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Abstract

Estimation of Potential Outcomes when Treatment Assignment

and Discontinuation Compete in Observational Data

By Xin Lu

In clinical studies, randomization of treatment lengths may not be feasible in prac-
tice, resulting in the confounding of treatment effects. Moreover, treatment decisions
may be missing due to treatment-terminating events. Therefore, to estimate the mean
outcome across treatment lengths while accounting for the above obstacles, we pro-
pose several new estimators using causal inference theory and methods for different
treatment assignment settings.

In the first project, we propose a new direct estimator for the mean outcome of a
target treatment length policy using outcome regression. The estimator works well in
both discrete and continuous time. We exemplify the direct estimator through small
sample numerical studies and the analysis of two real data sets and show the direct
estimator is more precise.

In many dynamic regimes, patients’ treatment plan may vary with changes in their
clinical characteristics that measured at routine clinic visits, which may also be con-
founded with patients’ outcomes. To taking into account of the time-varying effects,
in the second project, we implemented the G-computational algorithm in outcome
regression with two approaches to estimate the mean potential outcome on treatment
length policies. In simulation studies, our approaches are more efficient compared to
an existing inverse probability weighting estimator. It could also approximate the
distribution as well as the mean of the potential outcomes.

To maintain the consistency of our estimators proposed in the previous two projects,
the outcome regression models must be correctly specified, which may not be always
met. To achieve a consistent estimation under moderate miss-specification, under
the same dynamic regime setting as project 2, we propose a doubly-robust estimator
and an improved doubly-robust estimators for estimating the mean potential out-
comes while adjusting for time-varying effects. They demonstrate desirable proper-
ties for small samples in simulation studies and the improved doubly robust estimator
achieves minimum variance even when the outcome regression model may be miss-
specified.
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Chapter 1

Introduction

1.1 Introduction

In clinical studies, patients takes treatment over time according to plans pre-determined

by their physicians largely based on the patients demographic and clinical character-

istics. However, treatment-terminating events such as adverse events may stop the

treatment earlier than scheduled. Because the presence or absence as well as the

timing of such treatment-terminating events are expected to be related to the clinical

outcome and also influenced by patient-specific factors, causal inference methods will

be appropriate to apply instead of approaches for controlled randomized trials. In

this dissertation, we propose new estimators using casual inference theory to ana-

lyze datasets motivated by several medical studies. Below is an illustration on two

motivating studies, as well as a brief introduction on causal inference methods.

1.1.1 The Enhanced Suppression of the Platelet IIb/IIIa Re-

ceptor with Integrilin Therapy (ESPRIT) trial

The Enhanced Suppression of the Platelet IIb/IIIa Receptor with Integrilin Therapy

(ESPRIT) trial was conducted to compare eptifibatide therapy to placebo on the ba-



2

sis of the composite binary endpoint of death, myocardial infarction, or urgent target

vessel revascularization within 30 days. The administration of the regimen consists of

a integrilin bolus followed by integrilin infusion, the latter of which was expected to

last 18-24 hours. If a serious complication occurred during the infusion, the infusion

process was discontinued immediately so the patient can receive appropriate medical

attention. Although this data was taken from a randomized controlled clinical trial of

integrilin versus placebo treatments, patients were not randomized to infusion length

and a comparison of outcomes across different infusion lengths is subject to confound-

ing. Hence, we adjusted for five baseline confounders in our analysis: indicators for

diabetes, percutaneous transluminal coronary angioplasty, angina, heparin use, and

the continuous variable weight.

This same data set of 1040 patients randomized to integrilin therapy was ana-

lyzed in Johnson and Tsiatis (2004) using inverse weighting to adjust for potential

confounding and so our re-analysis here allows for a direct comparison — see µ̂
(1)
jn

(assuming confounding is presented through baseline only) in Table 2 of Johnson and

Tsiatis (2004).

Only 10% of patients did not experience an adverse event within the follow-up

period. All of them are censored during the first 19 hours. More than half (55%) are

censored within 5 hours after the infusion starts. The Kaplan-Meier survival curves

are shown in Figure 1.1.

1.1.2 AIDS Clinical Trials Group Study A5095

AIDS Clinical Trials Group (ACTG) Study A5095 is a multi-center clinical trial

designed to compare three antiretroviral regimens in antiretroviral therapy (ART)-

naive patients with a median of follow-up time of approximately three years. After

a patient experiences an virologic failure in one ART arm, he/she will switch to

another regimen. In practice, the time between virologic failure to switch is usually
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Figure 1.1: Survival curves for patients who experience adverse events in 30 days
Survival probability in time regarding adverse events (solid line) and censoring

(dashed line)

subject to physicans’ decisions which very likely involve the patients demographic

and clinical characteristics as well. However, due to the trade-off between prolonging

virologic suppression and preventing clinical symptoms occurrence in patients who

rebound in viral load, the best timing in regimen switch is still under investigation.

Additionally, the treatment with initial regimen may stop early for some patients

prior to the designed switch time because of drop out or death of the patients or

the patients may not switch regimen at all during the course of the study. Thus,

estimating the outcomes when switching skeme is performed exactly as designed is

substantially meaningful for finding the optimal switch time point.

Our interest here is the potential outcome of viral load and cumulative CD4 cell

count in the hypothetical setting that the patients who experienced virologic failure

switch regimen at designed time. Specifically, we used three length-adjusted area-

under-the-curve endpoints, i.e. cumulative viral load, days below the limit of detection

(the proportion of time with suppressed viral load) and CD4 cell count. Only (182)

patients who experienced virologic failure were considered here. Among them, 100

participants (55% of 182) did not switch within the follow-up period. Of these 100
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participants with censored switching times, 42 participants were followed for at least

100 days, 27 participants followed for at least 120 days, and 11 participants followed

for at least 140 days. The Kaplan-Meier survival curves are shown in Figure 1.2. The

detail specifications of the endpoints and covariates are available in Li et al. (2012);

Johnson et al. (2013).
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Figure 1.2: Survival curves for patients who experience virologic failure from ATCG
Study A5095
Survival probability in time regarding switching (solid line) and censoring (dashed

line)

1.1.3 Causal Inference

In this dissertation research, we adopt Rubin’s counterfactual model (Rubin, 1974)

and the ideas of potential outcomes (Neyman, 1923; Rubin, 1974). The potential

outcome of a treatment plan is defined as the outcome that one will observe if one is

treated according to the treatment plan.

In a simple case where we have binary treatment. Then each unit in population

has observed data (Z,X, Y ), and potential outcomes (Y ∗1 , Y
∗

0 ) where

� Z = indicator for treatment assignment with levels 0, 1, where 1=”treated”,

0=”control”.
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� X = a vector of covariates

� Y = observed outcome

� Y ∗1 = potential outcome that would be observed if unit assigned to Z = 1.

� Y ∗0 = potential outcome that would be observed if unit assigned to Z = 0.

The causal effect for each unit is Y ∗1 − Y ∗0 . The average causal effect is defined

as T = E(Y ∗1 − Y ∗0 ) = E(Y ∗1 )− E(Y ∗0 ). That is, how much effect on the outcome in

the population of interest is attributable to 1 vs. 0. In order to estimate E(Y ∗1 ) and

E(Y ∗0 ), we need to use two fundamental assumptions in causal inference.

Under the stable unit value treatment assumption (SUTVA)(Rubin, 1978), there

is no interference on response between individual units. So we have

Y = Y ∗1 Z + Y ∗0 (1− Z).

Then under the sequential randomization assumption (SRA) which is also known

as no unmeasured confounders assumption, choice of treatment is completely random

given covariate X.

Then we can estimate T , by

T = E(Y ∗1 )− E(Y ∗0 ) = E{E(Y ∗1 | X)− E(Y ∗0 | X)}

= E{E(Y | Z = 1,X)− E(Y | Z = 0,X)}

In a more sophisticated setting where we have binary treatment length t=t1, t2

and treatment terminating event C, the observed data are (U,X,∆, Y ) and potential

outcomes for each individual are (Y ∗t1 , Y ∗t2 , Y ∗C).

Under SUTVA,

Y = Y ∗t∧C = Y ∗t11(U = t1,∆ = 1) + Y ∗t21(U = t2,∆ = 1) + Y ∗C1(U = C,∆ = 0)
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We then have causal estimand:

E(Y ∗t1∧C) = E{Y ∗t11(U = t1,∆ = 1) + Y ∗C1(U < t1,∆ = 0)}

= E{E
[
Y ∗t11(U = t1,∆ = 1) | X

]
+ E [Y ∗C1(U < t1,∆ = 0) | X]}

= E{E [Y | U = t1,∆ = 1,X] + E [Y | U < t1,∆ = 0,X]}

E(Y ∗t2∧C) = E{Y ∗t21(U = t2,∆ = 1) + Y ∗C1(U < t2,∆ = 0)}

= E{E
[
Y ∗t21(U = t2,∆ = 1) | X

]
+ E [Y ∗C1(U < t2,∆ = 0) | X]}

= E{E [Y | U = t2,∆ = 1,X] + E [Y | U < t2,∆ = 0,X]}

Under the setting that the treatment length is continuous instead of categorical,

we have the observed data (U,X,∆, Y ) and potential outcomes for each individual

(Y ∗t , Y ∗C)

By SUTVA, Y = Y ∗t ∆ + Y ∗C(1−∆). So we have causal estimand

E(Y ∗t∧C) = E{Y ∗t 1(C ≥ t) + Y ∗C1(C < t)},

which by SRA, is equivalent to

E [E{Y | C ≥ t,X}+ E{Y | C < t,X}] .

Estimation approaches

To estimate causal estimand, the popular strategies include matching or stratifica-

tion based on covariates or propensity score(Rosenbaum and Rubin, 1984), inverse

probability weighting based on propensity score(Johnson and Tsiatis, 2004, 2005) and

outcome regression modeling (Chapter 2 & 3). Here we focus on the inverse probabil-

ity weighting appraoch, with propensity score modeling the probability of treatment

assignment given covariates, as well as the outcome regression approach, which di-
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rectly fits the outcome with covariates and treatment assignment. For the simplest

case mentioned above, if using outcome regression method, one first postulate a model

for the outcome regression E{Y | Z,X}, then fit the model and average the result

estimates E(Y | Z = 1,X) and E(Y | Z = 1,X) over all observed X respectively. In

order to get unbiased estimates, the postulated outcome regression must be identi-

cal to the true regression model. On the other hand, if using the inverse probability

weighting estimator. one first postulate and fit a logistic model for treatment selection

P (Z | X) = π(X,β), j = 1, 2. Then calculate the inverse propensity score weighted

averages 1(Z=1)

π(X,β̂)
Y and 1(Z=0)

1−π(X,β̂)
Y . If π(X,β) = π(X) the true propensity score, then

E

[
ZY

π(X)

]
= E

[
ZY ∗1
π(X)

]
= E

[
E{ ZY

∗
1

π(X)
| Y ∗1 ,X}

]
= E

[
Y ∗1

P (Z | Y ∗1 ,X)

π(X)

]
= E [Y ∗1 ]

Note that the first step holds because ZY = Z(ZY ∗1 + (1 − Z)Y ∗0 ) = Z2Y ∗1 = ZY ∗1 .

Similarly,

E

[
(1− Z)Y

1− π(X)

]
= E

[
(1− Z)Y ∗0
1− π(X)

]
= E

[
E{(1− Z)Y ∗0

π(X)
| Y ∗0 ,X}

]
= E

[
Y ∗0

1− P (Z | Y ∗0 ,X)

1− π(X)

]
= E [Y ∗0 ]
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In order to for the above properties to hold when using our postulated propensity

score model π(X,β), the postulated propensity score model must be identical to the

true propensity π(X).

So in order for the inverse probability weighting or outcome regression estimators

to work, their postulated model has be correctly specified, which may not always

suffice. To improve the consistency in estimation under model miss specification,

Robins et al. (1994) proposed an augmented inverse probability estimator, which

is an inverse probability estimator augmented with conditional outcome regression

models. This new estimator is consistent as long as either the propensity score model

or the outcome regression model is correctly specified. And it is also semi-parametric

efficient if both model assumptions are correct. Based on these properties, Scharfstein

et al. (1999) identified this class of estimators as being doubly-robust. It is then

recommended for routine use due to the merit of extra protection over model miss-

specification (Bang and Robins, 2005; Li et al., 2012). In the same simple case

mentioned above, the doubly robust estimators will be:

µ̂1,DR =
1

n

n∑
i=1

[
ZiYi

π(Xi, β̂)
− Zi − π(Xi, β̂)

π(Xi, β̂)
m1(Xi, α̂1)

]

µ̂0,DR =
1

n

n∑
i=1

[
(1− Zi)Yi

1− π(Xi, β̂)
− Zi − π(Xi, β̂)

1− π(Xi, β̂)
m0(Xi, α̂0)

]
.

Here π(X,β) is the postulated propensity score model; m0(X,α0) and m1(X,α1) are

the postulated model for outcome regressions E(Y | Z = 0,X) and E(Y | Z = 1,X)
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respectively. Note that for the treatment group,

E

[
ZY

π(X,β)
− Z − π(X,β)

π(X,β)
m1(X,α1)

]
= E

[
ZY ∗1

π(X,β)
− Z − π(X,β)

π(X,β)
m1(X,α1)

]
= E

[
Y ∗1 +

Z − π(X,β)

π(X,β)
{Y ∗1 −m1(X,α1)}

]
= E(Y ∗1 ) + E

[
Z − π(X,β)

π(X,β)
{Y ∗1 −m1(X,α1)}

]

When the propensity score is correctly specified but outcome regressions are not, we

have π(X,β) = π(X). Then

E

[
Z − π(X)

π(X)
{Y ∗1 −m1(X,α1)}

]
= E

[
E{Z − π(X)

π(X)
{Y ∗1 −m1(X,α1)} | Y ∗1 ,X}

]
= E

[
{Y ∗1 −m1(X,α1)}E{Z − π(X)

π(X)
| Y ∗1 ,X}

]
= E

[
{Y ∗1 −m1(X,α1)}E{Z | Y

∗
1 ,X} − π(X)

π(X)

]
= E

[
{Y ∗1 −m1(X,α1)}π(X)− π(X)

π(X)

]
= 0

Thus, µ̂1,DR is consistent. And similarly, so is µ̂0,DR.

When the outcome regression is correctly specified but propensity score is not,

we have m1(X,α1) = E(Y | Z = 1,X) = E(Y ∗1 | X) and m0(X,α0) = E(Y | Z =
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0,X) = E(Y ∗0 | X). Then

E

[
Z − π(X)

π(X)
{Y ∗1 − E(Y ∗1 | X)}

]
= E

[
E{Z − π(X)

π(X)
{Y ∗1 − E(Y ∗1 | X)} | Z = 1,X}

]
= E

[
Z − π(X)

π(X)
E{{Y ∗1 − E(Y ∗1 | X)} | Z = 1,X}

]
= E

[
Z − π(X)

π(X)
{E(Y ∗1 | Z = 1,X)− E(Y ∗1 | X)}

]
= E

[
Z − π(X)

π(X)
{E(Y ∗1 | X)− E(Y ∗1 | X)}

]
= 0

Thus, µ̂1,DR is consistent. And similarly, so is µ̂0,DR.

It is obvious that when both models are correct, µ̂1,DR and µ̂0,DR are consistent.

And when neither model is correct, both estimators are inconsistent.

When the propensity score model is correct, the variance of the doubly robust

estimator will be smaller than that of the inverse probability weighting estimator.

Meanwhile, when the outcome regression model is correct, the variance of the doubly

robust estimator may be larger than that of the outcome regression estimator, but

will offer protection in the event that it is not.

1.2 Outline

The remainder of the dissertation proposal is organized as follows. In Chapter 2,

we propose a novel outcome regression estimator for estimating continuous/discrete

treatment effect when decision of treatment is confounded with both the clinical out-

comes and patients demographic and clinical characteristics. Simulation studies and

two real data application are provided to illustrate the performance of our method. In

Chapter 3, we extended the method in Chapter 2 to estimate discrete treatment effect
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allowing for time-dependent confounders, where simulation studies are provided. At

last in Chapter 4, we proposed a doubly robust estimator which takes time-varying

confounders into account as well as an improved version of this estimator that mini-

mizes its variance when the outcome regression model may be miss-specified. We also

examined their performance in sensitivity analysis in the presence of miss-specification

in either outcome regression or propensity score model via simulation studies. Then

we conclude this dissertation with a summary on the three estimators.
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Chapter 2

Direct Estimation of the Mean

Outcome amidst Early Treatment

Stoppage

2.1 Introduction

In clinical studies where treatment is administered continuously over time, there are

provisions in study protocols that dictate how a patient’s treatment is to be managed

in critical situations, when it is no longer feasible or ethical to continue the current

treatment regimen and treatment must be terminated or discontinued prematurely.

When there is no treatment-terminating event, treatment continues until such time

the provider renders it appropriate to stop treatment. Thus, actual treatment is given

until the provider decides to stop treatment or until a treatment-terminating event

occurs, whichever comes first. Treatment for all study participants is completed in a

fixed window of time and a clinical endpoint measured after that window closes. The

goal is to draw inference on the mean outcome for a treatment regimen that accounts

for premature treatment discontinuation.
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Following Johnson and Tsiatis (2004, 2005), we define Y ∗t as the potential outcome

(Rubin, 1974) if a participant is treated to the intended treatment length at time t.

We define the intermediate outcome C as the time at which a randomly selected

individual from our population would have a treatment-terminating event, assuming

the individual has been continuously treated up to time C and Y ∗C as the potential

outcome if treatment is stopped due to such treatment-terminating event. Then,

the potential outcome for an individual treated to time t ∧ C is Y ∗t∧C = Y ∗t I(C ≥

t) + Y ∗CI(C < t), and the causal estimand of interest is the population mean,

µ∗(t) = E(Y ∗t∧C) = E{Y ∗t I(C ≥ t)}+ E{Y ∗CI(C < t)}. (2.1)

Johnson and Tsiatis (2004) referred to the combined act of treating toward the mini-

mum of a provider-intended treatment length and a potential treatment-terminating

event as the ‘treatment length policy at time t’ and they showed how such policies

may be viewed as instances of dynamic regimes (Robins, 1986; Murphy et al., 2001)

in the presence of time-dependent confounding. In defining the policy, it is important

to clarify that treatment assignment is governed by the provider’s action and this

action serves as the control variable of a dynamic system. Although the policy is also

defined by premature discontinuation or treatment-terminating events, these events

are beyond provider’s control and not considered part of the treatment decision. In

related work, Zhang et al. (2011) extended the above definition of treatment policy to

incorporate other treatment options of which the participants may avail themselves.

The methods developed by Johnson and Tsiatis (2004, 2005) and Zhang et al.

(2011) were similarly motivated by applications to infusion trials and the problem is

similar to the former where treatment length is the single control variable of interest.

After defining the causal estimands of interest, these authors proposed inverse prob-

ability of treatment weighted (IPW) estimators to adjust for potential confounding
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in the treatment assignment mechanism. The work here differs fundamentally from

that proposed by Johnson and Tsiatis (2004, 2005) or Zhang et al. (2011) in that it

does not rely on a treatment model and the reasons that motivate this departure are

explained below.

When treatment realizes only one of K levels, t ∈ {t1, . . . , tK}, Johnson and

Tsiatis (2004) proposed an inverse probability weighting estimator for µ∗(t) as a

weighted average of observations from participants whose provider stopped treat-

ment at time t by choice and from participants whose treatment was discontinued

prematurely due to treatment-terminating events with weights equal to the inverse

probability of treatment stopped by choice at time t and at some time later than the

treatment-terminating event, respectively. These probabilities are synonymous with

the ubiquitous propensity scores (Rosenbaum and Rubin, 1983) and modeled using a

discrete-time hazards model or pooled logistic regression for failure time data. How-

ever, when treatment realizes any value in an interval, say t ∈ [τl, τu], their methods

do not apply because of the continuous nature of the treatment assignment mecha-

nism, hence, the probability that a provider stops treatment at time t is nil for every

t ∈ [τl, τu]. In this case, Johnson and Tsiatis (2005) proposed to model µ∗(t) para-

metrically in time through a continuous-time extension of dynamic regimes (Murphy

et al., 2001). The challenge with this approach is that modeling µ∗(t) as a simple

parametric model can be tricky because the effect the potential treatment-terminating

event process on the estimand is complex and there are few, if any, diagnostic tools

to aid in evaluating model fit on the potential outcome scale.

In the sequel, we propose and evaluate a novel estimator for the causal estimand

µ∗(t) that achieves three goals. First, there is no need to model parametrically the

mean potential outcome µ∗(t). Second, because there is no treatment model, the

estimator works equally as well for treatment data arising in discrete or continuous

time. Third, the proposed estimator relies on an entirely different set of modeling
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assumptions compared to Johnson and Tsiatis (2004, 2005) yet is still regular and

asymptotically linear. The procedure outlined below uses a new and intriguing com-

bination of competing risks, survival analysis, and semiparametric inference and may

be of general interest outside the particular clinical application. Theoretical details

are relegated to Supplementary Material.

2.2 Methods

2.2.1 Data and likelihood

In order to describe the observed data likelihood, we describe in detail the ob-

served data. Let A denote treatment length and suppose there are K treatment

targets, 0 < t1 < t2 < · · · < tK , at which time providers intend to stop treatment.

Treatment-terminating events may occur at any time after treatment initiation but,

if no terminating events have occurred prior to time tK while the participant has been

continuously treated, then they are assigned treatment tK with probability one. In

chronological order, the observed data are

Z = {X,CI(0 ≤ C < t1), I(A = t1)I(C ≥ t1), CI(t1 ≤ C < t2)I(A > t1, C ≥ t1),

. . . ,

CI(tK−1 ≤ C < tK)I(A > tK−1, C ≥ tK−1), I(A = tK)I(A > tK−1, C ≥ tK),

Y }.

Similar to analyses of informative dropout in longitudinal studies (cf. Scharfstein

et al., 1999), we have the opportunity to collect and observe data only if a patient

is still being followed. However, unlike data analyses with dropout where no data is

collected after the point of dropout, the outcome Y is always observed in our case

regardless of how and when treatment was discontinued. It is also worth noting that
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if we regard CI(tj−1 ≤ C < tj) and I(A = tj) as intermediate potential outcomes and

treatment assignment at tj, respectively, their competition for observation does not fit

cleanly into the conventional dynamic regime setup (cf. Robins, 1986, 1997; Murphy

et al., 2001). In the setup here, note that treatment assignment is only well-defined at

time tj if continuously treated up through time tj and is missing otherwise; in Murphy

et al. (2001), treatment assignment is well-defined for all t1, . . . , tK . Hence, Johnson

and Tsiatis (2005) introduced the at-risk process from survival analysis (Andersen

et al., 1993; Kalbfleisch and Prentice, 2002) to provide clarity in defining the observed

data over the entire study period. Along these lines, we define the observed treatment

length, reason for treatment discontinuation, and at-risk indicator:

U = A ∧ C, ∆ = I(A ≤ C), R(t) = I(U ≥ t),

respectively, where x∧y denotes min(x, y). Then, under the conditional independence

of A and C given X and with mild abuse of notation, the observed data can be

rewritten

Z = {X,UI(0 ≤ U < t1,∆ = 0), I(U = t1,∆ = 1)R(t1),

UI(t1 ≤ U < t2,∆ = 0)R(t1),

. . . , UI(tK−1 ≤ U < tK ,∆ = 0)R(tK−1), I(U = tK ,∆ = 1)R(tK), Y }.

We see that the at-risk process is carried through the definitions of intermediate

outcomes and treatment assignment from the beginning of the study through time

tK . In connecting the former and latter definitions of observed data, it is evident

that ideas central to competing risks (Tsiatis, 1975) plays a fundamental role in our

problem.

In the discrete time scenario, the likelihood for a single observation Z is L(Z) =
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L1(Z)LD
2 (Z), where

L1(Z) = {f1(Y | U,X)G(U | X)}∆ {f0(Y | U,X)g(U | X)}1−∆ h(X),

f1 and f0 are the conditional densities of Y given the observed treatment length U and

covariates X when treatment is stopped due to provider discretion versus terminating

event, respectively, h is the marginal density of X, g and G are the conditional cause-

specific density and survivor function of U given X when ∆ = 0, respectively, and

LD
2 (Z) =[
{pr(U = t1,∆ = 1 | X)}I(U=t1) · · · {pr(U = tK ,∆ = 1 | X)}I(U=tK)

]∆
×
[
{pr(U ≥ t1,∆ = 1 | X)}I(U<t1) · · · {pr(U ≥ tK−1,∆ = 1 | X)}I(tK−2≤U<tK−1)

]1−∆
.

In the discrete time setting, LD
2 (Z) is completely identified through the probabilities,

pr(U = tj,∆ = 1 | X), j = 1, . . . , K, and is important because it implies the

treatment assignment mechanism is parametric.

Now, when treatment is assigned continuously over the closed interval [τl, τu], the

likelihood is L(Z) = L1(Z)LC
2 (Z), where L1(Z) is given above and

LC
2 (Z) = π

t∈[τl,τu]

{
pr(t ≤ U < t+ dt,∆ = 1 | X)I(t≤U<t+dt)

}∆ ×{
pr(U ≥ t,∆ = 1 | X)I(U≥t)

}1−∆

= {f(U | X)}∆{S(U | X)}1−∆,

where π is the product integral, f(t | X) and S(t | X) are the conditional cause-

specific density and survivor function, respectively, of U given X when ∆ = 1. Unlike

the discrete time setting, the treatment assignment mechanism is now infinite dimen-

sional and modeling the mechanism without unnecessarily strong assumptions is more

difficult. Naturally, the cardinality of treatment assignment affects the observed data
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likelihood only through LD
2 (Z) or LC

2 (Z) while L1(Z) remains the same. The primary

reason L1(Z) remains the same is because the potential treatment-terminating events

are assumed to arise continuously in time in either scenario, regardless of treatment

assignment.

2.2.2 The estimand

To motivate the approach below, we show how the estimand may be expressed through

the conditional densities of observed data, rather than simply the expectation of a

potential outcome (Johnson and Tsiatis, 2004, 2005). Let W be an intermediate

random variable along the causal pathway, X 7→ W 7→ Y , and write the marginal

mean of Y , ∫
X

∫
W

∫
Y
y fY (y | w, x)fW (w | x)h(x) dy dw dx, (2.2)

where fY and fW are conditional density functions, h is the marginal density function

of X as before, X , W , and Y are the domains of x, w and y, respectively. Now, set

W = t ∧ C, where C is the event time of potential treatment-terminating events

and treatment assignment at time t is fixed, t ∈ [τl, τu], τl ≥ 0, τu < ∞ chosen

to satisfy suitable regularity conditions. Then, for almost every x ∈ X (Ash and

Doléans-Dade, 1999), the conditional density function of W given X = x is a mixture

of a point mass function at t when C ≥ t and the conditional density function of

C given X = x when C < t, i.e. fW (w | x) = {G(t | x)}I(w≥t){g(w | x)}I(w<t).

Importantly, although we require G(0 | x) = 1 for every x, we allow G(τl | x) < 1 for

any x ∈ X ; that is, we expect that the probability of a treatment-terminating event

occurring prior to time τl to be non-zero for some or all covariate values in the domain.

The conditional density fY (y | w, x) can be written as a mixture of two conditional

density functions, fY (y | w, x) = {f1(y | t, x)}I(w≥t){f0(y | w, x)}I(w<t), with f1 and

f0 defined earlier. This definition makes explicit the role of the terminating-event on
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the observed distribution of the clinical endpoint and allows for the possibility that

the terminating-event is informative. Assuming that treatment length must take

positive values, settingW = [0,∞), and substituting the definitions of fW (w | x) and

fY (y | w, x) into (2.2) above, we define the estimand

µ(t) =

∫
X

∫
Y
y f1(y | t, x)G(t | x)h(x) dy dx (2.3)

+

∫
X

∫
[0,t)

∫
Y
y f0(y | w, x)g(w | x)h(x) dy dw dx. (2.4)

Evidently, the estimand µ(t) contains two parts: expression (2.4) pertaining to the

case where the treatment-terminating event precedes time t and expression (2.3)

pertaining to the case where the treatment-terminating event exceeds time t. As

the probability of a treatment-terminating event preceding time t decreases to zero,

G(t | x) approaches one and µ(t) approaches the conventional definition for the popu-

lation mean given treatment at time t,
∫
X

∫
Y yf1(y | t, x)h(x) dy dx. Interestingly, the

estimand µ(t) depends on the likelihood through L1(Z) only whereas the treatment

assignment probabilities in LD
2 (Z) or LC

2 (Z) are nuisance parameters (Robins, 1986,

1989, 1997; Murphy et al., 2001).

To see how µ(t) relates to the causal estimand µ∗(t), we rely on two assumptions —

the stable unit treatment value assumption (Rubin, 1978) and the strong ignorability

assumption (Rosenbaum and Rubin, 1983) stating the conditional independence of

the potential outcomes and treatment assignment given X, also known as the no

unmeasured confounders assumption (Robins, 1997) — and standard arguments from

causal inference. Briefly, through stable unit treatment value assumption and strong

ignorability, we conclude that (2.3) is exactly equal to E{Y ∗t I(C ≥ t)}. The same

arguments lead us to conclude (2.4) is equal to E{Y ∗CI(C < t)}. Therefore, µ(t) =

µ∗(t) by definition. Note that µ∗(t) has a causal interpretation whereas µ(t) does

not. On the other hand, µ(t) can simply be viewed as a reparameterization of the
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conditional densities from the observational distribution (cf. Murphy et al., 2001). In

the development below, we state all results in terms of the estimand µ(t) with the

understanding that the same conclusions apply to the causal estimand µ∗(t) under

two additional non-identifiable assumptions.

2.2.3 Direct Estimation

Define the conditional expectations m1(t, x) =
∫
yf1(y | t, x) dy, m0(u, x) =

∫
yf0(y |

u, x) dy in the absence and presence of treatment-terminating events, respectively.

Define the cause-specific hazard function,

λ(0)(u | X) = lim
ε→0

1

ε
pr(u ≤ C < u+ ε | C ≥ u,X),

and, by definition, G(t | x) = exp
{
−
∫ t

0
λ(0)(u | x) du

}
. Throughout the manuscript,

we adopt the superscript “(0)” to denote cause-specific functions where ∆ = 0 and

other related quantities associated with the potential treatment-terminating random

variable. Following the expressions in (2.3)–(2.4), if m1, m0, and G were known, then

a direct estimator for µ(t) would be

∫
X

[
m1(t, x)G(t | x)−

∫
[0,t)

m0(u, x) dG(u | x)

]
dHn(x),

where Hn is the empirical distribution function of X. Because m1, m0, and G are

not known, we estimate these functions using regression models. Therefore, a general

expression for the direct estimator is

µ̂n(t) =

∫
X

[
m̂1(t, x)Ĝ(t | x)−

∫
[0,t)

m̂0(u, x) dĜ(u | x)

]
dHn(x), (2.5)

where m̂1, m̂0, and Ĝ are consistent estimators for m1, m0, and G, respectively.

