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Abstract 

 

Applications of Remote Sensing Data in Air Pollution Modeling and Utilization of Model-

Derived Exposure Estimates in Epidemiological Studies 

By Bryan N. Vu 

 

Air pollution models rely heavily on regions with sufficient ground monitors for calibration. 

Recent advances in remotes sensing techniques have been successfully implemented in air 

pollution modeling in regions with adequate monitoring networks. This dissertation aims to 

implement remote sensing techniques in a low- and middle-income (LMIC) setting where limited 

ground monitoring measurements exist. The first aim of this dissertation is to develop a satellite 

derived PM2.5 (particulate matter with an aerodynamic diameter of 2.5 micrometer or less) 

exposure model to estimate PM2.5 at 1 km resolution from 2010 to 2016 in Lima, Peru. Estimates 

from this model is subsequently used in a study to investigate the association between PM2.5 and 

asthma in Lima to bridge the gaps in knowledge regarding air pollution studies in a LMIC setting 

where daily exposure often exceeds permissible standards. The next aim of this dissertation is to 

implementing remote sensing techniques in modeling a major wildfire event that requires finer 

spatial and temporal resolution data. The second aim of this dissertation is to build a machine 

learning model that incorporates low-cost sensors and the Synthetic Minority Over-sampling 

TEchnique (SMOTE) to artificially inflate extreme values in the training dataset to model the 

Camp Fire event in California in 2018. The methods and results from this aim will inform the 

necessary steps to improve model performance in modeling extreme events. Finally, the last aim 

of this dissertation is to utilize exposure estimates from a machine learning model to investigate 

the association between total PM2.5, smoke PM2.5, and non-smoke PM2.5, and serval cardiovascular 

diseases (CVDs) including acute myocardial infarction, arrythmia, heart failure, ischemic heart 

disease, stroke, and total CVD. Results from this epidemiological study will provide more 

literature on the association between air pollution, both ambient and from wildland fire sources, 

and CVD outcomes. 
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INTRODUCTION 
 

Air pollution, particularly PM2.5 (particulate matter with an aerodynamic diameter of 2.5 micrometer 

or less) is emitted from a variety of sources including engine combustion, biomass burning, power 

generation, and natural sources such as sea spray aerosols and wind-blown dust particles [1, 2]. PM2.5 has 

also been linked to over 4 million global deaths each year as well as a plethora of adverse health outcomes 

including cardiovascular and respiratory diseases [3-5]. However, the composition of PM2.5 may differ from 

region to region and from the source. Therefore, exposure measurements of PM2.5 is crucial for researchers 

to investigate the association between air pollution and adverse health outcomes, especially in regions such 

as low- and middle-income countries with limited ground monitors to collect measurements. In recent years, 

applications of remote sensing techniques have been successfully implemented in air pollution modeling 

[6-9]. Satellite remote sensing data including aerosol optical depth (AOD) is a measure of extinction of the 

solar beam by dust and haze particles [10]. AOD can be used as a proxy for air pollution in models [11].  

Using machine learning methods, AOD along with meteorological variables from chemical transport 

models and other ancillary parameters including vegetation index, population density, distance to road, and 

land use information can be used to calibrate existing ground measurements [12]. However, low- and 

middle-income regions including Lima, Peru has substantial air pollution issues and limited number of 

ground measurements to conduct epidemiological studies that require extensive ground measurements to 

effectively assign exposure. Only by implementing remote sensing techniques to model PM2.5 in this region 

will researchers be able to effectively conduct epidemiological studies on various health outcomes to 

determine if Lima’s air pollution needs mitigation.  

Furthermore, climate change has made an impact on the Western United States. Specifically, California 

with its dry climate vegetation, the number wildland fires have been increasing in the past decades and each 

fire continues to burn more intensely and for a longer duration [13-15]. Nonetheless, even with a well-

maintained network of monitors such as those maintained by the U.S. Environmental Protection Agency 

(U.S. EPA), the ground monitors may not accurate depict the extent and range in concentration of PM2.5. 
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This is largely due to the monitors being located in more densely populated urban areas so the network of 

monitors lack uniform spatial distribution.  Moreover, there is a lack of studies investigating the association 

between PM2.5 and cardiovascular diseases (CVD). Although a limited number of studies regarding this 

relationship has been conducted elsewhere, mainly in China, Taiwan, and the eastern United States, few 

have been conducted in California to determine if PM2.5 and more specific, smoke PM2.5 leads to more 

emergency departmental visits for CVD outcomes [16-19].  

This dissertation aims to address these gaps in knowledge. In the first aim, a PM2.5 exposure model is 

built by introducing and implementing satellite remote sensing data and data from chemical transport 

models to estimate PM2.5 at 1 km resolution between 2010 to 2016 in Lima, Peru. Estimates from this model 

can subsequently aid researchers in epidemiologic studies that pertain to air pollution in a quickly 

developing low- and middle-income country. In the second aim, a machine learning model is used to 

calibrate satellite remote sensing data, high resolution meteorological parameters and land use information, 

to a well-regulated monitoring network in California. The addition of low-cost sensor data and a Synthetic 

Minority Over-sampling TEchnique (SMOTE) is used to bolster the number of ground observations, 

allowing for an hourly model that can estimate wildland fire PM2.5 at 3 km spatial resolution. Finally, the 

third aim applied satellite-derived total PM2.5 estimated previously from a machine learning model to 

investigate the association between PM2.5 and CVDs including acute myocardial infarction (AMI), 

arrythmia, heart failure (HF), ischemic heart disease (IHD), stroke, and total CVD. The implementation of 

a smoke PM2.5 dataset from the U.S. EPA with a Hazard Mapping System that flags smoke plume pixels 

allows aim three to also assess smoke and non-smoke PM2.5 with the CVD outcomes listed above. 

DISSERTATION AIMS 

Overarching Aim: To apply remote sensing data in air pollution modeling and utilize model-derived 

exposure estimates in epidemiological studies. 

Aim 1: Build a PM2.5 exposure model for Lima, Peru between 2010 to 2016 at 1 km spatial resolution using 
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remotely sensed data such as AOD. Subsequently, use the exposure estimates derived from the model to 

conduct an epidemiological study that investigates the association between PM2.5 and asthma emergency 

department visits. 

Aim 2: Build an hourly PM2.5 exposure for California, focusing on the Camp Fire episode in 2018, one of 

the biggest and most deadly wildfires in the state of California in recent years. The model will incorporate 

not only remotely sensed AOD, but also low-cost PM sensors and a technique to ensure that there are 

enough extreme high values in the training dataset to accurately predict wildland fire smoke PM2.5. 

Aim 3: Using model-derived PM2.5 estimates, investigate the association between total PM2.5, smoke PM2.5, 

and non-smoke PM2.5, and the six cardiovascular outcomes. 
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CHAPTER 1A 

Developing an Advanced PM2.5 Exposure Model in Lima, Peru 

Bryan N. Vu, Odon Sanchez, Jianzhao Bi, Qingyang Xiao, Nadia N. Hansel, William Checkley, 

Gustavo F. Gonzales, Kyle Steenland, Yang Liu 
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ABSTRACT  

It is well recognized that exposure to fine particulate matter (PM2.5) affects health adversely, yet few 

studies from South America have documented such associations due to the sparsity of PM2.5 measurements. 

Lima’s topography and aging vehicular fleet results in severe air pollution with limited amounts of monitors 

to effectively quantify PM2.5 levels for epidemiologic studies. We developed an advanced machine learning 

model to estimate daily PM2.5 concentrations at a 1 km2 spatial resolution in Lima, Peru from 2010 to 2016. 

We combined aerosol optical depth (AOD), meteorological fields from the European Centre for Medium-

Range Weather Forecasts (ECMWF), parameters from the Weather Research and Forecasting model 

coupled with Chemistry (WRF-Chem), and land use variables to fit a random forest model against ground 

measurements from 16 monitoring stations. Overall cross-validation R2 (and root mean square prediction 

error, RMSE) for the random forest model was 0.70 (5.97 μg/m3). Mean PM2.5 for ground measurements 

was 24.7 μg/m3 while mean estimated PM2.5 was 24.9 μg/m3 in the cross-validation dataset. The mean 

difference between ground and predicted measurements was −0.09 μg/m3 (Std.Dev. = 5.97 μg/m3), with 

94.5% of observations falling within 2 standard deviations of the difference indicating good agreement 

between ground measurements and predicted estimates. Surface downwards solar radiation, temperature, 

relative humidity, and AOD were the most important predictors, while percent urbanization, albedo, and 

cloud fraction were the least important predictors. Comparison of monthly mean measurements between 

ground and predicted PM2.5 shows good precision and accuracy from our model. Furthermore, mean annual 

maps of PM2.5 show consistent lower concentrations in the coast and higher concentrations in the mountains, 

resulting from prevailing coastal winds blown from the Pacific Ocean in the west. Our model allows for 

construction of long-term historical daily PM2.5 measurements at 1 km2 spatial resolution to support future 

epidemiological studies. 

 

KEYWORDS 

PM2.5; air pollution; MAIAC AOD; WRF-chem; random forest; machine learning; remote sensing; Lima; 

Peru  
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INTRODUCTION 

PM2.5 (fine particles with aerodynamic diameter of 2.5 µm or less), is emitted from a large variety of 

sources including industry, power generation, engine combustion, biomass burning, and natural sources 

such as sea spray aerosols and wind-blown dust particles [1, 2]. PM2.5 contributes to 4.2 million global 

deaths in 2016, and studies have linked exposure to PM2.5 with increased adverse health outcomes including 

respiratory and cardiovascular diseases among not only adults, but also children from North America, 

Europe, and Asia [3-6]. However, there is a limited number of air pollution studies in South America, where 

industrialization and continual urban growth may contribute to air pollution levels that far exceed those of 

Europe and North America [7, 8]. Current studies on air pollution in South America pertain mostly to PM10 

(particles with aerodynamic diameter of 10 µm) or ozone, and are conducted in Brazil, Colombia, and 

Argentina [8-16]. To date, there has been little to no studies that investigate health outcomes with fine scale 

exposure measurements in South America. 

Lima, Peru is the third most populous and the second most polluted major city in the Americas [4]. 

Lima’s air pollution stems from an aging fleet of public transportation in urban areas and the widespread 

use of indoor biomass stoves in rural areas [4, 5]. A report by Banco Bilbao Vizcaya Argentaria (BBVA) 

Research indicates that the average age of Lima’s vehicular fleet exceeds 15 years for private transport 

vehicles and 22 years for public transport vehicles [6]. Due to the densely populated urbanization of Lima, 

traffic congestion and exhaust from an aging motor fleet results in particulate matter levels that exceed the 

World Health Organization’s (WHO) standards (25 μg/m3, 24-h mean) [4, 17]. A study by Silva et al. found 

that for 6 of the 10 ground PM2.5 monitors in Lima, 77% of the days between 2014 to 2015 exceeded the 

WHO’s 24-h standards [18]. Moreover, while only 34% of the total population in Peru use solid fuel, 13% 

of the urban population and over 95% of the rural population rely on biomass fuel for cooking and heating, 

resulting in high levels of air pollution not only in urban areas but also in the mountainous rural areas [5]. 

Air pollution affects not only those living in Lima, but also the workers living in the rural communities in 

the outskirts of the city, who commute 90 to 180 minutes into the city for work [17]. Yet, there is a limited 
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number of studies on the association between ambient air pollution and health risks in Lima. More studies 

are needed to assess the effects of PM2.5, and potentially to curtail Lima’s air pollution effects via new 

policies to improve air quality standards.  

Many of the studies investigating air pollution in Lima have been cross-sectional in design, with 

childhood asthma as a popular health outcome [19, 20].  To date there have been no studies of air pollution 

and chronic disease. Limitations in directly utilizing ground-level air-monitoring data in epidemiologic 

studies include lack of monitoring stations and lack of daily measurements due to maintenance costs [21]. 

Recently, satellite remote sensing techniques have proven useful in estimating ground PM2.5 concentrations 

[1]. Satellite remote sensing provide aerosol optical depth (AOD), a dimensionless measure of aerosol light 

extinction within a column of air on Earth’s surface [22]. AOD can be used to estimate ground PM2.5 

concentrations with broad spatial coverage, expanding the ground monitoring networks into the rural areas 

where ground measurements are lacking [23]. Most commonly used AOD products are derive from the 

Moderate Resolution Imaging Spectroradiometer (MODIS) and Multiangle Imaging SpectroRadiometer 

(MISR) aboard the Earth observing System (EOS) satellites named Terra and Aqua launched by the 

National Aeronautics and Space Administration (NASA) in 1999 and 2002, respectively [24]. These 

products have also been widely used in recent studies to estimate PM2.5 in southern California, China, and 

Pittsburgh, Pennsylvania [25-27]. A Multi-Angle Implementation of Atmospheric Correction (MAIAC) 

algorithm, using time-series analysis and image-based processing techniques to make aerosol retrievals and 

atmospheric corrections over both dark vegetated land and brighter range of surfaces, can be used to retrieve 

AOD to achieve stronger correlations with PM2.5 [28]. MAIAC AOD have been successfully implemented 

in estimating PM2.5 in the United States, Middle East, and China [28-30]. 

Implementation of remote sensing techniques have proven successful in China and the United States 

[1, 23]. Using non-MAIAC AOD, Liu et al. compared model fit in a two-stage modeling technique to 

estimate PM2.5 in Northeast U.S. with and without AOD, with results indicating that the AOD model (R2 = 

0.79) has higher predicting power compared to the non-AOD model (R2 = 0.48) [23]. Xiao et al. conducted 

a study to estimate ground PM2.5 concentrations over the Yangtze River Delta of China using MAIAC AOD 
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and ground measurements from 2013 and 2014 with results showing good fit between ground 

measurements and prediction estimates (Cross Validation (CV) R2 = 0.81 for 2013 and 0.73 for 2014) [1]. 

Additionally, Liang et al. implemented MAIAC AOD to estimate daily PM2.5 concentrations in Beijing at 

1 km2 spatial resolution with high accuracy (mean annual R2 from 0.79 to 0.86) [31]. Studies listed above 

found that the correlation between PM2.5 and satellite MAIAC AOD, derived from statistical models 

including generalized linear regression and generalized additive modeling, are greatly improved when land 

use and meteorological parameters are included; nonetheless, results such as these suggests that MAIAC 

AOD by itself is a strong predictor of PM2.5 concentrations [23, 28]. 

To date, remote sensing techniques have not been utilized in air pollution research in Lima, Peru due 

to insufficient ground monitoring data to correlate and validate model results. However, in recent years, the 

Servicio Nacional de Meteorología e Hidrología del Perú (SENAMHI) stations from the Ministry of 

Environment have begun collecting daily concentrations of PM2.5 in Lima, Peru. This presents an 

opportunity to implement satellite remote sensing techniques in building a model to estimate ground-level 

PM2.5 in a region with critically high levels of air pollution and limited number of epidemiological studies 

to assess its impact on health risks. In this analysis, we build a PM2.5 exposure model to estimate daily PM2.5 

concentrations at 1 km2 spatial resolution in Lima for years 2010 to 2016. This exposure model is derived 

from satellite MAIAC AOD, simulation data from chemical transport models (CTMs), meteorological 

fields from a forecast model, and land use parameters. The resulting daily estimates of PM2.5 may be used 

in epidemiologic studies to assess its impact on both cardiovascular and respiratory health outcomes, and 

potentially support policies that will mitigate air pollution in Lima, Peru. 

METHODS 

Study area 

 

Lima is the capital city of Peru, with over 10 million inhabitants. The city is nestled at 154 meters above 

sea level in the valleys of the Chillón, Rímac, and Lurín rivers, overlooking the Pacific Ocean in the west 
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and the Andes Mountains lying about 3000 meters above sea level in the east. The study region spans from 

~80 km north to south, and 40 km east to west, which includes the city of Lima and the seaport of Callao, 

together known as the Lima Metropolitan Area.  

A grid of 2,970 1km2 pixels was developed to cover the study region, and a 10 km buffer was added to 

ensure accuracy of any other parameters that need to be interpolated from coarser resolutions down to the 

modeling grid cells. The added buffer also allowed for better estimation of PM2.5 concentrations near the 

outer boundaries of the study area. With the 10 km buffer, the total number of pixels increased to 5,959 

during the model development and training period. In Figure 1, we show the study domain and location of 

ground monitors for the SENAMHI network and Johns Hopkins University (JHU) network as well as the 

mean PM2.5 level at each monitor. The JHU network is part of the Genetic Asthma Susceptibility to Indoor 

Pollution in Peru, GASP study [32].   

Ground PM2.5 Data 

 

There are ten SENAMHI stations that measure PM2.5 and PM10 concentrations in Lima, Peru. These 10 

monitoring stations are Thermo Beta 5014i monitors utilizing the beta ray attenuation method and are 

calibrated three times a year (February, June, and October, starting in October 2014) [33]. SENAMHI 

stations recorded daily mean measurements of PM10 starting in 2010 and PM2.5 from 2014 to 2016 and its 

ten sites contributed 6,389 daily observations from 2014 to 2016 Additionally, data from 15 mobile air 

quality monitors located in Pampas de San Juan de Miraflores were provide by Johns Hopkins University 

(JHU stations) [34]. These monitors provided one mean estimate each week from November 2011 to March 

2013, and were interpolated to the daily level by giving the six preceding days the same concentration as 

the measured value on the seventh day. One-km2 grids that contained more than 1 JHU station were 

averaged, which reduced the number of stations from 15 to 6. The JHU sites provided 2,081 daily 

observations from six grid cells to the model fitting dataset. Table 1 shows the elevation and total number 

of measurements available at each monitor and their respective network. 
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Satellite Data 

  

We Satellite aerosol optical depth (AOD) at 1 km2 spatial resolution retrieved using the MAIAC (Multi-

Angle Implementation of Atmospheric Correction) algorithm was obtained from the MAIAC science team 

at NASA's Goddard Space Flight Center. The MAIAC algorithm accomplishes atmospheric correction by 

first gridding the data to a fixed 1 km2 grid and accumulating of up to 16 days of measurements [35]. Using 

a time series analysis, the pixels are grouped and the surface bidirectional reflectance distribution function 

(BRDF) and aerosol parameters over both dark vegetated surfaces and bright surfaces is derived [35].  

