a need for algorithms capable of

treating strong correlation with a tractable number of classical parameters. They also show-

case suitable quantum algorithms to fulfill this need which will become increasingly viable

for treatment of large-scale strong correlation as physical quantum computers come into

maturity.

Our first study explores the ability of classical electronic structure methods to efficiently

represent (compress) the information content of full configuration interaction (FCI) wave

functions of strongly correlated systems. We introduce a benchmark set of four hydrogen

model systems of different dimensionality and distinctive electronic structures: a 1D chain,

a 1D ring, a 2D triangular lattice, and a 3D close-packed pyramid. To assess the ability of a

computational method to produce accurate and compact wave functions, we introduce the

accuracy volume, a metric that measures the number of variational parameters necessary

to achieve a target energy error. Using this metric and the hydrogen models, we examine

the performance of three classical deterministic methods: i) selected configuration interac-

tion (sCI) realized both via an a posteriori (ap-sCI) and variational selection of the most

important determinants, ii) an a posteriori singular value decomposition of the FCI tensor
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(SVD-FCI), and iii) the matrix product state representation obtained via the density matrix

renormalization group (DMRG). We find that DMRG generally gives the most efficient

wave function representation for all systems, particularly in the 1D chain with a localized

basis. For the 2D and 3D systems, all methods (except DMRG) perform best with a de-

localized basis, and the efficiency of sCI and SVD-FCI is closer to that of DMRG. For

larger analogs of the models, DMRG consistently requires the fewest parameters, but still

scales exponentially in 2D and 3D systems, and the performance of SVD-FCI is essentially

equivalent to that of ap-sCI.

Motivated by the findings of our first study, we then introduce a multireference quan-

tum Krylov (MRSQK) algorithm suitable for quantum simulation of many-body problems.

MRSQK is a low-cost alternative to the quantum phase estimation algorithm that generates

a target state as a linear combination of non-orthogonal Krylov basis states. This basis is

constructed from a set of reference states via real-time evolution avoiding the numerical

optimization of parameters. An efficient algorithm for the evaluation of the off-diagonal

matrix elements of the overlap and Hamiltonian matrices is discussed and a selection pro-

cedure is introduced to identify a basis of orthogonal references that ameliorates the linear

dependency problem. Preliminary benchmarks on linear H6, H8, and BeH2 indicate that

MRSQK can predict the energy of these strongly correlated systems accurately using very

compact Krylov bases.

In our third study we present another new hybrid quantum-classical algorithm for op-

timizing unitary coupled-cluster (UCC) wave functions deemed the projective quantum

eigensolver (PQE), amenable to near-term noisy quantum hardware. Contrary to varia-

tional quantum algorithms, PQE optimizes a trial state using residuals (projections of the

Schrödinger equation) rather than energy gradients. We show that the residuals may be

evaluated by simply measuring two energy expectation values per element. We also intro-

duce a selected variant of PQE (SPQE) that uses an adaptive ansatz built from arbitrary-

order particle-hole operators and circumvents the expensive gradient-based selection pro-
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cedures used in adaptive variational quantum algorithms. PQE and SPQE are tested on a

set of molecular systems covering both the weak and strong correlation regimes, includ-

ing hydrogen clusters with 4–10 atoms and the BeH2 molecule. When employing a fixed

ansatz, we find that PQE can converge UCC wave functions to essentially identical energies

as variational optimization while requiring fewer computational resources. A comparison

of SPQE and adaptive variational quantum algorithms shows that—for ansätze containing

the same number of parameters—the two methods yield results of comparable accuracy.

Finally, we show that SPQE performs similar to, and in some cases, better than selected

configuration interaction and the density matrix renormalization group on 1–3 dimensional

strongly correlated H10 systems.

In the last work presented in this dissertation we introduce an novel open-source soft-

ware package QFORTE. The package is a tool for development of new quantum algorithms,

and facilitated the (now publicly available) implementation of the algorithms presented in

the aforementioned studies. It additionally contains black-box implementations of a wide

variety of quantum algorithms, requiring only a classical electronic structure package as

a dependancy. QFORTE will undoubtably improve the quality of future quantum algo-

rithmic developments by allowing researchers to easily compare new methods to existing

approaches without implementing them from scratch.

While the developments presented in this dissertation represent entirely new insight and

approaches for the treatment of strongly correlated fermionic systems, there is still much

potential for future work following our initial directions. Firstly, investigation of the two

and three dimensional systems used in our first study with more general tensor network

approaches (beyond matrix product states) would provide valuable insight for construction

of (potentially ultra-compact) unitary ansatz in VQE. Additionally, we envision the usage of

our MRSQK algorithm for targeted treatment of excited states by augmenting the reference

selection procedure, and fine-tuning of the time grid. The projective quantum eigensolver

presented in our third study can likewise be extended in a number of ways such as derivation
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of the amplitude update equations for repeated or generalized operators or investigation of

an orthogonality-constrained variant to treat excited states. Generalization of the work

presented in this dissertation has the potential to define a new state-of-the art for quantum

simulation algorithms.
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