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Abstract 

Log-Canonical Rings of Graph Curves 

By William Baker 

 I generalize David Zureick-Brown and John Voight’s work on log-canonical rings to 

graph curves. I use a paper of Noot as a starting point. I outline some of the difficulties in 

developing Max Noether-like and Petri-like theorems. I work out theorems for the generators of 

most well behaved graph curves. I also find a useful construction for hyperelliptic graph curves.  
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1 Introduction

In this thesis we discuss various theorems about the structure of the log-canonical rings
associated to a graph curve.

Definition A graph curve is a curve whose irreducible components are each isomorphic
to mathbbP 1 and such that each intersection is transverse (i.e. locally looks like xy = 0). In
particular, a graph curve admits no triple intersections. The genus of a graph curve is the
maximal number of generators for the group of loops of the dual graph of the graph curve,
see [N] for details. We say that a graph curve is hyperelliptic when it has a 2− 1 function to
a genus 0 graph curve. Noot described the canonical rings of these graph curves, including
showing that Max Noether’s theorem applies.

Definition Given a curve, X, and a divisor D, we say that H0(X,D) is a vector space of
rational functions, f : X → P 1, such that D −Div(f) is effective. We continue by defining
a canonical ring to be a graded ring of the form

⊕
H0(X,nK), where the multiplication is

function multiplication. Also a log-canonical ring is a graded ring of the form
⊕

H0(X,n(K+
E), where E is an effective divisor. Max Noether’s theorem states that canonical rings
associated to non-hyperelliptic curves are generated in degree 1. I will use ideas from [V,Z]
to further generalise these results to the log-canonical rings. These rings are the graded
rings

⊕
H0(X,n(K + E)), where K is a canonical divisor of the graph curve X, and E is

an effective divisor.
Remark Multiplication is just multiplication of the elements as functions, similar to

canonical rings. When the curve is clear I will use the notation RK+E to refer the log-
canonical ring. The largest complications with graph curves is that even for curves of genus
greater than or equal to than 1, the canonical divisor is not necessarily effective, and that
mathbbP 1 is not the only genus 0 curve. The most frequently used fact is that Riemann-Roch
Theorem applies to our graph curves. Note that K will always refer to a canonical divisor.
We will always choose our log divisor to be away from K.

First we prove a theorem that will allow us to only consider convenient divisors up to
equivalence.

Theorem 1. If two divisorsD1 andD2 of a curveX are equivalent, then the rings
⊕

H0(X,nD1),
and

⊕
H0(X,nD2), are graded ring-isomorphic.

Proof. Suppose we have D and E as two equivalent divisors, so that f : X → P 1, and
D = E + Div(f). We can define a map, φ : RD → RE where φ(g) = fng with g being a
homogeneous element, and n is the graded piece of g, we can extend this map to nonhomo-
geneous elements by using the addition property of ring homomorphisms. We have a few
things to check. First the image of the map actually lands in RE compatibly with the grad-
ing.That is if g is in the nth graded piece of RD then g ∈ H0(X,nD) so nD − div(g) < 0,
and thereforenE − div(gfn) = nE − ndiv(f) − div(g) = nE − n(D − E) − div(g) > 0.
Also,takinggandhto be in the nth graded piece inRD then φ(g+h) = fn(g+h) = φ(g)+φ(h).
To check multiplication, suppose g is homogenous in the nth piece and h is homogeneous in
the mth graded piece. We see that φ(gh) = fn+mgh = fngfmh = φ(g)φ(h). We also see that
φ is an isomorphism since we can similarly define the inverse function by multiplication by
f−n.
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We wish to do away with curves that do not have effective canonical divisors, many of the
Riemann-Roch style arguments break down in these cases. Noot demonstrates that any edge
or vertices on the dual graph of our curve where all the holomorphic differentials vanish is
the base locus. These are the parts of the graph that no loops go through, since holomorphic
differentials correspond to loops. The canonical ring associated with a curve is isomorphic
to the canonical ring associated to the curve where the components corresponding to base
locus removed. However, when we add log points, the result might not be as degenerate as
we can making the divisors effective.