AOD measurements from Arica (https://aeronet.gsfc.nasa.gov/cgi-

bin/type_one_station_opera_v2_new?site=Arica&nachal=2&level=1&place_code=10) [36], the nearest 

Aerosol Robotic NETwork (AERONET) site located in Chile, was compared to an average of 5x5 km2 box 

of MAIAC AOD centered at the Arica site to assess validity and accuracy from 2010 to 2015. AERONET 

is a ground-based remote sensing network that provides global observations of AOD [37].  AERONET L2 

measurements within 15 minutes of the MAIAC measurements were used in the validation process to ensure 

accuracy; however, there may be some uncertainties in the validation results since Arica is located 1,017km 

northwest of Lima. Nonetheless, AERONET vs MAIAC AOD validation have been performed in the past 

showing good agreement [9, 38]. The highest annual correlation coefficients between MAIAC AOD and 

measurements from Arica ranged from 0.59 to 0.74 for Aqua and 0.60 to 0.79 for Terra. The highest 

correlation coefficient was observed in 2011 for Aqua and 2012 for Terra, with total number of observations 

ranging between 42 and 119. Subsequently, an average between Terra and Aqua MAIAC AOD was 

calculated and gap-filled through a random forest method discussed in Bi et al., which achieved a cross-

validation R2 of 0.82 [39]. Daily data for cloud fraction at 5 km2 spatial resolution was downloaded from 

the Level-1 and Atmosphere Archive & Distribution System Distributed Active Archive Center (LAADS 

DAAC - https://ladsweb.modaps.eosdis.nasa.gov) [40] for 2010 to 2016 and processed through IDL. 

Processes of how cloud fraction data was used in gap-filling MAIAC AOD is described through Bi et al. 

[39]. 



12 
 

Chemical Transport Model (CTM) data 

 

 SENAMHI produces Weather Research and Forecast model coupled with Chemistry (WRF-Chem) 

simulations for air quality forecasts in Lima at 5 km2 spatial resolution [41]. WRF-Chem is a next generation 

atmospheric chemical transport model (CTM) developed by the National Oceanic and Atmospheric 

Administration (NOAA) and the National Center for Atmospheric Research (NCAR) [42]. CTMs 

simultaneously simulates the emissions, turbulent mixing, transport, transformation, and fate of trace gasses 

and aerosols using a combination of meteorological fields, topography data and emission modules based 

on measurements of emission factors and ambient concentrations [42]. SENAMHI WRF-Chem 

configuration has been previously described [41]. In brief, initial meteorological conditions were obtained 

from the National Centers for Environmental Prediction (NCEP) with emissions inventory derived mainly 

from anthropogenic vehicular emissions [41]. WRF-Chem data outputs were produced using emissions 

inventory based on vehicular traffic and packaged in monthly files with 26 vertical layers in the atmosphere 

every 6 hours (00:00, 06:00, 12:00 and 18:00 UTC); however, only the surface layer (vertical layer 0) was 

used and an average combining all four-time measurements were calculated. SENAMHI WRF-Chem 

parameters used in this study include cloud cover, albedo, surface pressure, temperature, u- and v- wind 

components, simulated PM2.5, and planetary boundary layer height (PBL). There parameters were 

interpolated to the 1 km2 modeling grid using an inverse distance weighting method. 

Meteorological variables 

 

Data at 6-hour increments for 28 parameters including dew point, temperature, wind and pressure was 

downloaded for January 2010 through December 2016 from the European Centre for Medium-Range 

Weather Forecasts (ECMWF) archive (http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/) 

[43] at 12.5 km2 spatial resolution [44], and interpolated to the 1 km2 modeling grid using inverse distance 

weighting.  Subsequently, a daily average was calculated for each variable. As part of the cross-validation 

process, a correlation analysis was performed on temperature, wind, and pressure between WRF-Chem and 

ECMWF. Furthermore, temperature and dew point from ECMWF was used to calculate relative humidity 



13 
 

(http://andrew.rsmas.miami.edu/bmcnoldy/Humidity.html) [45]. In addition, ground meteorological data 

was downloaded from the Weather Underground website for four individual-owned weather stations along 

with one airport station. These data were used to evaluate the quality of ECMWF and WRF-Chem 

meteorological parameters. In Figure S1 of the supplemental, we show a simple correlation matrix between 

Weather Underground temperature and relative humidity with WRF-Chem temperature and ECMWF 

relative humidity to investigate the relationship between measured ground observations and the quality of 

the forecasted data from ECMWF. 

 Land use variables 

 

Elevation data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global 

Digital Elevation Map (ASTER GDEM) was downloaded from EARTHDATA 

(https://search.earthdata.nasa.gov/search) [46]. Census population data for Lima was only available for 

2012. To ensure completeness and consistency, LandScanTM yearly population data for 2010 through 2016 

was used (https://landscan.ornl.gov/index.php/landscan-datasets) [47]. Land use parameters at 30-meter 

resolution (open shrubland, bare/sparse vegetation, water bodies, and artificial/urban areas) for 2010 were 

derived from the GlobeLand30 product produced by the National High Technology Research and 

Development Program of China [48]. The 30-meter spatial resolution raster was cut into 1 km2 grids to 

match the MAIAC AOD grid cells, and a percent urbanization was calculated by dividing the area classified 

as urban in each 1 km2 grid cell by the total area of that cell. Normalized difference vegetation index (NDVI) 

data at 500-meter spatial resolution (MYD13A1 Version 6) was downloaded from the LAADS DAAC for 

years 2010 to 2016 [49]. Since NDVI is produced at 16-day intervals, each 15 days preceding the day with 

measured NDVI was given the same NDVI values. Road Network Data was downloaded as an ArcGIS-

ready shapefile from the OpenStreetMap project through Geofabrik (http://download.geofabrik.de/south-

america/peru.html) [50], and processed in ArcGIS. The road network map was reclassified into three 

classes:  motorways, primary and trunk roads, and secondary and tertiary roads, and a distance in meters 
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was calculated between the centroid of each study domain grid cell to the nearest segment of road based on 

class. 

Random forest model 

 

A random forest (RF) model was used to fit 16 predictors to 8,470 ground measurements. The RF 

model’s advantages include its accuracy in learning and classifying features, its ability to include a large 

number of input variables, and its output of variable importance. Random forest is a supervised machine 

learning model that works by averaging a set of decision trees that calculates the best predictions based on 

a subset of predictors [51]. The RF model selects a random subset of samples from all observations with 

replacement, and subsequently select the best set of predictors that provides the best split at each node [51]. 

The two main parameters in a random forest model are the number of predictors sampled for each node 

(mtry) of the tree and the number of trees or subset of samples to be averaged (ntree). Comparison of results 

with different settings of mtry and ntree, was conducted to achieve the best prediction accuracy. The 16 

variables used in the random forest model training includes predicted MAIAC AOD from the gap-filling 

method, NDVI, percent urbanization, road category 3 distance, elevation, population density, interpolated 

WRF-Chem simulated PM2.5, temperature, surface pressure, albedo, cloud fraction, PBL, and wind V and 

U components, and interpolated relative humidity and surface solar radiation downwards from ECMWF, 

with mtry, and ntree set at 6, and 1000, respectively. 

A 10-fold cross-validation (CV) process was carried out on the RF model to validate the prediction 

results. The model fitting dataset, consisting of 8,470 ground observations, were randomly divided into 10 

segments with each segment containing 10% of the data. Nine of the segments were used as a training 

dataset set to fit the model and the remaining segment is used as a testing dataset to make predictions. This 

process is repeated 10 times, each time dividing the dataset at different intervals to ensure that the segments 

are not repeated. After the 10th repetition, the total number of predictions based on the testing dataset is 

combined into one dataset and is equal to the original number of ground observations. This CV technique 
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is commonly used in similar studies estimating PM2.5 and is better suited for a moderate to small sample 

size datasets. 

RESULTS 

Description of PM2.5 Ground-Based Measurements 

 

Analytic Daily predictions of PM2.5 started on March 2, 2010 and ended on December 31, 2016. In total, 

2,232 daily predictions were made between 2010 and 2016.  In Figure S2 of the supplemental materials, 

we show histograms of all 16 predictors used in the modeling approach. Variables such as MAIAC AOD, 

surface solar radiation downwards, NDVI, temperature, and PBL were normally distributed. In contrast, 

variables that are temporally static such as road distance, elevation are non-normally distributed. 

Figure 2 shows the time series of monthly mean ground measurements at each ground monitor from 

both the SENAMHI and the JHU networks. Mean (Std. Dev.) PM2.5 for all JHU monitors from November 

2011 to March 2013 is 18.9 (4.7) µg/m3 with mean individual monitors ranging from 16.8 (4.0) (JHU 

Station 11) to 19.9 (5.8) µg/m3 (JHU Station 9). The homogeneity of JHU measurements may be due to the 

spatial location of these monitors being clustered within 2-3 kilometers in the south region of the study 

domain. In general, ground JHU measurements peak to 29 µg/m3 around April of 2012 and gradually 

decrease to 12.5 µg/m3 in September of 2012 before increasing to a high of 30.5 µg/m3 in March of 2013. 

It is unclear if PM2.5 levels peak at this point or continues to increase as data beyond this period is 

unavailable for JHU monitors. All JHU monitors share this temporal trend; nonetheless, this similarity may 

again be due to the clustered location of the JHU monitors. 

SENAMHI measurements show a slightly different temporal pattern. Mean (Std. Dev.) PM2.5 for all 

SENAMHI monitors from April 2014 to December 2016 is 26.7 (11.6) µg/m3 with mean individual 

monitors ranging from 15.2 (5.3) µg/m3 (Station CDM) to 38.3 (12.2) µg/m3 (Station ATE). SENAMHI 

PM2.5 tend to peak at 52.1 µg/m3 between July and August of 2014 (winter) and gradually decrease to 11.8 

µg/m3 around November and December (summer) before increasing again to a peak of 39.2 µg/m3 from 
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March to April of 2015. Temporal trends also indicate PM2.5 decreases from May of 2015 to a low of 13.3 

µg/m3 in February of 2016 before increasing to a peak of 63.6 µg/m3 in June of 2016. Although most 

monitors within the SENAMHI network share this temporal trend, there is spatial variation coinciding with 

the location of the monitors. The three monitors closest to the shore (Stations CDM, SBJ, and SMP) all 

have the lowest mean PM2.5 measurements (15.2, 18.2, and 17.2 µg/m3, respectively), while the three 

monitors with the highest measurements (ATE: 38.3 µg/m3, PPD: 32.8 µg/m3, and SJL: 31.1 µg/m3) are 

located further inland closer to the Andes Mountains.  The differences in trends between JHU and 

SENAMHI networks may be a result of the JHU monitors being located in the southern part of Lima, where 

trends in temperature, winds, and other predictors of PM2.5 may be different compared to the SENAMHI 

stations. Furthermore, SENAMHI stations are distributed across a larger area of the study domain and may 

have the potential to detect more spatial variability compared to JHU monitors. Although there is variability 

in the range of PM2.5 levels between the two monitoring networks, both networks suggests that PM2.5 levels 

are highest during the Summer Although JHU and SENAMHI stations share peaks in common during the 

months of March through May, ground measurements are only available for JHU sites from November of 

2011 to March of 2013 and from April of 2014 to December of 2015, with no spatial or temporal similarities 

to the SENAMHI network. Therefore, a continuous and fair comparison of the two networks is not possible.   

Random Forest Model Performance and Cross-Validation 

 

With A linear mixed effects model (LME) was original conducted (cross-validation (CV) R2 and root 

mean square error (RMSE) was 0.60 (6.85 µg/m3)); however, the RF model was found to outperform the 

traditional LME model. The RF R2 (RMSE) was 0.70 (5.95 µg/m3), and the CV R2 (RMSE) was 0.70 (5.97 

µg/m3), indicating that the model is stable and that there is good fit between the predictors and the ground 

measurements. Figure 3 panel A shows the density plot of CV predicted vs. measured PM2.5 concentrations. 

The slope and intercept from the RF model CV are 1.05 and -1.04 µg/m3, respectively, indicating a good 

fit (optimal, slope=1, intercept=0). Results from our CV indicates that our model slightly overestimates 

lower PM2.5 measurements and underestimates higher PM2.5 measurements. Furthermore, in Figure 3 panel 
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B, we show good agreement between the ground measurements and our daily estimate measurements 

through a Bland Altman plot. In the Bland Altman plot, the difference between ground and predicted PM2.5 

measurements are plotted against the mean of each pair. The mean difference between observations in the 

CV dataset was -0.09 μg/m3 with a standard deviation of 5.97 μg/m3. The Bland Altman plot indicates that 

there is good agreement between the ground and predicted measurements with 94.5% of the observations 

falling within 2 standard deviations of the mean differences. Figure 4, shows the importance rankings of 

each predictor in the RF model, which is a measure of parameter predictive power based on a permutation 

test. Under the null hypothesis in a random forest model, each predictor variable is not important; the 

permutation test rearranges the values of that variable to detect any improvement in prediction accuracy 

[51, 52]. The RF model suggests that surface downward solar radiation, temperature, relative humidity, 

PBL and AOD are the most important predictors of PM2.5.  

Figure 5 shows a time series of monthly mean ground measurements and predictions from the RF model 

for each ground monitor. The RF model is able to track well the temporal variability of the ground monitors, 

but tends to underestimate higher peaks and overestimate the low points. This trend is observed in both the 

SENAMHI and JHU networks. We show the predicted annual mean PM2.5 concentrations across our study 

region in µg/m3 in Figure 6. Mean annual PM2.5 concentrations start at 14.6 µg/m3 along the coastline and 

gradually increases up to 48.5 µg/m3 against the Andes Mountains on the east. Monitors with the lower 

mean PM2.5 measurements are also those that are located closer to the coast line, and are at a lower elevation. 

Temporally, PM2.5 levels are highest during 2010 and dipping lower during 2011 to 2014 before increasing 

back up in 2015 through 2016. Although ground measurements are not available for 2010, the increase in 

predicted mean annual PM2.5 from 2015 to 2016 can be observed in the monthly mean measurements from 

the SENAMHI monitors (Figure 2), which show a spike in PM2.5 during the months of April and May of 

2016 compared to relatively lower levels in 2015. Month to month variation can be seen in supplemental 

Figure S3.  PM2.5 is highest starting from April through October (highest in May-June, winter) before 

decreasing during the months of November to March (lowest in February, summer). Although this monthly 

trend is different from those observed in the JHU ground measurements, they are consistent with monthly 
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mean SENAMHI ground measurements. This may be due to a smaller number of ground measurements for 

JHU compared to SENAMHI in the model fitting dataset. Furthermore, JHU monitors produced weekly 

measurements, which had to be interpolated to daily estimates for model fitting; therefore, monthly trends 

may not be meaningful for JHU measurements. 

DISCUSSION 

Until recently, studies to model the concentration of PM2.5 have been limited in South America due to 

lack of ground monitoring data. Previous studies have estimated historical ambient PM2.5 concentrations 

globally from a combination of satellite remote sensing data and chemical transport models; however, these 

studies were conducted at coarse resolution (e.g., 10 x 10 km2) and were evaluated by ground PM2.5 

measurements from the literature. Furthermore, results from these studies do not provide daily 

measurements to aid in epidemiological health studies [53]. Brazil, Chile, Colombia, Ecuador, and Peru are 

the few countries with existing PM2.5 monitors in South America prior to February of 2016; yet, Chile is 

the only country with known spatio-temporal and forecast models of PM2.5 [54, 55]. The Chilean PM2.5 

model was constructed using three winter months of hourly PM2.5 measurements from 11 monitors and 

incorporated CTMs; however, their model did not incorporate satellite remote sensing techniques to 

enhance prediction capabilities, and their model could only forecast PM2.5 levels in the proceeding 48 hours 

[54]. The only current existing model of PM2.5 in Peru is constructed through kriging techniques using 

ArcGIS for the province of Cusco [56]. The Cusco model was derived from a singular fixed monitor that 

recorded 24-h time-integrated samples for only 12 days during July 2005, and measured PM2.5 at 

“subjectively chosen hot spots” using stand-alone laser photometers to augment ground measurements [56]. 

Although this study may provide support for short-term acute exposure of PM2.5 health studies, it does not 

provide daily historical measurements for epidemiologic studies that investigate population health effects 

due to acute exposure to PM2.5 , especially outside of Cusco, like Lima, where pollution levels are much 

higher.  
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Our PM2.5 model is the first advanced model in Peru to incorporate both satellite remote sensing data 

and CTM outputs to provide daily ground measurements at 1 km2 resolution in Lima, the most populated 

and polluted region of Peru, to aid in epidemiologic studies. A major strength of this study is the ability to 

estimate PM2.5 in Lima at a high resolution through the implementation of MAIAC gap-filled AOD. Our 

finer-scale model is able to capture local spatiotemporal trends compared to coarser resolution products, 

and are better suited for use in epidemiological health studies that require daily measurements of exposure 

at fine-resolution. Additionally, predictions from our model correspond well at each ground monitor station 

(as seen in Figure 5). Maximum concentrations are typically observed between May and September (winter 

months) with minimum concentrations generally observed between October and April (summer months); 

however, these trends vary from year to year and between each monitoring site. Furthermore, monthly 

variation in PM2.5 concentrations is also affected by meteorological conditions present in Lima. In the 

summer months, Lima is subjected to smaller and less permanent marine thermal inversion due to the 

Humboldt oceanic current in the west. The result is a decrease in stratiform clouds and an increase in solar 

irradiation in conjunction with lower relative humidity and higher temperatures, which leads to re-

suspension of course PM and the prevention of secondary PM formation, decreasing the levels of PM2.5 

[18]. During the winter; however, there is an increase in stratiform clouds along with an increase in relative 

humidity and light precipitation, resulting in wet deposition of PM10 and a subsequent increase in PM2.5 due 

to secondary formation via converted gas-particulate [18].  

