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Abstract

Three Essays in Empirical Macroeconomics

By Mzwandile Ginindza

This dissertation offers empirical analyses of three topics in macroeconomics. Firstly,

it examines the short-run impact of common and idiosyncratic technology shocks on

total hours worked in US Manufacturing. This is achieved via the use of industry

factor-augmented structural vector autogressions (FASVAR). The findings suggest that

hours worked increase in response to a common technology shock, yet they decline in

response to idiosyncratic technology shocks. Secondly, the dissertation studies the

dynamic impact of investment-specific technical changes on the skill composition of

labor in US Manufacturing. Various structural VAR specifications, including one with

long-run sign restrictions, are used to identify an investment-specific technology shock.

The study finds that this shock tends to cause an initial increase in the demand for

unskilled labor, which eventually declines after about 2 years. Essentially, after a short-

term de-skilling effect, investment-specific technical changes become skill-biased in the

long run. Lastly, the dissertation evaluates the effect of Inflation Targeting monetary

policy on the inflation levels and inflation volatility in developed economies. This is

achieved via the use of an Average Treatment Effects (ATE) approach, with a newly

proposed matching tool, to control for selection bias among countries that adopted this

policy. Since the ATE methodology normally studies effects at the mean, this study

deploys non-parametric methods to extend the analysis to the entire distributions of

inflation levels and volatility. The results suggest that Inflation Targeting helped its

adopters in lowering inflation levels but not its volatility. The effect is shown to extend

beyond the mean of inflation.



Three Essays in Empirical Macroeconomics

By

Mzwandile Ginindza

“BA, Berea College, 2007”

“MA Economics, Emory University, 2010”

Advisor: Elena Pesavento, Ph.D.

A dissertation submitted to the Faculty of the

James T. Laney School of Graduate Studies of Emory University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in Economics

2013.



Contents

1 Chapter 1

The Impact of Technology Shocks on Hours Worked at the Industry Level:

An FASVAR Approach 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 A Closer Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 General Econometric Framework . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Empirical Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4.2 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4.3 Step One: Factor Identification . . . . . . . . . . . . . . . . . . . . . 14

1.4.4 Step Two: SVAR Identification . . . . . . . . . . . . . . . . . . . . . 15

1.5 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.5.1 Level Specification of Hours . . . . . . . . . . . . . . . . . . . . . . . 19

1.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.6.1 The Role of Inventories: A Robustness Check . . . . . . . . . . . . . 23

1.6.2 Output vs Input Inventories . . . . . . . . . . . . . . . . . . . . . . . 26

1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2 Chapter 2

The Dynamic Effect of Investment Specific Technical Change on Labor

Composition in US Manufacturing 38

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3 A Single-Technology Empirical Specification . . . . . . . . . . . . . . . . . . 43

2.3.1 Investment Specific Technology Shocks and Total Hours . . . . . . . 43

2.3.2 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3.3 Labor Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.3.4 Estimation 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



2.4 Multiple-technology Empirical Specification . . . . . . . . . . . . . . . . . . 50

2.4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.5 Testing for Capital-Skill Complementarity: Supply Side Test . . . . . . . . 53

2.5.1 Specification with Unskilled Labor . . . . . . . . . . . . . . . . . . . 53

2.5.2 Demand Side Test: Specification with the Skill Premium . . . . . . . 54

2.5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.6 Robustness Check: a skill-biased shock from the skill premium . . . . . . . 57

2.6.1 Sign Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3 Chapter 3

Evaluating Inflation Targeting Based on the Distribution of Inflation and

its Volatility (with Dr. E. Maasoumi) 72

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.2 Methodology and Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.2.1 Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.2.2 Data and Empirical Analysis . . . . . . . . . . . . . . . . . . . . . . 81

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.3.1 Inflation Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.3.2 Distribution of Estimated Average Treatment Effect on the Treated

Under Various Parameter Specification . . . . . . . . . . . . . . . . . 89

3.3.3 A New Way of Evaluating Matching . . . . . . . . . . . . . . . . . . 92

3.4 Multiple Period Differences-in-Differences . . . . . . . . . . . . . . . . . . . 95

3.5 Effect of Inflation Targeting on Inflation Volatility . . . . . . . . . . . . . . 97

3.6 Entire Distribution Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.7 Optimum Values of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.8 Entropy Distances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

3.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4 Bibliography 113



List of Figures

1 Graphs of Common Factors Extracted at Each Disaggregation Level . . . . 30

2 Two-digit level: IRFs of First-differenced Hours to a One Time Shock to Ft 31

3 Two-digit level: IRFs of First-Differenced Hours to a One Time Shock to the

Idiosyncratic Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Two-digit level: IRFs of hours (levels) to a One Time Technology Shock to Ft 33

5 Two-digit level: IRFs of hours (levels) to One Time Technology Shocks to

Idiosyncratic Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6 Responses in a Single-Technology Model: an IST shock and Total Hours . 64

7 Responses in a Single-Technology Model: Neutral Technology Shock and

Total Hours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

8 Labor Averages Across Sectors: . . . . . . . . . . . . . . . . . . . . . . . . 66

9 Responses in a Single-Technology Model: an IST Shock and the Skill-ratio 67

10 Responses in a Multiple-Technology Model . . . . . . . . . . . . . . . . . . 68

11 Specification with Unskilled Labor: . . . . . . . . . . . . . . . . . . . . . . 69

12 Specification with the Skill Premium: . . . . . . . . . . . . . . . . . . . . . 70

13 Specification with sign restrictions: . . . . . . . . . . . . . . . . . . . . . . 71

14 Graphical Displays of the Estimated Average Treatment Effect on the Treated

Across Negative Beta Values . . . . . . . . . . . . . . . . . . . . . . . . . . 90

15 Graphical Displays of the Estimated Average Treatment Effect on the Treated

Across Positive Beta Values . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

16 Distributions of Hyperbolicmeans and Propensity Scores for Matched Pairs. 95

17 PDFs and CDFs of Inflation for Targeters (solid) and Non-Targeters (dashed)

for the Period 1980-2007 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

18 PDFs and CDFs of Inflation Variability for Targeters (solid) and Non-Targeters

(dashed) for the period 1980-2007 . . . . . . . . . . . . . . . . . . . . . . . . 105



List of Tables

1 Contemporaneous Responses of Production Hours to a Labor Productivity

Shock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Impulse Responses of Hours to a Common Factor Shock (as a % of total

sectors in each disaggregation level) . . . . . . . . . . . . . . . . . . . . . . 18

3 Impulse Responses of Hours to an Ft Shock in Percentages (Level Specification) 22

4 Hours’ Responses to a Common Factor Shock in Percentages (Tri-variate

SVAR Results) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 List of 2-digit Sectors Classified Under SIC . . . . . . . . . . . . . . . . . . 35

6 List of 3-digit Sectors Classified Under SIC . . . . . . . . . . . . . . . . . . 36

7 Summary Statistics: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8 Estimated Average Treatment Effect on the Treated Across Different α and

(β > 0) Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

9 Estimated Average Treatment Effect on the Treated Across Different α and

(β < 0) Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

10 Entropies Between Distributions of Hyperbolic Means (and Propensity Scores)

for the Matched Targeter/Non-Targeter Pairs . . . . . . . . . . . . . . . . . 94

11 Multiple Differences-in-Differences Estimates . . . . . . . . . . . . . . . . . 97

12 Treatment Effect Coefficients on Inflation Variability Across Different α and

(β > 0) Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

13 Average Effect of Targeting on Inflation with “Best” Parameters . . . . . . 108

14 Entropy Distance(Sρ) Between Inflation Distributions for Targeters and Non-

Targeters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

15 Entropy Measures (Sρ) Between Inflation Distributions Across Time for Tar-

geters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

16 Entropy Measures (Sρ) Between Inflation Distributions Across Time for Non-

Targeters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110



1

1 Chapter 1

The Impact of Technology Shocks on Hours Worked at the

Industry Level: An FASVAR Approach

Abstract

This paper offers an empirical analysis of the effect of technology shocks on hours

worked at disaggregated levels. Rather than modeling productivity directly, I propose

the decomposition of labor productivity growth into unobserved common, and industry-

specific components from which technology shocks are extracted. This is achieved by

means of a Factor Augmented Structural Vector Autoregression (FASVAR) approach

originating in Bernanke, Boivin and Eliacsz (2002). The findings herein suggest that

the response of hours worked is sensitive to which component of productivity growth

experiences the shock. Furthermore, altering the specification of hours worked (between

levels and first-differences), which is a contentious issue at aggregate level studies, does

not affect the qualitative conclusions in this paper. A robustness check also reveals that

the expected effect of controlling for inventory holdings gets subdued in the FASVAR

environment.
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1.1 Introduction

The past decade has seen a substantial increase in the amount of interest in the relationship

between hours worked and changes in productivity. Standard Real Business Cycle (RBC)

models had earlier conjectured a positive comovement between technology improvement,

output and employment. The basis of this conjecture lies both in the upward sloping labor

supply curve, and a rightward shift in the labor demand curve incited by a positive tech-

nology shock. The intuition is that it is beneficial for a firm to hire more workers when

the marginal product of labor outweighs the cost, which is in the form of real wages. This

concept was shown at least as early as in Burns and Mitchell (1946), and, later, in the sem-

inal works of Kydland and Prescott (1982), and Long and Plosser (1983) to name a few.

However, the empirical findings of Gali (1999) marked a pivotal point in the subject matter

as he challenged the long-held RBC conjecture. Using a Structural Vector Autoregression

(SVAR) with long-run restrictions on post-war US data, Gali found that hours worked, in

the short-run, actually decline after a positive technology shock. He also uncovered that

the contribution of technology shocks to the business cycle has become very minimal, a

claim that seemingly put the valid existence of RBC models at risk. Gali’s findings were

later reproduced in Shea (1998), Francis and Ramey (2002), Francis and Ramey (2009),

and Gali and Rabanal (2004) amongst others. Nevertheless, there is a sub-category of

research that has recently reproduced the initial findings of RBC models. The most out-

standing in this category is Christiano et al. (2003), and Christiano et al. (2004), who point

out that the short-run impact of a technology shock on hours depends on how they are

specified in a VAR model, which, in itself, relies on stationarity or unit root assumptions

for hours. Unlike Gali and the other authors who found similar results, Christiano et al.

(2003) advocate the use of level per-capita hours through which they produce an increase

in hours after a positive technology shock. In an indirect attempt to find common ground,

Pesavento and Rossi (2005) apply an agnostic methodology in which the researcher does

not have to impose stationarity assumptions on hours worked. Using this approach, they

find that hours decline after a positive technology shock but the decline is very short lived,

especially in comparison to previous findings. Further in the direction of bridging the gap,
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Gospodinov et al. (2011) expand on the existence of a crucial low-frequency comovement

between labor productivity and hours, which is handled differently in levels and in first-

differences, thus explaining the inconsistencies in the implications of the two models. While

the levels specification incorporates this comovement when computing impulse responses,

the differenced specification suppresses it to zero. Gospodinov et al. (2011) uncover that

removing the low frequency component and using long-run restrictions yield similar results

for both the levels and differenced specifications of hours.

