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Abstract

Renormalization Group in Dynamical Processes on Hierarchical Networks

By Shanshan Li

Hierarchical structures have been found in actual complex systems. Certain hierarchical networks, with

a self-similar structure, exhibit novel properties in a broader spectrum of dynamics such as synchroniza-

tion, quantum walks and the epidemic process, which we explore in this thesis by applying analytical

and numerical methods. We study the structural and spectral properties of large scale networks, as

well as various phenomena on them with the Renormalization Group (RG) approach. In particular, by

applying RG, we explore the Laplacian spectrum, which is related to asymptotic structural features of

networks, ranging from the number of spanning trees to synchronizability. The spectral analysis also

reveals a deep connection between dynamics and the underlying structure in processes that include

quantum walks and the unusual Griffiths phase on hierarchical networks considered in this thesis. This

thesis highlights effects of spectral properties on dynamical processes on networks, and indicates the

applicability of RG to various contexts.
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Chapter 1

Introduction

Networks dominate research on the identification and characterization of the system-level organization

in complex systems. A discrete function of a complex system can be rarely attributed to any individual

component. It arises from the complicated interactions of numerous components. It is a key issue to

understand the structure of the interaction web that contributes to the organization and function

of a system. Complicated patterns of interactions can be qualitatively described by various type of

networks. The remarkable discovery in network science is that despite of the rich nature of complex

systems, the architecture of networks is determined by simple principles that many networks share

[13]. Simplest graphs include lattices, hypercubes, complete graphs, and Erdös Renyi graphs (we also

note random networks interchangeably). In particular, random networks can be a naive model for

complex systems, which have a remarkable feature on the distribution of node degrees, i.e. a Poisson

distribution. Despite of the simplicity and elegance of random networks, they cannot capture the

topology of real networks including many of scientific and technological networks, ranging from the

World Wide Web (WWW) to biological networks.

A distinguishing feature is that many real networks follow a power law distribution of the node de-

gree, i.e. the probability that a randomly selected node has k edges (i.e. degree k) follows P (k) ∼ k−γ

with the degree exponent γ. The value of γ for real networks lies between 2 and 3 [12]. This charac-

teristics is captured by the scale free networks [6]. Scale free networks are highly heterogeneous. The

whole network is integrated by a few existing highly connected nodes, also called hubs. It contradicts

random networks where the average node degree are considered as typical. Another significant feature

of real networks is the small-world topology, i.e. the average of shortest path lengths between any

12
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pair of nodes follows logarithmically with the network size, i.e. l ∼ lnN . Random networks are small

world, and scale-free networks with γ ∈ (2, 3) are ultra-small, i.e. l ∼ ln lnN [46]. Small diameters of

networks indicates local perturbations could reach the whole network quickly.

Definition of shortest path length

l =
1

N (N − 1)

∑
x 6=y

dxy, (1.1)

where dxy is the shortest distance between node x and y.

Scale-free networks originate from the network evolution and preferential attachment where highly

connected nodes gain more edges than the less connected nodes [11]. In biological networks such as

metabolic and protein interaction, and technological networks such as WWW, a dis-assortative nature

exists. Highly connected nodes avoid linking directly to each other and instead connect to numerous

nodes within a few edges [87]. Modular function is seen in these cellular networks, Internet, and social

networks. A module is a group of nodes that are densely connected, whereas inter-module connections

are rather sparse. In the network characteristics, a high clustering coefficient is a signature for the

potential modularity. The average clustering coefficient 〈C〉 of real networks is independent of the

network size N , and obviously higher than that of random networks of the same size and average

degree, i.e. 〈C〉 ∼ 〈k〉 /N .

Definition of clustering coefficient

Cx = 2nx/ [kx (kx − 1)]

where kx is the number of neighbors for node x, [kx (kx − 1)] /2 is the number of allowable

edges between them, and nx is the number of existing edges [135].

The coexistence of scale-free property and modularity is found in protein interaction networks

[132], WWW [115, 6] and social networks [95]. As an example, let us consider the cellular network

to show a typical combination of the scale-free property, the dis-assortative nature and high cluster-

ing. In cellular metabolism, metabolic substrates are densely interconnected via biochemical reactions.
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The probability that a substrate can react with other k substrates follows a a power law decay [133],

suggesting a scale-free topology. Simultaneously, the analysis on functional capabilities and the pure

topology of metabolic networks suggests the existence of separable functional elements and high clus-

tering [118, 133]. However, clear-cut modular structures that compose densely connected modules

while interconnected with others through a few edges impose restrictions on the degree distribution.

Modules in biological networks and communities in social networks [45] by definition are relatively

isolated from the rest of the system, whereas in the scale free topology, hubs connect a high frac-

tion of nodes. The scale-free property and modularity are not exclusive for a large number of real

networks. This dilemma is fixed by considering the hierarchical organization, a generic structure in

real systems. Hierarchical networks capture the topology of diverse systems where groups of densely

connected components exist in multiple scales, and they are not independent [114, 115].

Hierarchical modularity exhibit a high degree of clustering that is regarded as a sign for modularity.

Hierarchical organization is investigated on several real networks in [114], which shows the clustering

coefficient depends on the degree of a node Ck ∼ k−1. It indicates that nodes that have a few edges is

highly interconnected inside modules, whereas hubs that have numerous edges play the role of linking

different modules and they have a low clustering coefficient. Hierarchical modularity is proposed as a

model for certain networks that reconciles the scale-free topology, high and size-independent clustering

coefficient, and the power law scaling of Ck [115]. Such an model is shown in Fig.(1.1.a).

The existence of hierarchy is consistent with the small-world property [45]. Many real networks are

small-world networks, whereas there also exist various systems that possess a large-world architecture,

such as lattices and numerous fractals. Alternatively, the scaling of the shortest path lengths l with

the network size N can be measured by the fractal dimension df . It describes the number of nodes

that can be reached from a starting node within l steps, averaged over all initial nodes, i.e. N ∼ ldf .

Quantifying the average of shortest path lengths with df , small-world networks have a fractal dimension

df →∞.

Although networks that model the real systems often have the stochastic nature, hierarchical struc-

tures can be a result of deterministic construction procedures [14]. The framework of deterministic

iterations produces various classes of hierarchical structures. With different rules of construction, it

is easy to tune network characteristics. One example is pseudo fractals that are generated via itera-

tions [53]. They are the apparent but not actual self-similar hierarchical networks, providing excellent

models of random scale-free networks and lending themselves to exact analytic treatment. One graph
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(a) (b)

(c) (d)

Figure 1.1: (a) The hierarchical network has a scale-free topology with embedded modularity [115].
(b) Scheme of the growth of the scale-free pseudo fractal graph [53]. The growth starts from a single
edge connecting two vertices. At each time step, every edge generates an additional vertex, which is
attached to both end vertices of the edge. (c) An example of the hierarchical lattice after g = 4 steps
in the construction, for long-range edge probability p = 0.6 [70]. (d) Small world network embedded in
2−d lattice, with short-range connections to all nodes within k lattice steps and long-range connections
generated with a probability p = l−α [78].
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realization of pseudo fractals is shown in Fig.(1.1.b). The scale-free pseudo fractal graph has a cu-

mulative degree distribution with exponent γ = 1 + ln 3/ ln 2. It has a one-on-one correspondence

between Cx and node degree kx as Cx = 2/kx. The average of shortest path lengths in pseudo fractals

is estimated as l ∼ lnN/ ln 〈k〉. Hierarchical lattices, as another example shown in Fig.(1.1.c), can be

tuned to have random long-range edges that are wired with a probability p [71]. The cluster coefficient

increases linearly with p, and the average path length scales as l ∼ N1/2 for p = 0, l ∼ lnN for p = 1.

Although the degree distribution is discontinuous, the cumulative distribution has an exponent −2

for large k. Another deterministic network is called Apollonian Networks from granular packings [10].

This network arises from the space-filling packing of spheres according to the ancient Greek mathe-

matician Apollonius of Perga. The recursive generation contributes a cumulative degree distribution

with γ = 1 + ln 3/ ln 2 and high clustering with C = 0.828. The small-world effect is verified through

an average path length l ∼ (lnN)
α
, α ≈ 3/4.

Another important class of deterministic hierarchical networks are real self-similar fractals. Fractals

are spatial networks that are embedded in the low-dimensional real space, i.e. networks whose nodes

occupy a precise position in two or three-dimensional Euclidean space [24]. Typical real spatial net-

works include neural network, communication networks [104], electric power grids [7], transportation

systems [81]. These networks have strong geographical and node-degree constraints due to the real

physical connections. Small-world features can be combined into low dimensional Euclidean spaces.

Watts-Strogatz (WS) networks are embedded on the 1 − d loop with long range edges rewired with

probability p [28, 135]. Another model incorporates long range edges with p ∼ l−α, for example on a

square lattice in Fig.(1.1.d) [78]. An application of fractal topology is to model the hierarchical modu-

larity in information processing networks such as brains that embed topologically complex systems in

a relatively low-dimensional physical space [88, 19]. Fractals that possess self-similar structures pro-

vides a broad spectrum of graphs that capture features ranging from high clustering to low clustering,

from the small-world to the large-world property. They are a family of graphs that exhibit self-similar

structures in every scale, which are constructed in a recursive, hierarchal manner that lends them-

selves to exact renormalization. This thesis explores diverse fractal networks to understand the effects

of hierarchical structures on dynamical processes.

Small-world properties added to trivial fractals or regular lattices lead to an entire new set of

phenomena. An unusual phase, called inverted Berezinskii-Kosterlitz-Thouless singularity, is found

between the low-temperature and high-temperature phase in ferromagnetic Ising model on hierarchical
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lattices where long-range edges are randomly linked with p ≥ 0.494 [71]. In this case, hierarchical

lattices are highly clustered and small-world. In another context, by adding small-world features to

regular lattices, percolation with explosive cluster growth emerges at the critical point [35]. A “patchy”

percolation has been found in a small-world Hanoi network, where a spanning cluster is obtained with

a finite probability unlike the 0-1 transition found in regular lattices [29].

Beyond small-world networks, hierarchical organization can form networks with a finite fractal

dimension df [52, 18]. A broaden critical region is reported on brain network models that have a finite

fractal dimension df [92]. On hierarchical structures that model modular architecture of neurons, a

number of metastable states exist in the spin system where the coupling decays with the distance

[3]. This can be used to study the modular architecture and parallel processing in neuron networks

[4]. In this thesis, we focus on two classes of fractals, Hanoi networks and hierarchical lattices, which

contain types of hierarchical structures from regular to non-regular, small-world to non small-world,

low clustering to high clustering, and finite fractal dimension to infinite fractal dimension.

This paper is organized as follow. In Chapter 2, we introduce hierarchical networks studied in

this thesis, and describe basics of Renormalization Group (RG) techniques that are used to derive

geometric and spectral properties of hierarchical networks. The ultimate goal of the study on the

network structure is to understand and explain the workings of systems built on those networks. We

would like to understand how the network hierarchical structure affects the quantum diffusion process

and the epidemic process, and explore the analytic treatment for these processes with RG techniques.

Specifically, we investigate the continuous time quantum walk in Chapter 3, and study the asymptotic

behavior to reveal the dominant factor that decides the long time dynamics. As another category of

quantum walks, the discrete time quantum walk is explored in Chapter 4 where RG is helpful to yield

the scaling collapse of the spreading behavior. We also investigate the phenomenon of a Griffiths phase

that is proposed to be a working mechanism on brain architecture, using the epidemic model SIS in

Chapter 5. In the conclusion, Chapter 6, we summarize this thesis, and discuss open questions in the

subjects we studied.



Chapter 2

Hierarchical Networks

In this Chapter, we introduce two families of self-similar hierarchical structures, the first of which

are Hanoi networks. Hanoi networks were introduced first to resemble the small-world properties in

spatial networks in which small-world edges are deterministic unlike the inherently disordered long-

range connections as the original Watts-Strogatz network [28, 135]. The degree distribution of Hanoi

networks is neither a power law as in scale-free networks, nor shaped as WS networks, which is similar

to random networks that have a pronounced peak at 〈k〉 and decays exponentially for large k. The

degree distribution is either a delta function centered at a degree K, or an exponential function of

the hierarchy. As we introduced the general structural characteristics in Chap.1, these networks have

simple and deterministic geometric structures but exhibit novel dynamics in percolation and the Ising

Ferromagnet [29, 26]. In this chapter, we provide a detailed description to these fractals.

The second class of networks are hierarchical lattices. Hierarchical lattices are generated from

Migdal-Kadanoff Renormalization Group (MKRG) theory [90, 74, 22]. Migdal-Kadanoff RG is useful

for physical systems in low dimensions, and is widely studied in statistical physics [59, 108, 105]. In this

section, we describe instances of graphs that have exactly identical fractal dimension df and spectral

dimension ds that can take an arbitrary real value. The spectral dimension ds is the scaling of the

smallest nonzero eigenvalue of the network Laplacian with system size N . The degree distribution of

hierarchical lattices is an exponential function of the hierarchy that has a a power law cumulative dis-

tribution at large degree k. An instance of hierarchical lattices have been studied for the ferromagnetic

Ising model in [71], on which the cumulative degree distribution is a pow law with exponent −2.

18
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2.1 Structural Properties

In this section, we formulate mathematically the construction of Hanoi networks and hierarchical

lattices. The iterative construction is the origin of self-similarity in fractals, and indicates the validity

of RG to fractals.

2.1.1 Hanoi Networks

Hanoi networks are based on the one-dimensional line of N nodes, [0, N − 1]. Thus, each node is at

least connected to its nearest left and right neighbor on the line. Construction of hierarchical structure

is based on a mathematical parameterization, which labels each node x > 0 using a pair of integers

(i, j), i > 1 and 1 6 j 6 2g−i such that

x = 2i−1 (2j − 1) , (2.1)

where i represents the level in the hierarchy, and g is the total number of levels, whereas j labels nodes

in order within the same level. Long-range edges are formed by connecting nodes of different j within

the same level i. Hierarchical pattern can be intuitively seen through two planar networks, HN3 and

HN5 as in Fig.(2.1). A planar graph is a graph that can be embedded in the plane in such a way that

its edges intersect only at their end nodes. As an extension to HN3 and HN5, HNNP and HN6 in

Fig.(2.2) are designed to be nonplanar but fully renormalizable.

We obtain the 3-regular network HN3, i.e. all nodes have a degree of 3, by connecting node 1 to

3, 5 to 7, 9 to 11, etc, for i = 1, 2 to 6, 10 to 14, etc, for i = 2, and 4 to 12, 20 to 28, etc, for i = 3,

and so on, as shown in Fig.(2.1). With mathematical formulation, the long-range edges are linked by

consecutive nodes x = 2i−1(4j − 3) and y = 2i−1(4j − 1) for 1 ≤ j ≤ 2g−i−1 in the same hierarchical

level i. We can also build a 4-regular network HN4 by connecting to consecutive nodes in both left

and right direction, i. e., 1 to 3, 3 to 5, 5 to 7, etc, for i = 1, 2 to 6, 6 to 10, etc, for i = 2, and so

forth. For each node in HN3, the clustering coefficient is

Cx =

 0 x = 4m,

1/3 x 6= 4m,
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Figure 2.1: Depiction of the Hanoi networks HN3 and HN5. The 3-regular network HN3 corresponds
to the solid (black) lines alone, while HN5 in addition also consists of the (green-) shaded lines. For
HN5, sites on the lowest level of the hierarchy have degree 3, then degree 5, 7, etc, concerning a fraction
of 1/2, 1/4, 1/8, etc., of all sites, which makes for an average degree 5 in this network. Note that both
networks are planar.

Figure 2.2: Depiction of the nonplanar Hanoi networks HNNP and HN6. Again, starting from a 1d-
backbone (black lines), in HNNP a set of long-range links (blues-shades lines) is added that break
planarity but maintain the hierarchical pattern set out in Eq. (2.1) that leads to a network of average
degree 4. If we add again the same links that distinguished HN3 and HN5 in Fig. 2.1, we obtain HN6
with average degree 6. In all cases, the RG on these networks remains exact.
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Figure 2.3: (a) the hierarchical pattern of the shortest path length from each node x to y in HN3 of
generation g = 10. (b) the effective diameter of HN3 scales as ∼

√
N .

where the clustering coefficient is 0 if the label of node x is a multiple of 4, otherwise is 1/3. The

average clustering coefficient is 1/4. The hierarchical pattern in structure can also be illustrated and

quantified through shortest path lengths from each node to all the others, shown in Fig.(2.3.a). The

largest of all the shortest path lengths is the diameter of network. It can be approximated with the

effective diameter i.e. the minimum number of hops in which 90% of all connected pairs of nodes can

reach each other. Measurement on effective diameters is fast and efficient for massive real networks

[76]. For HN3, the effective diameter scales as
√
N , as shown in Fig.(2.3.b). It suggests that although

long-range edges are added to HN3, it is a large-world network with a finite fractal dimension df = 2.

One extension of HN3 that leads to a small-world network is the planar network with an average

degree of 5, hence denoted as HN5. In addition to edges in HN3, in HN5 we link all even nodes to

both of their consecutive even nodes recursively shown in Fig.(2.1). As a result, the network remains

planar but now nodes have a level-dependent degree in the hierarchy. To obtain the average degree, we

observe that 1/2 of all nodes have degree 3, 1/4 have degree 5, 1/8 have degree 7, and so on, leading

to an exponentially decreasing degree distribution of P (k = 2i+ 1) ∝ 2−i. At large i, the cumulative

probability 1 − 2−i, which does not fit a power law. For nodes 0 and 2k−1, special consideration is

required for the degree. The total number of edges in the network of size N = 2g is

2g × 2 +

g−1∑
i=1

(2i+ 1) 2g−i = 5× 2g − 6,
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Figure 2.4: the average clustering coefficient 〈Cn〉 versus gfor HN5

and therefore the average degree 〈k〉 = 5. The clustering coefficient for each node in each hierarchy is

Cx =



2/3 i = 1

1/2 i = 2

1/3 i = 3

...
...

1/ (g − 2) i = g − 2

,

Special case takes place for node 0 and 2g−1, i.e. i = g, for which C0 = C2g−1 = 1/ (g − 1). For nodes in

hierarchy i = g−1, Cx is 3
5 ,

8
21 ,

5
18 ,

12
55 ,

7
39 ,

16
105 ,

9
68 . . . for g = 3, 4, 5, 6, 7, 8, 9 . . .. We find that the cluster

coefficient in HN5 is level dependent, and the average is 〈C〉 ≈ 0.527, shown in Fig.(2.4). Shortest

path lengths from each node to all the others also have a hierarchical pattern, shown in Fig.(2.5.a).

