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Abstract

Understanding and Incentivizing Behavior in Emerging Decentralized Ecosystems
By Shuaicheng Ma

This dissertation explores the application of blockchain technology and the incentiviza-
tion of behavior in emerging decentralized ecosystems. We investigate its application
in the healthcare sector, with a particular focus on genomic data sharing. We also
examine its potential in deterring illicit activities such as cryptocurrency fraud and
explore its role in confidential tracking within decentralized delivery systems.

We propose efficient strategies for data storage and retrieval in blockchain systems,
specifically targeting cross-site genomic data sharing. Our blockchain-based log system
provides a lightweight and widely compatible module for existing blockchain platforms.
By ensuring accountability in cross-site genomic data sharing, we demonstrate the
feasibility of blockchain technology in incentivizing responsible behavior and enhancing
collaboration across different healthcare entities.

In addressing the issue of illicit activities in the blockchain ecosystem, we design
a virtual taint system that marks cryptocurrency transactions as ”tainted” if they
are known to be involved in crime, fraud, or other illicit activities. This system
serves to disincentivize such activities, revitalizing integrity within the cryptocurrency
ecosystem.

Furthermore, we present a blockchain-based system for the confidential tracking of
routes in decentralized delivery systems. By leveraging the transparency of blockchain
while preserving business confidentiality, this system reveals necessary information
only when fraud occurs, thereby incentivizing honest behavior and enhancing trust
within the network.

Our research contributes significantly to both the understanding and incentivization
of behavior in emerging decentralized ecosystems, particularly within the context
of blockchain technology. The findings pave the way for secure and efficient data
management solutions across various sectors and contribute to the creation of a safer
and more secure digital environment.
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Chapter 1

Introduction

The principle of decentralization has been a cornerstone in the field of computer science

since the birth of the Internet in the 1960s [10]. This paradigm is manifest in the

evolution of a multitude of systems, including the Domain Name System (DNS) [56],

Email [79], Tor [34], and most recently, blockchain technology [60]. The ongoing

pursuit among computer scientists is to engineer decentralized systems that not only

demonstrate resilience against single-point failures, but also maintain high performance

and engender trust.

In 2008, an innovation occurred in the field of decentralization with the emergence

of the first blockchain system, Bitcoin, by an individual or group using the pseudonym

Satoshi Nakamoto [60]. This system, use incentive and cryptographic data structure

to ensure the trust of the system is not only accessible to everyone and resilient to

centralization, but also trustworthy in a potentially malicious environment. The princi-

ples upon which Bitcoin is founded - decentralization, transparency, and immutability

- have subsequently become the bedrock for all other blockchain systems [84, 20, 86].

The dissertation explores the multifaceted applications and challenges of blockchain

technology, focusing on its potential for secure and efficient healthcare data storage,

mechanisms to deter malicious behavior within the blockchain ecosystem, and the im-
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plementation of cryptographic schemes to balance transparency with privacy, thereby

contributing to the advancement of decentralized systems that foster trust and re-

silience.

1.1 Understanding Blockchain as Database for Health-

care Data

Bitcoin, the inaugural application of blockchain technology, epitomizes the core func-

tionality of this technology. It operates as a public, immutable database, specifically

engineered to function in an environment where participants may not necessarily trust

each other, or may even harbor malicious intent. Bitcoin’s primary purpose is to se-

curely record critical financial transactions, demonstrating the potential of blockchain

technology in ensuring data integrity and security in a trustless environment.

Data replication is an essential characteristic of blockchain systems, ensuring their

resilience in potentially malicious environments. However, this replication process can

significantly inflate storage costs, posing a challenge for the efficient use of blockchain

technology. This is particularly pertinent in the context of healthcare data storage,

where the volume of data can be substantial, and the need for secure and efficient

data management is critical.

In this dissertation, we focus on the application of blockchain technology for

healthcare data storage. We propose efficient data storage and retrieval strategies that

are tailored to the unique characteristics of blockchain systems [47]. We also provide a

comprehensive benchmarking [45] of existing solutions for storing healthcare data on

blockchain. Through our research, we strive to enhance the practicality and feasibility

of using blockchain technology for medical data storage, thereby contributing to the

advancement of secure and efficient data management solutions in the healthcare

sector.
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1.2 Incentivizing Away from Malicious Behavior

in Blockchain Ecosystem

Technological advancements, while delivering numerous benefits, often inadvertently

create avenues for potential misuse. For instance, Distributed Denial of Service

(DDoS) attacks can inundate websites or networks with excessive traffic, leading to

service disruptions or even extortion attempts. Similarly, AI Deepfake technology [75]

can generate highly realistic fake videos or images, which are frequently exploited

for malicious purposes such as spreading disinformation, defaming individuals, or

manipulating public opinion.

This pattern of misuse is also evident in the realm of blockchain advancements.

The technology has been exploited in illicit use cases, such as cryptocurrency money

laundering services [13, 12], Darknet marketplaces [57, 27], and facilitating ransomware

payments [37, 76]. The inherently decentralized nature of blockchain not only facilitates

the deployment of these illicit activities but also makes them difficult to trace and

dismantle.

Recognizing the potential of blockchain technology and its significance for the

future, we specifically address the issue of cryptocurrency money laundering in this

dissertation. We propose and implement mechanisms that monitor transaction traffic,

with the aim of steering users away from illicit activities. Our work contributes to

creating a safer and more secure digital environment. In this environment, the benefits

of technological advancements can be fully realized without being overshadowed by

their potential for misuse.
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1.3 Implementing Cryptographic Schemes for En-

hanced Blockchain Privacy

The inherent immutability of blockchain technology renders it highly effective for

storing tamper-evident data. This characteristic has been leveraged in various domains,

such as the secure storage of confidential business information [49], health records [45],

and database access logs [47]. The ability to maintain an unalterable record of data

ensures the integrity and authenticity of the information stored, thereby enhancing

trust among the users of the system.

However, a fundamental characteristic of blockchain is its transparency, which

means that, by default, all data on the blockchain are visible to all participants. This

transparency, while beneficial for ensuring accountability and traceability, also means

that a user could potentially access data that do not belong to them. This could pose

a significant concern, particularly in scenarios where the data stored on the blockchain

is sensitive or confidential.

To mitigate this issue, we propose multiple cryptographic schemes proposed [49, 48]

to confidentially tracking routes in a decentralized international phone call delivery

system. These schemes aim to strike a balance between the transparency that is

inherent to blockchain and the need for privacy and confidentiality. They employ

various cryptographic techniques to ensure that while data is stored on the blockchain

in a transparent manner, access to the specifics of the data is controlled and limited

to authorized individuals. This way, the integrity and traceability of the data are

maintained, while also ensuring the privacy and confidentiality of the data.

1.4 Contributions

In summary, the contributions of this dissertation are listed as follows:
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• We propose several efficient data storage and retrieval strategies tailored for

blockchain systems, with a specific focus on medical data storage. These

strategies strike a balance between data replication and the performance of

data retrieval. Our work significantly enhances the practicality and feasibility

of employing blockchain technology for medical data storage. Consequently,

it contributes to the advancement of secure and efficient data management

solutions in the healthcare sector, paving the way for more robust and reliable

medical data systems.

• We address the issue of cryptocurrency money laundering. We design and

implement mechanisms that monitor transaction traffic, aiming to deter users

from engaging in illicit activities. Our work plays a crucial role in creating a

safer and more secure digital environment, where the advantages of technological

advancements can be fully leveraged without the risk of misuse.

• We propose multiple cryptographic schemes that balance the need for trans-

parency with privacy and confidentiality. These schemes employ various crypto-

graphic techniques to control and limit access to data specifics to authorized

individuals, while maintaining the integrity and traceability of the data. Our con-

tributions in this area enhance the security and privacy of blockchain technology,

making it more suitable for a wider range of applications.

1.5 Dissertation Organization

Chapter 2 offers an in-depth overview of the blockchain architecture and its surrounding

ecosystem. Chapter 3 presents efficient strategies for the storage and retrieval of

medical data on blockchain, and offers a comprehensive benchmarking of existing

solutions in this domain. Chapter 4 delves into the problem of cryptocurrency money

laundering, proposing a robust system to monitor and deter such illicit activities within
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the blockchain. Chapter 5 details the construction of a system, Fraud Buster, which

confidentially traces fraudulent call drops within an international telecommunication

carrier network. This system leverages several cryptographic schemes, striking a

balance between transparency and privacy within the blockchain environment. Finally,

Chapter 6 concludes the thesis, summarizing the key contributions and outlining

potential future directions in this rapidly evolving field.



Chapter 2

Background

2.1 Blockchain Architecture

Blockchain technology, a decentralized, public, and tamper-evident database, is illus-

trated in Figure 2.1. This figure delineates the operational cycle of a blockchain, where

each participant in the network maintains an identical local copy of the database.

2.1.1 Operational Cycle

In its rudimentary implementation, the operational cycle of a blockchain consists of

the following steps:

1. A leader is chosen through a selection algorithm to propose a new block of

transactions.

2. Other participants verify the transactions.

3. If the transactions are deemed valid, all participants update their local databases

accordingly.

7
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Figure 2.1: Blockchain Architecture

2.1.2 Transaction Process

A transaction in a decentralized blockchain network is initiated by a node through

the application of a digital signature, facilitated by private key cryptography. These

transactions are initially stored in an unconfirmed transaction pool before being

disseminated across the network via a flooding protocol, known as the Gossip protocol.

Bitcoin Transaction

The primary purpose of Bitcoin, a digital cryptocurrency, is to allow a decentralized

electronic cash payment system between different parties by eliminating central

intermediaries. The main element of a bitcoin structure is unspent transaction output

(UTXO), which refers to the unused output amount of a transaction.

Ethereum Transaction

Ethereum transactions enable the creation and execution of smart contracts, which are

self-executing agreements coded directly onto the blockchain. Written in Solidity [8]

and running on the Ethereum Virtual Machine (EVM), smart contracts automate

various decentralized applications (DApps), such as decentralized finance (DeFi)

and asset tokenization. They are deterministic and require ”gas” paid in Ether for

execution. While offering powerful interoperability and trustless automation, smart

contracts also present challenges in security, scalability, and complexity.
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Property Public Consortium Private
Consensus

determination
All miners

Selected set of
nodes

One organization

Read permission Public
Public or
restricted

Public or
restricted

Immutability
Nearly impossible

to temper
Could be
tampered

Could be
tampered

Efficiency Low High High
Centralized No Partial Yes

Consensus process Permissionless Permissioned Permissioned

Table 2.1: Comparisons between public blockchain, consortium blockchain, and private
blockchain

2.1.3 Characteristics of Blockchain

Blockchain technology is characterized by the following key features:

• Decentralization: Transactions can be conducted between any two peers (P2P)

without authentication by a central agency.

• Persistency: It is nearly impossible to tamper with transactions as they are

confirmed and recorded in blocks distributed throughout the network.

• Anonymity: Users interact with the blockchain network with a generated

address, preserving a certain amount of privacy.

• Auditability: All transactions are recorded by a digital distributed ledger,

making it possible to audit and trace previous records.

2.1.4 Taxonomy of Blockchain Systems

Blockchain systems can be categorized into public, private, and consortium types.

Table 2.1 compares these systems from different perspectives, including consensus

determination, read permission, immutability, efficiency, centralization, and consensus

process.
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2.2 Blockchain Applications

Blockchain technology has diverse applications, including finance, public and social

services, and reputation systems.

2.2.1 Finance

• Financial Services. The advent of blockchain systems like Bitcoin and Hyper-

ledger has revolutionized traditional financial and business services. Peters et al.

[65] emphasized that blockchain has the potential to disrupt the banking sector,

with applications spanning across areas such as the clearing and settlement of

financial assets. Morini [58] further illustrated how real business cases, such as

collateralizing financial derivatives, could leverage blockchain to minimize costs

and risks. This transformative technology has not only caught the attention of

large software companies like Microsoft Azure and IBM, who are now offering

Blockchain-as-a-Service, but also paved the way for innovative financial solutions.

• P2P Financial Market. Blockchain’s secure and reliable nature can facilitate

the creation of a Peer-to-Peer (P2P) financial market. Noyes [63] investigated

the integration of peer-to-peer mechanisms with multiparty computation pro-

tocols to develop a P2P financial MPC (Multiparty Computation) market.

This blockchain-based MPC market enables the distribution of computational

tasks across a network of anonymous peer-processors, fostering a new era of

decentralized financial interactions.

2.2.2 Public and Social Services

Blockchain technology extends beyond financial applications and has found significant

use in public and social services, enhancing efficiency, security, and transparency.
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• Land Registration. A prominent application of blockchain in public services is

land registration. By recording land information, including physical status and

associated rights, on a blockchain, transparency and accessibility are greatly

improved. Any modifications to the land, such as transfers or mortgage estab-

lishments, can be securely recorded and managed on the blockchain. This not

only streamlines administrative processes but also enhances the integrity and

reliability of land records.

• Free-Speech Rights. Blockchain’s decentralized nature can be leveraged to secure

internet infrastructures like DNS and online identities. Namecoin, an experimen-

tal open-source technology, exemplifies this by enhancing the decentralization,

security, censorship resistance, privacy, and speed of DNS and identities. By

making the web more resistant to censorship, it plays a vital role in protecting

free-speech rights online, fostering a more open and resilient internet landscape.

2.2.3 Reputation System

Reputation systems play a crucial role in various online platforms, serving as a measure

of trust and credibility for users. The reputation score, often derived from previous

transactions and interactions, reflects how trustworthy a user is perceived by the

community. However, this system is not without flaws, and there have been increasing

instances of reputation manipulation and falsification. For example, in the e-commerce

sector, some service providers have been known to enlist fake customers to artificially

inflate their reputation scores. Blockchain technology offers a promising solution to

this challenge.

• Immutable Records. By utilizing blockchain’s immutable ledger, reputation

scores and associated transactions can be recorded securely. This ensures that

once a reputation-related transaction is recorded, it cannot be altered or deleted,
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thereby preventing fraudulent manipulations.

• Transparency and Accountability. Blockchain’s transparent nature allows all

participants to view and verify the history of transactions. This fosters a more

honest and accountable reputation system, where users can trust the authenticity

of the recorded reputation scores.

• Decentralized Control. Unlike centralized reputation systems, where a single

entity has control, blockchain’s decentralized structure distributes control across

the network. This reduces the risk of biased or unfair manipulation, promoting

a more equitable and robust reputation system.

By integrating these features, blockchain can revolutionize reputation systems, en-

hancing their integrity, reliability, and fairness, and providing a more secure and

trustworthy environment for users across various platforms.

2.3 Tradeoffs and Challenges in Blockchain Tech-

nology

Blockchain technology, while revolutionary, faces several challenges and tradeoffs that

must be addressed to realize its full potential. These include scalability, privacy

leakage, interoperability, and regulatory issues.

2.3.1 Scalability

Scalability remains a significant challenge for blockchain technology. As the number of

transactions increases, the blockchain’s size grows, leading to storage and processing

limitations. For example, the Bitcoin blockchain has exceeded 300 GB, and its

processing capacity is limited to nearly seven transactions per second. This limitation
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hampers the ability to process millions of transactions in real-time. Efforts to address

scalability include:

• Storage Optimization. Techniques such as removing old transaction records

and using an account tree to hold balances can reduce storage requirements.

Lightweight clients and schemes like VerSum [81] also contribute to solving this

problem.

