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Abstract	

End-to-end	Plural	Coreference	Resolution	on	TV	Show	Transcripts	
By	Jose	Coves	

	

This	paper	introduces	the	first	plural	end-to-end	coreference	resolution	model.	This	
coreference	system	generates	spans	embeddings,	which	are	optimized	to	predict	the	mentions	
and	the	coreferent	antecedents.	This	model	handles	plural	mentions	and	plural	speakers.	Our	
approach	builds	on	the	higher-order	coreference	resolution	with	coarse-to-fine	inference	by	
adapting	it	to	the	Friends	corpus,	which	has	plural	speakers	as	a	feature	and	also	has	singletons.	
Additionally,	the	model	predicts	plural	antecedents	as	done	in	previous	plural	coreference	
works.		These,	in	combination	with	the	singular	antecedents,	are	used	to	construct	the	final	
clusters,	which	have	a	one-to-one	correspondence	to	the	entities.
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Chapter 1

Introduction

Coreference resolution is a very challenging task because the model needs to understand

not only the complex syntactical language structures and patterns but also a more nuanced

comprehension of the meaning and nature of the dialogue, in order to accurately determine

which mentions are coreferent.

Our different approaches build on this model to make it work with plural coreference

resolution on the Friends corpus, which includes plural mentions, plural speakers and

singletons. Singletons are mentions which are not coreferent to other mentions. They

appear as a result of the way entities are characterized in the show (OTHERS, GENERAL,

etc). 1.1 illustrates the differences between the annotation used in the CoNLL’12 shared

task [9] and the Friends corpus, introduced by Chen and Choi [3], Zhou and Choi [11].

Document I0 told [mom1 and dad2]3 last night, they4 seemed to take it pretty well. Better than me5

CoNLL’12 {I0, me5}, {mom1}, {dad2}, {they4, mom and dad3}
Friends {I0, me5}, {mom1, they4}, {dad2, they4}

Table 1.1: Annotation from CoNNL’12 and annotation from Friends [11]

In the example we can see how the new annotation by Zhou and Choi [11] does not allow
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for nested mentions, like mom and dad combined. Additionally the final clustering is not a

partition of the mentions, since the plural mentions appear in the clusters corresponding to

the mentions they refer to. In our example they is in the clusters belonging tomom and dad

respectively, since those are the entities it is referencing. Plural mentions might not refer to

the exact same group of entities but still have some in common. However, instead of making

plural mentions coreferent, it makes more sense to link them to each singular mention

and the corresponding entity it represents. Coreference resolution is a very powerful and

essential task in Natural Language Processing, especially when combined with other tasks.

Higher-level tasks like machine translation, text comprehension and question answering can

greatly benefit from coreference resolution, since it helps identify the entities the mentions

refer to.

Plural coreference resolution is a relatively new task that has not been explored in

depth. It was introduced recently by Zhou and Choi [11] and their approach consisted of a

modified version of an Agglomerative Convolutional Neural Network to classify every pair

of mentions as either non-coreferent, left-coreferent or right-coreferent. These labels were

used to then construct the clusters of mentions, where clusters and entities had a one-to-one

correspondence. While there is previous work on both end-to-end neural coreference

resolution and plural coreference resolution, we believe this is the first time end-to-end

plural coreference resolution has been done.
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Chapter 2

Background

Coreference resolution is a task that belongs to the Natural Language Processing (NLP)

field. This field attempts to model and learn language structures and patterns by using

programming methods and algorithms. In the earlier stages of NLP, the algorithms used

for most tasks relied more heavily on domain knowledge and many hand-crafted rules and

heuristics from linguistic experts.

Coreference resolution is the task of partitioning all expressions into the entities they

refer to. This expressions are often called mentions and include, but are not limited to,

names, nouns and pronouns: e.g. Joey, guy, he. The objective is to group up the mentions

referring to the same entity into the same cluster, yielding a one-to-one correspondence

between clusters and entities. Entities could be as general as things, locations, people or

objects, like in the CoNLL’12 corpus. However, other corpora may have different or more

specific definitions of entities. The Friends corpus only considers the characters in the show,

thus limiting the entities to people. Traditionally, coreference resolution only involved

singular mentions, which only refer to one entity and therefore only belong to one cluster.
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Thus, the cluster {they, mom and dad}, as annotated in CoNLL’12 is technically a cluster

formed by two singular mentions, despite the fact that both mentions refer to a plural entity,

which is an entity that refers to multiple entities. The annotation in the friends corpus

addresses this by removing the nested mention mom and dad and annotating they as a

plural mention, which is a mention that belongs to multiple cluster since it refers to multiple

entities. As a result, it is possible to deal with mentions that refer to multiple entities, such

as they, while still having the property of the clusters corresponding to entities (mom and

dad is not an entity, but rather two separate entities). This is very important since it allows

the work to be expanded to perform Entity Linking, a task in which the coreferent clusters

are paired with the entities they refer to.