Nonetheless, our study uses an emerging ensemble classifier, the random forest model, to generate our 

estimates which comes with limitations and uncertainties. Currently, annual predictions from the RF model 

show that concentrations of PM2.5 are lowest near the coast, and in and around the urban centers of Lima, 

while gradually rising with elevation up to the Andes Mountains. This may be driven by the fact that all 

ground PM2.5 monitors are located below 500 meters above sea level, and monitors located at lower 

elevation have lower PM2.5 levels. As a result, when PM2.5 levels are extrapolated beyond the existing 

ground data, their levels continue to increase with elevation up to the mountains and predictions made at 

elevation above 1000 meters may contain more uncertainty. Furthermore, the average height of JHU 
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monitors is located at 132.7 (Std. Dev. = 43.6) meters above ground, while the mean height for SENAMHI 

monitors is 213.4 (Std. Dev. = 90.9) meters, indicating that SENAMHI monitors have a wider range of 

elevation height compared to JHU monitors. Additionally, JHU monitors also have a more homogeneous 

level of PM2.5 since their daily values were interpolated from weekly measurements and comprised of 25% 

of the total ground measurements, which may add to the explanation of why elevation had relatively lower 

importance in the RF model. To counter the effects of elevation in the model, distance from shoreline was 

added to the model as a predictor. Although distance from coast should have explained much of the variation 

in PM2.5 as the annual maps suggests, this variable did not improve the “out of bag” R2 in the RF model and 

also did not change the resulting predictions maps and was subsequently discarded from the final model. A 

possible reason for why distance from coast did not improve model performance may be due to the cluster 

of JHU monitors all residing close to the coast. Because of their proximity to each other, as well as to the 

coast, the JHU monitors do not exhibit enough spatial variability both in terms of PM2.5 levels to impact 

model performance. Furthermore, Lima’s distinct topography and geographic location also lends to the 

spatial distribution of PM2.5 concentrations. As discussed previously, much of Lima’s production of PM2.5 

stems from an aging vehicular fleet located mostly in the densely populated urban areas in and around the 

metropolitan cities. Additionally, PM2.5 is also being produced in rural areas from biomass burning as fuel. 

The spatial pattern of PM2.5 seen in the annual prediction maps may be a result of persistent and prevailing 

coastal winds from the south and southwest pushing pollutants from the coastal cities and trapping them 

against the Andes Mountains in the east and northeast [18]. This phenomenon is similar to that seen in the 

Los Angeles Basin, where the topography is nearly identical to that of Lima with prevailing coastal winds 

blowing pollutants against the Transverse Ranges [57]. Nonetheless, census data indicate that the number 

of residents living above 1000 meters above sea level is relatively small and may not impact future 

epidemiologic studies.   

Consequently, a limitation of this study is the lack of monitors located at higher altitudes to validate 

our results. All monitors are located centrally in the urbanized metropolitan area of Lima, with no monitors 

in the far corners of the North, East, and South in our study domain. Furthermore, all JHU monitors are 
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clustered within a few kilometers of each other in the mid-southern region of Lima, covering 6 of the 2,970 

grid cells in the study domain which may affect their predictive capabilities on the rest of the study domain 

leading to the lack of spatial variability from north to south in the study domain. Additionally, JHU ground 

measurements were collected from late 2011 to early 2013, while the SENAMHI measurements were 

collected from mid-2014 through 2016, which impact model predictive abilities across the years (i.e. 

borrowing prediction capabilities of JHU measurements to estimate PM2.5 in the entire study domain for 

2014 to 2016 and conversely borrowing prediction capabilities of SENAMHI measurements to estimate 

PM2.5 in the entire study domain for 2011 to 2013). Nonetheless, JHU measurements served the purpose of 

increasing our sample size and help to make our model more stable and robust. When JHU measurements 

were not included in our RF model, the CV R2 was 0.67 (RMSE=6.68 µg/m3), and were subsequently kept 

in the model fitting dataset to enhance not only sample size but also to provide additional spatial and 

temporal quality to the ground measurements. Finally, before utilizing and applying the model-derived 

dataset in epidemiological studies, future research will focus on evaluating model forecasting capacity on 

a daily basis. Furthermore, the SENAMHI ground monitors have longer periods of PM10 measurements. 

Future study will also explore converting PM10 measurements to PM2.5 to maximize ground observations in 

the model fitting process [58]. Silva et al. have studied the relationship between PM2.5 and PM10 

concentrations at each of the 10 SENAMHI stations with Pearson correlation coefficients ranging from 0.49 

to 0.72, and that the annual PM2.5/PM10 for the stations range from 0.21 to 0.44, indicating that PM2.5 

concentrations represent 21% to 44% of the total PM10 in Lima [18]. 

CONCLUSIONS 

 

Our satellite-driven PM2.5 exposure model is the first of its kind in both Lima and South America, 

incorporating satellite remote sensing data, meteorological fields from chemical transport models, and land 

use parameters to estimate daily PM2.5 measurements at 1 km resolution, with greater spatial and temporal 

coverage than previous studies conducted in Peru. Predicted daily PM2.5 levels by our model allow for 

construction of consistent long-term historical measurements that bridges the data gaps created by sparse 
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data quality from both the SENAMHI and JHU monitor networks, and would provide strong data support 

for epidemiologic studies that focus on both cardiovascular and respiratory outcomes in Lima. Our future 

research will focus on converting PM10 to PM2.5 from the SENAMHI monitors to maximize ground 

observations across years prior to 2014, and improve model stability and precision, and further improve on 

the accuracy of our predictions for use in urgently needed epidemiologic studies to assess the impact of air 

pollution in Lima, Peru. 
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CHAPTER 1A TABLES AND FIGURES 

 

Table 1. PM2.5 ground monitor information, elevation, and total number of observations at each monitor 

and their respective network. 

Network Station Elevation (m.) # of Measurements 

JHU Station 02 94.6 339 

JHU Station 07 123.6 417 

JHU Station 08 74.2 288 

JHU Station 09 186.0 443 

JHU Station 10 192.1 287 

JHU Station 11 109.2 307 

SENAMHI ATE 372.7 528 

SENAMHI CDM 124.5 544 

SENAMHI CRB 219.5 737 

SENAMHI HCH 301.2 696 

SENAMHI PPD 186.0 778 

SENAMHI SBJ 131.3 581 

SENAMHI SJL 237.5 757 

SENAMHI SMP 58.5 775 

SENAMHI STA 254.3 598 

SENAMHI VMT 328.3 395 

Note: SENAMHI Station is abbreviated from the name of the location. JHU stations collected measurements 

from November 2011 to March 2013 and SENAMHI stations collected measurements from April 2014 to December 

2016. 
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Figure 1. Study domain and location of air monitors. The yellow line details the Lima political 

border while the grey line details the 10km buffer. The magenta circles denote the location, 

distribution, and overall mean PM2.5 concentrations in µg/m3 of the SENAMHI monitor network 

while the purple circles denote the same information for the JHU monitor network. 
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Figure 2. Time series of monthly mean ground PM2.5 measurements in µg/m3 at each monitor 

station for both SENAMHI and JHU network from November 2011 through December 2016. 

SENAMHI Station names are abbreviated from the name of the location. 
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A      B 

 

Figure 3. (A) Density plot of ground and predicted PM2.5 measurements in µg/m3 based on the 

cross-validation of the Random Forest model. (B) Bland-Altman plot of differences between 

ground and predicted PM2.5 in µg/m3 against the means of each pair. This plot shows good 

agreement as 94.5% of observation pairs fall within 2 standard deviations of the mean difference. 
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Figure 4. Importance of each variable in the Random Forest model by percent increase MSE. 
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Figure 5. Time series of monthly mean ground measurements and predicted PM2.5 in µg/m3 based 

on Random Forest model at each monitor station. SENAMHI Station names are abbreviated from 

the name of the location. 
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Figure 6. Annual mean prediction maps of PM2.5 in µg/m3 from the Random Forest model in 

Lima, Peru from 2010 to 2016. 
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SUPPLEMENTAL CHAPTER 1A 

 

1. Supplemental Methods 

Measurements for daily average temperature and relative humidity from Weather 

Underground were correlated with temperature from WRF-Chem and relative humidity from 

ECMWF. In Figure S1, we show the simple correlation matrix between these variables. 

Correlation coefficients between Weather Underground temperature with WRF-Chem 

temperature and ECMWF relative humidity were 0.69 and 0.59, respectively. Correlation 

coefficients between Weather Underground relative humidity with WRF-Chem temperature and 

ECMWF relative humidity were both 0.05, respectively. The correlation coefficient between 

Weather Underground temperature and relative humidity was 0.17.  
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Figure S1. Simple Correlation Matrix between Weather Underground temperature and relative 

humidity with WRF-Chem temperature and ECMWF relative humidity. 

2. Supplemental Results 

Histograms of all the predictors used in the modeling approach can be seen in Figure S2. 

Variables including AOD, surface solar radiation downwards (SSRD, or the solar radiation in the 

downward direction at the surface), NDVI, temperature, PBL, and wind U component were 

considered normally distributed. Distance from monitor to nearest major road, elevation, percent 

urbanization, and population are assumed to be mostly static between years and non-normally 

distributed due to limited number of ground monitors with 6 of the 10 monitors (JHU sites) 

densely clustered within a region. WRF-Chem PM2.5 was right skewed while wind V component 

was left skewed. WRF-Chem albedo, cloud fraction, and pressure are also non-normally 

distribution, which may also be a result of the location and distribution of the monitor stations. 
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Figure S2. Histograms of each predictor variable. 
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In Figure S3, we show the monthly mean prediction maps of PM2.5 in µg/m3 for 2015. 

Overall, concentrations of PM2.5 spatially increases from the month of April and peaks during 

June before decreasing to December, aggreeing with the monthly mean estimates from the 

ground monitors.  
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CHAPTER 1B 

The association between asthma emergency department visits and satellite-derived PM2.5 in 

Lima, Peru 
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ABSTRACT 

Background: Asthma affects millions of people worldwide. Lima, Peru is one of the most polluted 

cities in the Americas but has insufficient ground PM2.5 (particulate matter that are 2.5 microns or 

less in diameter) measurements to conduct epidemiologic studies regarding air pollution. PM2.5 

estimates from a satellite-driven model have recently been made, enabling a study between asthma 

and PM2.5.   

Objective: We conducted a daily time-series analysis to determine the association between asthma 

emergency department (ED) visits and estimated ambient PM2.5 levels in Lima, Peru from 2010 to 

2016.  

Methods: We used Poisson generalized linear models to regress aggregated counts of asthma on 

district-level population weighted PM2.5. Indicator variables for hospitals, districts, and day of 

week were included to account for spatial and temporal autocorrelation while assessing same day, 

previous day, day before previous and average across all 3-day exposures. We also included 

temperature and humidity to account for meteorology and used dichotomous percent poverty and 

gender variables to assess effect modification. 

Results: There were 103,974 cases of asthma ED visits during the study period across 39 districts 

in Lima. We found a 3.7% (95% CI: 1.7%-5.8%) increase in ED visits for every interquartile range 

(IQR, 6.02 μg/m3) increase in PM2.5 same day exposure with no age stratification. For the 0 to 18 

years age group, we found a 4.5% (95% CI: 2.2%-6.8%) increase in ED visits for every IQR 

increase in PM2.5 same day exposure. For the 19 to 64 years age group, we found a 6.0% (95% CI: 

1.0%-11.0%) increase in ED visits for every IQR in average 3-day exposure. For the 65 years and 

up age group, we found a 16.0% (95% CI: 7.0%-24.0%) decrease in ED visits for every IQR 

increase in PM2.5 average 3-day exposure, although the number of visits in this age group was low 

(4,488). We found no effect modification by SES or gender.  

Discussion: Results from this study provide additional literature on use of satellite-driven exposure 

estimates in time-series analyses and evidence for the association between PM2.5 and asthma in a 

low- and middle-income (LMIC) country. 

KEYWORDS 

PM2.5; asthma; time-series; ED visits; remote sensing 
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INTRODUCTION 

According to the 2018 Global Asthma Report (GBA), approximately 339 million people are living with 

asthma worldwide [1]. Asthma results in not only premature deaths but also reduced quality of life in people 

of all ages [2]. Asthma is a chronic disease that affects the airways, especially those of children and the 

elderly due to early-life development of lung function and subsequent decline in function as age increases. 

Since the comparison of prevalence and trends of asthma between countries requires large-scale surveys 

that have not been implemented since the early 2000s, much of the statistics on the burden of asthma are 

provided by the GBA report. The GBA report also notes that asthma prevalence has been increasing in the 

past few decades by as much as 50% per decade [3, 4]. Emergency department (ED) visits due to asthma 

exacerbation incur both direct and indirect economic costs including diagnostic tests, medication, and work 

and school days lost [5]. Although estimates are not available for many of the developing countries, the 

economic burden of asthma  in the United States is between $150 to $3,000 in direct costs per patient, 

totaling more than $56 billion annually [6]. Indirect costs, including lost pay from sickness and lost work 

output from missed school and work days, total $3 billion between 2008-2013 in the U.S. [6]. Air pollution, 

including PM2.5 (particulate matter with an aerodynamic diameter of 2.5 μm or less), has been shown to be 

associated with many cardiovascular and respiratory diseases. Furthermore, epidemiologic studies have 

indicated that exposure to PM2.5 may exacerbate asthmatic symptoms [7-9]. Moreover, past studies on the 

association between air pollution and asthma have relied on ground monitor measurements, and more 

recently, on modeled estimates that are more spatially and temporally resolved [10-12].  

To date, studies on the association between PM2.5 and asthma were largely conducted in developed 

countries with sufficient numbers of daily ground monitoring measurements of PM2.5 [12-15].  However, 

results from these studies may not provide sufficient guidance for low- and middle-income countries (LMIC) 

where ground monitors are scarce and the composition and concentrations of PM2.5 may differ. Lima, Peru 

is the third most populous and one of the most polluted cities in the Americas. Lima’s air pollution is largely 

driven by an aging vehicular fleet in the urban center [16, 17]. Furthermore, particulate matter in Lima may 
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be comprised mainly of black or elemental carbon, nitrogen oxide (NOx), and carbon dioxide from biomass 

burning, and diesel and gasoline combustion [18].  Conversely, composition of PM2.5 in developed countries 

may contain more sulfur due to power generation and industrial sources. PM2.5 in developed countries may 

also have reduced NOx and carbon dioxide due to newer vehicular engines that burn fossil fuels more 

cleanly [18]. As such, PM2.5 concentrations in developed countries tend to be lower than in LMICs. A study 

by Silva et al. reported an annual average PM2.5 of 26 μg/m3 in Lima from 2010 to 2015, which exceeds the 

World Health Organization’s (WHO) annual guidelines of 10 μg/m3 [19]. Sparse daily monitoring data in 

Lima between March 2014 through December 2016 indicate that at least one in ten PM2.5 monitors exceeds 

WHO daily guidelines of 25 μg/m3 on 93% of those days. Furthermore, Lima consistently ranks among the 

top five most polluted urban centers in South America [16]. The spatial distribution of PM2.5 in Lima is 

impacted by local wind conditions. Air pollution generated in more urban districts near the coast is pushed 

and trapped against the Andes Mountains in the east by winds blowing from the west. These high PM2.5 

levels in conjunction with the meteorological and topographical characteristics of Lima pose a major public 

health threat and warrant further investigations on air pollution and adverse health outcomes in Lima, Peru. 

As one of the most rapidly developing urban centers in South America, one-third of the population of 

Peru resides in Lima. Although Peru has a decentralized healthcare system and 60% of Peruvians have free 

medical coverage maintained by the Ministry of Health (MINSA), access to healthcare may be hindered by 

the large gap in health status between the poor and the rich [20]. Recent studies suggests that the asthma 

prevalence among children and adolescents in Lima hovers around 13% while other studies indicate asthma 

prevalence as high as 19.6% for the entire Lima population [21]. Yet, limited monitor measurements have 

made epidemiologic studies of air pollution in Lima difficult, and there exist few studies pertaining to 

asthma and air pollution in Lima. There is one prior cross-sectional study estimating the impact of traffic 

flow on the prevalence of asthma among schoolchildren, and one cohort study over an 8-month period in 

one neighborhood of Lima [22, 23]. Both studies found a significant association between asthma prevalence 

and increased exposure to PM2.5; however, these studies are only representative of relatively short time-
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frames.  

Recently, Vu et al. developed a machine learning satellite-driven model that estimated daily PM2.5 at 1 

km2 spatial resolution, enabling the possibility of conducting time-series analyses which requires daily 

estimates of PM2.5 [24]. The time-series analysis has several advantages including the ability to assess if 

short-term temporal variation in the exposure of interest is associated with changes in the outcome of 

interest [25]. The newly developed exposure model provides daily PM2.5 estimates from 2010 through 2016, 

enabling studies with a longer study period, a finer spatial resolution, a larger population size, and stronger 

statistical power. Several studies have begun to utilize the satellite-derived PM2.5 estimates to study health 

effects in Lima [7, 26, 27]. A time-series conducted by Davila et al. found a significant positive association 

between PM2.5 and acute lower respiratory infections, pneumonia, and acute bronchiolitis/asthma in 

outpatient clinic visits, across different age groups in children up to age five between 2011-2015 [26]. 

Davila et al.’s study considered asthma together with acute bronchiolitis, was conducted using weekly visits 

as the outcome, and only examined children under age five. Studies by Tapia et al. found significant 

associations between PM2.5 and cardiorespiratory outcomes; however, none focused on asthma morbidity 

[7, 27]. Here, we conduct daily time-series analyses to determine the association between counts of asthma 

ED visits from nine Lima hospitals and estimated ambient PM2.5 levels in Lima, Peru from 2010 to 2016 

across all ages. 