• Redesigning Blockchain. Proposals like Bitcoin-NG [36] decouple blocks into key

blocks and microblocks, addressing the tradeoff between block size and network

security.

2.3.2 Privacy Leakage

While blockchain is often considered secure due to the use of generated addresses

instead of real identities, research has shown that this does not guarantee complete

privacy. Studies by Meiklejohn et al. [54] and Kosba et al. [42] have revealed that

the values of all transactions and balances for each public key are publicly visible,

undermining anonymity. Furthermore, methods have been developed to link user

pseudonyms to IP addresses, even behind network address translation (NAT) or

firewalls [25]. This can lead to the identification of the origin of a transaction. Efforts

to improve blockchain anonymity include:

• Mixing Services [59]. These services enhance privacy by transferring funds

between multiple input and output addresses. For example, Alice can send funds

to Bob through an intermediary, Carol, who mixes the transaction with others,

making it harder to trace. Mixcoin [26] provides a method to prevent dishonest

intermediaries by encrypting users’ requirements with a private key, allowing

verification if the intermediary cheats.
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• Anonymous Protocols. Solutions like Zerocoin [55] use zero-knowledge proofs

to unlink payment origins from transactions, although they may still reveal

destinations and amounts. Zerocash further addresses this by leveraging zero-

knowledge Succinct Non-interactive Arguments of Knowledge (zk-SNARKs),

hiding transaction details.

This subsection highlights the complexity of ensuring privacy in blockchain transactions

and the ongoing efforts to enhance anonymity. It underscores the need for robust

solutions to protect user information and maintain the integrity of the decentralized

system.

2.3.3 Interoperability

Interoperability, or the ability of different blockchain systems to work together, is a

significant challenge in the blockchain industry. Despite widespread interest across

various industries in adopting blockchain technology [2], the absence of a standard

protocol hinders collaboration and integration. This lack of interoperability not

only stifles the growth of the blockchain industry but also restricts its application

beyond cryptocurrencies. While the current landscape allows blockchain developers

the freedom to code using various platforms, languages, consensus mechanisms, and

protocols, it results in isolated networks that cannot interact with one another.

For instance, GitHub hosts over 6500 active blockchain projects, each with unique

characteristics, reflecting the fragmentation in the field. To unlock the full potential

of blockchain across diverse business models, standardization is imperative. It would

enable collaboration, facilitate the sharing of blockchain-based solutions, and allow

seamless integration with existing systems, thereby fostering innovation and expanding

the reach of blockchain technology.
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Figure 2.2: Bitcoin Legality Around the World

2.3.4 Current Regulation Problems

Regulatory challenges stem from the decentralized nature of blockchain, which can

undermine central banks’ control over economic policy. This has led to varying legal

stances on cryptocurrencies, with some countries banning them outright. Fig. 2.2

illustrates the global legality of Bitcoin, and studies like [87] highlight the regulatory

challenges that impact distributed technologies, particularly in the EU and the USA.



Chapter 3

Exploring Blockchain’s Behavior in

Healthcare Data

3.1 Benchmarking blockchain-based gene-drug in-

teraction data sharing methods

Blockchain distributed ledger technology is just starting to be adopted in genomics

and healthcare applications. Despite its increased prevalence in biomedical research

applications, skepticism regarding the practicality of blockchain technology for real-

world problems is still strong and there are few implementations beyond proof-of-

concept. We focus on benchmarking blockchain strategies applied to distributed

methods for sharing records of gene-drug interactions. We expect this type of sharing

will expedite personalized medicine.

3.1.1 Gene-drug interaction data

Genetic variation is known to affect drug response. Presence of specific genetic variants

can result in variability of drug efficacy and adverse drug reactions (ADR) through

alternate pharmacokinetic (PK) and pharmacodynamic (PD) pathways. One such

16
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example is warfarin, an anticoagulant commonly used to prevent or treat blood clots.

It is notoriously challenging to correctly adjust warfarin doses due to interpatient

variability resulting from both clinical data (e.g., age, sex, race, body mass index,

conditions, and other medications) and genetics (e.g., variants in VKORC1, CYP2C9,

and CYP4F2 genes) [33]. While patients with AA genotype in SNP rs9923231 of

the VKORC1 gene are sensitive to warfarin and require lower doses, those with AG

or GG genotypes are less sensitive. Complications arising from inadequate warfarin

dosing constitute some of the most common ADRs reported to the Food and Drug

Administration (FDA) [14]. For this reason, warfarin has been added to the FDA list

of drugs with pharmacogenomics labeling; the recent list has 304 unique drugs [9].

Gene-drug relationship data are very important for clinicians and researchers.

There are several publicly available gene-drug interaction datasets, such as the one

produced by the Clinical Pharmacogenetics Implementation Consortium (CPIC) [5].

Based on these datasets, researchers may evaluate and investigate interactions for their

associations with specific patient outcomes (e.g., improved, unchanged, or deteriorated),

suspected gene-outcome-relations (e.g., yes, or no), and serious side-effects (e.g., yes,

or no). However, these evaluation results may be siloed within an institution. A

mechanism for institutions to share the evaluation results of the gene-drug interactions

they obtained locally could help speed up research.

With the advance of sequencing technology, genetic testing is becoming more

available, making pharmacogenetic-based drug dosing more viable in clinical prac-

tice. CPIC is one such effort to provide peerreviewed, updated, and evidence-based

guidelines for gene-drug pairs. However, a level 1 quality guideline in CPIC requires

consistent evidence, with large sample sizes in well-designed and well-conducted stud-

ies. Gathering sufficient and high-quality evidence of gene-drug outcomes is still a

daunting task due to technical, economic, administrative, and ethical reasons.
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3.1.2 Traditional methods and threat models

Intuitively, we can adopt a centralized method that uses a central server and collects

the evaluation results (Fig. 3.1) via a traditional local software program performing

logging/querying operations (Fig. 3.3). However, this setting could introduce multiple

threats. As shown in previous studies [50, 43, 88], a central server and traditional

program can present the barriers/challenges listed below:

1. Single-point-of-failure (e.g., the whole system stops working when the server

stops due to a routine maintenance or a malicious attack).

2. Mutable data (e.g., the information on the server may be altered by the “root”

user).

3. Unverifiable data source (e.g., the sources of the evaluation results may also be

changed on the central server).

4. Non-transparent software (e.g., unspecified changes and thus inconsistent code).

5. Alterable programs (e.g., the deployed program can still be altered locally).

To overcome these issues, we consider a decentralized architecture to solve the above

mentioned risks brought by a central server and traditional program. This architecture

enables consistent and large-scale evidence gathering from multiple participating

hospitals and individuals. Among the decentralized data storage methods, blockchain

[8–11] is one of the more promising candidates (Fig. 3.2). The latest blockchain

platforms, such as Ethereum [84], Hyperledger Fabric [20], support smart contracts,

(Fig. 3.4) which are computer programs running on blockchain. The desired technical

properties of blockchain with smart contracts include:

1. No single-point-of-failure (i.e., it is peer-to-peer).

2. Immutable data (i.e., it is very difficult to change the data on the chain).
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Figure 3.1: Centralized architecture (central server) where the centralized gene-drug
outcome server can lead to a single-point-of-failure. The central server can change the
records from other sites and can even modify the source of evaluation results.

3. Data provenance (i.e., the source of data is confirmed and therefore cannot be

falsified).

4. Transparent software (e.g., each software change can be verified and confirmed).

5. Unchangeable program code (e.g., the deployed program is not alterable, and

new versions of the program are recorded and visible to all nodes).

Therefore, using smart contracts on blockchain to store and query patient out-

comes related to gene-drug data pairs could further improve the transparency and

immutability of the software among the participating institutions. Blockchain has

been proposed in various healthcare, genomic and biomedical applications [50, 43, 88],

such as medical record management [21, 68, 82], dynamic consent in biobanking [52],

genomic data access logging [44], pharmaceutical supply chain [77]. Meanwhile, ap-

plications in pharmacogenetics are still limited [68]. While blockchain has been the

underlying infrastructure for cryptocurrencies such as Bitcoin [60] for more than a

decade, the design and usability of blockchain have yet to be well understood in
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Figure 3.2: Decentralized architecture (blockchain) without a central server that can
eliminate the possibility of a single point-of-failure. By adopting blockchain technology,
the data are immutable and source-verifiable.

health sciences as they currently are in the world of finance. Although the idea of

adopting blockchain and smart contracts for sharing gene-drug evaluation results

may conceptually be feasible, practical issues in implementing such a system have

yet to be investigated. Many blockchain-based solutions are still in early stages and

the resources to support blockchain and smart contract developers are also scarce.

Therefore, we aim at benchmarking the potential of a decentralized gene-drug system

on blockchain, with smart contracts.

3.1.3 Methods

Data

The dataset for benchmarking was generated using the gene-drug relationship data

from CPIC [5]. Each record contained the following six fields (Table 3.1): gene name,

variant number, drug name, outcome, suspected gene outcome relation, and serious

side effect. First, we obtained 127 unique gene names and 226 unique drug names from

CPIC and randomly chose one gene name and one drug name as a pair to generate
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Figure 3.3: Traditional off-chain program that is non-transparent and mutable.

Table 3.1: Description of a record in our dataset.
Field Possible Values Example
Gene Name 127 unique gene names HLA-B
Variant Number 1–99 57
Drug Name 226 unique drug names abacavir

Outcome
Improved, Unchanged,
or Deteriorated

Improved

Suspected Gene Outcome Relation Yes or no Yes
Serious Side Effect Yes or no No

a record. Next, for each record, we selected a variant number [1–99], an outcome

status [Improved, Unchanged, Deteriorated], a suspected gene outcome relation [Yes,

No], and a serious side effect [Yes, No], all randomly. For the development process

the teams were provided with four patient outcomes of gene-drug pair files, each of

which with 10,000 records representing the observed patient outcome for a gene-drug

pair from four institutions. During the evaluation process we utilized 200 and 1,000

records from each of the four sites.
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Figure 3.4: On-chain smart contracts that are transparent and immutable among the
sites.

Query Index

The first method, Query Index, was a domain knowledge-based approach to implement

a storage and query efficient solution. The following two kinds of domain knowledge

in the gene-drug interaction data sharing were utilized in the design of an efficient

solution: (1) the query output is the accumulated statistics of the gene-drug interaction

data, and (2) the amount of unique gene-drug relations (i.e., approximately 106 in

CPIC specification) is much smaller than the amount of raw gene-drug interaction

records. This implementation utilized the above two facts, stored the statistical

information of all unique genedrug relations (i.e., gene-variant-drug triples) in an

upper-bounded size array and cached all indices in a hash table for fast insertion and

query. Fig. 3.5 illustrates an example of the array and hash table data structure of

Query Index. Every gene-variant-drug triple could be invoked in 8 different types

of queries (i.e., a query specifying gene name, drug name, and variant number and

7 queries with wildcard characters in different fields). For example, the result of
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GBA-nicotine74 will be returned in query (GBA, nicotine, 74), query (GBA, *, *),

query (*, *, *), and so on. Based on this small number of query fields, a key-value

hash table was built to support all possible queries. In the hash table, the keys were

gene-variant-drug tuples and their wildcard alternatives, and the values were the

indices of the actual information in the array. Upon receiving a query request, the

Query Index method first found the matching index list in the hash table if the record

existed, then traversed the indices to retrieve the actual information from the array.

For the insertion, with the help of the hash table, the method could locate the index

of the gene-variant-drug tuple in the array in O(1) time and update the counts. If the

record did not exist, the method would append the record at the end of the array and

insert corresponding entries in the hash table.

Index Everything

The second method, Index Everything, was a straightforward implementation approach.

Since there were only a few hundred distinct genes and drugs, a unique 8-bit unsigned

integer (uint8) value was assigned to each distinct gene (respectively, drug) value.

These values were assigned lazily, i.e., the next available ascending value was assigned

upon the first insert containing that gene or drug. As such, a unique 24-bit unsigned

integer (uint24) could be trivially derived for each genevariant-drug triple, specifically

by concatenating the corresponding three uint8s. Thus, for any observation, this

uint24 derived by concatenation was used as an index into various outcome counts

stored in the Solidity mapping structures. This indexing/storage scheme is illustrated

in Fig. 3.6. The two query modalities (entryExists and query) implementations were

similarly straightforward. Specifically, given the wildcard value (‘*’) in any position,

all possible values were searched for that position, expressed as a triple for which any

non-wildcard search value collapsed the specific dimension.
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Figure 3.5: Example of two records for the Query Index method.

Dual-Scenario Indexing

The third method, Dual-Scenario Indexing, adopted a special data structure to store

gene-drug relationship data. It was also assumed here that query operations (such

as query and entryExists) were more frequently invoked than insert operations, thus

the team focused on query performance optimizations. Two different data structures

were used to support the precise search with all three given inputs (gene name,

variant number and drug name) and the search with wildcard inputs under two

scenarios: complete (i.e., gene-variant-drug) and wildcard searches. For the complete

search scenario, a mapping structure named geneData mapping was used to store all

GeneDrugRelation items with a key that was the concatenation of gene name A, variant
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Figure 3.6: Visual depiction of the scheme of the Index Everything method (|| denotes
integer concatenation) on the left, and an example mapping data structure counting
side effects for each unique gene/variant/drug triple on the right. Structures like the
one on the right exist for all observation categories: improved, unchanged, deteriorated,
suspected relation, and side effect.

number B and drug name E. Therefore, the geneData map could easily support all

queries with “ABE” inputs. For the wildcard search scenario, the team built a special

mapping structure GeneDrugRelationKeyMapping with keys of wildcard search strings

(e.g., “AB*”) and values of the complete search strings (e.g., “ABE”, the keys of the

geneData data structure). The algorithm then pre-generated all possible combinations

of geneData mapping keys for each wildcard input, and stored these combinations

into the GeneDrugRelationKeyMapping data structure . For querying, the algorithm

first searched GeneDrugRelationKeyMapping by “AB*” to get all geneData keys (e.g.,

“ABE” and others) that correspond to GeneDrugRelation items with A and B. Then, it

searched geneData mapping to get the detailed GeneDrugRelation items. An example

explaining how GeneDrugRelationKeyMapping supports wildcard query operations is

shown in Fig. 3.7
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Figure 3.7: Key data store structure of the Dual-Scenario Indexing method.

3.1.4 Results

Evaluation

To evaluate the solutions, we inserted the two datasets (i.e., 200 and 1,000) to the

blockchain either 1 or 200 records at a time to simulate different insertion speed

and generated 60 queries to compute the query time required by each solution. Our

evaluation criteria specified that: (a) a solution must complete the insertion of all

records, (b) a solution must provide 100% correct query results, and (c) the speed of

insertion and query is the most important feature, followed by storage and memory

cost, and then scalability. Therefore, after checking the completeness and correctness

of the solutions, we measured the insertion time, query time, disk storage, and memory

usage, and then normalized these measurements to raw scores from 0 to 100. The

raw scores were then weighted-summed to a subtotal score (insertion time = 35%,

query time = 35%, disk usage = 15%, and memory usage = 15%). Next, the subtotal
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Figure 3.8: Final scores for each solution. The results were weighted based on the
number of records in the test data (i.e., 200 records in red and 1,000 records in blue)
and were averaged from the results of inserting 1 or 200 records at a time. (For
interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

scores were weighted-summed to an overall score, with the weights corresponding to

the number of test records (i.e., 200 and 1,000) to account for scalability. Finally, the

overall scores for inserting 1 and 200 records at a time were averaged to generate the

final scores. We set up 24 Virtual Machines (VMs) to evaluate the solutions. Each VM

had 2 CPU cores, 8 GB of RAM and 100 GB of storage; Ubuntu was the operating

system.