As neural networks became more popular due to impressive boosts in performance, the

NLP field also started to be dominated by state-of-the-art deep learning models. One of the

biggest challenges was that words do not have a numerical representation, and therefore

could only be encoded as sparse vectors. Nowadays, however, there exist many efficient

libraries for learning word representations, even at character-level, which makes it possible

to obtain numerical representations for previously unseen words.

This paper expands on the end-to-end neural networks built using the popular libray

TensorFlow [1]. The library supports a variety of computational methods. For a better

understanding of the model, we explain the two main neural networks used:
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• Feedforward Neural Network (FFNN) - It is a multi-layer perceptron, which feeds its

output forward as an input to the next layer, without forming a cycle.

• Long Short-Term Memory (LSTM) - It is an artificial Recurrent Neural Network

(RNN), i.e., the connections between the nodes form a directed graph with loops

which allow information to persist. It has different gates that determine when to

forget and remember new information. The main advantage is that it can process

entire sequences of data, such as speech.

• Convolutional Neural Network (CNN) - It is a class of deep neural networks that

extracts the most significant and salient features from the input in a condensed form.

They have been mostly used for extracting salient features from visual data and

images but have also been proved useful in NLP for processing sentences and words.

2.1 Related Work

There is substantial related work done on coreference resolution, but we will focus on

explaining the most relevant to understand the work we present in this paper.

Many of the original coreference models relied heavily on syntactic parsers and featured

rule based hand-engineered systems for mention detection. Clark and Manning [4]

optimized a neural mention-ranking model for coreference by applying reinforcement

learning. Clark and Manning [5] presented a learning-to-search algorithm that optimized



6

local decisions for merging the clusters. Wiseman et al. [10] used recurrent neural networks

to learn representations for the entitiy clusters from their mentions. More recently we saw

the appearance of state-of-the-art coreference models that are end-to-end [7, 8] and make

no assumptions about the syntax or structure of the language in order to identify which

spans are most likely mentions. In a very efficient manner, these span embeddings used to

obtain the mention scores are then refined and used to predict the antecedents.

End-to-end coreference

End-to-end neural coreference resolution [7, 8] produces the coreferent clusters by assigning

antecedents to the top spans. For each span i, the set of antecedents Y (i) = {ε, 1, ..., i− 1},

where ε is the dummy antecedent, used when span i is not a mention or not coreferent.

The first step is to compute the span embeddings and mention scores, which is done

using a bidirectional LSTM, as shown in 2.1.

S(i, j) = sm(i) + sm(j) + sa(i, j) (2.1)

Sm(i) = W T
mFFNN(gi) (2.2)

Sa(i, j) = W T
a FFNN([gi, gj, gi ◦ gj, φ(i, j)]) (2.3)

where gi is the span representation of i, ◦ denotes element-wise multiplication and φ(i, j) is

a feature vector containing speaker information and a distance factor between the mentions.
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Figure 2.1: Feed character and word embeddings into bidirectional LSTM to compute the
span representations and mention scores for potential entities.

Wm, Wa and Wc (2.5) are learnt weight matrices.

The next step in the end-to-end model is to feed the span representations into the

Feedforward Neural Networks to compute the mention scores and the antecedent scores,

which are then combined to obtain the coreference score, as displayed in figure 2.2. The

coreference score S(i, j) (2.1) of a pair of mentions is obtained by adding their mention

scores (2.2) and their antecedent scores (2.3). For each span, the antecedent with the highest

coreference score is selected. If the span is not a mention or is not coreferent, the dummy
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antecedent ε is selected.

Figure 2.2: End-to-end coreference system. The span representations are simultaneously
used for computing the mention scores and the antecedent scores. These are combined to
obtain the final coreference scores.

Heavy pruning occurs by sorting the spans based on the mention scores and only keeping

the top K = λT spans, where λ is the span ratio and T is the length of the document.