The effective diameter in HN5 scales as lnN , shown in Fig.(2.5.b).

2.1.2 Hierarchical Lattices

Hierarchical lattices arise from the theory of MKRG, which is a bond-moving scheme that approximates

d-dimensional lattices. A single edge in the generation µ is replaced with a new subgraph, thus forming

the graph of the subsequent µ + 1 generation. Hierarchical lattices are easy to be tuned to obtain a

wide spectrum of structural properties as needed, one instance of which is shown in Fig.(1.1.c) where

additional random long-range edges are wired to obtain a small-world networks with high clustering.

We here briefly introduce the bond-moving scheme to generate basic subgraphs that are used for
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Figure 2.5: (a) the hierarchical pattern of shortest path length from each node x to y in HN5 of
generation g = 10. (b) the effective diameter of HN5 scales as lnN .

iterative constructions. In statistical physics, this structure of the subgraph arises from the bond-

moving scheme in d dimensions [90, 74], as depicted in Fig.(2.6): In a hyper-cubic lattice of unit

bond length, at first all l − 1 intervening hyper-planes of bonds, transverse to a chosen direction, are

projected into every lth hyper-plane, followed by the same step for l− 1 hyper-planes being projected

onto the lth plane in the next direction, and so on. In the end, one obtains a renormalized hyper-cubic

lattice (of bond length l) in generation µ+ 1 with a renormalized bond of generation µ+ 1 consisting

of a sub-graph of

b = ld−1 (2.2)

parallel branches, each consisting of a series of l bonds of generation µ. In turn, we can rewrite Eq.(2.2)

as

d = 1 +
ln(b)

ln(l)
, (2.3)

anticipating analytic continuation in l and b to obtain results for arbitrary, real dimensions d. In the

following, we consider a general series of Migdal-Kadanoff networks by varying b while fixing l = 2.

For any integer value of b, for graph of the g−th generation, there are a total of Ng = 2 + b(2gbg−1)
2b−1

nodes. Initially, there are two end nodes in the 0−th hierarchy. After one-step of recursion, b more

nodes are generated. Another step of recursion generates b (2b) more nodes. Hence, i−th step of

recursion generates b (2b)
i−1 more nodes. The degree for two end nodes in the 0−th hierarchy is

therefore bg. For nodes in ith hierarchy, the node degree is ki = 2 bg−i. The average degree satisfies
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b

Figure 2.6: Bond-moving scheme in the Migdal–Kadanoff renormalization group, here for a square
lattice (d = 2) with l = 2, i. e. b = 2 in Eq. (2.2). Starting from the lattice with unit bonds (a), bonds
in intervening hyper-planes are projected onto every lth plane in one direction while bonds connect
to the lth plane only at every lth vertex (b), which is then repeated in subsequent directions (c), to
re-obtain a similar hyper-cubic lattice, now of bond-length l (a). The renormalized bonds in this case
consist of b = ld−1 = 2 branches, each of a series of l = 2 bonds; the general RG-step for l = 2 and
arbitrary branches b is depicted in (d).

Ng 〈k〉 = 2× bg +

g∑
i=1

[
b (2b)

i−1
] [

2 bg−i
]
,

which results in a average degree 〈k〉 of value [3, 3.9] for b ∈ [2, 20] with g = 50. The cumulative

distribution at large k converges to a power law with exponent − ln (2b) / ln b, which is consistent with

the exponent −2 for b = 2 reported in [71]. For a scale-free network, Pcum (k) ∼ k1−γ with N → ∞.

In the hierarchical lattices with b = 2, γ = 3 is comparable to the real scale free networks [6]. The

clustering coefficient for each node is Cx = 0. For the hierarchical lattice with b = 2, the average path

length scales as
√
N , which shows the hierarchical lattice is a large world network [71]. To obtain the

small world property, long range edges are added with a probability p, which provide a linear increasing

average of clustering coefficients with p, and decreasing average of shortest path lengths towards lnN

[71].

2.2 Spectral properties of network Laplacians

In addition to structural characteristics that can be studied directly in Sec.2.1, the spectrum of the

network Laplacian matrix also provides information on geometry, which is used in various practical

applications. For example, synchronizability of a network is indicated by the ratio of the largest and
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smallest nonzero eigenvalue[15]. Permeability and well-connectedness of networks can be defined in

terms of the spectral gap [86]. The spectrum is also applied to analyze the algorithmic efficiency in

continuous-time quantum search algorithms [42, 84], graph partitioning [110, 69] and image processing

[106]. There has been a strong motivation to study the Laplacian spectrum on fractals[51, 111, 61,

112, 120, 123]. In this section, we show the application RG to spectrum of the Laplacian, from

which we obtain the analytic expression for the enumeration of spanning trees in a network and its

synchronizability.

The adjacency matrix of an unweighted network is defined as Axy, which is 1 if node x and y are

connected, and otherwise is 0. The Laplacian matrix is given by

Lxy = kxδxy −Axy. (2.4)

For undirected networks concerned in this thesis, L is symmetric. All row or column sums vanish in L,∑
x Lxy =

∑
y Lxy = 0. The fundamental property characterizing the Laplacian matrix is its spectrum

of eigenvalues, i.e. the solutions λi of the secular equation

det [L− λ1] = 0. (2.5)

The Laplacian matrix is positive semidefinite, i.e. λi ≥ 0 and λ1 = 0. The smallest nonzero λ2 defines

the spectral gap. This spectrum is highly nontrivial for hierarchical lattices and Hanoi networks, which

can nevertheless be studied by the RG approach.

2.2.1 Spanning Trees on a Network

We first consider the enumeration of spanning trees in a graph based on which we introduce the idea of

RG. The number of spanning tress of a graph, also referred to as “graph complexity” [85], is obtained

by taking ε→ 0,

#ST = − lim
ε→0

det [L+ε1]

εN
, (2.6)

which is one of the oldest results in algebraic graph theory, due to Kirchhoff [23]. Spanning trees

describe the size of the attractor state in the self-organized critical sandpile model [49], characterize

the optimal paths between any two nodes in a network [138], and are also related to optimal synchro-

nizability of a network [97]. The number of spanning trees is of fundamental interest in mathematics
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and physics. For example, it is related to the partition function of q−state Potts model in the limit

q → 0 [50, 137]. Thus, studies on the asymptotic growth of spanning trees are well motivated not only

for regular lattices [121], but also on self-similar structures [40, 124, 126]. If the number of spanning

trees #ST exponentially increases with N , it can be characterized by the tree entropy, which is the

entropy-density of spanning trees [85, 40, 125],

s = lim
N→∞

ln (#ST)

N
. (2.7)

The number of spanning trees on fractals can be easily derived from the evaluation of the Laplacian

via the RG procedure. We will show later that geometry of networks affects its asymptotic growth.

The determinant of L + ε1 for fractals can be evaluated asymptotically in a recursive decimation

scheme. We have already described the procedure in [32, 34], and present great details in Sec.7.1. In

general, we employ the well-known formal identity [113],

1√
detL

=

ˆ
· · ·
ˆ ∞
−∞

(
N∏
i=1

dxi√
π

)
exp

{
−

N∑
n=1

N∑
m=1

xnLn,mxm

}
. (2.8)

For RG, we employ a hierarchical scheme by which at each step µ a fraction 1/f of all remaining

variables get integrated out while leaving the integral in Eq.(2.8) invariant. For Hanoi networks

as an example, we integrate out every odd-indexed variable in a network at step µ. We separate∏N
i=1 dxi =

∏N/2
i=1 dx2i

∏N/2
j=1 dx2j+1, integrate to receive

1√
detL

= C ′
ˆ
· · ·
ˆ ∞
−∞

 N
2∏
i=1

dx2i√
π

 exp

−
N
2∑

n=1

N
2∑

m=1

x2nL
′
n,mx2m

 , (2.9)

where the reduced Laplacian L′ is now a N
2 ×

N
2 matrix that is formally identical with with L and

C ′ is an overall scale-factor. If L = L (q, p, . . .) depends on some parameters, then L′ = L′ (q′, p′, . . .)

depends on those parameters in the same functional form, thereby revealing the RG-recursion relations,

q′ = q′ (q, p, . . .), p′ = p′ (q, p, . . .), etc, and C ′ = C ′ (q, p, . . .), that contains all the information of the

original Laplacian. After a sufficient number of such RG-steps, a reduced Laplacian of merely a few

variables remains that can be solved by elementary means.

We show here how to use recursions of parameters (q, p, l . . .) to calculate the Laplacian determinant
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on HN3 and HN5. The recursions are

qµ+1 = qµ + 2lµ − 2
p2µ

qµ − 1
,

pµ+1 = lµ +
p2µ

qµ − 1
, (2.10)

lµ+1 = l0 +
p2µ

q2µ − 1
,

and

C(µ)
g =

µ−1∏
i=0

[
q2i − 1

]−2k−3−i

, (2.11)

such that the determinant of the Laplacian of HN3 after g − 2 RG-steps becomes:

det
[
L(3)
g + ε1

]
=

1[
C

(g−2)
g

]2 det



qg−2 + 2lg−2 −pg−2 l0 − 2lg−2 − 1 −pg−2

−pg−2 qg−2 −pg−2 −1

l0 − 2lg−2 − 1 −pg−2 qg−2 + 2lg−2 −pg−2

−pg−2 −1 −pg−2 qg−2


(2.12)

=
[
C(g−2)
g

]−2
(qg−2 + 1) (qg−2 + 4lg−2 + 1)

[
(qg−2 − 1)2 − 4p2g−2

]
.

For the Laplacian determinant of HN5, special consideration is required for the on-site factor of node

0 and 2g−1 due to their initial degree. Hence the determinant is evaluated by introducing one more

parameter rg−2 that is exactly determined by all of the others,

det
[
L(5)
g + ε1

]
=

1[
C

(g−2)
g

]2 det



rg−2 −pg−2 l0 − 2lg−2 − 1 −pg−2

−pg−2 qg−2 −pg−2 −1

l0 − 2lg−2 − 1 −pg−2 rg−2 −pg−2

−pg−2 −1 −pg−2 qg−2


(2.13)

=
[
C(g−2)
g

]−2
(qg−2 + 1) (2lg−2 + rg−2)

[
(1− qg−2) (2lg−2 − rg−2)− 4p2g−2

]
.
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The initial conditions on the RG-recursions that distinguish between HN3 and HN5 are:

C
(0)
k = 1,

q0 = 3 + ε, (2.14)

p0 = 1,

l0 =


0, for HN3

1, for HN5

.

As shown in [32, 34], the parameters {qk−2, pk−2, lk−2} in Eq.(2.10) in HN3 approach fixed points as

qµ ∼ 1 +

(
2

φ

)−µ(
Q0 + ε

(
4

φ

)µ
Q1 + ε2

(
4

φ

)2µ

Q2 . . .

)
,

pµ ∼
(

2

φ

)−µ(
P0 + ε

(
4

φ

)µ
P1 + ε2

(
4

φ

)2µ

P2 . . .

)
, (2.15)

lµ ∼
(

2

φ

)−µ(
L0 + ε

(
4

φ

)µ
L1 + ε2

(
4

φ

)2µ

L2 . . .

)
,

where φ =
(√

5 + 1
)
/2. In turn, the set of parameters in Eq.(2.10) for HN5 approach the fixed points

as

qµ ∼
5 +
√

41

2
+
(
ε2µQ1 + ε222µQ2 . . .

)
,

pµ ∼
3 +
√

41

4
+
(
ε2µP1 + ε222µP2 . . .

)
, (2.16)

lµ ∼
3 +
√

41

8
+
(
ε2µL1 + ε222µL2

)
.

The pre-factor becomes
[
C

(g−2)
g

]−2
∼ αN . Parameter α is a constant that can be determined to

any accuracy from Eq. (2.11), which is estimated as α ≈ 2.018999052 for HN3 at k = 30. Inserted

into Eq.(2.12), we obtain

det
[
L(3)
g + ε1

]
∼ αNφ3k/N2ε, (2.17)
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Table 2.1: Entropy-densities from Eq. (2.7) for spanning trees on Hanoi networks.

Hanoi networks s = 1
N ln (#ST )

HN3 0.7026018 . . .
HN5 1.2573823 . . .
HNNP 1.0814688 . . .
HN6 1.4104309 . . .

and the number of spanning trees on HN3 is:

#ST ∼ αN (φ/2)
3k
, (2.18)

whereas for HN5, HNNP, and HN6, the determinant is calculated as

det [Lg + ε1] ∼ αNNε, (2.19)

and the number of spanning trees is:

#ST ∼ αN , (2.20)

We obtain the number of spanning trees characterized by the tree entropy on Hanoi networks, shown

in Tab.(2.1).

For hierarchical lattices after g steps of decimation, the pre-factor (Cg)
−2 in Eq.(7.37) scales as

αN . We numerically determine the value of α after g = 50 is respectively α = 2.000000000 . . . ,

2.168943542 . . . , 2.208179027 . . . , and 2.214346358 . . . for b ∈ [2, 5]. The determinant is derived as

Eq.(7.36) in Sec.7.1.3,

det [Lg + ε1] ∼ C−2g b2g
(
q2g/4− p2g

)
, (2.21)

∼ αN × b2gε = αN ×
(
b

2

)g
Nε (2.22)

and thus the number of spanning trees is

#ST ∼ αN ×
(
b

2

)g
. (2.23)

We estimate the tree entropy on hierarchical lattices, shown in Tab.(2.2)
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Table 2.2: Entropy-densities from Eq. (2.7) for spanning trees on Hanoi networks.

Hierarchical lattices s = 1
N ln (#ST )

b = 2 0.6931471 . . .
b = 3 0.7742402 . . .
b = 4 0.7921682 . . .
b = 5 0.7949572 . . .

2.2.2 Special Zeta Function and Synchronization

A further application of the Laplacian spectrum is the spectral zeta function, which is related to the

evaluation of network synchronizability and the efficiency of continuous time quantum search algorithm.

We will discuss the quantum search in Chap.3, and here focus on the network synchronizability.

Asymptotic evaluation of the ability to synchronize identical dynamical systems in a network depends

on the ratio of largest λN to smallest nonzero λ2 eigenvalue of the Laplacian [15]. The scaling of λ2

yields from that of the spectral zeta function. λN can be estimated with a power method [80]. RG

makes the numerical estimation stable and accurate. Details is in Sec.7.2.

The spectral zeta function of the Laplacian is defined as [131, 5, 54],

Ij =
1

N

N∑
i=2

(
1

λi

)j
. (2.24)

In the evaluation of partition functions in field theory, the Ij often feature in the continuation to

non-integer moments, in particular, the limit j → 0 [113]. In almost all cases, with the exception of

regular lattices where Fourier transforms can be applied, and some fractals [111], it is impossible to

find each eigenvalue in the sum of Eq. (2.24). However, the sum defined in Eq. (2.24) for Ij can be

expressed as the j-th derivative of the determinant L + ε1 in the limit ε→ 0:

Ij =
1

N

(−1)
j

(j − 1)!

(
∂

∂ε

)j N∑
i=2

ln (λi + ε)

∣∣∣∣∣
ε→0

,

=
1

N

(−1)
j

(j − 1)!

(
∂

∂ε

)j
ln

[
1

ε

N∏
i=1

(λi + ε)

]∣∣∣∣∣
ε→0

,

=
1

N

(−1)
j

(j − 1)!

(
∂

∂ε

)j
ln

[
1

ε
det (L + ε1)

]∣∣∣∣∣
ε→0

, (2.25)

where we have used the fact that λ1 = 0. We can use the RG to derive the scaling of Ij without

calculating each individual Laplacian eigenvalue λi [33, 34]. Results of Ij for HN3 are,
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Ij ∼

[(
2

φ

)log2N
]j
,

∼
[
N1−log2 φ

]j
, (2.26)

and for HN5 are

Ij ∼


lnN

N2j/2−1

j = 1,

j ≥ 2.

(2.27)

The zeta-functions for the Laplacian determinants with varying b for hierarchical lattices are eventually

evaluated as

Ij ∼


N2j/(1+ ln b

ln 2 )−1

lnN

const

2j > (1 + ln b
ln 2 )

2j = (1 + ln b
ln 2 )

2j < (1 + ln b
ln 2 )

(2.28)

The spectral dimension ds refers to the scaling of λ2 with system size N as,

λi ∼
(
i

N

) 2
ds

, (2.29)

which generally on fractals holds for a range of eigenvalues λ1 < λi ≤ λic for all 2 ≤ i ≤ ic up to

ic. We show two examples in Fig.(2.7). Under these assumptions, it is easy to evaluate the spectral

zeta-function in Eq. (2.24) in the continuous limit, i
N → θ with dθ = 1

N , such that

1

N

N∑
i=2

(
1

λi

)j
∼
ˆ θc

1
N

dθ θ−
2j
ds + const,

∼ N
2j
ds
−1 + const, (2.30)

which holds if 2j > ds, and we assume the scaling is dominated by small eigenvalues with an asymp-

totical expression in Eq. (2.29). The zeta-functions are again identified as
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Figure 2.7: Plot of the Laplacian eigenvalues λi ordered by rank i as a function of i
N for various system

sizes N of the Hanoi network HN3 (left) and MKRG at b = 3 (right). The dashed line follows a power
law with exponent 2/ds = dw/df ≈ 1.31 [27] for HN3, and for MKRG with ds = 1 + log2 3. The inset
for HN3 shows the same data for only N = 216 on a linear scale, showing that the scaling concerns
only the part of the spectrum where i

N is small.

Ij ∼ N2j/ds−1, 2j > ds. (2.31)

Hence, we evaluate ds in Hanoi networks and hierarchical lattices as,

ds =


2/ (2− log2 φ) HN3

2 HN5

1 + ln b
ln 2 MKRG

.

which is confirmed in [34, 5].

The calculation on λ2 and λN is sufficient for a vague estimation of the synchronizability. The

linear stability of the synchronous state is related to an algebraic condition of the Laplacian matrix

[15]. The generic requirement for the synchronous state to be linearly stable is σλi ∈ (α1, α2) for all

the nonzero eigenvalues of the Laplacian matrix, where σ is the global coupling, and (α1, α2) is the

negative region of the master stability function that depends solely on the dynamical system. For

dynamical systems on network of arbitrary topology, whether the network is synchronizable is decided

by the algebraic condition λN/λ2 < α2/α1.