In any case, I will assume that we get noneffective canonical divisors precisely in the case
where we have edges of the dual graph where there are no loops, we will call such edges
bridges, as they connect two subgraphs together. From Noot we have a clear picture of the
canonical case, that is that the canonical ring is a direct product of the canonical rings of
the connected parts after removing the bridges. I will refer to these parts as loop connected
subgraphs,or loop connected subcurve. So we need to understand how we can write the log
canonical rings hopefully in terms of the loop connected subcurves.

A purely algebraic approach is to describe the log canonical ring as a fibered product
of the log canonical rings of the loop connected subcurves. This is because the bridge is
an intersection point, which causes an agreement condition between evaluating functions on
each of the loop connected subcurves at the intersection point.

As an example suppose a graph curve X, the canonical divisor K has exactly 2 negative
points (counting multiplicity), let us call these points P and Q. We see that, H0(X,K +
P + Q) = H0(X,K)⊕ < 1 >, where 1 is the constant function along every component of
X. This is clear from Rieman-Roch. It is possible for a graph curve to have arbitrarily high
amounts of negative points though, simply consider attaching arbitrary amounts of P1 to a
graph curve, such that each of these ”leaves” intersect the graph curve exactly once. Such a
graph curve has a negative point on each leaf.

Another important consideration is that these bridged graph curves have many zero di-
visors in their log canonical rings, in fact take the previous example, with the two negative
points, and let us say that there are two loop connected subcurves. I say that for H0(X,K),
we can choose a basis of functions that are each zero along one of the loop connected sub-
curves. The reason for this goes back to our graph curve, the holomorphic differentials which
correspond to our functions correspond to the loops. We can choose a generating set of our
loops, where each of these generators lies in only one of our loop connected components,
these generators then correspond to our basis of functions. Now suppose we introduce a log
divisor K + P +Q+E1 +E2, such that E1 and E2 are effective defined away from K. Also
let us say that E1 consists purely of points on our first loop connected subcurve X1 and E2

on our second, X2.
For now assume that P is on X1 and Q is on X2. We have that H0(X,K +P +E1), and

H0(X,K + Q + E2), are subspaces of H0(X,K + P + Q + E1 + E2). We see that we can
write a basis of each of these subspaces again in functions that are zero along either X1 or
X2, since every function in H0(X,K) is zero at our intersection point, and adding log points
to only on side of that intersection does not give us the freedom to have a non zero function
on the other side of the intersection point. Now, these two subspaces account for all but
one dimension of H0(X,K + P +Q+E1 +E2), but the last function is simply the constant
function as previously described. Now also notice that if we allow multiplication, all of our
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basis functions are zero divisors except our constant function. In fact, since higher graded
pieces of our log canonical ring can be written in the same log divisor form, this gives us a
description of our log canonical ring, it is just a direct product of the log canonical rings of
each of our loop connected subcurves, with the equivalence relation that the constant function
in both rings are the same. I believe that it is possible to use this procedure inductively to
understand graph curves with any amount of loop connected components, and any amount
of negative points. The major complication is that if there are many bridges, adding two log
points will not be enough to rectify the non effectiveness.

Unless said otherwise, for the remainder of this paper I will assume that our curve has
only one loop connected component, and thus all canonical divisors will be effective. I will
now give some Max Noether like-theorems.

2 Main Theorems

Theorem 2. Suppose we have the divisors K +E +P and K +E on a curve X, such that
K is the canonical divisor, E is an effective divisor with degree greater or equal to 1, and P
is an effective divisor of degree 1. If RK+E is generated by elements of degree n or less, than
so is the RK+E+P .