In their following paper, Lee et al. [8] add higher-order coreference resolution, which

is achieved by refining the span representations for N iterations. At each iteration, the

expected antecedent representation ani , in combination with the gate vector fn
i , is used to

modify the current span representation gni (2.4).

gn+1
i = fn

i ◦ gni + (1− fn
i ) ◦ ani (2.4)

The other big addition from the second paper is coarse-to-fine inference, which consists

of pruning antecedents using a bi-linear matrix, making it less accurate but much faster.
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This increase in efficiency allows the model to, for each span in the top K, select the top C

antecedents, ranked using (2.5). Then, the final coreference score for these top antecedents

is computed using (2.6). This equation is very similar to the original, but it now has the

extra term for the fast antecedent score.

sc(i, j) = gT
i Wcgj (2.5)

S(i, j) = sm(i) + sm(j) + sa(i, j) + sc(i, j) (2.6)

Plural coreference

Plural coreference resolution, which involves plural mentions, was introduced by Zhou

and Choi [11] only very recently, given the complexity of the task and the lack of corpora

with annotation for plural mentions. The Friends corpus has been revised and annotated to

support plural coreference resolution. Previously, the corpus had been used for singular

coreference resolution and entity linking [2]. Their model consisted of an Agglomerative

Convolutional Neural Network (ACNN), which aggregates convolutions layers to learn

the representations for the mentions and then use these to compute the mention pair

embeddings.

One of the main challenges of plural coreference is that it is no longer transitive.

Singular coreference resolution can be seen as a partition of the mention into clusters,

where each cluster represents an entity. However, the introduction of plural mentions,
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which refer to multiple entities and therefore appear in multiple clusters, means that we

must now broaden our search space.

For singular coreference resolution, the algorithm by Lee et al. [7] just finds for

every mention i an antecedent mention j and combines them into the same cluster in

a manner similar to a disjoint set union find, given the transitive nature of coreference.

However, this does not hold true for plural coreference resolution, since we can have the

clusters {me,we}, {you, we} where we is coreferent to both mentions but you and me are

not coreferent. Therefore, plural coreference resolution involves comparing all pairs of

mentions. Additionally, now there must be two type of links between pairs of mentions,

to differentiate between singular and plural antecedents. In their original paper they are

referred to as L and R, respectively. The following algorithm is described for clustering is

performed:

• Singular antecedent: when mi is singular. If mi is not in a cluster, create and assign

it. mj gets assigned to the cluster mi belongs to.

• Plural antecedent: when mi is plural and mj is singular. If mj is not in a cluster,

create and assign it. mi gets assigned to the cluster mj belongs to.

• Not coreferent: every other case. Do nothing.

The mention pairs are iterated in their natural order of appearance, as shown in 2.1
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[mi] −→ {N,S,P} mj Clusters
[I] −→ N mom {}

[I,mom] −→ N dad {}
[I] −→ N, [mom, dad] −→ S they {mom, they}, {dad, they}

[I] −→ S, [mom, dad, they] −→ N me {mom, they}, {dad, they} , {I,me}

Table 2.1: Clustering algorithm. N,S,P stand for non-coreferent, singular antecedent, and
plural antecedent, respectively

Since the task of plural coreference resolution has different gold labels from singular

coreference, the evaluation metrics were revisited and modified by Zhou and Choi [11]. We

use those updated evaluation metrics, Bcube, Ceafe and Blanc.
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Chapter 3

Approach

The main novelty compared to previous work on Coreference resolution is that now the

model deals with plural mentions. Previous work on plural Coreference is very limited and

was explored on the Friends corpus. This paper expands on the previous work by adding an

extra layer of complexity, in that the model is not given the gold mentions. Instead, it has

to not only predict the clusters the mentions belong to, but also the mentions themselves,

thus achieving end-to-end plural coreference resolution.

As inspiration to tackle this problem, the ideas and algorithms from the top performing

models in end-to-end coreference resolution [8] and plural coreference [11] are combined.

This merge itself presents many difficulties, many of which arise because they are designed

to deal with different corpora. The main difference is that the end-to-end model uses

CoNLL corpus, which consists of singular mentions, includes nested mentions and has no

singletons. On the other hand, the Friends corpus has both plural and singular mentions,

none of which are nested, and includes some singletons due to having clusters for general

or unnamed characters. Many of these differences are a direct consequence of the fact
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that the Friends corpus only consists of mentions referring to people, whereas CoNLLs

mentions include people, locations, organizations and objects. Additionally, since 99% of

the mentions are at most three words long, the maximum span width is set to that value.

3.1 Nested Mention Detection

After learning about the successful results of end-to-end neural coreference resolution we

were a bit skeptical about the effectiveness of mention detection. Therefore, we aimed to

improve the performance by adding the state-of-the-art mention detection model presented

by Katiyar and Cardie [6]. However, the recurrent neural network hypergraph-based model

did not improve the recall of mention detection. This further supports the effectiveness

and strength of the end-to-end system. Thus, we focus all of our following approaches on

expanding it to plural coreference resolution.