The RG approach that estimates the largest eigenvalue is specified in Sec.7.2. We present the
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Figure 2.8: Plot of the largest eigenvalue λN for HN5 with system size k (= log2N), as obtained
by the power-method using the recursions in Eq. (7.50) . A linear fit provides a scaling of λN ∼
2.023588046 . . . k + 3.460393100 . . ..

results here. For HN3, the largest eigenvalue is bounded by λN ≤ 6 that is estimated as λN =

5.37272879308215 . . .. In HN5, the asymptotic value of λN for varying size N = 2g is presented in

Fig.(2.8). The largest eigenvalues are shown to scale with λN ∼ 2 log2N . The asymptotic value of λN

for hierarchical lattices, which scales as λN ∼ bg ∼ N , shown in Fig.(2.9). The eigen-ratios of HN3,

HN5 and hierarchical lattices are asymptotically N2−log2 φ,2N log2N and N (3+log2 b)/(1+log2 b). This

would imply that the synchronizability for these networks is ranked as HN5>HN3>HL (b ≤ 46) . This

conclusion intuitively suggests that small world edges improve the synchronizability, as seen from the

comparison between Hanoi networks and hierarchical lattices.
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(a) b=2 (b) b=3

(c) b=4 (d) b=5

Figure 2.9: Plots of the largest eigenvalue λN with system size k(∼ logbN) for MKRG with
b = 2, 3, 4, 5. It can be fitted respectively as logb=2 λN = 0.9992544987 . . . k + 0.0213953207 . . .,
logb=3 λN = 0.9998501326 . . . k + 0.0030754291 . . ., logb=4 λN = 0.9999427813 . . . k + 0.0009418968 . . .,
and logb=5 λN = 0.9999734834 . . . k + 0.0003826594 . . ., showing that λN ∼ bk ∼ N .



Chapter 3

Continuous Time Quantum Search

In this chapter, we study the relation between the Laplacian and continuous time quantum spatial

search. Since Grover proposed the quantum algorithm searching an unstructured database with N

items in time ∼
√
N , i.e. a quadratic speed-up over classical search algorithms [67], quantum search

has been a framework where quantum algorithms beat classical algorithms. The spatial search problem

presents a scenario whereN items are stored in a d−dimensional physical space, and quantum computer

explores this database by making local moves. As an analog of the classical random walk, the continuous

time quantum walk (CTQW) provides a model for the spatial search on graphs. In an elementary

version of CTQW, quantum systems are driven by the Hamiltonian following the definition in [42],

H = γ L− |w〉 〈w| , (3.1)

where L is the Laplacian matrix, γ is the tunable parameter, and w is the target node.

Study of CTQW on various graphs starts from complete graphs [56], hypercubes [44, 57] and

regular lattices. Unlike the first two, CTQW fails to provide a quadratic speedup in regular lattices

with d ≤ 4. Recently, CTQW has been explored on on Erdös-Renyi graphs with N nodes, which is

optimal as long as the the wiring probability for an edge between any two nodes is p ? log3/2N/N

[39]. The particular interest of CTQW on fractal networks has been investigated in [2], where fractals

include dual Sierpinski gaskets, T-fractals, Cayley trees, and Cartesian products between Euclidean

lattices and dual Sierpinski gaskets. These fractals have different df and ds, which are generally

not identical. Numerical experiments in [2] suggest that two factors together determine whether a

35



CHAPTER 3. CONTINUOUS TIME QUANTUM SEARCH 36

1000 2000 3000 4000 5000 60007000

N

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5
2

2

2
 ~ (lnN)

1.7357...

(a)

10-3 10-2 10-1 100

p

10-5

10-4

10-3

10-2

10-1

100

λ
2
/N

N=5000

N=6000

N=7000

(b)

Figure 3.1: (a) λ2 versus N for random graph with p = log3/2N/N . Red squares are λ2 averaged over
graph realizations for N ∈ [1000, 7000]. Blue line is fitted with λ2 ∼ (lnN)

α
, α ≈ 1.7357. (b)λ2/N

versus p for N = 5000, 6000, 7000.

quadratic speedup can be achieved. One is that ds should be larger than 4, and the other is that there

is a sharp transition at a critical point γc of overlaps of the initial and the target state with the ground

and first excited state of the Hamiltonian.

In [42], the critical point γc is related to the spectral zeta function of the Laplacian of regular

lattices. As discussed in Sec.2.2.2, RG enables us to calculate the spectral zeta function for hierarchical

structures. We study analytical expressions of efficiency of CTQW on fractals that include HN3,

Sierpinski Gasket, and hierarchical lattices. Results reveal that γc and thus the algorithmic efficiency

depend only on the spectral dimension ds. It generalizes theoretical predictions of the algorithmic

efficiency on lattices and Erdös-Renyi graphs to any geometric structures. This argument is based on

the fact that for lattices, ds = d, and for random graphs with p ? log3/2N/N , ds =∞. The spectral

dimension ds on random graphs can be numerically verified by the scaling of λ2 with N , for example,

λ2 ∼ (lnN)
α, α ≈ 1.7357 with p = log3/2N/N , shown in Fig.(3.1.a), and the scaling with N for

varying p is shown in Fig.(3.1.b). It suggests an infinite value of ds considering the definition of ds,

λ2 ∼ N−2/ds .

We prove ds controls the algorithmic efficiency of CTQW with the Hamiltonian in Eq.(3.1). It indi-

cates fractal networks embedded in low dimensional Euclidean space can achieve optimal performance.

There exist variations of continuous time quantum search, which are proposed as a solution to improve

the performance in low dimensional space. To give a full picture on the quantum search, we introduce

a few examples here. Aronson and Zambians proposed an extended quantum search algorithm that
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finds a marked entry in time of order ∼
√
N for lattices with d > 2, and in time ∼

√
N log2N for d = 2,

using reclusive search on sub-cubes [1]. Using an appropriate lattices version of a Dirac Hamiltonian

with extra spin degrees of freedom, Childs and Goldstone proposed a CTQW that competes with a

time of order ∼
√
N for d > 2 and of order ∼

√
N logN for d = 2 [43]. The additional spin space

introduces a linear dispersion relation near the Dirac point. Fouler et al [60] exploited the Dirac point

of the walk Hamiltonian on a graphene lattice to find the marked entry in time ∼
√
N log3/2N for

d = 2. Childs further generalized the idea of a Dirac point by considering CTQW on crystal lattices,

where the Hamiltonian is constructed without external memory by embedding these additional degrees

of freedom into the lattice as additional vertices [41] .

3.1 Spectral Zeta Function in CTQW

CTQW with the Hamilton in Eq.(3.1) relates the critical point γc to the spectral zeta function. We

explain briefly in this section how the critical point determines the algorithmic complexity, and why

it is related to the spectral zeta function. First we review some basics of CTQW.

As an analog to random walks, CTQW evolves with the Schrödinger equation in a Hilbert space

spanned by the N site-basis state |x〉,

i
dΨx(t)

dt
=

∑
y

HxyΨx(t), (3.2)

where Ψx(t) = 〈x|Ψ(t)〉 is the complex amplitude at node x, and H is the Hamiltonian defined in

Eq.(3.1). We denote eigenvalues and normalized orthogonal eigenstates for H and L respectively as

{Ei, |ψi〉} for 0 ≤ i ≤ N − 1 and {λi, |φi〉} for 1 ≤ i ≤ N . The search typically evolves from an initial

state that is prepared as the uniform superposition over all site-basis states [67], |s〉 = 1
N

∑
x

|x〉. The

challenge is to find the optimal value of γ at which a physical transition on the overlaps of |s〉 , |w〉 with

the first two eigenstates |ψ0,1〉 of H. The argument for the critical γc is explained in [42]. Regardless of

graphs, |s〉 is the first eigenstate of the Laplacian. Thus as γ →∞, it approximates |ψ0〉, the ground

state of the Hamiltonian. As γ → 0, the contribution from the Laplacian can be ignored, |ψ0〉 is close to

|w〉. Since |s〉 is nearly orthogonal to |w〉, degenerate perturbation theory shows that |s〉 approximates

|ψ1〉. Therefore, at some intermediate value of γ, the ground state will switch from |w〉 to |s〉, and

may have substantial overlaps with both. If the first excited state also has substantial overlaps with
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|w〉 and |s〉, the Hamiltonian will drive transitions between these two states. The rotation from |s〉 to

|w〉 takes time of order t ∼ 1/ (E1 − E0).

The complete graph gives a good example, where it is sufficient to only consider |s〉 and |w〉. At

γN = 1, |ψ0,1〉 are respectively (|w〉 ± |s〉) /
√

2 with a energy gap of 2/
√
N . Hamiltonian drives the

transition from state |s〉 to |w〉 with a transition probability Πs,w =
∣∣〈w ∣∣e−iHt∣∣ s〉∣∣2 = sin

(
t/
√
N
)
,

which is first to be in order of O (1) at time t = π
2

√
N . Generally, the ground and first excited state

are more complicate than a superposition of |s〉 and |w〉. However, the objective of CTQW remains to

be finding the critical value γc such that the overlaps between |s〉, |w〉 and |ψ0,1〉 are substantial, and

the transition from |s〉 to |w〉 takes place in an optimal time.

The relation between γc and Πs,w with the spectral zeta function is discovered in [42, 2] by intro-

ducing a spectral function for H in terms of the Laplacian eigenvalues and eigenvectors,

F (E) =
〈
w
∣∣∣ 1
γL−E

∣∣∣w〉 =
∑N
i=1

|〈w|φi〉|2
γλi−E , (3.3)

which originally is derived for lattices, and extended to fractals. It satisfies the condition on the

Hamiltonian eigenvalues,

F (Ei) = 1. (3.4)

With F (E), one can evaluate the overlap of any eigenstate of the Hamiltonian with the initial state

|s〉 as

|〈s |ψi 〉|2 =
1

N E2
i F
′ (Ei)

, (3.5)

and the transition amplitude that concerns the optimization of CTQW as

〈
w
∣∣eiHt∣∣ s〉 = − 1√

N

N∑
i=1

eiEit

EiF ′ (Ei)
. (3.6)

The spectral function F (E) is complicated generally. In particular, it depends on |〈w|φi〉|2, which

is nontrivial, and may not be 1/N as it is in regular lattices. Therefore, evolution of F (E) can be a

difficult task. However, if we make the assumption on the overlap |〈w|φi〉|2, it turns out to simplify the

evolution to a large extent. We assume that at typical sites w of some fractal networks, the overlaps
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with eigenvectors of the Laplacian still satisfy

|〈w|φi〉|2 ∼
1

N
. (3.7)

In Hanoi networks, the number of nodes at each hierarchical level i is 2g−i, and g is the number of total

levels, discussed in Sec.2.1.1. In hierarchical lattices, the number of nodes at each level i is b (2b)
i−1,

and b is the number of branches of the sub-graplcet. In the case of Hanoi networks, although in the

mathematical parameterization of Eq.(2.1) nodes with i = 1 may appear to be in the lowest hierarchy,

in the perspective of recursive construction and decimation, they belong to the highest hierarchy, i.e.

generated in the last step or decimated in the first step. Therefore, we define levels from the highest

to the lowest in Hanoi networks in order of i = 1, 2, . . . , g. Since nodes in highest levels constitute the

largest fraction, they exhibit what can be considered as the typical behavior.

The assumption in Eq.(3.7) on overlaps for target site w with all eigenvectors |φi〉 of the Laplacian

can be numerically verified. In Fig.(3.2), we plot the overlaps averaged separately over all w in the

highest, 2nd-highest, and 3rd-highest levels for hierarchical lattices with b = 2 after g = 6 and b = 3

after g = 5. In Fig.(3.3), we plotted the averaged overlap for the highest, 2nd-highest, and 3rd-highest

levels of HN3 and HN5 as a function of the eigenstate index rescaled with N , i.e. i/N . We found the

overlaps collapse well for different Ns. Furthermore, N |〈w|φi〉|2 is of the order of O (1), the maximum

of which increases logarithmically as the level of hierarchy. This fact suggests that CTQW differs

mildly between node w in different hierarchies. For our purpose here, we conclude that nodes in the

highest level are the most representative.

With this essential assumption, and using λ1 = 0, Eq.(3.3) can be rewritten as

F (E) ∼ − 1

N E
+

1

γ
I1 +

1

N

N∑
i=2

E

γλi (γλi − E)
, (3.8)

with the first spectral zeta function I1. Since ds is the key factor for Ij as shown in Eq.(2.31), ds

affects F (E) and physical observables in CTQW explicitly. In fact, as observed in [42], CTQW

becomes optimal for lattices of any dimension when there is a phase transition in the overlaps |〈s|ψ0〉|2

and |〈s|ψ1〉|2 at a critical point of γ. This critical point occurs for

γ ∼ γc = I1. (3.9)
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Figure 3.2: Plot of the overlaps |〈w|φi〉|2 in MKRG for the searched-for sites w with the Laplacian
eigenvectors φi as a function of i, ordered such that respective eigenvalues satisfy λi ≤ λi′ for any
two indices i ≤ i′. The MKRG used here [25] rescales length by l = 2 with (a) b = 2 and (b)
b = 3 branches in each RG-step for an effective dimension d = 1 + logl b of (a) d = 2 and (b)
d = 2.585 . . .. The RG has been iterated for g = 6 generations in the hierarchy in (a), forming a lattice
of N = 2 + b

2b−1 [(2b)
g − 1] = 2732 sites, and in (b) for g = 5 with N = 4667 sites. In the top panel of

both, (a) and (b), the overlaps (rescaled by a factor of N) were averaged over all sites w in the highest
hierarchical level g, in the middle panel overlaps were averaged only over those w in level g − 1, and
in the respective bottom panel for level g − 2. Note that every level the number of sites increases by
a factor of ∼ 2b, such that the vast majority of all sites w are typically located in these highest levels
of the hierarchy. For those, these plots show that indeed N |〈w|φi〉|2 ∼ 1, typically, as assumed in Eq.
(3.7), although these overlaps progressively vanish for those w in lower levels for eigenvectors of larger
index i.
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Figure 3.3: Plot of the overlaps N |〈w|φi〉|2 in Hanoi networks for the searched-for node w with the
Laplacian eigenvectors φi as a function of i/N , i.e. rescaled with the system size. Left is for HN3 and
right is for HN5 with g = 10, 11, 12, 13. The red solid line is the overlap averaged over nodes in the
highest hierarchy. Blue dashed line is the overlap averaged over second highest hierarchy. Green dotted
line is the overlap averaged over third highest hierarchy. After rescaling the x-axis, those curves for
each hierarchy of different systems size collapse well. N |〈w|φi〉|2 is of the order O (1), the maximum
of which increases with hierarchical level l as ln l.
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According to Eq.(2.31), we find for general fractal networks that

γc ∼


N

2
ds
−1, ds < 2,

const, ds > 2.

(3.10)

3.2 Evaluation of Efficiency of CTQW

To obtain the runtime complexity for the quantum search, we have to distinguish the following cases:

For ds > 4 both I1,2 remain constant. It is then self-consistent to consider the spectral function in

Eq.(3.8) for energies |E| � γcλ2, which applies to both the ground state E0 and the first excited state

E1 of H near the optimal γc. Expanding the remaining sum in Eq.(3.8) to leading order in E yields

F (E) ∼ − 1

NE
+

1

γ
I1 +

E

γ2
I2 + . . . , (|E| � γcλ1) , (3.11)

Since F (E0,1) = 1 from the eigenvalue condition in Eq.(3.4), we obtain a consistent balance to leading

and sub-leading order only for γ = γc = I1, thereby validating Eq.(3.9), and for 1
NE0,1

∼ E0,1

γ2 I2 � 1,

yielding

E0,1 ∼ ±
1√
N

I1√
I2

= O
(
N−

1
2

)
. (3.12)

Then, the derivative of Eq.(3.11) provides F ′ (E0,1) ∼ 2I2
/
I21 such that according to Eq.(3.5) the

initial state |s〉 overlaps with equal and finite weight with both, ground state and first excited state:

|〈s | ψ0,1〉|2 ∼ 1
2 . (3.13)

As Ei > γcλ2 for all i ≥ 2, higher energy eigenstates do not contribute for large N , and we obtain

from the first two terms of the transition amplitude in Eq.(3.6),

∣∣〈w ∣∣eiHt∣∣ s〉∣∣2 ∼ 1

N

∣∣∣∣ eiE0t

E0F ′ (E0)
+

eiE1t

E1F ′ (E1)

∣∣∣∣2 , (3.14)

∼ I21
I2

sin2

(
2I1√
I2

t√
N

)
. (3.15)
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Thus, the transition probability oscillates and reaches its first maximum at a time

t = topt ∼
√
I2
I1

√
N = O

(
N

1
2

)
, (3.16)

at which point the transition probability becomes

popt =
∣∣〈w ∣∣eiHtopt∣∣ s〉∣∣2 ∼ I21

I2
= O(1). (3.17)

Finally, to find the target node w with a probability of order unity, we need to run the quantum search

∼ 1/popt times, each for a time of topt at which a measurement must be executed. Thus, the runtime

complexity for a successful search is given by

topt
popt

∼
(
I2
I21

) 3
2 √

N = O
(
N

1
2

)
, (ds > 4). (3.18)

For case ds = 4, I1 remains constant while I2 ∼ lnN acquires a logarithmic correction in the

limit ds → 4. With that, the analysis of the previous case remains applicable, although the condition

|E| � γcλ2 is merely logarithmically satisfied. Thus, we obtain from Eq. (3.18) in this interpretation

that
topt
popt

= O
(
N

1
2 ln

3
2 N

)
, (ds = 4). (3.19)

For case 2 < ds < 4, I1 remains constant while I2 ∼ N
4
ds
−1. However, by Eq.(3.12), this would

imply E0,1 ∼ N−
2
ds , which would violate the condition of E0,1 � γcλ2 where λ2 ∼ ΛN−

2
ds . As a

consequence, the expansion in Eq.(3.11) is no longer is valid and we have to reconsider Eq.(3.8) anew

at γ = γc ∼ I1, but with γcλ2 ∼ E0,1 = e0,1I1ΛN−
2
ds . Then, Eq.(3.8) provides

F (E0,1) ∼ 1− 1

I1Λe0,1
N

2
ds
−1 +

e0,1
I1Λ (1− e0,1)

N
2
ds
−1 + . . . , (3.20)

where the two leading corrections cancel self-consistently with a negative (positive) solution for e0 (e1).