A large volume of work studying this topic, including the above listed, focuses on the na-

tional aggregate economy, yet substantial evidence has been presented on the heterogeneity

of growth patterns at the sector level. For instance, Harberger (1998) presents an empirical

demonstration of the diverse productivity patterns observed at the firm level in US data. He

argues that a proper understanding of changes in aggregate productivity calls for capturing

the patterns at the grassroot (firm) level. In a different, yet relevant, context, Foerster et al.

(2008) uncover that variations in national Industrial Production can be explained by both

aggregate and sector-specific variables. They profess that shocks to the latter fail to cancel

out on aggregate, and that complementary sector-linkages may propagate sector-specific

shocks throughout the economy thus generating aggregate variability. Specific to the re-

lationship between technology shocks and employment, limited effort has been directed

towards disaggregated analyses. Notable exceptions include Basu et al. (1998) and Basu

et al. (2006), who use Solow residuals from 29 industries to formulate what they profess to

be a purified aggregate technology series. Upon controlling for increasing returns to scale

and input utilization, they find that technology improvements cause employment to decline

in the short-run. Such findings are in total agreement with those made by Gali. Chang

and Hong (2006) use a bivariate Structural VAR, adopting Gali’s long-run restrictions, to

investigate whether improvement in an industry’s Total Factor Productivity (TFP) raises

or lowers employment. Using data from 458 US manufacturing industries, they find vastly

varying patterns of responses of hours across industries, but observe that more industries
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exhibit a positive short-run co-movement between hours worked and TFP shocks. Specifi-

cally, 133 industries show statistically significant increases in hours worked after a positive

TFP shock, whereas only 25 industries show significant decreases in hours worked. Holly

and Petrella (2012) build up on the work of Chang and Hong (2006) by controlling for

inter-sectoral linkages1 using a VAR with exogenous variables (VARX) that are weighted

according to input-output tables. Restrictions for their VAR are obtained from a simplified

multi-sector growth model. Their findings show that after controlling for sector linkages, a

positive shock to labor productivity is expansionary with respect to hours worked.

In this paper, I closely review some recent publications on the impact of technology shocks

on disaggregated hours, and proceed to make a methodological contribution to the analy-

sis. The motivation behind this paper lies in the unresolved controversy surrounding the

topic, and also on the observed shortage of relevant disaggregated studies, despite a growing

movement to reconcile macroeconomic phenomena with micro-foundations. My argument

is twofold; firstly, I conjecture that, at an industry level, labor productivity is driven by

both idiosyncratic factors and factors common across all industries; secondly, I argue that

an important determinant of the response of hours is the cross sectional scope of the tech-

nology shock i.e. whether the one time shock is experienced on a common factor or on

an industry-specific factor of productivity. By means of a Factor Augmented Structural

VAR (FASVAR) methodology, I estimate unobserved common and idiosyncratic factors

that drive productivity growth across industries and use them in the empirical model, in-

stead of productivity itself. Compared to a standard VAR, this approach incorporates more

pertinent information into the model, hence allows the use of a large data set. Indeed I

find that hours worked respond differently after a permanent shock to the common factor

than they do after a similar shock to the idiosyncratic component.

1The existence and importance of inter-sectoral linkages has been shown in works such as Kim and Kim
(2006), Horvath (1995), and Foerster et al. (2008) .
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The remainder of the paper is as follows: in the next section I closely review selected

work in the literature in order to set as a benchmark for findings herein. I introduce the

general econometric framework in the third section, whereas data and specific details of the

methodology are provided in section 4. The fifth section presents results from the FASVAR,

and a discussion of my findings follows in section six, supplemented by a robustness check

to investigate the role of inventory holdings in the response of hours worked. Section 7

provides a conclusion.

1.2 A Closer Literature Review

Among the works cited above, Chang and Hong (2006) conduct one of the most extensive

disaggregated analyses of the topic at hand. As stated earlier, they utilize data on 458

4-digit level manufacturing industries categorized under the Standard Industrial Classifica-

tion (SIC). This data covers the time period 1958− 1996. They further aggregate the data

to both the 3-digit and 2-digit levels. Methodologically, they perform a bivariate SVAR,

using long-run restrictions, to study the short-run response of hours worked to a positive

TFP shock. They find that the number of positive short-run responses exceeds that of

negative responses at all three industry-classification levels. For comparison, they also use

labor productivity instead of TFP, and obtain more negative responses. However, they pro-

fess TFP to be the most natural measure to use since labor productivity reflects input mix

and efficiency, and therefore conclude that technology shocks are pro-cyclical with respect

to hours worked.

As a benchmark for my results, I adopt Chang and Hong’s bivariate SVAR consisting of

labor productivity and hours for all industries. While acknowledging their argument for the

use of TFP, I gather that using labor productivity provides for better policy implications2. I

utilize the same US manufacturing database but my variables for output and hours slightly

differ, with justification, from Chang and Hong’s. Firstly, while they use total worker

2Appendix A in Holly and Petrella (2012) presents a complete account on the use of labor productivity
versus TFP.
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hours I use production-worker hours. Dars and Gujarati (1972) asserts that production-

worker wages in the short-run are considered variable costs whereas non-production worker

wages are overhead or fixed costs. This implies that short-run employment of production-

workers is directly related to output whereas that of non-production workers is only loosely

so. Consequently, using production-worker hours is more fitting as it ensures a relatively

greater short-run responsiveness of employment to productivity changes. Secondly, instead

of gross output I use value-added output to compute labor productivity. This is because

the database uses sales (value of shipments) as a proxy for output, and gross sales do not

account for material purchases. As a result, an industry’s large sales value could merely be

reflective of high costs of intermediate inputs instead of actual internal production. The

use of value-added output accounts for material (input) purchases and thus gives a more

favorable account of labor productivity for the purpose of this paper.

In Table 13 I present the contemporaneous responses of hours to a one time permanent shock

to labor productivity. The bold numbers indicate statistically significant responses whereas

those in parentheses indicate total responses. Negative (Positive) denotes a contempora-

neous reduction (increase) in hours, and No Impact refers to those impulse responses that

were zero when rounded off to the fourth decimal point, and are taken to indicate no con-

temporaneous response in hours. I successfully replicate the qualitative findings of Chang

and Hong i.e. that responses vary across industries but the overall majority of them are

negative. Two general points of deviation stand out; one is that in my replication there are

relatively more positive responses than in the original work, and the numerical differences

between positive and negative statistically significant responses at each level are smaller

than in the original work. In particular, I find that:

1) At all disaggregation levels more positive responses are teased out than in Chang and

Hong. This holds for both statistically significant responses and total responses.

2) At the 4-digit level (the most disaggregated level) there are almost as many statistically
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significant positive responses as there are negative ones.

3) At the 2-digit level (the least disaggregated level), statistically significant positive re-

sponses actually outnumber negative ones.

Table 1 – Contemporaneous Responses of Production Hours to a Labor Productivity Shock

Ginindza (2012) Chang and Hong (2006)

Disaggregation Level Negative Positive No Impact Negative Positive

4-digit 28 (300) 27 (131) 27 174 (351) 17 (107)

3-digit 25 (63) 17 (41) 36 60 (115) 6 (25)

2-digit 3 (10) 4 (7) 3 9 (18) 0 (2)

Notes: Responses are statistically significant at the 90% confidence interval. Figures in parentheses
are total responses.

The use of value-added output is arguably instrumental in the emergence of more positive

responses compared to Chang and Hong. As pointed out in Holly and Petrella (2012),

intermediate inputs play a role in relating productivity changes and employment. The

intuition is that productivity changes at input-producing industries will likely affect the

final-use industries as well, and this is reflected in the response of hours. Holly and Petrella

(2012) effectively account for this by using input-output tables which provide dollar values

of each industry’s input and output uses. Using the same data, their exercise yields mostly

positive responses of hours worked to a technology shock. While value-added output on its

own does not achieve the same control as input-output tables, it is a step in that direction

hence the increased positive responses in my replicated results.

Owing to the inter-industry linkages in production processes, I argue that an industry’s own

labor productivity change is not sufficient in explaining that particular industry’s short-

run behavior of production hours. Instead, more relevant cross-sectional information ought
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to be incorporated in the study, which is what this paper seeks to do. As can be imag-

ined, there are numerous variables that would have to be included for a satisfactory model

amid the limited capability of structural models in handling many variables. My proposed

solution is the decomposition of labor productivity growth into unobserved common and

idiosyncratic factors that drive it across industries. The idea is that there is useful infor-

mation, of varying scope, contained in labor productivity that is not readily observable to

the econometrician. Through the proposed decomposition, the model is enriched without

encountering the dimensionality challenges that prevail in standard VAR models. To my

knowledge, no recent publication has taken this particular direction in the context of relat-

ing technology shocks and employment. A closely related concept can be found in Wang

and Wen (2007) who use the purified technology series from Basu et al. (2006) to formulate

sector-specific and aggregate shocks. The purified series is obtained from the residuals of

sector production functions under perfect competition, constant returns to scale, and no

changes in labor and capital utilization. Specifically, the shocks are obtained as dzi in the

following function:

dyi = γi(dxi + dui) + dzi, (1)

where dyi refers to sector i’s output change, dxi is input change, dui refers to unobserved

changes in input utilization, and γi is the arbitrary degree of the function’s homogeneity

in total inputs. Aggregate shocks (dz) are computed as the weighted sum of dzi across i.

Wang and Wen then regress dzi on both its lag and the aggregate technology shock, dz, to

get sector-specific shocks. For 29 sectors, they study the average response of output and

selected inputs to both aggregate and sector-specific technology shocks. They report that

the difference lies mainly on the horizon i.e. aggregate shocks are contractionary in the

short-run whereas sector-specific technology shocks are contractionary both in the short-

run and long-run.
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However, it can be noted that the process described above does not ensure orthogonality

between the aggregate and sector-specific shocks. Also, the aggregate shock, as calculated

there, is merely a summation of the sector-specific shocks, it does not necessarily represent

unique information. My proposed use of factor analysis addresses these two concerns as it

produces unique common and idiosyncratic factors under orthogonality restrictions. Ap-

plications of factor analysis in macroeconomic contexts are not uncommon. For instance,

Foerster et al. (2008) use factor analysis to study the variation in the Industrial Production

index. They demonstrate that common factors account for most of the variations in the US

IP index. Also, Kose et al. (2003) use factor analysis to study global, regional and country

specific business cycle patterns. This paper joins the recently growing trend of researchers

that merge factor analysis with Vector Autoregressions, an idea pioneered in Stock and

Watson (2005). Details of the framework are provided in the following section.

