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Abstract

Pricing Multi-asset Path-dependent Options Through Monte Carlo Simulations

By Hanqiu Xia

Monte Carlo simulation (MC) is an approach that is widely used in high-dimensional

numerical integration and one of its main financial applications is option pricing. The

aim of this thesis is to evaluate the price of an Asian option using standard Monte

Carlo method and Quasi-Monte Carlo method (QMC) respectively. Since QMC’s

convergence rate is determined by nominal problem dimension, the convergence rate

of QMC increases as the problem dimension increases, which limits the performance

of QMC in high dimensions. Hence, in this thesis, we also consider several techniques

which are proposed to capture the effective dimensions and improve the efficiency of

QMC in high-dimensional situations. The techniques include principal component

analysis (PCA) and Kronecker product approximation (KPA) and they are applied

for both constant and time-dependent volatilities. Finally, we conduct numerical

experiments and compare the precision and computational time between Quasi-Monte

Carlo and Monte Carlo methods.
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Chapter 1

Introduction

Options are derivative contracts that provide buyers with a right, but not an

obligation, to sell or buy assets at a predetermined price during a specified time period

(American style options) or at a certain time (European style options). The essence of

an option is to estimate the value of the right that option can provide, and is referred

to as the option price. Determining an arbitrage-free price is at the center of valuing

an option’s price. Evaluation of an option’s price requires significant computational

effort, involving mathematical functions in high dimensions. Besides, there are several

dynamic factors associated with an option’s price, therefore, accurately estimating

options price is a necessary and challenging task for financial analysts. The aim of

this thesis is to investigate an approach to evaluate the price of high-dimensional

European style Asian options through standard Monte Carlo methods and Quasi-

Monte Carlo methods respectively. In this chapter, we present the background of

options pricing and the mathematical model we will use to evaluate Asian options;

more detailed background can be found in [4].

1.1 Background

In current financial markets, most options are either European or American

options. European style options can only be exercised on the date of expiration;
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therefore, its payoff is only determined by the underlying assets price on that day,

while American options can be exercised at any time before expiration. The options

whose payoffs depend on the path of the underlying assets price just like American

options are called path-dependent options.

In this thesis, we will introduce another important example of path-dependent

options, called Asian options. An Asian option’s payoff is based on the difference

between the average price of the underlying asset during the contract term and the

strike price. Nowadays, Asian options have become increasingly popular in options

markets, because of their lower volatilities and cheaper premium [7].

The premium, also know as the option price, is the most essential part in option

trading. Setting a good price for an option can protect the interest of both buyers and

sellers in any market situations. For buyers, this price sets the limit of the maximum

loss the buyers could suffer. For the sellers, it represents the amount of money they can

receive from buyers without delivering the underlying assets immediately, although

they have the obligation to exercise the contract when the buyers require, regardless

of the movement in the market.

However, the procedure of option pricing is not easy, since the option price depends

on many elements, such as strike price, length of maturity, time-dependent volatilities

and the spot price of the underlying assets; some of these elements are even dynamic

and hard to predict. The theoretical definition of an Asian options price is determined

by several forecasting-needed factors, such as asset price. Hence, a theoretical analysis

is usually inapplicable in practical cases, since it is under an unrealistic assumption

that we know, for example, the exact asset price at time t in the future. Therefore,

we need to develop computational methods for option price evaluation.

With the booming of financial industry, vast studies are conducted in this field and

several new methods have been proposed to price path-dependent options. Specifi-
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cally, when it comes to Asian options, Monte Carlo simulations are commonly used.

1.2 Mathematical Model

Suppose we focus our analysis on European Style Asian options in a complete and

standard financial market under the multi-dimensional Black Scholes framework. The

market contains M risky assets and 1 risk free asset. The following formulas are based

on the works of Sabino [7, 6].

We denote the price of a risk free asset at time t as S0(t), then:

S0(t) = S0(0)ert, (1.1)

where S0(0) is the initial price of the risk free asset, and r is the constant interest

rate under the assumption of continuous compounding interest.

We assume the risky assets’ price behavior follows Geometric Brownian motion

and satisfies the stochastic differential equation (SDE:)

dSi(t) = rSi(t)dt+ σi(t)Si(t)dWi(t), i = 1, 2, . . . ,M (1.2)

where Si(t) is the i-th risky asset price at time t, σi(t) denotes the time-dependent

volatility of the i-th asset return, which determines how far Si(t+∆) can wander dur-

ing a time interval of length ∆. W represents the M -dimensional standard Brownian

motion. The former term is used to simulate deterministic trends, while the latter

term represents the unpredictable events occurring during this motion.
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According to Ito’s Lemma, the solution for equation (1.2) is [4]:

Si(t) = Si(0) exp

[ ∫ t

0

(
r − σ2

i (s)

2
ds

)
+

∫ t

0

σi(s)dWi(s)

]
. (1.3)

This solution is a multi-dimensional geometric Brownian motion, GMB(r,
∫ t

0

σ2
i (s)

2
ds).