If there were no treatment-terminating events such that G(t | x) = 1 for all x, x
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were scalar, and we modeled m1(t, x) using nonparametric kernel methods, then (2.5)

reduces to an expression analogous to Cheng’s (1994) outcome regression estimator

for dichotomous treatments. Thus, the general expression in (2.5) is only limited by

one’s ability to form predicted values from three regression modeling procedures. In

many cases, such predicted values are standard output in software packages.

In the sequel, we provide details for some fundamental, ubiquitous parametric

and semi-parametric models. First, we parameterize m1 and m0 linearly through the

finite parameter vectors β = (β0, βU , β
T
X)T and α = (α0, αU , α

T
X)T with m1(U,X; β) =

β0 + βUU +XTβX and m0(U,X;α) = α0 + αUU +XTαX . The regression coefficients

α, β are estimated via least squares,

β̂n = min
β

n∑
i=1

∆i {Yi −m1(Ui, Xi; β)}2 , α̂n = min
α

n∑
i=1

(1−∆i) {Yi −m0(Ui, Xi;α)}2 ,

and the predicted values computed via the linear predictor. We parameterize G

through its hazard function and then we parameterize and model the cause-specific

hazard function λ(0)(t | X; γ) through the finite parameter vector γ. We consider both

parametric log-linear models (cf. Kalbfleisch and Prentice, 2002) and Cox’s (1972)

proportional hazard model for λ(0)(t | X; γ). In the parametric case, we use the

extreme value model, λ(0)(t | X; γ) = γ1 exp(XTγ2)tγ1−1 and consequently G(t |

x; γ) = exp{− exp(xTγ2)tγ1}, and estimate γ by maximum likelihood,

γ̂n = max
γ

n∑
i=1

[
(1−∆i) log

{
λ(0)(Ui | Xi; γ)

}
+ log {G(Ui | Xi; γ)}

]
.

The maximum likelihood estimator for the survivor function at X = x is Ĝ(t |

x) = G(t | x; γ̂n). In the case of the proportional hazards model, λ(0)(t | X) =

λ0(t) exp(XTγ), for an arbitrary baseline hazard function λ0(t), and we similarly
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estimate the regression coefficients by maximizing the log partial likelihood,

γ̂n = max
γ

n∑
i=1

{
(1−∆i)

[
XT

i γ − log

{
n∑
j=1

exp(XT

j γ)Rj(Ui)

}]}
.

Then, we define the predicted survivor curve at X = x as Ĝ(t | x) = G(t | x; γ̂n) =

exp{−Λ̂0(t, γ̂n) exp(xTγ̂n)}, and Breslow’s estimator for the integrated baseline hazard

function,

Λ̂0(t, γ̂n) =

∫ t

0

dN̄ (0)(u)∑n
i=1 exp(XT

i γ̂n)Ri(u)
,

N
(0)
i (u) = I(Ui ≤ u,∆i = 0), N̄ (0)(u) =

∑n
i=1N

(0)
i (u).

Finally, define the vectors θ = (βT, αT, γT)T and θ̂n = (β̂T
n , α̂

T
n, γ̂

T
n)T, where γ̂n

refers to either the maximum likelihood or maximum partial likelihood estimator for

γ. Then, the direct estimator is µ̂n(t) = µ(t, θ̂n),

µ(t, θ̂n) =

∫
X

[
m1(t, x; β̂n)G(t | x; γ̂n)−

∫
[0,t)

m0(u, x; α̂n) dG(u | x; γ̂n)

]
dHn(x),

=
1

n

n∑
i=1

[
m1(t,Xi; β̂n)G(t | Xi; γ̂n)−

∫
[0,t)

m0(u,Xi; α̂n) dG(u | Xi; γ̂n)

]
.

(2.6)

Evidently, the direct estimator involves the computation of n subject-specific survivor

functions {G(u | Xi; γ̂), 0 ≤ u ≤ t, i = 1, . . . , n} and then evaluating n integrals in

the second expression of (2.6). In general, the computation can be intensive especially

when considering the additional computation for statistical inference (see § 2.3). If one

adopts the proportional hazards model for λ(0)(t | X; γ), then the second expression

in (2.6) is a stochastic integral and can be evaluated directly. When we adopt a

parametric model for λ(0)(t | X; γ), we evaluate the integrals in (2.6) using numerical

integration.
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2.3 Large Sample Properties

In this section, we outline the large sample properties of the proposed estimators with

additional details provided in Supplementary Material. Throughout, we assume that

m1, m0, and G are all correctly specified so that the true population mean µ0(t) at a

fixed target treatment length t is synonymous with µ(t, θ0).

Let
∑n

i=1 ψα(Zi;α) be the score function from a generalized linear regression model

of the outcome on observed treatment length and covariates for those subjects whose

treatment was prematurely discontinued and
∑n

i=1 ψβ(Zi; β) is the analogous score

function for the subjects whose treatment was not prematurely discontinued. Let∑n
i=1 ψγ(Zi; γ) be the score function for a parametric log-linear model (cf. Kalbfleisch

and Prentice, 2002, p. 69) fit to the data, {Ui, 1−∆i, Xi, i = 1, . . . , n}. If we further

define

ψµ{Zi;µ0(t), θ0} = m1(t,Xi; β0)G(t | Xi; γ0)−
∫ t

0

m0(u,Xi;α0) dG(u | Xi; γ0)−µ0(t),

then a Z-estimator for ϑ = {µ(t), θT}T is the solution to system of equations, 0 =

Ψn(ϑ),

Ψn(ϑ) =
n∑
i=1

ψϑ(Zi;ϑ), ψϑ = (ψµ, ψ
T

α, ψ
T

β , ψ
T

γ )T. (2.7)

The asymptotic properties of Z-estimators are described elsewhere (cf. van der Vaart

and Wellner, 1996; Boos and Stefanski, 2013). Under conditions provided in the

Supplementary Material, we conclude that n1/2(ϑ̂ − ϑ0) converges in distribution to

a mean-zero normal random vector with covariance A(ϑ0)−1B(ϑ0){A(ϑ0)−1}T, where

B(ϑ0) = E{ψϑ(Z1, ϑ0)ψT
ϑ(Z1, ϑ0)} and A(ϑ0) = E{−(∂/∂ϑ)ψϑ(Z1, ϑ0)}.

the asymptotic details are somewhat more interesting. In this case, one can show

n1/2{µ̂n(t)−µ0(t)} = n−1/2
∑n

i=1 ϕµ(Zi; θ0) + op(1), where the influence function may
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be expressed as the sum,

ϕµ(Zi; θ) = v(Zi, θ) +

∫ ∞
0

w(u, Zi, θ) dM
(0)
i (u),

v and w are both scalar functions of the data and parameters, and M
(0)
i (t) = N

(0)
i (t)−

Ri(t)Λ0(t) exp(XT
i γ0), a local martingale with respect to the filtration Ft = σ{Ni(u),

N
(0)
i (u), Xi, u ≤ t, i = 1, . . . , n}. Heuristically, v(Zi, θ) captures the influence of α̂n

and β̂n on µ̂n(t) while
∫
w(u, Zi, θ) dM

(0)
i (u) is a measure of the combined influence

of the maximum partial likelihood estimator plus the Breslow estimator while the

subject is continuously treated and then at the point of treatment discontinuation, if

treatment was discontinued prematurely. By the central limit theorem and Slutzky’s

Theorem, n1/2{µ̂n(t)−µ0(t)} converges in distribution to a mean-zero normal random

variable with covariance E{ϕµ(Z1;ϑ0)ϕT
µ(Z1;ϑ0)}.

Under conditions given in the Supplementary Material, the empirical sandwich

matrix is a consistent estimator of the asymptotic covariance for the Z-estimator.

Under the proportional hazards model, one can use martingale residuals to form an

empirical estimator of the asymptotic covariance (cf. Johnson and Tsiatis, 2005).

We derived an analytic expressions for the asymptotic covariance and could evaluate

these expressions directly for the specific models and estimators chosen here, but we

anticipate a broader interest in resampling techniques for more complicated mod-

els and estimators when the asymptotic covariance cannot be not evaluated directly.

With this goal in mind, we investigated both jackknife and bootstrap resampling and

found that both methods performed well under a variety of scenarios with approxi-

mately the same amount of computational burden. Note, under conditions given in

the Supplementary Material, bootstrap resampling for the proposed estimators can be

justified formally along the lines in Kosorok (2008, § 10.2), for example. Although we

investigated the jackknife and bootstrap for all direct estimators, as well as the em-
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pirical sandwich matrix for the Z-estimator, we only report in § 2.4.2 the results from

jackknife and the empirical sandwich matrix for the direct estimator using counting

processes and parametric survival models, respectively.

2.4 Simulation Studies

2.4.1 Treatment Assignment on a Finite Set

First, we compare the direct estimator to the estimator proposed by Johnson and

Tsiatis (2004) when treatment realizes only one of K values. The simulation scenar-

ios below are adapted from those found in Johnson and Tsiatis (2004). We begin by

simulating a standard normal random variable X and subsequently generating a po-

tential treatment terminating event C as an exponential random variable with mean,

γ0e
γ1X , γ0 = 0.005, γ1 = −2. Next, the treatment assignment mechanism follows a

discrete hazards model, where

ρj(X;ϕ) = P (U = tj,∆ = 1 | U ≥ tj, X;ϕ) = H(ϕ0,j + ϕXX), j = 1, . . . , K − 1,

(2.8)

H(t) = 1/{1 + exp(−t)} and ϕ = (ϕ0,1, . . . , ϕ0,K−1, ϕX)T. Specifically, we use K = 4,

ϕ = (−1.2,−0.75, 0,−0.5). Then, to simulate the observed treatment length data,

we adopt a sequential algorithm starting with j = 1: if C < tj then (U = C,∆ = 0);

otherwise, generate the intermediate Bernoulli outcomes, Qj, with success probability

H(ϕ0,j + ϕXX) and set (U = tj,∆ = 1) if Qj = 1; if Qj = 0, continue to time tj+1.

The process is continued for all time points tj, j = 1, . . . , K, but if a subject does

not have a treatment interruption prior to tK , then they are stopped with probability

one at time tK . Approximately 25% of the observations are censoring using the above

parameter values. Finally, the endpoint is generated according to the linear regression
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model,

Y = β0 + βU log(U) + βXX + β∆(1−∆) + ε, (2.9)

where β0 = −2.5, βU = 1, βX = 0.5, β∆ = 2, and ε is a standard normal random

variable. Note that, in this case, m1(t, x) = β0 + βU log(t) + βXx and m0(t, x) =

m1(t, x) + β∆. As in Johnson and Tsiatis (2004), the true value is computed through

Monte Carlo integration by fixing treatment assignment at tj, simulating the outcome

Y for a large number of realizations, and taking the sample average.

In the above simulation, all of m1,m0 and G are correctly specified; in addition,

the treatment assignment mechanism in (2.8) is also correctly modeled in the proce-

dure by Johnson and Tsiatis (2004). In the literature, this is commonly referred to

as the scenario where both the outcome regression models (i.e. m1, m0, and G) and

propensity score model in (2.8) are both correct. To illustrate the merits and defi-

ciencies of the direct estimator vis-à-vis the estimator by Johnson and Tsiatis (2004),

we explored settings where each estimator fails. We misspecify the propensity score

model by setting ρj(X;ϕ) = H(ϕ0,j + ϕXe
X), j = 1, . . . , K − 1, ϕX = −1 in (2.8),

however, the estimator by Johnson and Tsiatis (2004) continues to model X on the

natural scale. To miss-specify the outcome regression model, only one of m1, m0 or

G must be modeled incorrectly. To this end, we modify m1,m0 by modeling Y as

follows:

Y = β0 + βU1(log(U)− λU) + βU2(log(U)− λU)2 + βXX
2 + β∆(1−∆) + ε, (2.10)

where βU1 = 2, βU2 = 3, λU = 3, and βX = 3; β0, β∆ and ε remain the same as in

(2.9). The direct estimator incorrectly assumes that model (2.9) is correct.

The simulation results are displayed in Table 2.1 for a sample size of n = 100. We

use the empirical sandwich estimator to estimate the variance of the direct estimators

whenG is extreme value and jackknife method when weG is estimated via the Breslow
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Table 2.1: Simulation results for the discrete time setting

Direct
PH Extreme Value IPW

Bias SD SEE ECP Bias SD SEE ECP Bias SD SEE ECP
PS correct, OR correct

t1 0.036 0.197 0.194 0.937 0.006 0.195 0.191 0.929 -0.011 0.249 0.228 0.914
t2 0.034 0.134 0.133 0.949 0.003 0.135 0.135 0.947 0.006 0.232 0.221 0.933
t3 0.034 0.139 0.139 0.940 0.003 0.138 0.140 0.953 0.006 0.218 0.213 0.941
t4 0.024 0.174 0.177 0.942 0.001 0.167 0.170 0.945 -0.005 0.209 0.205 0.945

PS incorrect, OR correct

t1 0.017 0.291 0.304 0.943 -0.014 0.293 0.283 0.907 -0.099 0.412 0.289 0.757
t2 0.026 0.178 0.183 0.945 -0.005 0.178 0.174 0.925 -0.113 0.350 0.265 0.802
t3 0.030 0.130 0.132 0.953 <0.001 0.131 0.133 0.954 -0.095 0.265 0.231 0.874
t4 0.037 0.138 0.145 0.952 0.005 0.141 0.146 0.955 0.014 0.156 0.161 0.950

PS correct, OR incorrect

t1 -0.347 1.155 1.134 0.870 0.312 1.410 1.118 0.890 -0.042 1.534 1.437 0.883
t2 -0.295 0.996 0.976 0.857 0.360 1.244 1.053 0.903 0.055 1.477 1.426 0.911
t3 -0.621 0.921 0.915 0.780 0.017 1.148 1.079 0.887 0.044 1.355 1.345 0.922
t4 -1.096 0.898 0.934 0.677 -0.504 1.098 1.152 0.834 0.018 1.220 1.266 0.928

PH, proportional hazards; IPW, inverse probability weighted estimator, Johnson and Tsiatis (2004);
SD, Monte Carlo standard deviation; SEE, standard error estimate; ECP, empirical coverage
probability for Wald-type 95% confidence interval; PS, propensity score model; OR, outcome
regression models.
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estimator and a proportional hazards model for the cause-specific hazard λ(0)(t | X).

The sample standard deviation of the point estimates is the Monte Carlo standard

deviation while the Monte Carlo average of estimated standard errors is the standard

error estimate. The empirical coverage probability is derived from Wald confidence

intervals using critical values at the nominal level. A total of 1000 Monte Carlo data

sets were simulated for each of three scenarios.

When both the outcome regression and propensity score models are correct, the

finite sample bias is small for all estimators, however, the standard errors for the

direct estimators are between 20-40% smaller than those from inverse weighting. If

the propensity score model in (2.8) is modeled incorrectly, then the inverse weighted

estimator is shows appreciable finite sample bias; the same is true of the direct es-

timators when m1, m0 in (2.9) are modeled incorrectly. The Monte Carlo standard

deviation matches well the standard error estimates for the direct estimators suggest-

ing that the variance estimators are accurate even when the sample size is moderate

and the outcome regression models incorrect. When the outcome regression models

are correct, the empirical coverage probabilities of the Wald intervals for the direct

estimators covered the true value at the nominal level, although we observed a mod-

est finite sample benefit of jackknife method over the empirical sandwich estimator.

To investigate the finite sample bias of the empirical sandwich variance estimator,

we repeated the simulation scenarios for a larger sample size n = 200 and found the

coverage probabilities for jackknife and the empirical sandwich estimator to match

closely (results not shown).

2.4.2 Treatment Assignment in Continuous Time

Similar to the discrete time scenario, we start by simulating two independent standard

normal random variables X = (X1, X2)T. We simulate intended treatment length A

as Weibull with shape parameter 2.25 and scale parameter ϕ0e
XTϕX , ϕ0 = 2.9, and
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potential treatment-censoring C as Weibull with shape parameter 2.25 and scale

parameter γ0e
XTγX , γ0 = 3.4. For both cases, the observed pair (U,∆) are defined

accordingly. The outcome Y follows the linear model,

Y = β0 + βU log(U) + βT

XX + β∆(1−∆) + ε,

with β0 = −2.5, βU = 1, βX = (1, 0.5)T, β∆ = 2, and ε is a standard normal

random variable. To investigate the effects of potential model misspecification of

the function G, we considered a more complex model for the treatment length data.

In this scenario, we simulate intended treatment length A according to the survivor

distribution, Ŝ0(t)eX
TϕX , Ŝ0(t) is the Kaplan-Meier curve of the marginal probability

that a switch to second-line regimen exceeds time t using data from § 2.5.2, ϕX =

(−0.5, 0.5)T. The potential treatment-censoring event C is simulated according the

survival distribution, G0(t)eX
TγX , G0(t) = k1e

−k2t+k3e
−k4t, k1 = 1, k2 = 2, k3 = 0.01,

k4 = 0.5, γX = (1,−0.3)T. For each simulation scenario, we repeat the simulation

process for n independent subjects, n ∈ {100, 200, 300}, and investigate three time

points: {0.75, 1.5, 3} under the proportional hazards model and {0.5, 1, 2} for the

extreme value distribution. In order to compare our estimator to the inverse weighted

estimator by Johnson and Tsiatis (2004), we collapsed the treatment length data into

intervals when ∆ = 1 by assigning subjects to the interval with the smallest Euclidean

distance from tj, j = 1, 2, 3, to the observed treatment length log(U).

In general, the bias of the direct estimator was small while that of the inverse

weighted estimator was highly variable depending on the scenario and time point.

In the two simulation scenarios where the finite sample bias of the inverse weighted

estimator was its smallest (t2 when n = 100), the direct estimator was more than

twice as precise as inverse weighting when G is extreme value and nearly that level

when G followed a proportional hazards model. Agreement between the Monte Carlo
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Table 2.2: Simulation results from the continuous time setting

Direct
PH Extreme Value IPW

Bias SD SEE ECP Bias SD SEE ECP Bias SD SEE ECP
PH Correct

n=100

t1 0.014 0.254 0.268 0.946 -0.006 0.253 0.240 0.926 -0.109 0.500 0.380 0.835
t2 0.015 0.155 0.164 0.953 -0.010 0.152 0.155 0.946 0.006 0.288 0.259 0.919
t3 0.006 0.189 0.195 0.950 -0.014 0.184 0.179 0.941 0.035 0.220 0.198 0.906

n=200

t1 0.022 0.173 0.180 0.957 0.010 0.171 0.170 0.947 -0.095 0.345 0.310 0.903
t2 0.013 0.109 0.115 0.955 -0.003 0.106 0.110 0.958 0.009 0.193 0.193 0.940
t3 0.002 0.135 0.137 0.953 -0.007 0.128 0.127 0.952 0.041 0.151 0.143 0.924

n=300

t1 0.019 0.143 0.144 0.946 0.010 0.141 0.139 0.945 -0.089 0.291 0.271 0.909
t2 0.010 0.093 0.094 0.958 -0.004 0.091 0.090 0.954 0.011 0.163 0.161 0.950
t3 -0.005 0.115 0.113 0.946 -0.013 0.111 0.105 0.938 0.040 0.126 0.116 0.913

Extreme Value Correct

n=100

t1 0.002 0.357 0.378 0.947 -0.001 0.356 0.333 0.919 -0.479 0.771 0.373 0.470
t2 0.012 0.217 0.230 0.959 0.009 0.211 0.209 0.947 -0.004 0.487 0.333 0.836
t3 0.013 0.194 0.202 0.952 0.015 0.183 0.187 0.949 0.652 0.285 0.257 0.273

n=200

t1 -0.010 0.237 0.250 0.952 -0.012 0.236 0.233 0.942 -0.332 0.763 0.456 0.547
t2 -0.010 0.149 0.155 0.951 -0.013 0.146 0.147 0.941 0.065 0.503 0.335 0.841
t3 -0.012 0.135 0.141 0.967 -0.012 0.130 0.133 0.958 0.605 0.220 0.197 0.199

n=300

t1 -0.006 0.202 0.201 0.933 -0.008 0.201 0.192 0.919 -0.275 0.709 0.477 0.605
t2 0.005 0.125 0.126 0.953 0.004 0.123 0.120 0.946 0.090 0.472 0.308 0.868
t3 0.004 0.117 0.114 0.941 0.003 0.113 0.109 0.932 0.615 0.177 0.163 0.112
PH, proportional hazards; IPW, inverse probability weighted estimator, Johnson and Tsiatis (2004);
SD, Monte Carlo standard deviation; SEE, standard error estimate; ECP, empirical coverage
probability for Wald-type 95% confidence interval; PS, propensity score model; OR, outcome
regression models.
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standard deviation and standard error estimates suggest that the variance estimators

appear to work well. The empirical coverage probability for the direct estimates is

close to the nominal level in nearly every case. Interestingly, even when the parametric

model for G is incorrect, the direct estimator with a log-linear model for G performs

rather well; we do not attempt to argue that this result is generalizable, however.

In this simulation study, we observed that the inverse weighted estimator per-

formed reasonably for t2 and not as well for t1 and t3. This observation indicates

some finite sample bias follows from the data preparation of simulated data for the

inverse weighted estimator. We also explored alternative binning strategies when

processing continuous data into discrete time intervals in §A.2. Under one binning

strategy, the inverse probability weighting estimator can perform as well as our out-

come regression estimators in terms of coverage probability. However, using other

two strategies, the inverse probability estimators doesn’t work as well and can even

demonstrate quite poor performances. The dependency on an appropriate binning

strategy thus limit the application of the inverse probability estimator in continuous

treatment studies.

2.5 Data Applications

2.5.1 ESPRIT Infusion Trial Data

Although the intended infusion lengths was to last 18-24 hours in the absence of a

terminating event, the actual range was 12-37 hours. So, Johnson and Tsiatis (2004)

prepared the data by collapsing the infusion data into two-hour intervals when there

were no terminating events and leaving the data as is when there was a terminating

event. The first and last intervals included observations in the tails of the observed

infusion duration distribution. For the direct estimators proposed here, there is no

data extraneous processing required. Using the same target infusion lengths of 16,
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18, 20, 22, and 24 hours as in Johnson and Tsiatis (2004), a figure of the direct

estimates and corresponding 95% confidence intervals are shown in Figure 2.1. The

point estimates of the direct and inverse weighted estimators are close, with the

biggest difference in the last two intervals for 22 and 24 hours. However, the confidence

intervals from the direct estimates are substantially smaller than inverse weighting.

For infusion time less than 18 hours, the confidence intervals are approximately 20%

narrower than those reported by Johnson and Tsiatis (2004) while they are 40-50%

narrower when infusion is longer than 18 hours. The point estimates and standard

errors from the intermediate regression models m1, m0, and G as well as a table of the

direct estimates and their corresponding standard errors are available in Appendix

A.3.

2.5.2 Switch to Second-line ART in ACTG A5095

An important, open question in therapeutic HIV studies is whether delayed regimen

change after virologic failure on an initial antiretroviral therapy (ART) is beneficial.

Recently, Li et al. (2012) examined the differences in clinical endpoints among patients

switching early or late to second-line ART after failing an initial efavirenz-based

ART in AIDS Clinical Trials Group (ACTG) study A5095, a multi-center clinical

trial designed to compare three ARTs in ART-näıve study participants (Gulick et al.,

2004). Li et al. (2012) showed that participants who followed a two-stage policy to

switch within 8 weeks of virologic failure if they failed their initial efavirenz-based

ART had lower HIV-1 RNA levels and higher CD4 T-cell counts, on average, over

the course of the study. Applying methods by Johnson and Tsiatis (2005) to a subset

of study participants who actually failed an initial efavirenz-based ART, Johnson

et al. (2013) modeled the potential outcomes E(Y ∗t∧C) as a function of the intended

switching time, when switching time may be right-censored by a competing event.

In ACTG A5095, switching time was censored for 100 of 182 participants for the
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Figure 2.1: Comparisons of estimates (solid circles) and their 95% confidence intervals
(line lengths) form ESPRIT trial
Our direct estimators based on Weibull distribution (red) and distribution from Cox
proportional hazard model (green) are both more precise (shorter length) than the

inverse probability weighting estimator (blue).

subset who failed an efavirenz-based ART. In Johnson et al. (2013), we found no

statistically significant trend in switching time for the CD4 endpoint, which seemingly

contradicted the result reported in Li et al. (2012). The statistical analysis below uses

the same data for the same CD4 endpoint.

In the current analysis, our objective is to estimate the mean potential outcome

E(Y ∗t∧C), where the policy is to switch to second-line regimen at time t after having

already failed an initial efavirenz-based regimen, t ∈ {1, 2, 4, . . . , 24}. We computed

the direct estimates and their standard errors and compared them to estimates from

Johnson and Tsiatis (2004). To apply the inverse weighted estimator, the data were

collapsed into intervals in the same manner as in § 2.4.2 using four intervals, with
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midpoints at 1, 2, 4, and 16 weeks. The results are displayed in Figure 2.2.

First, we note the obvious difference that the point estimates from the direct

estimator are available for all 13 time points while those from the inverse weighted

estimator are only available for four time points. This finite sample problem reflects

the fact that while nearly half of all patients that failed an initial efavirenz-based ART

switched to second-line ART, most of them switched within 4-6 weeks of virologic

failure. As a result, there is relatively little information to model the treatment

assignment mechanism beyond 8 weeks. Second, in four time points with three point

estimates, the interval estimates from the direct estimator are approximately 21%

smaller than interval estimates from inverse weighting. Finally, to investigate whether

the new analysis had any practical impact compared to earlier analyses, we compared

policies that switched at 2 and 4 weeks using a formal hypothesis test. We rejected

the null hypothesis using a Wald test from the direct estimator (p-value = 0.01) but

not from inverse weighting (p-value = 0.16). This finding deviates from that reported

earlier in Johnson et al. (2013) and also raises new questions about the utility of the

8-week cutoff to define early vis-à-vis late regimen change.

2.6 Remark

The epidemiology and biostatistics literature is replete with examples where authors

use discrete time approximations to continuous time problems. The estimator by

Johnson and Tsiatis (2004) was developed for these settings or when the data are,

in fact, collected at a finite number of clinic visits. In an unpublished 2011 Emory

University PhD thesis, L. Li derived the doubly-robust semi-parametric efficient ex-

tension of the Johnson and Tsiatis (2004) estimator. Although the proposed direct

estimator lacks the robustness of Li’s estimator, an advantage is its versatility for the

discrete and continuous time setup.
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Figure 2.2: Mean outcomes across switch time estimated by direct estimator based
on Weibull model (red), direct estimator based on Cox proportional hazard model
(green) and inverse probability weighting estimator from Johnson and Tsiatis (2004)
(blue) with their respective 95% confidence intervals.
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Chapter 3

Estimation of the Distribution of

Potential Outcomes amidst Early

Treatment Stoppage in the

Presence of Time-Varying

Confounders

3.1 Introduction

In Chapter 2, we studied treatment effect with only baseline confounders. In many

longitudinal studies, there often exist time-varying effects that associated with both

the decision of treatment and the outcome of interest. For these senarios, one may get

biased estimates if those time-dependent covariates are not accounted for appropri-

ately. Marginal structural models (MSM), estimated by inverse probability weight-

ing (IPW) scheme are commonly implemented to estimate treatment effects with

time-varying confounders (Robins et al., 2000; Hernán et al., 2000). However, this
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method can suffer from the instability and imprecision of inverse probability weight-

ing scheme. Recently, an alternative scheme is to use G-computational algorithm,

a generalized computational algorithm to approximate the distribution of potential

outcomes. Several articles applied the G-computational algorithm as an alternative to

IPW to estimate the parameters of marginal structural models (Robins, 1997; Snow-

den et al., 2011; Daniel et al., 2011) in longitudinal studies. Here in this project, we

implemented the G-computational algorithm to estimate the mean potential outcome

on treatment length policies, either with or without Monte Carlo integration. This

application specifically models the treatment terminating event process, as what we

did earlier in another project, but also accounts for time-dependent confounders.

3.2 Methods

3.2.1 Observed Data

The observed data could be illustrated in Figure 3.1 as follows:

Figure 3.1: Illustration

Let Aj = 0, 1 denotes binary treatment decision at the jth targeted treatment

length tj ,j = 1, · · · , K, 0 = t0 < t1 < t2 < · · · < tK ; X0 denotes all the covariate

information at baseline; Xj denotes all the covariate information for the time interval

[tj, tj+1), j = 1, · · · , K − 1; Cj denotes whether the potential treatment terminating
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event occurs in the interval [tj−1, tj), j = 1, · · · , K. Patients entering the study with

baseline information measured (i.e. X0) are first treated until treatment-terminating

events occur before t1 (i.e. C1 = 1), or until physicians stop the treatment at t1 (i.e.

A1 = 1). In the absence of treatment-terminating events before t1 (i.e. C1 = 0) and

when physicians choose to continue the treatment (i.e. A1 = 0), the patients will

continue to take treatment while having some of his clinical characteristics measured

again (i.e. X1). This procedure continues, if neither any treatment-terminating events

occur nor physicians stop the treatment at tj, j = 1, · · · , K − 1, until the end of the

study tK . Then at tK all remaining ongoing treatment are stopped (i.e. AK = 1).

Note that we always observe all the information until the first treatment length

(i.e. X0 and C1) while we can only observed the follow-up information if the subject

is still being followed. However, the outcome Y is always observed regardless of

censoring status.

3.2.2 Proposed method

Define treatment decision in the presence of treatment terminating event during time

interval (tj−1, tj] as:

dj =

 1, if Cj = 1 or Aj = 1

0, if Cj = 0 and Aj = 0

and

dj = (d1, · · · , dj); j = 1, · · · , K

Using our proposed method, the estimand could be expressed as

µ0(tj) = E(Y ∗
dj

) =

∫ ∞
0

P (Y ∗
dj
≥ y)dy
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where P (Y ∗
dj
≥ y) could be approximated by G-computational algorithm (Robins,

1986) as follows:

Denoting the sample space (D,X). For a particular set of treatment regimes over

all time points, dK , the distribution of potential outcome in the hypothetical setting

that all individuals were assigned to dK is defined as Y ∗(dK) could be approximated

by

P (Y ∗(dK) ≤ y) =

∫
D1,X0

· · ·
∫
DK ,XK−1

p(Y ≤ y | XK−1, dK)

×
K∏
j=1

f(Cj, Xj−1 | Xj−2, dj−1)dµ(Cj, Xj−1) (3.1)

where Xj−1 = (X0, ..., Xj−1) denotes the covariate history prior to time tj.

Additionally, the inference for time-dependent case also rely on two key assump-

tions like the time-fixed case: the generalization of the ”stable unit treatment value

assignment” and the generalization of the ”sequential randomization assumption”,

which is a generalization of the strong ignorability assumption to time-dependent

treatment assignments. The former one assumes that there is no inferences on re-

sponse between patients and the value of covariates at time tj only depends on the

treatment assignment given to that individual up to time tj−1 and not related to any

future treatment assignment. The latter assumption states that the treatment assign-

ment at time tk, i.e. Ak is made completely at random conditioned on the observed

time-varying covariate history and time-varying treatment history up to time tk.