1.3 General Econometric Framework

The method applied in this paper originates in Bernanke et al. (2005) (henceforth BBE)

in their study of the effects of monetary policy. In an attempt to capture the large vol-

ume of information utilized by policy makers, BBE estimate unobserved common factors

of 120 macroeconomic variables, and use these in a VAR analysis. By studying the impulse

responses of up to 5 factors, they are able to infer the effect of a monetary policy shock

on the 120 macroeconomic variables. In a similar sense, this paper seeks to incorporate

additional cross-sectional information into a standard structural VAR model to explain the

relationship between technology shocks and employment. Unlike BBE who extract their

factors from different variables, the factors here are extracted from the same variable (labor

productivity growth) but across a panel of 458 industries. This enables the capturing of

unobserved forces driving productivity across all the industries that may be relevant in in-

fluencing the short-run behavior of production hours. By incorporating common factors in
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the model, this paper avoids treating the industries as completely separate and independent

entities, a limitation that can be pointed out in Chang and Hong’s work. Going beyond the

application in BBE, I further extract the components driving productivity growth which

are specific to each industry (idiosyncratic factors), and study their impact on production

hours after a technology shock. Stock and Watson (2005) demonstrated in a Monte Carlo

experiment that a model that merges factor analysis with VAR outperforms a standard

VAR. Originally coined FAVAR in BBE, I refer to the methodology here as a Factor Aug-

mented Structural VAR (FASVAR), and what follows below are details of its specification.

For each industry i at time t, let ∆Yit denote the growth of labor productivity, and similarly

let ∆nit denote the growth of hours worked. The debate surrounding the specification of

hours in levels or first-differences will be discussed in later sections, for now we use first-

differences for comparability with Chang and Hong (2006). Also, for both simplicity and

compliance with preexisting literature, we assume an economy that is exposed to only two

types of shocks, namely technology and non-technology shocks.3 Conventionally, technol-

ogy shocks are associated with the supply side, and are often extracted from either labor

productivity or TFP. In this context, the technology shocks are interpreted as the perma-

nent change in the unobserved common factor of labor productivity growth, and, later,

in the idiosyncratic component of labor productivity growth. The non-technology shocks

stem from demand-side elements. In estimating the FASVAR model I use the two-step

approach suggested in Stock and Watson (2005) and adopted by BBE. In the first step, I

utilize asymptotic principal components to estimate the common factors.

Fundamentally, this estimation procedure entails expressing a given N x T series Xt as

follows:

Xt = ΛFt + et, (2)

3Interpreting the specific non-technology shocks is beyond the scope of this paper, as is the detailed
interpretation of the common and idiosyncratic factors of productivity growth.
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where Ft denotes a vector of k < N common factors driving Xt, Λ refers to a vector of factor

loadings, and et refers to an N x T vector of idiosyncratic components. The factor loadings

represent the degree to which each of the series in Xt correlates to Ft. The vector Ft itself

cannot be directly estimated, but what is estimable is the space that it spans i.e. one can

estimate an orthogonal vector whose entries span the same space spanned by entries of Ft.

The estimation enforces the restriction that E(Ftet) = 0, that is, the common factors and

the idiosyncratic components should be mutually orthogonal. Stock and Watson (1998)

developed a nonparametric method to estimate the factors, and Ng and Bai (2002) show

that, given a large enough N , the factor estimates are indeed efficient. This method involves

minimizing the following least squares criterion:

VN,T (F̂t, Λ̂) = (NT )−1
T∑
t=1

(Xt − ΛFt)
2 (3)

It is found that (3) is consistently minimized by the principal components of Xt, which are

obtained from weighted eigenvalues of the T x T covariance matrix of Xt. Since the factors

are unobserved, an important question becomes how many factors does one extract? To

determine the appropriate quantity of factors I apply a commonly used criterion proposed

in Ng and Bai (2002), which is also based on the above mentioned nonparametric estimation

approach of Stock and Watson. The criterion is as follows:

IC2(k) = ln
(
VN,T (F̂(k), Λ̂(k))

)
+ k

(
N + T

NT

)
ln(min{N,T}), (4)

where VN,T (F̂(k), Λ̂(k)) is as defined in (3) for a k factor model. After the factor estimates

are obtained, they are then incorporated with hours in a bivariate Structural VAR in the

second step.
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1.4 Empirical Implementation

1.4.1 Data

The data I use in the empirical application is jointly prepared by the National Bureau of

Economic Research (NBER) and the Census Bureau’s Center of Economic Studies (CES).

It covers a total of 458 manufacturing industries in the United States over the period 1958-

1996. The Asbestos industry is excluded as it only has observations up to 1993. The

industries are classified based on the 1987 Standard Industrial Classification (SIC) system,

and the raw data is disaggregated to the 4-digit level, which is the most disaggregated

level under SIC. The SIC was discontinued in 1997 and replaced by the North American

Industrial Classification (NAIC) which accommodates more sub-industries but covers a

relatively shorter time period. Among the key differences between the two is that the

SIC groups industries by the output type while the NAIC groups them by the production

processes. Labor productivity is computed as the log difference between real value-added

output and production hours. Value added output is given as the shipment-value net the

value of intermediate inputs. The growth of labor productivity is computed as the first-

difference of labor productivity, ∆Yit = Yit − Yit−1, where {i = 1, .....N} is the number of

industries, and {t = 1, ....T} denotes time. Similarly, ∆nit denotes the log difference of

production hours worked. Additional variables are the logs of end-of-year total inventory

holdings, and total real capital stock. Using the criterion of Ng and Bai (2002), I determine

that productivity growth at the 4-digit level is driven by a single common factor, Ft (i.e.

k = 1). To investigate the effect of aggregation, the analysis is performed at three SIC

disaggregation levels. I start off with the original 458 4-digit industries, and then aggregate

to the 3-digit level. This is achieved by grouping industries by their first two classification

digits, and then summing their values. For instance, the following 4-digit industries 2011,

2013 and 2015 form the 201 3-digit industry upon aggregation. This process yields 140

industries, which are further aggregated, based on the first digit, to produce 20 2-digit level

industries. The summation is done before any computation or transformation of variables

is undertaken. Additionally, data on raw material and work-in-process inventory holdings
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is obtained from the Bureau of Economic Analysis (BEA), and it is only available at the

2-digit industry level.

1.4.2 Estimation

The joint dynamics of (Ft,∆nit) are expressed via the following VAR;

 Ft

∆nit

 =

 Φ11 Φ12

Φ21 Φ22


 Ft−1

∆nit−1

+

 ηt

wit

 , (5)

and the proposed factor decomposition of labor productivity growth is as follows:

∆Yit = ΛiFt + Λin∆nit + eit. (6)

The factor, Ft, enters the model in levels since it is extracted from a stationary panel, ∆Yit,

and Ng and Bai (2004) demonstrate that factors of a stationary panel are themselves sta-

tionary. The subscript, i, on the factor loadings allows each industry to respond differently

to changes in the common and idiosyncratic factors. The decomposition in 6 is based on

the neoclassical multi-sector production function

Xit = AtzitK
α
itN

1−α
it , (7)

where Xit, Kit, and Nit denote output, capital stock, and labor input per sector, respec-

tively. At and zit are common and sector-specific technologies. Herein, I assume that there

are two types of industries; final producers and intermediate-good industries. The final

producers utilize, as intermediate input, production from the latter. For simplicity, it is

further assumed that intermediate-goods sectors produce their own inputs.
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Equations (5) and (6) constitute the FASVAR. The last two terms on the right hand side

of 6 constitute the idiosyncratic component of ∆Yit, which is composed of an observed

component (hours) and an unobserved component (eit). Capital stock is omitted in the

model application since it is commonly assumed to be constant in the short-run. As a

robustness check, I included it as an additional observed idiosyncratic component in 6, and

it did not alter the qualitative findings.

1.4.3 Step One: Factor Identification

Following BBE, in the first step of the methodology I do not exploit the fact that ∆nit is

observable. I rely on the demonstration in Ng and Bai (2002), and Stock and Watson (2002)

that the method of principal components, given a large enough N, consistently recovers the

space spanned by both observed and unobserved factors. Consequently, I extract the factor

estimate, F̂t, as the largest principal component of a demeaned and standardized ∆Yt that

minimizes (3). This yields the following

∆Yit = ΛiF̂t + ξit, (8)

where the term ξit encompasses the space spanned by both hours worked and the unobserved

idiosyncratic component eit. This component is recovered by running the regression

ξit = λ̂in∆nit + eit. (9)
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1.4.4 Step Two: SVAR Identification

In step-two I estimate the VAR in (5), where I replace Ft by F̂t, the factor-estimate obtained

in step-one. I identify the structural shocks by using the Cholesky decomposition to impose

long-run restrictions, as originally proposed by Blanchard and Quah (1989), and famously

adopted in Gali (1999). According to these restrictions, hours can be freely affected by both

technology and non-technology shocks across the model’s horizon. However, non-technology

shocks are restricted from affecting productivity in the long-run. The restrictions imply

that what I interpret as a technology shock is the permanent disturbance to the factors

that drive productivity growth. Let ∆xit denote the vector of {F̂t,∆nit}, and let the two

residual terms be expressed in the vector εit = {ηt, wit}. The moving average form of (5)

can be expressed as

∆xit = C(L)εit, (10)

where C is constructed from the VAR coefficients using the canonical algorithm over the

VAR horizon m as follows:

Cm =
m∑
j=1

Cm−jΦj , (11)

with C0 = I.

For some matrix Z, the structural form is derived as:

∆xit = D(L)ε∗it, (12)

where ε∗it = Z−1εit is the vector of structural shocks and D(L) = Z−1C(L) are the impulse

responses, both of which are of primary interest. For the ease of notation, let R = Z−1,

and assume RR′ =
∑

ε, where
∑

ε = εε′ is the covariance matrix of εit. I estimate R such
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that

D(1) = C(1)R, (13)

where D(1) and C(1) are the cumulative sums of matrices D and C. With the above

assumptions, I get that

D(1)D′(1) = C(1)ΣεC
′(1). (14)

Applying the lower triangular Cholesky decomposition yields the matrix

D(1) = Chol[C(1)ΣεC
′(1)], (15)

from which I finally obtain R using (13):

R = C(1)−1D(1) (16)
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1.5 Empirical Results

In Table 2 below, I present results obtained from running the FASVAR model across all

three disaggregation levels namely: 4-digit level (maximum disaggregation), 3-digit level

(intermediate disaggregation) and 2-digit level (minimum disaggregation). At each level,

the second step (the SVAR) is carried out per industry hence I obtain as many impulse

responses as there are industries in that particular level. As stated in the previous section,

a large N ensures a consistent estimation of the unobserved factors hence I extract the

common factor, F̂t, at the four-digit level where I have the largest panel. However, even

when I extract a distinct common factor at each disaggregation level, I obtain factors

that look very similar, as can be clearly seen in Figure 1. Such similarity substantiates

the consistency of my estimated factor. The top panel in Table 2 reports the short-run

responses of hours after a one time technology shock to F̂t. The last two columns report

the number of industries that either decreased or increased hours contemporaneously after

the shock, as a percentage of total industries in each disaggregation level. The percentages

in bold refer to statistically significant responses, while those in parentheses denote total

increases or decreases for each disaggregation level. All results are based on the Impulse

Response Functions (IRFs) generated from the empirical model. Statistical significance is

at the 90% confidence interval, which I obtain via a bootstrap of the residuals. The second

column states the specification of hours, and the third column indicates which factor of

prudctivity is exposed to the shock. IRFs for the 2-digit level industries are included in

Figures 2-5, whereas those for the 3-digit and 4-digit levels are intentionally witheld to

economize page space4.