Proof. The theorem sets us up for an inductive argument. Without loss of generality we
can insist on P being away from the support of K. First notice that RK+E can be viewed
as a subring of RK+E+P , where we just included each function into the larger graded pieces.
Now suppose RK+E+P has a generator that is of degree greater than n, say n0, call such a
function with minimal pole order at P, y. This function clearly cannot be in RK+E viewed as
a subring, and thus y must have have a pole at the point P, say it is a pole of order m. We see
that 0 < m ≤ n0 since y is an element of H0(n0(K +E +P )) However,since H0(K +E) lies
in H0(K + E + P ) as a codimension 1 subspace by Riemann-Roch, we can pick an element
in our first graded piece of RK+E+P , x such that x has a pole of order 1 at P .

Finally we can introduce an element in RK+E with no pole or zero at the point P. This is
clear if both K+E is effective, we can choose the constant function 1. Let us call this element
r. Now consider the quantity y−xmrn0−m, firstly this subtraction is entirely in the n0 graded
piece, secondly the order of the pole at P is strictly less than m. Now suppose it has a pole
of order 0 at P. Then it is not a generator of the ring. If this element is a generator of the
ring, we have a contradiction on the pole minimality of y. Therefore y − xmrn0−m is not a
generator. However, then y can be written as the sum of two non generating elements which
is a contradiction. Therefore there can be no such generator y in the n0 graded piece.

Theorem 3. Any log-canonical ring associated to a non-hyperelliptic graph curve X, of the
form RK+P where P is a positive point, is generated in degrees up to but no greater than 3.

Proof. In fact we will see that rings of this form are generated in degree 3. Let us assume
that H0(X,K) has a function r that has no pole or zero at P (the constant function works).
Consider H0(2K + P ) as a codimension 1 subspace of H0(2K + 2P ), we can then extend a
basis to include some element y in H0(2K + 2P ) with a double pole at P. This element is
in the second graded part of RK+P , and it has a double pole at P, but from Rieman-Roch,
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there is no element in H0(K + P ) with a pole at P, and thus y is a generator of our ring.
Also, consider H0(3K + 2P ) as a codimension 1 subspace of H0(3K + 3P ), we can then
extend a basis to include some element z in H0(2K + 2P ) with a triple pole at P. z must
also be a generator, for suppose it is not, then there must be some product of the first and
second graded pieces that yields a pole of order three function at the point P, but this cannot
be, since the first graded piece has no functions with poles as P. Now suppose we have a
generator, w, in degree n > 3. If w has no pole at P, we have a contradiction since RK is
generated in degree 1. Now suppose w has a pole of order 1. First, this means that our curve
has a genus greater than 1, since K is the identity divisor if effective by degree considerations.
If K is the identity divisor than so is nk, and so by Riemann-Roch no function could have a
pole of order 1 at P. So if genus is greater than one, then by Riemann-Roch, H0(X, 2K) is a
codimension one subspace of H0(X, 2K + P ), so we can find a degree 2 function, y1 with a
single pole at P. Consider that quantity aw−by1rn−2, where a, b are scalars with appropriate
scaling, so as to cancel the poles at P. This is a homogeneous element in the nth graded part
of the ring, and has no pole at P. Thus this element cannot be a generator, so w cannot be
a generator either.

We wish to consider what happens when w has a pole of greater order than 1. Let us
add a hypothesis that w has the lowest ordered pole at P for possible generators of degree
n. Also notice that w cannot have a pole at P greater than n.Now suppose w has a pole of
order 2m at P. Consider the element aw− bymrn−2m with a, b being the necessary scalars to
cancel the pole. Thus this homogeneous element of degree n has a pole strictly smaller than
2m, thus is not a generator so w is not either. Alternatively suppose the pole at P is of the
form 2m+ 1. Consider the element aw− bzym−1rn−2m−1, with a, b being appropriate scalars.
By the same argument we have a contradiction.

Theorem 4. Suppose we have a nonhyperelliptic graph curve X, with a divisor K + 2P,
where K is a canonical divisor, and P is a point. RK+2P is generated in degree 2.