Assume X0 ∼ h(X0, θ0), C1 ∼ f0(C1 | X0, η0) and Xj ∼ h(Xj | Xj−1, dj, θj),

Cj+1 ∼ f0(Cj+1 | Xj, dj, ηj), for j = 1, · · · , K − 1. Also assume Y ∼ f(y |

XK−1, dK , θy). When h(.) follows a Markov process, f0(.) follows binomial distribu-

tion and f(.) follows normal distribution, we can implement autoregressive models,

discrete hazard models and linear regression model respectively to estimate θ′js, η
′
js

and θy.
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G computation with Monte Carlo integration

Use the model fit above, we can implement the following Monte Carlo algorithm to

approximate the distribution of potential outcome (Daniel et al., 2011): For r =

1, · · · ,M

1. Generate X0,r from h(X0, θ̂0), C1,r from f0(C1 | X0,r, η̂0). Let d1,r = C1,r.

2. Generate X1,r from h(X1 | X0,r, d1,r, θ̂1), C2,r from f0(C2 | X1,r, X0,r, d1,r, η̂1).

Let d2,r = C2,r.

3. Generate Xj,r from h(Xj | Xj−1,r, dj, θ̂j), Cj+1,r from f0(Cj+1 | Xj,r, dj, η̂j) for

j = 1, · · · , K − 1. Let dj+1,r = Cj+1,r for j < K − 1. Let dK,r = 1.

4. if dj,r = 1 for any step above, then go directly to step 5.

5. Generate Yr from f(y | XK−1,r, dK , θ̂y).

6. Go back to step 1 for r = r + 1.

Finally, the estimated outcome could be calculated by µ̂tj = Ŷ = 1
M

∑M
r=1 Yr. One

can repeat the steps above to get µ̂tj where j = 1, · · · , K. Note that when K=0, then

G-computation will be reduced to outcome regression. So it could be considered as

an generalization of direct modeling that we used earlier.

Alternatively, assuming the potential outcomes follow a linear trend across time,

i.e. µ = δ0 + δ1t, we can estimate this linear trend defined by δ0 and δ1 by combining

all Yr’s for each tj where r = 1, · · · ,M ; j = 1, · · · , K together.

G computation with direct prediction

Instead of using the above Monte Carlo algorithm to approximate the distribution of

potential outcomes, if the mean of potential outcomes is of major concern, we can also

perform prediction directly based on the model fit. Similar idea is suggested before by
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Snowden et al. (2011) when they were applying G computation algorithm for MSM.

However, they focused on simple cases with only baseline covariates and binary treat-

ment assignment without interruption. Our approach here utilized G computation

directly and is extended to incorporate time varying effects and treatment censoring.

This prediction approach avoids implementing iterations of Monte Carlo simulations

and therefore saves substantial computation time, as well as accommodating sophis-

ticated treatment mechanisms.

For example, to estimate the potential outcome when treatment is designed to

stop at tj (j = 2, · · · , K) subject to treatment terminating events, the following steps

can be performed:

1. Identify possible scenarios Ω which includes:

� the treatment stopped early before t1, i.e. C1 = 1;

� the treatment stopped at or after t1 but before t2, i.e. C1 = 0, C2 = 1;

� · · ·

� the treatment stopped at or after tj−1 but before tj, i.e. C1 = 0, · · · , Cj−1 =

0, Cj = 1;

� the treatment stopped at tj as originally designed, i.e. C1 = 0, · · · , Cj =

0, Aj = 1.

2. Predicted probabilities for each possible scenario for each subject: P ($ | Xi), $ ∈

Ω.

3. Predicted outcomes if each possible scenario occurs for each subject: E(Y |

$,Xi), $ ∈ Ω.

4. The average potential outcome could be estimated as

1
n

∑n
i=1

∑
$∈Ω P ($ | Xi)E(Y | $,Xi)
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Additionally, we can also assume the potential outcomes follow a linear trend

across time and estimate their intercept δ0 and slope δ1 as mentioned in §3.2.2.

3.3 Simulation Studies

3.3.1 Data Simulation

Simulation studies were conducted to assess the performance our proposed method.

We focused on with M=4 time points (t1, t2, t3, t4) and constructed a simulated

dataset as follows:

1. Let αC = (αC,1, αC,2, αC,3, αC,4) = (0.65, 1.3, 1.95, 2.6); βC = (−0.1,−0.1) and

γC = −0.9; α = (0.5, 1, 1.5, 2); β = (−0.2,−0.2) and γ = −0.8.

2. Simulate three independent normal random variables: X1 ∼ N(0, 1), X2 ∼

N(0, 1) and time-dependent effect Xt at baseline X0 ∼ N(4, 1).

3. Generate C1, a potential treatment terminating event among [0, t1) as a binomial

random variable with p = λC1 = 1

1+e
−(αC,1+XT βC+X0γC )

. If C1 = 1 then U = t1/2,

∆ = 0. All the information afterwards except the outcome are set to missing.

(i.e. Xt1 , · · · , Xt3 , C2, · · · , C4, A1, · · · , A4)

4. If C1 = 0, then generate A1, the treatment decision at time t1 as a binomial

random variable with p = λ1 = 1

1+e−(α1+XT β+X0γ)
. If A1 = 1, then U = t1, ∆ = 1,

and information after tj will be set to missing (i.e. Xt1 , · · · , Xt3 , C2, · · · , C4,

A2, · · · , A4).

5. Otherwise, when Aj = Cj = 0 . Generate Xt1 ∼ N(X0, 1)

6. For j = 2, 3, 4,
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(a) Generate Cj, a potential treatment terminating event among [tj−1, tj) as a

binomial random variable with p = λCj = 1

1+e
−(αC,j+XT βC+Xtj−1

γC )
. If Cj = 1

then U = (tj−1 + tj)/2, ∆ = 0, and all information afterwards except the

outcome are set to missing.

(b) If Cj = 0, generate Aj, the treatment decision at time tj as a binomial

random variable with p = λj = 1

1+e
−(αj+XT β+Xtj−1

γ)
. If Aj = 1, then U =

tj, ∆ = 1, and all information afterwards except the outcome are set to

missing.

(c) Otherwise, when Aj = Cj = 0 . Generate Xtj ∼ N(Xtj−1
, 1) .

7. If C4 = 0, then set A4 = 1, ∆ = 1.

8. The continuous outcome Y is generated as

Y = β0 + βU log(U) + βX1X1 + βX2X2 + β∆∆ + βXtXt + ε,

where β0 = 1.5, βU = 1, βX1 = 1, βX2 = 0.5, β∆ = −2, βXt = 0.5, Xt is the

last observed time-varying covariate for each subject and ε is a standard normal

random variable.

The population parameters of interest µj’s, j = 1, 2, 3, 4, δ0 and δ1 were approximated

by simulation. For each µj, the same algorithm above is followed except that the

treatment decision is not simulated but forced to stop at tj (i.e. Al = 0, l < j;

Aj = 1) if not already censored due to treatment terminating event. We generated

the outcome Y 500,000 times and took the sample average as µj. And the true value

of δ0 and δ1 were approximated by fitting a linear regression on the 500,000*4 Y’s all

together.
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3.3.2 Monte Carlo Integration by G-computational Algorithm

Given the simulated dataset and assuming all the distribution families above are

known, we estimated all the related parameters and then use these estimated pa-

rameters to conduct a set of Monte Carlo integration (M=100,000) known as the

G-computational algorithm as described in §3.2.2. Finally, we got M=100,000 ran-

dom draws from the potential outcome and we took their average as our estimate

of the potential outcome µ̂j. We fitted a linear regression on the 100,000 *4 ran-

dom draws and took the estimated intercept and slope as our estimated δ̂0 and δ̂1.

The standard errors for µ̂j’s, δ̂0, δ̂1 were estimated by bootstrap method based on

100 bootstrap resamples. We also tested the standard errors estimated based on 500

resamples and they barely showed any differences.

3.3.3 Direct Prediction by G-computational Algorithm

After the parameters in the discrete hazard model and linear regression model are

estimated from the simulation dataset, one can also predict the chance of each possible

treatment schemes subject to treatment terminating events and their corresponding

outcomes respectively. Sequentially, the estimate of the potential outcome µ̂j, j =

1, · · · , K could be calculated as the sum of the product of each possible outcome

and its occurring probability averaging over all subjects as illustrated in §3.2.2. For

subjects with missing time dependent covariate information in later time, their closest

covariate information in time was applied instead. We also fitted a linear regression

on the n*4 estimated potential outcomes and took the estimated intercept and slope

as our estimated δ̂0 and δ̂1. The standard errors for µ̂j’s, δ̂0, δ̂1 were estimated by

bootstrap method based on 100 bootstrap resamples.
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Table 3.1: Simulation results for estimation on the potential outcome for n=300

t Bias SD SEE ECP
Our approach t1 -0.003 0.156 0.154 0.947
with MC t2 0.001 0.111 0.109 0.937

t3 -0.002 0.103 0.105 0.955
t4 -0.001 0.112 0.122 0.965

Our approach t1 >-0.001 0.154 0.154 0.947
w/o MC t2 <0.001 0.108 0.109 0.951

t3 0.004 0.100 0.103 0.950
t4 -0.004 0.109 0.115 0.957

t1 0.038 0.409 0.365 0.890
IPW t2 0.056 0.391 0.328 0.860

t3 0.035 0.379 0.289 0.839
t4 -0.002 0.116 0.119 0.950

t1 0.341 0.301 0.314 0.780
IPWbaseline t2 0.422 0.255 0.261 0.612

t3 0.344 0.241 0.234 0.652
t4 -0.072 0.110 0.113 0.905

Truth = (3.889, 4.753, 5.377, 5.864)
SD, Monte Carlo standard deviation;
SEE, standard error estimate based on bootstrap;
ECP, empirical coverage probability for
Wald-type 95% confidence interval.
1000 Monte Carlo datasets were generated.

Table 3.2: Simulation results for estimation on the linear trend of potential outcomes
across time for n=300

δ0 δ1

Bias SD SEE ECP Bias SD SEE ECP
with MC 0.0035 0.1918 0.1892 0.948 <0.0001 0.0055 0.0056 0.949

without MC 0.0076 0.1900 0.1881 0.943 -1.00E-04 0.0055 0.0054 0.953

True value for δ0=3.3389; true value for δ1=0.0655
SD, Monte Carlo standard deviation; SEE, standard error estimate based on bootstrap;
ECP, empirical coverage probability for Wald-type 95% confidence interval.
1000 Monte Carlo datasets were generated.
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3.3.4 Simulation Results

Using the above settings, we conducted simulation studies with our proposed meth-

ods along with the inverse probability weighting estimators for both time dependent

covariates and baseline covariates as well as baseline covariates only (Johnson and

Tsiatis, 2004). All approaches work well with good coverage probabilities (Table

3.1) except the IPW estimator with only baseline covariates. This IPW estimator is

obviously biased most of the time due to ignoring the time varying effect. Among

the other three estimators that perform well, our proposed methods demonstrate

smaller variances and biases and better coverage probabilities than the inverse prob-

ability weighting estimator. When we tested these results in moderate and large

sample sizes, the inverse probability weighting estimator showed slightly better cov-

erage probabilities with increased sample sizes (results not shown), but still not as

well as our approaches do at n=300.

Our two proposed methods perform equally well in estimating mean potential

outcomes as well as in the linear trends (Table 3.1 & 3.2). As the computation time for

our prediction approach is much less than the one using Monte Carlo integration, the

direct prediction via G-computation algorithm method is more appealing. However,

in situations where the distribution of potential outcomes is more of concern, (for

instance, if quartiles of potential outcomes are the primary interest,) then the Monte

Carlo integration by G computation algorithm method would be preferred.

3.4 Remarks

We proposed two methods in this chapter to take time-varying effects into account

when estimating the mean potential outcome or its linear trend across time. Com-

pared to the existing estimator for time-varying effects based on inverse probability

weighting, our approach based on outcome regression is more efficient and could be
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implemented to approximate the distribution of the potential outcome in addition to

the mean of the potential outcome.
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Chapter 4

Doubly Robust Estimation of

Potential Outcomes amidst Early

Treatment Stoppage in the

Presence of Time-Varying

Confounders

4.1 Introduction

Doubly-robust estimators have been recommended for routine use due to their merit

of being consistent when either propensity score or the outcome regression model is

correctly specified. And it is also semi-parametric efficient when both two models are

correctly specified (Tan, 2006; Li et al., 2012). However, existing simulation studies

(Kang and Schafer, 2007) demonstrate that this doubly robust estimator performs

similarly to the inverse probability weighting estimators when OR model is miss-

specified. Also, there were lack of evidence that doubly robust estimators can offer
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any improvement over the outcome regression estimator by using the mildly biased

propensity score model.

To advance the performance of doubly robust estimation under miss-specification,

substantial work has been focused on improving the efficiency of doubly robust esti-

mators when the outcome regression model may be biased (van der Laan and Rubin,

2006; Cao et al., 2009; Tan, 2010; Tsiatis et al., 2011; Rotnitzky et al., 2012). Under

either simple or monotone coarsening settings, Cao et al. (2009); Tsiatis et al. (2011)

identified versions of weighted outcome regression estimating equations that yield op-

timal parameters that minimize the variance of doubly robust estimators, even when

the outcome regression models are miss-specified. Under missing data mechanism,

Tan (2010) developed an augmented likelihood estimator of Tan (2006) by calibrat-

ing the coefficients in a linear, extended propensity score model. For cross-sectional

data, Rotnitzky et al. (2012) derived improved doubly robust estimators by solving

the outcome estimating equations. In spite of these developments on doubly robust-

ness, none of these estimators were designed for dynamic regime settings and neither

do they account for time-varying effects. Here in this project, we implemented the

technique from Cao et al. (2009); Tsiatis et al. (2011) to derive our improved doubly

robust estimators based on dynamic regime settings (Murphy et al., 2001). In ad-

dition, our proposed estimators can take into account the time-varying effects that

associated with the treatment assignment selection and/or the outcome.

In this report, we first describe our study setting, a nonrandom dynamic regime

scenario. Then we show how Murphy et al. (2001)’s framework would fit in our

case, by examining both the specific propensity score and outcome regression models.

For ease of estimation, we further studied our proposed estimator under a two-stage

setting and with a simplified outcome that does not depend on treatment decision. We

illustrate the derivation of our improved doubly-robust estimator for this simplified

scenario and demonstrate its merit of efficiency as well as robustness under simulation
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studies.

4.2 Methods

4.2.1 Observed Data

Let Aj = 0, 1 denotes binary treatment decision at the jth targeted treatment length

tj ,j = 1, · · · , k, 0 = t0 < t1 < t2 < · · · < tk; Xt0 denotes time-dependent covariate in-

formation at baseline; Xb denotes time-independent covariate information at baseline;

Xtj denotes the time dependent covariate information for the time interval (tj, tj+1],

j = 0, · · · , k − 1; Cj denotes whether the potential treatment terminating event oc-

curs in the interval [tj, tj+1), j = 1, · · · , k. Patients entering the study with baseline

information measured (i.e. Xb, Xt0) are first treated until treatment-terminating

events occur before t1 (i.e. C1 = 1), or until physicians stop the treatment at t1 (i.e.

A1 = 1). In the absence of treatment-terminating events before t1 (i.e. C1 = 0)

and when physicians choose to continue the treatment (i.e. A1 = 0), the patients

will continue to take treatment while having his time- varying clinical characteristics

measured again at t1 (i.e. Xt1). This procedure continues, if neither any treatment-

terminating events occur nor physicians stop the treatment at tj, j = 1, · · · , k − 1,

until the end of the study tk. Then at tk all remaining ongoing treatment are stopped

(i.e. Ak = 1).

Note that we always observe all the information until the first treatment length

(i.e. Xb,Xt0 , and C1) while we can only observed the follow-up information if the

subject is still being followed. However, the outcome Y is always observed regardless

of whether the treatment is stopped by physician or treatment terminating event.

We further define the time that a potential treatment-terminating event occurs as

C, then the observed treatment length U and targeted treatment completion indicator

∆ can be expressed as
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U = tj, ∆ = 1, if Aj = 1

U = C, ∆ = 0, if Cj = 1
for j = 1, · · · , k

In this case, we consider two scenarios where the exact time is observed and also

the coarser view where we simply observe that a censoring event occurs in the interval

C ∈ [tj−1, tj).

Also, our findings here is based on the two essential assumptions in causal in-

ference: the stable unit treatment value assumption (SUTVA) and the sequential

randomization assumption (SRA). Define our potential outcome for an individual

treated to time tj ∧C is Y ∗tj∧C , then the causal estimand of interest is the population

mean,

µ∗j = E(Y ∗tj∧C)

= E{Y ∗tjI(C ≥ tj)}+ E{Y ∗CI(C < tj)} by SUTV A

= E
[
E{Y | U = tj,∆ = 1, X̄j−1}

]
+ E

[
E{Y | U < tj,∆ = 0, X̄j−1}

]
. by SRA

where X̄j−1 = (Xb, Xt0 , · · · , Xtj−1
).

4.2.2 Doubly Robust Estimation Framework

Our new estimator is motivated by semi-parametric theory for missing data (Tsiatis,

2006). In order to show how we develop our estimator. We start with the inverse

probability weighting estimator with propensity score (modeling the probability of

treatment stoppage) and the outcome regression (modeling the outcome as a func-

tion of covariate information and treatment). Then we express our doubly robust

estimator as an augmented inverse probability estimator, which could be view as a

inverse probability weighting estimator augmented with conditional expectations of

outcomes.
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Propensity Score Models

Denoting the potential outcome at tm as µm (m = 1, · · · , k) and the covariate infor-

mation up to time tm as X̄m−1 = (Xb, Xt0 , · · · , Xtm−1) and using the setting mentioned

earlier, the propensity of targeted treatment stoppage could be expressed using dis-

crete hazards models:

fm(X̄m−1) =
m−1∏
j=1

{
1− λj(X̄j−1)

}
λm(X̄m−1),

with cause-specific hazard function

λj(X̄j−1) = P (U = tj,∆ = 1|U ≥ tj, X̄j−1).

Then Johnson and Tsiatis (2004) inverse probability weighting estimator statistic

is given as

Ψ(X) =

[
I(U = tm,∆ = 1)

fm(X̄m−1)
+
I(U < tm,∆ = 0)

K(U, X̄U−1)

]
(Y − µm) . (4.1)

where

KbUc(X̄bU−1c) =

bUc∏
j=1

{1− λj(X̄j−1)},

bUc = max{j : tj < U, j = 1, . . . , k}

The quantity in the braces is the inverse probability weights of the observed out-

come, which are equal to one divided by the probability of treatment assignment for

those subjects whose observed data is consistent with the targeted treatment length

policy. Johnson and Tsiatis (2004) note that weighting scheme was equivalent to

weighting subjects with unity if (U = tm,∆ = 1) and by fm/KU if treatment was

stopped prematurely to time tm. In words, fm/KU is the probability of deciding to
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j U ∈ [tj−1, tj) KbUc
1 [t0, t1) 1
2 [t1, t2) (1− λ1)
3 [t2, t3) (1− λ1)(1− λ2)
...

m− 1 [tm−2, tm−1)
∏m−2

j=1 (1− λj)
m [tm−1, tm)

∏m−1
j=1 (1− λj)

Table 4.1: Table of possible values for KbUc when estimating µm.

stop at time tm given the targeted treatment length was at some point later than

time U .

To be clear, we can enumerate a table of possible values for k. Such a table

is presented in Table 4.1. Using calculus analogous to that used in Kaplan-Meier

statistics for life tables, we can show that

I(U = tm,∆ = 1)

fm(X̄m−1)
+
I(U < tm,∆ = 0)

K(U, X̄U−1)

=
k∏
j=1

{
I(tj = tm)

λj(X̄j−1)

}I(U=tj ,∆=1){
I(U ≤ tm)

1− λj(X̄j−1)

}I(U>tj)
(4.2)

Outcome Regression Models

Besides the weights from propensity score models, the other essential part is the out-

come regression model. Define Sj = I(C ≥ tj+1), Lj = (Sj, Xj), L̄j = (L0, · · · , Lj),

Āj+1 = (A1, · · · , Aj+1), j = 0, · · · , k−1. Define an indicator of whether the observed

individual is following the targeted treatment plan, a nonrandom dynamic regime

(Am = 1, m = 1, · · · , k) at time tj as p(aj|Sj−1), where aj is the random variable for

treatment decision at time tj.

Note that

p(aj|Sj−1) = {I(tj = tm)}I(U=tj ,∆=1) {I(U ≤ tm)}I(U>tj) ,
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which constitute the numerator for
{
I(tj=tm)

λj(X̄j−1)

}I(U=tj ,∆=1) {
I(U≤tm)

1−λj(X̄j−1)

}I(U>tj)
,

j = 1, · · · , k as in (4.2).

Then the outcome regression models can be defined as

g(m)
m (Ām, L̄m−1) = Eobs(Y | Ām, L̄m−1) (4.3)

g
(m)
j (Āj, L̄j−1) = Eobs

∑
aj+1

p(aj+1|Sj) · g(m)
j+1(aj+1, Āj, L̄j) | Āj, L̄j−1

 (4.4)

Here, g
(m)
m (Ām, L̄m−1) represents the expected outcome if the study ends at tm

whereas g
(m)
j (Āj, L̄j−1) represents the potential outcome at tj+1 given the covariate

and treatment decision information immediate after time tj.

Doubly Robust Estimation with Time Varying Effects

After setting the propensity score models and outcome regression models, we con-

struct our doubly robust estimator based on the framework from Murphy et al. (2001).

The estimating function for the doubly robust estimator could be considered as

Pn

[
Ψ(X)−

k∑
t=1

(E{Ψ(X) | Āt, L̄t−1} − E{Ψ(X) | Āt−1, L̄t−1})

]

When estimating the potential outcome µm, our analogy to the estimating equa-

tion (5.3) from Murphy et al. (2001) could be written as
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Wp̄m(Ām, L̄m−1)(Y − µm)

−
m∑
j=1

{E{Wp̄m(Ām, L̄m−1)(Y − µm)|Āj, L̄j−1} (4.5)

−E{Wp̄m(Ām, L̄m−1)(Y − µm)|Āj−1, L̄j−1}}

= Wp̄m(Ām, L̄m−1)(Y − µm)−
m∑
j=1

Wp̄j(Āj, L̄j−1)(gj(Āj, L̄j−1)− µm)

+
m∑
j=1

∑
aj

πj(aj | Āj−1, X̄j−1)Wp̄j(aj, Āj−1, L̄j−1)(gj(aj, Āj−1, L̄j−1)− µm)(4.6)

where

πj(aj | Āj−1, X̄j−1) =

 λj(X̄j−1) if aj = 1

1− λj(X̄j−1) if aj = 0

and

Wp̄k(Āk, L̄k−1) = (4.2),

Wp̄j(Āj, L̄j−1) =

j∏
l=1

{
I(tl = tm)

λl(X̄l−1)

}I(U=tl,∆=1){
I(U ≤ tm)

1− λl(X̄l−1)

}I(U>tl)

Note that Wp̄k(Āk, L̄k−1) is the weight for all the k time points, while Wp̄j(Āj, L̄j−1)

is the weight for the first j time points.

Note that here we adjusted for time-varying effects when modeling the propensity

score as well as the outcome regression. That is, the estimation of λj(X̄j−1)′s in

Wp̄l(Āl, L̄l−1) where l = 1, · · · ,m; j = 1, · · · , l, and the estimation of gj(Āj, L̄j−1),

gj(aj, Āj−1, L̄j−1), j = 1, · · · ,m all take time dependent Xtj−1
into account.
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Note that we could also write

(4.6) = Wp̄m(Ām, L̄m−1)(Y − µm)

−
m∑
j=1

∑
aj

[
I(Aj = aj)− πj(aj|Āj−1, L̄j−1)

]
·Wp̄j(aj, Āj−1, L̄j−1){gj(aj, Āj−1, L̄j−1)− µm}

= Wp̄m(Ām, L̄m−1)(Y − µm)

−
m∑
j=1

∑
aj

[
I(Aj = aj)− πj(aj|Āj−1, L̄j−1)I(U ≥ tj)

Kj(X̄j−1)

]
·{gj(aj, Āj−1, L̄j−1)− µm} (4.7)

Which is in the format equivalent to Tsiatis et al. (2011)’s equation (2).

Due to the complex estimation procedure for gj(Āj, L̄j−1), we focus on the case

with k = 2 for the present. Details of derivation of our doubly robust estimator and

its connection to Murphy et al. (2001) and Tsiatis et al. (2011) is shown in Appendix

B.0.1.

4.2.3 Estimation with Two-Stage Designs

In two-stage designs, the observed data in chronological order are

{Xb, Xt0 , S0 = I(C > t1), A1, Xt1 , S1 = I(C > t2), A2, Y },

or equivalently {L0, A1, L2, A2, Y }.

In this case, there are two nondynamic treatment regimes of interest: one regime

that treats to t1 ∧ C and another regime that treats to t2 ∧ C. Also note that

because there are only two treatment decision points, A1 and A2, if a patient has
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∆ U Wp̄1(A1, L̄0)

0 [t0, t1) 1
1
· 1

1
=1

0 [t1, t2) 1
(1−λ1(X̄0))

· 0
1
=0

1 t1
1

λ1(X̄0)
· 1

1
= 1

λ1(X̄0)

1 t2
0

1−λ1(X̄0)
· 0
λ2(X̄1)

=0

Table 4.2: Table of values for weights when estimating µ1.

been continuously treated up to time t2, then they are stopped with probability one

at time t2, i.e.λ2(X̄1) = 1.

Regime 1. Under the first regime,

(4.1) = Wp̄1(A1, L̄0)(Y − µ1) =

[
I(U = t1,∆ = 1)

λ1(X̄0)
+ I(U < t1,∆ = 0)

]
(Y − µ1).

The possible values of Wp̄1(A1, L̄0) are illustrated in detail in Table 4.2.

By (4.3),

g
(1)
1 (Ā1, L̄0) = E(Y |A1, L̄0) = E(Y |U,∆, X̄0) (4.8)

Connection of (4.8) to Chapter 1 is illustrated in the Appendix § B.0.2.

Regime 2. Under the second regime,

(4.1)= Wp̄2(A2, L̄1)(Y − µ2)

=

[
I(U = t2,∆ = 1)

{1− λ1(X̄0)}λ2(X̄1)
+
I(U ≤ t2,∆ = 0)

KU(X̄U−1)

]
(Y − µ2)

=

[
I(U = t2,∆ = 1)

{1− λ1(X̄0)}λ2(X̄1)
+ I(U ≤ t1,∆ = 0) +

I(t1 < U ≤ t2,∆ = 0)

1− λ1(X̄0)

]
(Y − µ2)

=

[
I(U = t2,∆ = 1)

1− λ1(X̄0)
+ I(U ≤ t1,∆ = 0) +

I(t1 < U ≤ t2,∆ = 0)

1− λ1(X̄0)

]
(Y − µ2).

The possible values of Wp̄1(A1, L̄0) and Wp̄2(A2, L̄1) are illustrated in detail in Ta-

ble 4.3. Again, we start with definition of the conditional expectation of the outcome
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∆ U Wp̄1(A1, L̄0) Wp̄2(A2, L̄1)

0 [t0, t1) 1
1
=1 1

1
· 1

1
=1

0 [t1, t2) 1
1
=1 1

(1−λ1(X̄0))
· 1

1
= 1

(1−λ1(X̄0))

1 t1
0

λ1(X̄0)
= 0 0

λ1(X̄0)
· 0

1
= 0

1 t2
1

1−λ1(X̄0)
1

1−λ1(X̄0)
· 1
λ2(X̄1)

= 1
(1−λ1(X̄0))λ2(X̄1)

Table 4.3: Table of values for weights when estimating µ2.

given the entire treatment and covariate history as in (4.3),

g
(2)
2 (Ā2, L̄1) = E(Y |Ā2, L̄1) = E(Y |U,∆, X̄U).

Using (4.4), we have

g
(2)
1 (A1, L0) = E

[∑
a2

g
(2)
2 (a2, L̄1)p(a2|S1)

∣∣∣∣A1, L0

]
(4.9)

Simplification: the Endpoint Y Independent of at, t = 1, · · · , k

For simplicity in notation, assume a first-order Markov model for all time-dependent

covariates. If we imagine a model that depends only on the indicators I(C > t1),

I(C > t2) time-independent covariate Xb and time-dependent covariates Xt0 , Xt1 as

below:

Regime 1. Under the first regime,

Y = α0 + α1I(C > t1) + αbXb + αtXt0 + ε. (4.10)

The treatment could be either stopped by decision at t1 or be terminated early

prior to t1. The conditional expectation of the outcome could be expressed as

� E(Y |S0 = 0, X̄0) = α0 + αbXb + αtXt0 when U = C < t1
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� E(Y |S0 = 0, X̄0) = α0 + α1 + αbXb + αtXt0 when U = t1, C > t1

Regime 2. Under the second regime,

Y = α0 + α1I(C > t1) + α2I(C > t2) + αbXb + αtXt + ε. (4.11)

where Xt is the most recently time-dependent covariate, i.e. either Xt0 or Xt1 .

The treatment could be stopped by decision at t2, be terminated early prior to t1

or be terminated early prior to t2. The conditional expectation could be expressed as

� E(Y |S0 = 0, S1 = 0, X̄0) = α0 + αbXb + αtXt0 when U = C < t1

� E(Y |S0 = 1, S1 = 0, X̄1) = α0 + α1 + αbXb + αtXt1 when t1 < U = C < t2

� E(Y |S0 = 1, S1 = 0, X̄1) = α0 + α1 + α2 + αbXb + αtXt1 when U = t2 < C

Assuming the (4.10) and (4.11) shares common parameters α0, α1, αb, αt. Then

α = (α0, α1, α2, αb, αt) could be jointly modeled by

Y = α0 + α1I(C > t1) + α2I(C > t2) + αbXb + αtXt + ε. (4.12)

Using this model, we actually have four cases of conditional expectation listed

below:

� U = C < t1 (S0 = 0, S1 = 0)

� U = t1, C > t1 (S0 = 1, S1 = 0)

� t1 < U = C < t2 (S0 = 1, S1 = 0)

� U = t2 < C (S0 = 1, S1 = 1)
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Based on (4.3) and (4.10), we have g
(1)
1 (S0, X̄0) = E(Y |S0, X̄0). It could be esti-

mated from (4.12) by

g
(1)
1 (L̄0;α) = α0 + α1I(C > t1) + αbXb + αtXt0

Based on (4.3) and (4.11), we have g
(2)
2 (S0, S1, X̄1) = E(Y |S0, S1, X̄1). It could be

estimated from (4.12) by

g
(2)
2 (L̄1;α) = α0 + α1I(C > t1) + α2I(C > t2) + αbXb + αtXt

Based on (4.4) and (4.11), we have g
(2)
1 (A1, X̄0) = E(

∑
a2
p2(a2|S1)g

(2)
2 (a2, X̄1) |

A1, X̄0). Note individuals with U = t1 is not following the regime 2, so p2(a2|S1) = 0

for that case. Those individuals with observed U = t1 will be treated as if they did

not stop at t1. So they could either stop at t2 or censored between t1 and t2 based on
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their respective covariate information. Then

g
(2)
1 (L̄0;α) = I(C < t1)E(Y |S0 = S1 = 0, X̄0)

+I(C > t1, U 6= t1)E{I(t1 < C < t2)E(Y |S0 = 1, S1 = 0, X̄1)

+I(t2 < C)E(Y |S0 = S1 = 1, X̄1) | S0, X̄0}

+I(C > t1, U = t1)

{P (C < t2|C > t1, X̄0, E(Xt1 |Xt0))E(Y |S0 = 1, S1 = 0, X̄0, E(Xt1|Xt0)

+P (C > t2|C > t1, X̄0, E(Xt1|Xt0))E(Y |S0 = S1 = 1, X̄0, E(Xt1|Xt0))}

= I(C < t1)(α0 + αbXb + αtXt0)

+I(C > t1, U 6= t1)E{I(t1 < C < t2)(α0 + α1 + αbXb + αtXt1)

+I(t2 < C)(α0 + α1 + α2 + αbXb + αtXt1) | S0, X̄0}

+I(C > t1, U = t1)

{P (C < t2|C > t1, X̄0, E(Xt1|Xt0))(α0 + α1 + αbXb + αtE(Xt1|Xt0))

+P (C > t2|C > t1, X̄0, E(Xt1|Xt0))(α0 + α1 + α2 + αbXb

+αtE(Xt1|Xt0)}

= α0 + α1I(C > t1) + α2I(C > t1)P (C > t2|C > t1, X̄0, E(Xt1|Xt0))

+αbXb + αt(Xt0I(C < t1) + E(Xt1|Xt0)I(C > t1))

Note that g
(2)
1 is the projection of Y at t2 based on the information immediately

after t1, i.e. we have

g
(2)
1 (L̄0) = E{g(2)

2 (L̄1)|L̄0}

To model the probability of being interrupted by the treatment terminating event.