The results obtained are strikingly suggestive. Using hours in first-differences as in Basu

et al., Gali, and Chang and Hong, I find that a positive permanent shock to the common

factor of productivity is expansionary for the majority of manufacturing industries. This

result holds across all three disaggregation levels, and seemingly gets enforced as I aggregate

the data. Specifically, at the 4-digit, 3-digit and 2-digit levels I observe, respectively, that

4They are, however, available and obtainable from the author upon request.
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52%, 76%, and 85% of the industries had statistically significant increases in hours after the

shock, whereas there were only 0.8%, 0%, and 0% statistically significant decreases. Recall

that the benchmark model in section 1.2 produced mixed but largely negative responses

after the shock, a result that complies with preexisting literature where hours are similarly

specified. The current findings, therefore, validate my proposed decomposition as they

suggest that cross-sectional labor productivity contains hidden information that renders

shocks to productivity partialy pro-cyclical. Figure 2 shows the impulse response functions

for the 2-digit level industries after a shock to F̂t. It can be seen that all the industries’s

responses peak within 3 years, and 60% peak on impact before dropping towards a new

and higher equilibrium.

Table 2 – Impulse Responses of Hours to a Common Factor Shock (as a % of total sectors
in each disaggregation level)

Disaggregation Level Hours Shock Origin Decreases Increases

4-digit Differences Ft 0.8 (7) % 52 (90) %

3-digit Differences Ft 0 (4) % 76 (91) %

2-digit Differences Ft 0 (0) % 85 (100) %

Responses of Hours to an Idiosyncratic Shock in Percentages

Disaggregation Level Hours Shock Origin Decreases Increases

4-digit Differences Idiosyncratic 8 (36) % 7 (35) %

3-digit Differences Idiosyncratic 16 (50) % 4 (26) %

2-digit Differences Idiosyncratic 20 (60) % 0 (35) %

Notes: Percentages in bold refer to statistically significant responses, while those in parentheses refer to total responses.

In my application of the FASVAR approach, a meaningful extraction and use of the id-

iosyncratic components of the data is possible. This is not always the case since in most
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relevant applications, e.g. BBE, the data consists of different macroeconomic time series

where the idiosyncratic components are often interpreted as measurement errors. In my

case, however, these refer to factors of productivity growth that are industry-specific, a

relatively broader concept than measurement errors. I am thus motivated to investigate

the effect, on hours, of applying a permanent shock to the idiosyncratic components. This

entails running step-two of the model where Ft is now replaced by the idiosyncratic com-

ponent in equation (5). The results are presented in the bottom panel of Table 2. The

most notable observation is that the results now appear diluted. The responses are more

evenly spread than in the previous case, yet a clear pattern can still be detected. At all

disaggregation levels, the percentage of industries that decrease hours exceeds that of in-

dustries with increased hours, both overall and in terms of statistical significance. While

these results contrast the findings in the top panel of Table 2, they are more in agreement

with findings from previous work where hours are modeled in differences. Chang and Hong

also come to a similar conclusion when using labor productivity growth as a source of their

technology shock. These results prompt the suggestion that perhaps a standard VAR model

of labor productivity largely identifies shocks to the idiosyncratic component, disregarding

the common factor. The orthogonality restrictions imposed on Ft and eit in step-one en-

sure that in my analysis I obtain a truly unique effect from each component. This could

explain the contrasting effects I get as opposed to Wang and Wen (2007) whose correlated

aggregate and sector-specific shocks are both contractionary but differ across the horizon.

My findings could have non-trivial policy implications because federal, state and district

central planners might have different employment expectations when making decisions on

funding productivity innovations.

1.5.1 Level Specification of Hours

A major source of disagreement on the effect of technology shocks on hours lies in the

specification of hours in structural models, particularly at the national aggregate level. A

consensus is yet to be reached as to whether hours should be entered in differences or in

levels. Papers that have used the first-difference specification tend to find technology shocks
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to be contractionary with respect to hours worked. At the national aggregate level such

papers include Gali (1999), Shea (1998), and Francis and Ramey (2009) among others. The

argument in these works is that hours follow long cycles that distort conditional dynamics

of the level specification. On the other hand, there are arguments for entering hours in

levels. In particular, Christiano et al. (2003) and Christiano et al. (2004) (henceforth CEV)

make findings that are in line with the initial RBC conclusions when they use per capita

hours in levels, and further point out misspecification concerns in models with differenced

hours. However, in a survey paper Whelan (2004) compares the specifications in Gali and

CEV and concludes that only the former is robust to different VAR specifications, different

data used, and different measures of productivity. Furthermore, Eroglu and Hofer (2007)

declare that the results obtained using levels are mostly driven by structural breaks in US

data.

When they remove subsample means from the data they find that both levels and dif-

ferences produce similar conclusions as in Gali (1999). At the disaggregated level papers

such as Basu et al. (2006), Holly and Petrella (2012) and Chang and Hong (2006) enter

hours in first-differences. Chang and Hong base their choice on unit root tests that show

US disaggregated data as being stationary in first-differences. However, Gospodinov et al.

(2011) clarify that unit root tests are ineffective in determining the appropriate specifica-

tion as they often exhibit a bias towards stationarity of differenced hours. This is mainly

due to their handling of an observed low frequency comovement in VAR coefficients linking

hours and productivity. Unlike the level specification, first-differences tend to suppress this

comovement to zero thus influencing tests to report stationarity. Canova and Michelacci

(2010) make the argument that while level hours have long cycles, first-differencing empha-

sizes high frequency hours variability. They argue that this could magnify the measurement

error problem, especially since the difference system’s 90% tunnel is larger than that of lev-

els. Thus they conclude that both levels and differences are likely to be misspecified. In

this paper I choose not to pursue the issue further, instead I choose to present results for
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both specifications to test the robustness of my methodology.

When I enter hours in levels, all the conclusions, reported earlier, still hold but become less

obvious. Generally, the responses are diluted and more evenly spread between increases

and decreases compared to the previous case of differenced hours. In particular, after a

permanent shock to Ft, there are more increases, than decreases, in hours at the 2-digit

and 3-digit levels. At the 4-digit level, 52% of industries decreased hours after the shock.

However, focusing on statistically-significant responses, I get more increases at all levels.

Consequently, the pro-cyclicality of Ft with respect to hours is sustained.

A shock to the idiosyncratic components yields similar conclusion as in the differenced

specification. Responses vary across industries and disaggregation levels, but a majority

of them are decreases, both nominally and in terms of statistical significance. The levels

specification seems to generally tease out more positive responses in hours after a tech-

nology shock, but not enough to reverse conclusions otherwise made under the differences

specification. The robustness of my results is important as it enables my work to fit in with

either side of the specification debate in the literature.
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Table 3 – Impulse Responses of Hours to an Ft Shock in Percentages (Level Specification)

Disaggregation Level Hours Shock Origin Decreases Increases

4-digit Levels Ft 4 (52) % 14 (38) %

3-digit Levels Ft 8 (45) % 34 (48) %

2-digit Levels Ft 0 (30) % 45 (70) %

Responses of Hours (in Levels) to an Idiosyncratic Shock in Percentages

Disaggregation Level Hours Shock Origin Decreases Increases

4-digit Levels Idiosyncratic 17 (44) % 7 (33) %

3-digit Levels Idiosyncratic 27 (47) % 7 (33) %

2-digit Levels Idiosyncratic 35 (75) % 10 (25) %

Notes: Figures in bold refer to statistically significant responses, while those in parentheses refer to total responses.

1.6 Discussion

The findings presented above are consistent with economic intuition. Since my econometric

specification does not account for price-stickiness, I provide an interpretation of the findings

based on a classical, flexible-price framework. By virtue of extracting a cross-sectionally

common factor of productivity growth, I introduce an inter-industry link between the pro-

duction processes. Recall that the multi-sector growth model, introduced in section 4,

assumed two types of producers, namely intermediate-good producers, and final produc-

ers. An analysis across-types provides for more dynamics than within-types. Essentially,

an improvement in productivity across all industries (i.e. an increase in At in equation

7), leads to an overall increase in production to capitalize on the decreased marginal cost.

This induces a downward pressure on prices, including the prices of intermediate inputs.

Intermediate-good producers will increase production, additionally, to meet the increased

demand from final producers. This overall quest for increased output potentially drives

the short-run increase in hours worked, and this could be in the form of overtime hours or
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increased employment. On the other hand, if the productivity improvement is industry-

specific, then a set of coincidences is required for production and prices to change. After

an industry-specific shock to final-good producer, J, its price (production) will only lower

(increase) if there is a decline in marginal costs(including the cost of inputs). This calls

for the relevant input suppliers to also experience shocks of their own. In the absence of

such a coincidence, producer J will need less labor to sustain current production, hence idle

workers will be laid off or work reduced hours. This translates to the observed short-run

decline in hours in the data. Similarly, a shock to an intermediate-good producer will only

alter output and prices if the relevant final-good producers experience a shock of their own.

A different sort of coincidence, involving inventory holdings, is discussed below.

1.6.1 The Role of Inventories: A Robustness Check

In this section I seek to find out if a firm’s ability to hold inventories would alter the con-

temporaneous response of hours in my empirical setting. Inventories are generally used by

firms for production-smoothing, and stock-out avoidance. After storage cost considerations,

a firm can afford to increase production after a productivity improvement, if it can keep

the additional output as inventories. This could facilitate an increase in employment after

a technology shock. At the national aggregate level, changes in inventory investment have

been shown to impact on an economy’s gross domestic product (GDP), and are documented

as substantial contributors to business cycle dynamics5. A commonly held conjecture, pio-

neered in papers by McConnell (2000), Blanchard and Simon (2001), and Kahn et al. (2000),

states that inventories played a major role in the US Great Moderation, a period of steady

decline in output volatility observed in the mid 1980s. In an unpublished paper, Chang

et al. (2009) (henceforth CHS) propose a theoretical model that introduces inventories to

the standard Taylor (1980)-type model of staggered prices. Their model predicts that firms

with inventory holdings increase employment after a technology shock, even under sticky

prices. 6 Using US manufacturing data, they produce largely positive responses of hours

after a positive technology shock, confirming their model’s prediction. They further cite

5See, for instance, Blinder (1981) and Hornstein (1998)
6 Gali (1999) uses the standard sticky price intuition to explain the negative response of hours he obtained.
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demand elasticity, and product durability as additional contributing factors to the positive

responses of hours worked.