Then, E0,1F
′ (E0,1) ∼ N

2
ds
−1, such that by Eq. (3.15), the transition probability diminishes for falling

ds and is at best

∣∣〈w ∣∣eiHt∣∣ s〉∣∣2 >
1

N

∣∣∣∣ 1

E0F ′ (E0)

∣∣∣∣2 ∼ N1− 4
ds . (3.21)
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In turn, to accomplish any significant change in this transition amplitude requires at time of at least

topt ?
∣∣〈w ∣∣eiHt∣∣ s〉∣∣√N ∼ N1− 2

ds . Thus, the runtime complexity finally is asymptotically bounded by

topt
popt

? N
2
ds , (2 < ds < 4) . (3.22)

which for ds → 2 also reproduces the known conclusion for the 2d regular lattice, up to logarithmic

corrections.

The dynamics of CTQW is deeply related to the Laplacian and its spectral zeta function. RG

applied on hierarchical networks reveals the dominant role of the spectral dimension ds determining

the transition probability and time complexity of CTQW. Fractals are geometries with arbitrary di-

mensions d. Conclusions derived through fractals reproduce the known results in regular lattices and

random networks, where ds is simply the spatial dimension of Euclidean space d or approaches to

infinity. We suggest a condition for attaining the Grover limit using CTQW with the Hamiltonian in

Eq.(3.1) is ds > 4.



Chapter 4

Discrete Time Quantum Walk

Discrete-time quantum walks (DTQW) can be regarded as an analog of discrete-time random walks.

In this chapter, we will describe basics in DTQW, and explore how the RG techniques can be used

to analyze the numerical results, which reveal a general relation between the walk dimensions dw of

random walks and that of quantum walks with the Grover coin [36].

4.1 DTQW and the Walk Dimension

In random walks on graphs that is known as a stochastic process, a random walker jumps from one

node to neighboring nodes. This process can be described mathematically in term of the probability

ρ (x, t) of finding the walker at node x after t time steps from the initial position. It can be written in

a compact form as,

|ρt+1〉 = U · |ρt〉 , (4.1)

where |ρt〉 is the vector with ρ (x, t) as its x−Th. component. The transition matrix U is stochastic,

whose columns sum to 1 as the conservation of probability. For random walks at large times, the

probability density obeys the scaling collapse [68],

ρ (x, t) ∼ t−
df
dw f

(
l

t
1
dw

)
, (4.2)

45
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in which l is the distance of a node x from the initial position, df and dw are the fractal dimension

and walk dimension of underlying graphs, and f is a Gaussian scaling function.

The quantity often used to describe the spreading dynamics is mean-square displacement
〈
x2
〉
t
∼

t2/dw [55] or the first-passage times [116, 47]. On a translationally invariant lattice in any dimension

d, random walks are diffusive with dw = 2, while anomalous diffusion with dw 6= 2 may arise in many

transport processes [68, 38, 136, 72].

The master equation for a discrete time quantum walk can be similarly written as,

|Ψt+1〉 = U · |Ψt〉 , (4.3)

where |Ψt〉 is the wave vector with Ψ (~x, t) as its component. The probability of finding the walker

in the node x at time t is ρ (x, t) = 〈Ψ (~x, t) |Ψ (~x, t)〉. The conservation of probability requires the

unitarity of the transition matrix U , U†U = 1, which affects significantly the structure of U . In direct

analogy to random walks, a quantum walk on a graph moves, in superposition, to neighboring nodes

with equal amplitudes. However, such a process is non-unitary. The only exception is the trivial

motion in a single direction on one dimensional line [127]. If the motion of the walker is assisted by

an extra degree of freedom, it is possible to construct a unitary process at every point. The internal

degree of freedom at each node is referee to the coin state or chirality [8]. The minimum dimension of

the internal degree of freedom is matched to the degree of node.

The evolution operator for coined quantum walks is the combination of a shift and coin operator,

called S and C respectively,

U = S · (C ⊗ 1N×N ) . (4.4)

The propagator U is some M ×M matrix with M reflecting a combination of a discrete set of N nodes

and a certain number of internal degrees of freedom at each node. The walker lives in a Hilbert space

Ht = Hp⊗Hc. It is customary to use the canonical basis as position site for the walker. The walker is

usually initialized at the original, |ψp〉initial = |0〉p. The coin has a Hilbert space Hc, which may take

the canonical basis states, for example, |0〉c and |1〉c in one dimensional line as left and right chirality

states. The initial state for the total system is |Ψ〉initial = |ψp〉initial ⊗ |ψc〉initial. To illustrate more

details, we use quantum walks on one dimensional line with the Hadamard coin that is defined as
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C =
1√
2

(|0〉c 〈0|+ |0〉c 〈1|+ |1〉c 〈0| − |1〉c 〈1|) . (4.5)

The shift operator has a form

S = |0〉c 〈0| ⊗
∑
x

|x− 1〉p 〈x|+ |1〉c 〈1| ⊗
∑
x

|x+ 1〉p 〈x| (4.6)

which allows the walker to move one step forwards if the coin state is |0〉c, or one step backwards if

the coin state is |1〉c. Generally, QW applies an evolution operator to the coin state followed by a

conditional shift operator to the total quantum system. The purpose of the coin operator is to render

the coin state in a superposition.

The motivation to study DTQW is two-fold. The first motivation is the potential to be new tools

for quantum algorithms. Second, techniques developed for analyzing quantum walks may provide

insights to analyze quantum processes more generally. Coined quantum walk is proven to achieve

Grover efficiency down to d = 2 up to logarithmic corrections [9]. The long time behavior of quantum

walks on regular lattices has been proven that for almost every coin, the walk dimension dQWw defined

in Eq.(4.2) is 1, which is the weak limit of the probability density function [79, 66]. On self-similar

networks without translational invariance, it is unknown whether the scaling relation in Eq.(4.2) holds

or not. We assume that a scaling relation also holds for the coined quantum walk on hierarchical

networks, which is numerically verified in [55, 31]. Results in [55, 31] have lead to the conjecture that

the walk dimension dw in Eq.(4.2) for a quantum walk with a Grover coin always is half of that for

the corresponding random walk, dQWw = 1
2d
RW
w . Beyond the regular lattice, RG is a good method to

explore the asymptotic scaling of a walk [68, 72, 116].

Assuming that we possess the eigensolution for the propagator, Uφj = ujφj in Eq.(4.4) with an

orthonormal set of eigenvectors {φj (x)}Mj=1, then the formal solution of Eq.(4.3) becomes

Ψ (~x, t) =
∑
~y

U t (~x, ~y) Ψ (~y, 0) =

M∑
j=1

aj (uj)
t
φj (~x) . (4.7)

For a classical random walk, the site amplitude itself provides the probability density, ρ(x, t) = Ψ (~x, t),

while for the quantum walk it is ρ(~x, t) = |Ψ (~x, t)| 2. For the stochastic operator of a random walk,

aside from the unique eigenvalue of the stationary state, the remaining eigenvalues have |uj | < 1,

thus, according to Eq.(4.7) , the dynamics is determined by ρ(~x, t) ∼ e−εt for large times t with
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ε = − ln max {|uj | < 1; 1 ≤ j ≤M}. In turn, for unitary U all eigenvalues are uni-modular, |uj | = 1,

such that uj = eiθj with real θj .

ρ (~x, t) = A (~x) +

M∑
l<j

Bj,l (~x) cos [(θj − θl) t] , (4.8)

where A,B only depend on position and initial conditions. The cut-off relevant for the long-time

asymptotic behavior here is provided by ∆θ = min {|θj − θl| > 0; 1 ≤ j, l ≤M}. Furthermore, we note

that a discrete Laplace transform of Eq. (4.8) provides

ρ̃ (~x, z) =
C (~x)∏M

j,l

[
1− z ei(θj−θl)

] , (4.9)

after placing all terms in the transformation of Eq. (4.8) on their main denominator. Thus, all poles

of ρ̃ (~x, z) in Eq. (4.9) are located right on the unit-circle in the complex-z plane.

4.2 Renormalization Group for Random Walks

To apply the renormalization group to a walk problems, it is convenient to eliminate time t via a

discrete Laplace transform (or generating function) of the evolution equation in the site basis [116] ,

Ψ̃ (~x, z) =

∞∑
t=0

Ψ (~x, t) zt, Ψ (~x, t) =

˛
|z|=1

dz

2πiz
z−tΨ̃ (~x, z) (4.10)

Assuming a walk with an initial condition at t = 0 that is localized at the origin, we get

Ψ̃ (~x, z) =
∑
~y

zU (~x, ~y) Ψ̃ (~y, z) ,+δ~x,0ψIC . (4.11)

To obtain the time dependence of Ψ at t→∞, one can use the local information around z = 1.

On self-similar networks, the linear system in Eq.(4.11) can now be decimated recursively by al-

gebraically eliminating specific site amplitudes [30, 31]. Typically, the matrix zU can be represented

in terms of just a small set ~a0(z) = (a0, b0, . . .) of site-independent “hopping parameters” of the un-

renormalized state. Each iteration constitutes an RG-step from level µ to µ + 1, starting at the

unrenormalized state with µ = 0. The ~aµ arises due to the mapping

~aµ+1 (z) = RG [~aµ (z)] . (4.12)
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which is the RG-flow. Hopping parameters parametrized ~aµ (z) actually contains the information of a

system with bµ nodes.

While the RG-flow in Eq. (4.12) usually can not be solved in general, the properties of its fixed

points

~a∞ = RG (~a∞) (4.13)

for µ → ∞ can be explored to reveal the dynamics of the walk asymptotically at large length and

time scales. Specifically, µ→∞ corresponds to a diverging system size while |z| → 1 according to Eq.

(4.10) accesses the large-t limit.

We can linearize the RG-flow in Eq. (4.12) via the Ansatz

~aµ (z) ∼ ~a∞ + (1− z)~αµ, (4.14)

for z → 1 and µ→∞ with (1− z)~αµ � 1. Then, we get the linear system

~αµ+1 = ~αµ ◦ J, (4.15)

with the Jacobean matrix

J =

(
∂RG
∂~aµ

∣∣∣∣
µ→∞

)
, (4.16)

such that the solutions of Eq. (4.15) are linear combinations,

~αµ ∼ λµ1~v1A1 + λµ2~v2A2 + . . . , (4.17)

where λj are the eigenvalues of J in descending order, and ~vj the associated eigenvectors.

For a random walk, almost all poles of ~aµ (z) are on the real-z axis with |z| > 1. Let zµ being the

pole that is closest to z = 1,

zµ ∼ 1 + εµ, (εµ → 0) (4.18)

with real εµ. Then, the generic form for a simple pole near z = 1 with ~aµ (1) = ~a∞ is:

~aµ (z) ∼ 1− zµ
z − zµ

~a∞ ∼ ~a∞
[
1− 1

εµ
(1− z) + . . .

]
. (4.19)

Note that 1/εµ is not only the most divergent term of order 1− z, it is the only one. This is reflected
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in Eq. (4.17) in the fact that there is only a single divergent eigenvalue, λ1 > 1, in a classical walk.

The comparison implies

εµ ∼ |~αµ|−1 ∼ λ−µ1 (4.20)

at the cross-over (1− z)αµ ∼ 1 that sets the cut-off.

With ρ̃(~x, z) = f~x [~aµ (z)], the classical probability density now attains the form for z → 1:

ρ̃(~x, z) ∼
1− z′µ
z − z′µ

A, (4.21)

where its closest pole z′µ ∼ 1 + Cεµ may differ from zµ, but only by a constant C that does not affect

the scaling. To see this, we consider the inverse Laplace transform and inserting Eq. (4.21):

ρ (~x, t) =

˛
dz

2πiz
z−tρ̃(~x, z) ∼ ACεµe−Cεµt, (4.22)

where εµ provides the cut-off. If we now calculate temporal moments, say, of the first passage time at

some site ~x, t is

〈tn〉k =
1

N

ˆ ∞
0

dt tnρ(~x, t) ∼ ε−nµ , (4.23)

where the norm N absorbs any factor so that
〈
t0
〉
µ
≡ 1. Then, Eq. (4.20) implies for the scaling of

the characteristic time-scale T with system size N = 2µ for networks we consider:

T =
[
〈tn〉µ

] 1
n ∼ ε−1µ ∼ λ

µ
1 ∼ (2µ)

log2 λ1 ∼ Ldw = Ndw/df , (4.24)

such that the classical walk dimension becomes

dRWw = log2 λ1. (4.25)

We find the scaling of ε−1µ translates into that of the first passage time.
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4.2.1 Application of RG on One Dimensional Line

We use the example of RW on one dimensional line to illustrate this procedure, where Eq. (4.11)

reduces to

Ψ̃x (z) = δx,0 + zBΨ̃x (z) + zAΨ̃x−1 (z) + zAΨ̃x+1 (z) , (4.26)

where A represents left and right movement, B represents staying in place. To simplify the RG

calculation, we are interested in the unbiased case(A = 1/2, B = 0). We write Eq. (4.26) for any even

x 6= 0:

Ψ̃x−1 (z) = aµΨ̃x−2 (z) + bµΨ̃x−1 (z) + aµΨ̃x (z) =
aµ

1− bµ
Ψ̃x−2 (z) +

aµ
1− bµ

Ψ̃x (z) ,

Ψ̃x (z) = aµΨ̃x−1 (z) + bµΨ̃x (z) + aµΨ̃x+1 (z) ,

Ψ̃x+1 (z) = aµΨ̃x (z) + bµΨ̃x+1 (z) + aµΨ̃x+2 (z) =
aµ

1− bµ
Ψ̃x (z) +

aµ
1− bµ

Ψ̃x+2 (z) ,

with a0 = z/2, and b0 = 0. Again, eliminating algebraically all odd-site amplitudes, we obtain

aµ+1 =
a2µ

1− bµ
b = bµ +

2a2µ
1− bµ

, (4.27)

for which the fix point is a∞ = 0, b∞ = 1.

Perturbing the RG-flow in Eq.(4.27),

{a, b} = {a, b}∞ + (1− z) {α, β}µ .

For z → 1 and large µ, the Jacobean is defined as

J =

(
∂ (aµ+1, bµ+1)

∂ (aµ, bµ)

∣∣∣∣
µ→∞

)
,

=

 − 2a∞
b∞−1

a2∞
(b∞−1)2

− 4a∞
b∞−1

2a2∞
(b∞−1)2 + 1

 . (4.28)

Since both numerators and denominators in the Jacobean vanish, a correlated solution has to be

constructed that “peals off” the leading behavior to glance into the boundary layer. Using the ansatz
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aµ ∼ Aµ · εµ and bµ ∼ 1−Bµ · εµ , the Jacobean matrix can be obtained from

εAµ+1 =
A2
µ

Bµ
, εBµ+1 = Bµ −

2A2
µ

Bµ
(4.29)

with a single fixed point that self-consistently determines A∞
B∞

= ε = 1
2 . The Jacobean and its eigen-

values are

∂ (Aµ+1, Bµ+1)

∂ (Aµ, Bµ)
=

 2 −1/2

−4 3

 =⇒ λ = {4, 1} . (4.30)

From Eq.(4.25), we derive dw = 2 for the diffusive solution.

4.3 Renormalization Group for Quantum Walks

In this section, we study the RG on quantum walks on self-similar networks. The Laplace-poles closest

to |z| → 1 assume an important role. Now, the location of the poles in the complex-z plane for

any observable like the probability density do not necessarily correspond to those of ~aµ (z), although

ρ̃(~x, z) = f~x [~aµ (z)] is a functional of the hopping parameters. However, this distinction does not pose

a problem for the real poles in the classical walk: poles flows radially along the real-z axis towards z = 1

with the same scaling. In contrast, for QW observables have strictly uni-modular poles, such as in

Eq. (4.9), that flow only tangentially on the unit circle in the complex-z plane, while the renormalized

hopping parameters ~aµ (z) individually have poles that flow radially and tangentially shown in [37].

Since in RW the radial flow in poles of ~aµ (z) affects directly the scaling of ρ̃(~x, z), intuitively the

tangential flow in poles of ~aµ (z) is related to the that in ρ̃(~x, z).

4.3.1 Application of RG on One Dimensional Line

We again illustrate RG in quantum walks via the example of one dimensional line. It is known the same

asymptotic scaling in Eq.(4.2) apply for all the coins on lattices [79, 66]. Without loss of generality,

we use the Hadamard coin in Eq.(4.5), whose matrix form is

CH =
1√
2

 1 1

1 −1

 . (4.31)

We generalize the shift operator in Eq.(4.6) to
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S =
∑
x

{P ⊗ |x− 1〉 〈x|+Q⊗ |x+ 1〉 〈x|+R⊗ |x〉 〈x|} , (4.32)

where the shift matrix P,Q and R are parametrized for moving left, right and staying in place respec-

tively,

P =

 1 0

0 0

 , Q =

 0 0

0 1

 , R =

 0 0

0 0

 . (4.33)

Hence, U from Eq.(4.4)

U =
∑
x

{A⊗ |x− 1〉 〈x|+B ⊗ |x+ 1〉 〈x|+M ⊗ |x〉 〈x|} , (4.34)

with A = P · C, B = Q · C,M = R · C.

The master equation in Eq.(4.11) becomes

Ψ̃x (z) = δx,0 + zMΨ̃x (z) + zAΨ̃x−1 (z) + zBΨ̃x+1 (z) , (4.35)

where the initial position is located at the origin. The decimation from step µ to µ+ 1 reads

Ψ̃x−1 (z) = AµΨ̃x−2 (z) +MµΨ̃x−1 (z) +BµΨ̃x (z) ,

Ψ̃x (z) = AµΨ̃x−1 (z) +MµΨ̃x (z) +BµΨ̃x+1 (z) + δx,0ΨIC , (4.36)

Ψ̃x+1 (z) = AµΨ̃x (z) +MµΨ̃x+1 (z) +BµΨ̃x+2 (z) ,

solving for

Ψ̃x (z) = Aµ+1Ψ̃x−2 (z) +Mµ+1Ψ̃x (z) +Bµ+1Ψ̃x+2 (z) + δx,0ΨIC , (4.37)

with RG flow
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Aµ+1 = Aµ (I −Mµ)
−1
Aµ,

Bµ+1 = Bµ (I −Mµ)
−1
Bµ,

Mµ+1 = Mµ +Aµ (I −Mµ)
−1
Bµ +Bµ (I −Mµ)

−1
Aµ.

What is special to QW compared to RW is that the unitarity of U imposes conditions on matrices

A,B and M such that

1 = A†A+B†B +M†M,

0 = A†M +M†B =
(
B†M +M†A

)†
, (4.38)

0 = A†B =
(
B†A

)†
.