Measurement results and final scores

Results and the scores are summarized in Table 3.1 and Fig. 3.8 respectively. As

shown in the tables, inserting 200 records at a time reduced insertion time per record

significantly. Also, while the insertion time increased linearly with the number of

records in the test data, query times were more consistent, which could reflect the

blockchain characteristic that writing is relatively slow (because it requires consensus

block creation), while reading is fast (only local blocks are searched). The required

disk space (<40 MB) and memory (<300 MB) were relatively small. In terms of
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Solution Query Index Index Everything
Dual-Scenario

Indexing
Number of Total Records per Site = 200, Number of Records per Insert = 1
Complete Yes Yes Yes
Correct Yes Yes Yes
Runtime of Insertion (s) 212.75 226.75 203.00
Runtime of Query (s) 23.00 28.00 30.00
Storage Usage (MB) 21.18 21.23 21.19
Memory Usage (MB) 56.54 56.44 106.11
Number of Total Records per Site = 200, Number of Records per Insert = 200
Complete Yes Yes Yes
Correct Yes Yes Yes
Runtime of Insertion (s) 13.25 4.75 11.25
Runtime of Query (s) 23.00 28.00 29.50
Storage Usage (MB) 19.49 19.46 19.50
Memory Usage (MB) 90.32 73.26 106.06
Number of Total Records per Site = 1000, Number of Records per Insert = 1
Complete Yes Yes Yes
Correct Yes Yes Yes
Runtime of Insertion (s) 1006.75 1157.25 1003.50
Runtime of Query (s) 24.00 29.00 53.00
Storage Usage (MB) 31.44 32.98 31.36
Memory Usage (MB) 59.41 58.87 226.14
Number of Total Records per Site = 1000, Number of Records per Insert = 200
Complete Yes Yes Yes
Correct Yes Yes Yes
Runtime of Insertion (s) 51.50 12.25 49.75
Runtime of Query (s) 24.00 29.00 53.00
Storage Usage (MB) 24.99 24.09 25.11
Memory Usage (MB) 110.10 103.72 225.73

Table 3.2: Results of each solution with different combination scenarios of records
in test data (i.e., 200 versus 1,000) and number of records inserted at a time (i.e., 1
versus 200).
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final scores, the Query Index method performed the best, followed by the Index

Everything method. The Dual-Scenario Indexing method used more memory, and its

insertion/query time and disk usage were comparable with those of other solutions.

Comparison of the three proposed methods

To further understand the differences between our three proposed methods, we analyzed

the results in Table 3.1 for each of our proposed methods as follows. The storage usage

for all solutions is similar (approximately 20–35 MB) and negligible when considering

modern storage devices (e.g., 100 GB in our experiments). Therefore, our analysis

focused on the other three measurements (i.e., runtime of insertion, runtime of query,

and memory usage).

• Query Index. This method constructed a hash table for the queries and

exhibited superior run time of query (23–24 s for 60 queries, or about 0.5 s per

query, the fastest in all different scenarios regardless of the number of records

per insertion). It also had relatively small memory usage (like the best solution,

Index Everything, in all scenarios). For the runtime of insertion, it performed

better when one record at a time was inserted, while it was comparatively slower

when multiple records were inserted at a time.

• Index Everything. This approach indexed all possible queries ahead in a

mapping table and performed extremely well when multiple records at a time

were inserted (only 24–42% of the time used by the other two methods). It

also used the least memory in all combination scenarios. However, this method

required more insertion time when one record at a time was inserted. Also, the

query time was slightly slower than that for the Query Index method.

• Dual-Scenario Indexing. This solution created two mapping structures to

store the complete and wildcard queries and provided the shortest insertion time
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when one record at a time was inserted. The runtimes of insertion for multiple

records at a time were comparable to those for the Query Index method. It

required more time to query and more memory usage when compared to the

other two methods.

To summarize, different methods can be more suitable for different applications

and scenarios. To achieve a fast insertion time, Index Everything (inserting multiple

records at a time) and the Dual-Scenario Indexing (inserting one record at a time)

would be more appropriate. To optimize query time, Query Index would be the

best method. To preserve memory usage, both Index Everything and Query Index

approaches could be considered.

3.2 Optimizing Logging and Querying for Blockchain-

based Cross-site Genomic Dataset Access Au-

dit

Genomic data have been collected by different institutions and companies and need

to be shared for broader use. In a cross-site genomic data sharing system, a secure

and transparent access control audit module plays an essential role in ensuring the

accountability. A centralized access log audit system is vulnerable to the single point

of attack and also lack transparency since the log could be tampered by a malicious

system administrator or internal adversaries. Several studies have proposed blockchain-

based access audit to solve this problem but without considering the efficiency of the

audit queries. In this section, we propose a blockchain-based log system which can

provide a light-weight and widely compatible module for existing blockchain platforms.
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3.2.1 Cross-site Genomic Data Sharing System

With the rapid development of biomedical and computational technologies, a large

amount of genomic data sets have been collected and analyzed in national and

international projects such as Human Genome Project [28] , the HapMap project [29]

and the Genotype-Tissue Expression (GTEx) project [46], which yielded invaluable

research data and extended the boundary of human knowledge. Thanks to the

advance of computer technology, the cost of genomic testing is dropping exponentially.

Nowadays, the testing price ranges from under $100 to more than $2,000, depending

on the nature and complexity of the test [83]. One can test her gene easily and

cheaply by using services from DNA-testing companies such as Ancestry and 23andMe.

Given the above, genomic data sets have been scattered around the world in different

institutions and companies. On the other hand, the potential business value of genomic

data and privacy concerns [51, 38, 62] hinder the sharing of cross-sites genomic data.

Notably, the General Data Protection Regulation (GDPR) restricts the exchange

of personal data. Under GDPR, such sensitive data only could be accessed after

obtaining the consent of data subjects (i.e., the one who owns the data) and providing

accountability audit. This requires that any cross-site genomic data sharing system

should be equipped with a secure and transparent access control module.

3.2.2 Methods

We design a blockchain-based log system that is time/space efficient to store and

retrieve genomic dataset access audit trail. Our method only leverages the Blockchain

mechanism and is not limited to any specific Blockchain implementation, such as

Bitcoin[60], Ethereum[84]. We introduce an on-chain indexing data structure which

can be easily adapted to any blockchains that use a key-value database as their local

storage. In our development, we use Multichain version 1.0.4 as an interface between

Bitcoin Blockchain and our insertion and query method. Multichain is a Bitcoin
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Figure 3.9: Overview of the logging system.
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Blockchain fork. It conveniently provides a feature, data stream, to allow us to use

Bitcoin Blockchain as an append-only key-value database.

System Overview

In Figure 3.9, we illustrate the overview of the logging system, which is built on

top of Multichain APIs. The core task is to design space and time efficient methods

for insertion and queries. There are three types of primitive queries: point query,

AND query, and range query. There are seven fields in the given genomic dataset:

Timestamp, Node, ID, Ref − ID, User, Activity, Resource as shown in Table 3.3.

Timestamp Node ID Ref-ID User Activity Resource
152202801 1 1 1 1 REQ RESOURCE MOD FlyBase
152208352 1 2 1 1 VIEW RESOURCE MOD FlyBase
152216966 1 3 3 6 FILE ACCESS GTEx
152237149 1 9 9 10 REQ RESOURCE MOD SGD

Table 3.3: The Sample Logs.

For point query, the user can query on any field. For AND query, the user can

query on any combination of fields. For range query, the user can query only on

timestamp field with a start and end timestamp. See Table 3.3 & 3.4 as a running

example.

Baseline method

We first describe a naive method as a baseline. The baseline method leverages only

three Multichain APIs as shown in Table 3.5.
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Insertion
Insert(“152202801 1 1 1 1 REQ RESOURCE MOD FlyBase”)
Queries
Point Query(Activity=”VIEW RESOURCE”)
AND Query(ID=”2”, Node=”1”)
Range Query(start=1522000000000, end=1522000100000)

Table 3.4: Insertion and Queries Examples.

Multichain APIs Description
create(stream name) create a streamin database
publish(stream name, key, value) Insert key-value pair to specific stream
liststreamkeyitems(stream name, key) Retrieve all items with the given key

Table 3.5: Multichain APIs Used in Our Methods.

Insertion: First, we create K streams1, where K is the number of fields. Mul-

tichain builds K tables in its back-end key-value database. Second, we build K

key-value pairs, where the key is the attribute data and the value is entire record line.

Finally, we convert those K pairs into one Blockchain transaction and publish it to

Blockchain. The following Figure 3.10 is an example conversion from a log record to

blockchain transaction. We will use this example log record in the remaining sections.

After the transaction is confirmed by Blockchain, Multichain decodes the transaction

and insert each key-value pairs to its corresponding table.

TimestampNode IDRef-ID User Activity Resource
111 1 3 3 6 FILE ACCESS GTEx

⇓
Transaction

Timestamp
Key Value
111 V

Node
Key Value
1 V

ID
Key Value
3 V

Ref-ID
Key Value
3 V

...
Resource
Key Value
GTEx V

V = ”111 1 3 3 6 FILE ACCESS GTEx”.

Figure 3.10: Log Record to Transaction Conversion.

Point Query: The implementation of a point query is straightforward which

1same as table in database terminology
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simply returns a list of records as shown in Algorithm 1. In this literature, we assume

the run time complexity of all Multichain API is O(1). The run time complexity of

Point Query is O(1).

Algorithm 1: Point Query

Input: A, K //attribute and key
Output: lr //a list of record

1 lr ← liststreamkeyitems(A,K)
2 return lr

AND Query: AND query, Algorithm 2, enables a user to query with multiple

keys. We convert AND query to multiple point queries and intersect the result of all

point queries. The run time complexity is O(K), where K = number of keys.

Algorithm 2: AND Query

Input: lAK // a list of attribute and key pairs
Output: lr //a list of record

1 lr ← point query(lAK [0]A, lAK [0]K)
2 foreach (A,K) ∈ lAK do
3 lr ← lr ∩ point query(A,K)
4 end
5 return lr

Timestamp Range Query: Given a start timestamp and an end timestamp,

Timestamp Range Query, Algorithm 3, returns records whose timestamp is in this

range. We convert Timestamp Range Query into R point queries, where R is the range

of timestamp. The run time complexity is O(R), where R = range of timestamp.

Algorithm 3: Timestamp Range Query

Input: ts, te // start timestamp and end timestamp
Output: lr //a list of record

1 lr ← {}
2 for t = ts to te do
3 lr ← lr ∪ point query(”Timestamp”,t)
4 end
5 return lr
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Enhanced method

After testing the baseline solution, which will be discussed in the result section, we

found that the retrieve speed heavily depends on the number of API calls. Therefore,

the fewer API calls we use, the faster retrieve speed we get. More specifically, we

found three non-optimal issues:

• The entire record is duplicated K times where K is the number of fields, which

is insufficient in terms of storage overheads.

• Since we need to query all results and intersect them in local memory, AND

query takes significant amount of memory when the number of AND operations

increases.

• If the length of a given range query is n (typically, n is ranging from 106 to 108),

the baseline method naively translate the range query into n point queries and

concatenate the results.

The blockchain-based auditing system is an append-only structure, so a data structure

that keeps the minimum amount of information while maintaining the efficiency is

essential. The percentage of read(query) operations in the real-world auditing system is

low [69], therefore we trade retrieval speed for storage cost. We redesign the key-value

pairs in the blockchain transaction, modified the query algorithm accordingly and

built a selectivity list based on data distribution. Most of all, we design a hierarchical

timestamp structure which significantly reduces the number of queries(APIs) needed

for the range query.

Insertion: To address these problems, we redesign the key-value pairs. The key

part remained the same (attribute data), but we removed the entire entry from the

value part. As a result, we removed all duplicated values in the baseline method as

shown in Figure 3.11.
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Transaction
Timestamp
Key Value
111 ∅

Node
Key Value
1 ∅

ID
Key Value
3 ∅

Ref-ID
Key Value
3 ∅

...
Resource
Key Value
GTEx ∅

All duplicated V s are removed.

Figure 3.11: Transaction with empty values.

Point Query: Since we now have an empty value in the key-value database, we

cannot use the key to get original record directly. We now take advantage of Blockchain

transaction ID which is included in the returning JSON file of liststreamkeyitems

API. First, we get a list of TXID (transaction ID) with the given key. Second, we

use another Multichain API, getrawtransaction, to get the matching transactions.

Finally, we rebuild the original record from the transaction where all attribute data

are included. It is worth mentioning that the point query now requires 1 + T times

API calls to retrieve the records where T is the size of the TXID list. If Multichain

nodes can perform the work from line 3 to line 6 in Algorithm 4, users can point query

with just one API call. The run time complexity of our point query is O(T ), where T

is the size of the TXIDs list.

Algorithm 4: Point Query with additional step

Input: A, K //attribute and key
Output: lr //a list of record

1 [TXIDs]← liststreamkeyitems(A,K)
2 lr ← []
3 foreach txid ∈ [TXIDs] do
4 T ← getrawtransaction (txid)
5 R← rebuild(T)
6 append(lr, R)

7 end
8 return lr

AND Query: In order to reduce the retrieval cost, we build a selectivity list for

attributes based on the example test data in Algorithm 5. A selectivity list is based
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on the rank of result size of each attribute. The attribute which has the smallest query

result size is the most selective. For the enhanced AND query, we call point query

only one time for the most selective key then filter the result in the memory. Since we

only query once from Blockchain, the total memory usage is bounded by the largest

query result. The run time complexity is O(1).

Algorithm 5: AND Query with selectivity list

Input: lAK , lS // a list of attribute and key pairs and a selectivity list
Output: lr //a list of record

1 SK ← findMostSelectiveKey(lAK , ls)
2 lr ← point query(SKA, SKK)
3 foreach (A,K) ∈ lAK do
4 lr ← filter(lr, A,K)
5 end

Timestamp Range Query: Since Blockchain is an immutable structure, the com-

mon indexing techniques, such as B-tree and R-tree, which require adjusting/balancing

the entire data structure according to the data distribution, won’t work. We introduce

a hierarchical timestamp structure, which is an incremental data structure and matches

the append-only characteristics of the blockchain system. Our design significantly

reduces the number of queries(APIs) needed for a single range query.

The hierarchical timestamp structure consists of multiple levels. See Table 3.6

as an example. The range in the high level divides into multiple smaller range in

the lower level. We denote each range part as LevelNumber:Starting Timestamp. A

timestamp is recorded in the corresponding part at all levels. In our running example,

a timestamp 111 will be recorded in L0:100, L1:110, and L2:111 in Table 3.6.

L0 [100,200)
L1 [100,110) [110,120) [120,..)
L2 100 ... 109 110 ... 119 120 ... ...

Table 3.6: Simple Hierarchical Timestamp Structure

To build this structure, we need to slightly modify the insertion method by adding
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L streams where L is the number of levels, and we need to add L key-value pairs to

Blockchain transaction as well. See Figure 3.12 as an example.

Transaction
Timestamp
Key Value
111 ∅

...
Resource
Key Value
GTEx ∅

L0
Key Value
100 ∅

L1
Key Value
110 ∅

L3
Key Value
111 ∅

Figure 3.12: Transaction with Hierarchical Timestamp Structure.