3.2 Plural Speakers

The baseline for our model consists of the e2e model designed for singular Coreference

resolution on the CoNLL corpus. In order to adapt it to perform on the Friends corpus, the

speakers feature is expanded to include plural speakers. The algorithm previously used the

feature as a binary flag on whether two mentions had the same speaker. It is modified in

this plural version so it represents whether two mentions have any speakers in common,
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i.e., their intersection was non-empty. To allow an easy comparison between singular and

plural speakers, the results are split in two separate tables. Additionally, we include the

results for a different use of the speakers feature in 4.7 and 4.8. Instead of having a feature

vector to denote whether both mentions have the same speaker, now the model assigns

random embeddings to all the different speakers (around 300). Then, the embeddings for

both speakers’ mentions, as well as their pair-wise similarity (computed as element-wise

product) is appended to the feature vector.

The advantage from this modification can be seen in the following example:

John: I won.

Mary: ME too.

John,Mary: WE rock!

Technically, all three utterances have different sets of speakers, but it is clear that there

is significance in having a non-empty intersection of speakers. Now both (I, WE) and

(ME, WE) will have the same speaker embedding, which can be very helpful for finding

coreference between first person pronouns.

3.3 Singletons

Since the CoNLL corpus does not have singletons but the Friend corpus does, mention

scores were used to find such singletons. The process consists of adding mentions that had
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not been assigned to any clusters but had a mention score over a threshold t. This parameter

can be tuned and the optimal value was found to be approximately t = 0, which makes

sense since Lee et al. [7] determined that while the initial pruning is completely random,

only gold mentions receive positive updates. This process of adding remaining mentions

(not predicted as coreferent to other mentions) is performed on every approach.

3.4 Training Labels

Finally, to get a baseline for plural coreference the gold labels for plural mentions (for

training only) had to be modified. This baseline would only output singular clusters, in

a similar manner to the baseline used by Zhou and Choi [11]. Every plural mention is

formed by many singular mentions, so one of these mentions, the ”head mention”, had to

be selected in order to convert the training labels into singular labels. This would allow for

evaluating a singular coreference model on a plural corpus with plural metrics. Different

heuristics were explored to select the head mention. These involved sorting by the frequency

of appearances of the mentions in the document and picking either the most or the least

popular. These correspond to Singular + most and Singular + least in the results table.

It was also considered ignoring plural mentions during training (Singular + none in the

results).
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3.5 Plural Coreference Resolution

Once the model has been adapted to work on the Friends corpus, more modifications

are made to actually address plural mentions. For singular coreference resolution, the

algorithm just finds for every mention i an antecedent mention j and combines them into

the same cluster in a manner similar to a disjoint set union find, given the transitive nature

of coreference. However, this does not hold true for plural coreference resolution, since

it is possible to have the clusters {me,we}, {you, we} where we is coreferent to both

mentions but you and me are not coreferent. Therefore, plural coreference resolution

involves comparing all pairs of mentions. Additionally, now there must be two type of links

between pairs of mentions, to differentiate between singular and plural antecedents.

Spa(i, j) = W T
paFFNN([gi, gj, gi ◦ gj, φ(i, j)]) (3.1)

spc(i, j) = gT
i Wpcgj (3.2)

Sp(i, j) = sm(i) + sm(j) + sp(i, j) + spc(i, j) (3.3)

Loss = S ∗ LossSingular + (1− S) ∗ LossPlural (3.4)
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3.6 Singularity

In order to model this additional relationship between pairs of mentions, Spa, score of plural

antecedents, a separate feed forward neural network is added, identical to the one used

for singular antecedents. Equations (3.1-3) show the parallelism with regards to how the

singular antecedents scores are computed. Thus, the model arrives at coreferent scores for

both singular and plural antecedents. The difference is that now the loss is computed as a

weighted average of the singular and plural antecedents losses. The weights are determined

by the parameter singularity S which at a value of 1 only looks at the singular antecedents

loss. Since singular antecedent relationships are more common than plural ones, they are

more important, and the optimal values of S are between 0.6 and 0.7.

This also affects higher-order coreference resolution and the refining of the span

representations. Now, at each iteration, the expected singular and plural antecedents

representations, ani and pani , in combination with the gate vector fn
i , are used to modify the

current span representation gni (3.1).

gn+1
i = fn

i ◦ gni + (1− fn
i ) ◦ (Sani + (1− S)pani ) (3.5)

The first version of the plural clusters model is trained to predict a singular antecedent i

for a span j if they are coreferent (i.e., they belong to the same gold cluster) and the span j

is a singular mention, regardless of whether the antecedent i is singular or plural. Whether a
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mention is plural or singular is determined by looking at how many gold clusters it belongs

to, since singular mentions only belong to one cluster. Plural antecedents are to be predicted

when the antecedent i is a singular mention and the span j is plural. As argued by Zhou

and Choi [11], it is desirable to avoid having clusters just with plural mentions, since the

idea of coreference resolution in dialogue is to match mentions and clusters with entities.