Proof. Like usual we want a first degree function with neither a zero nor a pole at P, call this
function r. We have a function in degree one with a double pole at P by Riemann-Roch, call
this function x. For our second graded piece, notice that H0(X, 2K + 2P ) is a codimension
one subspace of H0(X, 2K+ 3P ), so we have a function, call it y. This function has a pole of
order 3 at P, and it cannot be written as a product of of degree 1 elements, as none of these
elements have an odd pole at P. Now we know that the ring is generated by no more than
degree 3 elements, so we need only check that there are no possible generators in degree 3.
Let us suppose we have such a generator z. It must have a pole of order 1, 2, 3, 4, 5, 6 at P.
It cannot have a pole of order 1 by the argument in the previous theorem. For the other
cases consider the elements r2x, ry, rx2, xy, x3, by scaling and subtraction we can arrive at
a contradiction.

Theorem 5. Suppose we have a nonhyperelliptic graph curve X, with a divisor K+P +Q,
where K is a canonical divisor, and P and Q are points. RK+P+Q is generated in degree 2.

Proof. Like usual we want a first degree function with neither a zero nor a pole at P, call this
function r. We have a function in degree one with a single pole at P and Q by Riemann-Roch,
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call this function x. For our second graded piece, notice that H0(X, 2K+P ) is a codimension
one subspace of H0(X, 2K+ 2P ), so we have a function, call it y. This function has a pole of
order 2 at P, and it cannot be written as a product of of degree 1 elements, as none of these
elements have a pole at P, and no pole at Q. If X is not genus 1, we also have a function that
has a pole of order 1 at P, call this function y1. Now we know that the ring is generated by
no more than degree 3 elements, so we need only check that there are no possible generators
in degree 3. I will show that multiplication from H0(X,K +P +Q)⊕H0(X, 2K + 2P + 2Q)
surjects onto H0(X, 3K+3P +3Q). We already have all the functions in H0(X, 3K) by Max
Noether, and consider the image generated by, ry1, r

2x, ry, rx2, xy, x3. These elements are
clearly all linearly independent, and by Riemann-roch, they generate H0(X, 3K+ 3P + 3Q).
together with the canonical elements. For the genus 1 case just exclude ry1.

The situation becomes more complicated for the question of when log canonical rings
become generated in degree 1. In order for a graph curve with genus greater than 1 to
be generated in degree 1, we must have a function in H0(X,K) that has a simple zero at
one of our log points without being uniformly zero on that component. If we have such a
function, the argument goes similarly to the previous ones. I hypothesis that such a function
is guaranteed to exist if the our point is on a component that intersects the rest of the graph
curve at least 3 times.

Theorem 6. Suppose we have a nonhyperelliptic graph curve X, with a divisor K + 3P,
where K is a canonical divisor, and P is a point. RK+3P is generated in degree 1, if we have
a degree 1 function, z that has a simple zero at P, or if X has a genus of 0, or 1.

Proof. All we must prove is that H0(X,K+3P )⊕H0(X,K+3P ) surjects onto H0(X, 2K+
6P ). All we need to do is produce elements with poles of orders 1 through 6 in the second
degree. By Riemann-Roch we have degree 1 elements x2 and x3, with poles of order 2 and 3
at P respectively. Now suppose X is genus 0, and that K+3P is effective, then by Riemann
Roch, H0(X,K + 3P ) is dimension 2, and in fact we can write out basis functions as 1, and
x. By Riemann-Roch, each graded piece is one dimension higher, but since there can be no
relations between 1 and x, the ring is visibly graded in degree 1. Note that the log divisor
could be any divisor of the form K + E where E is effective and degree 3. Now suppose X
is genus 1, then there are no degree 2 elements with a single pole at P. Thus together with
the canonical functions, we have the functions rx2, rx3, (x2)

2, x2x3, (x3)
2.

If X has genus higher than 1 we need only consider one additional product zx2. This
function has a simple pole at P as required.

Similar proofs exist for divisors of the form K + E where E is effective and degree 3.

Theorem 7. Given a hyperelliptic graph curve X, a canonical divisor, K, can be con-
structed from the 2 − 1 map, f, to a genus 0 curve Y, so that K has the property of being
invariant under involution, and f(K) is a log canonical divisor on Y.