The parameterization emerges as [55],

Aµ =

 aµ 0

0 0

 , Bµ =

 0 0

0 −aµ

 , Mµ =

 0 bµ

bµ 0

 . (4.39)

which yields recursions

aµ+1 =
a2µ√

2
(
1−
√

2bµ + b2µ
) bµ+1 = bµ +

a2µ
(√

2− 2bµ
)

−2 + 2
√

2bµ − 2b2µ
. (4.40)

Fixed points are {a∞, b∞} =
{

1/
√

2, 1/
√

2
}
, and the Jacobean and its eigenvalues are

J =

 2 0

0 2

 =⇒ λ = {2, 2} . (4.41)

Here, we take one step further to derive functional relation between Ψ̃x (z), ρx (z)

(∣∣∣Ψ̃x (z)
∣∣∣2) and

{aµ, bµ} for quantum walk on one dimensional line N = 2g with periodic boundary condition. After

g − 2 RG steps, four sites remain with
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Ψ̃0 (z) = Ag−2Ψ̃ 3N
4

(z) +Mg−2Ψ̃0 (z) +Bg−2Ψ̃N
4

(z) + ΨIC ,

Ψ̃N
4

(z) = Ag−2Ψ̃0 (z) +Mg−2Ψ̃N
4

(z) +Bg−2Ψ̃N
2

(z) , (4.42)

Ψ̃N
2

(z) = Ag−2Ψ̃N
4

(z) +Mg−2Ψ̃N
2

(z) +Bg−2Ψ̃ 3N
4

(z) ,

Ψ̃ 3N
4

(z) = Ag−2Ψ̃N
2

(z) +Mg−2Ψ̃ 3N
4

(z) +Bg−2Ψ̃0 (z) . (4.43)

Therefore, we obtain

Ψ̃0 (z) = [1− (Ag +Bg +Mg)]
−1

ΨIC . (4.44)

Due to the constraints on hopping parameters in Eq.(4.38), {aµ, bµ} satisfies

|aµ (z)|2 + |bµ (z)|2 = 1, (4.45)

which implies singularity of {aµ, bµ} is not on the unit circle |z = 1|. Matrices A,B andM are unitary,

and the singularity of Ψ̃0 (z) and
∣∣∣Ψ̃0 (z)

∣∣∣2 can be expressed as a function of z and the set of eigenvalues

and eigenvectors, which is on the unit circle.

4.3.2 Analysis of Laplace Poles

Results in [31] have lead to the conjecture that the walk dimension dw in Eq.(4.2) of a quantum walk

with a Grover coin always is half that of the corresponding random walk, dQWw = 1
2 d

RW
w . In this

section, we extend the RG analysis on Laplace poles used for classical walks to quantum walks with

Grover coin. The general definition for the Grover coin is

CG = 2
|1〉 〈1|
〈1| 1〉

− 1. (4.46)

In random walks, as shown in Sec.(4.2), the poles of the the hopping parameters are on the real-z

axis. For the long time behavior, the most relevant poles are those closest to z = +1. In quantum

walks with a purely real coin, such as the Grover coin, all the poles are in conjugate pairs [109]. Poles of
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~aµ flow to the unit circle of the complex-z plane in radial and tangential directions [37] as decimation,

parameterized as

z(±)µ ∼ (1 + εµ) e±iθµ ∼ 1± iθµ + εµ,
(
1� θµ � εµ � θ2µ

)
(4.47)

for large µ, while there also might be a real pole, z(0)µ ∼ 1+εµ. Previous discussions suggest that radial

flow is faster than tangential flow (θµ � εµ) for these poles [30, 31]. This is also confirmed numerically

[37].

Then, like in Eq. (4.19) for the classical case, the most generic expression for any hopping parameter

is:

~aµ(z) ∼ ~a∞

[
peiφ

2 cosφ

1− z(+)
µ

z − z(+)
µ

+
pe−iφ

2 cosφ

1− z(−)µ

z − z(−)µ

+ (1− p) 1− z(0)µ

z − z(0)µ

]
(4.48)

with a real pole at z(0) and complex conjugate pairs at z(±)µ =
[
z
(∓)
µ

]∗
that are closest to z → 1. Note

that again ~aµ(1) = ~a∞, but also ~aµ (z∗) = [~aµ(z)]
∗. Here, p determines the balance in weight between

real and complex roots, while φ 6= 0 allows for a complex residue at the pole. Expanding similar to

Eq. (4.19) in the classical case, we find

~aµ (z) ∼ ~a∞

1−

Bεµ + C


εµ
θ2µ
, φ = 0,

1
θµ
, φ 6= 0

 (1− z) + . . .

 , (4.49)

with some constants B,C. Thus, allowing for the tangential flow in Eq. (4.47) affords a second

independent divergence at order 1− z in Eq. (4.49). Hence, we expect both, leading and sub-leading

eigenvalues λ1,2 > 1 in Eq. (4.17), to match up with Eq. (4.49). As in the classical case, Eq. (4.20), it

is εµ ∼ λ−µ1 , since the B-term is always larger than any C-term in Eq. (4.49). Comparing Eq. (4.49)

with Eq. (4.17) assuming real residues (φ = 0), it is εµ/θ2µ ∼ λ
µ
2 , i.e.,

θµ ∼
(√

λ1λ2

)−µ
. (4.50)

We know that there is a functional relation between the hopping parameters and the PDF, ρ̃(~x, z) =

f~x [~ak (z)]. The functional must be such that the leading scaling resulting from the radial flow of poles

in ~ak (z) will cancel in the process. In fractal networks, it is not generally proven that the tangential
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flow of poles in ~ak (z) translates exactly into that of the poles in ρ̃(~x, z) while the radial flow cancels.

Nevertheless, this can be be shown explicitly for the one dimensional line [37]. Therefore, we argue that

θµ describes the tangential flow of poles in ρ̃(~x, z), which yields the walk dimension dQWw = log2

√
λ1λ2.

Although the poles of ρ (−→x , z) that reside on the unit circle, either are closest to the real axis, or

converge to points on the unit circle, we assume that the dominant are those closest to real axis z → 1.

We can explain some of the previous results and the conjecture of dQWw = 1
2 d

RW
w [30, 31]. The first

case is the one dimensional line with any coin. The RG analysis yields degenerate Jacobean eigenvalues,

λQW1 = λQW2 = 2 in quantum walks, and λRW1 = 4 in random walks, such that there is no distinction,

i.e., λRW1 = λQW1 λQW2 . RG for QW with the Grover coin on the the dual Sierpinski gasket (DSG) [30]

yields λQW1 = 3, λQW2 = 5
3 , and the RG for RW yields λRW1 = 5, such that λRW1 = λQW1 λQW2 provides

the numerically determined scaling, dQWw = log2

√
5. The same pattern holds for the two Migdal-

Kadanoff networks analyzed in [31]: For the 3-regular network MK3, it is λQW1 = 7 and λQW2 = 3

such that λQW1 λQW2 = λRW1 = 21, and for the 4-regular network MK4 it is λQW1 = 13 and λQW2 = 19
7 ,

such that λQW1 λQW2 = λRW1 = 247
7 . However, to HN3 with λQW1 = 2 and λQW2 =

(
1 +
√

17
)
/4, the

product λQW1 λQW2 is unrelated to the classical eigenvalue λRW1 = 2
(√

5− 1
)
. This suggests that the

relation in Eq. (4.50) is not as fundamental. Some of the assumptions leading to it are violated by

HN3. Even the simple alternative of φ 6= 0 n Eq. (4.49), implying θµ ∼ λ−µ2 , does not explain the

discrepancy. Furthermore, it appears that a more general argument than Eq. (4.50) must exists to

justify the conjecture dQW
w = 1

2d
RW
w .



Chapter 5

Griffiths Phase on Hierarchical

Networks

In this chapter, we study the Griffiths phase on hierarchical networks that particularly possess a large-

world architecture and hierarchical modularity. This class of hierarchical networks has been used to

model the brain networks. Brain networks exhibit a feature of hierarchical modularity. Modules in

each hierarchy are grouped into larger modules in the next higher hierarchy [122, 89, 75]. Strong

modularity is advantageous for creating a balance between functional segregation and integration,

efficient recurrent processing within modules and synchronous processing[122]. To ensure the efficient

cooperation between modules, any local area can be linked to any other in a short path, i.e. a small-

world feature [122]. Furthermore, it has been argued that information processing networks such as

neural systems and computer circuits possess a fractal feature of embedding topologically complex

systems in a relatively low-dimensional physical space [89, 75, 19].

Networks that combine the properties of a finite fractal dimension df and the small-world topology

are proposed as a solution to incorporate progressively weaker inter-module edges while maintaining

well defined modules [63]. Previous work models interconnections in brains using finite hierarchical

modular networks (HMN) with a finite fractal dimension. The common structural characteristics of

these networks is the hierarchical level-dependent inter-module wiring probabilities. Examples are

shown in Fig.(5.1). A novel phase called Griffiths phase (GP) using fundamental dynamical models,

emerges on these networks, which resides between the absorbing state and the active state, shown

in Fig.(5.2). The Griffiths phase is characterized by generic power-laws over a broad region in the

58
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(a) (b)

Figure 5.1: (a) Initially, nodes are grouped into fully connected modules of size m0. Nodes in b
different modules are clustered recursively into higher level blocks (for example, b = 2) linking their
respective nodes with hierarchical level-dependent wiring probabilities: pi = αpi with p ∈ (0, 1) and
α as a constant [93]. (b) Dashed lines frame bottom level nodes, which are fully connected there,
dotted lines frame the nodes of the next level. Solid lines denoted R1 are randomly chosen connections
among the bottom level modules, ensuring single connectedness of the network, while those denoted
R2 provide random connections on the next level [103].

parameter space [93, 103].

The criticality hypothesis states that the brain may operate at the borderline between the sustained

active and inactive state. For many systems with a critical phase transition, self-organized criticality

is easily implemented by a mechanism that increases the control parameter in the inactive phase and

decreases it in the active phase. A single critical point has been reported in various biological processes

such as gene expression [98], cell growth [62] and neuronal avalanches [21]. In different contexts, the

critical point enables optimal transmission and storage of information [107, 20], maximal sensitivity

to stimuli [77], optimal computational capabilities [82].

However, a critical point is too small a target to hit for a real biological tuning process with noise

and imperfections. An interesting phenomenon found by empirical studies is that brain networks

exhibit a stretched critical region [17, 117, 134, 119]. The stretched region is explained by the Griffiths

phase as an alternative mechanism for critical behavior without fine tuning [93]. It is proposed that

the heterogeneous structure of brain networks induces the Griffiths phase that eventually enhances

the self-organization mechanism [93]. The existence of the Griffiths phase is successfully confirmed

using fundamental dynamical models that describe the activity propagation, the Susceptible-Infected-

Susceptible (SIS) model or the Contact Process (CP) [93, 103].
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Figure 5.2: The schematic diagram for the Griffiths phase [93]. A Griffiths phase exhibits a broad
region of power-law scaling. The stationary density of activity, ρs, is depicted as a function of the
spreading rate λ.

5.1 Hierarchical Modular Models

It is conjectured that plain modular networks do not support the Griffiths phase, and disorder in

different scales significantly influences properties of critical behaviors [93]. We further explore the

Griffith phase in other hierarchical networks, and especially extend it to new structures that are de-

signed based on HN3 [83]. To model the modular property, each single node x in HN3 is replaced by

a fully-connected clique that contains a finite number m of nodes, thus forming a network with size

N = n×m. By introducing different classes of inter-module edges, we aim to explore what hierarchical

connectivity pattern provides the sufficient heterogeneity to induce the Griffiths phase on finite dimen-

sional networks. We propose two connectivity patterns between modules in the same hierarchy. In the

first paradigm, the single edge in the original HN3 is now formed by two randomly chosen nodes in

different cliques, denoted as HMN1. The second paradigm is inspired by previous hierarchical modular

models [93, 103]. To distinguish it from HMN1, we denote it as HMN2. Previous models share common

features, hierarchical construction of modules and level-dependent wiring probabilities. Modules are

grouped to form larger modules in the next level. They are connected in either a stochastic way with

a level-dependent probability pi or a deterministic way with a level-dependent number of edges.

An infinite dimensional network does not support the Griffiths phase, since the spreading is fast due

to the short paths between any pair of nodes[93]. To maintain a finite fractal dimension, the number

of inter-module edges is stable across hierarchical levels. In this work, we use the stochastic scheme to

construct HMN2. As the size of modules increases with each hierarchical level, the inter-module wiring

probability decreases. In HMN2, for the first hierarchy, modules in this level are basic cliques. Labels

of basic cliques in HMN1 and HMN2 inherit the original labeling of HN3 in Eq.(2.1). Starting from
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the second hierarchy, the clique labeled as 2(2j − 1) is grouped with the neighbor clique 2(2j − 1)− 1

and 2(2j−1)+1 forming a module. For the third hierarchy, the clique labeled as 22(2j−1) is grouped

with three left neighbor cliques to the clique 22(2j − 1) − 3 and three right neighbor cliques to the

clique 22(2j − 1) + 3. Repeating this procedure g generations, the size of modules in i-th generation

is m(2i − 1). The number of all possible stochastic edges between two modules is m2
(
4i − 2i+1 + 1

)
.

Thus, to ensure at least one edge between them to exist, the level-dependent probability pi is bounded

by 1/
(
m2
(
4i − 2i+1 + 1

))
.

5.2 SIS Model and Spectral Analysis

We base our study on the SIS model, in which each node in networks is described by a binary state,

active (ρ = 1) or inactive (ρ = 0). An active node is deactivated with a unit rate; otherwise, it

propagates the active state to its inactive neighbors with a rate λ. The evolution equation for the

probability ρx (t) that node x is active at time t is

d

dt
ρx (t) = −ρx (t) + σ [1− ρx (t)]

N∑
y=1

Axyρy (t) , (5.1)

in which A is the network adjacency matrix. The Laplacian matrix of a graph in Eq.(2.4) can be

re-written with the adjacency matrix as

Lxy = = δxy
∑
z

Ayz −Axy, (5.2)

where Lxy is equal to −Axy when x 6= y, and Lxx is equal to
∑
y 6=xAxy, i.e. the degree of node x.

In this chapter, to distinguish the eigenvalues and eigenvectors of the adjacency matrix A and the

Laplacian matrix L, we denote respectively as λAi , φAi and λLi , φLi .

We briefly introduce the method used to perform the simulation for the SIS model. The large-scale

numerical simulation method for the SIS model developed in [58] determines the critical propagation

rate σc efficiently for various networks. This algorithm considers the SIS model in continuous time.

At each time step, one randomly chosen active node deactivates with the probability Ni/ (Ni + σNn)

where Ni is the number of active nodes at time t, and Nn is the number of edges emanating from

them. With complementary probability σNn/ (Ni + σNn), the active state is transmitted to one

inactive neighbor of the randomly selected node. Time is incremented by 4t = 1/ (Ni + σNn). This
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process is iterated after updating the system.

As a complement to the computational approach, the spectral analysis on the adjacency and Lapla-

cian matrix of networks can be also conducted. Griffiths phase is closely related to the structural

disorder and localization of activity in special regions on networks Quenched Mean-Field (QMF) ap-

proximation suggests a localized principle eigenvector of the adjacency matrix indicates the network

heterogeneity, which has been used to quantify the localization on networks above the critical propa-

gation rate in the dynamical model [64]. Thus, this concept has been applied to analytically explain

the emergence of rare regions and Griffiths phase [93, 103, 99].

The second spectral analysis considers the Lifshitz tails in the spectral density of the Laplacian.

Lifshitz tails have been related to the Griffiths singularity in the equilibrium systems [96]. For synchro-

nization and spreading dynamics on networks, simulation and Quenched Mean Field approximation

indicate a connection between the Lifshitz tail and the slow dynamics [101, 93, 128]. In this section,

the tail distribution of the Laplacian eigenvalues is tested to examine how well it predicts the Griffiths

phase.

5.2.1 Spectral Analysis on the Agency Matrix

QMF approximation applies a spectral analysis on the network adjacency matrix that analytically

explains the emerging Griffiths phase on networks with the quenched disorder [64, 99]. Quenched

disorder, either intrinsic to nodes or topological, has been shown to smear the phase transition at

critical points. A Griffiths phase may stem from a node-dependent propagation rate [94, 73], or

emerge due to the quenched disorder on the edges, such as a correlated weight pattern in tree networks

[102] and exponentially suppressed weight scheme in random networks [99]. The underlying mechanism

is the existence of special rare regions (RR).

Statistically, the active state lingers in rare regions for a typical time that grows exponentially with

their sizes, and eventually ends up in the absorbing state [65, 93]. When the size distribution of rare

regions is exponential, it generates power-law decays with continuously varying exponents, i.e. the

Griffiths phase. Not only in the spreading dynamics on networks, rare regions have also been shown to

dramatically change the properties of classical phase transition in quenched disordered systems, such

as randomly diluted Ising model or Ising model with planar defects, and quantum phase transitions

in itinerant magnets with Heisenberg spin symmetry, leading to an essential singularity, the Griffiths

singularity [129, 130].



CHAPTER 5. GRIFFITHS PHASE ON HIERARCHICAL NETWORKS 63

Numerical studies suggest that the structural heterogeneity of finite dimensional networks may

have a similar role as the quenched disorder [94, 93]. In absence of quenched disorder, the Griffiths

phase can also be a consequence of structural disorder. A Griffiths phase on finite dimensional HMNs

is analytically treated with the QMF approximation that originally targets systems with the quenched

disorder [93].

We here briefly review the derivation of the spectral analysis on the adjacency matrix. The crite-

rion for the localization of steady active state on networks is based on the evaluation of the inverse

participation ratio (IPR) of the principle eigenvector corresponding to the largest eigenvalue. The

probabilities ρx for each node at the steady state of Eq.(5.1) can be written as a linear superposition

of the N orthogonal eigenvectors [64],

ρx =

N∑
i=1

c
(
λAi
)
φAi . (5.3)

If the largest eigenvalue ΛAN is significantly larger than all the others, the QMF approximation predicts

the critical point σc as 1/ΛAN , and the steady state probability as

ρx ∼ c
(
λAN
)
φAi . (5.4)

According to the Perron-Frobenius theorem, the largest eigenvalue λN and the corresponding principal

eigenvector φN of a real nonnegative symmetric matrix are nonnegative [91]. The order parameter ρ (t)

is defined as the average ρ = 1
N

∑N
x=1 ρx (t) over all the nodes. At the critical σc, the order parameter

ρ at the steady state can be expanded as,

ρ ∼ a14+ a242 + . . . , (5.5)

in which 4 = σλN − 1� 1. The coefficients are given in [64] as,

ai =

∑N
x=1 φ

A
i (x)

N
∑N
x=1

[
φAi (x)

]3 . (5.6)

With the dominant largest eigenvalue and the principle eigenvector, the order parameter ρ is

approximated with ρ ∼ a14. In the limit N → ∞, for a localized principle eigenvector φAN , the

components φAN (x) are of the order of O(1) only at a few nodes, and then a1 ∼ O(1/N) and ρ ∼
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Figure 5.3: (a) IPR vs m for network configurations of HMN1 with different maximum generation
g. The red squares are values of IPR for g = 10; the black circles are values of IPR for g = 11;
the blue diamonds are values of IPR for g = 12. Each data point averages values of IPR over 100
independent realizations of HMN1 configuration. (b) the localized eigenvectors corresponding to five
largest eigenvalues of the adjacency matrix of one graph realization of HMN1 configuration with
g = 11,m = 16.