We work with a finite time set {t1, . . . , tN} in evaluating Asian option prices, so

that we can rewrite the above equation as:

Si(tj) = Si(0) exp

[ ∫ tj

0

(
r − σ2

i (s)

2

)
ds+ Zi(tj)

]
(1.4)

for the time-dependent case, or

Si(tj) = Si(0) exp

[ (
r − σ2

i

2

)
tj + Zi(tj)

]
(1.5)

for the constant volatilities case. We define Zi(tj) =
∫ tj

0
σi(s)dWi(s), and Z is an M×

N matrix whose entries are normal random variables with zero mean and covariance

matrix ΣMN .

For time-dependent volatilities, ΣMN has the block matrix structure:

ΣMN =


Σ(t1) Σ(t1) . . . Σ(t1)

Σ(t1) Σ(t2) . . . Σ(t2)
...

...
. . .

...

Σ(t1) Σ(t2) . . . Σ(tN)

 , Σi,k(tj) =

∫ tj

0

ρikσi(tj)σk(tj) (1.6)

where i, k = 1, . . . ,M . ρik is the constant instantaneous correlation between Wi and

Wk. Each block Σ(tj) is a matrix of size M ×M , and Σi,k(tj) is its (i, k) entry. For

each element in ΣMN :
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((ΣMN)i,k)lm =

∫ min(tl,tm)

0

ρikσi(t)σk(t)dt, (1.7)

For constant volatilities, we have a similar block structure, but with constant Σ(tj);

that is,

ΣMN =


t1Σ t1Σ . . . t1Σ

t1Σ t2Σ . . . t2Σ
...

...
. . .

...

t1Σ t2Σ . . . tNΣ

 , Σi,k = ρikσiσk. (1.8)

The price at time t of a simple European Style option with maturity T is:

V (t) = exp(−r(T − t))E
[
φ(T )It

]
, (1.9)

where φ(T ) denotes the payoff of the option at maturity time T , and It is the infor-

mation filtration, which is basically all the information we have at time t. Since the

option may be traded several times, traders may want to have a daily value of this

option in order to evaluate its risks. Therefore, the formula of a simple European

Style option is a function of t. By evaluating the function in equation (1.9) at the

payoff of Asian options, which is determined by the average underlying assets’ price

over a pre-set period of time, we get the theoretical definition of Asian options:

a(t) = exp(−r(T − t))E

 max


∫ T

0

M∑
i=1

wiSi(tj)dt

T
−K, 0

It

 , (1.10)

where we assume the start time of the option is t = 0. K denotes the strike price of

the option, and wi represents the weight of i-th risky asset with
∑M

i=1wi = 1.

The formula above works with continuous time; it is usually unrealistic in practice,

so we instead work with a finite discrete time grid T = {t1, t2, . . . , tN}, t1 < t2 <
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. . . < tN ≤ T . Based on this discrete time grid, the formula that approximates the

theoretical Asian options price by sums is as follows:

a(t) = exp(−r(T − t))E

[
max

(
M∑
i=1

N∑
j=1

wijSi(tj)−K, 0
)

It

]
. (1.11)

We should note that exp(−r(T − t)) here works as the discount factor to convert

the payoff of the option to the current option price at time t.

Equation (1.11) can be rewritten as an integral on a hypercube [0, 1]MN , so that

we can use MC and QMC to estimate the integral

a(t) = exp(−(T − t))
∫

[0,1]NM

max
(
g(F−1(u))−K, 0

)
du. (1.12)

The integrated part is the payoff of Asian options at maturity T , where F−1(u) is

the inverse cumulative distribution function of normal variables Z, u represents the

random vectors that lie in [0, 1]NM

and

g(Z) =
M×N∑
k=1

exp(µk + Zk). (1.13)

For time-dependent volatilities,

µk = ln(wk1k2Sk1(0)) + rtk2 −
∫ tk2

0
σ2
k1

(t)dt

2
, (1.14)

and for constant volatilities,

µk = ln(wk1k2Sk1(0)) +

(
r −

σ2
k1

2

)
tk2 . (1.15)

The index k1 = 1 + (k− 1) mod M , and k2 = b(k − 1)/Mc+ 1, here b·c denotes the
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floor function; that is, bzc computes the greatest integer less than or equal to z.

Equation (1.12) is the focus of this chapter, and we will use this formula to estimate

the Asian options price by using a standard Monte Carlo method and a quasi-Monte

Carlo method in the following chapters. The thesis is organized as follows: In Chapter

2, we present the basic ideas of MC and QMC. In Chapter 3, we introduce some

techniques that can fulfill the purpose of selecting the effective dimensions. Chapter

4 conducts numerical tests for the simulation procedures we adopt. Chapter 5 draws

some conclusions.
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Chapter 2

Monte Carlo Methods

There are two Monte Carlo simulations that are usually applied in evaluating

high-dimensional path-dependent options price – standard Monte Carlo (MC) and

Quasi-Monte Carlo (QMC). The main idea of MC and QMC are quite similar, they

both estimate high-dimensional integrals by computing the average of a great number

of simulations, the only difference is MC conducts the simulation on pseudorandom

sequences, while QMC is based on low-discrepancy sequences, which is more deter-

ministic than the former one. Because of this difference, QMC generally has a lower

convergence rate than MC, which means QMC needs a fewer number of samples to

compute the results. However,the lower convergence rate of QMC is related to the

problem dimension; specifically, QMC has a better convergence rate for lower dimen-

sional integrals. It is therefore necessary to select the effective dimensions for QMC

by analysis of variance (ANOVA) techniques when we deal with high-dimensional

path-dependent options. In this chapter, we illustrate the basic idea of Monte Carlo

simulations, and present strengths and weakness of MC and QMC, respectively.