METHODS 

Study Domain 

 

Lima is nestled 154 meters above sea level between the Pacific Ocean in the west and the Andes 

Mountains in the east. Home to about 10 million inhabitants (30% of Peru’s entire population), Lima’s air 

pollution stems from an aging vehicular fleet, biomass burning, and distinct topography. The study domain 

includes the 43 districts within the province of Lima as well as the Seaport of Callao, and is divided into 

five different zones (North, South, East, West, and Central) (Figure 1). Since Vu et al.’s model was 
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calibrated to ground stations that are all located below 375 meters in altitude, extrapolation of PM2.5 levels 

to locations above this height may contain large uncertainties. Thus, four districts (Carabayllo, Chaclacayo, 

Cienguilla, and Lurigancho) with an average altitude higher than 570 meters were excluded from this study; 

however, these districts only represented 4% of the total population of the study domain.  

Satellite-derived PM2.5 Estimates 

 

Ground PM2.5 measurements exist from ten monitors in the Servicio Nacional de Meteorología e 

Hidrología del Perú (SENAMHI) network, maintained by Peru’s Ministry of Environment from April 2014 

through December 2016. Ground measurements also exist from six Johns Hopkins University monitoring 

sites from November 2011 through March 2013. However, the total number of daily measurements only 

account for 19% of the days from March 2010 through December 2016 (our study period) where any 

monitor recorded a measurement on a given day. This results in an ineffective coverage of both spatial and 

temporal variability of PM2.5 and therefore would not be sufficient for a time-series analysis. Consequently, 

daily ambient PM2.5 concentrations from March 2010 to December 2016 were estimated by a random forest 

(RF) model developed by Vu et al. The RF model calibrated satellite aerosol optical depth (AOD), 

meteorological parameters from chemical transport models, and land use variables with available ground 

measurements from the two monitoring networks (SENAMHI and Johns Hopkins) [24].  

Utilizing estimates derived from an advanced exposure model allows two advantages. First, there is 

extensive temporal coverage of daily estimates from March 2010 through December 2016, enabling a larger 

sample size and stronger statistical power to detect any association. Second, the modeled PM2.5 estimates 

are also spatially resolved, with one estimate for every 1 km2 of the study domain. Such specifications likely 

reduce many of the uncertainties and biases associated with traditional methods which assign single levels 

of PM2.5 to all of Lima based on a limited number of monitors. Vu et al.’s RF model achieved a model 

training R2 and cross-validation (CV) R2 and root mean square prediction error (RMSE) of 0.70 (5.95 μg/m3 

model training RMSE and 5.97 μg/m3 CV RMSE). These results indicate good fit and stable prediction 

capabilities. Since only the district of residence was available as the address for each participant in the 
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health data, the PM2.5 exposure estimates were aggregated to the district level. Each daily 1 km2 PM2.5 

estimate was multiplied by the population density of the corresponding 1 km2 LandScanTM population grid. 

These grids were then summed within each district and divided by the total population of that district to 

derive a daily population-weighted district-average PM2.5 estimate.  In total, the exposure model provided 

PM2.5 estimates for 2,236 (91%) of the 2,465 days during the study period.  

Health Data 

 

Electronic patient records for ED visits were obtained from nine large public hospitals belonging to the 

Ministry of Health of Peru (MINSA) in Lima during the period of March 2010 through December 2016. 

Information for each ED visit included the patient’s primary International Classification of Disease 10th 

Revision (ICD10) diagnosis code, their district of residence, age, and gender. Asthma cases included ICD10 

codes J45-J46. Validity of the electronic patient visit records were evaluated by comparing a random sample 

of 100 electronic medical records with hardcopies of medical history at each hospital. Since personal 

addresses within districts were not available in the electronic records, the number of visits were aggregated 

to the district level for each day. 

Time-series Analysis 

 

This study utilized a time-series approach through Poisson generalized linear models (GLMs) to 

estimate the associations between daily district-level PM2.5 and counts of ED visits for asthma. An 

advantage of a time-series approach is that only time-varying variables can be assessed as confounders. We 

assessed the effects of same day (lag 0), previous day (lag 1), the day before previous (lag 2), and an average 

across all 3 prior days (3-day avg.) PM2.5 exposure in separate models. Additionally, a categorical variable 

for district was added to control for spatial variability and allows the regression to be based only on temporal 

effects. The district indicator variables also control for spatial autocorrelation in the baseline asthma ED 

visits across all the districts as well as unmeasured factors that may vary between districts [18]. We also 

included indicator variables for each day of the week to account for daily fluctuations in PM2.5, and added 
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parametric cubic splines with monthly knots to control for long-term trends in ER visit rates. We controlled 

for meteorology using same day mean temperature (in linear, quadratic, and cubic forms), and same day 

mean relative humidity. We also included indicator variables for each hospital to indicate if that hospital 

contributed any cases for each day. Count data is usually over or under dispersed, meaning the mean and 

variance of the Poisson counts do not equal each other. Since the variance of the asthma ED visits is larger 

than the mean, we added a dispersion parameter (pscale in SAS) to account for overdispersion in all of our 

models. 

We assessed effect modification by socioeconomic status (SES), gender, and age in our models. To 

assess interaction by SES, we obtained estimates of the percent of households above the poverty level for 

each district from the National Institute of Statistics and Informatics of Peru (INEI). A dichotomous variable 

was created to indicate whether districts were above or below the median poverty percentage (12.9%). To 

assess interaction by age, we stratified the asthma ED visit counts into three age strata: 1) 0 to 18 years, 2) 

19 to 64 years, and 3) 65 years and above. We ran a separate model for each age-specific group, and effect 

modification would be indicated by differences in the observed association of PM2.5 between the different 

age strata. Since 62% of the participants age 18 years and under were also age 6 years and under, we ran a 

separate model for the participants age 6 years and under as a sensitivity analysis. To assess gender as an 

effect modifier, we aggregated the number of asthma ED visits by district by gender and included gender 

as a dichotomous variable. We also aggregated the asthma ED visit counts by gender and district for all 

three age groups as a sensitivity analysis. Finally, we conducted sensitivity analyses using Zero-Inflated 

Poisson (ZIP) models to ensure robust results in the 65 years and above age group when many districts 

carried zero counts due to low ED visits (206 days out of 1,845 days contained zero counts in all districts).  

We conducted the ZIP model sensitivity analyses on all age groups to ensure results did not deviate from 

our original models. Data processing was conducted in R© (version 3.6.2) and model analyses were done 

using SAS v9.4 (SAS Institute Inc., Cary, NC, USA). Best model fit was determined via the lowest Akaike 

Information Criterion (AIC) value within each age strata.  
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RESULTS 

In total, there were 103,974 cases of asthma ED visits in Lima from March 2010 through December 

2016. Table S1 in the supplemental shows the number of asthma ED visits for each district in Lima along 

with the mean and standard deviation of the estimated population-weighted PM2.5 during the entire study 

period. Table S1 also includes the median and interquartile range of the estimated population-weighted 

PM2.5. Figure 2 shows the daily Lima-wide average PM2.5 between 2010 and 2016 as well as the daily 

number of asthma ED visits during the same period. In general, the annual trends of PM2.5 are usually high 

during the winter months of June-August and low during the summer months of December-March of each 

year. Asthma ED visits, on the other hand, follow a biannual pattern and peak during the fall and spring 

months.  

Daily statistics stratified by districts show varying results. Figure 3 shows the time-series of mean daily 

PM2.5 levels in Lima District and Ate District for the entire study period. Both districts show distinct 

seasonal patterns of high values in the summer months and lower values in the winter months. However, 

Lima District is closer to the coast and therefore has a smaller range compared to Ate District located further 

inland towards the Andes Mountains. Figure 4 shows the time-series of daily counts of asthma for all ages 

in Lima District and Ate District. Unlike PM2.5, there does not seem to be a marked trend in seasonal or 

annual patterns of asthma ED visits in Lima during the study period, although in Lima District, asthma does 

appear somewhat higher in the summer. 

Validation of patient electronic medical records against paper copies indicate that the date of the 

patient’s emergency visit had the highest matching rate at 94%. Records with mismatched dates typically 

disagreed by one to two days, with the hardcopy record date occurring earlier than the date in the digital 

record. In contrast, ICD10 diagnosis code had the lowest matching rate at 86%. The discrepancy in ICD10 

code matching rate was largely due to ambiguous diagnoses when patients presented a wide variety of 

symptoms during the visit and were subsequently hospitalized. These non-definitive diagnoses were 
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recorded in the hard copy’s emergency room records, but hospital discharge records matched the electronic 

patient records that we used. Thus, for most cases with discrepancy in diagnosis, we felt the electronic 

records are likely to be correct. Mismatch between electronic and hardcopy patient records for district, age, 

and sex, was a result of missing data in the hardcopy of the patient’s records. 

Table 1 shows the number of asthma ED visits stratified by sex, age groups, and region for the entire 

study period. The vast majority of the visits were from young people ages 18 years and below (73.0%) 

compared to 22.7% for adults ages 19 to 64 years and 4.3% for people ages 65 and older. For all cases of 

asthma ED visits across all age groups, same day (lag 0) PM2.5 levels produced the best fitting model 

between daily air pollution and ED visits compared to models assessing lag 1, lag 2, and 3-day average 

effects. When stratified by age groups; however, we found that lag 0 produced the best fitting model in the 

0 to 18 years age group. For the 19 to 64 years and the 65 years and older age groups, the 3-day average 

produced the best fitting model. All model results are shown in Table 2 in the form of rate ratios (RR) and 

their 95% confidence intervals for an interquartile range (IQR) increase of 6.02 μg/m3 of PM2.5 exposure. 

The overdispersion parameter (pscale) ranged from 1.05 to 1.13 indicating that asthma ED counts were not 

overly dispersed.  

We found that an IQR increase in PM2.5 exposure was associated with a 3.7% increase in asthma ED 

visits. For the 0 to 18 years age group, we found a corresponding 4.5% increase in asthma ED visits and for 

the 19 to 64 years age group, a 6.0% increase for every IQR increase in PM2.5. In the 65 years and above 

age group, we found a 16% decrease in asthma ED visits for every IQR increase in PM2.5 exposure. However, 

these results may be imprecise since the total number of asthma ED visits in this age group for the entire 

study period is relatively low (4,488 across 7 years). A sensitivity analysis for the 65 years and above age 

group using the ZIP model yielded similar results with a 18% decrease in asthma ED visits for every IQR 

increase in PM2.5 exposure. We found no effect modification by SES for all ages combined or specific age 

groups with p-values ranging from 0.07 (18 years and under age group) to 0.29 (19 to 64 years age group). 
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Similarly, we found no effect modification by gender for all ages combined or specific age groups with p-

values ranging from 0.22 (all ages) to 0.32 (18 years and under age group). 

DISCUSSION  

Although many South American countries have set up official air quality monitoring stations, only 104 

cities record measurements for PM10 and 57 cities record measurements for PM2.5 [28]. PM2.5 is smaller and 

can be transported deeper into lung tissue leading to deadlier adverse health consequences. Many of the 

epidemiologic studies pertaining to air pollution and asthma have centered on ozone and children under 18 

since children’s immune systems and lungs are not fully developed at the start of exposure [29, 30]. 

Additionally, studies of particulate matter in South America largely focus on PM10 since measurements are 

more readily available, or are based on estimated particulate matter using chemical models such as CATT-

BRAMS [31-33]. Before the development of the PM2.5 exposure model, epidemiologic studies in Lima 

were hindered by sparse ground and mobile-based measurements and often utilized cross-sectional study 

designs that make causal inference difficult [22, 34]. One of the main strengths of the present study is the 

use of daily PM2.5 estimates at 1 km2 spatial resolution, which enables an investigation of the association 

between asthma and ambient air pollution in not only children but also adults using a time-series approach. 

This study found moderately strong associations between ambient PM2.5 exposure and asthma ED 

visits. The mean population-weighted PM2.5 in Lima was 21.0 μg/m3, while mean population-weighted 

PM2.5 for individual districts ranged from 16.6 μg/m3 in Magdalena del Mar (Central Lima) to 32.3 μg/m3 

in San Juan de Lurigancho (East Lima). This distribution is largely due to strong prevailing winds from the 

Pacific Ocean. Coastal winds drive the air pollution generated in the urban central region of Lima to the 

east and northeast regions against the Andes Mountains. Lima’s topography and meteorological conditions 

lead to a thermal inversion layer that traps air pollution and reduces its dispersion resulting in lower PM2.5 

concentrations near the coast and rising concentrations towards the east. The heterogeneity in the spatial 

distribution of PM2.5 among the districts in Lima indicates that district-specific PM2.5 estimates should be 
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used instead of Lima-wide averages. We conducted a sensitivity analysis using Lima-wide PM2.5 estimates 

compared to district-specific estimates. Results from this sensitivity analysis indicate that the district-

specific associations were stronger, suggesting lower exposure measurement error than the traditional 

assignment of central or nearest monitor measurement or city-wide averages. We also assessed different 

lags including same-day, previous day, day before previous, and an average of the three days since studies 

have shown that the timing of exacerbation of asthma by air pollution varies across ages and geographic 

locations [35-37]. 

We found a 3.7% (95% CI: 1.7%, 5.8%) increase in asthma ED visits per IQR increase in PM2.5 

exposure in all ages. These results are consistent with previous studies that also utilized a time-series 

approach with a similar IQR range [38]. A meta-analysis conducted by Zheng et al. looking at 37 studies 

found a 2.3% (95% CI: 1.5%, 3.1%) increase in asthma cases for a 10 μg/m3 increase in PM2.5 exposure 

[39]. All the studies in that meta-analysis were conducted in developed countries (20 in N. America, 7 in 

Europe, 7 in Asia, and 3 in Australia). These authors reported similar results for all age groups [39].  

We also found a 4.5% (95% CI: 2.2%, 6.8%) increase in asthma ED visits in people ages 18 years and 

under for every IQR change in same day (lag 0) PM2.5 exposure. Our findings are consistent with studies 

conducted in cities in developed countries. A prior multi-city study conducted in Dallas, St. Louis, and 

Atlanta in the United States reported a 2.0% (95% CI: 1.0%, 4.0%) increase in asthma ED visits per 8.0 

μg/m3 increase in PM2.5 exposure in 5 to 18 year-olds [40]. Additionally, Gleason et al. found a 3.0% (95% 

CI: 2.0%, 4.0%) increase in asthma ED visits in children ages 3 to 17 years living in New Jersey, U.S. per 

10 μg/m3 increase in same day PM2.5 exposure [41]. It is expected that same day exposure would result in 

the best model fit for the 0 to 18 years age group as well as the overall model since 73% of the total sample 

size consists of children. Studies have shown that the effects of PM2.5 on asthma exacerbation may last up 

to six days, and that the most significant effects happen during same-day or day-before exposures [42]. The 

greater effect of PM2.5 on asthma exacerbation in children may partly be explained by the biological 
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mechanisms including inflammation in the alveolar region of the lung caused by deposition of finer particles 

[43].  

We found a 6.0% (95% CI: 1.0%, 11.0%) increase in ED visits per IQR change in PM2.5 for adults ages 

19 to 64 years based on the previous 3-day average. Conversely, PM2.5 appeared to be protective for people 

ages 65 years and above using exposure based on the previous 3-day average. Since the 65 years and above 

age group had a very low sample size (4,488 cases across 1,845 study period days and 39 districts), and a 

large number of days contained no cases, sensitivity analyses including ZIP models were conducted to 

ensure robust model performance. Results from the ZIP analyses were similar although less pronounced. 

The protective effect in the oldest age group contradicts previous studies including one by Park et al. that 

reported a cumulative risk greater than one for each lag strata from zero to 15 days per 10 μg/m3 of PM2.5 

exposure in people above 65 years of age. It is possible that the 65 years and above population are less 

likely to present to the ER in general than other ages which may hinder the assessment of the effects of 

PM2.5 on this age group.  Another possibility is that people 65 years and above may have a less responsive 

immune system and more commonly have allergic asthma. Finally, another possibility is that 

misclassification of asthma is more common in the 65 years and above age group. Nonetheless, results for 

the 65 years and above population in this study should be interpreted with caution and that further studies 

are needed to investigate how to parse out asthma from other comorbidities often associated with the older 

adult population [44]. 

 The associations found in this study pertain to PM2.5 levels at or well below the Peruvian permitted 

24h and annual standards, 50 μg/m3 and 25 μg/m3, respectively. The Peruvian standards are also higher than 

the 24h and annual standards set by the WHO, 25 μg/m3 and 10 μg/m3, respectively [45]. These two sets of 

standards highlight the differences in standard levels permissible in a LMIC compared to developed 

countries. Results from this study are consistent with others previously published that utilized the new PM2.5 

exposure estimates. Davila Cordova et al. found a 10% increase in weekly asthma outpatient visits in 

children under 5 years of age from 2001 to 2015 for every 7.1 μg/m3 increase in PM2.5 exposure [26]. Tapia 
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et al. found a 4% increase in all respiratory ED visits for every 6.1 μg/m3 increase in PM2.5 exposure between 

2010 through 2016 [7]. 

A strength of this study is the use of comprehensive health data from MINSA.  We estimate that our 

population from nine large public hospitals represents about half the population of Lima. We think it is 

unlikely that the relationship between air pollution and ER visits for this part of the population differs 

substantially from the rest of Lima, although we have no data to confirm this. Another strength of this study 

is the ability to obtain large datasets for both the exposure and the outcome of interest which cover a long 

study period, something made possible by the ecologic design of our study. While we lack some individual 

level information, such that our study is potentially susceptible to confounding and ecologic bias, the time 

series design compares the same population to itself over time, lessening these concerns. 