O(1/N), which means the active state is localized on the a few nodes of the network. On the other

hand, for a delocalized principle eigenvector φAN , we usually have φAN (x) ∼ O( 1√
N

), and then a1 ∼ const

and ρ ∼ const. The active state extends over a finite fraction of nodes of the network. The localization

of eigenvectors is quantified by their inverse participation ratio (IPR) [64],

IPR
(
λAN
)

=

N∑
x=1

[
φAN (x)

]4
. (5.7)

A finite IPR value of the principle eigenvector corresponds to a localized eigenvector, while a IPR

approaching to zero, i.e. O (1/N), corresponds to a delocalized principle eigenvector. We apply the

concept of IPR on all the relevant networks to examine whether a localized principle eigenvector exists,

which may suggest the emergence of rare regions and the Griffiths phase in the QMF approximation

[93, 103].

As shown in Fig.(5.3a), the IPR of the principle eigenvector increases with clique size m towards

to a finite value for different maximum generation g of HMN1. It suggests the principle eigenvectors

for HMN1 configurations are localized. Additionally, localized eigenvectors corresponding to largest

eigenvalues are also found, shown in Fig.(5.3b). For HMN2, we focus on level-dependent inter-module

wiring probabilities, pi = 4−(i+1) and pi = 4−i . The backbone as well as the first level inter-module

wiring probability is fixed at 1/4, where the modules are the basic cliques. Values of IPR are shown in

Fig.(5.4a). The largest value comes from the network configuration in which the single clique contains 2
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Figure 5.4: (a) IPR vs m for network configurations of HMN2 with different g. The red squares
are values of the IPR with g = 10; the black circles are IPRs for g = 11. The hierarchical level-
dependent inter-module probability is pi = 4−(i+1). Compared to them, the blue diamonds are IPRs
for g = 10 with a level-dependent probability pi = 4−i. Each data point averages IPRs over 100
independent realizations of HMN2 configuration. (b): localized eigenvectors corresponding to five
largest eigenvalues of the adjacency matrix of one graph realization of HMN2 configuration with
g = 14,m = 2, pi = 4−(i+1); (c): localized eigenvectors corresponding to five largest eigenvalues of the
adjacency matrix of one graph realization of HMN2 with g = 14,m = 3, pi = 4−(i+1).

nodes, and the probability is pi = 4−(i+1). In this case, the network is statistically almost fragmented.

Numerical results in Sec.5.3 indeed show the emergence of the Griffiths phase as a trivial consequence

of the network disconnectedness. To examine the Griffiths phase on a connected network with a finite

fractal dimension, the network configuration of m = 3 and pi = 4−(i+1) is also chosen for the numerical

simulation. For stochastically constructed HMN2, as the clique size m or level-dependent probability

increases while keeping the other factor fixed, modules becomes more and more connected with other

modules in the same level, and the value of IPR decreases, shown in Fig.(5.4a). The regime over

the parameter m and the level-dependent pi that possibly supports the Griffiths phase is narrow. It

is not surprising to see that the localized principle eigenvector exists for network configurations of

HMN2 with a finite value of IPR. In Fig.(5.4b) and Fig.(5.4c), we illustrate the localized eigenvectors

corresponding to large eigenvalues in two network configurations.

5.2.2 Spectral Analysis on the Laplacian Matrix

The spectral analysis on the network Laplacian provides another approach to predict the Griffiths

phase, which is confirmed in [93, 100]. Here, we review how the Lifshitz tail suggests the Griffiths

phase according to the calculation in [100]. Near the critical point, in the inactive phase, the evolution

equation of the SIS model Eq.(5.1) can be approximated as

d

dt
ρx (t) = −ρx (t) + σ

N∑
y=1

Axyρy (t) , (5.8)



CHAPTER 5. GRIFFITHS PHASE ON HIERARCHICAL NETWORKS 66

which can be rewritten using the Laplacian form in Eq.(5.2) as

d

dt
ρx (t) =

(
σδxy

N∑
z=1

Ayz − 1

)
ρx (t)− σ

N∑
y=1

Lxyρy (t) . (5.9)

A linear stability analysis can be performed similar to the synchronization process [16]. The normal

modes of the perturbations above the absorbing state can be written,

d

dt
ρx (t) = −σ

∑
y

Lxyρy (t) , (5.10)

in which the spontaneous decaying rate is changed from 1 in Eq.(5.8) to σLxx. This change may

shift σc. In the inactive phase, it is not expected to introduce relevant rare region effects. Using

the Laplacian spectrum, ρx (t) can be expressed as the expansion with the Laplacian eigenvalues and

eigenvectors,

ρx (t) =
∑
iy

e−σλ
L
i tφLi (x)φLi (x) ρy (0) , (5.11)

and the total density is determined by the lowest eigenvalues of the spectrum,

ρ (t) ∼
N∑
i=2

e−σλ
L
i t. (5.12)

In the continuum limit,

ρ (t) ∼
ˆ λLc

λL2

dλP (λ) e−σλt, (5.13)

in which λLc is the experimentally determined end of tail value. A power-law distribution P (λ) of the

lower edge of the Laplacian spectrum suggests the Griffiths phase behavior above the absorbing state,

ρ (t) ∼
ˆ λc

λ2

dλλae−σλt, (5.14)

∼ t−σ(a+1). (5.15)

For comparison I calculated the Lifshitz tails for HMN1 and HMN2, shown in Fig.(5.5). In the plot,

the probability distribution P (λ) is calculated with the bin size δλ = 0.0001 over 100 independent

graph realizations. The Lifshitz tail for HMN2 configuration with g = 13,m = 2, pi = 4−(i+1), and
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Figure 5.5: Lifshitz tails for HMN1 and HMN2: The red circles are tail distribution for HMN1
configuration with g = 11,m = 8; the black squares are tail distribution for HMN2 configuration
with g = 13,m = 2, pi = 4−(i+1), fitted with a power law P (λ) ∼ λ0.683; the blue diamonds are tail
distribution for HMN2 configuration with g = 12,m = 3, pi = 4−(i+1), fitted with P (λ) ∼ λ0.823.

with g = 12,m = 3, pi = 4−(i+1), are fitted with power laws as,

P (λ) ∼ λ0.683, (5.16)

and

P (λ) ∼ λ0.823, (5.17)

while the Lifshitz tail for HMN1 slightly deviates from a power law, suggesting the lack of the Griffiths

phase.

5.3 Simulation Results

We present here results from numerical study of the SIS model on all the network configurations of

HMN1 and HMN2. The network is initialized as a fully-active graph. The system is updated each

step until the maximum time tmax
(
106
)
is reached or in case of activity extinction. Simulations for

each propagation rate σ are repeated on 1000 ∼ 5000 independent network realizations. The order

parameter ρ (t) for each σ is the average of all the runs. We also derive the effective decay exponent

by fitting critical power laws ρ (t) ∼ t−αeff with the efficient exponent defined as [99, 103],
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Figure 5.6: (a): ρ vs t for network configuration of HMN1 with g = 11,m = 8. Lines from bottom to
top are for λ = 0.1650, 0.1651, 0.1652, 0.1653. (b): log (ρ) versus log (t) , the black straight line is the
fitted curve with ρ ∼ t−0.285. The critical propagation rate is λc ≈ 0.1652
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Figure 5.7: (a): ρ vs t for network configuration of HMN1 with g = 11,m = 16. Lines from bottom to
top are for σ = 0.07475, 0.07480, 0.07485, 0.0749. (b): log (ρ) versus log (t) , the black straight line is
the fitted curve with ρ ∼ t−0.313. The critical propagation rate is σc ≈ 0.07485.

αeff = − ln[ρ(t)/ρ(t′)]
ln(t/t′) , (5.18)

where t and t′ are chosen such a way that the discrete approximate of the derivative is sufficiently

smooth.

Fig.(5.6) and Fig.(5.7) present the simulation results for network configurations of HMN1 with

g = 11,m = 8 and g = 11,m = 16, and fit with the effective decay exponent at the critical point. It

shows that the Griffiths phase is absent in HMN1, and we see a trivial phase transition at a single

critical point. For network configuration of HMN2 with m = 2 and pi = 4−(i+1), the size-independent
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Figure 5.8: (a): ρ vs t for network configurations of HMN2 with g = 13,m = 2 and with g = 14,m = 2.
Lines from bottom to top are for σ = 0.46, 0.47, 0.48, 0.49, 0.50, 0.51, 0.52, 0.53. (b): log (ρ) versus
log (t), the black straight lines are the fitted curves with ρ ∼ t−0.909, ρ ∼ t−0.699, ρ ∼ t−0.536,
ρ ∼ t−0.396 and ρ ∼ t−0.305 from bottom to top for σ = 0.49, 0.50, 0.51, 0.52, 0.53
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Figure 5.9: (a): ρ vs t for network configurations of HMN2 with g = 13,m = 3 and with g = 12,m = 3.
Lines from bottom to top are for propagation rates σ = 0.258, 0.259, 0.260, 0.261, 0.262. (b): log (ρ)
versus log (t), the black straight lines from bottom to top are the fitted curves with ρ ∼ t−0.534,
ρ ∼ t−0.433, ρ ∼ t−0.361 for σ = 0.260, 0.261, 0.262
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Griffiths phase emerges, shown in Fig.(5.8). However, the Griffiths phase is a trivial consequence of the

disconnectedness of HMN2. For network configurations of HMN2 that is connected, I choose the case

of m = 3, pi = 4−(i+1) at which the corresponding value of IPR is sufficiently large. Since inter-module

connections are established stochastically, there is a chance that all the possible inter-module edges

fails to be connected. To avoid this case, at least one inter-module connection is enforced to exist

by repeating the construction of graphs in the simulation. Numerical results for a connected HMN2

is presented in Fig.(5.9). We see a nearly size-independent power laws in a stretched regime of σ.

Comparing Fig.(5.8) with Fig.(5.9), as m increases while keeping pi fixed and vice versa, the regime

in the parameter space of λ for the Griffiths phase is expected to become narrow until it disappears

when HMN2 becomes highly connected.

One significant advantage of biological systems operating at criticality is the diverging reaction to

highly diverse stimuli. From the perspective of statistical mechanics, this is caused by the divergence

of susceptibility at criticality. To measure the divergence of response in the Griffiths phase, we use

the concept of dynamic susceptibility that is applied to gauge the overall response to a continuous

localized stimulus in [93]. This dynamic susceptibility is defined as,

Σ (σ) = N [ρf (σ)− ρs (σ)] , (5.19)

where ρs (σ) is the stationary density in the absence of stimuli and ρf (σ) is the steady-state density

reached when one single node is constrained to remain active. As shown in Fig.(5.10), Σ becomes

large in the region of the Griffiths phase, and more importantly it grows with the network size N that

implies a divergent response over an extended region.

The results suggest the importance of level dependent inter-module wiring probability on the emer-

gence of the Griffiths phase. HMN1 network configurations are not able to support the Griffiths phase,

although they satisfy the structural criteria, such as the finite fractal dimension, the modular structure,

the hierarchical heterogeneity. HMN2 network configurations are constructed to possess a hierarchical

pattern in the inter-module wiring probabilities, which therefore require a delicate tuning to maintain a

connected, finite dimensional network. The hierarchical pattern of inter-module connections results in

more heterogeneous networks of HMN2, while network configurations of HMN1 are more homogenous.

This can be shown by considering the Lifshitz tails for HMN1 and HMN2 in Fig.(5.5). The Lifshitz tail

of HMN1 deviates from that of HMN2, and compared to HMN2, the spectrum of HMN1 is closer to

the original network HN3 [34]. Although HN3 possesses a hierarchical structure, it is not sufficiently
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Figure 5.10: : Dynamic susceptibility Σ, measured for network configurations of HMN2 with g =
11,m = 3 (red diamonds), g = 12,m = 3 (blue circles) and g = 13,m = 3 (black squares) with
the pi = 4−(i+1). The overall response increases significantly near and in the Griffiths phase (from
σ = 0.260 to σ = 0.262), and decreases away from the critical region.

disordered to induce the Griffiths phase. The difference between hierarchical patterns of HMN1 and

HMN2 significantly affects the phase transition and existence of the Griffiths phase.

The spectral analysis suggests that a finite IPR of the principle eigenvector of the adjacency matrix

can be considered to indicate the localization of activity that may result in the emergence of rare regions

and the Griffiths phase under certain circumstances. Although all the network configurations of HMN1

prove to have a finite IPR and localized eigenvectors corresponding to the largest eigenvalues, only when

the structural disorder of inter-module connections is sufficient as in HMN2, the Griffiths phase appears.

As a counter example to previous finite dimensional models with localized principle eigenvectors that

support the Griffiths phase [93, 103], a class of finite dimensional networks with a localized principle

eigenvector is found where the Griffiths phase is absent. This observation has been previously reported

in highly-connected networks with intrinsic weight disorder or finite-size random networks with power-

law degree distributions [103, 48]. This raises questions on a more generalized theoretical analysis on

the network adjacency matrix that applies to all the networks considered previously and currently.

Besides the spectral analysis on the adjacency matrix, the Lifshitz tail of Laplacian spectrum presents

a power law probability distribution at the lower edge of spectrum of HMN2 networks, while the tail

distribution in HMN1 deviates from a power law. Numerical results confirm the property of phase

transition may be related to this difference between Lifshitz tails of HMN1 and HMN2.
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Conclusion

In this thesis, we discuss hierarchical networks that possess the self-similar, fractal feature. These

networks are constructed in an iterative fashion, which are therefore also defined as fractals. In each

step, individual edges are replaced by a pre-defined graph-let, forming the next generation. Rich

dynamics arises on fractal networks, of which we particular study synchronization, continuous and

discrete time quantum walk, and the epidemic spreading. Due to the self-similar nature, the RG

techniques lend themselves to study of properties of systems at large time and spatial scale.

RG is applied to hierarchical networks to obtain spectral properties of the network Laplacian

matrix. We calculate the spectral dimension ds that describes the scaling of smallest eigenvalues of

the network Laplacian matrix, shown in Eq.(2.29), and evaluate the determinant and zeta function of

the Laplacian in Eq.(2.31), and even single eigenvalues using the power method explained in Sec.7.2.

Due to the relation between the Laplacian determinant and the graph complexity as in Eq.(2.6), we

measure the graph complexity, i.e. enumeration of spanning trees, in large limit of the network size N .

Conclusions suggest on fractal networks we study, Hanoi networks and hierarchical lattices, the number

of spanning trees exponentially increases as N in Eq.(2.20) and Eq.(2.23). Furthermore, the network

synchronizability can be estimated through the evaluation on individual Laplacian eigenvalues. In

summary, in addition to geometric characteristics, such as the degree distribution, clustering coefficients

and shortest path lengths, RG provides a framework to study the network topology via their spectral

properties.

We also explore the quantum processes, i.e. the discrete and continuous time quantum walk,

on hierarchical networks, and apply RG to describe the scaling behavior at large time and spatial
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scales. In DTQW, we treat the system of stochastic master equations on the Laplace transform of site

amplitudes and evaluate the singularities of hopping parameters and site amplitudes. Under rescaling

the system length, L′ = 2L, characteristic times rescale as t′ = 2d
QW
w t with the exact walk exponent

dQWw . Based on studies on specific networks, we analytically conjecture a general relation between

the dRWw of discrete-time random walks and dQWw of quantum walks with the Grover coin. In each

hierarchical network, i.e. MK3, MK4 and DSG, we find that dQWw is exactly half the value for the

classical random walk on the same network. Such a relation holds for regular lattices, and it also

holds for networks without translational invariance. RG proves to be a complementary approach to

extensive numerical simulation for the asymptotic of quantum walks.

We further consider the quantum search problem with a continuous time quantum walk on hier-

archical networks of finite spectral dimension ds of the network Laplacian. For networks of fractal

dimension df , for which in general df 6= ds, it suggests that ds is the scaling exponent that determines

the computational complexity of the search. Our results are consistent with those of lattices of integer

dimension, where d = df = ds, and complement the recent discussion on random networks showing

that for all random networks with p ≥ (lnN)
3/2

/N , i.e. ds →∞, the spatial search by quantum walk

is optimal. For fractal networks, we find that the Grover limit of quantum search can be obtained

whenever ds > 4.

Hierarchical networks exhibit novel behaviors in various self-organizing processes, such as synchro-

nization and epidemic spreading, which are extensively studied in in real complex systems especially

the biological systems. We study the Griffiths phase using the SIS model in hierarchical modular net-

works that capture the system-level organization of brain components. The idea of a Griffiths phase

is used to explain the stretched critical region for optimal functioning of brain networks, with a single

critical point extended to a region in the Griffiths phase. This provides an alternative self-organization

mechanism. This phase stems from the intrinsic structural heterogeneity of brain networks, particu-

larly the hierarchical modular structure in this case. We extend this concept to modified hierarchical

networks with small-world edges based on Hanoi networks. Through extensive simulations, the hier-

archical level-dependent inter-module wiring probabilities are identified to determine the emergence of

the Griffiths phase. Numerical results and the complementary spectral analysis of the relevant networks

can be helpful for a deeper understanding of the essential structural characteristics of finite-dimensional

networks to support the Griffiths phase.

Through this thesis, we present dynamical processes on self-similar hierarchical structures and
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the application of renormalization group that provides the exact analytical treatment to topological

properties and asymptotic dynamical behaviors. For exploration of novel phenomena, these fractal

networks, due to their special structure, emerge as alternative choices to homogenous lattices, random

networks and scale-free networks.



Chapter 7

Appendix

This Appendix provides details on applying RG to calculate the determinant and largest eigenvalue

of the Laplacian. In Sec.7.1, we first present to procedure that derives the recursions of a set of

parameters (p, q, l, . . .) for Hanoi networks and hierarchical lattices, and and apply these recursions to

evaluate the spectral properties. In Sec.7.2, we apply RG to the power method that calculates the

largest eigenvalue λN .