I am keen on exploring the role, if any, of inventories in the response of hours worked to

a technology shock in an FASVAR setting. In effect, can inventories eradicate the neg-

ative responses observed in earlier sections, particularly after an idiosyncratic shock? If

inventory holdings can overcome the contractionary effect of sticky prices, as theoretically

shown in CHS, then one would expect them to easily yield positive responses under flexible

prices. However, I posit that an industry’s own ability to hold inventories is, alone, not

sufficient in determining the true influence of inventories on response of hours. Due to the

interconnectedness in production processes, inventory holdings in other relevant industries

should also matter. Consequently, I argue that because of linkages in industrial production

processes, the impact of inventories should depend on which component of productivity

is shocked. In the case of a common shock to productivity, this point is trivial and in-

ventories can be expected to yield more positive responses. However, for inventories to

incite an expansionary effect after an idiosyncratic shock, coincidental inventory holdings

among final and intermediate producers could be required. Consider a positive idiosyn-

cratic shock to intermediate-good producer, G, that holds inventories. If the corresponding

final producer(s) also hold inventories, hours in G are likely to increase. However, if the

final-producer(s) do not hold inventories, market limitations will likely hinder G from in-

creasing production.

I investigate this notion via FASVAR, where step-two becomes a tri-variate SVAR con-

sisting of a factor of productivity, hours worked, and real inventory holdings. This step is

represented as follows:
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Ft

∆nit

∆mit

 =


Φ11 Φ12 Φ13

Φ21 Φ22 Φ23

Φ31 Φ32 Φ33




Ft−1

∆nit−1

∆mit−1

+


ηt

wit

vit

 , (17)

where ∆mit denotes the log-difference of real total inventories. I only report findings for the

differenced specification of hours for direct comparison with CHS. I use both the common

and idiosyncratic factors of productivity in the SVAR. The idiosyncratic factor, obtained in

step-one, is further purified into ẽit by including real inventories as an additional observable

in regression 9 as follows:

ξ̃it = λ̂in∆nit + λ̂im∆mit + ẽit. (18)

I maintain the same assumption that the economy is only faced with two kinds of shocks,

namely a technology shock, ηt, and non-technology shocks, ( wit and vit). I augment the

long-run restrictions by assuming that the factor of productivity used is not affected by

either hours or inventories in the long-run, whereas inventories do not affect hours in the

long-run. Both hours and inventories are permanently affected by the productivity factor.

Thus a Choleski decomposition, as used earlier, is sufficient to attain these restrictions.

The results are reported in Table 4, and they show that, a positive shock to Ft expectedly

yields positive hours’ responses in a large majority of industries, and this gets strengthened

by aggregation. When Ft is replaced by an idiosyncratic factor, I get more evenly spread

responses. At the 4-digit level, the majority of total responses are negative, whereas at the 2-

digit level the majority are positive responses. At the 3-digit level, I get an equal quantity of

total positive and negative responses. However, focusing on statistical significance, positive

responses exceed negative responses at all levels, although the percentage differences are not
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overwhelmingly large. These results are in line with the argument that the role of inventories

is dependent on the scope of the shock, as judged by the component of productivity affected.

Inventory holdings are not as successful, in producing an expansionary effect, after an

idiosyncratic shock as they are with a common shock. As a result, the conclusions reported

in section 5 remain unchanged by the inclusion of inventories.

1.6.2 Output vs Input Inventories

The literature on inventory investment can be generally classified into two categories. One

focuses on the use of final-good inventories for the purpose of stock-out-avoidance, and it

has received abundant attention. The other, which had mostly been neglected, incorporates

the stage-of-fabrication linkages within and between firms where input inventories are uti-

lized for production-smoothing. Input inventories, conventionally defined as raw materials

and work-in-process products, arise whenever there is a gap between the delivery and use

of inputs. They had been neglected in earlier models because their importance was largely

observable in durable goods, and earlier models commonly excluded such goods7. However,

the significance of input inventories in production and business dynamics has been pointed

out in recent work. Humphreys et al. (2001), for instance, show that input inventories are

larger and fluctuate more than finished-good inventories in US manufacturing. Findings

in Herrera and Pesavento (2005) show that at the disaggregated level, input and output

inventories contributed differently to the reduction in output volatility during the Great

Moderation. Tsoukalas (2005) states that since the usage of input materials is a factor of

production, decisions on production-smoothing and output-inventory are inherently related

to input-inventory decisions. Eroglu and Hofer (2011) investigate the contribution of the

different inventory types to a firm’s financial performance, and find that Raw Material

inventories contribute the most compared to Work-in-Process and Final Good invento-

ries. Meanwhile, Lieberman and Demeester (1999) uncover a negative correlation between

productivity growth and input inventories, particularly Work-in-Process (WIP). Their key

argument is that reducing WIP exposes production problems on the shop floor, enabling

7See Blinder and Maccini (1991) for a summary of earlier literature.
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them to be attended to hence boosting productivity. In turn, an increase in productivity

leads to a further reduction in the need for WIP.

From these publications arises the motivation to disintegrate my inventory variable into its

different components, and investigate whether they have different effects on the relationship

between hours and productivity. The US manufacturing data on input inventories is only

available for 2-digit level industries. I run the FASVAR second step, with total inventories

replaced, in turns, by Final Goods (FG), Work-in-Process (WIP) and Raw Material (RM)

inventories. I present the results on the last three rows of each panel in Table 4. Regarding

a shock to Ft, none of the inventory components yields negative hour-responses. Meanwhile,

an idiosyncratic shock produces some interesting variations. Firstly, input inventories (RM

and WIP) produce more total industries with increased hours than those with decreased

hours. WIP yields 60% while RM yield 55%. Meanwhile, output-inventories exhibit a

more expansionary effect, with 60% total industies with increased hours. Secondly, while

all inventory components produce more statistically sginifcant increases, WIP has the least

percentage. Based on statistical responses, the overall conclusions in this paper do not

change after decomposing inventories. However, one can note a slight contractionary effect

from input-inventories, especially WIP. This could be associated with the arsserted negative

relationship between productivity and WIP, which would imply that an accumulation of

WIP tends to counter the initial improvement in productivity, aiding the contractionary

effect of the shock.
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Table 4 – Hours’ Responses to a Common Factor Shock in Percentages (Tri-variate
SVAR Results)

Sector Level Shock Origin Decreases Increases

4-digit Ft 1.3 (16) % 42 (84) %

3-digit Ft 0.7 (10) % 68 (90) %

2-digit Ft 0 (0) % 80 (100) %

FG Ft 0(0) % 90(100) %

WIP Ft 0(0)% 75(100)%

RM Ft 0(0)% 85(100)%

Hours’ Responses to an Idiosyncratic Shock in Percentages

Sector Level Shock Origin Decreases Increases

4-digit Idiosyncratic 15 (51) % 12 (49) %

3-digit Idiosyncratic 17 (50) % 16 (50) %

2-digit Idiosyncratic 20 (45) % 15 (55) %

FG Idiosyncratic 10 (40)% 30 (60)%

WIP Idiosyncratic 10 (60)% 25 (40)%

RM Idiosyncratic 10 (55)% 35 (45)%

Hours are in first-differences. Bold figures denote 90% statistical significance, while those in parentheses refer

to total responses.

1.7 Conclusion

The issue of the response of hours after a technology shock has not been fully resolved.

Much emphasis has been placed on the specification of hours, particularly at the average

economy level. In this paper, I undertake an empirical study of the short-run relationship

between technology shocks and hours worked at disaggregated levels. I use a Factor Aug-

mented Structural Vector Autoregression to decompose labor productivity into unobserved
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common and idiosyncratic factors across manufacturing industries in the United States, and

study the response patterns. This decomposition appears to render productivity partially

pro-cyclical and partially anti-cyclical, with respect to hours worked, depending on which

of its components gets exposed to the shock. A technology shock to the common factor

incites an increase in hours worked in a majority of industries, whereas an industry-specific

shock appears more contractionary. Importantly, these conclusions do not seem to depend

on the specification of hours, an outcome that should facilitate a fair reception of my work

from either side of the contrasting schools of thought. Additionally, the inclusion of inven-

tory holdings in my empirical model, whether combined or divided into input and output

components, attest to the significance of accounting for the scope of a technology shock.

Important policy implications of my findings hinge, in part, on the perceived direction of

advances in production processes. If industries are advancing towards homogenized pro-

duction technologies, then more emphasis should be laid on the common factors driving

productivity. However, if industrial production processes strive towards increased special-

ization, then more attention ought to be paid to idiosyncratic elements. The findings herein

further highlights the potential risk of disregarding useful information when carrying out

this analysis at the national aggregate level. In that case the researcher neither sees nor

chooses the source or scope of a technology shock, and lets that decision rest on the model.

Potential extensions to this work include exploring possibilities for economic interpretation

of the common and idiosyncratic factors of productivity extracted. Also, it would be of

great interest to investigate the effect of non-neutral technology changes such as investment

specific technology shocks.
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Figure 1 – Graphs of Common Factors Extracted at Each Disaggregation Level
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Figure 2 – Two-digit level: IRFs of First-differenced Hours to a One Time Shock to Ft
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Figure 3 – Two-digit level: IRFs of First-Differenced Hours to a One Time Shock to the
Idiosyncratic Components



33

Figure 4 – Two-digit level: IRFs of hours (levels) to a One Time Technology Shock to Ft
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Figure 5 – Two-digit level: IRFs of hours (levels) to One Time Technology Shocks to
Idiosyncratic Components
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Table 5 – List of 2-digit Sectors Classified Under SIC

SIC CODE Sector Description

20 Food and Kindred Products
21 Tobacco Products
22 Textile Mill Products
23 Apparel and Fabric Finished Products
24 Lumber and Wood products not Furniture
25 Furniture and Fixtures
26 Paper and Allied Products
27 Printing- Publishing and Allied Industries
28 Chemicals and Allied Products
29 Petroleum Refining and Related Industries
30 Rubber and Miscellaneous Plastic Products
31 Leather and Leather Products
32 Stone, Clay and Concrete Products
33 Primary Metal Industries
34 Fabricated Metal Products
35 Industrial and Commercial Machines
36 Electronic and Electrical Equipment
37 Transportation Equipment
38 Measuring and Analyzing Instruments
39 Miscellaneous Manufacturing Industries
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Table 6 – List of 3-digit Sectors Classified Under SIC