In our enhanced range query method, Algorithm 6, we recursively find the largest

range in the hierarchical timestamp structure and use multiple point queries to retrieve

the result.

Algorithm 6: Timestamp Range Query with hierarchical timestamp structure

Input: ts, te // start timestamp and end timestamp
Output: lr //a list of record

1 lr ← list
2 l, r ← findLargestRange(ts, te)
3 while r ̸= None do
4 append(lr, point query(l, r))
5 l, r ← findLargestRange(ts, te)

6 end
7 return lr

In the following example, we show the number of queries(APIs) needed for our

baseline range query and enhanced range query.

Range query from timestamp 109 to timestamp 120.

Baseline Method: q(′T ′, 109) ∪ q(′T ′, 110) ∪ ... ∪ q(′T ′, 120)→ 11 queries

Enhanced Method: q(′L2′, 109) ∪ q(′L1′, 110) ∪ q(′L2′, 120)→ 3 queries

We reduce the number of queries needed for range query from RTe−Ts to
∑L

i=0
Ri

rLi
,

where Ri+1 = Ri mod rLi
, R0 = RTe−Ts and rLi

is the elemental range at level Li.

The run time complexity of the enhanced range query is O(
∑L

i=0
Ri

rLi
).
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Figure 3.13: Scalability Test: Queries.

3.2.3 Results

We used Python3 as our main programming language to develop our solution, Savior

[7] to interact with Multichain API and Docker [3] to simulate 4 Blockchain nodes.

Additionally, we created some bash scripts to automatically setup Blockchain nodes

and Multichain environment. We also wrote a benchmark program to compare our

baseline method and enhanced method. Our code is available online [15]. The

specifications of our testing machine are as follows: 6 cores CPU(i7 8700k), 32 GB of

RAM and 6TB of HDD with Ubuntu 16.04 as the operating system.

We used the sample testing data supplied by the competition organizer to bench-

mark our implementation. The sample testing data consists of 4 files, one per node.

Each file has 105 entries of log records which has 7 fields (Timestamp, Node, ID,

Ref − ID, User, Activity, Resource). To illustrate, we provide a few sample data in

Table 3.3.

To find the optimal number of levels and the step multiplier of two adjacent levels

for the hierarchical timestamp structure (Table 3.6), we test all reasonable parameter

combinations by brute-force. For the given sample data, the optimal parameter for

the number of levels is 3 and the step multiplier of two adjacent levels is 100.

In our benchmark experiment, we show the scalability of our two methods alongside

LevelDB[6] as a reference. Many blockchain systems[19][1][4] use LevelDB as a back-
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end database to store the raw transaction data. It is worth mentioning that those

systems only index the raw transactions, not the actual content inside the transactions.

Database system and Blockchain do not share the same design goal: the former is

usually administered by a centralized entity, and the latter intents to work in a trustless

environment. Nevertheless, this comparison offers useful insights of Blockchain based

log system which trades speed for data integrity. We simulate the enhanced insertion,

the enhanced point query, and the enhanced AND query behavior in LevelDB. For

range query, we use LevelDB native method so we can properly examine our hierarchical

timestamp structure. In all tests, we run 10 rounds for each methods with respect to

varying the number of records. We calculate the average and the standard deviation

from the results. We notice that the standard deviation is extremely small which

shows the little trace in all figures expect Figure 3.13(Point Query). This is due to

the identical environment and the setup of our simulated blockchain nodes.

Scalability Test: Queries

Figure 3.13 shows query time with respect to the varying number of records for

point query, range query, AND query. For the point query test, the response time

is determined by the result size. As the number of records increases, the result

size increases and the response time increases. The response time of the enhanced

method is worse than the baseline method because of the addition API calls which we

introduced in the enhanced point query. For the range query test, the performance is

constant since the result size of certain time range is constant. It is worth mentioning

that our enhanced range query method have very close performance comparing to

the native LevelDB range query method. For AND query, since it consists of point

query, the response time increases with the increasing number of records. It is worth

mentioning that the selectivity list design in our enhanced AND query method offsets

the drawback of the enhanced point query method when the number of keys is larger
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Figure 3.14: Scalability Test: Insertion.

than 2.

Scalability Test: Insertion

Figure 3.14 shows the completion time of insertion methods with respect to varying

the number of records. The insertion time is depended on the transaction size. The

insertion times of the two methods are approximately the same. The enhanced method

needs more key-value pairs to support hierarchical timestamp indexing structure.

However, the empty values in key-value pairs offset this transaction size increment.

Scalability Test: Storage

Figure 3.15 shows the total blockchain size in bytes with respect to varying the

number of records. The blockchain size information is collected by calling Multichain
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Figure 3.15: Scalability Test: Storage.

API. Since Blockchain and LevelDB measure their size in different ways, we exclude

LevelDB in this test. The figure suggests that the enhanced method uses less storage

than the baseline method. The duplication removal from the blockchain transaction

in the enhanced method works as designed.

Detailed Comparison

In this section, we show a detailed performance difference of 3 query types in the

baseline method, enhanced method, and LevelDB. We use the fixed 1000 records in

the remaining tests.

Point Query: Figure 3.16 shows the query response time for different attributes.

The enhanced method performance is worse than the baseline method, because of the

additional API calls in the enhanced method. The rank in the result also matches the
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rank in selectivity list which indicates the return record size. The return record size

of Activity is the largest among the attributes. In other words, Activity has the lowest

selective and need more API calls to get the result than other attributes, so it has the

worst performance difference.

Figure 3.16: Point Query.

Range Query: Figure 3.17 shows the query response time with respect to varying

the time range. The enhanced method is at least one order of magnitude better than

the baseline method. It proves that our hierarchical timestamp structure can batch

a large number of queries into a small (almost constant) number of queries. Hence,

the enhanced method achieves almost constant time performance as LevelDB native

range query method.

AND Query: Figure 3.18 shows the query time with respect to varying the

number of keys. We test all combinations of keys. For example, for 2 keys test, we
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Figure 3.17: Range Query.

test all 21 combinations(7 choose 2) and average the result. It is much easier to find a

more selective key when the number of keys is increasing. This is the reason why the

enhanced method has a downward slope. When there are only 2 keys, the enhanced

method has high possibility to find a low selective key. As a result, when AND query

takes a low selective key, it requires a long response time.

3.3 Conclusion

In this study, we have presented innovative solutions for blockchain-based logging and

querying of genomic dataset audit trails, and demonstrated the feasibility of sharing

gene-drug interaction data using smart contracts on blockchain technology.

Our approach to the logging and querying of genomic dataset audit trails prioritizes
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Figure 3.18: AND Query.

storage space over retrieval and insertion speed, reflecting the real-world characteristics

of log systems where write operations significantly outnumber read operations. By

implementing a hierarchical timestamp structure design, we have reduced storage

costs by 25% and increased range query speed by at least an order of magnitude.

Importantly, this design is blockchain implementation-independent and can be adapted

to any blockchain with the aid of an intermediary.

In terms of sharing gene-drug interaction data, our system can store 4,000 gene-

drug evaluation results from four sites within one minute and query all these pairs

within 0.5 seconds. These results serve as benchmarks for future blockchain-based

healthcare, genomic, and biomedical applications.

In conclusion, this study contributes to the growing body of knowledge on the

adoption of blockchain technology for genomics and healthcare applications. Our



46

novel blockchain-based methods for sharing patient outcomes of gene-drug interactions

could promote data sharing, thereby enabling personalized medicine. The results of

this study can support future blockchain-based healthcare, genomic, and biomedical

applications, and serve as a benchmark for future research in this field.



Chapter 4

Deterring Illicit Cryptocurrency

Use

In the cryptocurrency ecosystem, tracking the flow of money in the event of a crime,

fraud, or illicit transaction can be challenging due to the irreversible and pseudonymous

nature of transactions. Our virtual taint system, inspired by the dye packs used by

banks to disincentivize theft, can be used to overcome this challenge. In TaintCoin,

we mark cryptocurrency transactions as ”tainted” if they are known to have been

involved in a crime, fraud, or other illicit activity and enforce collection of tainted coins

at participating exchanges. Because tainted virtual coins are undesirable, much like

physically dyed cash, monetizing or laundering the proceeds from criminal behavior

becomes harder. As a second-order effect, the taint system deters potential fraudsters

and criminals, helping to prevent rampant illicit activity that is today facilitated by

cryptocurrency. Our vision is for the taint system to revitalize integrity within the

cryptocurrency ecosystem by explicitly penalizing bad behavior. We show how our

system is resilient to attacks, scalable to modern blockchains, and address deployment

questions, such as how to conclude that a transaction should be tainted, explore

different diffusion models for taint, present a fast-tracking algorithm, and discuss and

47
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Figure 4.1: An Example of Crypto Money Laundering Layering

A ransomware victim pays 10 ETH as a ransom to a hacker’s wallet, denoted by hacker1.
The hacker subsequently engages in a series of intricate crypto transactions to conceal the
origin of these funds. Specifically, the hacker transfers 3 ETH to a disposable wallet
hacker2, and spends 2 ETH to buy goods from merchants who accept cryptocurrency
directly. The hacker also deposits 4 ETH into crypto mixing services, then transfers the
funds to a new wallet hacker3. Ultimately, the cryptocurrency held in hacker2, hacker3,
and the merchant’s wallets is sent to exchanges for conversion into fiat currency. This
complex web of transactions illustrates the challenges of tracking illicit activities within the
blockchain ecosystem.

analyze possible implications from rolling out TaintCoin.

4.1 Cryptocurrency Money Laundering

Cryptocurrency is one of the most prominent applications of blockchain technol-

ogy. Cryptocurrencies such as Bitcoin [60], Ethereum [84], and many others rely on

blockchain to record transactions. However, cryptocurrencies can make it easier for

fraudsters to obscure the source of criminal proceeds and are increasingly becoming

the preferred currency of cybercriminals, from purchasing illicit goods using cryptocur-

rency as a payment method to ransomware attacks where payments by cryptocurrency

are demanded. This trend is more prevalent because cryptocurrency offers a combi-
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nation of anonymity, ease of use, and the ability to circumvent international borders

and regulations, in essence, to launder the ill-gotten proceeds. When it comes to

cryptocurrency, advanced fraudsters or money launderers have a plethora of techniques

and strategies that they can use to conceal their activities. One of the most common

methods is to use mixing services, which essentially blend their funds with those

of other users in an attempt to make it difficult to trace the origin of the funds,

disassociating them from criminal activities to cash out safely using a cryptocurrency

exchange. As illustrated in Figure 4.1, it is straightforward for a legitimate exchange to

trace funds from hacker2 to hacker1, as all transactions on the blockchain are public.

However, linking the funds in hacker3 and the partial funds used in the Merchandise

to their origin in hacker1 is much more complex. This complexity underscores the

challenges of identifying and tracking the flow of illicit funds within the blockchain.

Figure 4.2: Total cryptocurrency Laundered by year, 2015-2022

Fig. 4.2 [16] shows that illicit addresses sent nearly $23.8 billion worth of cryp-

tocurrency in 2022, a 68.0% increase over 2021. As is usually the case, mainstream
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centralized exchanges were the biggest recipient of illicit cryptocurrency, taking in

just under half of all funds sent from illicit addresses. That’s notable not just because

those exchanges generally have compliance measures in place to report this activity

and take action against the users in question, but also because these exchanges are

fiat off-ramps, where the illicit cryptocurrency can be converted into cash.

4.2 Design

Our taint system is a tool that can help in this effort by marking the tainted cryp-

tocurrency and tracing its flow through the blockchain. It’s an innovative solution that

provides transparency and accountability in the cryptocurrency ecosystem, helping to

prevent illicit activity and protect its users from fraudulent behavior.

TaintCoin is inspired by the concept of a dye pack, which will be familiar to anyone

who has seen a bank heist movie. A dye pack is a small explosive device that is placed

in a bag of money during a bank robbery. When the robber leaves the bank, the dye

pack explodes, covering the money in ink and rendering it unusable. Similarly, in the

cryptocurrency ecosystem, we can employ a concept known as a ”taint system” or

”digital dye pack” to track the flow of funds in the event of a crime, fraud, or illicit

transaction.

By marking a particular amount of cryptocurrency as ”tainted” if it has been

involved in a crime, fraud, or illicit transaction, the taint system allows us to trace

where the tainted money goes and identify the parties involved in the wrongdoing.

This is achieved through the use of thoughtfully engineered algorithms and blockchain

analysis techniques, which can monitor the movement of tainted funds across the

network. Moreover, the taint system can also act as a deterrent to potential fraudsters

and criminals. Knowing that their illicit transactions can be traced and potentially

linked back to them, wrongdoers may be less likely to engage in fraudulent activity
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within the cryptocurrency ecosystem. This is analogous to how traditional dye packs

act as a deterrent by making stolen cash easily identifiable and therefore harder to

use.

Furthermore, the taint system can be integrated with other security measures

and regulatory compliance tools. For instance, cryptocurrency exchanges and wallet

providers can implement the taint system to monitor transactions and ensure that they

are not facilitating the movement of illicit funds. This not only helps in maintaining the

integrity of their platforms, but also aids in adhering to anti-money laundering (AML)

and know-your-customer (KYC) regulations. In addition to tracking and deterring

illicit activities, the taint system can also be used for forensic analysis after a security

breach or fraudulent activity. By analyzing the flow of tainted funds, investigators can

gain insight into the modus operandi of criminals, which can be invaluable in legal

proceedings and in developing strategies to prevent future incidents.

4.2.1 Architecture Overview

The proposed taint system, depicted in Fig. 4.3, is composed of four integral compo-

nents, each playing a crucial role in ensuring the effective tracking and marking of the

cryptocurrency involved in illicit activities. These components are:

• Database for Cryptocurrency Transactions: This component is essentially a

repository that receives and stores cryptocurrency transactions. It is responsible

for collecting data on all transactions occurring within the cryptocurrency

network. The database is continuously updated in real-time to ensure that the

most recent transactions are available for analysis. This is crucial for the taint

system to accurately track the flow of funds.

• Customizable Taint Algorithm: The taint algorithm is at the heart of

the taint system. It is responsible for analyzing transactions stored in the
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Figure 4.3: Taint System Architecture

database and identifying those involved in illicit activities. What makes this

algorithm particularly powerful is its customizable nature. Depending on the

specific requirements and criteria, the algorithm can be adjusted and fine-tuned

to accurately mark tainted cryptocurrency. This flexibility allows the taint

system to adapt to different types of illicit activities and evolving tactics used

by wrongdoers.

• Public Interface for Accessing Tainted Results: To ensure transparency

and accessibility, the taint system includes a public interface through which users

and entities can access the results of the taint analysis. This interface is user-

friendly and can be used by individuals, cryptocurrency exchanges, regulatory

bodies, and law enforcement agencies to check whether a particular amount
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of cryptocurrency is tainted. This information can be invaluable for making

informed decisions regarding the handling of cryptocurrency.

• Blockchain-based Registry for Initial Address and Taint Amount

Setting: This component is responsible for initializing the taint tracking process.

It involves setting the initial address from which the tainted cryptocurrency

originated and specifying the amount of cryptocurrency that is considered tainted.

By leveraging blockchain technology, this registry ensures that the initial settings

are immutable and transparent. This is crucial to establish a trustworthy starting

point for the tracking process and to ensure the integrity of the taint system.