7.1 RG for the Laplacian determinant

In this section, we derive the recursions in Hanoi Networks and hierarchical lattices. Following the

procedure as discussed on HN3 and HN5 (see Sec.2.2.1), we evaluate the Laplacian determinant using

recursive equations on HNNP, HN6 and hierarchical lattices.

7.1.1 RG for Spectra of HN3 and HN5

We evaluate general 2g × 2g-determinant for the matrix Lg that is used in the analysis of Hanoi

networks. Instead of providing a formal description of Lg for general size g, we simply illustrate its

generic recursive pattern for HN3 and HN5 with g = 4:
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L
(3,5)
g=4 =



q4 −p0 −l1 0 −l2 0 0 0 −2l3 0 0 0 −l2 0 −l1 −p0

−p0 q1 −p0 −p1 0 0 0 0 0 0 0 0 0 0 0 0

−l1 −p0 q2 −p0 −l1 0 −p2 0 0 0 0 0 0 0 0 0

0 −p1 −p0 q1 −p0 0 0 0 0 0 0 0 0 0 0 0

−l2 0 −l1 −p0 q3 −p0 −l1 0 −l2 0 0 0 −p3 0 0 0

0 0 0 0 −p0 q1 −p0 −p1 0 0 0 0 0 0 0 0

0 0 −p2 0 −l1 −p0 q2 −p0 −l1 0 0 0 0 0 0 0

0 0 0 0 0 −p1 −p0 q1 −p0 0 0 0 0 0 0 0

−2l3 0 0 0 −l2 0 −l1 −p0 q4 −p0 −l1 0 −l2 0 0 0

0 0 0 0 0 0 0 0 −p0 q1 −p0 −p1 0 0 0 0

0 0 0 0 0 0 0 0 −l1 −p0 q2 −p0 −l1 0 −p2 0

0 0 0 0 0 0 0 0 0 −p1 −p0 q1 −p0 0 0 0

−l2 0 0 0 −p3 0 0 0 −l2 0 −l1 −p0 q3 −p0 −l1 0

0 0 0 0 0 0 0 0 0 0 0 0 −p0 q1 −p0 −p1

−l1 0 0 0 0 0 0 0 0 0 −p2 0 −l1 −p0 q2 −p0

−p0 0 0 0 0 0 0 0 0 0 0 0 0 −p1 −p0 q1



.

(7.1)

The bare parameters qi on the diagonal refer to on-site factors of each node x that belongs to the i-th

hierarchy as determined by Eq.(2.1). For the Laplacian, qi is simply the node degree. The off-diagonal

parameters label already existing or potentially emerging links between nodes. To keep parameters

fundamentally non-negative, we insert negative signs explicitly. While the pi correspond to the solid

black lines in Fig.(2.1), the parameters li refer to those long-range links shaded in green in Fig.(2.1).

Although all li are originally zero for HN3, we still need to consider them, as they emerge as a relevant

parameter during RG. We have imposed periodic boundary conditions by identifying node N = 2g
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with site n = 0. We can write Eq.(2.8) as

[
detL(3,5)

g

]− 1
2

= Cg

∞̈

−∞

dx0dx2g−1

π
exp

{
−qg

(
x20 + x22g−1

)
+ 4lg−1x0x2g−1

}
∞̇

−∞

g−1∏
i=1

2g−i∏
j=1

dx2i−1(2j−1)√
π

 (7.2)

exp

−
g−1∑
i=1

qi

2g−i∑
j=1

x22i−1(2j−1) + 2

g−2∑
i=1

li

2g−i∑
j=1

x2i−1(2j−2)x2i−1(2j)

+2

g−1∑
i=1

pi

2g−i−1∑
j=1

x2i−1(4j−3)x2i−1(4j−1) + 2p0

2g−1∑
j=1

x2j−1 (x2j−2 + x2j)

 .

The factor Cg, initially unity, captures the contribution of integrals from any prior RG-step.

To solve detL
(3,5)
g recursively, we integrate only over all variables x of odd index i.e. those with

i = 1. We focus on the case i = 1 in Eq.(7.2) and re-write
∏2g−i

j=1 dx2i−1(2j−1)

∣∣∣
i=1

=
∏2g−1

j=1 dx2j−1 =∏2g−2

j=1 dx4j−3dx4j−1 to get:

2g−2∏
j=1

∞̈

−∞

dx4j−3dx4j−1
π

exp
{
−q1

(
x24j−3 + x24j−1

)
+ 2p1x4j−3x4j−1

+2p0 [x4j−3 (x4j−4 + x4j−2) + x4j−1 (x4j−2 + x4j)]} ,

=

2g−2∏
j=1

(
q21 − p21

)− 1
2 exp

{
q1p

2
0

q21 − p21

[
(x4j−4 + x4j−2)

2
+ (x4j−2 + x4j)

2
]

+
2p1p

2
0

q21 − p21
(x4j−4 + x4j−2) (x4j−2 + x4j)

}
, (7.3)

=
(
q21 − p21

)−2g−3

exp

 2q1p
2
0

q21 − p21

(
x20 + x22k−1

)
+

2q1p
2
0

q21 − p21

g−2∑
i=2

2g−i−1∑
j=1

x22i−1(2j−1)2

+
2p20

q1 − p1

2g−2∑
j=1

x2(2j−1)2 +
2p20

q1 − p1

2g−1∑
j=1

x2j−2x2j +
2p1p

2
0

q21 − p21

2g−2∑
j=1

x(2j−2)2x(2j)2

 .
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With that result, the remaining integral over the even-indexed variables can be written as

[
detL(3,5)

g

]− 1
2

= Cg
(
q21 − p21

)−2g−3

∞̈

−∞

dx0dx2g−1

π

exp

{
−
[
qg −

2q1p
2
0

q21 − p21

] (
x20 + x22g−1

)
+ 4lg−1x0x2g−1

}
∞̇

−∞

g−2∏
i=1

2g−1−i∏
j=1

dx2i(2j−1)√
π


exp

−
g−2∑
i=2

[
qi+1 −

2q1p
2
0

q21 − p21

] 2g−1−i∑
j=1

x22i(2j−1) −
[
q2 −

2p20
q1 − p1

] 2g−2∑
j=1

x22(2j−1)

+2

g−2∑
i=1

pi+1

2g−i−2∑
j=1

x2i(4j−3)x2i(4j−1) (7.4)

+2

g−3∑
i=2

li+1

2g−i−1∑
j=1

x2i(2j−2)x2i(2j) + 2

(
l2 +

p1p
2
0

q21 − p21

) 2g−2∑
j=1

x2(2j−2)x2(2j)

+2

(
l1 +

p20
q1 − p1

) 2g−2∑
j=1

x2(2j−1)
(
x2(2j−2) + x2(2j)

) .

Substituting x′i = x2i, this expression is identical in form with Eq.(7.2), and we can identify

q′1 = q2 − 2
p20

q1 − p1
,

q′i = qi+1 − 2
q1p

2
0

q21 − p21
, (i ≥ 2),

p′0 = l1 +
p20

q1 − p1
, (7.5)

p′i = pi+1, (i ≥ 1),

l′1 = l2 +
p1p

2
0

q21 − p21
,

l′i = li+1, (i ≥ 2),

The difference between the primed and unprimed quantities represents the step from the µ-th to the

µ+ 1-st level in the RG recursion, with 0 ≤ µ < g. The recursion for the overall scale-factor Cg is

C ′g = Cg
(
q21 − p21

)−2g−µ−3

. (7.6)
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Initial conditions for recursions in Eq.(7.5) and Eq.(7.6) are:

C(0)
g = 1,

q
(0)
i = 3 + ε (i > 1),

p
(0)
i = 1 (i > 0), (7.7)

l
(0)
i = 0 (i > 1),

reflecting the fact that all the nodes in HN3 have a constant degree ki = 3. Since all the diagonal

entries are identical, the hierarchy for the qi collapses and we obtain only two nontrivial relations, one

for q1 and one for all other qi ≡ q2 for all i ≥ 2. Here, all pi are non-zero, encompassing the backbone

links (i = 0) and long-range links (i ≥ 1). But it remains pi ≡ 1 for i ≥ 1 at any step µ of the RG, in

particular, p(µ)1 ≡ 1 throughout; only the backbone p0 renormalizes nontrivially. Although all the links

of type li are absent in this network, the details of the calculation show that under renormalization

terms of type l1 emerge while those for li for i ≥ 2 remain zero at any step. Thus, Eq.(7.5-7.6) reduce

to RG recursion equations:

C(µ+1)
g = C(µ)

g

{[
q
(µ)
1

]2
− 1

}−2k−3−µ

,

q
(µ+1)
1 = q

(µ)
2 − 2

[
p
(µ)
0

]2
q
(µ)
1 − 1

,

q
(µ+1)
2 = q

(µ)
2 − 2

q
(µ)
1

[
p
(µ)
0

]2
[
q
(µ)
1

]2
− 1

, (7.8)

p
(µ+1)
0 = l

(µ)
1 +

[
p
(µ)
0

]2
q
(µ)
1 − 1

,

l
(µ+1)
1 =

[
p
(µ)
0

]2
[
q
(µ)
1

]2
− 1

.

We can further eliminate q2 from Eqs.(7.8) by noting that these equations possess an invariant:

q
(µ)
2 = q

(µ)
1 + 2l

(µ)
1 (0 6 µ < k). (7.9)



CHAPTER 7. APPENDIX 80

Then, abbreviating qµ ≡ q(µ)1 , pµ ≡ p(µ)0 , and lµ = l
(µ)
1 , Eq.(7.8) reduces to

qµ+1 = qµ + 2lµ − 2
p2µ

qµ − 1
(q0 = 3− λ),

pµ+1 = lµ +
p2µ

qµ − 1
(p0 = 1), (7.10)

lµ+1 =
p2µ

q2µ − 1
(l0 = 0).

HN5 contains HN3 but possesses many additional links between sites, see Fig.(2.1). In HN5, the

initial conditions for recursions in Eq.(7.5) and Eq.(7.6) are

C(0)
g = 1,

q
(0)
i = 2i+ 1 + ε (i > 1), (7.11)

p
(0)
i = 1 (i > 0),

l
(0)
i = 1 (i > 1),

reflecting the fact that all sites in HN5 have a hierarchy-dependent, increasing degree of ki = 2i + 1

with average 5. Now, diagonal entries are no longer identical and we have to modify the equations

for the qi when compared to HN3. Yet, the difference between qi and qi+1 is constant throughout,

qi+1− qi = 2, and taking that modification into account, only the renormalization of q1 and q2 evolves

nontrivially, as before for HN3. Again, all pi are non-zero, encompassing the backbone links (i = 0)

and all levels of long-range links (i ≥ 1). But it remains pi ≡ 1 for i ≥ 1 at any step µ of the RG-flow,

in particular, p(µ)1 ≡ 1 throughout; only the backbone p0 renormalizes nontrivially. Special to HN5, all

links of type li are already present initially in this network. Though, only l1 renormalizes, as in HN3,

whereas it is li ≡ 1 for all i ≥ 2. Thus, we obtain just slightly more elaborate RG recursion equations

which merely differ in the last relation from Eq.(7.8):

l
(µ+1)
1 = 1 +

[
p
(µ)
0

]2
[
q
(µ)
1

]2
− 1

. (7.12)

The formal solution for C(µ)
g is unchanged from HN3, given in Eq. (2.11). Furthermore, we note that,

despite the changes to the recursions for q2 and l1, the invariant in Eq. (7.9) remains valid, allowing
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the elimination of the recursion for q(µ)2 for µ < k − 2. Then, abbreviating again qµ = q
(µ)
1 , pµ = p

(µ)
0 ,

and lµ = l
(µ)
1 reduces the RG-recursions to

qµ+1 = qµ + 2lµ − 2
p2µ

qµ − 1
(q0 = 3− λ),

pµ+1 = lµ +
p2µ

qµ − 1
(p0 = 1), (7.13)

lµ+1 = 1 +
p2µ

q2µ − 1
(l0 = 1).

The procedure to obtain the spectral properties through Eq.(7.10) and Eq.(7.13) has been explained

in Sec.2.2.1.

7.1.2 RG for Spectra of HNNP and HN6

Now, we evaluate the most general 2g × 2g-determinant for the matrix L(NP,6)
g representing HNNP

and HN6. Again, we simply provide a description of L(NP,6)
g for the case g = 4:



CHAPTER 7. APPENDIX 82

L(NP,6)
g =



q4 −p0 −l1 −p1 −l2 0 −p2 0 −2l3 0 −p2 0 −l2 −p1 −l1 −p0

−p0 q1 −p0 0 −p1 0 0 0 0 0 0 0 0 0 0 0

−l1 −p0 q2 −p0 −l1 0 0 0 −p2 0 0 0 0 0 0 0

−p1 0 −p0 q1 −p0 0 0 0 0 0 0 0 0 0 0 0

−l2 −p1 −l1 −p0 q3 −p0 −l1 −p1 −l2 0 0 0 0 0 0 0

0 0 0 0 −p0 q1 −p0 0 −p1 0 0 0 0 0 0 0

−p2 0 0 0 −l1 −p0 q2 −p0 −l1 0 0 0 0 0 0 0

0 0 0 0 −p1 0 −p0 q1 −p0 0 0 0 0 0 0 0

−2l3 0 −p2 0 −l2 −p1 −l1 −p0 q4 −p0 −l1 −p1 −l2 0 −p2 0

0 0 0 0 0 0 0 0 −p0 q1 −p0 0 −p1 0 0 0

−p2 0 0 0 0 0 0 0 −l1 −p0 q2 −p0 −l1 0 0 0

0 0 0 0 0 0 0 0 −p1 0 −p0 q1 −p0 0 0 0

−l2 0 0 0 0 0 0 0 −l2 −p1 −l1 −p0 q3 −p0 −l1 −p1

−p1 0 0 0 0 0 0 0 0 0 0 0 −p0 q1 −p0 0

−l1 0 0 0 0 0 0 0 −p2 0 0 0 −l1 −p0 q2 −p0

−p0 0 0 0 0 0 0 0 0 0 0 0 −p1 0 −p0 q1



.

(7.14)

In particular, the dark-shaded links in Fig.(2.2) correspond to pi, while the green-shaded ones again

refer to li, which may be originally absent but emergent in HNNP. The determinant of L(NP,6)
g can be

evaluated by using the identity in Eq.(2.8) to write
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[
detL(NP,6)

g

]− 1
2

= Cg

∞̈

−∞

dx0dx2g−1

π
exp

{
−qg

(
x20 + x22g−1

)
+ 4lg−1x0x2g−1

}
∞̇

−∞

g−1∏
i=1

2g−i∏
j=1

dx2i−1(2j−1)√
π

 (7.15)

exp

−
g−1∑
i=1

qi

2g−i∑
j=1

x22i−1(2j−1) + 2

g−2∑
i=1

li

2g−i∑
j=1

x2i−1(2j−2)x2i−1(2j)

+2

g−2∑
i=1

pi

2g−i−1∑
j=1

(
x2i−1(4j−3)x2i−1(4j) + x2i−1(4j−1)x2i−1(4j−4)

)

2p0

2g−1∑
j=1

x2j−1(x2j−2 + x2j)

 .

To solve detL
(NP,6)
g recursively, we again integrate over all variables x with odd index (i.e. the i = 1

term in the product):

2g−2∏
j=1

∞̈

−∞

dx4j−3dx4j−1
π

exp
{
−q1

(
x24j−3 + x24j−1

)
+ 2p1 (x4j−3x4j + x4j−1x4j−4)

+2p0 [x4j−3 (x4j−4 + x4j−2) + x4j−1 (x4j−2 + x4j)]} , (7.16)

=

2g−2∏
j=1

1

q1
exp

{
[p1x4j−4 + p0 (x4j + x4j−2)]

2
+ [p1x4j + p0 (x4j−2 + x4j−4)]

2

q1

}

= q−2
g−2

1 exp

2
p20 + p21
q1

(x20 + x22k−1) + 2
p20 + p21
q1

g−2∑
i=2

2g−i−1∑
j=1

x2i−1(2j−1)2 + 2
p20
q1

2g−2∑
j=1

x2(2j−1)2

2
p20 + p0p1

q1

2g−1∑
j=1

x2j−2x2j + 4
p0p1
q1

2g−2∑
j=1

x(2j−2)2x(2j)2


Substituting back into Eq.(7.15) obtains:
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[
detL(NP,6)

g

]− 1
2

= Cgq
−2g−2

1

∞̈

−∞

dx0dx2g−1

π
exp

{
−
[
qg − 2

p20 + p21
q1

]
(x0 + x2g−1) + 4lg−1x0x2g−1}

∞̇

−∞

g−2∏
i=1

2g−1−i∏
j=1

dx2i(2j−1)√
π

 (7.17)

exp

−
g−2∑
i=2

(
qi+1 − 2

p20 + p21
q1

) 2g−1−i∑
j=1

x22i(2j−1) −
(
q2 − 2

p20
q1

) 2g−2∑
j=1

x22(2j−1)

+2

g−3∑
i=1

pi+1

2g−i−2∑
j=1

(
x2i(4j−3)x2i(4j) + x2i(4j−1)x2i(4j−4)

)
+2

g−3∑
i=2

li+1

g−i−1∑
j=1

x2i(2j−2)x2i(2j) + 2

(
l2 + 2

p0p1
q1

) 2g−2∑
j=1

x2(2j−2)x2(2j)

+2

(
l1 +

p20 + p0p1
q1

) 2g−2∑
j=1

x2(2j−1)
(
x2(2j−2) + x2(2j)

)
Substituting x′i = x2i, this expression that we identify

q′1 = q2 − 2
p20
q1
,

q′i = qi+1 − 2
p20 + p21
q1

(i ≥ 2),

p′0 = l1 +
p20 + p0p1

q1
, (7.18)

p′i = pi+1 (i ≥ 1),

l′1 = l2 + 2
p0p1
q1

,

l′i = li+1 (i ≥ 2).