2.1 Standard Monte Carlo Methods

The standard Monte Carlo method can be used to numerically evaluate an integral

in a hypercube by drawing a number of uniform random points from [0, 1]d and then

computing the arithmetic average.
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We can illustrate this idea through a simple integration example in d = 1 dimen-

sions. Suppose we need to calculate the integral of a function f(x) from a to b in

Figure 2.1.

Figure 2.1: Integral of f(x) on the interval [a, b], where x ∈ <.

In a geometric sense, the integral is the area S under the graph of f(x), above the

x-axis and also bounded by the vertical lines x = a and x = b. According to the first

mean value theorem for integration, there exists a number x in [a, b] such that

∫ b

a

f(t)dt = f(x)(b− a), (2.1)

where f(x) is the mean value of f(t) defined in interval [a, b]. Therefore, we can

approximate the integral by taking a number of random samples xi, xi ∈ <, and
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replace the mean value of f(t) with a numerical average of the f(xi) values; that is,

∫ b

a

f(t)dt ≈ 1

n

n∑
i=1

f(xi)(b− a). (2.2)

If b = 1 and a = 0, then the integral approximately equals the average value of f(xi),

that is: ∫ 1

0

f(t)dt ≈ 1

n

n∑
i=1

f(xi). (2.3)

Without loss of generality, as for estimating integrals in the hypercube [0, 1]d,

e.g., I =
∫

[0,1]d
f(t)dt we can draw n independent random samples xi from a uniform

distribution on [0, 1]d , each xi is a column vector of d elements, and compute the

arithmetic average of f(xi) [5]:

∫
[0,1]d

f(t)dt ≈ 1

n

n∑
i=1

f(xi)

∫
[0,1]d

dt =
1

n

n∑
i=1

f(xi) = Î . (2.4)

According to the Law of Large Numbers (LLN), which states that the average of the

results obtained from a large number of trials should be close to the expected value,

and will tend to become closer as more trials are performed, Î converges to I as n

increases.

Based on the work of Sabino [7], I − Î has a normal sampling distribution

N(0, σ/
√
n), where σ is the true standard deviation of f(x), which is generally un-

known. So, we usually estimate it by the sample standard deviation s, which is the

standard deviation of f(xi) in the sample:

s =

√√√√ 1

n− 1

n∑
i=1

(
f(xi)− Î

)2

. (2.5)

Hence, the estimated standard deviation or standard error of the sampling distribu-
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tion of I − Î is
s√
n

. Recall from probability theory, we can compute the smallest

number of simulations n needed to guarantee the standard error not greater than εα

through the following expression [2] :

P
( ∣∣∣ I − Î ∣∣∣ < εα

)
≥ (1− α). (2.6)

This probability inequality is based on t-distribution with α% level of significance

and εα =
2s√
n

.

MC chooses a set of points x1, x2, . . . , xn by using a pseudorandom sequence. As

its name suggests, a pseudorandom sequence is a sequence of numbers that appears

to be random, and it can be easily generated by pseudorandom number algorithms

(for example, MATLAB’s rand function). The points from a pseudorandom number

source are randomly and irregularly distributed in the space. An illustration in 2-

dimension is shown in Figure 2.2 :
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Figure 2.2: 500 points from a pseudorandom sequence in 2 dimensions.

Because it is relatively simple to generate a pseudorandom sequence, MC can be

easily applied in many cases, even some complicated integrations. Moreover, since

MC’s convergence rate is O

(
1√
n

)
that does not depend on the dimensionality of

integral, MC has some advantages in pricing derivative contracts in high dimensions.

However, this convergence rate also puts limits on MC’s usefulness. The square root

form in the denominator of the convergence rate means that we need to quadruple

the number of points if we want to halve the root mean square error (RMSE). In

other words, MC’s low order of convergence requires a large number of simulations.

Another weakness of MC is its results are statistical in nature. The function (2.6) just

sets a probabilistic error bound, which means the estimated integral we compute can

be wrong with some probability [2]. To sum up, the standard Monte Carlo method

is not a perfect technique for numerical integrations, and refinements are needed.
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2.2 Quasi-Monte Carlo Methods

The quasi-Monte Carlo method works in almost the same way as the standard

Monte Carlo method does, except it is based on low-discrepancy sequences. A low-

discrepancy sequence is a set of d-dimensional points with a low star discrepancy.

The definition of the star discrepancy of a point set P = {x1,x2, . . . ,xn} in [0, 1)d

is:

DN(p) = sup

∣∣∣∣ A(J ;n)

n
− λ(J)

∣∣∣∣ , (2.7)

where J =
d∏
j=1

[0, uj), 0 ≤ uj ≤ 1; λ(J) is the Lebesgue measure of J ; and A(J ;n)

represents the number of xi that fall into the set J . Hence, the discrepancy of

sequence P is low if the percentage of points xi in J is close to the Lebesgue measure

of J [2].

Compared to a pseudorandom sequence, a low-discrepancy sequence works with

more deterministic points not simply random ones. Two classical types of low-

discrepancy sequences in 2-dimensions are shown in Figure 2.3:
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Figure 2.3: 500 points from a Sobol sequence (left); 500 points from a Halton sequence
(right)

From the above figures, we can see that the points from a low-discrepancy sequence

fills the space more evenly than random points (compare Figure 2.2 with Figure 2.3).