Therefore, two plural mentions are not predicted as plural antecedents. The labeling for the

utterance ”I told mom they need me. Dad agreed.” is shown in 3.1

Antecedent mi Span mj Antecedent Label
I me Singular

mom they Plural
they dad Singular

Table 3.1: Labeling algorithm. Non-coreferent labels are not included.

3.7 Merging Clusters

The first approach to produce the clusters uses the baseline method to compute the clusters

using only singular antecedents, which adds mi to the cluster mj belongs to if (mi,mj)

are coreferent . Then the plural antecedents are used to expand the existing clusters. This

is done by adding the plural span mj to the cluster the antecedent mention mi belongs to

(if it has no cluster it creates a new one). The results of this approach are displayed in the

table as the experiment Base + plural. The main weakness of this approach is that it still

assumes the transitivity of singular coreference resolution when constructing the clusters
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from the singular antecedents and it only looks at the top antecedent for each span, instead

of looking at all pairs.

Example: I think we won. Y ou did great.

The pair (we, you) forms a singular antecedent, so we is added to the cluster you belongs

to. On the other hand, (I, we) is a plural antecedent, so we is added to the cluster I belongs

to, resulting in the clusters {I, we} and {you, we}.

3.8 Many Antecedents with Upper Bounds

The next approach attempts to solve the previous weakness by looking at many singular

antecedents. Previously, only the top singular antecedent was selected, unless it was the

dummy antecedent ε. This happens because the original end-to-end system picks the

antecedent using Softmax regression, as shown in 2.2. This issue is addressed by applying

the same algorithm used for plural antecedents: for a given span, all antecedents whose

score is greater than the dummy antecedent ε are selected. This differs from Zhou and Choi

[11], where the model is a classifier and it already produces the labels. In order to avoid

too many antecedents being selected, the model includes two parameters max singular

antecedents and max plural antecedents which provide an upper bound on the number

of antecedents. Thus, in the sentence ”I bought it for me, but we could share it.” the

antecedent scores of I and me for span we are both greater than the dummy ε and they
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are both marked as singular antecedents, and not just the one with the highest scores. The

results are shown in Plural + many.

3.9 Antecedent conflicts

The concern with the previous method is that it does not follow the natural order of the

pairs of mentions. Instead, all the singular antecedents are processed first and only then the

plural antecedents are used to combine the clusters. This is not a problem if the predicted

labels are all correct, but in practice there are wrong predictions and their negative effect

can be reduced. Hence, the next improvement looks at all spans in order of appearance, and

for each span it looks at all antecedents in order. This also deals with the issue of having a

pair of mentions marked as both singular and plural antecedents. If this happens, the model

selects whichever has the highest score. These results are shown as Many + order in the

results. Consider the example: I think we won. Y ou did great.

The correct labels are (I, we) −→ Singular Antecedent and (we, you) −→ Plural Antecedent.

If we also add the incorrect prediction (I, you) −→ Singular Antecedent we get the following

clusters. After this modification we improved the prediction from both clusters being wrong

3.2 to only one wrong cluster 3.3. This is because errors are propagated, and spans that

appear later have more possible antecedents and more predictions that could be wrong,

Thus, by processing their antecedents at a later stage, any mistakes are not as influential.
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Antecedent, Span Label Clusters
I, we Singular {I, we}
I, you Singular {I, we, you}
we, you Plural {I, we, you}

Table 3.2: Clustering obtained by processing singular antecedents first. Utterance has
wrong prediction (I, you) −→ Singular Antecedent

Antecedent, Span Label Clusters
I, we Singular {I, we}

we, you Plural {I, we}, {you,we}
I, you Singular {I, we, you}, {you,we}

Table 3.3: Clustering obtained by sorting the processing order by (span, antecedent).
Utterance has wrong prediction (I, you) −→ Singular Antecedent

3.10 Alternate plural antecedents

After trying different approaches for constructing the clusters, the next iteration of the

model defines a new training loss for the plural antecedents. Until now the mention pair

(i,j) was a plural antecedent if the mention span j is plural and the antecedent i is singular.

However, now the model takes an approach similar to that of Zhou and Choi [11] and the

mention pair (i,j) is a plural antecedent if the mention span j is singular and the antecedent

i is plural. Of course, this requires to modify the algorithm for construction of the clusters.

In fact, this now requires the clustering algorithm described in Zhou and Choi [11]. The

clustering for the utterance ”I told mom they need me. Dad agreed.” is shown in 3.4. The

results are shown as New Plural in the experiments.