We use the discrete hazard model for treatment-terminating process as:

fCm(X̄m−1) =
m−1∏
j=1

{
1− λCj (X̄j−1)

}
λCm(X̄m−1),
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with cause-specific hazard function

λCj (X̄j−1) = P (tj−1 < C < tj,∆ = 0|U ≥ tj−1, X̄j−1).

Using notation for discrete hazards models and the Markov assumption, we write

P (C > t2|C > t1, L̄1) = 1− λC2 (X̄1)

P (C > t2|C > t1, L̄0) = 1− λC2 (X̄0, E(Xt1 |Xt0))

P (t1 < C ≤ t2|C > t1, L̄1) = λC2 (X̄1)

P (U = t1|C > t1, L̄0) = λ1(X̄0)

Thus, all the above g functions could be estimated.

After estimating all the g functions, we are able to estimate our doubly robust

estimators as well as their competitors. For the two-stage design, the estimating

equation (4.6) will be interpreted as

for m = 1:

Wp̄1(Ā1, L̄0)(Y − µ1)−Wp̄1(Ā1, L̄0)(g
(1)
1 (L̄0)− µ1) + (g

(1)
1 (L̄0)− µ1) = 0;

for m = 2:

{Wp̄2(Ā2, L̄1)(Y − µ2)−Wp̄1(Ā1, L̄0)(g
(2)
1 (L̄0)− µ2)−Wp̄2(Ā2, L̄1)(g

(2)
2 (L̄1)− µ2) +

(g
(2)
1 (L̄0)− µ2) +Wp̄1(Ā1, L̄0)(g

(2)
2 (L̄1)− µ2)} = 0
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So our final doubly robust (DR) estimators are

µDR,1 = PnWp̄1(Ā1, L̄0)(Y − g(1)
1 (L̄0)) + g

(1)
1 (L̄0) (4.13)

µDR,2 = Pn{Wp̄2(Ā2, L̄1)(Y − g(2)
2 (L̄1))−Wp̄1(Ā1, L̄0)(g

(2)
1 (L̄0)− g(2)

2 (L̄1)) + g
(2)
1 (L̄0)}

Note that here Wp̄2(Ā2, L̄1) = Wp̄1(Ā1, L̄0), µDR,2 could be further reduced to

Pn{Wp̄1(Ā1, L̄0)(Y − g(2)
1 (L̄0)) + g

(2)
1 (L̄0)}

.

The inverse probability weighting (IPW) estimators as mentioned in (4.1) are

µ̂IPW,1 =
PnWp̄1(Ā1, L̄0)Y

PnWp̄1(Ā1, L̄0)

µ̂IPW,2 =
PnWp̄2(Ā2, L̄1)Y

PnWp̄2(Ā2, L̄1)

As shown in Murphy et al. (2001), the causal estimand can be written in terms

of g functions as:

µ1 = E

[∑
a1

g
(1)
1 (a1, L̄0)p(a1|S0)

]
= E

[
g

(1)
1 (1, S0 = 1, X̄0)I{S0 = 1}+ g

(1)
1 (., S0 = 0, X̄0)I{S0 = 0}

]
,

= α0 + α1I(C > t1) + αbXb + αtXt0

µ2 = E

[∑
a2

g
(2)
1 (a1, L0)p(a1|S0)

]
= E

[
g

(2)
1 (0, L0)I{S0 = 1}+ g

(2)
1 (., L0)I{S0 = 0}

]
= α0 + α1I(C > t1) + α2I(C > t1)P (C > t2|C > t1, X̄0) + αbXb

+αt(Xt0I(C < t1) + E(Xt1 |Xt0)I(C > t1))
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Therefore, we also have outcome regression(OR) estimators:

µ̂OR,1 = Png(1)
1 (L̄0)

µ̂OR,2 = Png(2)
1 (L̄0)

4.2.4 Improved doubly-robust estimators under the simpli-

fied scenario

Based on the asymptotic properties from Murphy et al. (2001), our doubly robust

estimator has the merit of maintaining consistency when either OR or PS model is

correctly specified. When both model are correctly specified, its variance is minimized.

However, when miss-specification occurs to either model, its variance may not be

minimized any longer, especially when this miss-specification occurs to the OR model.

To minimize the variance of our doubly-robust estimator, especially when OR model

may be miss-specified, we adopted similar approach as Cao et al. (2009); Tsiatis et al.

(2011) did by finding appropriate α = (α0, α1, α2, αb, αt) that satisfy i) the criteria

for doubly-robustness and ii) the criteria of variance minimization as long as the PS

model is correct simultaneously.

Regime 1

To minimize the variance of µDR,1 as in (4.13), we want to minimize the quantity

V ar
[
Wp̄1(Ā1, L̄0)(Y − g(1)

1 (L̄0,α)) + g
(1)
1 (L̄0,α)

]
.

As E{Wp̄1(A1, L̄0)} = 1, we have
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E
[
Wp̄1(A1, L̄0)(Y − g(1)

1 (L̄0,α)) + g
(1)
1 (L̄0,α) | X0, Xt0 , Y

]
= E{Wp̄1(A1, L̄0)}E

[
Y − g(1)

1 (L̄0,α) | X0, Xt0 , Y
]

+ g
(1)
1 (L̄0,α)

= Y − g(1)
1 (L̄0,α) + g

(1)
1 (L̄0,α) = Y

We also have

V ar
[
Wp̄1(Ā1, L̄0)(Y − g(1)

1 (L̄0,α)) + g
(1)
1 (L̄0,α) | X0, Xt0 , Y

]
= V ar(Wp̄1(Ā1, L̄0))(Y − g(1)

1 (L̄0,α))2

Consequently, based on V ar(·) = E{V ar(·|X, Y )}+ V ar{E(·|X, Y )},

V ar
[
Wp̄1(A1, L̄0)(Y − g(1)

1 (L̄0,α)) + g
(1)
1 (L̄0,α)

]
= E

[
V ar(Wp̄1(A1, L̄0))(Y − g(1)

1 (L̄0,α))2
]

+ V ar(Y )

It is then equivalent to minimize E
[
V ar(Wp̄1(A1, L̄0))(Y − g(1)

1 (L̄0,α))2
]
. We

can achieve this by solving the equation:

E

[
V ar(Wp̄1(A1, L̄0))(Y − g(1)

1 (L̄0,α))
∂

∂α
g

(1)
1 (L̄0,α)

]
= 0 (4.14)

On the other hand, the estimating equation to solve for α in outcome regression

models is

PnI(C > t1)

[
(Y − g(1)

1 (L̄0,α))
∂

∂α
g

(1)
1 (L̄0,α)

]
= 0 (4.15)
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Thus, an estimating equation to satisfy equation (4.14) and (4.15) simultaneously

is

Pn
I(C > t1)

Pr(C > t1|L̄0)
V ar(Wp̄1(Ā1, L̄0)[(Y − g(1)

1 (L̄0,α))
∂

∂α
g

(1)
1 (L̄0,α) = 0 (4.16)

In this setting at m = 1, Wp̄1(Ā1, L̄0) = I(S0 = 0) + I(U = t1) 1
λ1(X̄0)

. Therefore,

V ar
[
Wp̄1(Ā1, L̄0)

]
= E{Wp̄1(Ā1, L̄0)2} − E(Wp̄1(Ā1, L̄0))2

= (1− Pr(C > t1|L̄0)) · 12 + Pr(C > t1|L̄0)λ1(X̄0) · 1

λ1(X̄0)2
− 12

= Pr(C > t1|L̄0)
1− λ1(X̄0)

λ1(X̄0)

Thus (4.16) could be further expressed as

PnI(C > t1)
1− λ1(X̄0)

λ1(X̄0)
[(Y − g(1)

1 (L̄0,α))
∂

∂α
g

(1)
1 (L̄0,α) = 0.

When the propensity score is correct but the outcome regression is or is not, the

left hand side of (4.16) converges in probability to an expression of the form (4.14).

Thus, the minimum variance is achieved even when outcome regression may be miss-

specified. When the outcome regression is correct and the propensity score is not but

has no unknown parameters, the left hand side of (4.16) converges to

E
[
(1− λC1,0(X̄0))1−λ1(X̄0)

λ1(X̄0)
[(g

(1)
1,0(L̄0)− g(1)

1 (L̄0,α)) ∂
∂α
g

(1)
1 (L̄0,α)

]
, which equals zero

when α = α0, so that α̂ converges in probability to α0. Note that here λ1(X̄0) =

λ1,0(X̄0) when propensity score model is correct and λC1 (X̄0) = λC1,0(X̄0) when outcome

regression model is correct. g
(1)
1,0(L̄0) denote the true outcome regression E(Y |L̄0).

In practice, the model for the propensity score model is always parametrized. In

order to maintain the above properties, especially when propensity score model is
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miss-specified, an extra piece of the parameters in the propensity score model, say γ

in λ1(X̄0,γ) need to be controlled. The steps needed is illustrated below:

Our likelihood for targeted treatment stop process is

L =
∏
λ1(γ, X̄0)I(U=t1)(1 − λ1(γ, X̄0))I(U>t1), where the discrete hazard function

at t1 is λ1(γ, X̄0) = (1 + e−γ0−γbXb−γtXt0 )−1.

Then we have the log likelihood

log(L) =
n∑
I(U = t1)logλ1(γ, X̄0) + I(U > t1)log(1− λ1(γ, X̄0))

and the score function

Sγ =
n∑[

I(U = t1)

λ1(γ, X̄0)

∂λ1(γ, X̄0)

∂γ
− I(U > t1)

1− λ1(γ, X̄0)

∂λ1(γ, X̄0)

∂γ

]
=

n∑[
I(U = t1)− I(U = t1)λ1(γ, X̄0)− I(U > t1)λ1(γ, X̄0)

λ1(γ, X̄0)(1− λ1(γ, X̄0))

]
∂λ1(γ, X̄0)

∂γ

=
n∑[

I(U = t1)− I(U ≥ t1)λ1(γ, X̄0)

λ1(γ, X̄0)(1− λ1(γ, X̄0))

]
∂λ1(γ, X̄0)

∂γ

Because

Wp̄1(A1, L̄0)− 1 = I(U < t1) +
I(U = t1)

λ1(γ, X̄0)
− 1

=
I(U = t1)

λ1(γ, X̄0)
− (1− I(U < t1))

=
I(U = t1)

λ1(γ, X̄0)
− I(U ≥ t1)

=
I(U = t1)− I(U ≥ t1)λ1(γ, X̄0)

λ1(γ, X̄0)

We have

Sγ =
Wp̄1(A1, L̄0)− 1

1− λ1(γ, X̄0)
· ∂λ1(γ, X̄0)

∂γ
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The influence function corresponding to estimator of form

Wp̄1(A1, L̄0)(Y − g(1)
1 (L̄0,α)) + g

(1)
1 (L̄0,α)− µ1

when λ1(X̄0,γ) is correctly specified (i.e. λ1(X̄0,γ0) = λ1,0(X̄0) for some γ0), while

g
(1)
1 (L̄0,α) may be miss-specified with α̂ converge in probability to some α∗, have

form

Wp̄1(A1, L̄0)Y − (Wp̄1(A1, L̄0)− 1)g
(1)
1 (L̄0,α

∗)− ΓT0 (α∗)
−1∑
γγ,0

Sγ(L̄0,γ0)− µ1

= Wp̄1(A1, L̄0)Y − (Wp̄1(A1, L̄0)− 1)

[
g

(1)
1 (L̄0,α

∗) +
ΓT0 (α∗)

∑−1
γγ,0

1− λ1,0(X̄0)
· ∂λ1,0(X̄0)

∂γ

]
− µ1

where

∂λ1,0(X̄0)

∂γ
=
∂λ1(X̄0,γ0)

∂γ

ΓT0 (α∗) = E

[
∂λ1,0(X̄0)

∂γ
(g

(1)
1,0(L0)− g(1)

1 (L0,α
∗))/λ1,0(X̄0)

]
∑
γγ,0

= E

[
∂λ1,0(X̄0)

∂γ

∂λ1,0(X̄0)

∂γ

T

/{λ1,0(X̄0)(1− λ1,0(X̄0))}

]

To find α̂ that converging to α∗∗opt, which minimizes the variance of µ1, we consider

the following influence function

Wp̄1(A1, L̄0)Y − (Wp̄1(A1, L̄0)− 1)g
(1)
1 (L̄0,α

∗)− c∗TSγ(L̄0,γ0)− µ1

= Wp̄1(A1, L̄0)Y

−(Wp̄1(A1, L̄0)− 1)

[
g

(1)
1 (L̄0,α

∗) +
c∗T

1− λ1,0(X̄0)

∂λ1,0(X̄0)

∂γ

]
− µ1 (4.17)

for arbitrary (α∗, c∗). Taking the expression in braces above as a function of (α∗, c∗),
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a solution (α∗∗opt, c
∗∗
opt) to the following equation

E

V ar(Wp̄1
(A1, L̄0)){Y − g(1)

1 (L0,α
∗)− c∗T

∂λ1,0(X̄0)
∂γ

1− λ1,0(X̄0)
}


∂g

(1)
1 (L0,α

∗)
∂α

1
1−λ1,0(X̄0)

· ∂λ1,0(X̄0)
∂γ


 = 0(4.18)

minimizes the variance of (4.17).

By doing an analogy to minimizing the variance of µ1 when the discrete hazard

function of treatment stoppage process is fully specified, the recommendation for

estimating α is to solve a weighted version of (4.18) as below:

n∑
i=1

{I(Ci > t1)(
1− λ1(γ̂, X̄0,i)

λ1(γ̂, X̄0,i)
){Yi − g

(1)
1 (L̄0,i,α)− cT

∂λ1(γ̂,X̄0,i)

∂γ

1− λ1(γ̂, X̄0,i)
}


∂g

(1)
1 (L̄0,i,α)

∂α
∂λ1(γ̂,X̄0,i)

∂γ

1−λ1(γ̂,X̄0,i)

} = 0 (4.19)

for α and c simultaneously.

When the discrete hazard model for treatment stoppage process is correct and the

outcome regression model may or may not be correct, the solution to (4.19), i.e.α̂,

converges in probability to α∗∗opt. When outcome regression is correct but λ1(X̄0,γ) is

not, assuming that γ̂ converges in probability to some γ∗, the quantity to which the

left hand side of (4.19) converges in probability equals zero when (α, c) = (α0, 0).

Therefore, the solution to (4.19) yields an estimator for µ1 that is not only doubly

robust, but also achieves minimum asymptotic variance when the propensity model

is correct.

To find the solution to (4.19) for α and c simultaneously, we implemented Newton-

Ralphson algorithm to solve the system of equations by the following steps:

Let

Sa =

n∑
i=1

I(C,i > t1)(
1− λ1(X̄0,i, γ̂)

λ1(X̄0,i, γ̂)
){Yi − g(1)

1 (L̄0,i,α)− cT
∂λ1(X̄0,i,γ̂)

∂γ

1− λ1(X̄0,i, γ̂)
}∂g

(1)
1 (L̄0,i,α)

∂α


Sc =

n∑
i=1

I(C,i > t1)(
1

λ1(X̄0,i, γ̂)
){Yi − g(1)

1 (L̄0,i,α)− cT
∂λ1(γ̂,X̄0,i)

∂γ

1− λ1(X̄0,i, γ̂)
}∂λ1(X̄0,iγ̂)

∂γ

 ,
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−Iaa = −∂Sa
∂α

=

n∑
i=1

I(C,i > t1)
1− λ1(X̄0,i, γ̂)

λ1(X̄0,i, γ̂)
· ∂g

(1)
1 (L̄0,i,α)

∂α
× ∂g

(1)
1 (L̄0,i,α)

∂α

T


−Iac = −∂Sa
∂c

=

n∑
i=1

I(C,i > t1)
1

λ1(X̄0,i, γ̂)
· ∂λ1(X̄0,i, γ̂)

∂γ
× ∂g

(1)
1 (L̄0,i,α)

∂α

T


−Icc = −∂Sc
∂c

=

n∑
i=1

[
I(C,i > t1)

1

λ1(X̄0,i, γ̂)(1− λ1(X̄0,i, γ̂))
· ∂λ1(X̄0,i, γ̂)

∂γ
× ∂λ1(X̄0,i, γ̂)

∂γ

T
]

Then go through iterations by

α

c


j+1

=

α

c


j

+

−Iaa,−Iac
−ITac,−Icc


−1

×

Sa
Sc



until

∣∣∣∣∣∣∣
α

c


j+1

−

α

c


j

∣∣∣∣∣∣∣ < 0.001

Note that

∂λ1(γ, L0)

∂γ
=

∂

∂γ
(

1

1 + e−γ0−γbXb−γtXt0
) =

e−γ0−γbXb−γtXt0

(1 + e−γ0−γbXb−γtXt0 )2
· (1, Xb, Xt0)

∂g
(1)
1 (L0,α)

∂α
= (1, I(C > t1), Xb, Xt0)

Regime 2

To minimize the variance of µDR,2 as in (4.13), we want to minimize the quantity

V ar
[
Wp̄1(Ā1, L̄0)(Y − g(2)

1 (L̄0,α)) + g
(2)
1 (L̄0,α)

]
.

As E{Wp̄1(A1, L̄0)} = 1, we have
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E
[
Wp̄1(A1, L̄0)(Y − g(2)

1 (L̄0,α)) + g
(2)
1 (L̄0,α) | X0, Xt0 , Y

]
= E{Wp̄1(A1, L̄0)}E

[
Y − g(2)

1 (L̄0,α) | X0, Xt0 , Y
]

+ g
(2)
1 (L̄0,α)

= Y − g(2)
1 (L̄0,α) + g

(2)
1 (L̄0,α) = Y

We also have

V ar
[
Wp̄1(Ā1, L̄0)(Y − g(2)

1 (L̄0,α)) + g
(2)
1 (L̄0,α) | X0, Xt0 , Y

]
= V ar(Wp̄1(Ā1, L̄0))(Y − g(2)

1 (L̄0,α))2

Consequently, based on V ar(·) = E{V ar(·|X, Y )}+ V ar{E(·|X, Y )},

V ar
[
Wp̄1(A1, L̄0)(Y − g(2)

1 (L̄0,α)) + g
(2)
1 (L̄0,α)

]
= E

[
V ar(Wp̄1(A1, L̄0))(Y − g(2)

1 (L̄0,α))2
]

+ V ar(Y )

It is then equivalent to minimize E
[
V ar(Wp̄1(A1, L̄0))(Y − g(2)

1 (L̄0,α))2
]
. We

can achieve this by solving the equation:

E

[
V ar(Wp̄1(A1, L̄0))(Y − g(2)

1 (L̄0,α))
∂

∂α
g

(2)
1 (L̄0,α)

]
= 0 (4.20)

On the other hand, the estimating equation to solve for α in outcome regression

models is

PnI(C > t1)

[
(Y − g(2)

1 (L̄0,α))
∂

∂α
g

(2)
1 (L̄0,α)

]
= 0 (4.21)
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Thus, an estimating equation to satisfy equation (4.20) and (4.21) simultaneously

is

Pn
I(C > t1)

Pr(C > t1|L̄0)
V ar(Wp̄1(Ā1, L̄0)[(Y − g(2)

1 (L̄0,α))
∂

∂α
g

(2)
1 (L̄0,α) = 0 (4.22)

In this setting at m = 2, Wp̄1(Ā1, L̄0) = I(S0 = 0) + I(U > t1) 1
1−λ1(X̄0)

. Therefore,

V ar
[
Wp̄1(Ā1, L̄0)

]
= E{Wp̄1(Ā1, L̄0)2} − E(Wp̄1(Ā1, L̄0))2

= (1− Pr(C > t1|L̄0)) · 12

+Pr(C > t1|L̄0)(1− λ1(X̄0)) · 1

(1− λ1(X̄0))2
− 12

= Pr(C > t1|L̄0)
λ1(X̄0)

1− λ1(X̄0)

Thus (4.22) could be further expressed as

PnI(C > t1)
λ1(X̄0)

1− λ1(X̄0)
[(Y − g(2)

1 (L̄0,α))
∂

∂α
g

(1)
1 (L̄0,α) = 0.

When the propensity score is correct but the outcome regression is or is not, the

left hand side of (4.22) converges in probability to an expression of the form (4.20).

Thus, the minimum variance is achieved even when outcome regression may be miss-

specified. When the outcome regression is correct and the propensity score is not but

has no unknown parameters, the left hand side of (4.22) converges to

E
[
(1− λC1,0(X̄0)) λ1(X̄0)

1−λ1(X̄0)
[(g

(2)
1,0(L̄0)− g(2)

1 (L̄0,α)) ∂
∂α
g

(2)
1 (L̄0,α)

]
, which equals zero

when α = α0, so that α̂ converges in probability to α0. Note that here λ1(X̄0) =

λ1,0(X̄0) when propensity score model is correct and λC1 (X̄0) = λC1,0(X̄0) when outcome

regression model is correct. g
(2)
1,0(L̄0) denote the true outcome regression

E{p(a1|S0)E(Y |Ā2, L̄1)L̄0}
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.

In practice, the model for the propensity score model is always parametrized. In

order to maintain the above properties, especially when propensity score model is

miss-specified, an extra piece of the parameters in the propensity score model, say γ

in λ1(X̄0,γ) need to be controlled. The steps needed is illustrated below:

Our likelihood for targeted treatment stop process is

L =
∏n λ1(γ, X̄0)I(U=t1)(1−λ1(γ, X̄0))I(t1<U<t2){(1−λ1(γ, X̄0))λ2(γ, X̄1)}I(U=t2),

where the discrete hazard function at t1 is λ1(γ, X̄0) = (1 + e−γ0−γbXb−γtXt0 )−1 and at

t2 is λ2(γ, X̄1) = 1.

Then we have the log likelihood

log(L) =
∑n I(U = t1)log(λ1(γ, X̄0)) + I(U > t1)log(1− λ1(γ, X̄0)) and the score

function

Sγ =
n∑[

I(U = t1)

λ1(γ, X̄0)

∂λ1(γ, X̄0)

∂γ
− I(U > t1)

1− λ1(γ, X̄0)

∂λ1(γ, X̄0)

∂γ

]
=

n∑[
I(U = t1)

λ1(γ, X̄0)
− I(U > t1)

1− λ1(γ, X̄0)

]
∂λ1(γ, X̄0)

∂γ

=
n∑[

I(U = t1)(1− λ1(γ, X̄0))− I(U > t1)λ1(γ, X̄0)

λ1(γ, X̄0)(1− λ1(γ, X̄0))

]
∂λ1(γ, X̄0)

∂γ

=
n∑[

I(U = t1)− I(U ≥ t1)λ1(γ, X̄0)

λ1(γ, X̄0)(1− λ1(γ, X̄0))

]
∂λ1(γ, X̄0)

∂γ
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Because

Wp̄1(A1, L̄0)− 1 = I(U < t1) +
I(U > t1)

1− λ1(γ, X̄0)
− 1

=
I(U > t1)

1− λ1(γ, X̄0)
− (1− I(U < t1))

=
I(U > t1)

1− λ1(γ, X̄0)
− I(U ≥ t1)

=
I(U > t1)− I(U ≥ t1)(1− λ1(γ, X̄0))

1− λ1(γ, X̄0)

=
I(U > t1)− I(U ≥ t1) + I(U ≥ t1)λ1(γ, X̄0))

1− λ1(γ, X̄0)

=
−I(U = t1) + I(U ≥ t1)λ1(γ, X̄0))

1− λ1(γ, X̄0)

Thus,

Sγ = −Wp̄1(A1, L̄0)− 1

λ1(γ, X̄0)
· ∂λ1(γ, X̄0)

∂γ

The influence function corresponding to estimator of form

{Wp̄1(A1, L̄0)(Y − g(2)
1 (L̄0,α)) + g

(2)
1 (L̄0,α)− µ2}

when λ1(X̄0,γ) is correctly specified (i.e. λ1(X̄0,γ0) = λ1,0(X̄0) for some γ0), while

g
(2)
1 (L̄0,α) may be miss-specified with α̂ converge in probability to some α∗, have

form

Wp̄1(A1, L̄0)Y − (Wp̄1(A1, L̄0)− 1)g
(2)
1 (L̄0,α

∗)− ΓT0 (α∗)
−1∑
γγ,0

Sγ(L̄0,γ0)− µ2

= Wp̄1(A1, L̄0)Y − (Wp̄1(A1, L̄0)− 1)

[
g

(2)
1 (L̄0,α

∗) +
ΓT0 (α∗)

∑−1
γγ,0

λ1,0(X̄0)
· ∂λ1,0(X̄0)

∂γ

]
− µ2
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where

∂λ1,0(X̄0)

∂γ
=
∂λ1(X̄0,γ0)

∂γ

ΓT0 (α∗) = E

[
−∂λ1,0(X̄0)

∂γ
(g

(2)
1,0(L0)− g(2)

1 (L0,α
∗))/(1− λ1,0(X̄0))

]
∑
γγ,0

= E

[
∂λ1,0(X̄0)

∂γ

∂λ1,0(X̄0)

∂γ

T

/{λ1,0(X̄0)(1− λ1,0(X̄0))}

]

To find α̂ that converging to α∗∗opt, which minimizes the variance of µ2, we consider

the following influence function

{Wp̄1(A1, L̄0)Y − (Wp̄1(A1, L̄0)− 1)g
(2)
1 (L̄0,α

∗)− c∗TSγ(L̄0,γ0)− µ2}

= {Wp̄1(A1, L̄0)Y − (Wp̄1(A1, L̄0)− 1)

[
g

(2)
1 (L̄0,α

∗) +
c∗T

λ1,0(X̄0)

∂λ1,0(X̄0)

∂γ

]
− µ2}(4.23)

for arbitrary (α∗, c∗). Taking the expression in braces above as a function of (α∗, c∗),

a solution (α∗∗opt, c
∗∗
opt) to the following equation

E

V ar(Wp̄1
(A1, L̄0)){Y − g(2)

1 (L0,α
∗)− c∗T

∂λ1,0(X̄0)
∂γ

λ1,0(X̄0)
}


∂g

(2)
1 (L0,α

∗)
∂α

1
λ1,0(X̄0)

· ∂λ1,0(X̄0)
∂γ


 = 0 (4.24)

minimizes the variance of (4.23).

By doing an analogy to minimizing the variance of µ1 when the discrete hazard

function of treatment stoppage process is fully specified, the recommendation for

estimating α is to solve a weighted version of (4.24) as below:

n∑
i=1

I(C,i > t1)(
λ1(γ̂, X̄0,i)

1− λ1(γ̂, X̄0,i)
){Yi − g(2)

1 (L̄0,i,α)− cT
∂λ1(γ̂,X̄0,i)

∂γ

λ1(γ̂, X̄0,i)
}


∂g

(2)
1 (L̄0,i,α)
∂α

∂λ1(γ̂,X̄0,i)

∂γ

λ1(γ̂,X̄0,i)


 = 0(4.25)

for α and c simultaneously.

When the discrete hazard model for treatment stoppage process is correct and the

outcome regression model may or may not be correct, the solution to (4.25), i.e.α̂,

converges in probability to α∗∗opt. When outcome regression is correct but λ1(X̄0,γ) is
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not, assuming that γ̂ converges in probability to some γ∗, the quantity to which the

left hand side of (4.25) converges in probability equals zero when (α, c) = (α0, 0).

Therefore, the solution to (4.25) yields an estimator for µ2 that is not only doubly

robust, but also achieves minimum asymptotic variance when the propensity model

is correct.

To find the solution to (4.25) for α and c simultaneously, we implemented Newton-

Ralphson algorithm to solve the system of equations by the following steps:

Let

Sa =

n∑
i=1

I(C,i > t1)(
λ1(γ̂, X̄0,i)

1− λ1(γ̂, X̄0,i)
){Yi − g(2)

1 (L̄0,i,α)− cT
∂λ1(X̄0,i,γ̂)

∂γ

λ1(X̄0,i, γ̂)
}∂g

(2)
1 (L̄0,i,α)

∂α


Sc =

n∑
i=1

I(C,i > t1)(
1

1− λ1(X̄0,i, γ̂)
){Yi − g(2)

1 (L̄0,i,α)− cT
∂λ1(γ̂,X̄0,i)

∂γ

λ1(X̄0,i, γ̂)
}∂λ1(X̄0,iγ̂)

∂γ

 ,

−Iaa = −∂Sa
∂α

=

n∑
i=1

I(C,i > t1)(
λ1(γ̂, X̄0,i)

1− λ1(γ̂, X̄0,i)
) · ∂g

(2)
1 (L̄0,i,α)

∂α
× ∂g

(2)
1 (L̄0,i,α)

∂α

T


−Iac = −∂Sa
∂c

=

n∑
i=1

I(C,i > t1)
1

1− λ1(X̄0,i, γ̂)
· ∂λ1(X̄0,i, γ̂)

∂γ
× ∂g

(2)
1 (L̄0,i,α)

∂α

T


−Icc = −∂Sc
∂c

=

n∑
i=1

[
I(C,i > t1)

1

λ1(X̄0,i, γ̂)(1− λ1(X̄0,i, γ̂))
· ∂λ1(X̄0,i, γ̂)

∂γ
× ∂λ1(X̄0,i, γ̂)

∂γ

T
]

Then go through iterations by

α

c


j+1

=

α

c


j

+

−Iaa,−Iac
−ITac,−Icc


−1

×

Sa
Sc



until

∣∣∣∣∣∣∣
α

c


j+1

−

α

c


j

∣∣∣∣∣∣∣ < 0.001

Note that
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∂λ1(γ, L0)

∂γ
=

∂

∂γ
(

1

1 + e−γ0−γbXb−γtXt0
) =

e−γ0−γbXb−γtXt0

(1 + e−γ0−γbXb−γtXt0 )2
· (1, Xb, Xt0)

∂g
(2)
1 (L0,α)

∂α
= (1, I(C > t1), I(C > t1)Pr(C > t2 | C > t1, X̄0), Xb, Xtlast)

where Xtlast = Xt0 when C < t1 and Xtlast = E(Xt1 | Xt0) when C > t1

4.3 Simulation Studies

4.3.1 Data Simulation

Simulation studies were conducted to assess the performance our proposed method.