Proof. Consider the preimage of intersection points of Y, by continuity, these must be in-
tersection points of X. Also by continuity, the preimage of any point of X must be either
entirely intersection points, or entirely non intersection points. From this we can conclude
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that intersections of X either map in pairs to intersections of Y, or a single intersections
maps with itself to a nonintersecting point of Y. This is clear because intersection points
are double points. Similarly, we can track the components, and find that they must map
2 − 1 onto themselves, or map with another component to a component of Y. Now given
a component of Y, Yi we wish to give it a divisor Di. Let ni be the number of points of
Yi whose preimage contains an intersection point of X, and let di be 1 is the preimage of
Yi is a single component. Di = (ni + di − 2)P, where P is a point away from the images
of intersection points on the component Yi. It is clear that D =

∑
(Di) is a log canonical

divisor of Y. Now I say that the pull back of D is a canonical divisor of X. First I will check
that the degree of D is appropriately g − 1, where g is the genus of X. Let us define A to
be the total number of intersections of X, B the number of intersections that do not map
to intersections of Y, C the number of components of X, and F the number of components
that map 2− 1 onto themselves. We see that A− C + 1 = g, by analyzing the dual graph.
By counting we get that A−B

2
− C+F

2
+ 1 = 0, and therefor B +F = g+ 1. Now this implies,

by counting, that deg(D) = g − 1. Thus the pullback of D, which we will not refer to as
K is the right degree. Also notice that dim(H0(Y,D)) = g by Riemann-Roch, so we can
pull back these functions as well to get that dim(H0(X,K) = g. Finally we will check to
make sure K is indeed a canonical divisor by checking degree component wise. Suppose a
component Xi of X does not map 2 − 1 onto itself, then deg(Ki) = deg(Di) = ni − 2 and
ni is precisely the number of intersections on Xi. Alternatively suppose Xj maps 2− 1 onto
itself, then deg(Ki) = 2deg(Di) = 2(ni − 2 + 1) = 2ni − 2. I say that 2ni is precisely the
number of intersections of Xj since f is 21, and it is not possible for a non intersection point
on Y to map to a single intersection point on Xj. Since K is the pull back of D, we have
proved it is invariant under involution.

Theorem 8. Let X be a hyperelliptic graph curve with canonical divisor K and E, an
effective divisor of degree 2, such that E is not invariant under our hyperelliptic involution.
The associated log canonical ring, RK+E+P , where P is a point, is generated in degree 1 if
like in the nonhyperelliptic case there exists a function in RK that has a simple zero at P.

Proof. First I need to consider the log canonical ring associated to Y and the divisor D (from
last theorem). As previously noted RD must be generated in degree 1. Thus let x′1, . . . x

′
g, be

a set of degree 1 functions that generate the ring, and then let y′1, ..., y
′
(2g− 1) be a basis for

our second graded piece (so all of these functions are sums and products of the x′i. Now let us
pull these functions back to X, to get x1, . . . xg, and y1, . . . , y2g−1 respectively. Notice that
these yi are still obtained from the xi. Now I say that H0(X,K+E)⊕H0(X,K) surjects onto
H0(X, 2K +E) by the multiplication map. My argument will be extremely similar to [V,Z].
H0(X,K) is a codimension 1 subspace of H0(X,K + E), so let us choose a function z with
poles at the points of E. By assumption on E, z is not invariant under involution. Notice
that there can be no relations in degree 2 containing just z and the xi. Let a(x) and b(x)
be polynomials of variables x1, . . . , xg, a relation containing z would look like a(x)z = b(x),
which is a contradiction when we apply our involution. Thus, y1, . . . , y2g−1, zx1, . . . zxg are
all linearly independent functions, and by Riemann-Roch they span the the target space.

With this we have amended the difficulties of the hyperellipticity, and the argument
continues as in the not hyperelliptic case, noting that the image of multiplication is onto the
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canonical part. The proof then follows the same. I should note that assuming D is effective,
if the image of P is on a component where D restricted to that component is of positive
degree, than it is a simple matter to find a function constant on the other components, and
with a simple zero at P.
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