The fact that QMC works with well-chosen points brings it several advantages. First,

this property makes QMC overcome the probabilistic problems that MC could face,

and result in better point estimates. Moreover, using a low-discrepancy sequence

makes QMC have a generally lower convergence rate – O

(
(lnn)d

n

)
, which means

QMC can converge faster than MC and require fewer number of simulations to obtain

a similar integration level as MC does [2].

Although QMC has all of the above-mentioned advantages, it is not a panacea

for numerical integration, since it also has some noticeable drawbacks. For instance,

based on the Koksma-Hlawka inequality, the error of QMC is bounded by:

|I − ÎQMC | ≤ D∗nVHK(f), (2.8)
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where D∗n denotes discrepancy of the point set {x1, . . . ,xn} that QMC focuses on, and

VHK(f) is the Hardy-Krause variation of the function f . Inequality (2.8) only provides

the upper bound of the error of QMC, which fails to give us much information.

Besides, it is hard to estimate this bound, because we have difficulties in computing

VHK(f) even in very simple cases [6].

In order to estimate the error of the QMC method, we can use a randomized

quasi-Monte Carlo method (RQMC) [7]. Compared to QMC, the feature of RQMC

is randomizing the points obtained from a low-discrepancy sequence. The simplest

randomization procedure is through random shifting. The idea is we first sample N

random vectors ui and then mix them with points, x1, . . . ,xn from a low-discrepancy

sequence. For each new point we have

yi = (xi + ui) mod 1. (2.9)

Here mod 1 does not work as the regular modulus. If x is a real number in [1, 2], then

x mod 1 implies the decimal part of x; if x is in [0, 1], then x mod 1 equals to x. The

reason we use mod 1 here is to make sure that the new points yi are in the interval

[0, 1]d. After this transformation, we use the point set {y1, . . . ,yn} to implement

RQMC instead of {x1, . . . ,xn}. Since RQMC is conducted on random points, we can

use formula (2.5) to compute the approximation error of RQMC.

In addition, we should notice that the dimensionality of the problem has an effect

on QMC’s order of convergence, which implies that O

(
(lnn)d

n

)
is smaller than

O

(
1√
n

)
only if n is large enough and d is small. Therefore, this property limits

QMC’s superiority in high-dimensional integrals. Recently, a significant amount of

research has been done on this issue and aimed to extend QMC’s superiorities in

high dimensions. Sabino has stated in his work that a substantial amount of financial



16

experiments have proved that the number of dimensions that really matter is usually

lower than the nominal one and also suggested that we can capture the most essential

dimensions of the problem by analysis of variance (ANOVA) [6] .

In summary, although the standard MC and QMC use the same idea in the equa-

tion (2.4) to estimate the numerical integral, they obtain point sets from different

sources. MC just simply selects points from a pseudorandom sequence. As for QMC,

besides constructing point sets by using low-discrepancy sequences, we also need to

reduce the nominal dimensions of the problem before we compute the average of sim-

ulations. We will introduce the techniques for selecting the effective dimensions in

the next chapter.
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Chapter 3

Effective Dimensions Selection

The majority of multi-assets path-dependent options usually involve functions in

high dimensions, which can result in expensive computational cost and inapplicabil-

ity of QMC. Moreover, variables in many financial markets are highly correlated with

each other, which implies many variables in the data set share only a few essential

sources of information [3]. Therefore, we can select the most important uncorrelated

sources in the multivariate system to significantly reduce the nominal dimensions.

Sabino suggests that the effective dimensions can be extracted by the analysis of

variance (ANOVA) method [7]. The basic technique underlying ANOVA is Princi-

pal Component Analysis (PCA), whose goal is to search for the first few principal

components that can account for most of the overall variance of multivariate data

x = [x1, . . . , xn]T [3]. In the constant volatilities case, it can be shown that ΣMN can

be written as a Kronecker product of two smaller matrices. That is,

ΣMN = R⊗ Σ =


t1Σ t1Σ . . . t1Σ

t1Σ t2Σ . . . t2Σ

. . . . . .
. . . . . .

t1Σ t2Σ . . . tNΣ

 ,

where R is theN×N matrix. We can we can improve the computational speed of PCA

by taking advantage of some properties of Kronecker products. While for the time-

dependent volatilities case, since ΣMN cannot be written as the Kronecker product
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of R and Σ, we introduce a new technique called Kronecker product approximation

(KPA) to improve the efficiency of PCA.

3.1 Principal Component Analysis

Principal component analysis (PCA) is a data transformation tool that can transform

a group of possibly correlated variables into a set of linearly uncorrelated variables.

In general, after transformation, the number of linearly uncorrelated variables is less

than or equal to the number of original variables. These linearly uncorrelated variables

are called principal components. PCA is commonly used in financial markets, since

many financial systems have high collinearity between returns [3].

3.1.1 Mathematical Background of PCA

PCA is a statistical procedure that focus on the analysis of the eigenvalues and eigen-

vectors of a covariance matrix. According to the definition of PCA, the first principal

component express as much of the variability in the data as it can, that is, it has

the largest possible variance, the second principal component has the second largest

possible variance given that it is uncorrelated to the preceding principal component,

and so forth and so on. The following formulas are from the work of Xing and Lai

[3].