201 Meat Products 238 Miscellaneous Apparel and Accessories
202 Dairy Products 282 Plastic Materials and Synthetic Prdcts-
203 Canned Preserved F and V 239 Miscellaneous Fabricated Textiles
204 Grain Mill Products 241 Logging
205 Bakery Products 242 Sawmills and Planing Mills
206 Sugar and Confectionery Prdcts 243 Millwork and Structural Wood Members
207 Fats and Oils 244 Wood Containers
208 Beverages 245 Wood Bldgs and Mobile Homes
209 Miscellaneous Food prep- 249 Miscellanoues Wood Prdcts
211 Cigarettes 252 Office Furniture
212 Cigars 251 Household Furniture
213 Chewing and Smoking Tobacco and Snuff 253 Public Bldg and Furniture
214 Tobacco Stemming and Redrying 254 Partitions Office and Store Fixtures
221 Broadwoven Fabric Mills, Cotton 259 Miscellaneous Furniture and Fixtures
222 B.W Fabric Mills- fiber and Silk 261 Pulp Mills
223 B.W Fabric Mills, wool 262 Paper Mills
224 B.W Smallwares Mills Combined 263 Paperboard Mills
225 Knitting Mills 265 Paperboard Containers and Boxes
226 Dyeing and Finishing Textiles 267 Converted Paper and paperboard prdtcs
227 Carpets and Rugs 271 Newspapers:Publishing and Printing
228 Yarn and Thread Mills 272 Periodicals: Publ and Printing
229 Miscellaneous Textile Goods 273 Books
231 Men and boys’ suits Coats 274 Miscellaneous Publishing
232 Men-boys’ Furnishings Work gear 275 Commercial Printing
233 Women’s Outerwear 276 Manifold Business Forms
234 Women-Children’s Undergarments 277 Greeting Cards
235 Hats Caps and Millinery 278 Blankbooks Looseleaf Binders etc.
236 Girls-Children’s Outerwear 279 Service Printing indtrs
237 Fur Goods 281 Industrial Inorganic Chemicals
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282 Plastic Materials and Synthetic Prdcts- 331 Steel Works Furnaces etc.
283 Drugs 332 Iron and Steel Foundries
284Cleaning Preps and Toiletries- 333 Primary Smelting N.F. Metals
285 Paints Enamels etc. 334 Sec N.F. Smelting
286 Industrial Organic Chemicals 335 Extruding N.F. Metals
287 Agric Chemicals 336 Nonferrous Foundries
289 Miscellaneous Chem Prdcts 339 Miscellaneous Prim Metal Prdcts
291 Petroleum Refining 341 Metal Cans and shipping Containers
295 Asphalt Paving and Roofing- 342 Cutlery and General Hardware-
299 Miscellaneous Coal and Petrol Prdcts 343 Heating Eqpt-
301 Tires and Inner Tubes 344 Fabricated Struct. Metal Prdcts
302 Rubber and Plastic Footwear 345 Screw Machine Prdcts-
305 Gaskets and Sealing Devices- 346 Metal Forgings and Stampings
306 Fabricated Runner Prdcts- 347 Coating and Allied Services
308 Miscellaneous Platic Prdcts 348 Ordnance and Accessories-
311 Leather Tanning and Finishing 349 Miscellaneous Fabricated Metal Prdcts
313 Boot and Shoe Cut Stock- 351 Engines and Turbines
314 Footwear not Rubber 352 Farm and Garden Machine and Eqpmt.
315 Leather Gloves and Mittens and Handling Machinery- 353 Construction
316 Luggage 354 Metalworking Machinery
317 Handbags and Personal Leather Goods 355 Special Industry Machinery-
319 Other Leather Goods 356 General Industry Machinery
321 Flat Glass 357 Computer and Office Eqpt.
322 Pressed-Blown Glassware 358 Refrigeration and Service Ind Machinery
323 Prdcts from Purchased Glass 359 Misc. Ind and Commercial Machinery
324 Cement and Hydraulic 361 Electric Transmission and Distr Eqpmt.
325 Structural Clay Prdcts 362 Electrical Ind. Apparatus
326 Pottery Prcts 363 Household Appliances
327 Concrete and Plaster Prdcts 364 Electric Lighting and Wiring Eqpmt.
328 Cut Stone and Stone Prdcts 365 Household Audio Video Eqpmt.
329 Asbestos and Nonmetal Prdcts 366 Communications Eqpt
367 Electronic Componets and Accessories 385 Opthalmic Goods
369 Misc Electrical Machinery Eqpt 386 Photographic Eqpmt.
371 Motor Vehicle and Eqpt 387 Watches and Clockwork Devices
372 Aircraft and Parts 391 Jewelry Silverware Plated Ware
373 Ship Boat Bldg and Repairs 393 Musical Instruments
374 Railroad Eqpt 394 Toys Games Athletic Goods
375 Motorcycles Bikes and Parts 395 Pens and Artists’ Materials
376 Guided Missiles and Space- 396 Costume Jewelry not Pr. Metal
379 Misc Transportaion Eqpt 399 Misc Manufacturing Industries
381 Search Navigation etc Eqpt- 382 Lab Apparatus etc.
384 Surgical Medical Instruments
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2 Chapter 2

The Dynamic Effect of Investment Specific Technical Change

on Labor Composition in US Manufacturing

Abstract

In this paper, I use a series of structural VAR specifications to explore the dynamic

effects of investment-specific technological changes (ISTC) on the skill composition of

labor. I focus on the US Manufacturing sector for the period 1958-2009, where evidence

of a compositional shift in labor demand is substantial. Using non-production and

production workers to proxy for skilled and unskilled labor, I find that the characteristic

effects of ISTC exhibit important dynamism. While in the short-run ISTC fail to

explain observed data patterns, they tend to do so well in longer horizons. This suggests

that the capital-skill complementarity in US Manufacturing comes into effect with some

lags. A shock identified from the skill premium via a sign restriction VAR only showed

partial characteristics of being the “complete” skill-biased technology shock.
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2.1 Introduction

Since the controversial findings in Gali (1999), numerous papers have analyzed the decline in

hours-worked after a one-time positive technology shock, particularly in post-war US data.

A contractionary neutral technology shock negates initial findings by Real Business Cycle

models, and also contradicts the positive co-movement between productivity improvements

and employment that is observed in the data. These two points have led to the argument

that the role of technology shocks in driving short-run economic fluctuations has greatly

diminished. Any validity in this argument would suggest that other types of shocks matter

more in steering the business cycle. As a result, research focus in this topic is steadily shift-

ing towards the identification of such shocks, particularly non-neutral technology shocks8.

Recently, notable attention has been given to the role of investment-specific technological

changes (ISTC) in driving the business cycle. These refer to improvements either in the

production process, or in the quality of newly produced capital goods. The effect of these

improvements is reflected in the declining relative price of investment goods to consump-

tion goods. In the US this relative price has been declining over the past three decades.

Among the first to highlight the importance of ISTC were Greenwood and Krusell (2000)

who reported the substantial contribution (60%) of ISTC in explaining output growth in

the US economy. Numerous researchers have expanded these findings, and noteworthy

among them are Cummins and Violante (2002), Fisher (2006), Ho (2008) and Basu et al.

(2010). The last three are of special interest in this paper. Fisher (2006) and Basu et al.

(2010) argue that the seemingly diminished role of technology shocks stems from the nar-

row definition that is often used when identifying a technology shock9. They proceed to

show that accounting for other types of technology shocks overturns the argument regard-

ing the diminished role. Fisher (2006) identifies an investment-specific technology (IST)

shock from the relative price of investment in a multi-variate VAR that also includes na-

tional aggregate labor productivity, total hours, and other exogenous variables. To account

8These can be generally viewed as disturbances that improve the productivity of a selected subset of
inputs or sectors.

9Gali (1999) and subsequent papers identify a technology shock as the disturbance that causes a perma-
nent change to labor productivity or Total Factor Productivity (TFP).
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for policy and regulatory changes associated with the Great Moderation, Fisher splits his

data into two subsamples, 1955:I-1979:III and 1982:III-2000:IV. With the first one, he finds

that hours decline after each technology shock, both when there is one and two technol-

ogy shock(s) identified. However, in the second subsample, hours respond positively, with

a hump shape, to an IST shock whereas their response to a neutral technology shock is

insignificant. Basu et al. (2010) set up a multi-sectoral environment consisting of consump-

tion goods sectors and investment goods sectors. They then compile what they profess to

be “purified” technology shocks from the production functions of these sectors, and find

that technology shocks identified in the investment goods sectors cause hours to decline,

whereas consumption-goods technology shocks are expansionary. Finally, Ho (2008) studies

the effect of ISTC and Total Factor Productivity (TFP) on labor composition in US man-

ufacturing using a fixed effects regression analysis. Upon finding a positive coefficient for

ISTC and a negative one for TFP, he concludes that ISTC yield an increase in the demand

for skilled labor while TFP has the opposite effect.

In this paper, I use a series of SVAR model specifications to study the dynamic effects

of IST shock on labor composition in US Manufacturing for the period 1958-2009 10. This

period provides evidence that a compositional shift in labor demand occurred. In par-

ticular, both the supply and wages for skilled labor exhibit an upward trend during this

period, while the opposite holds for unskilled labor. Pinning down the forces behind this

compositional demand shift is both of research interest, and also important in explaining

the decline in total hours after a neutral technology shock as observed in recent literature.

For the latter, it could be the case that the decline in total hours is a reflection of a decline

in unskilled labor due to the shift in demand for skill. In this case, modeling a neutral

technology shock alone would not suffice. Instead, a technology that exhibits some bias

based on skill ought to be identified. To this end, I empirically investigate whether an IST

shock could be the main driving force behind the compositional demand shift. I achieve

this by analyzing the dynamic responses of labor composition to a positive IST shock both

10In the data section, I offer arguments as to why the US Manufacturing sector is of great interest and
importance for this analysis.
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in a single-technology and multiple-technology model specifications. This is because an IST

shock could have one of two contrasting effects on the composition of labor. On one hand,

an IST shock can be skill-biased as it can improve the productivity of skilled labor. On the

other hand, it can reduce the need for skill, in which case it is considered to be de-skilling.

Studies of IST shock on aggregate total hours have already been done hence the contribu-

tion of this paper is investigating the dynamic impact on labor composition, and doing so

for the manufacturing sector. This study, simultaneously, enables me to determine whether

capital-skill complementarity holds for US Manufacturing. According to my knowledge, no

publication has performed this exercise for the manufacturing sector. The closest work is

done by Ho (2008), but his methodology falls short of capturing the dynamism of the effect

of IST shock. The use of the SVAR methodology facilitates this and also ensures a proper

identification of the shocks. As a robustness check, I utilize a sign restriction VAR in an

attempt to identify a skill-biased technology shock.

The remainder of the paper is as follows: subsection 2.2 provides details of the data used in

this study. In subsection 2.3, I specify single-technology SVAR models to analyze the effect

of an IST shock both on total manufacturing labor, and on the skill composition of labor.

Subsections 2.4, 2.5 proceed to multiple-technology specifications where I investigate the

supply side effects of an IST shock in the labor market, and then investigate the demand

side via the inclusion of the relative wages for skilled and unskilled labor. In subsection

2.6, as a robustness check, I use a VAR with sign restrictions in an attempt to identify a

skill-biased shock from the skill premium, and in 8 I conclude.