We take K = 2 time points (t1, t2) and constructed a simulated dataset as follows:

1. Let γC = (γC1 , γ
C
2 ,γ

C
b , γ

C
t ) = (γC1 , γ

C
2 , γ

C
b1, γ

C
b2, γ

C
t ) = (1.3

0.7
, 2.6

0.7
,−0.1,−0.1,−0.9);

γ = (γ1, γ2,γb, γt) = (γ1, γ2, γb1, γb2, γt) = ( 1
0.7
, 2

0.7
,−0.2,−0.2,−0.8).

2. Simulate three independent normal random variables: Xb1 ∼ N(0, 1), Xb2 ∼

N(0, 1) and time-dependent effect Xt at baseline Xt0 ∼ N(4, 1). Define Xb =

(Xb1, Xb2).

3. Generate C1, a potential treatment terminating event among [0, t1) as a binomial

random variable with p = λC1 (X̄0,γ
C) = 1

1+e
−(γC1 +γC

b
Xb+γ

C
t Xt0

)
. If C1 = 1 then

U = t1/2, ∆ = 0. All the information afterward except the outcome are set to

missing. (i.e. Xt1 , C2, A1, A2) And the continuous outcome Y is generated as

Y = α0 + αb1Xb1 + αb2Xb2 + αtXt + ε,

where α0 = 1.5, αb1 = 1, αb2 = 0.5, αt = 0.5, Xt is the last observed time-

varying covariate (i.e.Xt0 in this case) for each subject and ε is a standard
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normal random variable.

4. If C1 = 0, then generate A1, the treatment decision at time t1 as a binomial

random variable with p = λ1(X̄0,γ) = 1

1+e
−(γ1+γbXb+γtXt0

) . If A1 = 1, then

U = t1, ∆ = 1, and information after tj will be set to missing (i.e. Xt1 , C2, A2).

And Y is generated as

Y = α0 + α1 + αb1Xb1 + αb2Xb2 + αtXt + ε, (4.26)

where α1 = 0.5, Xt = Xt0 .

5. Otherwise, when Aj = Cj = 0 . Generate Xt1 ∼ N(Xt0 , 1)

6. Generate C2, a potential treatment terminating event among [t1, t2) as a bino-

mial random variable with p = λC2 (X̄1,γ) = 1

1+e
−(γC2 +γC

b
Xb+γ

C
t Xt1

)
. If C2 = 1 then

U = (t1 + t2)/2, ∆ = 0, and all information afterwards except the outcome are

set to missing. Y is generated the same way as (4.26) except that Xt = Xt1 .

7. If C2 = 0, then set A2 = 1, U = t2, ∆ = 1. The outcome Y is generated as

Y = α0 + α1 + α2 + αb1Xb1 + αb2Xb2 + αtXt + ε,

where α2 = 0.3, Xt = Xt1 .

The population parameters of interest µj’s, j = 1, 2. For each µj, the same

algorithm above is followed except that the treatment decision is not simulated but

forced to stop at tj (i.e. Al = 0, l < j; Aj = 1) if not already censored due to

treatment terminating event. We generated the outcome Y 500,000 times and took

the sample average as µj.

In addition to the scenario where both outcome regression and propensity score

models are correctly specified, situations where either model is miss-specified are also
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studied as follows:

� Propensity score (PS) model miss-specification: In the treatment decision event,

where the probability to stop at t1 follows a binomial distribution with p =

λ1(X̄0,γ) = 1

1+e
−(γ1+γbXb+γtXt0

) . We replace γtXt0 with quadratic form of Xt0 ,i.e.

γmXt0
2, where γm = 0.2.

� Outcome regression (OR) model miss-specification: ignoring the time-dependent

covariate Xt when fitting OR model, only Xb1 and Xb2 are kept as covariates.

� Neither PS or OR model is correctly specified: implementing both settings

above together.

Because the data simulation steps for OR incorrect case remain the same and

the truth simulation steps does not involve modeling of treatment decision event,

the simulated truth for these miss-specification scenarios maintains the same as that

when both OR and PS models are correctly specified.

4.3.2 Simulation Results

The simulation results comparing IPW (inverse probability weighting estimator (John-

son and Tsiatis, 2004)), OR (outcome regression estimator using G computation) and

three DR estimators (the ordinary DR estimator, the improved DR estimator with

variance minimization and the improved DR estimator with variance minimization

as well as adjusting for parametrization in PS model) using sample size 300 and 500

Monte Carlo datasets were displayed in Table 4.4. When both PS and OR models

are correctly specified, all estimators perform well in this setting with nice coverage

probabilities. The OR estimator has smaller variance than DR estimators and the

IPW estimator has the largest variance of among the five. The three DR estimators

achieve essentially the same consistency and efficiency.
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Table 4.4: Simulation results for estimating the average potential outcomes

Bias SD SEE ECP
PS correct, OR correct

IPW t1 -0.013 0.247 0.238 0.92
t2 0.008 0.103 0.104 0.964

OR t1 -0.003 0.114 0.110 0.934
t2 -0.009 0.097 0.099 0.958

Ordinary t1 0.003 0.192 0.193 0.962
t2 0.008 0.102 0.103 0.962

DR Improved t1 0.005 0.194 0.194 0.956
t2 0.008 0.102 0.103 0.962

Improvedc t1 0.006 0.193 0.196 0.954
t2 0.007 0.102 0.103 0.962

PS incorrect, OR correct
IPW t1 -0.103 0.306 0.253 0.842

t2 -0.007 0.113 0.111 0.934
OR t1 -0.014 0.114 0.111 0.946

t2 -0.016 0.102 0.099 0.942
Ordinary t1 -0.005 0.206 0.209 0.946

t2 -0.002 0.109 0.107 0.944
DR Improved t1 0.013 0.204 0.214 0.956

t2 -0.002 0.109 0.106 0.942
Improvedc t1 0.017 0.207 0.220 0.960

t2 -0.002 0.108 0.105 0.938
PS correct, OR incorrect

IPW t1 -0.012 0.247 0.238 0.920
t2 0.011 0.103 0.104 0.960

OR t1 -0.263 0.111 0.110 0.360
t2 -0.006 0.097 0.099 0.958

Ordinary t1 -0.001 0.207 0.216 0.936
t2 0.010 0.102 0.104 0.962

DR Improved t1 0.002 0.195 0.198 0.950
t2 0.010 0.102 0.103 0.962

Improvedc t1 0.005 0.196 0.200 0.956
t2 0.010 0.102 0.103 0.962

PS incorrect, OR incorrect
IPW t1 -0.102 0.306 0.253 0.842

t2 -0.004 0.113 0.111 0.934
OR t1 -0.295 0.114 0.110 0.248

t2 -0.014 0.102 0.099 0.944
Ordinary t1 -0.096 0.264 0.241 0.850

t2 -0.004 0.110 0.109 0.940
DR Improved t1 -0.003 0.209 0.229 0.960

t2 -0.002 0.109 0.106 0.936
Improvedc t1 0.035 0.217 0.237 0.950

t2 0.001 0.108 0.105 0.940

Truth = (3.910, 4.032); SD, Monte Carlo standard deviation;
SEE, standard error estimate based on bootstrap; ECP, empirical

coverage probability for Wald-type 95% confidence interval.



82

For estimating µ1, when PS model is incorrect but OR model is correct, the IPW

estimator is no longer consistent, while the other four estimators perform well. The

OR estimator has the smallest variance and the variance of the three DR estimators

are very similar; when PS model is correct but OR model is incorrect, the OR esti-

mator is no longer consistent, but the others demonstrate good performance. While

variance of IPW estimator is the largest, the two improved DR estimators show ap-

preciable smaller variance than the ordinary DR estimator; when neither PS nor OR

is correct, the IPW, OR and ordinary DR are all inconsistent. Under this particu-

lar setting where PS model is mildly miss-specified, the two improved DR estimator

demonstrate satisfactory coverage probabilities.

For estimating µ2, the PS and OR models are always correct in spite of the miss-

specification procedure we adopt. This is largely due to it is the last interval, so the

propensity to stop at the last interval is always 1, regardless the miss-specification.

Similar case was also found in Chapter 1, where the IPW estimator is not consistent

in the first three time points, but maintains its consistency in the fourth time point

under discrete time setting and PS miss-specification. The reason for OR estimator to

remain consistent in spite of OR miss-specification is probably because of the special

setting we implemented where the outcome is independent of treatment.

Note that in our studied settings, the improved DR estimator with adjustment

for parametrization in PS model barely show any advantage over the improved DR

estimator without the adjustment. This is probably due to in the special setting we

adopted here, the parametrized PS model approximate the true model really well. It

is conjectured that in more general settings, where the differences between the two

models are more substantial, we would expect the improved DR with adjustment for

parametrization will have better consistency.
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4.4 Remarks

We proposed three doubly robust estimators for dynamic regime with time-varying

effects. We showed both in theory and in simulation studies that they are consistent

when either the PS model or OR model is correctly specified. We also demonstrate

the improved doubly robust estimation that minimizes the variance when the OR

model may or may not be correctly specified.
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Chapter 5

Conclusions

In Chapter 2, we focused on direct outcome regression estimators that accommodate

both continuous and discrete time and in Chapter 3, we proposed an outcome regres-

sion method to estimate both the distribution and the mean of the potential outcome

for discrete time. In both two chapters, we focused on modeling the treatment-

terminating process. They work well when the treatment terminating event is mod-

erate, under which condition the IPW estimator may not perform well.

Both approaches proposed in the two chapters and their competing IPW estima-

tors are good only if their postulated model is correct. To provide a more robust

estimation, in Chapter 4, we proposed an ordinary doubly-robust estimator and two

improved doubly-robust estimators for dynamic regime. Even though the improved

doubly robust estimation has been implemented in several settings, it has never been

incorporated in dynamic regime before.

The work in the three chapters are all associated with each other. The setting

in Chapter 2 can be considered as an outcome regression for estimation at the first

time point, while the outcome regression using G-computation algorithms (Chapter

3) estimate across all stages, which constitute an essential augmentation part of the

doubly robust estimator in Chapter 4.
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Appendix A

Supplementary Material for

Chapter 2

A.1 Details of Large Sample Properties

We assume that Zi = (Yi, Ui,∆i, Xi), i = 1, . . . , n, are independent and identically

distributed random vectors. Define the true value

µ0(t) =

∫
X

[
m1(t, x)G(t | x)−

∫
[0,t)

m0(u, x) dG(u | x)

]
dH(x),

where, under the correctly specified models, we havem1(t, x) = m1(t, x; β0), m0(t, x) =

m0(t, x;α0), G(t | x) = G(t | x; γ0), and θ = (α, β, γ). Let

µ̂n(t) = µ(t; θ̂n) = PnB1(Z; β̂n, γ̂n)− PnB2(Z; α̂n, γ̂n),

where

B1(Z; β, γ) = m1(t,X; β)G(t | X; γ), B2(Z;α, γ) =

∫
[0,t)

m0(u,X;α) dG(u | X; γ),
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α̂n minimizes the negative log-likelihood

−
n∑
i=1

{(1−∆i) log f0(Yi | Ui, Xi;α)} , (A.1)

and β̂n minimizes the negative log-likelihood

−
n∑
i=1

{∆i log f1(Yi | Ui, Xi; β)} . (A.2)

In Theorem 1, γ̂n minimizes the negative log-likelihood

−
n∑
i=1

[
(1−∆i) log

{
λ(0)(Ui | Xi; γ)

}
+ log {G(Ui | Xi; γ)}

]
. (A.3)

The following conditions are stated in a style similar to Murphy et al. (2001,

Appendix).

Conditions

C1. The integral
∫
X

[
m1(t, x)G(t | x)−

∫
[0,t)

m0(u, x) dG(u | x)
]2

dH(x) exists and

is finite. There exists a finite vector β0 such that 0 = Eψβ(Z; β0), Pnψβ(Z; β) is

the derivative of (A.2) with respect to β; there exists a finite vector α0 such that

0 = Eψα(Z;α0), Pnψα(Z;α) is the derivative of (A.1) with respect to α; there

exists a finite vector γ0 such that 0 = Eψγ(Z; γ0), Pnψγ(Z; γ) is the derivative

of (A.3) with respect to γ.
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C2. Let N be an neighborhood of {α0, β0, γ0, µ0(t)}. The class of functions

{
1(X ≤ x), B1(Z; β, γ), B2(Z;α, γ), B2

1(Z; β, γ), B2
2(Z;α, γ),

∂

∂β
B1(Z; β, γ),

∂

∂γ
B1(Z; β, γ),

∂

∂α
B2(Z;α, γ),

∂

∂γ
B2(Z;α, γ),

∂

∂α
ψα(Z;α),

∂

∂β
ψβ(Z; β),

∂

∂γ
ψγ(Z; γ), ψα(Z;α)⊗2, ψβ(Z; β)⊗2,

ψγ(Z; γ)⊗2, (α, β, γ, µ0(t)) ∈ N
}

is a Glivenko-Cantelli class.

C3. Assume that Iα = E{(∂/∂α)ψα(Z;α)}, Iβ = E{(∂/∂β)ψβ(Z; β)}, and Iγ =

E{(∂/∂γ)ψγ(Z; γ)} are invertible at the true values α0, β0, and γ0, respectively.

Theorem 1. Under Conditions C1–C3, µ̂n(t) = µ(t, θ̂n) is a root-n consistent and

asymptotically normal estimator for µ0(t).

Proof. To show consistency, note that α̂n, β̂n, and γ̂n are all maximum likelihood

estimators and consistency for their respective estimands follows from Conditions

C1–C3 using standard arguments (cf. van der Vaart and Wellner, 1996, § 3.2, 3.4.1).

To show the consistency of µ(t, θ̂n), we can construct a simple estimating function

ψµ(Z;µ(t), θ) = B1(Z; β, γ)−B2(Z;α, γ)−µ(t), use Conditions C1–C3, and apply an

ordinary theory of Z-estimation to the system of equations, 0 = Pn(ψµ, ψ
T
α, ψ

T
β , ψ

T
γ )T

(cf. van der Vaart and Wellner, 1996, Thm 3.3.1). The proofs of these results are

omitted.

To show asymptotic normality, the Glivenko-Cantelli property and invertibility of

Iα, Iβ, and Iγ, lead to the results: n1/2(α̂n−α0) = n1/2Pnϕα(Z;α0)+op(1), ϕα(Z;α) =

I−1
α ψα(Z;α), n1/2(β̂n − β0) = n1/2Pnϕβ(Z; β0) + op(1), ϕβ(Z; β) = I−1

β ψβ(Z; β),

n1/2(γ̂n − γ0) = n1/2Pnϕγ(Z; γ0) + op(1), ϕγ(Z; γ0) = I−1
γ ψγ(Z; γ0). Through first-



96

order Taylor-series approximations, we have that

µ(t; θ̂n) = PnB1(Z; β̂n, γ̂n)− PnB2(Z; α̂n, γ̂n)

= PnB1(Z; β0, γ0)− PnB2(Z;α0, γ0)

+Pn
{
∂

∂α
B2(Z;α, γ̂n)

∣∣∣∣
α=α∗

}
(α̂n − α0)

+Pn

{
∂

∂β
B1(Z; β, γ̂n)

∣∣∣∣
β=β∗

}
(β̂n − β0)

+Pn

[
∂

∂γ

{
B1(Z; β̂n, γ)−B2(Z; α̂n, γ)

} ∣∣∣∣
γ=γ∗

]
(γ̂n − γ0)

where α∗ is a vector of intermediate values between α̂n and α0, β∗ is a vector of

intermediate values between β̂n and β0, and γ∗ is a vector of intermediate values

between γ̂n and γ0. The first term in the expansion converges to µ0(t) in probability

by a law of large numbers. Apply the Glivenko-Cantelli property and the results

above to yield the asymptotic expansion

n1/2{µ̂n(t)− µ0(t)} = n1/2Pnϕµ(t, Z; θ0) + op(1),

where

ϕµ(t, Z; θ0) = E

{
∂

∂α
B2(Z;α, γ0)

∣∣∣∣
α=α0

}
ϕα(Z;α0) (A.4)

+E

{
∂

∂β
B1(Z; β, γ0)

∣∣∣∣
β=β0

}
ϕβ(Z; β0)

+E

{
∂

∂γ
B1(β0, γ)

∣∣∣∣
γ=γ0

− ∂

∂γ
B2(α0, γ)

∣∣∣∣
γ=γ0

}
ϕγ(Z; γ0). (A.5)

Asymptotic normality then follows from the central limit theorem and Slutzky’s The-

orem. Thus, n1/2{µ̂n(t) − µ0(t)} converges in distribution to a mean-zero normal

random variable with variance E(ϕ⊗2
µ ), with ϕµ defined in (A.5).
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Now, we introduce counting process notation for the treatment interruption data.

Define the counting process N
(0)
i (t) = I(Ui ≤ t,∆i = 0), Ni(t) = I(Ui ≤ t,∆i = 1)

the at-risk process Ri(t) = I(Ui ≥ t), and

M
(0)
i (t) = N

(0)
i (t)−Ri(t)Λ0(t) exp(XT

i γ0),

a local martingale with respect to the filtration Ft = σ{Ni(u), N
(0)
i (u), Xi, u ≤ t, i =

1, . . . , n}. We also define the sum of subject-specific martingales and counting pro-

cesses as

M̄ (0)(u) =
n∑
i=1

M
(0)
i (u), N̄ (0)(u) =

n∑
i=1

N
(0)
i (u),

respectively. If γ̂n is the maximum partial likelihood estimator (MPLE), then it solves

the estimating equations, Sn(γ̂n) = 0,

Sn(γ) = Pn
[∫ ∞

0

{
X − X̃(u, γ)

}
dN (0)(u)

]
,

where

S(k)(u, γ) = Pn
{
X⊗k exp(XTγ)R(u)

}
, s(k)(u, γ) = lim

n→∞
S(k)(u, γ), k = 0, 1, 2,

X̃(u, γ) =
S(1)(u, γ)

S(0)(u, γ)
, µ(u, γ) =

s(1)(u, γ)

s(0)(u, γ)
,

where v⊗2 = vvT for a vector v. Moreover, standard results from survival analysis

yield the influence function for γ̂n as

n1/2(γ̂n − γ0) = n1/2Pn{ϕγ(Z, γ0)}+ op(1),

ϕγ(Z, γ0) = V −1
γ

∫ ∞
0

{X − µ(u, γ0)} dM (0)(u),
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where

Vγ = lim
n→∞

Pn

{∫ ∞
0

[∑n
j=1{Xj − X̃(u, γ0)}⊗2 exp(XT

j γ0)Rj(u)∑n
j=1 exp(XT

j γ0)Rj(u)

]
dN (0)(u)

}
.

Our proof of Theorem 2 relies on our ability to write the sum of stochastic integrals

in µ̂n(t) as the sum of independent and identically distributed random variables plus

asymptotically negligible terms. To facilitate that objective, we state some of the

key results in the following three lemmas. Lemma 1 provides the influence function

for the predicted survival estimate at a fixed X = x∗, i.e. p̂r(C > t | x∗). This

result is stated for completeness and whose proof is a standard result in advanced

survival analysis texts. Hence, the proof of Lemma 1 is omitted. Lemma 2 derives

the influence function for a stochastic integral with integrator equal to the Breslow

estimator and is a key step in Lemma 3. Lemma 3 derives the influence function for

a sample average of stochastic integrals, where the i-th integral has subject-specific

integrator G(t | Xi; γ̂n).

Lemma 1. For any t ≤ τ , τ the upper support of U , x∗ lies in the interior of X and

under Conditions VII.2.1–VII.2.2 from Andersen et al. (1993),

n1/2{Ĝn(t | x∗; γ̂n)−G(t | x∗)} = n1/2Pn {ϕG(Z, γ0)}+ op(1),

where

ϕG(Zi, γ0) = exp{(x∗)Tγ0}{
∫ t

0

dM
(0)
i (u)

s(0)(u, γ0)

+{K(t)}TV −1
γ

∫ ∞
0

{Xi − µ(u, γ0)} dM (0)
i (u)},

K(t) = −
∫ t

0

{x∗ − µ(u, γ0)} dΛ0(u).

Lemma 2. Let H(t) be a Ft-adapted function, Λ̂0(t) is the Breslow estimator for the
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integrated baseline hazard function Λ0(t), and define

η̂n =

∫ b

a

H(u) dΛ̂0(u; γ̂n), η0 =

∫ b

a

H(u) dΛ0(u),

for 0 ≤ a < b < τ , τ is the upper support point of U and is finite. Under Condi-

tions VII.2.1–VII.2.2 from Andersen et al. (1993),

n1/2(η̂n − η0) = n1/2Pn {ϕη,H(Z, γ0)}+ op(1),

where

ϕη,H(Zi, γ0) =

∫ b

a

H(t) dM
(0)
i (t)

s(0)(t, γ0)
+∫ ∞

0

{
KH(b)(b)−KH(a)(a) + J(a, b)

}T
V −1
γ {Xi − µ(t, γ0)} dM (0)

i (t),

KH(b)(b) = −H(b)

∫ b

0

µ(u, γ0) dΛ0(u),

KH(a)(a) = −H(a)

∫ a

0

µ(u, γ0) dΛ0(u),

JH(a, b) =

∫ b

a

{∫ u

0

µ(t, γ0) dΛ0(t)

}
dH(u).

Proof. First, we expand the difference by adding and subtracting like quantities,

n1/2(η̂n − η0) = n1/2

∫ b

a

H(u) {dΛ̂0(u, γ̂n)− dΛ̂0(u, γ0)} (A.6)

+n1/2

∫ b

a

H(u) {dΛ̂0(u, γ0)− dΛ0(u)} (A.7)
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Using integration by parts, we expand the first term as the following three terms

(A.6) = n1/2
[
H(b){Λ̂0(b; γ̂n)− Λ̂0(b; γ0)}

]
(A.8)

−n1/2
[
H(a){Λ̂0(a; γ̂n)− Λ̂0(a; γ0)}

]
(A.9)

−n1/2

∫ b

a

{
Λ̂0(u; γ̂n)− Λ̂0(u; γ0)

}
dH(u). (A.10)

Through a first-order Taylor-series approximation, law of large numbers, and Lenglart’s

Inequality,

(A.8) = n−1/2

n∑
i=1

{KH(b)(b)}TV −1
γ

∫ ∞
0

{Xi − µ(u, γ0)} dMi(u) + op(1),

where KH(b)(b) is defined above. Similarly, we have that

(A.9) = −n−1/2

n∑
i=1

{KH(a)(a)}TV −1
γ

∫ ∞
0

{Xi − µ(u, γ0)} dMi(u) + op(1),

and KH(a)(a) is defined above. Lastly, we have that

(A.10) = −n1/2

∫ b

a

{
∂

∂γ

∫ u

0

dN̄ (0)(t)∑n
j=1 exp(XT

j γ)Rj(t)

∣∣∣∣
γ=γ∗

}
dH(u)

= −n1/2

∫ b

a

[{
−
∫ u

0

µ(t, γ0) dΛ0(t)

}T

(γ̂n − γ0) dH(u)

]
+ op(1),

=

[∫ b

a

{∫ u

0

µ(t, γ0) dΛ0(t)

}
dH(u)

]T

n1/2(γ̂n − γ0) + op(1),

= n−1/2

n∑
i=1

{J(a, b)}T

∫ ∞
0

V −1
γ {Xi − µ(u, γ0)} dM (0)

i (u) + op(1),

where the second expression follows from a first-order Taylor-series approximation,

law of large numbers, and Lenglart’s Inequality, analogous to the preceding argu-
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ments, and J(a, b) is defined above. Hence,

(A.6) = n−1/2

n∑
i=1

∫ ∞
0

{
KH(b)(b)−KH(a)(a) + J(a, b)

}T
V −1
γ {Xi − µ(u, γ0)}

dM
(0)
i (u) + op(1).

Similar to (A.6), we expand (A.7) into three terms using integration by parts, i.e.,

(A.7) = n1/2
[
H(b){Λ̂0(b; γ0)− Λ0(b)}

]
(A.11)

−n1/2
[
H(a){Λ̂0(a; γ0)− Λ0(a)}

]
(A.12)

−n1/2

∫ b

a

{
Λ̂0(u; γ0)− Λ0(u)

}
dH(u). (A.13)

By definition, we have

(A.11) = n1/2H(b)

{∫ b

0

dN̄ (0)(u)∑n
j=1 exp(XT

j γ0)Rj(u)
− dΛ0(u)

}

= n1/2H(b)

∫ b

0

dM̄ (0)(u)∑n
j=1 exp(XT

j γ0)Rj(u)

= n−1/2

n∑
i=1

H(b)

∫ b

0

dM
(0)
i (u)

s(0)(u, γ0)
+ op(1),

where the third line follows by a law of large numbers. Similarly,

(A.12) = −n−1/2

n∑
i=1

H(a)

∫ a

0

dM
(0)
i (u)

s(0)(u, γ0)
+ op(1).

Finally,

(A.13) = −n1/2

∫ b

a

{
Λ̂0(u, γ0)− Λ0(u)

}
dH(u),

= −n1/2

∫ b

a

{∫ u

0

dM̄ (0)(t)∑n
j=1 exp(XT

j γ0)Rj(t)

}
dH(u). (A.14)

The next step is to change the order of integration. Note, the area of integration is
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regular in the sense that it is contiguous; however, the region is trapezoidal which re-

sults in the sum of two regions after the change. There are two equivalent expressions

for (A.14):

(A.14) = −n1/2

[ ∫ b

0

{∫ b

t

dH(u)

}
dM̄ (0)(t)∑n

j=1 exp(XT
j γ0)Rj(t)

(A.15)

−
∫ a

0

{∫ a

t

dH(u)

}
dM̄ (0)(t)∑n

j=1 exp(XT
j γ0)Rj(t)

]
= −n1/2

[ ∫ a

0

{∫ b

a

dH(u)

}
dM̄ (0)(t)∑n

j=1 exp(XT
j γ0)Rj(t)

+

∫ b

a

{∫ b

t

dH(u)

}
dM̄ (0)(t)∑n

j=1 exp(XT
j γ0)Rj(t)

]
.

Note, that if a = 0, the two expression are identical. By the Fundamental Theorem

of Calculus, we can evaluate the inner integral at the upper and lower limits of

integration:
∫ b
t
dH(u) = H(b)−H(t) and

∫ a
t
dH(u) = H(a)−H(t). Then,

(A.15) = −n1/2

∫ b

0

{H(b)−H(t)} dM̄ (0)(t)∑n
j=1 exp(XT

j γ0)Rj(t)
(A.16)

+n1/2

∫ a

0

{H(a)−H(t)} dM̄ (0)(t)∑n
j=1 exp(XT

j γ0)Rj(t)

= n−1/2

n∑
i=1

∫ b

0

{H(t)−H(b) + [H(a)−H(t)]I(0 ≤ t ≤ a)} dM (0)
i (t)

s(0)(t, γ0)
+ op(1),

where the last line follows by an ordinary law of large numbers. Putting (A.11)–(A.13)

together,

(A.7) = (A.11) + (A.12) + (A.13)

= n−1/2

n∑
i=1

∫ b

0

{H(t)−H(t)I(0 ≤ t ≤ a)} dM (0)
i (t)

s(0)(t, γ0)
+ op(1)

= n−1/2

n∑
i=1

∫ b

a

H(t)dM
(0)
i (t)

s(0)(t, γ0)
+ op(1).
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Thus,

(A.6) + (A.7) =

n−1/2

n∑
i=1

[∫ b

a

H(t) dM
(0)
i (t)

s(0)(t, γ0)

+

∫ ∞
0

{KH(b)(b)−KH(a)(a) + J(a, b)}TV −1
γ {Xi − µ(t, γ0)} dM (0)

i (t)

]
+ op(1).

Lemma 3. Let Hi(t) be a Ft-adapted function and define

ζ̂n(t) =
1

n

n∑
i=1

∫ t

0

Hi(u) dĜ(u | Xi; γ̂n), ζ0(t) = E

{∫ t

0

Hi(u) dG(u,X1)

}
.

Under Conditions VII.2.1–VII.2.2 from Andersen et al. (1993),

n1/2{ζ̂n(t)− ζ0(t)} = n1/2Pn
{∫ ∞

0

ϕζ,H(u, Zi, γ0) dM
(0)
i (u)

}
+ op(1),

where

ϕζ,H(u, Zi, γ0) = {J(γ0) +K(γ0)}V −1
γ {Xi − µ(u, γ0)}+

E{−H1(u)G(u,X1)eX
T
1 γ0}

s(0)(u, γ0)

J(γ0) = E{
∫ ∞

0

{−H1(u) exp(XT

1 γ0)X1I(0 < u < t){G(u | X1)dΛ0(u)

+Λ0(u) dG(u | X1)}}}

K(γ0) =

∫ ∞
0

E{−H1(u)G(u | X1) exp(XTγ0)}I(0 < u < t) dΛ0(u).

Proof. We begin by noting G(t | Xi) = exp{−Λ(t,Xi)} implies the identity

dG(t | Xi) = d{e−Λ(t,Xi)} = G(t | Xi)d{−Λ(t,Xi)} = −G(t | Xi)dΛ(t,Xi).

As a result of the functional delta method and the uniform consistency of



104

Ĝ(u | Xi) for G(u | Xi) for 0 ≤ u ≤ t, we have that

n−1/2

n∑
i=1

∫
[0,t)

Hi(u) d{Ĝ(u | Xi; γ̂n)−G(u | Xi)} =

−n−1/2

n∑
i=1

∫
[0,t)

Hi(u)G(u | Xi)d{Λ̂(u,Xi; γ̂n)− Λ(u,Xi)}+ op(1). (A.17)

Expression (A.17) is expanded as the following two terms

(A.17) = −n−1/2

n∑
i=1

∫
[0,t)

Hi(u)G(u | Xi) (A.18)

d[{Λ̂0(u, γ̂n)eX
T
i γ̂n} − {Λ0(u)eX

T
i γ̂n}] (A.19)

−n−1/2

n∑
i=1

∫
[0,t)

Hi(u)G(u | Xi)d[{Λ0(u)eX
T
i γ̂n} − {Λ0(u)eX

T
i γ}](A.20)

+op(1). (A.21)

Using the consistency of γ̂n and the continuity of exp(XT
i γ),

(A.19) = −n−1/2

n∑
i=1

∫
[0,t)

Hi(u)G(u | Xi)e
XT
i γ0 d{Λ̂0(u, γ̂n)− Λ0(u)}+ op(1). (A.22)

Now, we see that (A.22) is n1/2 multiplied by a sample average of stochastic inte-

grals in Lemma 2 plus asymptotically negligible terms. Let H(u) = Hi(u)G(u |

Xi) exp(XT
i γ0), a = 0, and b = t in Lemma 2, then

(A.22) = −n1/2

n∑
i=1

ϕζ,Hi(Zi; γ0) + op(1),



105

where

ϕζ,Hi(Zi; γ0) =

∫ t

0

E{H1(u)G(u | X1) exp(XT
1 γ0)} dMi(u)

s(0)(u, γ0)

+{Kζ,Hi(t)− Jζ,Hi(t)}T

∫ ∞
0

V −1
γ {Xi − µ(u, γ0)} dM (0)

i (u),

Kζ,Hi(t) = −
∫ t

0

E {H1(t)G(u | X1) exp(XT

1 γ0)}µ(u, γ0) dΛ0(u)

Jζ,Hi(t) = E

[∫ t

0

{∫ u

0

µ(s, γ0)dΛ0(s)

}
exp(XT

1 γ0)d{H1(u)G(u | X1)}
]
.