Let x = [x1, . . . , xn]T be a normal random vector with known mean µ and co-

variance matrix V. V is a n × n symmetric nonnegative covariance matrix with n

eigenvalues λi, sorted in decreasing order λ1 > λ2 > . . . λn, and corresponding eigen-

vector ei. Note also that if ei is an eigenvector, then cei is also an eigenvector, for

any scalar c 6= 0. PCA defines the ith principal component of x as eTi x. To maximize
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the variance of eTx over all unit eigenvectors e, we can use calculus to show:

∂

∂ej
(V ar(eTx)) =

∂

∂ej
(eTVe) = 0. (3.1)

Since eTe = ||e||2 = 1, we can introduce a Lagrange multiplier λ:

∂

∂ej
(eTVe + λ(1− eTe)) = 0 (3.2)

⇒ Ve = λe.

This implies that λ is an eigenvalue of V, and e is the corresponding eigenvector. So,

we have max(eTVe) = max(eTλe) = max(eTeλ) = max(λ) = λ1. The first principal

component of x is eT1 x, and with variance λ1.

For second principal component, we consider to maximize Var(eTx) under the

constraint that e is orthogonal to e1, i.e. eT1 e = 0, and ||e|| = 1. We introduce

Lagrange multipliers λ and η:

∂

∂ej
(eTVe + λ(1− eTe) + ηeT1 e) = 0 (3.3)

⇒ Ve = λe, eT1 e = 0.

This implies that λ is an eigenvalue of V other than λ1, because the corresponding

eigenvector e is orthogonal to e1. So, max(eTVe) = max(λ) = λ2. The second

principal component of x is eT2 x, with variance λ2.

Proceeding inductively in this way, we get

λk+1 = max
||e||=1,eTj e=0, for 1≤j≤k

V ar(eTVe). (3.4)



20

The maximizer e in equation (3.4) is the eigenvector ek+1 corresponding to λk+1, and

Var(eTk+1x) = λk+1.

The aim of PCA is to find the first few principal components whose overall variance

that can account for most of the overall variance, that is:

k∑
i=1

V ar(eTi x)

n∑
i=1

V ar(xi)

= p, for p ≈ 1. (3.5)

Since V = cov(x), the diagonal entries of V are the variances of xi. Hence,
n∑
i=1

V ar(xi) =

trace(V) = λ1 + · · ·+ λn. We know
k∑
i=1

V ar(eTi x) =
k∑
i=1

λi from the inductive proce-

dure above, then we can rewrite the ratio in equation (3.5) as:

k∑
i=1

λi

n∑
i=1

λi

= p. (3.6)

Here k is the effective dimension we can identify by fixing p with a value very close

to 1, for example, we can choose p = 99%.

3.1.2 New Covariance Matrix after PCA

After applying PCA to reduce the nominal dimensions, we obtain a new multivariate

random vector z which is made up by the first k principal components of x:

z = (eT1 x, eT2 x, . . . , eTk x)T = Ex (3.7)
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where E = (e1, e2, . . . , ek)
T . Since PCA is a linear transformation, a linear trans-

formation of a multivariate normal random vector x also has a multivariate normal

distribution, but with a new mean and covariance matrix. According to work of Xing

and Lai, the new random vector z has a multivariate normal distribution with mean

E(z) = Eµ (3.8)

and k × k covariance matrix

V ar(z) = EVET (3.9)

3.1.3 Improvement of PCA

PCA is a fundamental method in determining the effective dimension of high-dimensional

integrals. Reducing dimensionality cannot only shorten the computation time, but

also help QMC be feasible in high-dimensional financial cases.

Since PCA is based on the eigenvalues of a covariance matrix, if the dimension is

high, it would take much time to compute the eigenvalues of the covariance matrix

directly. For this drawback, we can remedy it by exploiting properties of Kronecker

products. The idea is that we rewrite the covariance as the Kronecker product of two

smaller matrices and analyze the eigenvalues of the two smaller matrices instead.

In the following we illustrate this improvement of PCA with the Asian options

example that we have mentioned in chapter 2. In the constant volatilities case,

because the covariance matrix ΣMN is characterized by a special structure, that is,

ΣMN = R ⊗ Σ, we can reduce calculation by computing the eigenvalues of the two

smaller matrices R and Σ. An important property of Kronecker products is that, if e

and v are vectors containing the eigenvalues of A and B, respectively, then e⊗v is a

vector containing the eigenvalues of A⊗B [7]. Therefore, we can get the eigenvalues
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of ΣMN by computing the eigenvalues of R and Σ:

eig(ΣMN) = eig(R)⊗ eig(Σ), (3.10)

where eig(·) denotes a column vector of all eigenvalues of the matrix. By applying

this analysis, we convert the analysis of an MN×MN matrix into the analysis of two

smaller M×M and N×N matrices, and then significantly reduce the computational

effort from O((MN)3) to O(M3 +N3) [7].

In the time-dependent volatilities case, the covariance matrix ΣMN has time-

dependent elements, so it no long can be formed as a Kronecker product of two

smaller matrices. Hence, we introduce another new approach called Kronecker prod-

uct approximation (KPA) in the next section to improve the efficiency of PCA for

the time-dependent case.