In the above approach, the cluster construction is still done in two phases: first, just
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[mi] −→ {N,S,P} mj Clusters
[I] −→ N mom {}

[I] −→ N, [mom] −→ S they {mom, they}
[I,mom] −→ N, [they] −→ P dad {mom, they}, {dad, they}

[I] −→ S, [mom, dad, they] −→ N me {mom, they}, {dad, they} , {I,me}

Table 3.4: Clustering for the utterance ”I told mom they need me. Dad agreed.”. N,S,P
stand for non-coreferent, singular antecedent, and plural antecedent, respectively

looking at the singular antecedents and obtaining the partial clusters, which are then used

in combination with the plural antecedents to construct the final clusters. Thus, in this

new experiment the same predictions obtained in ln are used but now the final clusters are

constructed using singular and plural antecedents simultaneously as the spans are iterated

in order of appearance.. This results are shows as New Plural + order.
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Chapter 4

Experiments

The Friends corpus is divided into training, development and test in the following

manner. Episodes 1-19 are for training, 20-22 for development, and the remaining episodes

are for the test set. The results are presented in two different tables, corresponding to

singular and plural speakers. The most important baseline is the state-of-the-art model for

plural coreference resolution introduced by Zhou and Choi (ZC) [11], which was covered

in depth in 2.1. Additionally, we include the model by Chen, Zhou and Choi (CZC) for

reference. CZC is a singular coreference resolution model by Chen et al. [2] which was

modified to use plural labels for training. Therefore, CZC predicts singular clusters and it

served as a baseline for the more advanced model developed for ZC. Both ZC and CZC,

covered in 2.1, use gold mentions during evaluation, so our end-to-end model has an extra

layer of complexity since it needs to detect the mentions.

By comparing the results from both tables, it is clear that plural speakers (table 4.6)

have a slight boost in performance over singular speakers (table 4.3), since the scores are

consistently higher. This confirms our hypothesis that the emptiness of the intersection
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Mention Bcube Ceafe Blanc Avg
Method P R F1 P R F1 P R F1 P R F1 F1

Singular + none 95.3 83.3 88.9 74.4 66.3 70.1 62.5 44.4 52.0 75.7 70.5 72.2 65.8
Singular + least 96.0 90.2 93.0 70.0 64.5 67.2 60.8 44.5 51.4 75.0 73.1 73.9 65.2
Singular + most 95.7 90.3 92.9 72.6 65.5 68.8 60.4 44.8 51.4 77.4 75.0 76.0 66.3
Base + plural 93.5 96.2 94.8 72.7 60.0 65.8 44.5 57.4 50.1 77.0 73.2 74.8 65.1

Table 4.1: Results on the test set with singular speakers

Mention Bcube Ceafe Blanc Avg
Method P R F1 P R F1 P R F1 P R F1 F1

Base + plural 93.5 96.2 94.8 72.7 60.0 65.8 44.5 57.4 50.1 77.0 73.2 74.8 65.1
Plural + many 95.8 88.7 92.2 69.3 70.6 70.0 52.2 48.0 50.0 74.3 75.9 75.0 64.4
Many + order 96.2 90.5 93.3 70.0 66.9 68.4 59.5 45.9 51.8 75.7 74.6 75.1 65.6

New Plural 94.8 93.2 94.0 67.3 72.5 69.8 56.3 48.6 52.2 75.0 78.1 76.3 66.6
N. Plural + order 95.0 95.0 95.0 67.9 72.7 70.1 52.5 55.3 53.9 76.3 79.2 77.6 67.0

Table 4.2: Results on the test set with singular speakers

Mention Bcube Ceafe Blanc Avg
Method P R F1 P R F1 P R F1 P R F1 F1

Singular + none 95.3 83.3 88.9 74.4 66.3 70.1 62.5 44.4 52.0 75.7 70.5 72.2 65.8
Singular + least 96.0 90.2 93.0 70.0 64.5 67.2 60.8 44.5 51.4 75.0 73.1 73.9 65.2
Singular + most 95.7 90.3 92.9 72.6 65.5 68.8 60.4 44.8 51.4 77.4 75.0 76.0 66.3
Base + plural 93.5 96.2 94.8 72.7 60.0 65.8 44.5 57.4 50.1 77.0 73.2 74.8 65.1
Plural + many 95.8 88.7 92.2 69.3 70.6 70.0 52.2 48.0 50.0 74.3 75.9 75.0 64.4
Many + order 96.2 90.5 93.3 70.0 66.9 68.4 59.5 45.9 51.8 75.7 74.6 75.1 65.6