There are several limitations in our study. We did not have data to further stratified asthma by 

phenotypes (e.g. allergic, non-allergic, severe, etc.) which may differ in their association with PM2.5.  In 

addition, we did not have data on ozone and NOx (nitric oxide, NO, and nitrogen dioxide, NO2). Ozone and 

NOx have been shown to be significantly associated with asthma, independent of the effects of PM2.5. NOx 

is one of the major chemicals emitted from vehicle exhaust and is a precursor of ozone and the absence of 

both these compounds are a major limitation to this study. Body mass index (BMI) has also been shown to 

be associated with both outdoor air pollution exposure and asthma exacerbation. However, information on 

BMI for each ED visit case was not available and the availability of this information may modify the 

association between air pollution and asthma ED visits in Lima. Although SES is an effect modifier in the 

relationship between PM2.5 and asthma in the literature, this study found no such relationship. One 

possibility might be due to having only limited ecological data on the percentage of the population living 

in poverty in each district. Furthermore, the effects of gender as an effect modifier on the association 

between air pollution and asthma has been unclear and results from our study suggests that gender is not an 

effect modifier in the Lima population. Lastly, another limitation of this study is that health records provided 

only district-level information on residence, not the exact address of residence, and we were unable to fully 
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utilize the benefits of the 1 km2 PM2.5 exposure model. The aggregation of the PM2.5 estimates to the district 

level may further pull the associations toward the null due to misclassification of exposure.  

Past studies have indicated that asthma exacerbation may also be moderated by both indoor and outdoor 

PM2.5 concentrations [46]. However, since Lima is a city with moderate climate, and windows are often 

open, we might expect indoor and outdoor air pollution to be similar [47]. Indoor air can have much higher 

PM2.5 levels in Peru, but this occurs in the countryside where biomass fuel is used for cooking, which is 

very uncommon in Lima [48]. Although we do not have indoor air pollution measurements in Lima, 

differences in outdoor and indoor PM2.5 concentrations may be assessed through a tracer element such as 

sulfur, which has few indoor generating sources [49].  

CONCLUSIONS 

This study is the first to utilize a time-series approach to investigate the association between satellite-

derived PM2.5 estimates and asthma ED visits in Lima, Peru. We found that short-term exposure to ambient 

PM2.5 is associated with moderate increases in asthma ED visits in children under 19 years of age and among 

adults ages 19 to 64 years. Results from this study provide new support for such associations in the literature 

pertaining to LMIC, and also provides evidence for the Peruvian government to investigate the need to 

lower the current PM2.5 standards in Lima. While we do not know whether lowering Peruvian standards for 

PM2.5 would result in different findings for the exposure-response of asthma and PM2.5, our findings indicate 

PM2.5 increases asthma risk. Precautionary principle would argue for lowering PM2.5 levels to lower asthma 

risk as well as risks for other health endpoints linked to PM2.5 in Lima including ER visits for all 

cardiorespiratory diseases, overall mortality, and reproductive outcomes. 

Future studies in LMICs should attempt to obtain more detailed address information for participants 

and improved data on potential effect modifiers like SES and BMI. They should also seek to incorporate 

exposure to ozone and NOx. In Lima specifically, information on the use of emergency rooms for the older 

adults with asthma and possible mid-diagnoses may help further investigate the seemingly protective effect 
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of PM2.5 in this study. Although the generalizability from our results to other LMICs are uncertain, the 

methods from this study hopefully provide guidance on how one can conduct epidemiologic studies in 

developing countries with high air pollution exposure but limited ground monitoring measurements.  
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CHAPTER 1B TABLES AND FIGURES 

 

Table 1. Number of asthma ED visits by sex, age groups, and region for the entire study period. 

Total 103,974 

Sex n (%) 

Males 53,944 (51.9) 

Females 50,030 (48.1) 

Age Group n (%) 

0-18 75,917 (73.0) 

19-64 23,569 (22.7) 

65+ 4,488 (4.3) 

Region n (%) 

Central 28,207 (27.1) 

East 19,958 (19.2) 

North 22,863 (22.0) 

South 20,457 (19.7) 

West 12,489 (12.0) 

Table 2. Comprehensive model results in Rate Ratios (RR) for an interquartile range (IQR) 

increase of 6.02 μg/m3 of PM2.5 for all cases of asthma ED visits and stratified by age groups along 

with the model AIC values. 

All Cases RR (95% CI) AIC 

Lag 0 1.04 (1.02, 1.06) 167,411.5 

Lag 1 1.03 (1.01, 1.05) 167,419.5 

Lag 2 1.02 (1.00, 1.04) 167,422.3 

3-day avg. 1.04 (1.02, 1.06) 167,412.9 

Aged 0-18 Years RR AIC 

Lag 0 1.04 (1.02, 1.07) 143,285.5 

Lag 1 1.03 (1.01, 1.06) 143,294.3 

Lag 2 1.03 (1.01, 1.05) 143,294.6 

3-day avg. 1.05 (1.02, 1.07) 143,287.1 

Aged 19-64 Years RR AIC 

Lag 0 1.05 (1.01, 1.10) 83,374.8 

Lag 1 1.05 (1.00, 1.09) 83,376.0 

Lag 2 1.02 (0.98, 1.07) 83,379.6 

3-day avg. 1.06 (1.01, 1.11) 83,374.1 

Aged 65+ Years RR AIC 

Lag 0 0.86 (0.79, 0.95) 27,863.6 

Lag 1 0.87 (0.80, 0.95) 27,864.6 

Lag 2 0.87 (0.80, 0.95) 27,864.4 

3-day avg. 0.84 (0.76, 0.93)  27,861.7 
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Figure 1. Study domain with the province of Lima and the Seaport of Callao divided into five 

different zones. The locations of the ten SENMAHI ground monitors and six Johns Hopkins 

University (JHU) monitor sites used to develop the exposure model that provided daily estimates 

for the present study are also included.  
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Figure 2. Daily Lima-wide population-weighted average PM2.5 during the study period of March 

2010 through December 2016. The bottom panel shows the total number of daily asthma ED visits 

in all districts during the same time period.  
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Figure 3. Daily population-weighted district-averaged PM2.5 levels in Lima District (top) and Ate 

District (bottom) from March 2010 through December 2016. Lima District is closer to the coast 

and has a lower and smaller range compared to Ate District located further inland. Both districts 

show similar seasonal and annual trends with higher peaks during the winter and lower peaks in 

the summer. 

 

Figure 4. Total number of daily asthma ED visits in Lima District (top) and Ate District (bottom) 

from March 2010 through December 2016. There does not seem to be a significant difference in 

the number and trends of asthma ED visits between coastal and mountainous districts. 
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SUPPLEMENTAL CHAPTER 1B 

 

 

The Province of Lima was divided into 43 districts plus the Seaport of Callao. The districts of 

Carabayllo, Chaclacayo, Cienguilla, and Lurigancho were removed since estimates of PM2.5 from 

the exposure model may contain large uncertainties in high elevation and these districts have an 

average altitude higher than 570 meters. Table S1 summarizes the number of emergency 

department (ED) visits for each district along with the mean and standard deviation of the 

estimated population-weighted district-averaged PM2.5 during the entire study period. 

Table S1. Number of asthma ED visits and population weighted estimated district mean PM2.5 and 

standard deviation in μg/m3 during the study period for each district including the district name, 

and region. 

NAME REGIO

N 

AREA 

(km2) 

COUNT MEAN PM2.5 

± SD 

MEDIAN(25%-75%) 

Barranco Central 3.33 195 17.0 ± 1.5 16.5 (15.5-17.5) 

 

Breña Central 3.32 3,493 17.7 ± 2.1 17.0 (15.7-18.5) 

 

Jesús María Central 4.57 1,871 16.8 ± 2.1 16.0 (14.5-17.6) 

 

La Victoria Central 8.74 1,356 19.4 ± 2.4 18.5 (17.2-20.2) 

 

Lima Central 21.88 7,450 18.5 ± 2.1 17.8 (16.6-19.4) 

 

Lince Central 3.03 1,227 17.6 ± 2.2 16.8 (15.3-18.2) 

 

Magdalena 

del Mar 

Central 3.61 1,941 16.6 ± 1.5 16.1 (15.0-17.1) 

 

Miraflores Central 9.62 252 17.0 ± 1.6 16.6 (15.5-17.6) 

 

Pueblo Libre Central 4.38 3,730 17.0 ± 1.6 16.4 (15.4-17.5) 

 

Rímac Central 11.87 2,244 20.6 ± 2.4 19.8 (18.3-21.6) 

 

San Borja Central 9.96 284 20.0 ± 2.2 18.9 (17.8-20.7) 

 

San Isidro Central 11.10 173 17.0 ± 2.0 18.9 (17.8-20.7) 

 

San Miguel Central 10.72 2,870 17.2 ± 1.2 16.8 (16.0-17.7) 
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Santiago de 

Surco 

Central 34.75 768 20.6 ± 1.8 19.9 (18.9-21.1) 

 

Surquillo Central 3.46 353 17.6 ± 1.7 17.0 (15.8-18.2) 

 

Ate East 77.72 6,066 29.5 ± 4.4 27.7 (25.6-30.7) 

 

El Agustino East 12.54 524 27.6 ± 3.7 26.6 (24.1-28.9) 

 

La Molina East 65.75 342 29.5 ± 3.7 28.1 (26.6-30.3) 

 

San Juan de 

Lurigancho 

East 131.25 11,793 32.4 ± 4.6 30.8 (27.8-34.4) 

 

San Luis East 3.49 269 20.4 ± 2.1 19.6 (18.3-21.4) 

 

Santa Anita East 10.69 964 29.1 ± 5.0 27.5 (24.4-30.8) 

 

Ancón North 299.22 601 22.1 ± 2.4 21.7 (20.1-23.5) 

 

Comas North 48.75 1,357 27.8 ± 3.3 26.6 (24.5-28.8) 

 

Independenci

a 

North 14.56 2,240 23.5 ± 2.5 22.7 (21.2-24.5) 

 

Los Olivos North 18.25 2,471 19.7 ± 2.3 18.8 (17.4-20.5) 

 

Puente 

Piedra 

North 71.18 8,518 27.3 ± 2.8 26.4 (24.8-28.4) 

 

San Martín 

de Porres 

North 36.91 7,555 18.6 ± 2.2 17.8 (16.6-19.3) 

 

Santa Rosa North 21.50 121 21.2 ± 2.0 20.4 (19.3-21.9) 

 

Chorrillos South 38.94 1,097 18.0 ± 1.2 17.6 (16.9-18.6) 

 

Lurín South 181.12 240 18.9 ± 1.4 18.4 (17.3-19.5) 

 

Pachacamac South 160.23 343 27.8 ± 1.3 27.4 (26.3-28.5) 

 

Pucusana South 37.83 29 17.9 ± 1.0 17.5 (16.9-18.5) 

 

Punta 

Hermosa 

South 119.50 19 18.8 ± 1.4 18.9 (18.0-20.7) 

 

Punta Negra South 130.50 17 19.0 ± 1.3 19.0 (18.0-21.0) 

 

San Bartolo South 45.01 22 22.5 ± 3.5 20.1 (19.0-22.6) 

 

San Juan de 

Miraflores 

South 23.98 7,742 20.5 ± 2.0 19.9 (18.6-21.3) 
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Santa María 

del Mar 

South 9.81 3 18.0 ± 1.3 17.9 (17.0-18.7) 

 

Villa El 

Salvador 

South 35.46 3,369 19.7 ± 2.0 19.0 (17.5-20.4) 

 

Villa María 

del Triunfo 

South 70.57 7,576 25.0 ± 2.2 24.2 (22.8-25.8) 

 

Callao West 147.85 12,489 18.7 ± 1.6 18.2 (17.3-19.4) 
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CHAPTER 2 

Application of geostationary satellite and high-resolution meteorology data in estimating 

hourly PM2.5 levels during the Camp Fire episode in California 

Bryan N. Vu, Jianzhao Bi, Wenhao Wang, Amy Huff, Shobha Kondragunta, Yang Liu 
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ABSTRACT 

Wildland fire smoke contains large amounts of PM2.5 that can traverse tens to hundreds of kilometers, 

resulting in significant deterioration of air quality and excess mortality and morbidity in downwind regions. 

Estimating PM2.5 levels while considering the impact of wildfire smoke has been challenging due to the 

lack of ground monitoring coverage near the smoke plumes. We aim to estimate total PM2.5 concentration 

during the Camp Fire episode, the deadliest wildland fire in California history. Our random forest (RF) 

model combines calibrated low-cost sensor data (PurpleAir) with regulatory monitor measurements (Air 

Quality System, AQS) to bolster ground observations, Geostationary Operational Environmental Satellite-

16 (GOES-16)’s high temporal resolution to achieve hourly predictions, and oversampling techniques 

(Synthetic Minority Oversampling Technique, SMOTE) to reduce model underestimation at high PM2.5 

levels. In addition, meteorological fields at 3 km resolution from the High-Resolution Rapid Refresh model 

and land use variables were also included in the model. Our AQS-only model achieved an out of bag (OOB) 

R2 (RMSE) of 0.70 (13.93 μg/m3) and cross-validation (CV) R2 (RMSE) of 0.71 (17.40 μg/m3), our 

combined AQS and PurpleAir weighted model achieved OOB R2 (RMSE) of 0.87 (9.20 μg/m3) and CV R2 

(RMSE) of 0.76 (12.89 μg/m3), and our RF+SMOTE model achieved OOB R2 (RMSE) of 0.92 (10.37 

μg/m3) and CV R2 (RMSE) of 0.81 (17.90 μg/m3). Hourly predictions from our model may aid in 

epidemiological investigations of intense and acute exposure to wildland fire PM2.5. 
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PM2.5; GOES16; wildland fire; remote sensing; AOD; SMOTE, Weighted Random Forest 
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INTRODUCTION 

Smoke from wildland fires can traverse tens to hundreds of kilometers away, carrying harmful pollutants 

that can affect adjacent and downwind communities resulting in excess morbidity and mortality. Although 

composition of wildland fire smoke is dependent on fuel type, temperature, and wind conditions, smoke 

from combustion of biomass is generally a mixture of particulate matter, carbon dioxide, water vapor, 

carbon monoxide, other organic chemicals, and trace minerals [1]. The size of the particulate matter from 

smoke emitted directly from wildland fires ranges considerably; however, larger particles are likely to 

deposit in the near field while smaller particles may remain in the atmosphere for days before depositing 

downwind. Particulate matter, especially PM2.5 (particulate mass of particles 2.5 μm or smaller in diameter), 

composes 90% of total particle mass emitted from wildland fires and has been linked to multiple adverse 

health outcomes including respiratory and cardiovascular diseases [2-4].  

The health effects of PM2.5 have been widely documented in studies involving asthma, heart diseases, 

and premature death, and there is growing evidence that toxicity from particles generated by wildland fires 

differ from those emitted from other sources [5-8].  For example, Leibel et al. found that the mean daily 

age-adjusted rate of respiratory emergency departments per 10,000 children in communities located 

downwind of a wildland fire increased from 55 in the week before the fire to 75 during the week of the fire 

[9].  Stowell et al. found that a 1 μg/m3 increase in wildland fire smoke PM2.5 was associated with an odds 

ratio of 1.08 in asthma emergency department visits yet found null associations with non-smoke PM2.5 [10]. 

Furthermore, studies have also indicated that not only prolonged but also acute exposure to PM2.5 results in 

long lasting effects including persistent coughs, wheezing, and exacerbation of previous conditions such as 

asthma [2].   

Human activities including energy production, industrial activities, and land-use change have led to 

increased greenhouse gas emissions and consequently climate change. The Center for Research on the 

Epidemiology of Disasters reported 315 natural disasters globally in 2018 relating to climate change, with 
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10 of those cases being wildland fires [11]. Climate change has also rendered California’s once temperate 

climate drought stricken while the dried forests act as the perfect fuel once a fire ignites. The Camp Fire, 

which originated in Butte County in Northern California on November 8 and lasted for 17 days, for 

example, is considered the deadliest wildland fire in California history. It resulted in 85 casualties, 153,336 

acres burnt, 18,804 structures destroyed, and completely destroyed two towns [12]. Economic losses from 

the Camp Fire stands at $16.65 billion, including $16.5 billion in insured losses and $150 million in 

firefighting costs [13]. The Camp Fire not only resulted in massive economic losses, but may also result in 

increased long-term adverse health effects. Due to the intensity and duration of the fire, prolonged and 

cumulative exposure to fire smoke may result in progressive decline in lung function and increases the 

overall lifetime risk of heart disease and cancer. Additionally, California is marked by annual Santa Ana 

winds (SAWs) in the early fall, which is associated with the state’s most damaging wildland fires. Studies 

have suggested that under normal conditions, SAWs improve visibility inland by sweeping polluted air 

masses out to sea, resulting in lower PM2.5 levels near the coast [14]. However, in the presence of fires 

upwind, SAWs have been shown to increase PM2.5 in areas downwind of the fires [9, 14]. Due to the ability 

of fine particles in smoke to traverse great distances and the harmful effects previously documented in the 

literature, further research is needed to model the spatiotemporal trends of wildland fire PM2.5.  

 PM2.5 exposure assessments based solely on measurements from ground monitors such as the 

Environmental Protection Agency (EPA) Air Quality System (AQS) are often hindered by inadequate and 

uneven spatial coverage of the ground measurements. Recent studies also turned to real-time and near real-

time PM2.5 sensors to improve the coverage of ground measurements [15]. Studies estimating the PM2.5 

concentrations during wildland fire episodes have relied on ground monitors, chemical transport models 

(CTMs), and more recently, remotely sensed data including satellite aerosol optical depth (AOD). AOD is 

a unitless measure of light extinction within the atmospheric column, and previous studies have shown its 

efficacy in predicting surface level PM2.5 [16-20]. Various data fusion approaches have been proposed to 

model PM2.5 from wildland fire smoke [21-24]. For example, fusing ground measurements with satellite 
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remote sensing data can significantly expand the scope of PM2.5 exposure modeling without substantially 

compromising the accuracy of the fused data, but is limited by the coverage of satellite data. Merging 

ground observations with CTM simulations tends to improve spatiotemporal coverage, and CTMs can also 

provide speciation information useful in targeting wildland fire smoke PM from other sources. However, 

the quality of the merged data in areas with limited numbers of monitors depends heavily on the accuracy 

of CTM simulations, which often contain large errors during fire events [25].   