The second term in (A.17) is

(A.21) = −n−1/2

n∑
i=1

∫
[0,t)

Hi(u)G(u | Xi)(e
XT
i γ̂n − eXT

i γ0) dΛ0(u)

= −n1/2

[∫
[0,t)

{
n−1

n∑
i=1

Hi(u)G(u | Xi)e
XT
i γ

∗
Xi

}
dΛ0(u)

]
(γ̂n − γ0)

= −n−1/2

n∑
i=1

∫ ∞
0

[
{Ω2(t)}TV −1

γ {Xi − µ(u, γ0)}
]
dMi(u) + op(1),

where

Ω2(t) =

∫
[0,t)

E{H1(u)G(u | X1)eX
T
1 γ0X1} dΛ0(u).

Putting these three terms together, we have

(A.17) = (A.19) + (A.21)

= n−1/2

n∑
i=1

(−1)ϕζ,Hi(Zi; γ0) + Ω2(t)V −1
γ

∫ ∞
0

{Xi − µ(u, γ0)} dMi(u) + op(1),

For consistency in presentation, we state the following conditions for proving The-

orem 2 in a format similar to those for Theorem 1 but accommodate the more complex

partial likelihood estimator for γ and Breslow estimator for Λ0(t). Note that Condi-

tions V11.2.1–VII.2.2 from Andersen et al. (1993) are implied by Conditions C1*–C3*
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below so that the conclusions from Lemmas 1–3 all hold.

Conditions

C1*. The integral
∫
X

[
m1(t, x)G(t | x)−

∫
[0,t)

m0(u, x) dG(u | x)
]2

dH(x) exists and

is finite. There exists a finite vector β0 such that 0 = Eψβ(Z; β0), Pnψβ(Z; β)

is the derivative of (A.2) with respect to β; there exists a finite vector α0 such

that 0 = Eψα(Z;α0), Pnψα(Z;α) is the derivative of (A.1) with respect to α;

there exists a finite vector γ0 such that 0 = Eψγ(Z; γ0), Sn(γ) = Pnψγ(Z; γ) is

Cox’s score function; τ , the upper support point of U , is finite.

C2*. Let N be an neighborhood of {α0, β0, γ0, µ0(t)}. The class of functions

{
1(X ≤ x), B1(Z; β, γ), B2(Z;α, γ), B2

1(Z; β, γ), B2
2(Z;α, γ),

∂

∂β
B1(Z; β, γ),

∂

∂γ
B1(Z; β, γ),

∂

∂α
B2(Z;α, γ),

∂

∂γ
B2(Z;α, γ),

∂

∂α
ψα(Z;α),

∂

∂β
ψβ(Z; β), ψα(Z;α)⊗2, ψβ(Z; β)⊗2,

N (0)(u), XN (0)(u), X⊗2N (0)(u), R(u)eX
Tγ, XR(u)eX

Tγ, X⊗2R(u)eX
Tγ,

u ∈ [0, τ ], (α, β, γ, µ0(t)) ∈ N
}

is a Glivenko-Cantelli class.

C3*. Assume that Iα = E{(∂/∂α)ψα(Z;α)}, Iβ = E{(∂/∂β)ψβ(Z; β)}, and Vγ are

invertible at the true values α0, β0, and γ0, respectively.

Theorem 2. Under Conditions C1*–C3*, µ̂n(t) is a root-n consistent estimator for

µ0(t) and n1/2{µ̂n(t)−µ0(t)} converges in distribution to a mean-zero normal random

variable with covariance E(ϕ⊗2
µ ), where ϕµ is given in (A.35).

Proof. The consistency of µ̂n(t) follows similarly to Theorem 1 and is omitted. We

focus on deriving the analytic form of the variance for the limiting distribution. To

this end, we will show that n1/2{µ̂n(t) − µ0(t)} = n−1/2
∑n

i=1 ϕµ(t, Zi;ϑ0) + op(1),
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which will imply the conclusion by an ordinary central limit theorem and Slutzky’s

theorem. We begin by separating the estimator and estimand into two parts:

n1/2{µ̂n(t)− µ0(t)} =

n−1/2

n∑
i=1

[
m1(t,Xi; β̂n)Ĝ(t | Xi; γ̂n)−m1(t,Xi; β0)G(t | Xi)

]
(A.23)

−n−1/2

n∑
i=1

{
∫

[0,t)

m0(u,Xi; α̂n) dĜ(u | Xi; γ̂n) (A.24)

−
∫

[0,t)

m0(u,Xi;α0) dG(u | Xi)}. (A.25)

The first term on the right-hand side of the above expression is

(A.23) = n−1/2

n∑
i=1

[
m1(t,Xi; β̂n)

{
Ĝ(t | Xi; γ̂n)−G(t | Xi)

}]
(A.26)

+n1/2

n∑
i=1

{{m1(t,Xi; β̂n) (A.27)

−m1(t,Xi; β0)}G(t | Xi)} (A.28)

Note that Ĝ(t | Xi; γ̂n) is the standard predicted survival function at X = Xi whose

asymptotic expansion is given in Lemma 1 and leads to the following expression:

(A.26) = n−1/2

n∑
i=1

[
E{−w1(t;Z1, θ0)}

∫
[0,t)

dM
(0)
i (u)

s(0)(u, γ0)
+

{Γ1(t)}TV −1
γ

∫
[0,∞)

{Xi − µ(u, γ0)} dM (0)
i (u)

]
+ op(1), (A.29)

where

w1(t, Zi; θ0) = m1(t,Xi; β0)G(t | Xi; γ0)eX
T
i γ0 ,

Γ1(t) = −E
[
w1(t, Z1; θ0)

∫
[0,t)

{X1 − µ(u, γ0)} dΛ0(u)

]
.

A first-order Taylor series approximation of m1(t,Xi; β̂n) about β0 in (A.28) leads to
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the asymptotic expansion

(A.28) = n−1/2

n∑
i=1

{
∂

∂β
m1(t,Xi; β)

∣∣∣∣
β=β∗

}
G(t | Xi)(β̂n − β0),

= n−1/2

n∑
i=1

{L(t)}Tϕβ(Zi; β0) + op(1), (A.30)

where β∗ is a vector of intermediate points on the line segment between β̂ and β0

and L(t) = E[{(∂/∂β)m1(t,X1; β0)}G(t | X1)]. Combining (A.29) and (A.30) leads

to the expression

(A.23) = n−1/2

n∑
i=1

[
{L(t)}Tϕβ(Zi; β0) + E{−w1(t;Z1, θ0)}

∫
[0,t)

dM
(0)
i (u)

s(0)(u, γ0)
+

{Γ1(t)}TV −1
γ

∫
[0,∞)

{Xi − µ(u, γ0)} dM (0)
i (u)

]
+ op(1). (A.31)

Similarly, we can split (A.25) into two parts by adding and subtracting like terms:

−1× (A.25) = n−1/2

n∑
i=1

∫
[0,t)

{m0(u,Xi; α̂n)−m0(u,Xi;α0)} dG(u | Xi)(A.32)

+n1/2

n∑
i=1

∫
[0,t)

m0(u,Xi; α̂n) d
{
Ĝ(u | Xi; γ̂n)−G(u | Xi)

}
(A.33)

Applying a Taylor-series approximation to the function m0(u,Xi; α̂n) about α0, fol-

lowed by Condition C1 and a law of large numbers leads to

(A.32) = n−1/2

n∑
i=1

{Jα(t)}Tϕα(Zi;α0) + op(1), (A.34)

where

Jα(t) =

∫ t

0

(∂/∂α)m0(u,X1;α0) dG(u | X1).

Under Condition C1 and the root-n consistency of α̂n, a Taylor-series approximation
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yields

(A.33) = n−1/2

n∑
i=1

∫
[0,t)

m0(u,Xi;α0) d{Ĝ(u | Xi; γ̂n)−G(u | Xi)}+ op(1).

Using Lemma 3 with Hi(u) = m0(u,Xi;α0), we have that

(A.33) = n−1/2

n∑
i=1

(−1)ϕζ,m0(Zi; γ0)

+{Ω2,m0(t)}TV −1
γ

∫ ∞
0

{Xi − µ(u, γ0)} dM (0)
i (u) + op(1)

ϕζ,m0(Zi; γ0) =

∫
[0,t)

E{m0(u,X1;α0)G(u | X1) exp(XT
1 γ0)}dM (0)

i (u)

s(0)(u, γ0)

{Kζ,m0(t)− Jζ,m0(t)}TV −1
γ

∫ ∞
0

{Xi − µ(u, γ0)} dMi(u),

Kζ,m0(t) = −
∫

[0,t)

E{m0(u,X1;α0)G(u | X1) exp(XT

1 γ0)}µ(u, γ0) dΛ0(u)

Jζ,m0(t) = E

[∫
[0,t)

{∫ u

0

µ(s, γ0) dΛ0(s)

}
exp(XT

1 γ0) d{m0(u,X1;α0)G(u | X1)}
]

Ω2,m0(t) =

∫
[0,t)

E
[
m0(u,X1;α0)G(u | X1)eX

T
1 γ0X1

]
dΛ0(u).

Therefore,

(A.23) + (A.25) = n−1/2

n∑
i=1

ϕµ(t, Zi;ϑ0) + op(1),

where

ϕµ(t, Zi;ϑ0) = {L(t)}Tϕβ(Zi; β0) + E{−w1(t;Z1, θ0)}
∫

[0,t)

dM
(0)
i (u)

s(0)(u, γ0)
(A.35)

+{Γ1(t)}TV −1
γ

∫
[0,∞)

{Xi − µ(u, γ0)} dM (0)
i (u)

−{Jα(t)}Tϕα(Zi;α0) + ϕζ,m0(Zi; γ0)

−{Ω2,m0(t)}TV −1
γ

∫
[0,∞)

{Xi − µ(u, γ0)} dM (0)
i (u).

Therefore, by the central limit theorem and Slutzky’s Theorem, n1/2{µ̂n(t) − µ0(t)}

converges in distribution to a mean-zero normal random variable with covariance
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E(ϕ⊗2
µ ).

A.2 Details of Binning Strategies for Inverse Prob-

ability Weighting Estimator

Table A.1: Simulation results for IPW estimator with varying binning strategy at
continuous time setting

Original Centered by natural scale Centered by log scale
Bias SD SEE ECP Bias SD SEE ECP Bias SD SEE ECP

n=100
t1 -0.111 0.467 0.370 0.852 0.035 0.473 0.374 0.856 0.034 0.579 0.435 0.829
t2 0.018 0.289 0.265 0.932 0.053 0.326 0.295 0.919 0.129 0.296 0.267 0.895
t3 0.037 0.213 0.197 0.914 0.055 0.202 0.195 0.920 0.221 0.207 0.197 0.770

n=200
t1 -0.114 0.346 0.312 0.894 0.029 0.346 0.309 0.914 0.029 0.417 0.384 0.918
t2 0.025 0.204 0.196 0.946 0.056 0.237 0.225 0.934 0.134 0.205 0.197 0.880
t3 0.036 0.152 0.142 0.922 0.054 0.141 0.141 0.920 0.220 0.146 0.141 0.639

n=300
t1 -0.071 0.299 0.282 0.902 0.055 0.279 0.265 0.926 0.072 0.361 0.351 0.909
t2 0.026 0.170 0.163 0.929 0.051 0.194 0.186 0.925 0.133 0.171 0.163 0.856
t3 0.044 0.124 0.116 0.912 0.062 0.116 0.116 0.908 0.229 0.122 0.116 0.488

ECP, empirical coverage probability for Wald-type 95% confidence interval

To examine the effects of preparation strategy on the performance of inverse prob-

ability weighting estimator, we compared Johnson and Tsiatis (2004) estimator with

three binning strategies respectively in simulation studies (Table A.1).

Under the same continuous time setting as in §2.4.2. Under 1000 Monte Carlo

simulation iterations, three binning strategies were compared: 1) (Original) Use the

mid point of two adjacent targeted time points on the log scale as the middle cut

off points. The cut-off points on the two extreme are close to e−10 and e10. This

way, all continuous time points were classified into their closest targeted discrete time

points. However, the bins created by this policy is not centered around their targeted

time points, which may affect the consistency of the estimator. To investigate this
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centering effect, another two binning strategies were adopted. 2) (Centered on natural

scale) This strategy uses bins that are centered around its targeted time points on the

natural scale of time. The width of bins on difference time points may be different

since the spacing of the targeted time points are not identical. Some observations

with observed time length very small or very large may be excluded from the analysis.

3)(Centered on log scale) this approach is essentially the same as last one except that

the bins are centered around its targeted time points on the log scale of time instead

of natural scale. Using our targeted treatment length as in § 2.4.2,There were only a

tiny proportion of observations excluded from the analysis using strategy 2 and 3.

The simulation shows that strategy 2 is most appropriate for the IPW estimators,

with good coverage probabilities for all targeted treatment lengths. The strategy 1 is

also okay, although the consistency for the targeted treatment lengths on the lower

or upper end could be improved. Strategy 3 works poor in this setting.

A.3 Details of ESPRIT Infusion Trial Data Anal-

ysis Results

The parameter estimates for outcome regression on adverse event within 30 days (for

censored data and observed data respectively) and Cox proportional hazard regression

models are listed in Table A.2. Statistically significant association is also found among

patient demographics, infusion time and the outcome.

The proposed estimators constructed under Weibull and Cox proportional haz-

ard models as well as the inverse probability weighting estimator with two binning

strategies are illustrated in Figure 2.1 and Table A.3. While the point estimates of

the four estimators are generally similar, our proposed estimators are substantially

more efficient than IPW estimators overall. The results suggests that longer infusion

lengths may corresponds to higher probability of encounter an adverse event within
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Table A.2: Estimates of coefficients (and their standard errors) for outcome logistic
regression on adverse event within 30 days and Cox proportional hazard regression
with respect to infusion time

α β γ

Infusion time -0.293 (0.212) 2.226 (1.087) NA
Diabetes -0.555 (0.712) -0.296 (0.368) 0.165 (0.245)
PTCA 0.901 (0.595) 0.530 (0.297) -0.132 (0.247)
Angina 0.043 (0.593) -0.402 (0.303) -0.269 (0.218)
Heparin 0.368 (0.675) 0.258 (0.375) 0.173 (0.272)
Weight -0.011 (0.282) -0.016 (0.141) -0.208 (0.106)
PTCA, percutaneous transluminal coronary angioplasty

Table A.3: Estimated event proportion (and their standard errors) for the ESPRIT
trial.

Direct IPW
Hours PH Extreme Value strategy 1 strategy 2

16 0.053(0.010) 0.064(0.012) 0.040(0.016) 0.029(0.020)
18 0.064(0.008) 0.074(0.011) 0.066(0.010) 0.055(0.010)
20 0.076(0.008) 0.086(0.011) 0.078(0.017) 0.068(0.018)
22 0.089(0.012) 0.101(0.014) 0.071(0.024) 0.065(0.028)
24 0.102(0.019) 0.113(0.021) 0.121(0.035) 0.093(0.002)

IPW, inverse probability weighting

Strategy 1, Original in Table A.1

Strategy 2, Centered by natural scale in Table A.1
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30 days.

A.4 Details of ACTG Data Analysis Results

The parameter estimates for outcome regression (OR) on CD4 cell count (for cen-

sored data and observed data respectively) and Cox proportional hazard (Cox PH)

regression models are listed in Table A.4. This demonstrates that not only the time

between virologic failure to switch is closely related to patients clinical atributes (eg.

time to virologic failure), but also the CD4 cell count is closely associated with pa-

tients clinical characteristics (baseline CD4 cell count, time to virologic failure, etc.).

This justifies the necessity of adjustment on those covariates in the estimation.

Table A.4: Parameter estimates for outcome regression on CD4 cell count and Cox
proportional hazard regression with respect to time to switch

OR(censored) OR(observed) Cox PH
Time to switch 0.03 (0.03) -0.10 (0.04) NA
HIV-1 RNA -0.01 (0.03) 0.05 (0.05) 0.09 (0.18)
HIV-1 RNA at virologic failure -0.04 (0.02) -0.11 (0.04) 0.03 (0.11)
Time to failure 0.08 (0.02) 0.08 (0.03) 1.05 (0.14)
Baseline CD4 cell count 0.04 (0.00) 0.05 (0.01) 0.01 (0.03)
Baseline CD8 cell count -0.01 (0.01) 0.03 (0.04) -0.11 (0.09)
Body Weight -0.01 (0.02) -0.01 (0.04) 0.11 (0.14)
Age 0.00 (0.00) 0.00 (0.00) -0.01 (0.01)
Sex 0.01 (0.05) -0.02 (0.09) -0.05 (0.31)
Drug History -0.01 (0.06) -0.13 (0.08) 0.64 (0.34)
Race

White - - -
Black -0.05 (0.04) -0.10 (0.08) 0.17 (0.26)
Hispanic or other -0.02 (0.05) -0.04 (0.10) 0.04 (0.29)

Table A.5 displays the data analysis results for CD4 outcome using a variety

of estimators. For the outcome regression, we adopted the linear regression mod-

els (MLR), the spline models (Spline) and the generalized additive model (GAM).

For spline models, we used cubic spline regression with respect to the time effect.

Meanwhile, the generalized additive model was built by implementing a smoothing
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Table A.5: ACTG data analysis with CD4 outcome

Direct
PH Extreme Value IPW

Hours MLR Spline GAM MLR Strategy 1 Strategy 4
1 2.551(0.039) 2.694(0.139) 2.556(0.064) 2.550(0.042) 2.511(0.053) 2.533(0.085)
2 2.479(0.039) 2.675(0.117) 2.515(0.048) 2.479(0.038) 2.509(0.061) 2.365(0.130)
4 2.413(0.056) 2.607(0.074) 2.476(0.048) 2.409(0.048) 2.355(0.098) 1.975(0.044)
6 2.387(0.062) 2.555(0.050) 2.456(0.051) 2.379(0.053)
8 2.375(0.065) 2.539(0.045) 2.443(0.052) 2.372(0.052)
10 2.366(0.068) 2.523(0.038) 2.434(0.047) 2.377(0.048)
12 2.371(0.064) 2.512(0.035) 2.428(0.045) 2.392(0.041)
14 2.395(0.052) 2.499(0.030) 2.423(0.044) 2.411(0.035)
16 2.418(0.041) 2.488(0.028) 2.421(0.044) 2.426(0.029) 2.451(0.035) 2.492(0.032)
18 2.443(0.033) 2.478(0.027) 2.419(0.043) 2.438(0.025)
20 2.456(0.030) 2.475(0.027) 2.419(0.043) 2.449(0.023)
22 2.466(0.028) 2.474(0.027) 2.418(0.043) 2.458(0.022)
24 2.473(0.027) 2.474(0.028) 2.418(0.043) 2.465(0.023)

MLR, multiple linear regression;GAM, generalized additive model.

function on time variable. For IPW estimator, we adopted the binning strategy 1 as

mentioned earlier in Table A.1, and the binning strategy 4, which the same as strat-

egy 2 except that the bins are not only symmetric around the targeted time point,

but also have the same width. Observations that fall outside the bins are excluded

from the analysis. For strategy 4, the number of events in the four intervals are 18,

9, 1, 2 respectively. This explains why the estimate at the third time interval is a

little off. Out of 182 subjects, 127 were included by binning strategy 4. This shows

that the performance of IPW estimator varies with different binning strategy and it

is not easy to find an appropriate binning strategy. On the other hand, the results

using our direct estimators are more precise, could be implemented relatively easily

and estimate more time points. As illustrated in Figure A.1, the direct estimators

based on spline models can detect more curvature than that based on linear regres-

sion. And they are both more flexible to detect different trends across time than the

direct estimator based on the general additive models.



115

0 5 10 15 20 25

Time to switch (weeks)

C
D

4+

2.2

2.4

2.6

2.8

3.0

●

●

●

●

●
●

● ●
● ● ●

●
●

●

●

●

●
●

● ● ●
●

● ●

●

●

●

●

●

●
●

● ●
● ●

●
●

● ● ●
● ● ● ● ● ● ● ●

●

●

●

●

●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

Cox(SLR)
Cox(Spline)
Cox(GAM)

Figure A.1: Estimated CD4+ counts and their 95% confidence intervals across switch
time using our direct estimator based on Cox PH models and linear regression (red),
Cox PH models and spline regression (green), and Cox PH models and generalized
additive models (blue).
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Appendix B

Supplementary Material for

Chapter 4

B.0.1 Derivation of doubly robust estimators

For estimating µ2, we have the estimating equation for JT2004 estimator:

Ψ(X) =

[
I(U = t2,∆ = 1)

(1− λ1(X̄0))λ2(X̄1)
+
I(t1 < U < t2,∆ = 0)

1− λ1(X̄0)
+ I(U < t1,∆ = 0)

]
(Y − µ2)

=

[
S0(1− A1)S1A2

(1− λ1(X̄0))λ2(X̄1)
+
S0(1− A1)(1− S1)

1− λ1(X̄0)
+ (1− S0)

]
(Y − µ2)

Then the augmentation term is

1∑
j=0

{Eobs
[
Ψ(X) | Āj+1, L̄j

]
− Eobs

[
Ψ(X) | Āj, L̄j

]
}

Now we derive these condition expectations as follows:

For j = 1 and for one observation,
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Eobs
[
Ψ(X) | Ā2, L̄1

]
= E

[
S0(1− A1)S1A2

(1− λ1(X̄0))λ2(X̄1)
(Y − µ2) | A2 = 1, C > t2, X̄1

]
+E

[
S0(1− A1)(1− S1)

1− λ1(X̄0)
(Y − µ2) | A1 = 0, t1 < C < t2, X̄1

]
+E

[
(Y − µ2) | C < t1, X̄1

]
=

S0(1− A1)S1A2

(1− λ1(X̄0))λ2(X̄1)

[
E(Y | A2 = 1, C > t2, X̄1)− µ2

]
+
S0(1− A1)(1− S1)

1− λ1(X̄0)

[
E(Y | A1 = 0, t1 < C < t2, X̄1)− µ2

]
+(1− S0)

[
E(Y | C < t1, X̄1)− µ2

]
=

S0(1− A1)S1A2

(1− λ1(X̄0))λ2(X̄1)

[
E(Y | U = t2,∆ = 1, X̄1)− µ2

]
+
S0(1− A1)(1− S1)

1− λ1(X̄0)

[
E(Y | t1 < U < t2,∆ = 0, X̄1)− µ2

]
+(1− S0)

[
E(Y | U < t1,∆ = 0, X̄1)− µ2

]
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Meanwhile,

Eobs
[
Ψ(X) | Ā1, L̄1

]
= E

[
S0(1− A1)S1A2

(1− λ1(X̄0))λ2(X̄1)
(Y − µ2) | A1 = 0, C > t2, X̄1

]
+E

[
S0(1− A1)(1− S1)

1− λ1(X̄0)
(Y − µ2) | A1 = 0, t1 < C < t2, X̄1

]
+E

[
(1− S0)(Y − µ2) | C < t1, X̄0

]
=

S0(1− A1)S1

(1− λ1(X̄0))λ2(X̄1)
E
[
A2(Y − µ2) | A1 = 0, C > t2, X̄1

]
+
S0(1− A1)(1− S1)

1− λ1(X̄0)
E
[
(Y − µ2) | A1 = 0, t1 < C < t2, X̄1

]
+(1− S0)

[
E(Y | C < t1, X̄0)− µ2

]
=

S0(1− A1)S1

(1− λ1(X̄0))λ2(X̄1)
E
[
E{A2(Y − µ2) | A2 = 1, C > t2, X̄1} | A1 = 0, C > t2, X̄1

]
+
S0(1− A1)(1− S1)

1− λ1(X̄0)
E
[
Y − µ2 | A1 = 0, t1 < C < t2, X̄1

]
+(1− S0)

[
E(Y | U < t1,∆ = 0, X̄1)− µ2

]
=

S0(1− A1)S1

(1− λ1(X̄0))λ2(X̄1)
E
[
A2E{(Y − µ2) | A2 = 1, C > t2, X̄1} | A1 = 0, C > t2, X̄1

]
+
S0(1− A1)(1− S1)

1− λ1(X̄0)

[
E(Y | A1 = 0, t1 < C < t2, X̄1)− µ2

]
+(1− S0)

[
E(Y | U < t1,∆ = 0, X̄1)− µ2

]
=

S0(1− A1)S1

(1− λ1(X̄0))λ2(X̄1)
Pr(U = t2, | U ≥ t2, X̄1)

[
E{E(Y | Ā2, L̄1) | Ā1, L̄1} − µ2

]
+
S0(1− A1)(1− S1)

1− λ1(X̄0)

[
E(Y | t1 < U < t2,∆ = 0, X̄1)− µ2

]
+(1− S0)

[
E(Y | U < t1,∆ = 0, X̄1)− µ2

]
=

S0(1− A1)S1

(1− λ1(X̄0))λ2(X̄1)
λ2(X̄1){E(Y | A2 = 1, C > t2, X̄1)− µ2}

+
S0(1− A1)(1− S1)

1− λ1(X̄0)

[
E(Y | t1 < U < t2,∆ = 0, X̄1)− µ2

]
+(1− S0)

[
E(Y | U < t1,∆ = 0, X̄1)− µ2

]
=

S0(1− A1)S1

(1− λ1(X̄0))
{E(Y | U = t2,∆ = 1, X̄1)− µ2}

+
S0(1− A1)(1− S1)

1− λ1(X̄0)

[
E(Y | t1 < U < t2,∆ = 0, X̄1)− µ2

]
+(1− S0)

[
E(Y | U < t1,∆ = 0, X̄1)− µ2

]
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Therefore,

Eobs
[
Ψ(X) | Ā2, L̄1

]
− Eobs

[
Ψ(X) | Ā1, L̄1

]
=

I(U = t2,∆ = 1)− λ2(X̄1)I(U ≥ t2)

(1− λ1(X̄0))λ2(X̄1)
{E(Y | U = t2,∆ = 1, X̄1)− µ2}

which equals 0 due to λ2(X̄1) = 1 and I(U = t2,∆ = 1) = I(U ≥ t2).

Note that the quantities for (1 − S0) and S0(1 − A1)(1 − S1) is the same in two

conditional expectations respectively, so they are canceled out in the augmentation

term.

The above equation could also be written as Murphy’s format in (A.2) as

[
I(A2 = a2 = 1)− Pr(a2 = 1 | Ā1, L̄1)

]
· I(U ≥ t2)

(1− λ1X̄0)λ2(X̄1)
·{g(2)

2 (a2 = 1, Ā1, L̄1))−µ2}

where I(U≥t2)

(1−λ1X̄0) λ2(X̄1)
= Wp̄2(a2 = 1, Ā1, L̄1)

Note that a2 could not be 0 since everyone must stop at t2 if not earlier.