2.2 Data

This study is limited to the US Manufacturing Sector for the following reasons. Firstly,

Manufacturing has long been a crucial sector and a cornerstone of the US economy. It has

demonstrated sustained productivity growth and is shown by the National Association of

Manufacturing(NAM) as having the highest multiplier effect out of all sectors11. Secondly,

11For every $1 spent in manufacturing another $1.48 is added to the economy.
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technology shocks have been shown to have different effects on variables at disaggregated

levels, and a substantial case has been made that productivity is better measured in man-

ufacturing than in other sectors12. Thirdly, the manufacturing database provides variables

that proxy better for skilled and unskilled labor compared to other sectors and, arguably,

to the variables used for aggregate studies. Related work done using national aggregate

data relies on formal education as a classification for skill i.e. only a worker with a college

degree (or a high school diploma in some cases) is considered skilled. Such classification

only observes skill level on the first day of work and ignores skill obtained via experience.

This presents a potential bias as a seasoned uneducated worker who is promoted to a skill-

requiring position is still regarded as unskilled. With the manufacturing data, one can

classify skill based on the actual job a worker does regardless of how they got there. Lastly,

using Manufacturing data facilitates a comparison of findings in other relevant papers that

have used the same database to study technological changes and employment, and these in-

clude Chang and Hong (2006), Ho (2008), Holly and Petrella (2012), and Basu et al. (2010).

The data is annual and it comes from the NBER-CES Manufacturing Industry Database,

which is jointly prepared by the National Bureau of Economic Research, and the Center for

Economic Studies. The database has recently been updated, an exercise that has resulted

to eight more years of observations being added to it. While it formerly had data up to

1997, the database, as of March 2013, now consists of US manufacturing industries for the

period 1958-2009. It is available in two versions based on the classifications of industries;

one uses the 1987 Standard Industrial Classification (SIC) system while another use the

North American Industrial Classification (NAIC). For this paper I utilize the former, which

contains 459 manufacturing industries at the most disaggregated level (4-digit level). To

obtain data that is representative of the manufacturing sector as a whole, I aggregate the

raw data into 20 two-digit level industries, and from there I calculate manufacturing aggre-

gate variables. In doing so, I leave out eight industries at the 4-digit level as they each have

at least nine missing observations due to the recent update. These industries are Asbestos

Products, Logging, Newspaper: publishing and printing, Periodicals: publishing and print-

12Ngai and Samaniego (2009) and Kahn and Lim (1998).
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ing, Books: publishing and printing, Miscellaneous Publishing, Greeting Cards, and Boat

Building and Repairing. The database contains, among others, data on each industry’s

output, capital stock, total number of workers per industry, total number of hours worked

by production workers, and their relevant wages. To obtain non-production and hence total

hours worked, I follow convention in assuming that non-production workers work 2000 hours

per year. Therefore, non-production hours are obtained from the product of non-production

workers and 2000 hours. However, since workers are expressed in thousands while hours

are in millions, it suffices to multiply by 2 rather than 2000. The database also contains

industry-specific price indexes including a price index for investment products. In compiling

the relative price of investment, I use the deflator for personal consumption of non-durable

goods compiled by the Federal Reserve Bank of St. Louis (FRBSL), chain-weighted with

NIPA(National Income and Product Accounts)-supplied weights. This index is preferred

to the manufacturing-specific deflator for shipments which does not differentiate between

consumption and other goods. For the investment index, I use both the manufacturing

specific index, and the FRBSL-provided investment index. The latter is more preferable as

it is broader, covering equipment and software as well.

2.3 A Single-Technology Empirical Specification

2.3.1 Investment Specific Technology Shocks and Total Hours

The non-trivial role of IST shocks in the business cycle has recently attracted significant

research interest. The intuition behind these shocks, as described in Greenwood and Krusell

(2000), lies in the assumption that a given economy has two sectors, one that produces

consumption goods and another that produces investment goods (new capital). A change in

the technology for producing consumption goods is viewed as a Hicks-neutral technological

change, whereas productivity improvements in the investment goods sector are interpreted

as investment-specific technological changes. Since there are only two sectors assumed, an

IST shock refers to improvements in the production of efficiency units of investment goods,

relative to their consumption counterparts. Depending on calculation methods, it can also

embody improvements in the quality of new capital. The importance of ISTC in driving
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economic growth was highlighted in Greenwood and Krusell (2000), who concluded that

they contribute about 60% of economic growth in the US. Additionally, studies of their

impact on hours has produced slightly mixed results. For instance, while Basu et al. (2010)

find IST shocks to be contractionary to hours, Fisher (2006) finds them expansionary

for the two decades post 1980. In the period prior to that, he finds IST shocks to be

contractionary as well. Fisher’s study was performed at the national aggregate level, whilst

Basu et al. (2010) focused on industries but did not apply the VAR methodology. For a

smooth transition from the existing literature into this paper, I start by investigating the

dynamic effect of an IST shock on total hours for the manufacturing sector in a bivariate

SVAR model. Theoretically, we could assume a simplified two factor production function

in which firms only utilize capital-augmenting technology. For aggregate manufacturing,

the production funtion would be as follows;

Yt = (KtA
k)θN1−θ

t , (19)

where Yt, Kt, and Nt respectively denote output, equipment capital, and total labor at

time t. Input shares are determined from the value θ. The parameter Akt is taken here to

represent-investment specific technology.

2.3.2 Estimation

Following Fisher (2006), I identify an IST shock as the only source of permanent disturbance

to the relative price of investment (for brevity, I shall refer to it simply as the relative

price)13. Accordingly, I denote the endogenous variables in the model as ∆xt = [∆Qt,∆Ht],

where ∆Qt is the first log-difference of the relative price, and ∆Ht denotes the first log-

difference of total manufacturing hours worked. The structural form is as follows:

B0∆xt = B(L)∆xt−1 + et, (20)

13In the estimation, I use the reciprocal of this price, Qt =
Pc
t

P i
t

. This is done simply for the ease of thinking

in terms of increases in variables after positive self-originating disturbances.
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where L is a lag polynomial operator, and in compliance with pre-existing literature, I

select a single lag for the application herein. The matrix B is a square coefficient matrix,

and B0 is symmetric with ones on the diagonal. For estimation purposes, equation 20 is

converted to its reduced form,

∆xt = a+A(L)∆xt−1 + ut, (21)

where a is a vector of constants, A(L) = B−1
0 B(L), and similarly, ut = B−1

0 et. Of ultimate

interest are the structural shocks, et, which can be identified from ut, given an estimate

of B0. To this end, I impose long-run restrictions on the relationship between the model’s

endogenous variables. Essentially, under this approach, disturbances to hours (interpreted

as non-technology shocks) are restricted from affecting the relative price in the long run.

These non-technology shocks are assumed to originate from demand side factors, and their

exact economic interpretation is beyond the scope of this paper. As a result, the relative

price is only affected permanently by disturbances to itself. It is these permanent distur-

bances to the relative price that will be interpreted as the IST shock. On the other hand,

hours are assumed to be permanently affected by both IST and non-technology shocks,

hence no restriction is placed on their long run responses. To achieve these restrictions, a

lower triangular structure is imposed on the cumulative structural response matrix.

Figure 6 presents the impulse responses to one standard deviation shocks from the model.

The solid lines represent the point estimate impulse responses, and the dotted lines are

65% confidence intervals obtained via a bootstrap on the reduced form residuals. The

figure shows that the IST shock identified in the model is contractionary with respect to

total hours in US Manufacturing. Hours are shown to decline on impact, and permanently

remain below the initial equilibrium. The contemporaneous decline in hours is in agreement

with the results in Basu et al (2010) and the first sample of Fisher (2006). Furthermore,

in comparison to the impact of a neutral technology shock (NTS) on hours, the impact

responses are similar, yet after a NTS hours recover to levels above initial equilibrium in
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the long run. I show the responses to a NTS in figure 7, where the NTS is identified from

labor productivity using similar identification restrictions as described above. Moreover,

the relative price increases after an IST shock as investment goods become cheaper rela-

tive to consumption goods. Afte a non-technology shock, the relative price is shown to

contemporaneously decrease but this response lacks statistically insignificance.

2.3.3 Labor Composition

In this section, I proceed to the primary focus of this paper, which is to study the effect of

an IST shock on the skill composition of manufacturing labor. This analysis is of special

interest partly because an IST shock can have two contrasting effects on the skill composi-

tion of labor. On one hand, it can improve the productivity or efficiency of skilled labor.

Berman and Griliches (1969) observed this phenomenon and formalized it as the capital-skill

complementarity hypothesis. It states that new capital and skilled labor are complements

rather than substitutes. Caselli (1999) builds up on this notion and describes such shocks

as skill-biased innovations. His view is based on the cost of adopting new innovations, and

if such costs are lower for skilled workers then the innovation is skill-biased. As a result,

the hypothesis asserts that new capital is more likely to be assigned to skilled workers, and

that an increase in capital should increase (decrease) the demand for skilled (unskilled)

labor14. On the other hand, it could also be that capital innovations may replace the need

for skill. If the adoption costs for a new capital innovation are lower for unskilled workers,

then the IST shock would be considered de-skilling and the demand for skilled labor will

not increase. From this empirical analysis, I will be able to determine which one of these

two ways defines the effect that the identified IST shock had on the skill composition in

the chosen sample.

Further motivation for focusing on labor composition lies both in pre-existing literature,

and in current evidence from the data showing a skill compositional shift in US Manufac-

14For recent discussions, see Greenwood and Yorukoglu (1997), Caselli (1999), Krusell et al. (2000), and
Lindquist (2005).
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turing, suggestive of a shift in labor demand patterns. The sample period in this paper

coincides with an era of great technical innovations in the US, particularly between 1958

and 1982 where key advancements regarding computer usage occurred15. The tendency of

firms to alter the proportion of skilled workers relative to unskilled workers, especially af-

ter the introduction of computers, is well documented16. Since unskilled workers generally

outnumber their skilled counterparts, particularly in the manufacturing sector, a shift away

from the former could yield a decline in total labor input, as observed in models studying

the response of hours to neutral technology shocks. Given that skilled labor employment

would be increasing, an observed decline in total labor input requires a careful deliberation

by researchers and policy makers. Berman et al. (1994) provide evidence for a composi-

tional shift in manufacturing for the 1980s in a data analysis exercise.

In figure 8, I present similar evidence, graphically, for the overall period of 1958-2009. The

figure displays log averages for three labor variables, workers, hours, and wages for across

459 US Manufacturing industries over time. The graphs on the right panel are for non-

production labor relative to manufacturing totals. Similarly, the left panel graphs are for

production labor relative to manufacturing totals. Non-production workers undertake ad-

ministrative, managerial, supervisory, marketing, research, and other skill-requiring duties,

whereas production workers perform assembling, packaging, warehousing, janitorial and

other duties up to the supervisory level. Consequently, these two variables are usable as

good proxies for skilled and unskilled labor, respectively. Their attractiveness as proxies

partly lies in the fact that they account for skill acquired via experience, rather than formal

education. This avoids the potential underestimation of skilled labor, and hence a biased

report on the resultant skill composition shifts. The graphs on the right panel in figure

8 exhibit an increasing trend in all the three variables for skilled manufacturing labor,

whereas all three variables for unskilled manufacturing labor have been steadily decreasing.