New Plural 94.8 93.2 94.0 67.3 72.5 69.8 56.3 48.6 52.2 75.0 78.1 76.3 66.6
N. Plural + order 95.0 95.0 95.0 67.9 72.7 70.1 52.5 55.3 53.9 76.3 79.2 77.6 67.0

CZC - - - 84.5 60.7 70.6 49.0 63.7 55.4 81.2 73.3 75.9 67.7
ZC - - - 83.8 67.0 74.4 52.1 68.0 59.0 80.4 76.5 78.0 70.6

Table 4.3: Results on the test set with singular speakers

Mention Bcube Ceafe Blanc Avg
Method P R F1 P R F1 P R F1 P R F1 F1

Singular + none 94.3 86.8 90.4 74.4 65.5 69.6 54.6 52.5 53.5 76.4 71.3 73.1 65.2
Singular + least 95.5 90.4 92.9 72.8 62.2 67.1 59.4 47.5 52.9 77.2 73.2 74.8 64.3
Singular + most 95.7 90.6 93.1 73.7 65.2 69.1 60.1 46.0 52.2 79.3 75.4 77.0 65.6
Base + plural 95.1 88.4 91.7 72.8 64.6 68.5 57.4 45.7 50.9 77.0 74.0 75.3 63.8

Table 4.4: Results on the test set with plural speakers
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Mention Bcube Ceafe Blanc Avg
Method P R F1 P R F1 P R F1 P R F1 F1

Base + plural 95.1 88.4 91.7 72.8 64.6 68.5 57.4 45.7 50.9 77.0 74.0 75.3 63.8
Plural + many 96.1 93.1 94.6 66.4 70.3 68.3 50.1 51.4 50.8 72.8 74.9 73.8 65.2
Many + order 96.3 89.0 92.5 74.0 64.9 69.1 56.4 47.4 51.5 77.6 74.1 75.6 65.2

New Plural 95.1 95.1 95.1 66.7 72.6 69.5 52.8 53.7 53.3 74.9 78.3 76.3 66.3
N. Plural + order 96.1 91.3 93.7 69.1 72.7 70.8 56.8 48.1 52.2 77.0 78.5 77.7 67.4

Table 4.5: Results on the test set with plural speakers

Mention Bcube Ceafe Blanc Avg
Method P R F1 P R F1 P R F1 P R F1 F1

Singular + none 94.3 86.8 90.4 74.4 65.5 69.6 54.6 52.5 53.5 76.4 71.3 73.1 65.2
Singular + least 95.5 90.4 92.9 72.8 62.2 67.1 59.4 47.5 52.9 77.2 73.2 74.8 64.3
Singular + most 95.7 90.6 93.1 73.7 65.2 69.1 60.1 46.0 52.2 79.3 75.4 77.0 65.6
Base + plural 95.1 88.4 91.7 72.8 64.6 68.5 57.4 45.7 50.9 77.0 74.0 75.3 63.8
Plural + many 96.1 93.1 94.6 66.4 70.3 68.3 50.1 51.4 50.8 72.8 74.9 73.8 65.2
Many + order 96.3 89.0 92.5 74.0 64.9 69.1 56.4 47.4 51.5 77.6 74.1 75.6 65.2

New Plural 95.1 95.1 95.1 66.7 72.6 69.5 52.8 53.7 53.3 74.9 78.3 76.3 66.3
N. Plural + order 96.1 91.3 93.7 69.1 72.7 70.8 56.8 48.1 52.2 77.0 78.5 77.7 67.4

CZC - - - 84.5 60.7 70.6 49.0 63.7 55.4 81.2 73.3 75.9 67.7
ZC - - - 83.8 67.0 74.4 52.1 68.0 59.0 80.4 76.5 78.0 70.6

Table 4.6: Results on the test set with plural speakers

Mention Bcube Ceafe Blanc Avg
Method P R F1 P R F1 P R F1 P R F1 F1
Singular 95.1 95.1 95.1 66.7 72.6 69.5 52.8 53.7 53.3 74.9 78.3 76.3 66.6
Average 94.8 93.2 94.0 67.3 72.5 69.8 56.3 48.6 52.2 75.0 78.1 76.3 65.9
Plural 95.8 91.9 93.8 66.4 73.3 69.6 55.2 47.9 51.3 74.7 77.9 76.0 66.3

Table 4.7: Results on the test set for New Plural with different speakers feature.