For j = 0,

Eobs
[
Ψ(X) | Ā1, L̄0

]
= E

[
S0(1− A1)S1A2

(1− λ1(X̄0))λ2(X̄1)
(Y − µ2) | A1 = 0, C > t1, X̄0

]
+E

[
S0(1− A1)(1− S1),∆ = 0)

1− λ1(X̄0)
(Y − µ2) | A1 = 0, C > t1, X̄0

]
+E

[
(1− S0)(Y − µ2) | C < t1, X̄0

]
=

S0(1− A1)

(1− λ1(X̄0))
E

[
S1A2

λ2(X̄1)
(Y − µ2) | A1 = 0, C > t1, X̄0

]
+
S0(1− A1)

1− λ1(X̄0)
E
[
(1− S1)(Y − µ2) | A1 = 0, C > t1, X̄0

]
+(1− S0)

[
E(Y | C < t1, X̄0)− µ2

]
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=
S0(1− A1)

(1− λ1(X̄0))
E

[
E(

S1A2

λ2(X̄1)
{Y − µ2} | Ā2, L̄1) | Ā1, L̄0

]
+
S0(1− A1)

1− λ1(X̄0)
E
[
E((1− S1){Y − µ2} | Ā2, L̄1) | Ā1, L̄0

]
+(1− S0)

[
E(Y | U < t1,∆ = 0, X̄0)− µ2

]
=

S0(1− A1)

(1− λ1(X̄0))
E

[
S1A2

λ2(X̄1)
E({Y − µ2} | Ā2, L̄1) | Ā1, L̄0

]
+
S0(1− A1)

1− λ1(X̄0)
E
[
(1− S1)E({Y − µ2} | Ā2, L̄1) | Ā1, L̄0

]
+(1− S0)

[
E(Y | U < t1,∆ = 0, X̄0)− µ2

]
=

S0(1− A1)

(1− λ1(X̄0))

Pr(U = t2,∆ = 1 | U ≥ t2, X̄0)

E{λ2(X̄1) | X̄0}
E
[
S1E({Y − µ2} | Ā2, L̄1) | Ā1, L̄0

]
+
S0(1− A1)

1− λ1(X̄0)
E
[
(1− S1)E({Y − µ2} | Ā2, L̄1) | Ā1, L̄0

]
+(1− S0)

[
E(Y | U < t1,∆ = 0, X̄0)− µ2

]
=

S0(1− A1)

(1− λ1(X̄0))
E
[
S1E({Y − µ2} | Ā2, L̄1) | Ā1, L̄0

]
+
S0(1− A1)

1− λ1(X̄0)
E
[
(1− S1)E({Y − µ2} | Ā2, L̄1) | Ā1, L̄0

]
+(1− S0)

[
E(Y | U < t1,∆ = 0, X̄0)− µ2

]
=

S0(1− A1)

(1− λ1(X̄0))
E
[
E({Y − µ2} | Ā2, L̄1) | Ā1, L̄0

]
+(1− S0)

[
E(Y | U < t1,∆ = 0, X̄0)− µ2

]
=

S0(1− A1)

(1− λ1(X̄0))

[
E{E(Y | Ā2, L̄1) | Ā1, L̄0} − µ2

]
+(1− S0)

[
E(Y | U < t1,∆ = 0, X̄0)− µ2

]
=

S0(1− A1)

(1− λ1(X̄0))
(E{S1E(Y | U = t2,∆ = 1, X̄1)

+(1− S1)E(Y | t1 < U < t2,∆ = 0, X̄1)} − µ2)

+(1− S0)
[
E(Y | U < t1,∆ = 0, X̄0)− µ2

]
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Eobs
[
Ψ(X) | L̄0

]
= E

[
S0(1− A1)S1A2

(1− λ1(X̄0))λ2(X̄1)
(Y − µ2) | L̄0

]
+E

[
S0(1− A1)(1− S1)

1− λ1(X̄0)
(Y − µ2) | L̄0

]
+E

[
(1− S0)(Y − µ2) | L̄0

]
=

S0

(1− λ1(X̄0))
E

[
(1− A1)S1A2

λ2(X̄1)
(Y − µ2) | L̄0

]
+

S0

1− λ1(X̄0)
E
[
(1− A1)(1− S1)(Y − µ2) | L̄0

]
+(1− S0)

[
E(Y | L̄0)− µ2

]
=

S0

(1− λ1(X̄0))
E

[
E(

(1− A1)S1A2

λ2(X̄1)
{Y − µ2} | Ā2, L̄1) | L̄0

]
+

S0

1− λ1(X̄0)
E
[
E((1− A1)(1− S1){Y − µ2} | Ā2, L̄1) | L̄0

]
+(1− S0)

[
E(Y | L̄0)− µ2

]
=

S0

(1− λ1(X̄0))
E

[
(1− A1)S1A2

λ2(X̄1)
E({Y − µ2} | Ā2, L̄1) | L̄0

]
+

S0

1− λ1(X̄0)
E
[
(1− A1)(1− S1)E({Y − µ2} | Ā2, L̄1) | L̄0

]
+(1− S0)

[
E(Y | L̄0)− µ2

]
=

S0

(1− λ1(X̄0))
· (1− Pr(U = t1 | U ≥ t1, L̄0))Pr(U = t2 | U ≥ t2, L̄0)

E{λ2(X̄1) | L̄0}
·E
[
S1E({Y − µ2} | Ā2, L̄1) | L̄0

]
+

S0

1− λ1(X̄0)
(1− Pr(U = t1 | U ≥ t1, L̄0))E

[
(1− S1)E({Y − µ2} | Ā2, L̄1) | L̄0

]
+(1− S0)

[
E(Y | L̄0)− µ2

]
=

S0

(1− λ1(X̄0))
(1− λ1(X̄0))E

[
S1E({Y − µ2} | Ā2, L̄1) | L̄0

]
+

S0

1− λ1(X̄0)
(1− λ1(X̄0))E

[
(1− S1)E({Y − µ2} | Ā2, L̄1) | L̄0

]
+(1− S0)

[
E(Y | L̄0)− µ2

]
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=
S0

(1− λ1(X̄0))
(1− λ1(X̄0))E

[
E({Y − µ2} | Ā2, L̄1) | L̄0

]
+(1− S0)

[
E(Y | L̄0)− µ2

]
= S0

[
E{E(Y | Ā2, L̄1) | L̄0} − µ2

]
+(1− S0)

[
E(Y | L̄0)− µ2

]
= S0(E{S1E(Y | U = t2,∆ = 1, X̄1)

+(1− S1)E(Y | t1 < U < t2,∆ = 0, X̄1)} − µ2)

+(1− S0)
[
E(Y | U < t1,∆ = 0, X̄0)− µ2

]
Therefore

Eobs
[
Ψ(X) | Ā1, L̄0

]
− Eobs

[
Ψ(X) | L̄0

]
=
{(1− A1)− (1− λ1(X̄0)}S0

1− λ1(X̄0)

[
E{E(Y | U > t1, X̄1) | L̄0} − µ2

]
=
{I(U > t1)− (1− λ1(X̄0)}I(U ≥ t1)

1− λ1(X̄0)
{E{S1E(Y | U = t2,∆ = 1, X̄1)

+ (1− S1)E(Y | t1 < U < t2,∆ = 0, X̄1)} − µ2}

This is equivalent to

[
I(A1 = a1 = 0)− Pr(a1 = 0 | L̄0)

]
· I(U ≥ t1)

(1− λ1(X̄0))
· {g(2)

1 (a1 = 0, L̄0)− µ2}

where I(U≥t1)

(1−λ1(X̄0))
= Wp̄1(a1 = 0, L̄0)

Note that when a1 = 1, Wp̄1(a1, L̄0) = 0, so

[
I(A1 = a1 = 0)− Pr(a1 = 0 | L̄0)

]
Wp̄1(a1 = 0, L̄0){g(2)

1 (a1 = 1, L̄0)− µ2} = 0.
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To sum up, the augmentation term is

[
I(A1 = a1 = 0)− Pr(a1 = 0 | L̄0)

]
· I(U ≥ t1)

(1− λ1(X̄0))
· {g(2)

1 (a1 = 0, L̄0)− µ2}

+
[
I(A2 = a2 = 1)− Pr(a2 = 1 | Ā1, L̄1)

]
· I(U ≥ t2)

(1− λ1X̄0)λ2(X̄1)
· {g(2)

2 (a2 = 1, Ā1, L̄1)− µ2}

in Murphy’s format

and is

I(U > t1)− (1− λ1(X̄0))I(U ≥ t1)

1− λ1(X̄0)
{g(2)

1 (a1 = 0, L̄0)− µ2}

+
I(U = t2,∆ = 1)− λ2(X̄1)I(U ≥ t2)

(1− λ1(X̄0))λ2(X̄1)
{g(2)

2 (a2 = 1, Ā1, L̄1)− µ2}

= −I(U = t1,∆ = 1)− λ1(X̄0)I(U ≥ t1)

1− λ1(X̄0)
{g(2)

1 (a1 = 0, L̄0)− µ2}

+
I(U = t2,∆ = 1)− λ2(X̄1)I(U ≥ t2)

(1− λ1(X̄0))λ2(X̄1)
{g(2)

2 (a2 = 1, Ā1, L̄1)− µ2}

in Tsiatis’s format.

And is equivalent to

{Wp̄1(Ā1, L̄0)− 1}
[
g

(2)
1 (a1 = 0, L̄0)− µ2

]
+{Wp̄2(Ā2, L̄1)−Wp̄1(Ā1, L̄0)}

[
g

(2)
2 (a2 = 1, Ā1, L̄0)− µ2

]

Note that when λ2(X̄1) = 1, the latter half of the augmentation term is zero.
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For estimating µ1, we have the estimating equation for JT2004 estimator:

Ψ(X) =

[
I(U = t1,∆ = 1)

λ1(X̄0)
+ I(U < t1,∆ = 0)

]
(Y − µ1)

=

[
S0A1

λ1(X̄0)
+ (1− S0)

]
(Y − µ1)

Following similar arguments, we can get the augmentation term

(A1 − λ1(X̄0))S0

λ1(X̄0)
{E(Y | U = t1,∆ = 1, X̄0)− µ1}

=
I(U = t1,∆ = 1)− λ1(X̄0)I(U ≥ t1)

λ1(X̄0)
{E(Y | U = t1,∆ = 1, X̄0)− µ1}

which is equivalent to

[
I(A1 = a1 = 1)− Pr(a1 = 1 | L̄0)

]
· I(U ≥ t1)

λ1(X̄0)
· {g(1)

1 (a1 = 1, L̄0)− µ1}

And also equivalent to

{Wp̄1(Ā1, L̄0)− 1}
[
g

(1)
1 (L̄0)− µ1

]

B.0.2 Connection of 4.2.3 to Chapter 1

Under regime 1 in § 4.2.3 , (4.8) could be further written as

µ1 = E(Y |U,∆, X0)

= E [E(Y |U = t1,∆ = 1, X0)I(C > t1) + E(Y |U ≤ t1,∆ = 0, X0)I(C ≤ t1)] .
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Because

E(Y |U ≤ t1,∆ = 0, X0) =
1

P (C ≤ t1|X0)

∫ t1

0

E(Y |U = u,∆ = 0, X0) dP (C ≤ u|X0)

E [E(Y |U = t1,∆ = 1, X0)I(C > t1)] = E [E(Y |U = t1,∆ = 1, X0)P (C > t1|X0)] ,

we have the equivalent expression that

µ1 = EX0

[
m1(t1, X0)P (C > t1|X0) +

∫ t1

0

m0(u,X0) dP (C ≤ u|X0)

]
, (B.1)

where m1(t,X0) = E(Y |U = t,∆ = 1, X0) and m0(t,X0) = E(Y |U = t,∆ = 0, X0)

as defined in our Chapter 1.
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Appendix C

R codes

C.1 R codes for Chapter 3

#program for illustrating the time-dependent covariates

#scenario in notes 3/14/2014

# revised 10/29/2014

# note that U= midpoint of L intervals in observation

#censoring during the interval.

lucy.dat <- function(n=5,p,L,p0=2,eff=1,diff=0.5){

prob0=prob=x=C=T=d=U=lucy.y=matrix(0,n,p)

x0=matrix(rnorm(n*p0),n,p0) # fixed covariates x0

b0=matrix(0.1,p0,1)

b=matrix(0.2,p0,1)
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a0= 1.3*seq(1:p)/eff

a= seq(1:p)/eff

#------------------------------------------------------

# baseline info

#-------------------------------------------------------

x[,1]=4+rnorm(n)

prob0[,1]=1/(exp(-a0[1]+0.9*x[,1]+x0%*%b0)+1)

C[,1]=rbinom(n,1,prob0[,1])

prob[,1]=1/(exp(-a[1]+0.8*x[,1]+x0%*%b)+1)

T[,1]=rbinom(n,1,prob[,1])

T[,1]=ifelse(C[,1]==0,T[,1],NA)

tmp1=L[1]/2

U[,1]=ifelse(C[,1]==1,tmp1, L[1])

xt=cbind(0,x[,1])

#lucy.y[,1]=-2.5+0.5*x0[,1]+0.5*x0[,2]-5*x[,1]+2*(1-d)

#----------------------------------

# follow-up

#---------------------------------

for (i in 2:p){

x[,i]=diff+rnorm(n)+x[,i-1]

x[,i]=ifelse(T[,i-1]==0,x[,i],NA)
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prob0[,i]=1/(exp(-a0[i]+0.9*x[,i]+x0%*%b0)+1)

C[,i]=rbinom(n,1,prob0[,i])

prob[,i]=1/(exp(-a[i]+0.8*x[,i]+x0%*%b)+1)

T[,i]=rbinom(n,1,prob[,i])

T[,i]=ifelse(C[,i]==0,T[,i],NA)

tmp2=(L[i-1]+L[i])/2

U[,i]=ifelse(C[,i]==1,tmp2,L[i])

xtmp=cbind(L[i-1],x[,i])

xt=rbind(xt,xtmp)

}

Lmid=(L+c(0,L[-length(L)]))/2

L1=rep(L,each=n)

L2=rep(Lmid,each=n)

U2=apply(U,1,function(x) max(x,na.rm=TRUE))

T[,p]=ifelse(U2==L[p],1,NA)

d=rowSums(T,na.rm=TRUE)

colnames(xt)=c("t",paste("xt",seq(1:(dim(xt)[2]-1)),sep=""))

id=seq(1:n)

tmpx=x # processed below to represent most recently xt
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for (j in 1:(p)){

if(j==1){tmpx[,j]=x[,1]}

else{tmpx[,j]=apply(x[,1:j], 1,function(x) x[length(x[!is.na(x)])])}

}

#identify the last non-missing x

xx=apply(x,1,function(x) x[length(x[!is.na(x)])])

y=1.5+x0[,1]+0.5*x0[,2]-2*d+log(U2)+0.5*xx+rnorm(n)

dat.brent=data.frame(id=id,L=L1,U=U2,d=d,x0=x0,xt=xt,Lmid=L2,y=y,xx=xx)

dat.brent$yb=as.numeric(dat.brent$U == L & dat.brent$d == 1)

return(list(U=U2,d=d,T=T,C=C,x0=x0,xt=xt,tmpx=tmpx,y=y,x=x,

xx=xx,id=id,df=dat.brent, prob0=prob0, prob=prob))

}

#######################################################

#-----------Simulated Truth----------------------------------

p.sim <-length(L)

n.sim=500000

sim.x0 <- matrix(NA,p.sim,n.sim)

sim.lambda <- matrix(NA,p.sim,n.sim)

sim.Cens <- sim.U<-sim.Delta<-matrix(NA, p.sim, n.sim)

sim.x1 <- rnorm(n.sim,0,1)

sim.x2 <- rnorm(n.sim,0,1)
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Lmid=(L+c(0,L[-p.sim]))/2

for (k in 1){

sim.x0[k,] <- rnorm(n.sim,(3.5+0.5*k),1)

sim.lambda[k,] <- 1/(1+exp(-1.3*k/eff+0.9*sim.x0[k,]+0.1*sim.x1+0.1*sim.x2))

sim.Cens[k,]<-rbinom(n.sim,1,sim.lambda[k,])

sim.U[k,]=ifelse(sim.Cens[k,]==1,Lmid[k], L[k])

sim.Delta[k,]= ifelse(sim.Cens[k,]==0,1,0)

}

for (k in 2:p.sim){

sim.x0[k,] <- diff+rnorm(n.sim)+sim.x0[k-1,]

sim.lambda[k,] <- 1/(1+exp(-1.3*k/eff+0.9*sim.x0[k,]+0.1*sim.x1+0.1*sim.x2))

sim.Cens[k,]<-rbinom(n.sim,1,sim.lambda[k,])

sim.Cens[k,]=ifelse(sim.Cens[k-1,]==0,sim.Cens[k,],NA)

sim.Delta[k,]=ifelse(sim.Cens[k,]==1|is.na(sim.Cens[k,]),0,1)

sim.U[k,]=ifelse(is.na(sim.Cens[k,]),sim.U[k-1,],Lmid[k])

sim.U[k,]=ifelse(sim.Cens[k,]==1|is.na(sim.Cens[k,]),sim.U[k,],L[k])

}

x1rep=matrix(sim.x1,p.sim,n.sim,byrow=TRUE)

x2rep=matrix(sim.x2,p.sim,n.sim,byrow=TRUE)
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sim.Y <- 1.5 +x1rep+0.5*x2rep-2*sim.Delta+0.5*sim.x0 +log(sim.U)

#sim.Y <- 1.5 +x1rep+0.5*x2rep+0.5*sim.x0

trumu<-rowMeans(sim.Y)

t1=matrix(sim.Y,ncol=1)

t2=rep(L,n.sim)

t3=data.frame(Y=t1,L=t2)

ft.t=lm(Y~L,data=t3)

trumu2=predict(ft.t,newdata=list(L=L))

trubeta=ft.t$coeff

#--------------------------------------------------------------------

# 5_11_2014

#--------------------------------------------------------------------

Lucy.gcomp<- function(x0,time.x,x,u,d,y,L,Lx){

n=length(u)

#------------estimation of parameters

ft3=lucy.discrete.haz.dep.cens(u=u,d=1-d,L=L,x0=x0,time.x=time.x,Lx=Lx)

alpha=ft3$beta[1:4]

bxt=ft3$beta[7]

b0=ft3$beta[5:6]

mu.x=colMeans(x0)

s.x=apply(x0,2,sd)

xt10=x[,1]
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mu.x0=mean(xt10)

s.x0=sd(xt10)

t20=!is.na(x[,2])

xt10.20=xt10[t20]

xt20.20=x[,2][t20]

t30=!is.na(x[,3])

xt20.30=x[,2][t30]

xt30.30=x[,3][t30]

t40=!is.na(x[,4])

xt30.40=x[,3][t40]

xt40.40=x[,4][t40]

x.mk=c(xt10.20,xt20.30,xt30.40)

y.mk=c(xt20.20,xt30.30,xt40.40)

ft.mk=lm(y.mk~x.mk)

mk.a=ft.mk$coeff[1]

mk.b=ft.mk$coeff[2]

m1=mu.x0

m2=m1*mk.b+mk.a

m3=m2*mk.b+mk.a

m4=m3*mk.b+mk.a

mt=c(m1,m2,m3,m4)

#identify the last non-missing x

last.x=apply(x,1,function(x) x[length(x[!is.na(x)])])
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ftlm=lm(y ~ x0+d+last.x+log(u))

cf=ftlm$coef

#________________MC integration_________________

p.sim <-length(L)

n.sim=1000

sim.x0 <- matrix(NA,p.sim,n.sim)

sim.lambda <- matrix(NA,p.sim,n.sim)

sim.Cens <- sim.U<-sim.Delta<-matrix(NA, p.sim, n.sim)

sim.x1 <- rnorm(n.sim,mu.x[1],s.x[1])

sim.x2 <- rnorm(n.sim,mu.x[2],s.x[2])

Lmid=(L+c(0,L[-p.sim]))/2

for (k in 1){

sim.x0[k,] <- rnorm(n.sim,mt[k],s.x0)

sim.lambda[k,] <- 1/(1+exp(-alpha[k]-sim.x0[k,]*bxt-sim.x1*b0[1]-sim.x2*b0[2]))

sim.Cens[k,]<-rbinom(n.sim,1,sim.lambda[k,])

sim.U[k,]=ifelse(sim.Cens[k,]==1,Lmid[k], L[k])

sim.Delta[k,]= ifelse(sim.Cens[k,]==0,1,0)

}

for (k in 2:p.sim){
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sim.x0[k,] <- rnorm(n.sim,mk.a,s.x0)+sim.x0[k-1,]*mk.b

sim.lambda[k,] <- 1/(1+exp(-alpha[k]-sim.x0[k,]*bxt-sim.x1*b0[1]

-sim.x2*b0[2]))

sim.Cens[k,]<-rbinom(n.sim,1,sim.lambda[k,])

sim.Cens[k,]=ifelse(sim.Cens[k-1,]==0,sim.Cens[k,],NA)

sim.Delta[k,]=ifelse(sim.Cens[k,]==1|is.na(sim.Cens[k,]),0,1)

sim.U[k,]=ifelse(is.na(sim.Cens[k,]),sim.U[k-1,],Lmid[k])

sim.U[k,]=ifelse(sim.Cens[k,]==1|is.na(sim.Cens[k,]),sim.U[k,],L[k])

}

x1rep=matrix(sim.x1,p.sim,n.sim,byrow=TRUE)

x2rep=matrix(sim.x2,p.sim,n.sim,byrow=TRUE)

sim.Y <- cf[1] +cf[2]*x1rep+cf[3]*x2rep+ cf[4]*sim.Delta+cf[5]*sim.x0

+cf[6]*log(sim.U)

mu_hat <- rowMeans(sim.Y)

t1=matrix(sim.Y,ncol=1)

t2=rep(L,n.sim)

t3=data.frame(Y=t1,L=t2)

ft.t=lm(Y~L,data=t3)

beta_hat=ft.t$coeff

mu_hat_model=predict(ft.t,newdata=list(L=L))
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return(list(mu=mu_hat,beta=ft3$beta, mu2=mu_hat_model,b=beta_hat))

}

#--------------------------------------------------------------------

# 8_15_2014

#--------------------------------------------------------------------

Lucy.gcomp.pred<- function(x0,time.x,x,u,d,y,L,Lx){

n=length(u)

#------------estimation of parameters

ft3=lucy.discrete.haz.dep.cens(u=u,d=1-d,L=L,x0=x0,time.x=time.x,Lx=Lx)

alpha=ft3$beta[1:4]

bxt=ft3$beta[7]

b0=ft3$beta[5:6]

mu.x=colMeans(x0)

s.x=apply(x0,2,sd)

xt10=x[,1]

mu.x0=mean(xt10)

s.x0=sd(xt10)

t20=!is.na(x[,2])
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xt10.20=xt10[t20]

xt20.20=x[,2][t20]

t30=!is.na(x[,3])

xt20.30=x[,2][t30]

xt30.30=x[,3][t30]

t40=!is.na(x[,4])

xt30.40=x[,3][t40]

xt40.40=x[,4][t40]

x.mk=c(xt10.20,xt20.30,xt30.40)

y.mk=c(xt20.20,xt30.30,xt40.40)

ft.mk=lm(y.mk~x.mk)

mk.a=ft.mk$coeff[1]

mk.b=ft.mk$coeff[2]

m1=mu.x0

m2=m1*mk.b+mk.a

m3=m2*mk.b+mk.a

m4=m3*mk.b+mk.a

mt=c(m1,m2,m3,m4)

#identify the last non-missing x

last.x=apply(x,1,function(x) x[length(x[!is.na(x)])])

ftlm=lm(y ~ x0+d+last.x+log(u))

cf=ftlm$coef
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#________________prediction_________________

predY=pred.lambda=pred.prob=matrix(NA,length(L),n)

tmpd=matrix(d,n,length(L))

tmpu=matrix(u,n,length(L))

tmpL=matrix(L,n,length(L),byrow=TRUE)

tmpp=tmpu<=tmpL

tmpd=ifelse(tmpp,tmpd,1)

tmpu=ifelse(tmpp,tmpu,tmpL)

myx2=x[,1:2]

tmpx2=apply(myx2,1,function(x) x[length(x[!is.na(x)])])

myx3=x[,1:3]

tmpx3=apply(myx3,1,function(x) x[length(x[!is.na(x)])])

myx4=x[,1:4]

tmpx4=apply(myx4,1,function(x) x[length(x[!is.na(x)])])

pred.lambda[1,] <- 1/(1+exp(-alpha[1]-x[,1]*bxt-x0[,1]*b0[1]-x0[,2]*b0[2]))

pred.lambda[2,] <- 1/(1+exp(-alpha[2]-tmpx2*bxt-x0[,1]*b0[1]-x0[,2]*b0[2]))

pred.lambda[3,] <- 1/(1+exp(-alpha[3]-tmpx3*bxt-x0[,1]*b0[1]-x0[,2]*b0[2]))

pred.lambda[4,] <- 1/(1+exp(-alpha[4]-tmpx4*bxt-x0[,1]*b0[1]-x0[,2]*b0[2]))

p1.1=(1-pred.lambda[1,])

p1.0=pred.lambda[1,]

part1=cf[1] +cf[2]*x0[,1]+cf[3]*x0[,2]+ cf[4]+cf[5]*x[,1] +cf[6]*log(L[1])
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part2=cf[1] +cf[2]*x0[,1]+cf[3]*x0[,2]+cf[5]*x[,1] +cf[6]*log(Lmid[1])

predY[1,]=part1*p1.1+part2*p1.0

p2.1=(1-pred.lambda[1,])*(1-pred.lambda[2,])

p2.0a=pred.lambda[1,]

p2.0b=(1-pred.lambda[1,])*pred.lambda[2,]

m2.1=cf[1] +cf[2]*x0[,1]+cf[3]*x0[,2]+ cf[4]+cf[5]*tmpx2 +cf[6]*log(L[2])

m2.0a=cf[1] +cf[2]*x0[,1]+cf[3]*x0[,2]+ cf[5]*tmpx2 +cf[6]*log(Lmid[1])

m2.0b=cf[1] +cf[2]*x0[,1]+cf[3]*x0[,2]+ cf[5]*tmpx2 +cf[6]*log(Lmid[2])

predY[2,]=p2.1*m2.1+p2.0a*m2.0a+p2.0b*m2.0b

p3.1=(1-pred.lambda[1,])*(1-pred.lambda[2,])*(1-pred.lambda[3,])

p3.0a=pred.lambda[1,]

p3.0b=(1-pred.lambda[1,])*pred.lambda[2,]

p3.0c=(1-pred.lambda[1,])*(1-pred.lambda[2,])*pred.lambda[3,]

m3.1=cf[1] +cf[2]*x0[,1]+cf[3]*x0[,2]+ cf[4]+cf[5]*tmpx3 +cf[6]*log(L[3])

m3.0a=cf[1] +cf[2]*x0[,1]+cf[3]*x0[,2]+ cf[5]*tmpx3 +cf[6]*log(Lmid[1])

m3.0b=cf[1] +cf[2]*x0[,1]+cf[3]*x0[,2]+ cf[5]*tmpx3 +cf[6]*log(Lmid[2])

m3.0c=cf[1] +cf[2]*x0[,1]+cf[3]*x0[,2]+ cf[5]*tmpx3 +cf[6]*log(Lmid[3])

predY[3,]=p3.1*m3.1+p3.0a*m3.0a+p3.0b*m3.0b+p3.0c*m3.0c



140

p4.1=(1-pred.lambda[1,])*(1-pred.lambda[2,])*(1-pred.lambda[3,])*(

1-pred.lambda[4,])

p4.0a=pred.lambda[1,]

p4.0b=(1-pred.lambda[1,])*pred.lambda[2,]

p4.0c=(1-pred.lambda[1,])*(1-pred.lambda[2,])*pred.lambda[3,]

p4.0d=(1-pred.lambda[1,])*(1-pred.lambda[2,])*(1-pred.lambda[3,]

)*pred.lambda[4,]

m4.1=cf[1] +cf[2]*x0[,1]+cf[3]*x0[,2]+ cf[4]+cf[5]*tmpx4 +cf[6]*log(L[4])

m4.0a=cf[1] +cf[2]*x0[,1]+cf[3]*x0[,2]+ cf[5]*tmpx4 +cf[6]*log(Lmid[1])

m4.0b=cf[1] +cf[2]*x0[,1]+cf[3]*x0[,2]+ cf[5]*tmpx4 +cf[6]*log(Lmid[2])

m4.0c=cf[1] +cf[2]*x0[,1]+cf[3]*x0[,2]+ cf[5]*tmpx4 +cf[6]*log(Lmid[3])

m4.0d=cf[1] +cf[2]*x0[,1]+cf[3]*x0[,2]+ cf[5]*tmpx4 +cf[6]*log(Lmid[4])

predY[4,]=p4.1*m4.1+p4.0a*m4.0a+p4.0b*m4.0b+p4.0c*m4.0c+p4.0d*m4.0d

mu_hat <- rowMeans(predY)

t1=matrix(predY,ncol=1)

t2=rep(L,n)

t3=data.frame(Y=t1,L=t2)

ft.t=lm(Y~L,data=t3)

beta_hat=ft.t$coeff

mu_hat_model=predict(ft.t,newdata=list(L=L))

return(list(mu=mu_hat,beta=ft3$beta, mu2=mu_hat_model,b=beta_hat))
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}

####################################

# wrote 4_18_2014

# add time dependent time.x

#first column of time.x is Lx, it is the time when time-dep

# covariates are measured

# .cens is when considering censoring rather than event.

#Number of time points in the models are different

lucy.discrete.haz.dep.cens <- function (x0=NULL,time.x=NULL,u,d,L,Lx){

K=length(L)

a0=rep(NA,K)

n=length(u)

if(is.null(x0)){

p0=0

}else{

x0=as.matrix(x0)

p0= dim(x0)[2]

}

if(is.null(time.x)){
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pt=0

}else{

time.x=as.matrix(time.x)

pt0= (dim(time.x)[2]-1)

pt= pt0

}

#----get initial value for intercept-----------

LL=c(0,L[1:(K-1)])

midpt=(L+LL)/2

ind1= matrix(u,n,K)==matrix(midpt,n,K,byrow=TRUE) & matrix(d,n,K)==1

ind2= matrix(u,n,K)>=matrix(LL,n,K,byrow=TRUE)

p1= colSums(ind1)/colSums(ind2)

p1=ifelse(p1==0,0.000001,p1)

#print(p1)

a0= log(p1/(1-p1))

#print(a0)

xnew0=as.matrix(cbind(1,x0))

p=p0+pt

theta2=matrix(c(a0,rep(0,p)),p+K,1)

theta=0

iter <- 0

itermax=150
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tolerance=0.001

#---Newton Ralphson-------------------------------

while (sum(abs(theta - theta2)) >= tolerance) {

#print(abs(theta - theta2)[4])

iter=iter+1

#print(paste("iter =",iter))

Ha=Sa=matrix(NA,1,K)

Sb=Hab=matrix(NA,K,p)

Hb=0

theta=theta2

xdf=NULL

if(!is.null(x0)& !is.null(time.x)){

for (j in 1:K){

#print(paste("J =",j))

bnew=theta[c(j,(K+1):(K+p))]

Ltmp=max(Lx[which(Lx<L[j])])

xt=time.x[which(time.x[,1]==Ltmp),-1]

pos=which(!is.na(xt))

xnew=as.matrix(cbind(1,x0,xt))[pos,]
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x=as.matrix(cbind(x0,xt))[pos,]

xb=xnew%*%bnew

lp=exp(-xb)

Flp=lp/((1+lp)^2)

Ha[j]=sum(ind2[pos,j]*Flp)

Sa[j]=sum(ind1[pos,j])-sum(ind2[pos,j]/(lp+1))

Hb=Hb+t(x)%*%(matrix(ind2[pos,j]*Flp,length(pos),p)*x)

Sb[j,]=t(ind1[pos,j])%*%x-t(as.matrix(ind2[pos,j]/(lp+1)))%*%x

Hab[j,]=t(ind2[pos,j]*Flp)%*%x

xtmp=cbind(L=L[j],xnew)

xdf=rbind(xdf,xtmp)

}

S=rbind(t(Sa),as.matrix(colSums(Sb)))

H1=cbind(diag(as.vector(Ha)),Hab)

H2=cbind(t(Hab),Hb)

H=rbind(H1,H2)

}

theta2=theta+solve(H)%*%S

beta=t(theta2)

colnames(beta)=c( paste("a",seq(1:K),sep=""),

paste("x0",seq(1:p0),sep=""),

paste("xt",seq(1:pt0),sep="") )

V=solve(H)

colnames(V)=rownames(V)=colnames(beta)
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#print(beta)

}

return(list(beta=beta,V=V,xdf=xdf))

}

#____________________with respect to event

lucy.discrete.haz.dep <- function (x0=NULL,time.x=NULL,u,d,L,Lx){

K=length(L)-1

a0=rep(NA,K)

n=length(u)

if(is.null(x0)){

p0=0

}else{

x0=as.matrix(x0)

p0= dim(x0)[2]

}

if(is.null(time.x)){

pt=0

}else{

time.x=as.matrix(time.x)

pt0= (dim(time.x)[2]-1)

pt= pt0
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}

#----get initial value for intercept-----------

ind1= matrix(u,n,K)== matrix(L[1:K],n,K,byrow=TRUE) & matrix(d,n,K)==1

ind2= matrix(u,n,K)>=matrix(L[1:K],n,K,byrow=TRUE)

p1= colSums(ind1)/colSums(ind2)

p1=ifelse(p1==0,0.000001,p1)

a0= log(p1/(1-p1))

xnew0=as.matrix(cbind(1,x0))

p=p0+pt

theta2=matrix(c(a0,rep(0,p)),p+K,1)

theta=0

iter <- 0

itermax=150

tolerance=0.00000000001

#---Newton Ralphson-------------------------------

while (sum(abs(theta - theta2)) >= tolerance) {

iter=iter+1

# print(paste("iter =",iter))

Ha=Sa=matrix(NA,1,K)

Sb=Hab=matrix(NA,K,p)
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Hb=0

theta=theta2

xdf=NULL

if(!is.null(x0)& !is.null(time.x)){

for (j in 1:K){

#print(paste("J =",j))

bnew=theta[c(j,(K+1):(K+p))]

Ltmp=max(Lx[which(Lx<L[j])])

xt=time.x[which(time.x[,1]==Ltmp),-1]

pos=which(!is.na(xt))

xnew=as.matrix(cbind(1,x0,xt))[pos,]

x=as.matrix(cbind(x0,xt))[pos,]

xb=xnew%*%bnew

lp=exp(-xb)

Flp=lp/((1+lp)^2)

Ha[j]=sum(ind2[pos,j]*Flp)

Sa[j]=sum(ind1[pos,j])-sum(ind2[pos,j]/(lp+1))

Hb=Hb+t(x)%*%(matrix(ind2[pos,j]*Flp,length(pos),p)*x)

Sb[j,]=t(ind1[pos,j])%*%x-t(as.matrix(ind2[pos,j]/(lp+1)))%*%x
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Hab[j,]=t(ind2[pos,j]*Flp)%*%x

xtmp=cbind(L=L[j],xnew)

xdf=rbind(xdf,xtmp)