 In addition to estimating daily PM2.5 concentrations, the rapidly changing characteristics of fire 

smoke motivates the assessment of PM2.5 concentrations at the hourly level. For example, Marsha and 

Larkin relied on previous days’ satellite AOD and fire radiative power (FRP) to make hourly predictions at 

10 km resolution. Their model achieved an R2 of 0.78 and a normalized RMSE of 4.9% [26]. Sanchez-

Balseca and Perez-Foguet used dynamic linear models that employ Gaussian Field principles to model 

hourly PM2.5 concentrations in wildland fire events [27]. However, this approach has several limitations 

including the need for a sizable amount of ground monitors to both calibrate and validate the model, and 

the requirements of the presence of monitoring stations that acquire both PM2.5 and PM10 measurements to 

produce PM2.5/PM10 ratios needed in the modeling process. Li et al. used the Hybrid Single Particle 

Lagrangian Integrated Trajectory (HYSPLIT) model, coupled with emissions inventory and meteorological 

parameters to forecast hourly PM2.5 concentrations during the Camp Fire episode [28]. The researchers 

configured the model with various combinations of biomass burning emissions data sets, plume rise 

schemes, meteorological inputs, mixing layer depth options, and vertical motion options to produce an 

ensemble that predicted PM2.5 at 0.1° resolution [28]. However, the spatial resolution of this study is 

relatively coarse, and the ensemble model sometimes estimated PM2.5 levels 10 times higher than the EPA 

AQS measurements during the first 6 days of the fire and underestimated PM2.5 levels for the rest of the fire 

period, indicating large uncertainties. Such studies do not sufficiently account for the fine spatial and 

temporal resolution necessary to assess adverse health effects associated with wildland fire smoke.   
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With the advent of the Geostationary Operational Environmental Satellite-16 (GOES-16), satellite 

remotely sensed data including AOD, aerosol detection parameters, and fire spot characterization variables 

are now available at the sub-hour level to aid in modeling processes of events that will benefit from the aid 

of fine-scale temporal variables [29]. Data from GOES-16 have also been successfully utilized in estimating 

daily and hourly ambient PM2.5 [30]. Recent studies have also shown the effectiveness of low-cost air 

quality sensors as promising supplements to regulatory ground monitors, by bolstering the number and 

coverage of ground observations during model training [31, 32]. For example, PurpleAir is a network of 

low-cost sensors providing continuous measurements of ambient PM2.5 and has been shown to accurately 

report air pollution measurements after calibration with gold-standard collocated monitors [33]. In this 

study, we reported a machine learning modeling method in conjunction with the Synthetic Minority Over-

Sampling Technique (SMOTE) to fuse satellite remote sensing data, assimilated meteorological 

parameters, land use variables, and EPA AQS and PurpleAir measurements. The resulting model was used 

to estimate hourly PM2.5 levels at 3x5 km2 resolution during the Camp Fire period in California. 

METHODS 

Study Domain 

California is the third largest and the most populous state with 39 million residents spanning 423,970 

km2 of the United States’ western region bordering the Pacific Ocean. The two most populous urban centers, 

the Greater Los Angeles Area in the south and the San Francisco Bay Area in the north, are the second and 

fifth largest metropolitan areas in the U.S., respectively. We created a modeling grid at 3x5 km2 spatial 

resolution for spatial alignment of all model parameters, and our study region includes 40,578 grid cells. 

There are 108 AQS air monitoring stations providing hourly measurements and 2,090 available outdoor 

low-cost PM2.5 sensors from the PurpleAir network. Figure 1 shows the study domain and location of 

ground monitors from the AQS and PurpleAir sensors. 

Ground PM2.5 Data 
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     Hourly ground PM2.5 measurements were taken from the AQS network and the PurpleAir sensors from 

October 1 through November 30, 2018. AQS is a database of ground monitoring measurements maintained 

by the EPA (https://www.epa.gov/aqs) with 157 possible stations providing daily measurements in 

California, 108 of which provided 41,947 hourly measurements during the study period. PurpleAir is a 

citizen-based, real-time low-cost PM sensor network started in 2015 (https://www.purpleair.com/) with 

over 8,000 sensors worldwide, measuring PM1.0, PM2.5 and PM10. PurpleAir measurements in this study 

were calibrated through a method previously published, and subsequently 848 sensors in California 

contributed 207,103 hourly measurements during the study period [32]. Because AQS measurements were 

considered gold-standard in this study compared to PurpleAir, PurpleAir measurements were deleted in 

grid cells that contain both AQS and PurpleAir and only AQS measurements were kept. Furthermore, grid 

cells with more than one AQS or PurpleAir measurements were averaged to maintain one measurement per 

grid cell. On average, AQS monitors only provided six hourly measurements per station per day; therefore, 

the addition of PurpleAir measurements supplemented more ground measurements to ensure better model 

fitting results. 

Satellite Data 

GOES-16 is a geostationary weather satellite operating in the east position at 75.2°W and provides high 

spatial and temporal resolution imagery through 16 spectral bands at visible and infrared wavelengths using 

Advanced Baseline Imager (ABI) [34]. Launched in November of 2016, GOES-16 was fully operational in 

December 2017 providing many different products at 2 km resolution near GOES-16’s final longitude 

(75.2º W), and up to 5 km in Western US. We collected AOD, aerosol detection binary variables, and fire 

spot detection variables during October and November of 2018. In our study period, fire spot detection and 

AOD products are available every 5 minutes and aerosol detection product is available every 15 minutes 

for the continental U.S. Aerosol detection product includes binary aerosol, dust, and smoke mask values. 

Fire (hot spot characterization) product provides four values: fire mask, a quantitative flag characterizing 

https://www.epa.gov/aqs
https://www.purpleair.com/
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the quality of a particular pixel; temperature in kelvin; area in square kilometers; and radiative power in 

megawatts. All products were aggregated to the hourly level.  

Meteorological variables 

The High-Resolution Rapid Refresh (HRRR, https://rapidrefresh.noaa.gov/hrrr/) is a real-time 

atmospheric model run by the NOAA National Centers for Environmental Prediction that assimilates radar 

data every 15 min over a 1-hour period to add further detail to the data provided by the hourly output from 

the Rapid Refresh model. HRRR has been shown to accurately simulate the observations of near-surface 

air and dew-point temperature [35]. Furthermore, HRRR has been used to evaluate near-surface wind, 

temperature, and humidity conditions during wildland fire episodes, and when used in conjunction with 

GOES estimates, it proved beneficial in improving model performance in calculating geophysical processes 

such as actual evapotranspiration [36]. In this study, we obtained hourly meteorological parameters 

including 2-meter temperature, surface pressure, u- and v- wind, planetary boundary layer height, and 

relative humidity at 3-km spatial resolution from HRRR. HRRR data were joined to the GOES-16 grid 

through a nearest neighbor match while ensuring that no two HRRR data points were joined to the same 

GOES-16 grid cell. 

Ancillary variables 

Land-use parameters including percentage cultivated, barren, shrub, etc. were obtained from the 2011 

National Land Cover Database at 30-meter resolution (https://www.mrlc.gov/), elevation information was 

obtained from the Advanced Spaceborne Thermal Emission and Reflection radiometer Global Digital 

Elevation (https://asterweb.jpl.nasa.gov/), and distances to nearest primary and secondary roads were 

computed from the U.S. Census TIGER/Line Shapefiles (https://www.census/). A convolutional layer was 

calculated for each ground PM2.5 measurement by taking an inverse-distance weighted average of the 

nearest five measurements from the same day and hour to enhance spatial and temporal correlation between 

ground measurements. 

https://rapidrefresh.noaa.gov/hrrr/
https://www.mrlc.gov/
https://asterweb.jpl.nasa.gov/
https://www.census/
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Modeling Approach 

A random forest (RF) model is a supervised machine learning ensemble method that aggregates sets of 

decision trees, or predictions, calculated from the best subset of predictors [37]. The RF model works by 

selecting a bootstrap sample from all observations with replacement, and subsequently selects the best set 

of predictors that provides the best split at each node. Advantages of the RF model include its accuracy in 

learning and classifying features, ability to include large numbers of predictors, and ability to provide 

variable importance measures that explain the relative contribution of each predictor. Furthermore, 

individual weights may be assigned to each observation in instances when certain observations are favored 

over others (e.g., higher accuracy). The RF model has two major hyper-parameters to tune, number of 

decision trees to grow (ntree), and the number of predictors randomly tried at each split (mtry).   

We trained the RF model through three different approaches. In the first approach, a RF model is trained 

with AQS-only measurements. The second approach incorporated PurpleAir measurements to bolster the 

number of ground observations and enhance measurements of high PM2.5 concentrations near the Camp 

Fire site. In this RF model, full weight is given to AQS measurements and 15% weight is given to PurpleAir 

measurements. The lower weight of the PurpleAir measurements reflects the higher measurement errors of 

PurpleAir sensors as well as the lack of consideration in spatial representativeness of this citizen-based 

network. A more detailed discussion was provided elsewhere [32]. Because high PM2.5 concentrations 

account for only a small fraction of the AQS and PurpleAir data, the third approach applies a Synthetic 

Minority Over-sampling Technique (SMOTE) to the model training dataset to enhance model performance 

at high PM2.5 levels. SMOTE is a statistical technique that generates synthetic samples using information 

about the minority class available in the training data [38]. In this study, we set the minority class as any 

ground measurement at or above 100 μg/m3 (2% of the total number of ground observations), nearly three 

times the daily U.S. national ambient air quality standard (NAAQS) of 35 μg/m3. For each measurement in 

the minority class, the SMOTE function synthetically produces an observation along with its predictors 

from the five nearest neighbors [38]. Due to the small number of minority observations in our model training 
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dataset, the application of SMOTE enhances the distribution of ground measurements and does not skew 

the distribution in any way. All three model approaches included the same predictors shown in Table S1 

and the same mtry (set as default, the square root of the number of predictors rounded up, 6) and ntree (500). 

Finally, a 10-fold cross-validation (CV) technique is implemented in all three approaches to evaluate model 

performance. The 10-fold CV works by randomly dividing the total number of observations into 10 

segments. Measurements from nine segments are used to train the model and the remaining segment is used 

to test predictions. This process is repeated 10 times to achieve predictions for all measurements [39, 40]. 

All data analyses were conducted in R Studio version 3.6.2 and mapping was conducted in ArcGIS version 

10.7.1. 

RESULTS 

Panels A, B, and C in Figure 2 show the scatter plots of model predicted vs. measured PM2.5 

concentration for the 10-fold cross-validation from the three models, A) AQS-only Model, B) Combined 

AQS and Weighted PurpleAir Model, and C) SMOTE applied to Combined AQS and Weighted PurpleAir 

Model. Panels D, E, and F in Figure 2 show the same CV scatter plots of the three models; however, 

restricted to measurements below 50 μg/m3 since roughly 94% of all observations are under this level in all 

models. 

AQS-only Model  

In total, there were 40,399 grid-averaged hourly AQS observations spanning the modeling period, 

between October 1 and November 30, 2018 with PM2.5 ranging from 0.1 to 657 μg/m3. The model out of 

bag (OOB) R2 is 0.84 (RMSE = 12.00 μg/m3), and the 10-fold CV R2 (RMSE) is 0.85 (12.16 μg/m3). 

Variable importance ranking from this RF model indicates that aside from the convolutional layer, 

elevation, pressure, and percent herbaceous land cover were the top three predictors. GOES-16 AOD is the 

12th most important predictor while detection of aerosol, detection of smoke, and smoke mask ranked 21st, 

22nd, and 27th, respectively. HRRR variables including pressure and planetary boundary layer height 
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(PBLH) rank 1st and 8th, respectively. Other HRRR variables such as friction velocity, wind components, 

and radiation flux vary after rank 10. 

AQS + Weighted PurpleAir Model 

In total, there were 246,181 grid-averaged hourly combined AQS and PurpleAir observations during 

the study period with ground level PM2.5 measurements ranging from 0 to 707 μg/m3. The model OOB R2 

is 0.86 (RMSE = 9.52 μg/m3) showing some improvement when PurpleAir measurements are included both 

in terms of model fit and residual error, likely since PurpleAir measurements captured more higher values. 

The 10-fold CV resulted in an R2 (RMSE) of 0.86 (9.60 μg/m3). Variable importance ranking from this 

model is similar to the AQS-only Model, with the convolutional layer, pressure, nearest distance to roads 

and elevation being the top three predictors. GOES-16 AOD ranked 14th highest in importance while 

detection of aerosol, smoke, and smoke mask ranked 22nd, 26th, and 29th, respectively. Similar to the AQS-

only Model, pressure and PBLH rank 1st and 8th, respectively.  

AQS + Weighted PurpleAir + SMOTE Model 

Of the 246,181 hourly combined AQS and PurpleAir PM2.5 observations, 4,819 are at or above the 100 

μg/m3 minority cutoff. The SMOTE application produced an additional two synthetic observation for each 

minority observation, resulting in 255,819 total grid-averaged hourly combined AQS and PurpleAir 

observations. The OOB R2 is 0.92 (RMSE = 10.44 μg/m3), and 10-fold CV R2 (RMSE) was 0.91 (9.23 

μg/m3), indicating a substantial increase in model performance compared to the first two models due to the 

application of SMOTE. However, since AQS measurements were given full weight, the RMSE increased 

slightly. Variable importance shows that aside from the convolutional layer, nearest distance to roads, 

pressure, and 10-meter u-wind component were the most important predictors in this model. GOES-16 

AOD ranked 9th highest important while smoke mask, detection of smoke and detection of aerosol ranked 

14th, 25th, and 26th, respectively. In all three models, the binary dust detection, area, temperature, and 

radiative power of fire spot variables consistently ranked lowest in the models and were consequently 
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excluded from all models. In this model, HRRR pressure ranked 2nd, 10-meter U-wind component and 

PBHL ranked 4rd and 5th, respectively, while 10-meter V-wind component ranked 10th. Table S2 of the 

supplemental shows the variable importance ranking for all three models. 

As a sensitivity analysis, predictions from all three models were made for the same hour on 

the day the Camp Fire reached its peak, November 16th, to assess model performance and 

prediction capabilities. Figure 3 shows the estimated PM2.5 at noon on November 16th. Although 

the shape of the smoke plumb does not change, PM2.5 estimates increased with the addition of 

PurpleAir and SMOTE. 

Hourly predictions were made for the extent of California in grid cells where and when all 

predictors are present. Figure 4 shows an example of hourly PM2.5 predictions by the weighted RF 

and SMOTE model on November 16, the day ground measurements recorded the highest levels of 

PM2.5 from 6am to 4pm PST. Furthermore, comparison of hourly prediction maps with the true 

color composite images from MODIS, suggests predictions from the weighted RF and SMOTE 

model largely aligns with the true-color images of the smoke plumes. Figure 5 shows this 

comparison with images at noontime on November 8 and November 16. Minor differences in the 

true-color images and our prediction maps could be caused by our model capturing the PM2.5 levels 

on the surface rather than the column-integrated smoke plumes captured in the satellite image. 

DISCUSSION 

In this study, we developed a model to predict surface wildland fire PM2.5 concentrations during the 

Camp Fire using three approaches.  To the best of our knowledge, this is the first study that integrated low-

cost sensor data to bolster ground observations and GOES-16 satellite remote sensing data to achieve high 

temporal resolution concurrently. To date, many studies documenting the effects of wildland fires on human 

health have focused on exposures ranging from days to months, often limited by the lack of fine-temporal 
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exposure estimates [41-43]. Especially in California, where wildland fires seem to ravage both the northern 

and southern regions repeatedly each year with growing intensity as climate change progresses, evidence-

based guidelines regarding vulnerable populations are needed to mitigate risks and parse out the adverse 

health effects of wildland fire smoke from those caused by other environmental hazards [44].   

Results from the AQS-only Model show that using EPA’s AQS ground measurements alone to model 

wildland fire PM2.5 may underestimate PM2.5 levels. Model performance is adversely affected by lack of 

extensive hourly measurements as well as the lack of AQS monitors near the Camp Fire site to pick up high 

concentrations. Although AQS monitors are relatively evenly distributed across California, there are only 

a few located near the site of the Camp Fire. Integrating PurpleAir measurements increased ground 

observations by over 500%, bolstered the number of measurements at and around the Camp Fire, and 

improved both model fitting OOB R2 and RMSE. Even though the model fitting OOB R2 only improved 

by 2%, the intercept reduced by 23% from 1.62 to 1.25. Furthermore, the average PM2.5 prediction based 

on the AQS-only Model on November 16th at noon was 30.6 μg/m3while the average PM2.5 prediction from 

the AQS + PurpleAir Model on the same day and time was 34.3 μg/m3 suggesting that the addition of 

PurpleAir measurements reduced the amount of underestimation from the AQS-only model. However, 

these improvements are only minimal since there are still uncertainties in the low-cost sensor measurements 

due to the light-scattering principle associated with laser particle counters and manufacturing calibration 

and maintenance. For example, uncertainty may be present in the monitors recording incorrect particle 

counts and in the conversion between particles counts and mass concentrations. Furthermore, sensors may 

degrade over time. As a result, data quality may differ based on sensor location and condition. Nonetheless, 

calibration by Bi et al. indicates that the density of the PurpleAir network partially offsets the impact of 

measurement errors. As a result, a weight of 15% is given to the PurpleAir measurements, allowing AQS 

measurements to still have a major role in model training. Predictions in Figure 3 show that the addition of 

PurpleAir intensified the PM2.5 estimates in the north where the fire originated and also in the west due to 

Santa Ana winds blowing the smoke from east to west. Although the addition of PurpleAir measurements 
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augmented the number of high values, the model still underestimates at high PM2.5 levels. Nonetheless, the 

addition of PurpleAir measurements enables us to calibrate the model for more accurate predictions 

throughout the entire study domain, especially where the fire originated and downwind from it. 