3.2 Kronecker Product Approximation

In the time-dependent volatilities market, the covariance matrix of the asset returns

is not constant anymore; it changes with the time-dependent volatilities functions

and instantaneous correlation [7]. Therefore, the covariance matrix ΣMN cannot

bewritten exactly as a Kronecker product, which means that we cannot use the same

way as we applied in constant volatilities case to reduce the computational cost,

even though PCA is still feasible in determining the effective dimension. Hence, in

order to improve the efficiency of PCA in the time-dependent volatilities case, we

propose a new technique which is based on approximation with a Kronecker product.

According to the works of Van Loan and Pitsianis, the basic purpose of Kronecker

product approximation is to find two matrices B ∈ <m1×n1 and C ∈ <m2×n2that can
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minimize the Frobenius norm [9, 8]:

ΦA(B,C) = ||A−B ⊗ C||2F , (3.11)

where A ∈ <m×n is a known matrix with m = m1m2 and n = n1n2. As for the

time-dependent volatilities case, A is the covariance matrix ΣMN .

KPA’s applicability is based on the hypothesis that the principal components of

the problem do not change a lot after the transformation, which implies that the

effective dimensions of B ⊗ C is approximately the same as those of ΣMN . Thus, we

can covert the problem of reducing the nominal dimensions of ΣMN into an easier one

– selecting the effective dimensions of B⊗C, which is similar to the situation we deal

with in constant volatilities case so that we can decrease the computational burden

significantly by using the same method.

In the following subsections, we analyze two cases to solve this nearest Kronecker

product problem. The first case is under the assumption that one of matrix B and

C is fixed. In the second case, we assume that neither B nor C are fixed.

3.2.1 One of Two Matrices is Fixed

In the constant volatilities case, the former matrix R in the Kronecker product R⊗Σ

is the auto-covariance matrix of a single Brownian motion and the latter matrix Σ

is the covariance matrix of asset returns. Hence, as for the time-dependent case, we

consider to find two matrices that are approximations of R and Σ, respectively.

We assumed in chapter 1 that the risky assets’ price behavior is characterized by

the multi-dimensional Brownian motion, and we generate Brownian motion through

the covariance matrix of each Brownian motion R. Based on the definition of standard

Brownian motion, the elements in the auto-covariance matrix R are defined by Rl,m =
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cov(Wi(tl),Wi(tm)) = min(var(Wi(tl)), var(Wi(tm))) = min(tl, tm), l,m = 1, . . . , N ,

therefore, R has the following boomerang shape [7]:

R =


t1 t1 · · · t1
t1 t2 · · · t2
...

...
. . .

...

t1 t2 · · · tN

 . (3.12)

This matrix is constant and independent of the market features, no matter it is

in the constant or time-dependent volatilities case.

Based on the above analysis, we can assume matrix B in equation (3.11) to be the

auto-covariance matrix of a single brownian motion R. After we fix B, the problem

to minimize equation (3.11) becomes a linear least square problem that aims to find

the unknown matrix C:

ΦΣMN
(R,C) = min ||ΣMN −R⊗ C||F . (3.13)

The paper of Van Loan and Pitsianis presents the theorem that specifies the solution

of this least square problems [9]. That is, if R ∈ <m1×n1 is fixed, then C ∈ <m2×n2

that minimizes ||ΣMN −R⊗ C||F is defined as:

cij =
tr(Σ̂T

MNR)

tr(RTR)
, i ∈ [1,m2], j ∈ [1, n2], (3.14)

where tr(·) represents the trace of the matrix, which equals to the sum of the diagonal

entries of the matrix. And Σ̂MN = ΣMN(i : m2 : m, j : n2 : n), which is a boomerang

shape block matrix. The notation i : m2 : m is used, as is done in MATLAB, to specify

indices i, i + m2, i + 2m2, . . . ,m. Because of the special structure of a boomerang

matrix, we can evaluate C in an efficient way by computing the denominator and
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numerator in equation (3.14) in following ways [7]:

tr(RTR) = tr(R2) =
N∑
j=1

(2(N − j) + 1)t2j (3.15)

and

tr(Σ̂T
MNR) = tr(Σ̂MNR)) =

N∑
j=1

(2(N − j) + 1)σjjbjj, (3.16)

where σjj and bjj are the diagonal entries of matrix ΣMN and B.

In summary, the above analysis is based on the premise that B is known and fixed,

and we derive the result through the idea of least squares optimization.

3.2.2 Neither Matrices are Fixed

Our original aim is to search for the matrices B and C that minimize the Frobenius

norm ||ΣMN − B ⊗ C||F . In the previous case, we have one matrix fixed, so the

solution might not be optimal. In this section, we assume that neither matrix B nor

C in equation (3.11) is fixed. In particular, as for the example of Asian options, we

consider the problem of finding matrices B and C whose Kronecker product constructs

an optimal approximation to ΣMN :

ΦΣMN
(B,C) = min ||ΣMN −B ⊗ C||F . (3.17)

Recall from the previous chapter, ΣMN is a block matrix with N ×N blocks, and the

size of each block is M ×M . Van Loan showed that the general method to solve this

KPA can be obtained from the singular value decomposition of a permuted version

of ΣMN [9]. Specifically, the above equation can be rewritten as :