}

S=rbind(t(Sa),as.matrix(colSums(Sb)))

if (length(Ha)==1){

H1=cbind(Ha,Hab)

}

if (length(Ha)>1){

H1=cbind(diag(as.vector(Ha)),Hab)

}

H2=cbind(t(Hab),Hb)

H=rbind(H1,H2)

}

theta2=theta+solve(H)%*%S

beta=t(theta2)

colnames(beta)=c( paste("a",seq(1:K),sep=""),

paste("x0",seq(1:p0),sep=""),

paste("xt",seq(1:pt0),sep="") )

V=solve(H)

colnames(V)=rownames(V)=colnames(beta)

# print(beta)

}

return(list(beta=beta,V=V,xdf=xdf))

}
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C.2 R codes for Chapter 4

#################################################################

# 2 stage y is indep of U, Dec,2014

######################################################################

lucy.dat2 <- function(n=5,p=2,L,p0=2,eff=1,diff=0){

prob0=prob=x=C=T=d=U=lucy.y=matrix(0,n,p)

x0=matrix(rnorm(n*p0),n,p0) # fixed covariates x0

b0=matrix(0.1,p0,1)

b=matrix(0.2,p0,1)

a0= 1.3*seq(1:p)/eff

a= seq(1:p)/eff

#------------------------------------------------------

# baseline info

#-------------------------------------------------------

x[,1]=4+rnorm(n)

prob0[,1]=1/(exp(-a0[1]+0.9*x[,1]+x0%*%b0)+1)

C[,1]=rbinom(n,1,prob0[,1])

y1= 1.5+x0[,1]+0.5*x0[,2]+0.5*x[,1]+rnorm(n)

y1=ifelse(C[,1]==1,y1,NA)
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prob[,1]=1/(exp(-a[1]+0.8*x[,1]+x0%*%b)+1)

T[,1]=rbinom(n,1,prob[,1])

T[,1]=ifelse(C[,1]==0,T[,1],NA)

yt=1.5+x0[,1]+0.5*x0[,2]+0.5*x[,1]+0.5+rnorm(n)

y=ifelse(T[,1]==1 & !is.na(T[,1]),yt,y1)

tmp1=L[1]/2

U[,1]=ifelse(C[,1]==1,tmp1, L[1])

xt=cbind(0,x[,1])

#----------------------------------

# follow-up

#---------------------------------

for (i in 2:p){

x[,i]=diff+rnorm(n)+x[,i-1]

x[,i]=ifelse(T[,i-1]==0,x[,i],NA)

prob0[,i]=1/(exp(-a0[i]+0.9*x[,i]+x0%*%b0)+1)

C[,i]=rbinom(n,1,prob0[,i])

yt= 1.5+x0[,1]+0.5*x0[,2]+0.5*x[,i]+0.5+rnorm(n)

y=ifelse(C[,i]==1& !is.na(C[,i]),yt,y)

prob[,i]=1/(exp(-a[i]+0.8*x[,i]+x0%*%b)+1)

T[,i]=rbinom(n,1,prob[,i])

T[,i]=ifelse(C[,i]==0,T[,i],NA)

yt= 1.5+x0[,1]+0.5*x0[,2]+0.5*x[,i]+0.5+0.3+rnorm(n)
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y=ifelse(T[,i]==1& !is.na(T[,i]),yt,y)

tmp2=(L[i-1]+L[i])/2

U[,i]=ifelse(C[,i]==1,tmp2,L[i])

xtmp=cbind(L[i-1],x[,i])

xt=rbind(xt,xtmp)

}

Lmid=(L+c(0,L[-length(L)]))/2

L1=rep(L,each=n)

L2=rep(Lmid,each=n)

U2=apply(U,1,function(x) max(x,na.rm=TRUE))

T[,p]=ifelse(U2==L[p],1,NA)

yt= 1.5+x0[,1]+0.5*x0[,2]+0.5*x[,p]+0.5+0.3+rnorm(n)

y=ifelse(T[,p]==1& !is.na(T[,p]),yt,y)

d=rowSums(T,na.rm=TRUE)

colnames(xt)=c("t",paste("xt",seq(1:(dim(xt)[2]-1)),sep=""))

id=seq(1:n)

tmpx=x # processed below to represent most recently xt

for (j in 1:(p)){

if(j==1){tmpx[,j]=x[,1]}

else{tmpx[,j]=apply(x[,1:j], 1,function(x) x[length(x[!is.na(x)])])}

}
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#identify the last non-missing x

xx=apply(x,1,function(x) x[length(x[!is.na(x)])])

dat.brent=data.frame(id=id,L=L1,U=U2,d=d,x0=x0,xt=xt,Lmid=L2,y=y,xx=xx)

dat.brent$yb=as.numeric(dat.brent$U == L & dat.brent$d == 1)

return(list(U=U2,d=d,T=T,C=C,x0=x0,xt=xt,tmpx=tmpx,y=y,x=x,xx=xx,

id=id,df=dat.brent, prob0=prob0, prob=prob))

}

############################################

#simulated truth for lucy.dat2

##########################################

my.simtru<-function(L,eff=2,diff=0){

p.sim <-length(L)

n.sim=500000

sim.x0 <- matrix(NA,p.sim,n.sim)

sim.lambda <- matrix(NA,p.sim,n.sim)

sim.Y<-sim.Cens <- sim.U<-sim.Delta<-matrix(NA, p.sim, n.sim)

sim.x1 <- rnorm(n.sim,0,1)

sim.x2 <- rnorm(n.sim,0,1)

Lmid=(L+c(0,L[-p.sim]))/2
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for (k in 1){

sim.x0[k,] <- rnorm(n.sim,(3.5+0.5*k),1)

sim.lambda[k,] <- 1/(1+exp(-1.3*k/eff+0.9*sim.x0[k,]+0.1*sim.x1+0.1*sim.x2))

sim.Cens[k,]<-rbinom(n.sim,1,sim.lambda[k,])

sim.U[k,]=ifelse(sim.Cens[k,]==1,Lmid[k], L[k])

sim.Delta[k,]= ifelse(sim.Cens[k,]==0,1,0)

sim.y0= 1.5+sim.x1+0.5*sim.x2+0.5*sim.x0[k,]

sim.yt=1.5+sim.x1+0.5*sim.x2+0.5*sim.x0[k,]+0.5

sim.Y[k,]=ifelse(sim.Cens[k,]==1,sim.y0,sim.yt)

}

for (k in 2:p.sim){

sim.x0[k,] <- diff+rnorm(n.sim)+sim.x0[k-1,]

sim.lambda[k,] <- 1/(1+exp(-1.3*k/eff+0.9*sim.x0[k,]+0.1*sim.x1+0.1*sim.x2))

sim.Cens[k,]<-rbinom(n.sim,1,sim.lambda[k,])

sim.Cens[k,]=ifelse(sim.Cens[k-1,]==0,sim.Cens[k,],NA)

sim.Delta[k,]=ifelse(sim.Cens[k,]==1|is.na(sim.Cens[k,]),0,1)

sim.U[k,]=ifelse(is.na(sim.Cens[k,]),sim.U[k-1,],Lmid[k])

sim.U[k,]=ifelse(sim.Cens[k,]==1|is.na(sim.Cens[k,]),sim.U[k,],L[k])

sim.y02= 1.5+sim.x1+0.5*sim.x2+0.5*sim.x0[k,]+0.5

sim.yt=1.5+sim.x1+0.5*sim.x2+0.5*sim.x0[k,]+0.5+0.3
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sim.Y[k,]=ifelse(sim.Cens[1,]==1,sim.y0,0)

sim.Y[k,]=ifelse(sim.Cens[k,]==1& !is.na(sim.Cens[k,]),sim.y02,

sim.Y[k,])

sim.Y[k,]=ifelse(sim.Cens[k,]==0 & !is.na(sim.Cens[k,]),sim.yt,

sim.Y[k,])

}

trumu<-rowMeans(sim.Y)

return(trumu)

}

#4_9_2015

# add the c parameter of control variance when ps is missspecified

#5_2_2015

lucy.DR.m2 <- function(y,U,L,x0,d,time.x,x,tmpx,xx){

ind1=ifelse(U<L[1],0,1) #I(C>t1)

ind2=ifelse(U==L[2],1,0) # I(C>t2)

ind3=ifelse(U==L[1],1,0) # I(U=t1)

p0=dim(x0)[2]

n=length(y)

#------------estimation of parameters-------------------------

ft3=lucy.discrete.haz.dep.cens(u=U,d=1-d,L=L,x0=x0,time.x=time.x,Lx=L-10)
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alpha=ft3$beta[1:p]

bxt=ft3$beta[p+p0+1]

b0=ft3$beta[(p+1):(p+p0)]

ft4=lucy.discrete.haz.dep(u=U,d=d,L=L,x0=x0,time.x=time.x,Lx=L-10)

a=ft4$beta[1:(p-1)]

bxt4=ft4$beta[p+p0]

b=ft4$beta[(p):(p+p0-1)]

ftm=lm(x[,2]~x[,1])

# predict lambda’s and xt1

pred.xt1=ftm$coeff[1]+ftm$coeff[2]*x[,1]

pred.lambda0.0=1/(1+exp(-alpha[1]-x[,1]*bxt-x0%*%b0))

pred.lambda0.1=1/(1+exp(-alpha[2]-pred.xt1*bxt-x0%*%b0))

#pred.lambda0.0=1/(1+exp(-alpha[1]-x0%*%b0))

#pred.lambda0.1=1/(1+exp(-alpha[2]-x0%*%b0))

pred.lambda.1<- 1/(1+exp(-a[1]-x[,1]*bxt4-x0[,1]*b[1]-x0[,2]*b[2]))

# estimate w wt

ft1=calc.w(u=U,d=d,L=L,x0=x0,time.x=time.x,Lx=L-10,M=1,tmpx=tmpx)

ft2=calc.w(u=U,d=d,L=L,x0=x0,time.x=time.x,Lx=L-10,M=2,tmpx=tmpx)

##############################

# solving alpha_g for m=1
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################################

# a%*%x=b

wt1.1=1

p1d=cbind(1,ind1,x0,x[,1])

MxA=(t(p1d)*matrix(wt1.1,ncol=n,nrow=dim(x0)[2]+3,byrow=TRUE))%*%p1d/n

MxB=t(p1d)%*%as.matrix(y*wt1.1)/n

sol1=solve(MxA,MxB)

# variance minimization

wt.i1=ind1*(1-1/pred.lambda.1)

p1d=cbind(1,ind1,x0,x[,1])

MxA.i=(t(p1d)*matrix(wt.i1,ncol=n,nrow=dim(x0)[2]+3,byrow=TRUE))%*%p1d/n

MxB.i=t(p1d)%*%as.matrix(y*wt.i1)/n

sol1.t=solve(MxA.i[2:5,2:5],MxB.i[2:5])

sol1.i=c(0,sol1.t)

#cT adjustment

#derivative of g1.1

dg11=cbind(ind1,x0,x[,1])

#d(lambda.1)/d(gamma)=lambda.1^2*exp(-gammaX) .X

dlam.nox=pred.lambda.1^2*exp(-a[1]-x[,1]*bxt4-x0[,1]*b[1]-x0[,2]*b[2])

dx=cbind(1,x[,1],x0)

theta2=c(sol1.t,rep(0.1, dim(dx)[2]))

iter <- 0
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#itermax=150

tolerance=0.000001

theta=0

#---Newton Ralphson-------------------------------

while (sum(abs(theta - theta2)) >= tolerance) {

#print(abs(theta - theta2)[4])

iter=iter+1

#print(paste("iter =",iter))

theta=theta2

c=theta[(length(sol1.t)+1):length(theta)]

ag=theta[1:length(sol1.t)]

g11=dg11%*%ag

l1=(dlam.nox/(1-pred.lambda.1)*(dx%*%c))

Sa=t(ind1*(1/pred.lambda.1-1)*(y-g11-l1))%*% dg11

Sb=t(ind1/pred.lambda.1*(y-g11-l1)*dlam.nox)%*%dx

S=cbind(Sa,Sb)

#-I(theta)

Iaa=t(matrix(ind1*(1/pred.lambda.1-1),ncol=dim(dg11)[2],nrow=n)*dg11)%*%dg11

Ica=t(matrix(ind1/pred.lambda.1*dlam.nox,ncol=dim(dx)[2],nrow=n)*dx)%*%dg11

Icc=t(matrix(ind1*dlam.nox^2/((1-pred.lambda.1)*pred.lambda.1),

ncol=dim(dx)[2],nrow=n)*(dx))%*%dx

I=rbind(cbind(Iaa,t(Ica)),cbind(Ica, Icc))

theta2=theta+solve(I)%*%t(S)

#print(theta2)
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}

##############################

# solving alpha_g for m=2

################################

wt1=1

wt2=1#1-ind3

q1d=cbind(1,ind1,ind2,x0,xx) # 1st derivative for g2^(2)

prc2=(1-pred.lambda0.1)

xlast=pred.xt1*ind1+ x[,1]*(1-ind1)

q2d=cbind(1,ind1,ind1*prc2,x0,xlast) # 1st derivative for g1^(2)

# 1st derivative for sum p(a|s)*g2^(2)-g1^(2)

q2p=cbind(alpha0=0,alpha1=0,alpha2=ind1*(ind2-prc2),alphab1=0,alphab2=0,

alphat=ind1*(xx-pred.xt1))

Mxb=t(q1d)%*%as.matrix(y*wt1)/n

Mxa=((t(q1d)*matrix(wt1,ncol=n,nrow=dim(x0)[2]+4,byrow=TRUE))

%*%q1d-(t(q2d)*matrix(wt2,ncol=n,nrow=dim(x0)[2]+4,byrow=TRUE))%*%q2p)/n

sol2=solve(Mxa,Mxb)
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# variance minimization

wt.i2=ind1*(pred.lambda.1/(1-pred.lambda.1))

Mxb.i=t(q1d)%*%as.matrix(y*wt.i2)/n

Mxa.i=((t(q1d)*matrix(wt.i2,ncol=n,nrow=dim(x0)[2]+4,byrow=TRUE))

%*%q1d-(t(q2d)*matrix(0,ncol=n,nrow=dim(x0)[2]+4,byrow=TRUE))%*%q2p)/n

sol2t=solve(Mxa.i[2:6,2:6],Mxb.i[2:6])

sol2.i=c(0,sol2t)

#cT adjustment

#derivative of g1.2

#dg120=cbind(ind1,x0,xlast,ind1*prc2)

dg12=cbind(ind1,ind1*prc2,x0,xlast)

# dg12=cbind(ind1,ind2,x0,xx)

#d(lambda.1)/d(gamma)=lambda.1^2*exp(-gammaX) .X

dlam.nox2=(pred.lambda.1)^2*exp(-a[1]-x[,1]*bxt4-x0[,1]*b[1]-x0[,2]*b[2])

dx=cbind(1,x[,1],x0)

theta4=c(sol2t,rep(-0.1, dim(dx)[2]))

iter <- 0

#itermax=150

tolerance=0.000001

theta3=0

#---Newton Ralphson-------------------------------

while (sum(abs(theta3 - theta4)) >= tolerance) {

#print(abs(theta3 - theta4)[4])

iter=iter+1
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#print(paste("iter =",iter))

theta3=theta4

c2=theta3[(length(sol2t)+1):length(theta3)]

ag2=theta3[1:length(sol2t)]

g12=dg12%*%ag2

l2=(dlam.nox2/(pred.lambda.1)*(dx%*%c2))

Sa2=t(ind1*(pred.lambda.1/((1-pred.lambda.1)))*(y-g12-l2))%*% dg12

Sb2=t(ind1/((1-pred.lambda.1))*(y-g12-l2)*dlam.nox2)%*%dx

S2=cbind(Sa2,Sb2)

#-I(theta)

Iaa2=t(matrix(ind1*(pred.lambda.1/((1-pred.lambda.1))),

ncol=dim(dg12)[2],nrow=n)*dg12)%*%dg12

Ica2=t(matrix(ind1/((1-pred.lambda.1))*dlam.nox2,ncol=dim(dx)[2],

nrow=n)*dx)%*%dg12

Icc2=t(matrix(ind1*dlam.nox2^2/((1-pred.lambda.1)*pred.lambda.1),

ncol=dim(dx)[2],nrow=n)*(dx))%*%dx

I2=rbind(cbind(Iaa2,t(Ica2)),cbind(Ica2, Icc2))

theta4=theta3+solve(I2)%*%t(S2)

#print(theta4)

}
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####### fit in g funtions########################

g1.1=p1d%*%as.matrix(sol2[-3])

g2.2=q1d%*%as.matrix(sol2)

g1.2=q2d%*%as.matrix(sol2)

g1.1i=p1d%*%as.matrix(sol1.i)

g1.2i=q2d%*%as.matrix(sol2.i)

g1.1c=dg11%*%as.matrix(theta2[1:length(sol1.t)])

g1.2c=cbind(ind1,ind1*prc2,x0,xlast)%*%as.matrix(theta4[1:length(sol2t)])

mu.dr=mu.jt=mu.or=mu.or.i=mu.dr.i=mu.dr.c=rep(NA,length(L))

#------------DR m=1-------------------------

mu.dr[1]=sum(ft1$W*y-ft1$W*g1.1+g1.1)/n

mu.jt[1]=sum(ft1$W*y)/sum(ft1$W)

mu.or[1]=mean(g1.1)

mu.or.i[1]=mean(g1.1i)

mu.dr.i[1]=sum(ft1$W*y-ft1$W*g1.1i+g1.1i)/n

mu.dr.c[1]=sum(ft1$W*y-ft1$W*g1.1c+g1.1c)/n

#------------DR m=2-------------------------

t.num.d=sum((ft2$W*y-(ft2$W-1)*g1.2))

t.num.di=sum((ft2$W*y-(ft2$W-1)*g1.2i)) #(1-ind3)*
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t.num.dc=sum((ft2$W*y-(ft2$W-1)*g1.2c))

t.den=n#sum(1-ind3)

mu.jt[2]=sum(ft2$W*y)/sum(ft2$W)

mu.or[2]=mean(g1.2)

mu.dr[2]=t.num.d/t.den

mu.dr.i[2]=t.num.di/t.den

mu.or.i[2]=mean(g1.2i)

mu.dr.c[2]=t.num.dc/t.den

return(list(mu.dr=mu.dr,mu.jt=mu.jt,mu.or=mu.or,

mu.or.i=mu.or.i, mu.dr.i=mu.dr.i,mu.dr.c=mu.dr.c))

}

#################### omit the time dependent x#############

lucy.DR.m2.or <- function(y=dat$y,U=dat$U,L=L,x0=dat$x0,d=dat$d,

time.x=dat$xt,x=dat$x,tmpx=dat$tmpx,xx=dat$xx){

ind1=ifelse(U<L[1],0,1) #I(C>t1)

ind2=ifelse(U==L[2],1,0) # I(C>t2)

ind3=ifelse(U==L[1],1,0) # I(U=t1)

p0=dim(x0)[2]

n=length(y)

#------------estimation of parameters-------------------------
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ft3=lucy.discrete.haz.dep.cens(u=U,d=1-d,L=L,x0=x0,time.x=time.x,Lx=L-10)

alpha=ft3$beta[1:p]

bxt=ft3$beta[p+p0+1]

b0=ft3$beta[(p+1):(p+p0)]

ft4=lucy.discrete.haz.dep(u=U,d=d,L=L,x0=x0,time.x=time.x,Lx=L-10)

a=ft4$beta[1:(p-1)]

bxt4=ft4$beta[p+p0]

b=ft4$beta[(p):(p+p0-1)]

ftm=lm(x[,2]~x[,1])

# predict lambda’s and xt1

pred.xt1=ftm$coeff[1]+ftm$coeff[2]*x[,1]

pred.lambda0.0=1/(1+exp(-alpha[1]-x[,1]*bxt-x0%*%b0))

pred.lambda0.1=1/(1+exp(-alpha[2]-pred.xt1*bxt-x0%*%b0))

pred.lambda.1<- 1/(1+exp(-a[1]-x[,1]*bxt4-x0[,1]*b[1]-x0[,2]*b[2]))

# estimate w wt

ft1=calc.w(u=U,d=d,L=L,x0=x0,time.x=time.x,Lx=L-10,M=1,tmpx=tmpx)

ft2=calc.w(u=U,d=d,L=L,x0=x0,time.x=time.x,Lx=L-10,M=2,tmpx=tmpx)

##############################

# solving alpha_g for m=1

################################

# a%*%x=b

wt1.1=1
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p1d=cbind(1,ind1,x0)

MxA=(t(p1d)*matrix(wt1.1,ncol=n,nrow=dim(x0)[2]+2,byrow=TRUE))%*%p1d/n

MxB=t(p1d)%*%as.matrix(y*wt1.1)/n

sol1=solve(MxA,MxB)

# variance minimization

wt.i1=ind1*(1-1/pred.lambda.1)

p1d=cbind(1,ind1,x0)

MxA.i=(t(p1d)*matrix(wt.i1,ncol=n,nrow=dim(x0)[2]+2,byrow=TRUE))%*%p1d/n

MxB.i=t(p1d)%*%as.matrix(y*wt.i1)/n

sol1.t=solve(MxA.i[2:4,2:4],MxB.i[2:4])

sol1.i=c(0,sol1.t)

#cT adjustment

#derivative of g1.1

dg11=cbind(ind1,x0)

#d(lambda.1)/d(gamma)=lambda.1^2*exp(-gammaX) .X

dlam.nox=pred.lambda.1^2*exp(-a[1]-x[,1]*bxt4-x0[,1]*b[1]-x0[,2]*b[2])

dx=cbind(1,x[,1],x0)

theta2=c(sol1.t,rep(0.1, dim(dx)[2]))

iter <- 0

#itermax=150

tolerance=0.000001

theta=0
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#---Newton Ralphson-------------------------------

while (sum(abs(theta - theta2)) >= tolerance) {

#print(abs(theta - theta2)[4])

iter=iter+1

#print(paste("iter =",iter))

theta=theta2

c=theta[(length(sol1.t)+1):length(theta)]

ag=theta[1:length(sol1.t)]

g11=dg11%*%ag

l1=(dlam.nox/(1-pred.lambda.1)*(dx%*%c))

Sa=t(ind1*(1/pred.lambda.1-1)*(y-g11-l1))%*% dg11

Sb=t(ind1/pred.lambda.1*(y-g11-l1)*dlam.nox)%*%dx

S=cbind(Sa,Sb)

#-I(theta)

Iaa=t(matrix(ind1*(1/pred.lambda.1-1),ncol=dim(dg11)[2],nrow=n)*dg11)%*%dg11

Ica=t(matrix(ind1/pred.lambda.1*dlam.nox,ncol=dim(dx)[2],nrow=n)*dx)%*%dg11

Icc=t(matrix(ind1*dlam.nox^2/((1-pred.lambda.1)*pred.lambda.1),

ncol=dim(dx)[2],nrow=n)*(dx))%*%dx

I=rbind(cbind(Iaa,t(Ica)),cbind(Ica, Icc))

theta2=theta+solve(I)%*%t(S)

#print(theta2)

}
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##############################

# solving alpha_g for m=2

################################

wt1=1

wt2=1#1-ind3

q1d=cbind(1,ind1,ind2,x0) # 1st derivative for g2^(2)

prc2=(1-pred.lambda0.1)

xlast=pred.xt1*ind1+ x[,1]*(1-ind1)

q2d=cbind(1,ind1,ind1*prc2,x0) # 1st derivative for g1^(2)

# 1st derivative for sum p(a|s)*g2^(2)-g1^(2)

q2p=cbind(alpha0=0,alpha1=0,alpha2=ind1*(ind2-prc2),alphab1=0,alphab2=0)

Mxb=t(q1d)%*%as.matrix(y*wt1)/n

Mxa=((t(q1d)*matrix(wt1,ncol=n,nrow=dim(x0)[2]+3,byrow=TRUE))

%*%q1d-(t(q2d)*matrix(wt2,ncol=n,nrow=dim(x0)[2]+3,byrow=TRUE))%*%q2p)/n

sol2=solve(Mxa,Mxb)

# variance minimization

wt.i2=ind1*(pred.lambda.1/(1-pred.lambda.1))
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Mxb.i=t(q1d)%*%as.matrix(y*wt.i2)/n

Mxa.i=((t(q1d)*matrix(wt.i2,ncol=n,nrow=dim(x0)[2]+3,byrow=TRUE))

%*%q1d-(t(q2d)*matrix(0,ncol=n,nrow=dim(x0)[2]+3,byrow=TRUE))%*%q2p)/n

sol2t=solve(Mxa.i[2:5,2:5],Mxb.i[2:5])

sol2.i=c(0,sol2t)

#cT adjustment

#derivae of g1.2

#dg120=cbind(ind1,x0,xlast,ind1*prc2)

dg12=cbind(ind1,ind1*prc2,x0)

# dg12=cbind(ind1,ind2,x0,xx)

#d(lambda.1)/d(gamma)=lambda.1^2*exp(-gammaX) .X

dlam.nox2=(pred.lambda.1)^2*exp(-a[1]-x[,1]*bxt4-x0[,1]*b[1]-x0[,2]*b[2])

dx=cbind(1,x[,1],x0)

theta4=c(sol2t,rep(-0.1, dim(dx)[2]))

iter <- 0

#itermax=150

tolerance=0.000001

theta3=0

#---Newton Ralphson-------------------------------

while (sum(abs(theta3 - theta4)) >= tolerance) {

#print(abs(theta3 - theta4)[4])

iter=iter+1

#print(paste("iter =",iter))

theta3=theta4

c2=theta3[(length(sol2t)+1):length(theta3)]
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ag2=theta3[1:length(sol2t)]

g12=dg12%*%ag2

l2=(dlam.nox2/(pred.lambda.1)*(dx%*%c2))

Sa2=t(ind1*(pred.lambda.1/((1-pred.lambda.1)))*(y-g12-l2))%*% dg12

Sb2=t(ind1/((1-pred.lambda.1))*(y-g12-l2)*dlam.nox2)%*%dx

S2=cbind(Sa2,Sb2)

#-I(theta)

Iaa2=t(matrix(ind1*(pred.lambda.1/((1-pred.lambda.1))),

ncol=dim(dg12)[2],nrow=n)*dg12)%*%dg12

Ica2=t(matrix(ind1/((1-pred.lambda.1))*dlam.nox2,ncol=dim(dx)[2],

nrow=n)*dx)%*%dg12

Icc2=t(matrix(ind1*dlam.nox2^2/((1-pred.lambda.1)*pred.lambda.1),

ncol=dim(dx)[2],nrow=n)*(dx))%*%dx

I2=rbind(cbind(Iaa2,t(Ica2)),cbind(Ica2, Icc2))

theta4=theta3+solve(I2)%*%t(S2)

#print(theta4)

}

####### fit in g funtions########################
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g1.1=p1d%*%as.matrix(sol2[-3])

g2.2=q1d%*%as.matrix(sol2)

g1.2=q2d%*%as.matrix(sol2)

g1.1i=p1d%*%as.matrix(sol1.i)

g1.2i=q2d%*%as.matrix(sol2.i)

g1.1c=dg11%*%as.matrix(theta2[1:length(sol1.t)])

g1.2c=cbind(ind1,ind1*prc2,x0)%*%as.matrix(theta4[1:length(sol2t)])

mu.dr=mu.jt=mu.or=mu.or.i=mu.dr.i=mu.dr.c=rep(NA,length(L))

#------------DR m=1-------------------------

mu.dr[1]=sum(ft1$W*y-ft1$W*g1.1+g1.1)/n

mu.jt[1]=sum(ft1$W*y)/sum(ft1$W)

mu.or[1]=mean(g1.1)

mu.or.i[1]=mean(g1.1i)

mu.dr.i[1]=sum(ft1$W*y-ft1$W*g1.1i+g1.1i)/n

mu.dr.c[1]=sum(ft1$W*y-ft1$W*g1.1c+g1.1c)/n

#------------DR m=2-------------------------

t.num.d=sum((ft2$W*y-(ft2$W-1)*g1.2))

t.num.di=sum((ft2$W*y-(ft2$W-1)*g1.2i)) #(1-ind3)*

t.num.dc=sum((ft2$W*y-(ft2$W-1)*g1.2c))

t.den=n#sum(1-ind3)

mu.jt[2]=sum(ft2$W*y)/sum(ft2$W)
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mu.or[2]=mean(g1.2)

mu.dr[2]=t.num.d/t.den

mu.dr.i[2]=t.num.di/t.den

mu.or.i[2]=mean(g1.2i)

mu.dr.c[2]=t.num.dc/t.den

return(list(mu.dr=mu.dr,mu.jt=mu.jt,mu.or=mu.or,

mu.or.i=mu.or.i, mu.dr.i=mu.dr.i,mu.dr.c=mu.dr.c))

}

#revised 5/2/2015

# calculate weight Wpk for the IPW estimator as well as

#the intermediate weight Wpt, t<k=m

calc.w <- function (u,d,L,M,x0,time.x,Lx,tmpx){

p=length(L)

n=length(u)

p0=dim(x0)[2]

#------------estimation of parameters-------------------------

ft4=lucy.discrete.haz.dep(u=u,d=d,L=L,x0=x0,time.x=time.x,Lx=Lx)

a=ft4$beta[1:(p-1)]

bxt4=ft4$beta[p+p0]

b=ft4$beta[(p):(p+p0-1)]

# ---calculate Lambda from discrete hazard function with

#respect to physician stop-----

pred.lambda=matrix(NA,p,n)

pred.lambda2=matrix(0,p,n)
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for (j in 1:(p)){

pred.lambda[j,]<- 1/(1+exp(-a[j]-tmpx[,j]*bxt4-x0[,1]*b[1]-x0[,2]*b[2]))

}

# lambda4=1 since it is the end of the study.

pred.lambda[p,]<-1

K=p

#---calculate denominator of W-------------------------------------------

ind1= matrix(u,n,K)==matrix(L,n,K,byrow=TRUE) & matrix(d,n,K)==1

#I(U=tj, d=1)

ind2= matrix(u,n,K)> matrix(L,n,K,byrow=TRUE) #I(U>tj)

# denominator for each element by individual

den=(t(1-pred.lambda))^ind2*(t(pred.lambda)^ind1)

prodden=apply(den,1,prod) #denominator for W by individual

#-------calculate numerator of W-----------------------

num=matrix(NA,n,K)

num= (matrix(L,n,K,byrow=TRUE)==L[M])^ind1*(matrix(u,n,K)<=L[M])^ind2

# tj=tm or u<=tm

prodnum=apply(num,1,prod) #numerator for W by individual

##########-W-#############

W=prodnum/prodden



172

#-----------------calc Wt---------------------

tmpden=den

tmpnum=num

for (j in 2:p){

tmpden[,j]=apply(den[,1:j],1,prod)

tmpnum[,j]=apply(num[,1:j],1, prod)

}

Wt=tmpnum/tmpden

######calc W{t-1}##########

Wt1=matrix(1,n,p)

Wt1[,-1]=Wt[,-p]

return(list(W=W,Wt=Wt,Wt1=Wt1,num=num, den=den, tmpnum=tmpnum, tmpden=tmpden))

}