 Due to the nature of modeling a wildland fire event in a large domain, the distribution of the ground 

measurements is right-skewed since the majority of monitors and subsequently their measurements are 

outside the vicinity of the fire smoke. To compensate, we applied the SMOTE technique to artificially 

inflate the high values and improve model performance. The duplication of measurements at or above 100 

μg/m3 ensures that these measurements are more wildland fire-related. Additionally, SMOTE synthetically 

duplicates the high observations by inverse weighting the nearest five neighbors which also ensure that 

these duplicates have similar predictors without being exactly identical.  The number of high measurements 

after duplication remains well below 6% of the total number of observations, which we deem as not 

significantly altering the original distribution.  There were 3.7 times more PurpleAir measurements at or 

above the minority cut off compared to AQS and the implementation of SMOTE improves model 

performance even though PurpleAir measurements were still given only 15% weight compared to AQS. 

We utilized a 10-fold cross-validation method instead of a spatial cluster method reported in a few recent 

PM2.5 exposure modeling studies [39, 40]. Monitors neighboring the wildland fire will inevitably measure 

higher PM2.5 levels compared to monitors across the study domain, and these monitors will also measure 

high values consistently through the extent of the wildland fire period. Consequently, the traditional 10-

fold CV was chosen over a spatial cluster CV to reduce the inability of monitors outside of the fire smoke 

to predict measurements in and around the wildland fire. Although CV results suggest that all three models 

underestimate the high levels of the wildland fire PM2.5, predictions from each model indicate the need to 

incorporate both PurpleAir measurements and the SMOTE technique. Our full model captures both the 

spatial extent and the intensity of the smoke plume produced by the wildfire that the AQS-only Model 

inadequately achieved. 
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 In the end, the model that utilized both AQS and PurpleAir measurements with the incorporation 

of a weighted sampling scheme and SMOTE is our best performing model.  By utilizing low-cost sensor 

measurements from PurpleAir, we are able to expand both the spatial and temporal coverage of the ground 

measurements to improve model calibration and performance in predicting wildland fire PM2.5.  Using a 

machine learning model with a weighted sampling scheme ensures that the gold-standard bearer AQS are 

still prominently featured in the models and the implementation of SMOTE allowed us to slightly inflate 

high levels to reduce model underestimation. To date, few studies exist that predict wildland fire PM2.5 due 

to lack of ground measurements and good predictor variables. A recent model by Li et al. utilized deep 

learning techniques to predict weekly PM2.5 during a 10-year timespan between 2008-2017 in California 

using MAIAC AOD, variables from MERRA-2, and meteorological and land cover parameters [45]. 

Although their model did not focus specifically on wildland fire PM2.5, it achieved a similar training R2 of 

0.94 and validation R2 of 0.82 [45], indicating that our model is able to perform sufficiently compared to 

those with similar predictors in the same region. Furthermore, our model is capable of estimating hourly 

PM2.5 levels during the Camp Fire episode. Therefore, results from our model will enable researchers to 

investigate the spatial extent at which wildland fire smoke PM2.5 traverses as well as the acute temporal 

fluctuations in concentrations and link this exposure to adverse health outcomes targeted at communities 

downwind of the event.   

Comparison of our hourly predictions to true color composite images from MODIS Aqua show very 

similar smoke plumes in spatial extent, indicating good model performance. Although predictions are 

limited to sunlight hours due to the availability of AOD and other GOES-16 predictors used in this study, 

our model is able to pick up the heterogeneity in PM2.5 distribution even inside the smoke plume. However, 

there are a few limitations. First, GOES-16 is the east position geostationary satellite with a skewed view 

of the Pacific West. As a result, many of the quality flags associated some of the variables such as AOD 

suggests low quality. A possible reason for the low quality AOD is the geometrics of the geostationary 

satellite [46].  Unfortunately, GOES-17, the west position geostationary satellite was not suitable for 



79 
 

scientific analyses until January of 2019 after the Camp Fire event. Furthermore, there is also uncertainty 

if GOES-16 is able to accurately pick up AOD directly inside the smoke plume due to the heavy aerosol 

loading. Therefore, we are unsure if the missingness is directly due to failure to retrieve an AOD value or 

if the true AOD value is higher than GOES16’s capable range. Future research may consider using 

GOES16’s visible band reflectance as input instead of AOD. Second, although the integration of SMOTE 

within the model improves the OOB R2; the implementation of such an approach is arbitrary. Other methods 

to deal with imbalanced data include under-sampling; however, removing instances in the majority class 

when two or more observations are similar may result in loss of information.  

CONCLUSIONS 

The present study is the first to incorporate high temporal resolution geostationary satellite data with 

low-cost sensors to model wildland fire PM2.5 during a major wildland fire, the Camp Fire episode in 

California. We found that only using ground observations from EPA’s AQS network alone was not 

sufficient for modeling hourly PM2.5, and that the addition of PurpleAir low-cost sensors not only bolstered 

our number of observations but also improved the R2 and RMSE.  Furthermore, the implementation of 

SMOTE to synthetically enhance high values in our model training dataset further enhanced the model’s 

ability to estimate high PM2.5 values. Predictions from our model may be used for epidemiological studies 

investigating both long-term cumulative exposure to wildland fire PM2.5 but also acute intense short-term 

exposure as well. 
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CHAPTER 2 TABLES AND FIGURES 

 

 

Figure 1. Study domain of California. EPA AQS monitors are pictured in red, PurpleAir sensors are in 

blue.  
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Figure 2. Panel of density scatter plots of full model predicted vs. measured PM2.5 concentration from the 

three models, (A) AQS-only Model, (B) AQS + Weighted PurpleAir Model, and (C) AQS + Weighted 

PurpleAir + SMOTE Model, and 10-fold cross-validation predicted vs. measured PM2.5 concentration 

from the three models at lower PM2.5 levels (<50 μg/m3), (D) AQS-only Model, (E) AQS + Weighted 

PurpleAir Model, and (F) AQS + Weighted PurpleAir + SMOTE Model. 
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Figure 3. Predictions from all three models (AQS-only, AQS + PurpleAir, AQS + PurpleAir + SMOTE) 

on 12:00pm on November 16th, 2018. Area of the smoke plume remains the same in all models; however, 

PM2.5 levels increase as PurpleAir and SMOTE is added. 
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Figure 4. Hourly prediction maps of PM2.5 in μg/m3 from the weight RF and SMOTE model in California 

on November 16, 2018. Recorded ground measurements were highest on this day. 
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Figure 5. Comparison of hourly prediction maps of PM2.5 in μg/m3 with the true color composite images 

from MODIS at noontime on November 8 and November 16, the day the Camp Fire started and the day 

with the highest recorded ground measurements, respectively. 
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SUPPLEMENTAL CHAPTER 2 

 

All three model approaches utilize the same variables listed below in Table S1. As well as the same 

parameter specifications in the random forest model, mtry set to default (square root of the total number of 

parameters rounded up, 6) and ntree of 500. 

Table S1. Predictor variables used in random forest models of all three approaches. 

GOES-16 HRRR HRRR 

AOD Planetary boundary layer height (PBLH) Total cloud cover (TCC) 

Aerosol detection Pressure Low cloud cover (LCC) 

Smoke detection Upward longwave radiation flux 

(ULWRF) 

Specific humidity 

Smoke mask flag Downward longwave radiation flux 

(DLWRF) 

Relative humidity 

Land-use Sensible heat net flux (SHNF) Friction velocity 

Elevation Upward shortwave radiation flux 

(USWRF) 

Dew point 

Nearest distance to roads Downward shortwave radiation flux 

(DSWRF) 

2-meter temperature 

Population 10-meter U-wind component Wind speed 

% of shrub lands 10-meter V-wind component Wind direction 

% of herbaceous areas Visibility Wind gust 

% of developed areas Land-use Ancillary 

% of cultivated areas % of forest Convolutional layer 

% of barren lands % of water bodies  

 

One of the major advantages of the random forest (RF) model is the output of variable importance 

from the model, which indicates how much each variable in the model affects the root mean square error 

(RMSE). Table S2 lists the variable importance output for each of the three models. 

Table S2. Variable importance output from the three Random Forest Models. 

Rank AQS-only Model AQS+PurpleAir and 

Weighted Model 

AQS+PurpleAir and 

Weighted + SMOTE Model 

1 Pressure Pressure Road Distance 

2 Elevation Road Distance Pressure 
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3 % of herbaceous Elevation % herbaceous 

4 Population % herbaceous U-wind 

5 Road Distance % shrub PBLH 

6 % of shrub % developed Elevation 

7 % of developed % forest % shrub 

8 PBHL PBLH SHNF 

9 % barren Population AOD 

10 % water U-wind V-wind 

11 V-wind % water % barren 

12 AOD % barren % water 

13 % cultivated % cultivated ULWRF 

14 Temperature AOD Det. Mask 

15 % forest DLWRF Rel. Humidity 

16 DSWRF Specific Humidity % cultivated 

17 ULWRF Temperature Friction Velocity 

18 SWRF ULWRF DSWRF 

19 Specific Humidity V-wind TCC 

20 Dew Point TCC DLWRF 

21 Det. AOD Wind Direction Specific Humidity 

22 Det. Smoke Det. AOD Visibility 

23 Friction Velocity USWRF Dew Point 

24 SHNF Visibility Temperature 

25 DLWRF SHNF Det. Smoke 

26 Rel. Humidity Det. Smoke Det. AOD 

27 Det. Mask Dew Point LCC 

28 Wind Direction Friction Velocity USWRF 

29 U-wind Det. Mask Wind Direction 

30 Visibility DSWRF % forest 

31 LCC LCC Population 
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32 Wind Speed Wind Speed % developed 

33 Gust Rel. Humidity Wind Speed 

34 TCC Gust Gust 
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CHAPTER 3 

Association between PM2.5 and emergency department outpatient visits for cardiovascular 

outcomes in California 

Bryan N. Vu, Rohan D’Souza, Danlu Zhang, Ana Rappold, Matthew Strickland, Kyle Steenland, Yang Liu, 

Howard Chang 
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ABSTRACT 

Background: Hundreds of millions of people are affected by cardiovascular disease (CVD). Air 

pollution, particularly PM2.5 (particulate matter that are 2.5 micrometer of less in aerodynamic diameter), 

has been shown to adversely affected respiratory disease. However, the relationship between PM2.5 and 

CVD are still uncertain in many parts of the world. California, one of the largest and most populated state 

in United States, has been prone to wildland fires in recent decades due to climate change with limited 

amount of studies that investigate the association between PM2.5, both from smoke and non-smoke sources, 

and CVD. 

Objective: We conducted a case cross-over study to determine the association between several CVD 

outcomes and PM2.5 in California between 2016 to 2018. 

Methods: We used a conditional logistic regression model to regress daily cases of CVD outcomes with 

total PM2.5, smoke PM2.5, and non-smoke PM2.5. CVD outcomes include acute myocardial infarction (AMI), 

arrythmia, heart failure (HF), ischemic heart disease (IHD), stroke, and total CVD. Total PM2.5 was obtained 

from a random forest exposure model and smoke PM2.5 was obtained from an interpolated dataset from the 

environmental Protection Agency Air Quality System with a Hazard Mapping System indicator for smoke. 

Non-smoke PM2.5 was calculated as total PM2.5 minus smoke PM2.5. We included temperature and dewpoint 

to account for meteorology and indicator variables for active fire spots and prescribe burns to control for 

wildland fires. We also assigned control using 2 methods: 1) assigning the same day of week within the 

month, 2) assigning 2 bi-weekly same day of week before the case date and 2 bi-weekly same day of week 

after the case date. 

Results: In general, we found positive but nonsignificant associations between the 3 PM2.5 exposure types 

and the CVD outcomes when controls were assigned as the same day of week within the month. When 

controls are assigned on a bi-weekly basis, we found positive and significant association between total 

PM2.5 and non-smoke PM2.5 and the CVD outcomes but not for smoke PM2.5. 

Discussion: Results from this study align well with previous studies regarding the relationship between 

CVD and PM2.5 and provides additional literature on the association between smoke PM2.5 and CVD.  

 

KEYWORDS 

PM2.5; smoke PM2.5; ED visits, case-crossover, CVD 
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INTRODUCTION 

Cardiovascular diseases (CVDs) are the leading cause of disease burden in the world with over 500 

million cases worldwide [1]. When stratified by specific outcomes, ischemic heart diseases (IHDs) 

including acute myocardial infarction (AMI) and heart failure (HF) pertained to 197 million of the 500 

million cases, and there were 101 million stroke survivors [1]. The burden of CVDs results in high health 

care costs and may impact not only developed countries but also low- and middle-income countries (LMIC). 

There are many risk factors that drive CVD, including social, metabolic, behavioral, and environmental 

influences. Previous studies have demonstrated the effects of risk factors such as smoking and body mass 

index (BMI) on CVD, often with significant adverse associations [2-5].   

There is also an increasing number of studies investigating the effects of air pollution, particularly PM2.5 

(particulate matter with an aerodynamic diameter of 2.5 microns or less), on CVD since PM2.5 has been 

shown to be related to adverse cardiopulmonary function [6].  For example, one study has shown that 

reduced long-term exposure to PM2.5 also reduced the rate of cardiovascular mortality across 619 counties 

in the United States [7]. However, the effects of smoke PM2.5 on CVD have not been well documented in 

current literature. The composition of smoke PM2.5 generated from wildland fires differ from PM2.5 

generated from other sources including vehicular combustion and industrial sources such as energy 

generation, and there have been increasing evidence suggesting that particulate matter generated from 

wildland fires may be more toxic [8]. Thus, more investigation is needed in understanding the association 

between not only anthropogenic sources of PM2.5 but also smoke PM2.5 and cardiovascular diseases. 

The state of California in the United States has been prone to wildland fire activities in recent decades. 

California’s drought-stricken climate and dried forests act as fuel during each fire season, which are burning 

more intensely and lasting longer each year [9]. Due to climate change, wildland fire conditions in 

California are not expected to improve in the near future.  Additionally, heart disease is one of the leading 

causes of death in California, according to the American Heart Association [10]. Although mortality from 
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CVD has declined in recent decades, the number of deaths in California resulting from CVD is more than 

the two leading causes, cancer and respiratory diseases, combined in 2014 [11]. Furthermore, 1 in 3 

Californian are living with at least one form of CVD, resulting in an estimated $37 billion in annual health 

care costs [11]. As one of the major mortality and morbidity burden in California, more studies are needed 

to understand the effects of air pollution on CVD. 

Although there have been several studies investigating the association between PM2.5, particularly 

wildland fire PM2.5, and respiratory outcomes in California [12, 13], few studies have investigated the 

association between PM2.5 and various CVD morbidity outcomes at once for the entire state of California 

in recent years, especially in 2017 and 2018 when the state recorded record numbers of wildland fires [14-

17]. Nonetheless, these recent studies either focused on mortality and not morbidity [18], investigated total 

CVD without parson out specific forms [14], or did not investigate smoke PM2.5 in conjunction with CVD. 

Understanding the effects of PM2.5 on CVD morbidity will drive prevention and intervention strategies to 

mitigate and reduce the burden in California. Furthermore, parsing out the different forms of CVD will 

enable future researchers and physicians to pinpoint and target specific outcomes for intervention and 

prevention. Moreover, with the increase in climate change and wildland fire activities, more studies are 

needed to assess the effects of smoke PM2.5 on CVD outcomes in a region prone to wildland fires. 

This present study aims to investigate the association between 5 common forms of CVD, acute 

myocardial infarction (AMI), arrhythmia, heart failure (HF), ischemic heart disease (IHD), stroke, and total 

CVD, with total PM2.5, non-smoke PM2.5, and smoke PM2.5 in California between 2016 to 2018. We propose 

to use a case cross-over approach to reduce the effects of unmeasured confounders, and include prescribe 

burn and active fire spot indicators to control for fire location. Results from this study will help to bolster 

the current state of limited literature on the topic of air pollution and cardiovascular diseases in California, 

especially during years with strong wildland fires. 
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METHODS 

Study Domain 

California is the most populous and third-largest U.S. state with over 39.5 million residents across over 

423 thousand squared-kilometers. There are 1,719 zip codes in California; however, analyses were 

restricted to 1,625 zip codes with at least 1 case per day. In this study, we will focus on the time period 

between 2016 and 2018. Figure 1 shows the study domain of California divided into zip codes. 

Health Data 

     Health information was obtained from the California Office of Statewide Health Planning and 

Development (OSHPD), which provides nonpublic datasets on hospital emergency department (ED) visits 

and licensed freestanding ambulatory surgery clinics. For this study, only the outpatient encounter, also 

known as service visit, is used and data for each encounter includes the diagnosis and the patient’s zip code. 

CVD outcomes in this study include arrhythmia, AMI, HF, IHD, stroke and total CVD. 

Satellite-derived PM2.5 estimates 

PM2.5 estimates were obtained from a Random Forest (RF) model that calibrated remote sensing data, 

and meteorological and land use variables to ground monitoring measurements from the Environmental 

Protection Agency’s (EPA) Air Quality System (AQS) and low-cost particular matter sensor network called 

PurpleAir. In short, aerosol optical depth (AOD) retrieved from NASA satellites along with variables 

including elevation, population, vegetation index, and meteorological variables such as temperature, 

humidity, and wind speed were calibrated to daily ground PM2.5 measurements from the AQS regulatory 

monitoring network and the PurpleAir low-cost sensors through a decision tree-based model [19]. The RF 

model achieved a random cross-validation (CV) R2 of 0.86 with relatively low prediction error and 

produced daily PM2.5 predictions at 3 km2 spatial resolution [19].   