Φ(B,C) = min ||Σ̃MN − vec(B)⊗ vec(C)||F , (3.18)
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where Σ̃MN is a N2 ×M2 that is obtained by rearranging the entries of the matrix

ΣMN :

Σ̃MN =



vec((ΣMN)11)T

...

vec((ΣMN)n1)T

...

vec((ΣMN)1n)T

...

vec((ΣMN)nn)T


, (3.19)

where vec(·) means reshaping a matrix X ∈ <m×n into a column vector vec(X) ∈ <mn

by stacking the columns of X as follows [1]:

X =
(

x1 x2 · · · xn

)
⇒ vec(X) =


x1

x2

...

xn

 . (3.20)

According to Van Loan’s approach, we solve equation (3.17) by analyzing the singular

value decomposition of Σ̃MN [8]. Suppose we know the SVD of Σ̃MN , that is, Σ̃MN =

UΣV T . Firstly, we check the signs of the first column of U and V to make sure they

are nonnegative. If they are negative, then replace U with −U and replace V with

−V . Then, the optimum solution B and C are defined by the first column of U and

V , respectively. Using MATLAB colon notation this can be written as:

vec(B) =
√
σ1U(:, 1) and vec(C) =

√
σ1V (:, 1), (3.21)

where σ1 is the largest singular value of Σ̃MN . Next, we reshape the vec(B) into a

N -by-N matrix B, and reshape vec(C) into a M -by-M matrix C.

In this situation, the solutions B and C construct the optimal approximation to
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ΣMN , which implies that the corresponding Φ(B,C) should be less than or equal to

the Φ(R,C) obtained from equation (3.13).

In summary, PCA is the general approach to reduce the nominal dimensions,

and it is based on the analysis of eigenvalues of the covariance matrix (see equation

(3.6)). In order to improve the efficiency of PCA, we can rewrite the covariance

matrix exactly or approximately into a Kronecker produce of two smaller matrices,

which is shown in equation (3.13) and (3.17). And then we reduce the computational

efforts by applying the properties of Kronecker products (equation (3.10)).
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Chapter 4

Numerical Experiments

In this chapter, we perform all numerical experiments mentioned in the previ-

ous parts. Our experiments involve standard Monte Carlo and Randomized Quasi

Monte Carlo with Sobol sequence, which are utilized in both the constant and time-

dependent volatilities cases. All computations were done using MATLAB.

Suppose we are interested in estimating the price of Asian option on a basket of

M = 10 risky assets with strike price K = 100. The option will expire in T = 1

year and has N = 100 equally spaced sample points during its life time. So, the

nominal dimension is d = 1000, which is so high that RQMC would be inapplicable.

The parameters chosen for the simulation in the constant volatilities case are listed

in Table 4.1.

Si(0) = 100
K = 100
r = 4%
T = 1

σi = 10% +
i− 1

9
40% for i = 1, . . . , 10

ρij = 0 for i, j = 1, . . . , 10

Table 4.1: Input parameters used in the constant volatilities case

The parameters chosen for the simulation in the time-dependent volatilities case

are listed in Table 4.2.
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Si(0) = 100
K = 100
r = 4%
T = 1
τi = 1.5 year for i = 1, . . . , 10

σi(0) = 10% +
i− 1

9
40% for i = 1, . . . , 10

σi(+∞) = 9% for i = 1, . . . , 10
ρij = 0 for i, j = 1, . . . , 10

Table 4.2: Input parameters used in the time-dependent volatilities case

We assume the time-dependent volatilities have an exponential decaying expres-

sion:

σi(t) = σ̂i(0) exp(− t

τi
) + σi(+∞), (4.1)

where σi(0) is the initial volatility for the i-th asset, σi(+∞) represents its asymptotic

volatility and τi its decay constant, and σ̂i(0) = σi(0) − σi(+∞). Based on this

function, we can derive the solution for each element in covariance matrix ΣMN :

((ΣMN)ik)lm =

∫ min(tl,tm)

0

ρikσi(t)σk(t)dt

= σ̂i(0)σ̂k(0)τik

(
1− exp

(
t

τik

))
+ σ̂i(0)σk(+∞)τi

(
1− exp

(
t

τi

))
+

σ̂k(0)σi(+∞)τk

(
1− exp

(
t

τk

))
+ σi(+∞)σk(+∞)t,

where τik = τiτk/(τi) + τk.

This chapter presents two numerical tests, including a computation time compar-

ison among PCA, KP and KPA, and estimations of Asian options price by RQMC

and standard MC. For each experiment, we state its goal first, and describe the steps

of simulation procedure, then provide illustrations of the results, and finally analyze

the results.



30

4.1 Computational Time Comparison

This numerical test is aimed to compare the computational time among different

dimension reduction techniques, including PCA, KP and KPA. We conduct the tests

in the constant and time-dependent volatilities cases, respectively.

In the constant volatilities case, we compare the computational time used by PCA

and KP, while in the time-dependent volatilities situation, we make the computational

time comparison between PCA and KPA. We consider two cases for KPA, the first

case is under the assumption that one of two smaller matrices is fixed. In the second

case, we assume that neither of them are known.