Together, these components work in tandem to create a robust and effective taint

system capable of tracking the flow of illicit funds within the cryptocurrency ecosystem.

To break this down, once a transaction is recorded on the blockchain, it cannot be

altered or deleted. Similarly, the blockchain-based registry used to set the initial

address and taint amount is also immutable. Once these initial settings are recorded

on the blockchain, they are permanent and cannot be changed, providing a secure and

tamper-proof starting point for taint tracking.

Additionally, the blockchain’s transparent nature ensures that all transactions,

including the initial address and taint amount settings, are visible to anyone with

blockchain access. With the taint algorithm being widely known and the data

(cryptocurrency transactions, initial address, and taint amount) being immutable

and transparent, anyone can independently apply the taint algorithm to the data

and reproduce the tainted result. Thus, any tampering would be noticeable as the

independently reproduced result would not match the system-provided taint result.

In essence, the combination of immutability, transparency, and reproducibility ensures

the taint system’s tamper-evident nature. Any alteration or manipulation attempts

would be easily detectable, maintaining the integrity and reliability of the system.

The taint system operates on a hybrid structure that blends centralized and de-
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centralized elements, facilitating a collaborative approach towards marking tainted

cryptocurrencies. The central registry is managed by a consortium, authority, or

blockchain core developers, and is responsible for officially setting taints based on

substantial evidence. Simultaneously, individuals and organizations can set up sec-

ondary registries to contribute their own analysis and taint settings. The primary

system is structured to integrate data from these secondary registries, thereby creating

a comprehensive dataset to track tainted cryptocurrencies. This system leverages

centralized oversight’s rigor and decentralized contributions’ diversity, integrating

validation mechanisms to verify secondary registries’ data credibility and protect

against misuse. As such, this multifaceted approach fortifies the taint system, making

it a resilient tool for monitoring the flow of tainted cryptocurrency.

4.2.2 Deployment

A taint tracking system, vital to ensure the transparency and security of digital

transactions, can be deployed by various stakeholders within the digital asset landscape.

Cryptocurrency exchanges stand to gain significantly from this deployment. The

adoption of taint tracking mechanisms can identify potentially risky transactions,

thereby strengthening their security and credibility. Furthermore, these systems aid in

meeting the stringent regulatory requirements associated with anti-money laundering

(AML) and countering the financing of terrorism (CFT). Regulatory authorities would

also benefit from this technology. It provides a clear view of transactional flows and

helps in spotting illicit activities or contraventions of regulatory norms. This essentially

empowers regulatory bodies with a formidable tool for monitoring the health and

integrity of the digital asset ecosystem. In the broader financial sector, institutions

like banks that handle cryptocurrency transactions could harness the power of taint

tracking to safeguard against fraudulent activities. This technology could bolster risk

management strategies and provide essential support for compliance with the AML
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and CFT regulations. Businesses that accept digital assets as a form of payment

should consider taint tracking deployment as well. This system can shield them from

the reputational and legal risks associated with receiving ”tainted” coins tied to illicit

activities. For agencies involved in law enforcement and criminal investigation, taint

tracking can serve as a powerful tool in their arsenal. It allows for the tracing of illicit

digital transactions, helping to prevent and investigate cryptocurrency-related crimes.

4.2.3 Algorithms

Taint analysis has been rigorously investigated within the Bitcoin ecosystem, wherein

all Unspent Transaction Outputs (UTXOs) are inherently non-fungible [78, 18]. Mo-

tivated by these foundational studies, we endeavor to transpose the taint analysis

paradigm onto the Ethereum platform. Ethereum’s model diverges significantly from

Bitcoin’s, operating on an account-based system where tokens are intrinsically fungible.

Analogous to the operations of traditional banking systems, Ethereum treats all ether

as homogenous units; thus, when ether is aggregated within an account, it becomes a

challenge to retain or trace the historical lineage of individual units. This homogeneity

significantly complicates the discernment necessary for effective taint analysis. Given

the fungible nature of Ethereum, our investigation addresses the novel complexities

that arise in tracking and analyzing the movement of funds. To our knowledge, our

work is the first study exploring taint analysis in the Ethereum landscape.

We present the pseudocode and logic for three taint propagation algorithms:

Poison, Haircut, and FIFO (First-In, First-Out). These algorithms play a crucial

role in tracking and propagating taint through cryptocurrency transactions. The

poison algorithm assigns a tainted status to all output addresses when any input

address is marked as tainted. It employs a straightforward approach, propagating

taint uniformly across subsequent transactions. The Haircut algorithm calculates the

proportion of taint based on the tainted inputs and distributes this proportion among
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the output addresses in proportion to their input values. This algorithm introduces a

more intricate method of tainting propagation. The FIFO algorithm, on the other

hand, focuses on the order of address propagation. It adds the output addresses to

the taint list in the same order they appear, considering the remaining taint amount

after each propagation. By outlining the pseudocode for each algorithm and providing

a summary of their logic, we gain a comprehensive understanding of the distinct

methods employed in propagating taint and tracking tainted addresses within the

blockchain.

Poison Method

Algorithm 7: Poison Taint Propagation Algorithm

Input :Blockchain transactions (TxList), Initial Tainted addresses
(TaintList)

Output :Final Tainted addresses (TaintList)

1 Procedure POISON TAINT PROPAGATION(TxList, TaintList)
2 for each transaction in TxList do
3 if the transaction’s input address is in TaintList then
4 Add the transaction’s output addresses to TaintList;
5 end

6 end
7 return TaintList ;

The Poison algorithm’s core principle is succinctly demonstrated in Algo. 7. The

concept is relatively straightforward: If any input of a transaction is identified as

tainted, it then leads to all associated outputs being classified as tainted as well. This

process involves cycling through every transaction and scrutinizing whether any of

the input addresses coincide with the addresses cataloged in the TaintList. Upon

detecting a match, all the corresponding output addresses from that transaction are

incorporated into the TaintList. This practice extends across all transactions within

the blockchain, facilitating an effective propagation of the taint. The Poison method’s

results, when applied to a model with two inputs and outputs, are visually represented
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Figure 4.4: Poison Method
The white rectangles represent clean inputs, while the red rectangles represent fully tainted
ones. For example, in a transaction with a 100 clean input and a 150 tainted input, both of

the resulting 50 and 200 outputs will be classified as entirely tainted.

in Figure 4.4.

The justification for the Poison method is reinforced by real-world examples [17]

often seen in criminal investigations led by law enforcement agencies. Specifically,

when tracing the proceeds from illicit activities, they might adopt a ”poison” approach

where all funds originating from a criminal act are considered ”tainted”. For instance,

if funds procured from illegal activities are co-mingled with legitimate funds within

a bank account, the entire sum may be subjected to confiscation [17]. This action

reflects the fundamental principle of the Poison algorithm.

Haircut Method

The Haircut algorithm, as described in Algorithm 8, implements taint propagation by

determining the taint proportion, which is based on the tainted inputs involved in each

transaction. This calculated proportion of taint is then proportionately allocated across

the output addresses, corresponding to their respective input values. The operational

procedure of the algorithm involves a thorough iteration through each transaction in

the blockchain, verifying if any input address correlates with the addresses compiled

in the TaintList. If a match arises, the algorithm computes the total input value
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Algorithm 8: Haircut Taint Propagation Algorithm

Input :Blockchain transactions (TxList), Initial Tainted addresses
(TaintList)

Output :Final Tainted addresses (TaintList)

1 Procedure HAIRCUT TAINT PROPAGATION(TxList, TaintList)
2 for each transaction in TxList do
3 if the transaction’s input address is in TaintList then
4 Calculate the total input value and the proportion of taint;
5 for each output address in the transaction do
6 Calculate the output value as the proportion of taint multiplied

by the output’s input value;
7 Add the output address to TaintList with the output value as

the new taint;

8 end

9 end

10 end
11 return TaintList ;

Figure 4.5: haircut Method
The white rectangles represent clean inputs, the darker red rectangles represent fully tainted
ones and the light red rectangles represent partly tainted ones. Using the same example as
in Fig. 4.4, instead of being tainted entirely, both outputs will receive the same proportion
of the tainted coin to the total input value (3/5 proportion), which in this case would be 30

tainted for the 50 output and 120 tainted for the 200 output.

and the corresponding proportion of taint. This proportion of taint is then allocated

among the output addresses in relation to their input values. The output addresses,

along with their respective taint values, are subsequently appended to the TaintList.

This practice extends to all transactions, thereby achieving effective taint propagation

based on respective proportions. Figure 4.5 graphically presents the results of the



59

Haircut method applied to a model with two inputs and outputs.

The underpinning principle of the Haircut algorithm mirrors the approach employed

in managing bankruptcy cases. A notable example can be found in the handling of

the 2008 Lehman Brothers bankruptcy case [74]. Here, the remaining assets were

proportionately divided amongst the creditors, an approach reminiscent of the Haircut

algorithm’s methodology.

FIFO Method

Algorithm 9: FIFO Taint Propagation Algorithm

Input :Blockchain transactions (TxList), Initial Tainted addresses and
amounts (TaintList)

Output :Final Tainted addresses and amounts (TaintList)

1 Procedure FIFO TAINT PROPAGATION(TxList, TaintList)
2 for each transaction in TxList do
3 if the transaction’s input address is in TaintList then
4 for each output address in the transaction do
5 Calculate the remaining taint amount after propagation;
6 Add the output address and the remaining taint amount to

TaintList;

7 end

8 end

9 end
10 return TaintList ;

In summary, the FIFO algorithm (Algo. 9) propagates taint by calculating the

remaining taint amount after propagation for each output address in a transaction. If

the input address of a transaction is in the TaintList, the remaining taint amount is

calculated and added to the TaintList along with the corresponding output address.

This process continues for all transactions in the blockchain, resulting in the final

TaintList containing the addresses and the remaining taint amounts propagated by

the FIFO algorithm. Fig. 4.6 depicts the FIFO method result.

The principle of the FIFO method aligns with legal precedents in certain jurisdic-
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Figure 4.6: FIFO Method
The white rectangles represent clean inputs, the darker red rectangles represent fully tainted
ones and the light red rectangles represent partly tainted ones. The FIFO method starts by
allocating the first 150 tainted input in the first output and remaining 100 tainted in the
second output. As a result, the first output are entirely tainted and the second output are

partly tainted.

tions, notably in Clayton’s case (Devaynes v Noble, UK, 1816) [73], often referenced

in English common law. The principle of Clayton’s Case, or the ”first in, first out”

rule, was established as a method of tracing funds in mixed bank accounts. This

rule posits that withdrawals from an account are presumed to deplete the earliest

deposited funds first. In the context of tainted assets, this rule could infer that the

first assets received (and subsequently spent) are the tainted ones, which mirrors the

functioning of the FIFO algorithm.

4.3 Experiments

In this section, we embark on a series of experiments designed to dive deeper into

the workings and efficacy of the taint system in a cryptocurrency environment. We

aim to understand the system’s performance under different scenarios, investigate

the propagation of taints over time, and analyze the diffusion of a taint based on

the chosen algorithm. The insights gathered from these experiments will provide a

comprehensive understanding of the taint system and its capabilities, paving the way

for optimized utilization in tracking tainted cryptocurrencies. Each experiment targets
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a specific aspect of the taint system, leveraging a variety of methods to accurately

evaluate the system’s operation and effectiveness in different contexts.

4.3.1 Questions & Evaluation

1. Local System Performance Evaluation: Investigate how the performance

of the taint system, specifically the time taken to execute and the memory

consumption, varies on a local machine with different taint algorithms and

blockchain dataset sizes. Evaluate this by measuring the execution time and

memory usage of each taint algorithm using profiling and system monitoring tools,

and assess how performance scales with different sizes of blockchain datasets.

2. Taint Propagation Duration: Determine how long the taint system takes to

propagate a taint from one transaction to all subsequent transactions involving

the tainted coins and explore how this duration varies with different taint

algorithms. Evaluate this by capturing the time-stamp when the taint starts

and stops propagating to measure total propagation time, and apply different

taint algorithms on the same set of data to compare their propagation durations.

3. Taint Diffusion Analysis for Different Algorithms: Analyze how the

diffusion of a taint varies with different taint algorithms. Evaluate this by

calculating the percentage of tainted coins for each transaction in the dataset

and tracking how this percentage changes over subsequent transactions. Also,

compare the diffusion patterns of different taint algorithms, and use visualization

tools to illustrate the diffusion of the taint through the transaction network.

4.3.2 Test bed

The test bed for the experiments described in this paper includes an Ubuntu 22.04

operating system and an AMD Ryzen 7 5800x 8-core processor with 100GB of memory.
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The experiments were conducted using data from Ethereum block 9000000 to block

14000000, which were mined on November 27, 2019, and January 23, 2022, respectively.

The current implementation of an Ethereum node stores data in a key-value format,

which poses challenges for analysis. To address this, we begin by converting Ethereum

transactions into a more analyzable format within a Clickhouse SQL database. In our

experimental process, we initially extract data from the SQL database to construct

a transaction list, also referred to as an ”edges list” in graph database terminology.

This list is assembled as a memory-mapped file. Subsequently, we execute each taint

algorithm, all of which have been developed using C++. In essence, we create a

simulation of a straightforward in-memory graph database, as illustrated in Fig. 4.3.

4.3.3 Result

We discuss the findings of our experiments conducted to assess the performance of the

taint system, the speed of propagation of the taint and the diffusion based on different

algorithms. These results provide us with a deeper understanding of the system’s

functionalities, its strengths, as well as areas of improvement. They also give us insight

into how the taint system can be effectively utilized and optimized for tracking tainted

cryptocurrencies in various scenarios. By shedding light on the system’s operation in

diverse contexts, these results form a foundation for further enhancement of the taint

tracking methods in the realm of cryptocurrency transactions.

Performance Evaluation

Taint Algorithm Poison Haircut FIFO
Execution Time (second) 3016 1742 104
Memory Usage (gigabyte) 6.59 6.47 0.12

Table 4.1: Local System Performance Evaluation

Our experimental results, derived from running different taint policies on the
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data from Ethereum blocks 9000000 to 14000000, reveal significant disparities in the

performance of the three evaluated taint algorithms - Poison, Haircut, and FIFO. These

findings are illustrated in Table 4.1. The Poison algorithm shows substantial execution

time and memory usage, clocking at about 3016 seconds and consuming 6.59GB of

memory. Similarly, the Haircut algorithm requires a considerable amount of time and

memory to execute, about 1742 seconds and 6.47GB, respectively. However, in stark

contrast, the FIFO algorithm dramatically outperforms both, with an impressively

low execution time of 104 seconds and minuscule memory usage of just 0.12GB.

The relatively poor performance of the Haircut algorithm can be ascribed to its

intrinsic complexity and higher computational requirements. In detail, the Haircut

algorithm works by distributing the taint proportionately across the transaction out-

puts, an operation that necessitates managing fractional taint values and maintaining

the taint percentages for each cryptocurrency unit throughout all subsequent transac-

tions. This process leads to an escalation in calculations and data management. As a

result, despite being thorough, the Haircut algorithm might be less efficient in settings

where there are constraints on execution time and memory resources, especially when

compared to the more streamlined Poison or FIFO methods.