Mention Bcube Ceafe Blanc Avg
Method P R F1 P R F1 P R F1 P R F1 F1
Singular 95.0 95.0 95.0 67.9 72.7 70.1 52.5 55.3 53.9 76.3 79.2 77.6 67.0
Average 95.1 93.0 94.1 66.5 71.8 69.1 50.6 52.1 51.4 74.8 77.6 76.0 65.7
Plural 96.1 91.3 93.7 69.1 72.7 70.8 56.8 48.1 52.2 77.0 78.5 77.7 67.4

Table 4.8: Results on the test set for New Plural + order with different speakers feature.
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of a set of speakers can help determine the coreference of mentions. Given the superior

performance of using plural speakers, the rest of the section analyzes the results for

plural speakers. Tables 4.7 and 4.8 show the differences in performance as a results of

using the proposed approaches for the speakers features. Overall, averaging the speakers’

representations does not yield very promising results. This is most likely a consequence

of the much larger vector space the model needs to consider, since now there are over 300

randomly initialized speaker vectors, whereas before it was only the binary same speaker

vector. A future improvement would be to use less speaker vectors (maybe only for the top

50 speakers) and actually train their representations.

Looking at the models that predict singular clusters, it is not surprising that ignoring

plural clusters would result in a bad performance, since many labels are not used during

the training, resulting in less opportunities for the model to learn. Using the most popular

entity yields better results and it makes sense intuitively, since the most popular entity has

the most mentions, and therefore getting its mentions in the wrong cluster carries a larger

penalty. It is noticeable how this model outperforms every other approach introduced in

this paper except for NewPlural and NewPlural + order, reminding of the complexity

and difficulty of predicting plural antecedents and dealing with prediction noise during the

construction of the clusters.

The first plural coreference resolution approach, Base+ plural, successfully predicts
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clusters with plural mentions, but the predictions still have errors which accumulate and

hurt the performance. After addressing the issue of only predicting at most one singular

antecedent per span, Plural+many actually performs worse, given that its side-effect was

to augment the previous issue of error accumulation. This is finally fixed in Many+ order,

whose performance starts to get closer to Singular +most.

NewPlural introduces a new labeling for plural and singular antecedents and it

outperforms all previous approaches. Once the accumulation error is mitigated inNewPlural+

order, the results outperform every previous approach and match evenly with CZC (lower

Ceafe but higher Blanc score). ZC still outperforms this approach but given the fact that the

end-to-end model does not use gold mentions on the test set, its very close Blanc score is

significant. NewPlural + order achieves the best mention detection, with an F1 score of

95.1.
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Figures 4.1 and 4.2 show the clusters each of the mentions were assigned to. Each color

corresponds to a cluster, and therefore all mentions labeled with the same color refer to the

same entity. However, the clusters have not yet been matched with their respective entities,

which would happen during the entity linking task. The location of the mentions in the

figures are the representations of the mentions in the two-dimensional space, after applying

dimension reduction in order to visualize it. The improved approach New Plural has a

more spread out mention representation, which makes it more meaningful when it comes to

predicting the antecedents. Additionally, by comparing both the predicted clusters with the

gold clusters, it is noticeable how the model struggles by splitting two clusters, when they

should be merged into one cluster. For example, in 4.3(b) we have the orange cluster around

x = 6 but the model splits them into two clusters (orange and cyan) in 4.3(a). Another key

observation revealed by the gold clusters is that the clusters cannot be explained solely by

the mention embeddings, which suggests that coreference resolution is a very hard task

that requires a complex model capable of successfully processing syntactical structures,

sequential references and metadata such as speaker information.
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Figure 4.1: Mention representation for Base + Plural. The axes represent the mentions’
embeddings after applying dimension reduction. All mentions sharing the same color were
classified in the same cluster.

(a) Predicted clusters

(b) Gold clusters
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Figure 4.2: Mention representation for New Plural. The axes represent the mentions’
embeddings after applying dimension reduction. All mentions sharing the same color were
classified in the same cluster.

(a) Predicted clusters

(b) Gold clusters
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Chapter 5

Conclusion

This paper introduces the end-to-end neural plural coreference resolution model and

evaluates its performance on the Friends corpus. We first introduce a clear pattern

of procedures to adapt coreference resolution models designed for CoNLL’12 to work

successfully on the Friends corpus and, more generally, on other corpora with plural

speakers and singletons. Then we test different approaches to modify a traditional singular

coreference resolution model, such as the end-to-end system by Lee et al. [8], to work

for plural coreference resolution and we gradually improve the performance. We explore

different labeling techniques and their respective loss functions as well as a variety of

clustering algorithms. To the best of our knowledge, we are the first to develop an end-to-end

plural coreference resolution model. Our results do not outperform the plural coreference

model presented by Zhou and Choi [11]. However, our model did not use any gold mentions

at prediction time and the results for our top-performing model NewPlural + order are

still within a reasonable margin, especially for the metric Blanc.
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