The difference between the primed and unprimed quantities represents the step from the µ-th to the

µ+ 1-st level in the RG recursion, with 0 ≤ µ < g. As for HN3 and HN5 above, the recursion for the

overall scale-factor Cg is

C ′g = Cg q
−2g−µ−2

1 . (7.19)

Initial conditions for Eq.(7.18-7.19) in the case of HNNP are:
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C(0)
g = 1,

q
(0)
1 = 3 + ε,

q
(0)
i = 2i− 1 + ε (i > 2), (7.20)

p
(0)
i = 1 (i > 1),

l
(0)
i = 0 (i > 1),

reflecting the fact that all sites in HNNP have a hierarchy-dependent, increasing degree of ki = 2i− 1,

2 6 i < g, as for HN5 above, but instead with average degree 4. Here, too, the difference between

qi and qi+1 for i ≥ 2 is constant throughout, qi+1 − qi = 2, such that only the renormalization of q1

and q2 evolve nontrivially. Again, it remains pi ≡ 1 for i > 1 at any step µ of the RG, in particular,

p
(µ)
1 ≡ 1 throughout and only the backbone p0 renormalizes nontrivially. Although all links of type li

are initially absent in this network, under renormalization terms of type l1 emerge while those for li

for i > 2 remain zero at any step. These considerations reduce Eq.(7.18-7.19) to

C(µ+1)
g = C(µ)

g [q
(µ)
1 ]−2

(g−µ−2)

,

q
(µ+1)
1 = q

(µ)
2 − 2

[p
(µ)
0 ]2

q
(µ)
1

,

q
(µ+1)
2 = q

(µ)
2 + 2− 2

[p
(µ)
0 ]2 + 1

q
(µ)
1

, (7.21)

p
(µ+1)
0 = l

(µ)
1 +

[p
(µ)
0 ]2 + p

(µ)
0

q
(µ)
1

,

l
(µ+1)
1 = 2

p
(µ)
0

q
(µ)
1

.

Then, abbreviating qµ ≡ q(µ)1 , rµ ≡ q(µ)2 , pµ ≡ p(µ)0 , and lµ = l
(µ)
1 , Eqs.(7.21) further simplify to

qµ+1 = rµ − 2
p2µ
qµ
,

rµ+1 = rµ + 2− 2
p2µ + 1

qµ
, (7.22)

pµ+1 = lµ +
p2µ + pµ

qµ
,

lµ+1 = 2
pµ
qµ
.
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Evolving the RG for g− 2 steps results in a reduced network that consists of 4 sites, formerly in 0,

2g−2, 2g−1, 3 2g−2. Hence the determinant for HNNP reads

det
[
L(NP) − λ1

]
=

1[
C

(g−2)
g

]2 det



rg−2 −pg−2 −2lg−2 −pg−2

−pg−2 qg−2 −pg−2 0

−2lg−2 −pg−2 rg−2 −pg−2

−pg−2 0 −pg−2 qg−2


(7.23)

=
[
C(g−2)
g

]−2 {
−qg−2 (2lg−2 + rg−2)

[
4p2g−2 + qg−2 (2lg−2 − rg−2)

]}
.

For HNNP, Eq.(7.22) has a fixed point at µ → ∞, with q∞ = 5, r∞ = 33/5, p∞ = 2, l∞ = 4/5. A

simple perturbation for small ε on Eq.(7.22) then yields [105]

qµ ∼ 5 + ε2µQ1,

rµ ∼
33

5
+ ε2µQ1

26

25
(7.24)

pµ ∼ 2− ε2µQ1
2

5
,

lµ ∼
4

5
− ε2µQ1

4

25
.

Here,
[
C

(g−2)
g

]−2
∼ αN , where α is estimated to be 2.949007876 . . . at g = 30.

Initial conditions for Eq.(7.18-7.19) in the case of HN6 are:

C(0)
g = 1

q
(0)
1 = 3 + ε

q
(0)
i = 4i− 3 + ε (i > 2) (7.25)

p
(0)
i = 1 (i > 1)

l
(0)
i = 1 (i > 1)

reflecting the fact that all sites in HN6 have a hierarchy-dependent, increasing degree of ki = 4i−3(2 6

i < k) with average 6. The difference between qi and qi+1 is constant throughout, here qi+1 − qi = 4.
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Only the renormalization of q1 and q2 evolve nontrivially, as before. Again, all pi are non-zero,

encompassing the backbone links (i = 0) and all levels of long-range links (i > 1). But it remains

pi ≡ 1 for i > 1 at any step µ of the RG, in particular, p(µ)1 ≡ 1 throughout; only the backbone

p0 renormalizes nontrivially. As for HN5, in HN6 bare links of type li are present in this network.

Though, only l1 renormalizes, as in HN5, while li ≡ 1 remains unrenormalized for all i ≥ 2. Applying

these considerations to Eq.(7.18-7.19) results in:

C(µ+1)
g = C(µ)

g

[
q
(µ)
1

]
−2(k−µ−2)

,

q
(µ+1)
1 = q

(µ)
2 − 2

[
p
(µ)
0

]
2

q
(µ)
1

,

q
(µ+1)
2 = q

(µ)
2 + 4− 2

[
p
(µ)
0

]
2 + 1

q
(µ)
1

, (7.26)

p
(µ+1)
0 = l

(µ)
1 +

[
p
(µ)
0

]
2 + p

(µ)
0

q
(µ)
1

,

l
(µ+1)
1 = 1 + 2

p
(µ)
0

q
(µ)
1

.

Then, abbreviating qµ ≡ q(µ)1 , rµ ≡ q(µ)2 , pµ ≡ p(µ)0 , and lµ = l
(µ)
1 , Eqs. (7.26) reduce to

qµ+1 = rµ − 2
p2µ
qµ

rµ+1 = rµ + 4− 2
p2µ + 1

qµ
(7.27)

pµ+1 = lµ +
p2µ + pµ

qµ

lµ+1 = 1 + 2
pµ
qµ
.

For HN6, Eq.(7.27) has a fixed point at µ→∞ with q∞ = 5 + 2
√

5, r∞ = 7 + 14/
√

5, p∞ = 2 +
√

5,

and l∞ = 1 + 2/
√

5. A simple perturbation for small ε on Eq.(7.27) then yields [105]
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qµ ∼ 5 + 2
√

5 + ε2µQ1, (7.28)

rµ ∼ 7 +
14√

5
+ ε2µQ1

14− 4
√

5

5
,

pµ ∼ 2 +
√

5− ε2µQ1
10− 3

√
5

10
,

lµ ∼ 1 +
2√
5
− ε2µQ1

12− 5
√

5

10
.

Again,
[
C

(g−2)
g

]−2
∼ αN , where α for HN6 is estimated to be 4.097722948 . . . at g = 30.

7.1.3 RG for Spectra of Hierarchical Lattices

For hierarchical lattices, instead of providing a description of Lg for a specific g, we reconstruct the

integral in Eq.(2.8) piece-by-piece with a simple algebra. As suggested by Fig.(2.6.c), in each RG-step

the network consists a collection of graph-lets of the type shown in Fig.(2.6.d). By evaluating how

one of those graph-lets renormalizes, we renormalize the whole network in one generic step! In that

graph-let, the b inner vertices belong to the currently lowest level (i = 0) of the hierarchy that will be

integrated out in the next RG-step. One of the two outer vertices is exactly one level higher (i = 1)

as it would be integrated at the next step. The other outer vertex must be of some unspecified but

higher level (i > 1). We can now define a helpful function pertaining to each bond, each of which is

bound to have a vertex with i = 0 on one end and some vertex with i > 0 on the other. Its part of

the integrand in Eq.(2.8) has the form

Bi (x, y) = Ci exp
{
−qi

2
x2 − q0

2
y2 + 2pxy

}
, (7.29)
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such that the RG-step depicted in Fig.(2.6.d) amounts to

B′i−1 (x, z) =

ˆ
· · ·
ˆ ∞
−∞

b∏
j=1

dyj√
π
Bi (x, yj)B1 (yj , z) ,

= CbiC
b
1 exp

{
− b

2

(
qix

2 + q1z
2
)}ˆ

· · ·
ˆ ∞
−∞

b∏
j=1

dyj√
π

exp
{
−q0y2j + 2p (x+ z) yj

}
,

= CbiC
b
1q
− b2
0 exp

{
− b

2

(
qi −

2p2

q0

)
x2 − b

2

(
q1 −

2p2

q0

)
z2 + 2b

p2

q0
xz

}
,

= C ′i−1 exp

{
−
q′i−1

2
x2 − q′0

2
z2 + 2p′xz

}
, (7.30)

where unprimed parameters are µ-times renormalized while primes indicate µ+ 1-times renormalized

parameters. From the last two lines, we can read off the RG-recursions at the µth step:

C
(µ+1)
i−1 =

C(µ)
1 C

(µ)
i√

q
(µ)
0

b

,

q
(µ+1)
i−1 = b

(
q
(µ)
i −

2
(
p(µ)

)2
q
(µ)
0

)
, (7.31)

p(µ+1) = b

(
p(µ)

)2
q
(µ)
0

,

for i > 0. Considering that initially, at µ = 0 in the unrenormalized network, all vertex-weights defined

in Eq.(7.29) are the same, q(0)i ≡ 2 for all i, the distinction between levels i in Eq. (7.31) disappears.

Note that a vertex at level i > 0 contributes to the Gaussian integral 2bi-fold through respective

factors Bi, and 2-fold for i = 0 by appearing in two such factors Bi′ , i′ > 0. In this manner, the lattice

Laplacian at µ = 0 in Eq.(2.8) receives its proper weights on its diagonal. Equally, C(0)
i = 1 for all

i > 0. Thus, defining Cµ = C
(µ)
i , pµ = b−µp(µ), and qµ = b−µq

(µ)
i for all i ≥ 0, we obtain:

Cµ+1 =

[
C2
µ√
bµqµ

]b
, (C0 = 1) ,

qµ+1 = qµ − 2
p2µ
qµ
, (q0 = 2 + ε) , (7.32)

pµ+1 =
p2µ
qµ
, (p0 = 1) .

Note that the recursions in Eq.(7.32) is not exactly identical to Eq.(7.31). The initial condition for

q
(0)
i Eq.(7.31) is, in fact,
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q
(0)
i = 2 + ε/bi, 0 ≤ i < g, (7.33)

q
(0)
k = 2 + 2ε/bk, i = g,

which does not allow to collapse the i-th hierarchy as in the Hanoi networks. However, in the Taylor

expansion in small ε, order-by-order such a collapse is allowed. The difference between the
{
q
(µ)
0 , p(µ)

}
from Eq.(7.32) and {qµ, pµ} from Eq.(7.31) is

q
(µ)
0 − qµ ∼ Q1ε+Q2ε

2 +Q3ε
3 + . . . , (7.34)

p(µ) − pµ ∼ P1ε+ P2ε
2 + P3ε

3 + . . . (7.35)

in which coefficients are generally constants dependent on parameter b. After k − 1 iterations, the

network is renormalized to two end nodes, the Laplacian determinant is

det
[
LMK
g + ε1

]
= C−2g b2g det

 qg/2 −pg

−pg qg/2


= C−2g b2g

(
q2g/4− p2g

)
, (7.36)

where the C−2g can be expressed in closed form,

C−2g =
(
b0q0

)2g−1bg (
b1q1

)2g−2bg−1 (
b2q2

)2g−3bg−2

. . .
(
bg−1qk−1

)2g−gb
=

(
g−1∏
µ=0

b(2b)
g−µ µ/2

)(
g−1∏
µ=0

qb (2b)
g−1−µ

µ

)
. (7.37)

The ansatz for fixed points of rescaled {qµ, pµ} is

qµ ∼ 2−µ
(
Q0 + ε4µQ1 + ε242µQ2 . . .

)
,

pµ ∼ 2−µ
(
Q0/2− ε4µP1/4 + ε242µP2 + . . .

)
. (7.38)
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The fixed point scaling of parameters qµ and pµ in Eq.(7.38) verifies the validity of approximations in

Eq.(7.32), since the differences between the approximated and exact parameters in Eq.(7.34) will not

affect the scaling of any quantity we consider. With respect to ε, we can calculate the jth derivative

of determinant for any b.

7.2 Evaluation of Individual Eigenvalues with RG

We can use the power method, commonly used to numerically extract particular eigenvalues of a matrix,

to obtain the largest eigenvalue of the Laplacian for HN3 analytically. The power method simply

proceeds as follows: Choose any generic vector x0 (that is non-zero and not already an eigenvector

associated with another eigenvalue), then the evolution of

xt+1 =
1

λ̄t
Lxt, (7.39)

converges to the eigenvector associated with the (absolute) largest eigenvalue (if unique) of any matrix

M, where

λ̄t = ‖xt‖ (7.40)

ensures proper normalization of the evolving vector xt. The magnitude of that largest eigenvalue is

provided by λN = limt→∞ λ̄t. Hence, analytically, we are faced with solving the fixed point equation

x∗ =
1

λN
Lx∗, (7.41)

which is typically hopeless in general. But in case of the very sparse, hierarchical Laplacian matrix for

HN3, the set of N = 2k coupled linear equations defined by Eq.(7.41) can be solved again recursively.

Then, we can write for Eq.(7.41):

0 = (3− λN )x0 − x2k−1 − x1 − x2k−1 ,

0 = (3− λN )x2k−1 − x2k−1−1 − x2k−1+1 − x0, (7.42)

0 = (3− λN )x2i−1(4j−3) − x2i−1(4j−3)−1 − x2i−1(4j−3)+1 − x2i−1(4j−1),

0 = (3− λN )x2i−1(4j−1) − x2i−1(4j−1)−1 − x2i−1(4j−1)+1 − x2i−1(4j−3),
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for all 1 ≤ i < k and 1 ≤ j ≤ 2i−2. The recursion consists of solving for and eliminating all odd-index

(i = 1) variables. To that end, we re-write Eqs.(7.42) as

0 = q2 xn−2 − p (xn−3 + xn−1)− l (xn−4 + xn)− x+,

0 = q1 xn−1 − p (xn−2 + xn)− xn+1, (7.43)

0 = q2 xn − p (xn−1 + xn+1)− l (xn−2 + xn+2)− xn±4,

0 = q1 xn+1 − p (xn+2 + xn)− xn−1,

0 = q2 xn+2 − p (xn+3 + xn+1)− l (xn+4 + xn)− x−,

for all n = 2(2j − 1), j = 1, . . . , 2k−2, where initially

q
(0)
1 = q

(0)
2 = 3− λN ,

p(0) = 1, (7.44)

l(0) = 0.

Solving for and eliminating all odd-indexed variables xn±1, we find

0 =

(
q2 −

2p2q1
q21 − 1

)
xn−2 −

(
l +

p2

q1 − 1

)
(xn−3 + xn−1)− p2

q21 − 1
(xn−4 + xn)− x+,

0 =

(
q2 −

2p2

q1 − 1

)
xn −

(
l +

p2

q1 − 1

)
(xn−2 + xn+2)− xn±4, (7.45)

0 =

(
q2 −

2p2q1
q21 − 1

)
xn+2 −

(
l +

p2

q1 − 1

)
(xn+3 + xn+1)− p2

q21 − 1
(xn+4 + xn)− x−.

We relabel x′n′+2 = xn+2, x′n′+1 = xn, and x′n′ = xn−2, and obtain

q′1 = q2 −
2p2

q1 − 1
,

q′2 = q2 −
2p2q1
q21 − 1

,

p′ = l +
p2

q1 − 1
, (7.46)

l′ =
p2

q21 − 1
,

considering which should be compared with Eqs.(2.10). Then, Eqs.(7.45) in terms of the primed

quantities take on exactly the form of the (lower three) Eqs.(7.43) and the circle closes. The recursion
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terminates after k − 2 steps with the equations

0 = q
(k−2)
2 x0 − p(k−2) (x1 + x3)−

(
2l(k−2) + 1

)
x2,

0 = q
(k−2)
1 x1 − p(k−2) (x0 + x2)− x3, (7.47)

0 = q
(k−2)
2 x2 − p(k−2) (x1 + x3)−

(
2l(k−2) + 1

)
x0,

0 = q
(k−2)
1 x3 − p(k−2) (x0 + x2)− x1,

which lead to the constraint

0 = q
(k−2)
2 − 2l(k−2) + 1. (7.48)

Combining Eqs.(7.44), (7.46), and (7.48) provide an efficient procedure to determine the largest eigen-

value λN , albeit implicit. For instance, for k = 2, we can directly insert Eqs.(7.44) into Eq.(7.48) to

find λ4 = 4, for k = 3, we recur the initial conditions in Eqs.(7.44) once through Eqs.(7.46) before we

apply the constraint in Eq.(7.48) to get

0 = (3− λ8)− 2 (3− λ8)

(3− λ8)
2 − 1

+
2

(3− λ8)
2 − 1

+ 1

with the solution λ8 = 4+
√

2 = 5.414 . . .. Beyond that, a closed-form solution becomes quite difficult,

and we have to resort to an implicit “shooting” procedure, which is nonetheless exponentially more

efficient, O(k = log2N), than a numerical evaluation with the power method: simply choose a trial

value for λN in Eqs.(7.44) and evolve the recursion in Eqs.(7.46) until the right-hand side of Eq.(7.48)

has sufficiently converged, then vary the value of λN (using bisectioning or regula-falsi) such that the

constraint in Eq.(7.48) is ever-better satisfied. In this way, we find

λN = 5.37272879308215 . . . , (7.49)

where in the end we need to evolve the recursions in Eq.(7.46) nearly 50 times before we can discern

the convergence of the constraint. This corresponds to an accuracy in the asymptotic value of λN

that would have required to evolve with the numerical power method the Laplacian for HN3 of size

N = 250.

Similar to HN3, the renormalization group treatment with power method is also applied to HN5.
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We obtain the recursions as

q′ = q + 2l − 2p2

q − 1
,

r′ = r − 2p2q

q2 − 1
,

p′ = l +
p2

q − 1
, (7.50)

l′ = 1 +
p2

q2 − 1
,

the initial condition is

q(0) = 3− λN ,

r(0) = 2 k − λN , (7.51)

p(0) = 1, (7.52)

l(0) = 1.

The recursion terminates after k − 2 steps with the equations

0 = r(k−2) x0 − p(k−2) (x1 + x3)− 2l(k−2)x2,

0 = q(k−2) x1 − p(k−2) (x0 + x2)− x3, (7.53)

0 = r(k−2) x2 − p(k−2) (x1 + x3)− 2l(k−2)x0,

0 = q(k−2) x3 − p(k−2) (x0 + x2)− x1,

which lead to the constraint

0 = r(k−2) + 2l(k−2). (7.54)

Same method also apply to MKRG, in which the recursions
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q′i = qi+1 − 2
p2

q0
,

p′ =
p2

q0
, (7.55)

the initial condition is

q
(0)
i = 2− λN/bi, 0 ≤ i < k,

q
(0)
k = 2− 2λN/b

k, (7.56)

p(0) = 1. (7.57)

The recursion terminates after k steps with the equations

0 = bk
[
q(k)/2x0 − p(k)x1

]
,

0 = bk
[
q(k)/2x1 − p(k)x0

]
, (7.58)

which lead to the constraint

0 = q(k)/2 + p(k). (7.59)
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