The Poison algorithm, despite its higher resource consumption when compared

to the FIFO method, remains an important taint analysis method due to its unique

approach. Rather than proportionally distributing taint across outputs, Poison assumes

that the entire amount of any transaction output is tainted if any tainted inputs are

used. This allows the Poison algorithm to track the flow of tainted units more directly,

although at the cost of higher computational overhead. The increased execution

time of 3016 seconds and memory usage of 6.59GB, as indicated in table 4.1, reflect

this greater demand on resources. Nonetheless, the Poison method may prove more

effective in situations where a more conservative taint tracking is preferred or necessary.

On the other hand, the FIFO (First In, First Out) stands out in terms of efficiency.
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As evidenced by its performance in table 4.1, the FIFO method requires significantly

less execution time, just 104 seconds, and minimal memory usage, a mere 0.12GB.

The FIFO algorithm operates based on the assumption that the first units received are

the first ones to be spent. This simplistic approach reduces computational demands,

making FIFO particularly well suited for environments with resource constraints or

for tasks requiring quick taint analysis. Despite this, the FIFO method might not

provide as comprehensive a taint tracking as Poison or Haircut, and its effectiveness

may be dependent on the specific circumstances and the nature of transactions being

analyzed.

Analysis of Taint Results Across Various Methods

In the experiments that follow, we employ the Upbit hack [11] as a detailed case study

to showcase how our system is capable of forensically analyzing hackers’ transaction

movements, contrasting them with typical user behavior. We designate the initial

hacked address, 0xa09871, and the stolen sum of 342,000 ETH, transacted at block

9007863, as the starting point for tainted address and amount. For comparison, we

establish a baseline by randomly selecting 100 addresses, using their respective account

balances to define the initial tainted addresses and amounts.

10xa09871aeadf4994ca12f5c0b6056bbd1d343c029
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Figure 4.7: taint diffusion among the assumed-good addresses over time using FIFO

method

Figure 4.8: taint diffusion among all addresses over time using FIFO method
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Fig. 4.7 provides a visual representation of the taint diffusion process among

assumed-good addresses, utilizing the FIFO method, as it unfolds over time. In the

baseline scenario, taint diffusion remains consistently below 1%, impacting fewer than

100 assumed-good addresses throughout the observed period. In stark contrast, the

taint diffusion associated with the Upbit hack escalates rapidly, reaching 7% and

affecting approximately 700 assumed-good addresses within a span of 5 months. This

marked difference is likely attributable to the hacker’s strategic transfers of funds to

assumed-good addresses, such as exchanges and merchants, in an effort to convert the

stolen cryptocurrency into fiat currency or tangible goods.

We observe similar findings in the taint diffusion process among all addresses,

as depicted in Figure 4.8. Within the examined block range, there are 89,199,654

unique addresses. The diffusion grows readily in the first five months, a pattern we

suspect is attributable to hackers moving funds to disposable addresses in an attempt

to obfuscate the source of the funds.

Figure 4.9 illustrates the percentage of tainted amounts reaching Exchanges over

time, analyzed using the FIFO method. It is important to note that the percentage

fluctuates; this variation occurs as the tainted amount enters and leaves the exchanges

in response to customer deposits and withdrawals. The patterns between the baseline

and the Upbit hack case are highly distinguishable. In the baseline scenario, we

observe that 50% of the tainted amount reaches exchanges within the first week. Our

hypothesis, supported by Wu et al. [85], is that a large number of these addresses are

exchange deposit addresses. These are utilized to receive funds from a user, and the

Exchanges subsequently transfer them to their main address in a short time. In the

Upbit hack case, the tainted amount does not reach Exchanges as quickly as in the

baseline, likely because the hackers were moving funds to different addresses to layer

the source in the fisrt a few weeks. There are some surges in the data that indicate

the hackers were attempting to transfer cryptocurrency to Exchanges to cash out.
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Figure 4.9: percentage of tainted amount reaches Exchanges over time using FIFO
method

After 30 weeks, the percentage of tainted amount in Exchanges remains relatively flat,

around 10%, suggesting that the amount is frozen and the tainted funds have ceased

moving between addresses.
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Figure 4.10: taint diffusion among the assumed-good addresses over time using haircut

method

Figure 4.11: taint diffusion among all addresses over time using haircut method



69

Figure 4.10 illustrates the taint diffusion process among assume-good addresses,

employing the haircut method to track this process as it unfolds over time. In the

baseline scenario, the average taint diffusion escalates from 0% to approximately 24%

of the assume-good addresses, encompassing around 2000 addresses in total. The light

blue area within the plot serves as a visual representation of the error bar, reflecting 1

standard deviation from the mean, and thereby providing insight into the variability

within the data. Notably, the Upbit hack case consistently hovers above the 1 standard

deviation mark, underscoring its distinct behavior in the context of the study. This

pattern is hypothesized to result from hackers’ attempts to obfuscate the source of

funds by distributing them across a greater number of addresses.

We observe similar behaviors in the diffusion process among all addresses using the

haircut method as we do among assumed-good addresses, as depicted in Figure 4.11.

In the case of the Upbit hack, the diffusion reaches 80% of all addresses, a value that

is more than 1 standard deviation higher than the addresses in the baseline scenario.

The choice between FIFO and haircut methods will depend on the specific research

objectives and the nature of the taint diffusion being studied. While the FIFO method

excels in capturing temporal dynamics and specific case behaviors, the haircut method

provides a more generalized view of taint distribution across a broader range of

addresses. Our findings contribute to a deeper understanding of taint diffusion and

offer valuable insights for forensic analysis, policy formulation, and the development

of tools to trace illicit activities in the cryptocurrency domain.

Given that the poison method exhibits a pattern closely paralleling that of the

haircut method, we have opted to forego a separate exposition of its results herein for

the sake of brevity and focus.
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Figure 4.12: comparative execution times of FIFO, haircut, and poison methods over
data size intervals

Method Scalability

Figure 4.12 presents the execution times of three analytical methods with respect to

varying data sizes, quantified in weekly intervals. The execution time for the FIFO

method remains relatively constant, whereas the execution times for both the haircut

and poison methods demonstrate a linear increase in relation to the data size. This

contrast is due to the different approaches to handling accounts with multiple outputs

(withdrawals): The FIFO method affects only one output in each tainted transaction,

while the Haircut and Poison methods require the allocation of tainted amounts to

every output address. Furthermore, the haircut method exhibits a slightly longer

execution time compared to the poison method. This is attributed to the haircut

method’s need to perform floating-point calculations to partially taint every output,



71

which is computationally more intensive.

4.4 Discussion

In the following discussion section, we explore the potential second-order effects

of implementing a taint tracking system in the cryptocurrency ecosystem. These

user concerns as well as responses and implications for various stakeholders, such

as exchanges, regulatory bodies, and individual users. By considering these effects,

we can better understand the potential impact of the taint system and work toward

creating a balance between combating illicit activities and respecting user privacy.

4.4.1 Exchanges, Wallet Providers, and Regulatory Compli-

ance

Cryptocurrency exchanges and wallet providers may develop policies to refuse or

freeze assets identified as tainted and may be required to report such transactions to

regulatory authorities. This could lead to the development of sophisticated screening

tools to detect and handle tainted cryptocurrencies. Concurrently, regulatory bodies

might revise their Anti-Money Laundering (AML) and Counter-Terrorist Financing

(CTF) guidelines to include the handling of tainted cryptocurrencies, leading to stricter

compliance requirements for businesses operating within the cryptocurrency space.

4.4.2 Individual Users and Market Dynamics

Regular users of cryptocurrency might become more vigilant about the sources of

their cryptocurrency, possibly utilizing tools or services that allow them to verify if

the cryptocurrency they are receiving is tainted. This could lead to a more informed

and cautious user base. Additionally, tainted cryptocurrency might become devalued
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as it becomes less liquid and harder to exchange, potentially creating a sub-market

where tainted cryptocurrencies are traded at a discount compared to untainted ones.

4.4.3 Remedy Services Implications

Remedy Services are crucial for users to recover from receiving tainted funds, ensuring

asset usability and supporting the integrity of the cryptocurrency system. Exchanges,

at the heart of digital asset management, are in a prime position to offer these services,

aligning with regulatory standards, and enhancing user convenience. By doing so,

they can mitigate risks and educate users, positioning themselves as trusted entities.

Customer preferences could drive exchanges to adopt such services, similar to how

credit card companies offer fraud protection. Exchanges that resist may lose customers

to more secure platforms, indicating a market-driven push toward higher security

standards.

Regulatory bodies could incentivize participation in the taint system through

benefits for compliant exchanges and penalties for non-compliance, promoting a secure

and responsible market.

In essence, the integration of a taint tracking system could reshape the cryptocur-

rency market, emphasizing security and trust, with stakeholders needing to adapt to

maintain the ecosystem’s integrity and security.

4.5 Conclusion

In our investigation, we have dissected the performance of different taint tracking

algorithms in cryptocurrency environments, notably the Poison, Haircut, and FIFO

methods. The Poison and Haircut algorithms were thorough but resource-intensive,

whereas FIFO stood out for its efficiency.

The implementation of such taint tracking systems has significant implications for
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stakeholders in the cryptocurrency ecosystem. Exchanges may need to adopt these

systems for regulatory compliance and to maintain market trust, while users may

become more discerning about the origins of their assets.

Our study also illustrated the diffusion of tainted funds, showcasing the potential of

these algorithms to trace and mitigate the circulation of illicit funds in the blockchain

network.

To sum up, the research provides a framework for enhancing taint tracking methods

and highlights the need for a balanced approach that considers both the effectiveness

of tracking and the impact on the cryptocurrency community. Future efforts should

focus on optimizing these systems to address the challenges of financial crime while

preserving user privacy and market integrity.



Chapter 5

Tracking IRSF Using Blockchain

While Protecting Business

Confidentiality

Decentralized delivery of physical or digital items via a sequence of handover actions is

common in telecommunication, supply chains, snail mail, email, etc. In decentralized

delivery systems, items are passed between carriers, from source to destination, without

a central control, and often, by carriers that belong to different organizations. Delivery

failures could be due to faults or the result of malicious actions like fraud, e.g., in

International Revenue Share Fraud (IRSF), international phone calls are dropped by

fraudulent telecommunication carriers. Tracking item delivery can help detect faults

and fraudulent behavior. But the sequence of carriers used for delivery of a specific

item is often business confidential, and should be revealed only in case of fraud.

In this chapter, we demonstrate a blockchain-based system, Fraud Buster, for

confidential tracking of routes in a decentralized delivery system. In particular, we

illustrate the ability to track handover of calls while preserving business confidentiality

when detecting where calls were dropped. The paper makes the use of a permissioned

74
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blockchain for tracking the required information yet revealing only the necessary

information, when a fraud occurs.

Example. International phone calls go through several carriers. When a caller from

the USA calls a number in Latvia, initially the service provider of the caller, say

AT&T, would handle the call. A connection will be made with a company that can

forward the call closer to the destination, say British Telecom (BT). BT will forward

the call further, say to Orange Polska, which will deliver the call to Tet (Lattelecom)

which will hand it over to Rigatta SIA, the carrier of the receiving number. Each

carrier will make an independent business decision as to which carrier should be next

in the chain, e.g., based on the requested handling fee. The customer who initiates

the call pays its carrier, AT&T in this example. AT&T pays a fee to BT for handling

the call, BT pays part of that to Orange Polska, which pays to Tet its share, and Tet

pays to Rigatta SIA its fee for the connection with the call receiver.

Handling international calls, as presented in Example 5, is a typical case of

decentralized delivery. Other examples are (1) international mail services, where a

chain of handoffs between companies is established for delivering letters and packages

to the destination address, (2) email in which mail servers forward the messages,

(3) computer networks in which IP packets are transferred between servers, and

(4) various supply chains, where delivery of physical items happens through a series of

handovers between carriers.

A delivery may fail, due to a fault in the delivery system or a malicious action.

Aborting the delivery maliciously is typically part of a fraud or an attack. If that

happens, it is useful to be able to discover where the delivery failure occurred, e.g.,

which carrier dropped the call, dropped the IP packet, or failed to deliver the item to

the next hop in the chain. This requires recording delivery information in a trusted

way, and coping with the following three challenges. First, the distribution system is

decentralized, so there is no entity that has all the information about deliveries and
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carriers. Second, there might not be a single entity that all the involved organizations

and individuals trust. Third, some of the information could be restricted by business

confidentiality, as elaborated next.

Delivery chains in a decentralized system are often obscure or change frequently.

For instance, the chain of carriers described in Example 5 could change if one of the

carriers offered a cheaper price for handling the call. When BT needs to choose which

company would be the next in the sequence and handle the call, it may prefer a

different company to Orange Polska, e.g., Teo LT of Lithuania, if the fee requested by

Teo LT is lower than the fee of Orange Polska.

In decentralized delivery systems, the carriers are often reluctant to reveal infor-

mation about the route and the handoffs. For instance, business confidentiality may

prevent revelation of information about handoffs. In Example 5, BT may not want

to reveal its selection of Orange Polska and the incurred fee, to negotiate a lower

fee with Teo LT. In the case of IP routing, the route can often be discovered using

traceroute (or tracert). However, if VPN is used some information about the route

would remain concealed.

5.1 International Revenue Share Fraud

International Revenue Share Fraud (IRSF) is the main motivating use case for our study.

It is one of the most prevalent frauds plaguing the telecommunication industry [23, 41,

70]. A survey from 2017, conducted by the Communications Fraud Control Association1

(CFCA), estimated that the revenue losses due to IRSF, for telecommunication

companies worldwide, exceeded $10B yearly.2

IRSF occurs when a fraudulent international phone call is made and the fraudster,

or an associate of the fraudster, is paid a portion of the cost of terminating the call.

1https://www.cfca.org/
2https://gdpr.report/news/2017/05/29/telecommunications-battle-fraud/

https://www.cfca.org/
https://gdpr.report/news/2017/05/29/telecommunications-battle-fraud/
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IRSF often entails an artificial inflation of traffic, i.e., traffic-pumping to international

premium rate numbers (IPRN), or switching international calls to a fraudster carrier

who drops the call, yet gets paid. The revenues of the premium number holder or of

the carrier are shared with the fraudster. For instance, a PBX box can be hacked

to issue many calls to the premium number, or via a carrier that participates in the

fraud. In the first case, the fraudulent calls are often very long, because calls to a

premium rate number are billed by duration of the call. In the second case, there is

typically a high volume of very short calls. These are calls that are short stopped by

the fraudster carrier. The fraudster carrier receives a small fee for each call and profits

from “handling” many short calls that are dropped, i.e., not delivered to any end user.

When fraud is discovered, the records that are related to the fraud need to be

identified. This is costly and today requires human labor, in particular, contacting

other carriers to get the data related to the calls involved in the fraud. That data is

stored in the form of Call Detail Records (CDRs). Since each carrier stores the CDRs

of calls it handles in its own proprietary database, there is no single database that

provides an overview of how calls were handled end-to-end, along the entire route from

the initiator of the call to the end receiver. Furthermore, there is no mutually agreed

upon trusted central entity that maintains such a comprehensive database across all

carriers.

Example. As an example of IRSF, consider a fraudster that hacks into a private

telephone system (PBX) of a customer of telecom company T , and issues calls to

premium numbers in Latveria3. Since the T customer has not made the call, company

T adjusts the customer’s bill by refunding the customer for this call. However, since

T forwarded the call to other carriers, it has to pay them for their service. A fraction

of the payment goes to the fraudster carrier who terminates (or claims to terminate)

the calls. The customer whose PBX has been hacked is not paying for the fraudulent

3Fictional nation appearing in American comic books.
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calls, but the carrier of this customer (company T ) loses money. All the other involved

carriers, and in particular the one who terminates the call or provides the premium

number, make a profit. The fraudster carrier shares the revenues from such fraudulent

calls with the hacker. Note that international calls to some countries are quite

expensive.