Smoke PM2.5 
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Smoke PM2.5 was calculated from the Spatially Interpolated PM2.5 Concentrations for the US from 2006-

2018, version 2 dataset downloaded from the EPA’s AQS 

(https://aqs.epa.gov/aqsweb/documents/data_mart_welcome.html). This is a 15 km2 gridded dataset kriged 

from raw PM2.5 in-site measurements from the AQS. Each pixel also contains a smoke plume flag from the 

National Oceanic and Atmospheric Administration (NOAA) Hazard Mapping System (HMS) smoke 

product, indicating if a pixel on a particular day is part of a smoke plume. Only grids with an HMS indicator 

are considered smoke PM2.5, all other grids without an HMS indicator are set to zero. Each zip code was 

matched to the nearest 15 km grid, and in cases where more than 1 grid fall within a zip code, an average 

of the grids was taken. 

Fire Indicators and Meteorological Variables 

To control for fires, active fire spot information at 1 km resolution was downloaded from the Moderate 

Resolution Imagine Spectroradiometer (MODIS) Collection 6 (https://earthdata.nasa.gov/earth-

observation-data/near-real-time/firms/active-fire-data). To consider the impact of the extent of each active 

fire, a 50 km buffer was added to each fire spot and matched to the zip codes. Similarly, information on 

prescribed burns was obtained from the Prescribed Fire Information Reporting System (PFIRS) 

(https://ssl.arb.ca.gov/pfirs/) with information on the latitude and longitude of each prescribe burn. Since 

prescribed burns occur in a maintained setting, a 10 km buffer was added to each burn and matched to the 

zip codes. Meteorological variables including daily maximum temperature and dewpoint temperature is 

obtained from the Daily Surface Weather and Climatological Summaries (DAYMET V4) at 1 km 

resolution. Each 1 km DAYMET grid was matched to the zip codes and zip codes with more than 1 

DAYMET grid is averaged. 

Case Cross-Over Approach 

A case cross-over approach was used to investigate the association between PM2.5 and the CVD 

outcomes. First, we assessed the association between total PM2.5 and the 6 CVD outcomes. We ran separate 

https://aqs.epa.gov/aqsweb/documents/data_mart_welcome.html
https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms/active-fire-data
https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms/active-fire-data
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models for each outcome with the RF PM2.5 estimates as the main exposure. Second, we investigated the 

effects of smoke PM2.5 by parsing out smoke and non-smoke PM2.5. Non-smoke PM2.5 is calculated as total 

PM2.5 (RF PM2.5) minus smoke PM2.5. We also assessed controls in 2 different scenarios. First, we utilized 

the traditional case cross-over approach of assigning controls by assigning the exposures of the same day 

of week within the case-month as controls. Second, we assigned the exposures of the same day of week 4 

weeks before, 2 weeks before, 2 weeks after, and 4 weeks after the case date. The additional length in time 

between the controls aim to reduce misclassification of exposure with the assumption that fires may last 

longer than a week and that controls may have smoke PM2.5 assigned as exposure. For all models, we 

assessed same-day exposure, lag 1, lag 2, lag 3, and a moving average of same-day, lag 1, and lag 2. To 

control for fluctuation in meteorology, splines (quadratic and cubic) were added for daily maximum 

temperature and dewpoint temperature. As sensitivity analyses, we restricted the models to only include zip 

codes with a smoke PM2.5 value to ensure that exposure to smoke PM2.5 is captured in the models. We also 

categorized smoke PM2.5 into quartiles to determine if a dose response exists in the smoke PM2.5 and CVD 

relationships. 

RESULTS 

In total there were 884,290 CVD cases in California between 2016 to 2018. Table 1 shows the total 

number of cases for each outcome and the total number of observations used in the model (cases + controls) 

for both of the two types of controls that were assessed. 

For every 10 µg/m3 of total PM2.5 same-day exposure, the rate of AMI outpatient ED visits increased 

by 1.7% (95%CI: -0.7%,4.0%), the rate of arrhythmia outpatient ED visits increased by 0.3% (95%CI: -

0.6%,1.2%), the rate of HF outpatient ED visits increased by 1.7% (95%CI: -0.2%,3.6%), the rate of IHD 

outpatient ED visits increased by 1.4% (95%CI: -0.2%,3.1%), the rate of stroke outpatient ED visits 

decreased by 0.6% (95%CI: -2.4,1.1%), and total CVD outpatient ED visits increased by 0.3% (95%CI: -

0.2%, 0.7%) with weekly controls in the case-month. Conversely, for models with biweekly controls set at 
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4-weeks before, 2-weeks before, 2-weeks after, and 4-weeks after case date, for every 10 µg/m3 of total 

PM2.5 same-day exposure, the rate of AMI outpatient ED visits increased by 0.9% (95%CI: -1.2%,3.0%), 

the rate of arrhythmia outpatient ED visits increased by 1.6% (95%CI: 0.8%,2.5%), the rate of HF outpatient 

ED visits increased by 2.8% (95%CI: 1.1%,4.5%), the rate of IHD outpatient ED visits increased by 1.4% 

(95%CI: -0.1%,2.9%), the rate of stroke outpatient ED visits decreased by 0.1% (95%CI: -1.7,1.0%), and 

total CVD outpatient ED visits increased by 1.4% (95%CI: 1.0%, 1.8%). 

For every 10 µg/m3 of non-smoke PM2.5 same-day exposure, the rate of AMI outpatient ED visits 

increased by 1.8% (95%CI: -1.0%,5.0%), the rate of arrhythmia outpatient ED visits increased by 0.6% 

(95%CI: -0.5%,1.6%), the rate of HF outpatient ED visits increased by 1.8% (95%CI: -0.2%,4.0%), the rate 

of IHD outpatient ED visits increased by 1.7% (95%CI: -0.3%,3.6%), the rate of stroke outpatient ED visits 

decreased by 0.3% (95%CI: -3.3,1.7%), and total CVD outpatient ED visits increased by 0.3% (95%CI: -

0.2%, 0.8%) with weekly controls in the case-month. Conversely, for models with biweekly controls set at 

4-weeks before, 2-weeks before, 2-weeks after, and 4-weeks after case date, for every 10 µg/m3 of non-

smoke PM2.5 same-day exposure, the rate of AMI outpatient ED visits increased by 1.1% (95%CI: -

1.4%,4.0%), the rate of arrhythmia outpatient ED visits increased by 2.1% (95%CI: 1.2%,3.0%), the rate 

of HF outpatient ED visits increased by 3.6% (95%CI: 1.8%,5.5%), the rate of IHD outpatient ED visits 

increased by 2.2% (95%CI: 0.5%,3.9%), the rate of stroke outpatient ED visits increased by 1.2% (95%CI: 

-0.5,3.0%), and total CVD outpatient ED visits increased by 1.9% (95%CI: 1.5%, 2.3%). 

For every 10 µg/m3 of smoke PM2.5 same-day exposure, the rate of AMI outpatient ED visits increased 

by 1.2% (95%CI: -2.1%,4.0%), the rate of arrhythmia outpatient ED visits decreased by 0.8% (95%CI: -

2.2%,0.7%), the rate of HF outpatient ED visits increased by 1.3% (95%CI: -1.9%,4.0%), the rate of IHD 

outpatient ED visits increased by 0.4% (95%CI: -2.0%,2.8%), the rate of stroke outpatient ED visits 

decreased by 0.18% (95%CI: -0.46,1.0%), and total CVD outpatient ED visits decreased by 0.1% (95%CI: 

-0.8%, 0.6%) with weekly controls in the case-month. Conversely, for models with biweekly controls set 

at 4-weeks before, 2-weeks before, 2-weeks after, and 4-weeks after case date, for every 10 µg/m3 of smoke 
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PM2.5 same-day exposure, the rate of AMI outpatient ED visits increased by 0.6% (95%CI: -2.4%,4.0%), 

the rate of arrhythmia outpatient ED visits increased by 0.4% (95%CI: -0.9%,1.8%), the rate of HF 

outpatient ED visits increased by 0.6% (95%CI: -2.3%,3.5%), the rate of IHD outpatient ED visits 

decreased by 0.1% (95%CI: -2.3%,2.1%), the rate of stroke outpatient ED visits decreased by 2.9% (95%CI: 

-5.5,-0.4%), and total CVD outpatient ED visits increased by 0.3% (95%CI: -0.4%, 0.9%). 

Figure 2 shows the plotted odds ratio of each CVD outcome for a 10 µg/m3 increase in exposure of total 

PM2.5, non-smoke PM2.5, and smoke PM2.5. Results for the sensitivity analyses including restricting the 

models to include only zip codes that have a smoke estimate found that effect estimates remain largely 

unchanged. Furthermore, categorizing smoke PM2.5 estimates resulted in model non-convergence since the 

distribution of smoke PM2.5 is highly skewed with only a handful of cases and controls that have exposures 

higher than the median smoke PM2.5 in the respective outcome. Results for fire indicators were not 

significant in any of the models. 

DISCUSSION 

This study is the first to evaluate the effects of total PM2.5, non-smoke PM2.5, and smoke PM2.5 on 

several CVD outcomes in California between 2016 to 2018.  The utilization of spatially and temporally 

resolved PM2.5 exposure estimates from a machine learning model help to minimize measurement error and 

exposure misclassification. Few studies in California have focused on evaluating the effects of PM2.5 on 

CVD outcomes in recent years as wildland fires are more frequent and burn more intensely. Smoke plumes 

generated from wildland fires may traverse hundreds of kilometers and affect millions of people downwind. 

 Results from this study indicate that, in general, there is a positive association between PM2.5 and 

outpatient ED visits of CVD between 2016 to 2018 in California. However, in models where controls were 

assigned weekly based on the case-month, all associations are not significant. Furthermore, in all three 

PM2.5 exposures, stroke continues to produce a protective effect between 0.1%-2.9% decrease in outpatient 

ED visits for every 10 µg/m3 increase in PM2.5. This result is different from previous literature. For example, 
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a study conducted in China investigating the association between PM2.5 and stroke, ischemic stroke, and 

hemorrhagic stroke found a 0.37% (95%CI: 0.15%,0.60%) increase, 0.46% (95%CI: 0.21%, 0.72%) 

increase, and a -0.13% (95%CI: -0.73%,0.48%) decrease in acute incidence for every 10 µg/m3 increase in 

PM2.5, respectively [20]. The difference in estimates may be a result of a lower case-count in our data, 

~52,000 cases compared to the ~132,000 cases in the Chinese study.  

 This study also found that when controls are assigned bi-weekly, twice before the case date and 

twice after the case date, many of the estimates for the CVD outcomes are significant compared to the 

traditional method of assigning controls to the same day of week within the case-month. These significant 

associations are observed only in the total PM2.5 and non-smoke PM2.5 exposures likely because the 

correlation between total PM2.5 and non-smoke PM2.5 is quite high, with a correlation coefficient around 

0.8 for each CVD outcome. Moreover, AMI and Stroke are both nonsignificant in the bi-weekly control 

models for total PM2.5 and non-smoke PM2.5 exposure, also likely due to wide confidence interval as a result 

of a smaller number of observations.  

 Results from this study shows an increase of ~0.6%-3.6% increase in outpatient ED visits for heart 

failure for all PM2.5 exposure types. This result is consistent with other studies in the literature including 

one conducted in Chile that found a 1.6% (95%CI: 0.9%-3.0%) increase in heart failure emergency 

hospitalizations for every 10 µg/m3 increase in PM2.5 [21]. Additionally, a study conducted by Li et al. in 

China showed a 0.35% (95%Ci: 0.06%-0.64%) increase in the number of hospital admissions for every 10 

µg/m3 increase in same day ambient PM2.5 exposure [22]. This study also found an increase of ~0.4%-2.2% 

increase in outpatient ED visits for ischemic heart disease in total PM2.5 and non-smoke PM2.5 exposures. 

However, we found a slight protective effect (0.1% decrease) in the bi-weekly controlled smoke PM2.5 

exposure model. Again, our results are consistent with previous literature that indicates a 0.27% (95%CI: 

0.21%-0.33%) increase in IHD morbidity for every 10 µg/m3 increase in ambient PM2.5 in a study conducted 

in Beijing between 2010 and 2012 [23]. The association between PM2.5 and acute myocardial infarction is 

~0.6%-1.8% increase in outpatient ED visits for every 10 µg/m3 increase in PM2.5 exposure. In contrast, a 
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study conducted in Massachusetts, U.S. found a 4% increase in the odds of AMI for every 1.05 µg/m3 

increase in total PM2.5 exposure [24]. Moreover, for every 10 µg/m3 increase in PM2.5 exposure, the 

association for arrythmia ranged between -0.08%-2.1%. Similarly, a study conducted by Zheng et al. found 

a 2.09% (95%CI: 1.58%-2.60%) increase in hospital admission for arrythmia for every interquartile range 

(47.5 µg/m3) increase in PM2.5 exposure [25].  

 Based on the two methods for assigning controls, assigning bi-weekly controls to each case 

produced large effect estimates that are significant compared to assigning controls within the same day of 

week for each case-month. One of the main concerns regarding this assignment of controls is that wildland 

fires may last longer than a week. If controls are assigned based on the same day of week within a month, 

the effect of the association may be diluted if the controls are also assigned a high PM2.5 exposure. Another 

concern is that the effect estimates for smoke PM2.5 are often protective and are always nonsignificant. 

This is likely due to only a small percentage of the total number of observations having a measurement for 

smoke. For each CVD outcome, only about 0.3% of the total observations have a smoke PM2.5 measurement 

greater than 0. This may partially be due to the course resolution of the smoke PM2.5 dataset at 15 km2, and 

the crude method of parsing smoke PM2.5 from total PM2.5. Therefore, estimates for smoke PM2.5 may not 

be robust. Similarly, indicators for active fire spots and prescribe burns were found to be nonsignificant in 

all models, regardless of PM2.5 type and control assignment. Assignment of the 50 km buffer for active fire 

spots and 10 km buffer for prescribe burns were made arbitrarily with scientific inference for wildland fire 

and prescribe burn behaviors.  

 In general, results from this study aligns well with previous studies reported from China and other 

parts of the U.S. However, results in this study tend to be nonsignificant due to a few limitations. One of 

the biggest limitations of this study is that only outpatient data is used. Generally, for CVD outcomes, 

especially for severe forms including stroke and AMI, patients will likely not be released the same day [26]. 

As such, the current health data utilized in this study may not be representative of the general population 

living with these CVD outcomes. Due to an error in diagnostic date and codes in the health data, inpatient 
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cases were not included. Future research will entail correctly identifying inpatient records for inclusion. 

Second, as mentioned earlier, the smoke PM2.5 was obtained at 15 km2 resolution and may lead to high 

uncertainties and bias in exposure misclassification. Future research should focus on identifying a better 

data source for smoke PM2.5. Finally, future research should also focus on identifying major wildland fire 

events to bolster the active fire spot indicator and ensure that the smoke PM2.5 estimates are accurate both 

temporally and spatially.  

CONCLUSIONS 

This is the first study to look at various CVD outcomes including acute myocardial infarction, heart 

failure, arrythmia, ischemic heart disease, stroke, and total CVD in association with total PM2.5, non-smoke 

PM2.5, and smoke PM2.5. Results from this study indicate that the effect estimates for each of the CVD 

outcomes are consistent with previous studies conducted elsewhere including China and other part of the 

United States. However, most of the estimates are nonsignificant, suggesting that the relationship between 

PM2.5 and CVD remains unclear. Future research should focus on correcting the inpatient records for 

inclusion in these models and to obtain a better smoke PM2.5 dataset with finer spatial resolution to reduce 

exposure misclassification. Results from this study adds to the current literature on the relationship between 

cardiovascular diseases and air pollution in the context of with and without wildland fire influence. 
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CHAPTER 3 TABLES AND FIGURES 

 

Table 1. Total number of cases and total number of observations (cases + controls) by CVD 

outcomes with weekly controls compared to bi-weekly controls. 

 Weekly Controls 

 AMI Arrhythmia HF IHD Stroke Total CVD 

# of Cases 28,921 191,791 55,650 62,701 51,929 884,290 

Total Obs. 127,104 843,305 244,852 275,438 227,985 3,886,751 

 Bi-weekly Controls 

 AMI Arrhythmia HF IHD Stroke Total CVD 

# of Cases 28,921 191,791 55,650 62,701 51,929 884,290 

Total Obs. 137,653 912,641 264,941 298,910 247,440 4,213,915 
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Figure 1. Study domain of California divided into zip codes. 
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Figure 2. Plots of odds ratios by CVD outcome for every 10 µg/m3 increase in exposure of total 

PM2.5, non-smoke PM2.5, and smoke PM2.5. The left column of plots denotes models where controls 

are assigned the same day of week within the case-month. The right column of plots denotes 

models where controls were assigned 4-weeks before, 2-weeks before, 2-weeks after, and 4-weeks 

after the case-date. 
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CONCLUSIONS 

     To our knowledge these studies are the first of its kind in their respective topic. Results from these 

three aims ultimately add more evidence to the body of literature pertaining to the utilization of satellite 

remote sensing data in modeling air pollution in not only low- and middle-income countries but also during 

extreme weather events. The publication of the PM2.5 exposure model in Lima, Peru enables researchers to 

investigate the association between air pollution and a variety of adverse health outcomes in Lima. Results 

from those epidemiological studies will provide evidence for air pollution mitigation in Lima since the 

permissible levels of PM2.5 in Peru is about double the standards set forth by the World Health Organization. 

Furthermore, results from aim two indicate that even with an adequate network of ground monitors, the 

addition of low-cost sensor observations to bolster the number of ground measurements tremendously 

improve model performance. The addition of SMOTE also reduces the root mean error, suggesting that 

implementation of such techniques is promising in modeling extreme events such as wildland fires. Finally, 

results from aim three indicate the need to effectively parse out non-smoke PM2.5 and smoke PM2.5 from 

total PM2.5.  Although the effect estimates are very similar to those previously published, the non-

significance of the estimates when utilizing traditional assignment of weekly controls compared to the 

significance of the estimates when utilizing a bi-weekly assignment of controls suggests that further 

investigation is needed to determine the true relationship between PM2.5 and cardiovascular diseases in 

California.  

     

 

 

 

 