We implement the same steps for two tests. We set the ratio p in expression (3.5)

from 0.9 to 0.99 with a 0.01 increment. And for each ratio p, we compute the average

computational time for 10 separate runs. The illustration of the computational time

comparison between PCA and KP in the constant volatilities case is shown in Figure

4.1. Figure 4.2 illustrates the computational time comparison among PCA and two

cases of KPA in the time-dependent volatilities case.

In Figure 4.1, PCA needs a time almost 10 times higher than KP for all selected

p. And in Figure 4.2, both methods of KPA use less time than PCA to select the

effective dimensions. This is because both KP and KPA convert the computation of

eigenvalues of an MN×MN matrix into the analysis of two smaller M×M and N×N

matrices, and then significantly reduce the computational effort from O((MN)3) to

O(M3 +N3).
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Figure 4.1: Computational time comparison between PCA and KP in the constant
volatilities case.

Figure 4.2: Computational time comparison between PCA and KPA in the time-
dependent volatilities case.
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4.2 Estimation of Option Price

In this test, we estimate the price of an Asian option by MC and RQMC at time

t0 = 0, which is the initial price of the Asian option. In addition, we also present a

comparison between the precision of standard MC and RQMC.

The test consists of the following steps.

• First, we generate point sets for MC simulations. We use MATLAB’s rand

and sobolset function to generate the point set for standard MC and RQMC,

respectively. In order to extend the applicability of RQMC, we randomize the

points based on the idea in equation (2.9).

• Next, we define the MN ×MN covariance matrix ΣMN in equation (1.6) and

(1.8) according to our chosen parameters. For high dimensional problems, we

need to apply the dimension reduction techniques (such as PCA, KP and KPA)

to select the effective dimensions for RQMC first, and then regenerate the new

covariance matrix based on expression (3.9).

• Then, we apply MATLAB’s norminv function to compute the inverse of the

cumulative distribution of the normal random vector Z, F−1
Z (u), with corre-

sponding mean zero and covariance matrix ΣMN .

• Finally, we plug F−1
Z (u) into the function (1.12) and use the Monte Carlo

method to estimate the Asian option’s price and the RMSEs.

In this test, we set the number of simulations n = 1000 and 10 replications. The

final result is obtained from the average of these 10 replications. Table 4.3 and 4.4

present the estimated prices and RMSEs coming from standard MC and RQMC in

the constant volatilities and the time-dependent volatilities case, respectively.
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Constant Volatilities Case Standard MC RQMC
Estimated Price 2.0877 2.0704

RMSE 0.0264 0.0104

Table 4.3: Option prices and RMSEs for the constant volatilities case

Time-dependent Volatilities Case Standard MC RQMC
Estimated Price 2.1193 2.1109

RMSE 0.0234 0.0133

Table 4.4: Option prices and RMSEs for the time-dependent volatilities case

All of the computed prices in the above tables are statistically consistent, but

present a different accuracy. In both cases, the RQMC simulation provides smaller

RMSEs and shows a better accuracy than the standard MC simulation. This is due

to the fact that RQMC works with well-chosen points, which helps RQMC overcome

the probabilisitic problems that MC could face and result in a lower convergence

rate. Hence, RQMC requires fewer simulations to obtain a similar integration level

as MC does, and therefore, when they use the same number of simulations, RQMC

will provide a more accurate integration level.
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Chapter 5

Conclusions

In this thesis, we have employed two integration methods to estimate an Asian

option’s price – standard MC and RQMC. Both methods estimate the integration

I =
∫

[0,1]d
f(x)dx by drawing n independent samples xi from [0, 1]d and then com-

puting the arithmetic average of f(xi), the only difference is they generate the set of

points in different ways. MC generates points from a pseudorandom sequence with

a convergence rate O

(
1√
n

)
,while RQMC uses a low-discrepancy sequence with

a lower convergence rate O

(
(lnn)d

n

)
. However, RQMC’s convergence rate is de-

pendent of the nominal dimension d, which would limit the performance of RQMC

in estimating high-dimensional integrals. Therefore, in order to extend RQMC’s su-

periority in high-dimensional problems, we have applied several dimension reduction

techniques, including PCA, KP (for the constant volatilities case) and KPA (for the

time-dependent volatilities case), to select the effective dimensions and then reduce

the nominal dimensions. We have conducted several numerical experiments to il-

lustrate and compare the efficiency and accuracy among the dimension reduction

techniques and the two integration methods.

We first made a comparison of the computational time among different dimension

reduction techniques. The results are shown in Figure 4.1 and Figure 4.2. KPA and

KP require less time than the straightforward PCA since both of them utilize the

properties of the Kronecker product, which significantly reduce their computational
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burden. Hence, from the view of computational cost, KPA with fixed R and KP are

the most efficient dimension reduction techniques for the time-dependent volatilities

case and constant volatilities case, respectively.

In addition, we conducted a numerical test in pricing high-dimensional Asian

options with multi-assets in a Black-Scholes model by standard MC and RQMC. The

results are shown in Table 4.3 and Table 4.4. RQMC provides smaller RMSEs in both

constant and time-dependent volatilities cases, which confirms the fact that RQMC

can make more precise approximation than the standard MC in estimating numerical

integrals.

Future work on the topics discussed in this thesis could include investigation of

alternative sampling methods, such as Latin supercube sampling (LSS), to randomize

the points for RQMC. Previous work [6] has shown that it can improve the accuracy

of the numerical integration for high dimensions.
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