To reveal the fraudster carrier, suspicious calls are tracked, in order to discover

the carriers that were part of the route, and if a call was dropped, find the carrier

that short-stopped it. This requires access to information about the call. However,

the information about each handover of the call is only stored in the databases of

the involved carriers. Discovering the involved carriers, therefore, is an iterative and

costly process. It would have been easier if there had been a central storage of all the

information. But the different carriers are competitors and may not fully trust each

other or let other carriers manage such information for them.

For coping with IRSF when carriers do not fully trust one another, we present a

blockchain-based decentralized system that tracks dubious international calls, e.g.,

calls to suspicious numbers or a burst of calls to particular countries. The goal is

to help track the termination of calls, and to mitigate fraud by making fraudulent

behavior (or assistance to fraudulent behavior) traceable in an automatic way.

Example. Consider the IRSF case described in Example 5.1. The first carrier, T ,

only knows the next carrier to which it forwarded the call, say BT. To discover the

carrier to which BT transferred the call, company T needs to approach BT and ask for

the information. BT would need to look for the relevant Call Detail Record (CDR) in

its records and provide that. Suppose that from the CDR, company T learns that the

next carrier in the chain is Orange Polska. This requires approaching Orange Polska

and getting the CDR from them, to know who is the next carrier in the chain. This

continues until the fraudster carrier is revealed or when a carrier refuses to cooperate.

It is a slow and expensive process, which in some cases could cost more than the losses
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Figure 5.1: Handoff recordings on a blockchain

incurred by the fraud. If, however, all the information were already on a blockchain

protected from tampering attempts of the fraudster, it would be easier to extract it

and identify the carriers that handled the fraudulent calls.

In this chapter we consider four undesirable behaviors of carriers: (1) short stopping

a call and not recording the call on the blockchain, (2) short stopping the call and

adding a fake record to the blockchain as if a successful handoff has been executed,

(3) handling the call properly but adding a false record to the blockchain, (4) handling

the call properly without recording that on the blockchain. Our goal is to use a

blockchain for revealing the shortstops while ensuring confidentiality in non-fraudulent

cases.

5.2 Framework

We now present our framework, including terminology, notations and problem defini-

tion.

Decentralized delivery system. A decentralized delivery system consists of a
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network of carriers and dispatched items. The items can be physical (e.g., parcel) or

virtual (e.g., email, international call). Each dispatch (call) is between a pair of end

users (sender-receiver/caller-callee).

Let C be the set of carriers and L be the set of links between the carriers. Let

U be a set of end users, which could be senders (callers) and receivers (callees). A

link between carriers c1 and c2 enables handover of items from carrier c1 to carrier c2.

The set of carriers C and links L yields a directed graph G = (C,L) where C are the

nodes and L are the edges. Each end user can also handover an item to a carrier or

receive an item from a carrier, but end users do not serve as intermediary carriers.

A delivery task is the duty to deliver an item or establish a phone call connection

from end user us ∈ U (sender) to end user ur ∈ U (receiver). This is executed using a

set of carriers, which could belong to different organizations. A successful delivery

is a sequence of handoffs that creates a path in G from a carrier connected to us to

a carrier connected to ur. Different methods can be used for the link selection per

delivery task, e.g., based on estimations of the shortest path to the destination, the

load on carriers or the handling fee. For instance, when forwarding a call, BT may

select between Orange France, Orange Polska and Deutsche Telekom based on the fee

each company charges for handling the call to the desired destination.

Successful delivery is a sequence us, c1, c2, . . . , cn, ur where

• end users us ∈ U and ur ∈ U are sender and receiver;

• each pair of consecutive carriers ci and ci+1 are linked, i.e., (ci, ci+1) ∈ L, and

there is a successful handoff between ci and ci+1;

• the us to c1 and cn to ur handoffs are successful.

A failed delivery from sender us to receiver ur is a sequence of handoffs us, c1, c2, . . . , ci

that starts in us but does not reach ur. We refer to c1 and ci as the first carrier and

last carrier of the failed delivery, respectively.
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In the case of IRSF, only the first carrier loses money because it needs to compensate

the sender and pay c2 for the service. (Note that c2 also needs to pay c3 for the

service, but it still makes a small profit, and the same is true for the other carriers cj,

2 ≤ j < i.) Carrier i, the fraudster, receives a fee for handling the call but drops it

and does not pay carrier ci+1 because there is no handoff of the call. The fraudster

shares the revenue with the hacker that initiated the call. Carrier i could also be a

carrier who makes the connection to a fraudster IPRN.

Example. Consider a successful delivery through four carriers us, c1, c2, c3, c4, ur. User

us pays $1.8 to the home carrier c1, for the call. Carrier c1 pays $1.2 to carrier c2 for

handling the call and gains $0.6, carrier c2 pays $0.8 to c3 and profits $0.4, carrier c3

pays $0.4 to c4 and keeps $0.4, and c4 delivers the call to ur.

Now, consider a case where c3 short stopped the call. The sequence is us, c1, c2, c3.

The carrier c1 does not charge us for the call because it is not a genuine call of us.

Carrier c1 still pays $1.2 to c2 for handling the call, and c2 pays $0.8 to c3. Since c3

dropped the call, it does not need to pay to any other carrier. In this case, c1 loses

$1.2, c2 gets $0.4 and c3 gains $0.8. A burst of 1000 such calls would lead to the case

where c1 loses $1200 and c3 gains $800. A portion of the revenue of c3 is shared with

the hacker who hacked the PBX phone system and initiated the calls.

Registry using blockchain. To mitigate IRSF, the last carrier of suspected fraud

calls (failed delivery) should be identified and made known to the first carrier, e.g.,

in the case of IRSF it could spare paying the fraudster carrier, and in the case of a

technical failure, discover the carrier responsible for it.

A registry system that records all the handoffs could help in detecting the failure

point. But managing such a system is challenging given that the delivery system

comprises of carriers that may not fully trust each other. The registry should be

trustworthy and should not be controlled by any single carrier. In a registry system

that is controlled by a single organization, the controlling organization can deny
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Figure 5.2: Recording handoffs under the All-to-All confidentiality model, where the
handoffs are encrypted using a unique key created for each call, and the key is securely
transferred to the carrier handling the call. The handoffs are encrypted twice—first
with the unique key of the call and then with the key of the IC. The Last-to-All model
is similar except that if the call is dropped, the IC only decrypts the last two records.

access to the information from other parties. In a registry system that has replicas

stored on different nodes independently, it is difficult to guarantee that exactly the

same information appears in all replicas. Therefore, we propose a solution based on

blockchain.

Blockchain is a decentralized, tamper-proof and transparent ledger, managed

by peers that are part of a peer-to-peer network [61]. The peers create blocks of

transactions and add them to the chain in a way that guarantees consensus regarding

valid transactions and their order. Blockchain was initially developed to prevent the

“double spending” problem in cryptocurrencies [61], but recently, there has been a

growing interest in using blockchains for a variety of applications where there is a need

to reach consensus in a decentralized environment [22, 31, 53, 72, 80]. In the case of a

permissioned blockchain, the set of peers is known and a consensus mechanism is used

to decide which blocks are valid and can be added to the blockchain [35].
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Figure 5.3: Recording handoffs under the All-to-First confidentiality model, where the
handoffs are encrypted twice—first with the key of the first carrier and then with the
key of the IC. The Last-to-First model is imlemented in the same way, except that if
the call is dropped, the IC only decrypts the last two records.

In our system, a blockchain is used as a ledger to record delivery tasks and handoffs,

see Fig. 5.1. It provides a tamper-proof decentralized log of the delivery tasks and

their execution, and these records can be used to track handoffs and discover points of

failure, i.e., the carrier that dropped the call (or failed to handover an item). In this

paper we assume that the blockchain peers are entities that were assigned to manage

the blockchain. They can be carriers, but do not have to be carriers or end users.

Confidentiality. Blockchains provide transparency, where all the peers that manage

the blockchain see the stored transactions. This is an advantage in many applications.

However, there is a conflict between transparency and business confidentiality. Carriers

may not want information about their handoffs to be revealed to their competitors.

To achieve business confidentially, the following two general guidelines should be

applied:

1. minimize the exposed information, and
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2. minimize the number of access permissions.

Information should only be revealed when necessary and only to entities that need to

see the information.

When minimizing the exposed information, the goal is to reduce the number of

handoffs that are revealed to a third party. An example of such a restriction is to only

reveal transactions that are part of a failed delivery. When minimizing the number of

viewers, the set of carriers (or other entities) that are privy to the disclosed information

should be as small as possible. For example, if a carrier does not participate in a

delivery, it should not be exposed to information about that delivery.

We consider four confidentiality models, for a failed delivery us, c1, c2, . . . , ci.

• All-to-All: The handoffs of the delivery are revealed to the carriers c1, c2, . . . , ci.

• All-to-First: The handoffs of the delivery are revealed to the first carrier c1.

• Last-to-All: Only the handoffs associated with the last two carriers ci−1 and ci

are revealed to the carriers c1, c2, . . . , ci.

• Last-to-First: Only the handoffs associated with the last two carriers ci−1 and

ci are revealed and only to the first carrier c1.

Disclosing the handoffs to all the carriers on the path allows all of them to know

that they are part of a failed delivery, so that they collectively could be responsible

for the prevention of future failures. Revealing the information just to the first

carrier provides stronger confidentiality. Similarly, revealing the entire set of handoffs

on a route provides information that could be used to prevent reoccurring failures.

Revealing just the last two carriers limits the exposure to only a small set of carriers

and provides stronger confidentiality. Note that in a case of a malicious action, the

carrier that drops a call or fails to deliver an item, say ci−1, may try to conceal that

by recording a handoff to ci on the blockchain. In this case, information about both
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ci−1 and ci should be revealed, to examine which one is responsible for the short stop.

We consider four behaviors of the carriers.

• Honest (but curious): the carrier transfers the call and correctly records that

on the blockchain.

• Fraudulent: the carrier drops the call but records a fake transfer on the

blockchain.

• Sloppy: the carrier transfers the call but fails to properly record that on the

blockchain.

• Malicious: the carrier drops the call and records nothing on the blockchain.

A fraudulent carrier ci−1 may add to the blockchain a fake record that the call was

forwarded to ci. This is the reason for revealing the last two nodes of a failed delivery.

Typically, the majority of the carriers are honest, but even the honest carriers should

not be privy to confidential information (handoffs of other carriers).

Goal. Demonstrate a system that implements the four confidentiality models on

top of a blockchain, in the presence of all four carrier behaviors.

5.3 Confidentiality Models

In this section, we discuss the implementation of the confidentiality models. In all the

models, information about handoffs is initially concealed. We assume that there is a

committee that is responsible for deciding when information should be revealed, and we

refer to it as the investigation committee (IC). The IC consists of several independent

entities. It is honest but curious. That is, the IC can be trusted to decide when

information should be revealed but should not see any confidential information. It can

be a proxy that executes a court order, or can be some other group of semi-trusted
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Figure 5.4: System architecture

entities. It can be implemented as a single node, as a distributed system with a

consensus protocol, by the blockchain peers, etc.

The protocols use the RSA [67] public key cryptosystem [40], and each carrier c

has a pair (Kc
priv , K

c
pub) of private and public keys. The public key can be used for

encrypting of short texts, e.g., using optimal asymmetric encryption padding [24].

Given a message m, we denote by Enc(m;K) and Dec(m;K) the encryption and

decryption of m using key K. Given a message m, a carrier c can sign m by applying

to m a cryptographic hash function h() like SHA2 [66], and encrypting the result

using its private key, s = Sign(m) = Enc(h(m);Kc
priv ). Any carrier or blockchain peer

could validate a signature by checking that h(m) = Dec(s;Kc
pub). The IC C also has a

pair KC
priv , K

C
pub of private and public keys.

Encrypting a long plaintext using a public key is inefficient. So, often for a message
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Figure 5.5: Layered network

m and a public key Kpub, the encryption is a two step process using a symmetric

key like AES [30]. The symmetric key is used for both the encryption and the

decryption [64]. First, a new secret symmetric key Ksym is created. The symmetric

key is used to encrypt the message and the public key is used to encrypt the symmetric

key. The two records Enc(m;Ksym) and Enc(Ksym ;Kpub) are added to the blockchain.

We denote this 2-step encryption by Enc2(m,Kpub).

All-to-All. Given a call with call id ξ, from sender us to receiver ur, the route

is recorded by storing handoffs on the blockchain. The handoffs are encrypted by a

key that is shared with the relevant carriers, to prevent exposing the information to

carriers that are not part of the route of call ξ. The encryption is by using a symmetric

key Kξ
sym , uniquely created for call ξ, e.g., using AES [30].
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Figure 5.6: Mininet control: the simulator creates the network nodes, the links, i.e.,
the connections between nodes, and the routing tables for the nodes. In the simulation,
calls are simulated by IP packets, which are routed according to the routing tables.
Fraudulent or malicious nodes may drop the packets, as an execution of a short stop.

Carrier c1 creates the keyK
ξ
sym . In step i, carrier ci records on the blockchain the en-

crypted handoff information (ξ,Enc2(r;KC
pub)), where r = Enc((ci, ci+1,CDR

i
ξ);K

ξ
sym)

and CDRi
ξ is the call detail record of call ξ when handled by carrier ci. The CDR

contains details about the call such as time, duration, completion status, source and
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destination numbers, etc. Carrier ci hands over the encrypted key Kξ
sym , to ci+1.

That is, ci encrypts the key using the public key of ci+1 and sends the encrypted key

Enc(Kξ
sym ;K

ci+1

pub ) to ci+1. Carrier ci+1 can decrypt the message using its private key

to discover Kξ
sym . Note that the handoff information is encrypted twice, first using the

key created by the first carrier and then by the public key of the IC. By the end of this

process, the carriers involved in handling the call ξ store the encrypted handoffs on

the blockchain. An example of a call and the records that are stored on the blockchain

are depicted in Fig. 5.2.

When the handoffs of call ξ need to be disclosed due to an indication that ξ was

short stopped, the IC C decrypts all the transactions with call identifier ξ and adds

the decrypted transactions to the blockchain. The decrypted transactions are still

encrypted by Kξ
sym , so C and all the carriers that are not part of call ξ cannot see the

handoffs. Carriers that have Kξ
sym can decrypt the handoff records of ξ.

There is no single carrier that stores all the information, can change stored

transactions or can deny access to stored transactions. Moreover, the IC does not

need to store or see any information on calls.

All-to-First. To change All-to-All into All-to-First, the public key Kc1
pub of the

first carrier c1 is used instead of the key Kξ
sym . In the handoffs, each carrier ci instructs

the next carrier ci+1 to use Kc1
pub. The record stored by ci on the blockchain has the

form

(ξ,Enc2(Enc2((ci, ci+1,CDR
i
ξ);K

c1
pub);K

C
pub)).

An example of a call and the records that are stored on the blockchain are depicted in

Fig. 5.3. Only c1 has the private key to decrypt the transactions, so only c1 can see

the handoffs. However, since transactions are also encrypted using the key of the IC,

carrier c1 can see the handoffs only after the decryption of the information by IC.

Last-to-All. In this model, the last two handoffs of ξ should be identified. This

is done by adding a handoff number to the records, where carrier ci records on the
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Figure 5.7: Handover transactions that four carriers and their proxies see. In real
time, carriers and proxies only see handovers that they are part of.

Figure 5.8: The setting of Fig. 5.7 after a while. The handover transactions of call
h3 14 are circled, to show the route of this call.

blockchain

ξ̂i = (ξ, i,Enc2(Enc((ci, ci+1,CDR
i
ξ);K

ξ
sym);K

C
pub)).

As integrity constraint, the blockchain peers verify when adding a record (ξ, i,m) to

the blockchain that it contains a record of the form (ξ, i− 1,m′) and does not contain

a record of the form (ξ, i,m′′), for any cipher texts (encrypted content) m, m′ and m′′.
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Figure 5.9: Blockchain dashboard.

The transfer of the shared key Kξ
sym is the same as the key transfer in All-to-All.

When a call ξ seems to be part of a fraud (the sender us claims it is the result

of a hack and the first carrier c1 needs to investigate it), the IC C decrypts the last

two records of ξ and sends to c1 the records Dec( ˆξi−1;K
C
priv) and Dec(ξ̂i;K

C
priv). The

carrier c1 would still need to investigate which one of the two carriers ci and ci+1 is

the fraudster. It could be that ci is a fraudster that added a fake transfer record ξi,

but in this case the record ξi−1 could provide the information about the handoff of the

call to ci. Another case is that ci+1 is malicious and it will not add any record to the

blockchain. In this case, the record ξi will provide information about the handoff of the

call to ci+1. Carrier c1 cannot distinguish between these cases without an investigation.

In all these cases, only records decrypted by C are visible and only to the carriers that

hold the key Kξ
sym .

Last-to-First. Implementing the Last-to-First model is the same as the imple-
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Figure 5.10: Transaction details.

mentation of the Last-to-All model except that the public key of the first carrier Kc1
pub

is used instead of the shared key of the call Kξ
sym .

Using Secret Sharing for the IC. When the IC consists of several entities,

deciding when to decrypt records should be based on a consensus mechanism, e.g., for

an IC of size n and some 0 < k ≤ n, requiring that any subset of k members of the

committee could decrypt records on the blockchain, but a smaller subset would not

be able to do so. This can be implemented using secret sharing. In Fraud Buster,

we are using Shamir’s secret sharing [71].

In Shamir’s secret sharing, first a large prime number p is selected and all the

computations are executed modulo p, that is, with respect to the finite field Zp = Z/pZ.

The secret is a number s ∈ Zp. The secret holder creates k − 1 random numbers

a1, . . . ak−1, where ai ∈ Zp for 1 ≤ i < k. These numbers define a polynomial

f(x) = s+
∑k−1

i=1 aix
i of degree k−1. Then it sends to each peer j the encrypted secret
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Figure 5.11: Transaction explorer.

point Enc((j, f(j));K
peerj
pub ). Any set of k or more peers can reveal their points to each

other, and using interpolation the polynomial f(x) can be computed, to discover the

secret s. Any group of less than k peers cannot discover the secret s even if they

reveal to each other the points they received.

The goal is to create and disseminate a shared secret for the committee members

in C. This is done as follows. Consider the delivery us, c1, c2, . . . , ci, . . . of call ξ, where

in each handover, the carrier records encrypted CDR and delivery details, on the

blockchain. When carrier ci encrypts the information, it uses the following protocol.

1. Carrier ci generates a new pair of matching public and private keys (Kci,ξ
pub , K

ci,ξ
priv ).

2. Carrier ci generates a secret sharing scheme where the secret is s = Kci,ξ
priv . It

generates a polynomial fi(x) of degree k over Zp where fi(0) = s, and sends to

each peer j the encrypted pair Enc((j, f(j));K
peerj
pub ).

3. Carrier ci adds to the blockchain the record

(ξ, i,Enc2(Enc2((ci, ci+1,CDR
i
ξ);K

c1
pub);K

ci,ξ
pub ))
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Figure 5.12: Step 1 of the simulation: the network is created, by defining nodes and
links, and node behaviors (e.g., fraudster or malicious) are selected.

under the models All-to-First and Last-to-First; and it adds to the blockchain

the record

(ξ, i,Enc2(Enc((ci, ci+1,CDR
i
ξ);K

ξ
sym);K

ci,ξ
pub ))

under the models All-to-All and Last-to-All.

Decryption requires k or more members of the IC, to reveal their share of the

secret, compute the decryption key Kci,ξ
priv and use it to decrypt the record on the

blockchain. The decrypted records are still encrypted by key Kc1
pub in the All-to-First

and Last-to-First models, or by Kξ
sym in the All-to-All and Last-to-All models. In the

first case, only the carrier c1 can decrypt them using its private key. In the second

case, all the carriers on the route, who received Kξ
sym , can decrypt the information.

The information is not revealed to any other entities, including members of the IC.
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Figure 5.13: Step 2: calls are dispatched and the handover transactions are recorded
on the blockchain. Carriers only see handovers they were part of.

5.4 Fraud Buster System

We now describe the Fraud Buster system. The system architecture is depicted

in Fig. 5.4. It has three parts: (1) a network simulator, (2) the blockchain managed

by the blockchain peers, and (3) the investigation committee (IC) component. This

can be seen as a layered network where the lowermost layer consists of the network

and the transfer of calls, the middle layer is the recording of call handoffs on the

blockchain. The top layer is the application of tracking call routes confidentially. The

layers are depicted in Fig. 5.5.

Network simulator. Network simulation is implemented using Mininet (http:

http://mininet.org/
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Figure 5.14: Step 3: information on calls that are short-stopped is collected, but it is
still unknown to the first carrier where calls were dropped.

//mininet.org/), a simulator of virtual networks with Software Defined Networking

(SDN) capabilities. The SDN capabilities provide control over the network traffic at

the packet level, using OpenFlow commands executed on Open vSwitches (https://

www.openvswitch.org/). Dispatched IP packets simulate calls. The Open vSwitches

represent carriers and different behaviors (honest, fraudulent, sloppy, malicious)

are assigned to them. Ryu (https://ryu.readthedocs.io/) is used for the SDN

controller, to control the traffic flow according to the provided specifications. See

illustration of the Mininet control screen in Fig. 5.6. A Network Topology Specification

and Configuration (NTSC) was implemented, to control different network parameters,

http://mininet.org/
http://mininet.org/
https://www.openvswitch.org/
https://www.openvswitch.org/
https://ryu.readthedocs.io/
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Figure 5.15: Step 4: the blockchain records of a dropped call are decrypted and
revealed to the first carrier of that call.

including the network topology. For scalable storage and exploration of the network,

a graph database may be used [39].

Each carrier is connected to a blockchain proxy and has an encryption/decryption

module. The blockchain proxy manages the connection of the carrier with the

blockchain peers and supports access to the blockchain. To facilitate data extraction

and evaluation of queries over the information in the blockchain, a PostgreSQL RDBMS

is used by each proxy, to manage local data. Note that the blockchain proxies only

deliver encrypted data, so the same proxy can serve more than one carrier.

Blockchain and P2P network. The system uses a permissioned version of
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Ethereum (https://ethereum.org/) with a Proof-of-Authority (PoA) consensus

protocol. However, any other blockchain system or any other consensus protocol

can be used for the decentralized trusted storage of handoffs. In PoA, a small set

of trusted validators create the blocks. In each round, a leader is selected randomly

from the set of validators. The leader suggests a block. If the block is approved by

the majority of the validators, it is added to the blockchain. Otherwise, the leader

is considered malicious and removed from the set of validators. PoA has a high

throughput (transaction rate) in comparison to common consensus protocols like proof

of work (PoW), however, it is considered less secure than PoW. Improving scalability,

e.g., by chain partitioning as suggested in [32], is an ongoing research direction.

Figures 5.7 and 5.8 depict the handoff transactions that four carriers see. As

time passes, more handoffs are conducted and the carriers see more transactions. To

illustrate that, we present in Figures 5.7 and 5.8 the transactions at two different

times. The table of each carrier contains the columns Cid and S->D, where Cid is the

call identifier and S->D is the pair of source and destination carriers of the call. For

example, in the first row of the table of Carrier 2 in Fig. 5.7, h2 1 is the call id, and

2->10 specifies that the source and destination of the call are carriers 2 and 10. The

Proxy tables show transactions that go via the proxy of the Carrier. In the proxy

table there are three columns. The Cid column is the call identifier, the S->R column

specifies the sender and receiver nodes of the call, and P-C-N refers to the previous,

current and next nodes in the path to the destination. The current node appears in

orange. For example, the first row of Proxy 2 in Fig. 5.7 contains the call id h2 1, the

source and destination pair 2 and 10, as 2->10, and the 3-tuple s-2-1, which specifies

that the previous node is the sender, the current node is Carrier 2 and the next node

is Carrier 1. Note that having the value ‘s’ for the previous node refers to the sender

user (the caller), and the value ‘r’ as the next node refers to the receiver user (the

callee).

https://ethereum.org/
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In Fig. 5.8, the transactions of call h3 14 are circles. This call is routed from

Carrier 3 to Carrier 4, based on the value 3->4 in column S->R. Initially, in Proxy 3,

we see s-3-5 for P-C-N, which means that from Carrier 3, the call is forwarded to

Carrier 5. In Proxy 5 we see 3-5-1, which means that the previous node was Carrier 3,

the current node is Carrier 5 and the next node is Carrier 1. Note that Proxy 3

and Carrier 3 do not see the forwarding of the call from Carrier 5 to Carrier 1. The

records 1-2-4 in Proxy 2 and 2-4-r in Proxy 4 show that the call was forwarded from

Carrier 1 to Carrier 4 and from Carrier 4 to the receiver user. All the records together

reveal the route s->3->5->1->2->4->r of the call, however, each carrier and proxy

only see a local view of the handovers they where involved in. In other words, each

carrier has a different view of the information on the blockchain because a carrier can

only see its own records. Only when the records of a short stopped call are decrypted

by the IC, the first carrier of the call can view them.

A blockchain dashboard allows tracking the information on the blockchain, including

statistics (Fig. 5.9), detailed information on selected transactions (Fig. 5.10) and the

list of transactions in the blockchain (Fig. 5.11).

IC. The IC and the four confidentiality models are implemented in Python. The

packages Cryptography and PyCryptodome are used for the cryptographic functions.

When CDRs of a call ξ should be revealed, (1) the IC receives the call id from the

proxy, (2) it retrieves the records of ξ from the blockchain and decrypts the relevant

records, according to the confidentiality model, and (3) the decrypted records are

shared with the relevant carriers through the proxy.

5.5 Demonstration

The demonstration will focus on showing two things—usability and confidentiality.

Usability requires that in the case of a failed delivery, the records on the blockchain
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and the IC decryption are sufficient for revealing the place where the fraud occurred

(indicating the last two nodes in the route). The demo will illustrate the usability for

different behaviors of carriers (honest, fraudster, sloppy and malicious), under the

assumption that most of the carriers are honest, like in the real world.

To illustrate confidentiality, the information that each carrier sees will be presented.

We show that the view of each carrier does not lead to a confidentiality breach and

carriers see in an unencrypted form only information they are allowed to see according

to the model.

Figures 5.12–5.15 present Jupyter Notebook screenshots that depict a demonstrated

scenario. These screenshots are updated in real time while the system runs and they

provide information about the status of different components. Initially, the network is

created based on given parameters, and the behavior of each node (honest, fraudster,

sloppy or malicious) is selected. Fig. 5.12 presents a network topology that is created in

Step 1, and a case where one of the carriers drops 50% of the calls through it. Initially,

the identity and type of behavior of this carrier are not known to the other carriers.

The simulation dispatches calls and routes them to the specified destination over the

simulated network. Fig. 5.13 and Fig. 5.14 show the information that Carrier 2 sees at

two times. This is a limited view of the handovers due to confidentiality. The carrier

only sees handovers it is part of. The encrypted handoffs of all the honest carriers are

recorded on the blockchain. Fig. 5.15 presents the decryption process and the revealed

path of a dropped call.

This demonstration focuses on a specific but large problem, mitigation of IRSF—a

problem at the scale of billions of dollars. However, the ability to track delivery

failures and frauds in decentralized delivery systems has many additional applications

in different supply chains and delivery systems. Our main contribution is showing

that tracking can be done in a decentralized system, with limited trust between

organizations, while maintaining business confidentiality. Future work includes adding
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economic intensives for carriers to record information on the blockchain, and incentives

not to misuse the system, e.g., by requiring that carriers would pay for information.

5.6 Conclusion

This demonstration focuses on a specific but large problem, mitigation of IRSF—a

problem at the scale of billions of dollars. However, the ability to track delivery

failures and frauds in decentralized delivery systems has many additional applications

in different supply chains and delivery systems. Our main contribution is showing

that tracking can be done in a decentralized system, with limited trust between

organizations, while maintaining business confidentiality. Future work includes adding

economic intensives for carriers to record information on the blockchain, and incentives

not to misuse the system, e.g., by requiring that carriers would pay for information.



Chapter 6

Conclusion

This dissertation has provided an in-depth exploration of the application of blockchain

technology in various domains, with a particular focus on medical data storage,

deterring illicit activities such as cryptocurrency money laundering, and enhancing

privacy through cryptographic schemes.

Our research has significantly contributed to the existing body of knowledge by

proposing efficient data storage and retrieval strategies tailored for blockchain systems.

These strategies strike a balance between data replication and the performance of data

retrieval, enhancing the practicality and feasibility of employing blockchain technology

for medical data storage. Consequently, our work contributes to the advancement of

secure and efficient data management solutions in the healthcare sector, paving the

way for more robust and reliable medical data systems.

In addressing the issue of cryptocurrency money laundering, we designed and

implemented mechanisms that monitor transaction traffic, aiming to deter users from

engaging in illicit activities. Our work plays a crucial role in creating a safer and more

secure digital environment, where the advantages of technological advancements can

be fully leveraged without the risk of misuse.

Furthermore, we proposed multiple cryptographic schemes that balance the need
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for transparency with privacy and confidentiality. These schemes employ various

cryptographic techniques to control and limit access to data specifics to authorized

individuals, while maintaining the integrity and traceability of the data. Our contribu-

tions in this area enhance the security and privacy of blockchain technology, making

it more suitable for a wider range of applications.

Despite the significant insights gained from this research, there are limitations

that must be acknowledged. Future studies could further explore the potential of

blockchain technology in other domains, and devise more efficient strategies for data

storage and retrieval, as well as more robust mechanisms to deter illicit activities.

6.1 Future Directions

Despite the significant insights gained from this research, there are limitations that

must be acknowledged. Future studies could further explore the potential of blockchain

technology in other domains, such as supply chain management, intellectual property

protection, and decentralized finance. Additionally, research could focus on devising

more efficient strategies for data storage and retrieval, as well as more robust mecha-

nisms to deter illicit activities. The exploration of new cryptographic techniques and

consensus algorithms may also provide avenues for enhancing the scalability, security,

and efficiency of blockchain systems.

6.2 Final Remarks

In conclusion, this dissertation has significantly contributed to the field of blockchain

technology by proposing efficient strategies for data storage and retrieval, designing

mechanisms to deter illicit activities, and enhancing privacy through cryptographic

schemes. The findings of this study pave the way for the advancement of secure and

efficient data management solutions in various sectors, and contribute to creating a
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safer and more secure digital environment.
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