15Examples of such innovations include the development of UNIVAC computers, Intel computers, floppy
disks, FORTRAN programming language, Ethernet computer networking, IBM’s first consumer computer
and PC, and Microsoft Operating Systems with spreadsheet and word processor softwares.

16See Goldin and Katz (1998), Kahn and Lim (1998) and references therein for details.
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Two tasks emerge from these patterns; the first task is to determine empirically whether

this compositional shift is due to demand or supply forces, and secondly, whether an IST

shock can explain these patterns, which would simultaneously, determine if capital-skill

complementarity holds. Demand shifts would entail firms increasing demand for highly

skilled workers as production processes get sophisticated due to new capital innovations.

Regarding supply-side forces, it could be argued that post-war stability enabled workers

to pursue career ambitions, improve their skills via education and other forms of training

hence the overall labor force quality has improved. A mere look at the data seem to suggest

a demand shift. This is because skilled labor hours are shown to increase together with the

relevant wages. A supply-side force would require that wages for skilled labor be driven

down in response to the increase in the supply of skilled workers. An empirical analysis of

the impact of an IST shock on labor composition could simultaneously perform both tasks.

I begin with a bivariate SVAR, as in the preceding section, and then specifications with

additional types of technology shocks will follow.

For this exercise,I augment equation 19 into a three-factor production function where the

labor input is now decomposed into skilled (N s
t ) and unskilled (Nu

t ). The assumption that

firms only utilize a single capital augmenting technology is maintained. Additionally, rather

than assuming a Cobb-Douglas functional form, I follow Lindquist (2005) and Krusell et al.

(2000) and use a CES production function with varying elasticities of substitution between

the production input factors. This design is meant to allow for capital-skill complementarity,

as introduced above. The new function then becomes

Yt =
[
µ(Nu

t )σ + (1− µ)(λ(KtA
k
t )
ρ + (1− λ)(N s

t )ρ)
σ
ρ

] 1−α
σ
. (22)

The parameters µ and λ govern income shares. The parameter, σ, governs the elasticity

of substitution between unskilled labor and capital and skilled labor, whereas ρ governs

the elasticity of substitution between capital and skilled labor. In theory, capital-skill
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complementarity holds if ρ¿σ. The approach in this paper is to empirically determine if

changes in Akt also drive the efficiency in N s
t .

For empirical estimation, I redefine the variables in the original bivariate SVAR such that

∆xt = [∆Qt,∆Nt], where ∆Qt is the first log-difference of the relative price of consumption

goods to investment goods, and ∆Nt denotes the first log-difference of the skill-ratio (i.e.

the proportion of skilled labor hours to unskilled labor hours). To identify the IST shock, I

assume that the skill-ratio has no permanent effect on the relative price, only an IST shock

does. The impulse responses are presented in figure 9. Firstly, the relative price increases

after an IST shock, as per theoretical expectations, and secondly, both variables increase

after a positive shock to the skill-ratio, with the relative price returning to the initial equi-

librium as per the restriction, whilst the skill-ratio rises permanently. The increase in the

relative price could indicate an interesting mechanism between skill and capital innova-

tions. It could be that skilled labor, via research and development, engineering designs,

marketing strategies etc., leads to more improved innovations in capital hence the price of

vintage capital declines. Such a shock would be interpreted as a positive skill supply shock.

However, a positive shock to the skill-ratio could also occur when unskilled labor declines.

Meanwhile, after a positive IST shock, the skill-ratio declines on impact and immediately

recovers in a hump-shape. Similarly, this decline could be a result of an increase in unskilled

labor or a decrease in skilled labor17. In a single-technology model, these results do not have

significant innovative implications because the dynamics captured here could possibly be

attributed to missing variables. As a result in the following sections additional technology

shocks are accounted for, thus facilitating a comparison with pre-existing literature findings.

2.4 Multiple-technology Empirical Specification

In this section, I analyze the dynamic effect of an IST shock on the skill ratio, in a specifi-

cation where two types of technology shocks are identified. The second type is the neutral

17I specifically address this issue in a later section.
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technology shock, and it is denoted A∗t in the production function below

Yt = A∗t

[
µ(Nu

t )σ + (1− µ)(λ(KtA
k
t )
ρ + (1− λ)(N s

t )ρ)
σ
ρ

] 1−α
σ
. (23)

This technology is neutral in the sense that it improves efficiency in the production of both

capital and consumption goods, for both skilled and unskilled labor. Fundamentally, the

empirical estimation here could be viewed as a combined extension of the work by Fisher

(2006) and Ho (2008). Ho (2008) conducts a fixed effects approach where the ratio of

non-production workers to total workers is regressed on TFP, relative price of investment,

capital, time and industry dummy variables. He concludes that changes in IST increase

the demand for skilled labor while TFP has no effect. In the preceding single-technology

specification, the skill-ratio initially declines before rising to above equilibrium levels. This

offers substance to the argument for a need to explore dynamism in the IST shock effect,

which Ho’s approach misses. Additionally, his use of workers, rather than hours, could

potentially underestimate the change in the amount of effective labor input especially if

workers take on over-time hours in certain years. In my application, I use hours-worked,

and the SVAR methodology will extend his work to capture the dynamism of the IST

effect. Also, the data I use is extended and contains relatively more recent observations.

Meanwhile, Fisher provides assumptions for the identification of IST shocks in an aggregate

model with more than one technology shock. With that in mind, I perform a tri-variate

SVAR for the US Manufacturing sector consisting of the change in the price of consumption

relative to investment, ∆Qt, the change in the skill ratio, ∆Nt, and the growth of labor

productivity, ∆Yt, in that respective order.

For identification, I adopt Fisher’s two assumptions, i)that an IST shock is an additional

source of permanent disturbance to labor productivity, and ii) that ∆Qt is only affected

by an IST shock in the long run. Fisher makes an additional assumption that places a

numerical restriction on the effect of an IST shock on productivity, in this paper I omit it.
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I restrict labor productivity disturbances from affecting the skill-ratio, and allow the skill-

ratio to affect labor productivity, both being long-run restrictions18. The latter assumption

does not contradict the restriction in the bivariate model. The assumption here is that while

total labor input does not affect productivity in the long-run, the quality composition of

labor input should influence productivity. The structural moving average of the model, in

matrix form, is as follows,


∆Qt

∆Nt

∆Yt

 =


D(L)11 D(L)12 D(L)13

D(L)21 D(L)22 D(L)23

D(L)31 D(L)32 D(L)33



εqt

εnt

εyt

 , (24)

where the matrix D is the matrix of structural impulse responses over a selected horizon,

εqt denotes an IST shock, εnt denotes a non-technology shock, and εyt denotes a neutral

technology shock (NTS). It should be noted that εnt is a different non-technology shock

from the one identified in the previous section’s bivariate model. While both could include

supply-side disturbances in the labor market, the present one only refers to disturbances

that alter the proportions of skilled and unskilled labor, not the total. Also, while it is

assumed that changes in total labor input do not affect labor productivity in the long

run, changes in the quality of labor input should alter long run productivity. With the

ordering in 24, the model restrictions are easily attainable by imposing a lower triangular

structure on D(1), the long-horizon structural response matrix. As done in the previous

section, this structure is achieved via a Cholesky decomposition of the MSE(∞) resulting

in D(1)12 = D(1)13 = D(1)23 = 0.

2.4.1 Results

Figure 10 displays impulse response functions for the multiple-technology system presented

in equation 24. The graphs on the first row are responses to a IST shock (i.e. a one standard-

18For simplicity, I make an assumption that neutral technology shocks are both sector-neutral and skill-
neutral. Also, in a working paper, Balleer and Van Rens (2012) restrict productivity from affecting relative
hours in a national aggregate application.
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deviation shock to the price of consumption relative to investment). The graphs on the

second row are responses to a non-technology shock (a shock to the skill-ratio), and the last

row shows responses to a neutral technology shock (NTS). From the results, three points are

noteworthy. Firstly, the relative price increases both on impact and permanently providing

theoretical consistency of the identified shock. Secondly, the middle column shows that the

skill composition of labor responds differently, on impact, to the two types of technology

shocks in the system, hence the identified IST shock differs from a NTS. After a positive IST

shock, the skill- ratio drops on impact and then recovers, in a humped shape, to permanent

levels above the initial equilibrium. Meanwhile, a neutral technology shock yields a hump-

shaped increase in the skill-ratio, although, by definition, one would expect it to have no

effect. Thirdly, the effect of an IST shock on the skill-ratio changes over time, hence it can

be agree that this study was a necessary extension to Ho (2008). The IST shock effects on

the skill-ratio and labor productivity will partially determine the characteristic of the IST

shock during the period of 1958 − 2009. A skill-biased IST shock could offer support for

capital-skill complementarity, which would perfectly explain the data dynamics observed in

figure 8, i.e. that innovations of sophisticated capital induced the hiring (firing) of skilled

(unskilled) labor. Meanwhile, if the IST shock is shown to be de-skilling, then additional

avenues ought to be pursued to find a shock that explains the data. According to figure 10,

a positive IST shock initially reduces the skill ratio (on impact) while labor productivity

initially increases. Focusing on the impact responses, it can be said that the identified

IST shock altered the skill composition of labor in a way that increased productivity. This

could indicate a de-skilling effect of the shock. However, two points are noteworthy here;

firstly, the results from the current specification only have supply-side implications i.e.

they only show an initial increase in the supply of unskilled labor without any demand

side implications for a complete account; secondly, a decline in the skill-ratio could come

from changes in skilled or unskilled labor, hence concluding that the shock is de-skilling is

premature. The first point is addressed in a later subsection. Regarding the second point,

showing the response of unskilled labor would provide direct evidence on the presence or

absence of de-skilling, at least on the supply side.In the following subsection, I pursue this
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matter by including unskilled labor in my specification.

2.5 Testing for Capital-Skill Complementarity: Supply Side Test

2.5.1 Specification with Unskilled Labor

In the preceding subsection, I established that, on impact, an IST shock alters the skill-

ratio while increasing the overall productivity of labor. Specifically, it initially decreases

the skill-ratio, which could be from a decline in skilled labor or an increase in unskilled

labor. The former case presents a challenge because, while theoretically feasible, it seems

generally far-fetched in reality, particularly in an advanced and competitive economy as the

US. I argued earlier that skill can be obtained via educational advancements and internal

promotion. In the US, enrollment in formal educational institutions has been increasing

since the Great War, and this, supplemented by the significant turnover costs in firing expe-

rienced workers, makes a decrease in skilled labor unlikely in reality. Meanwhile, there is a

greater feasibility in seeing an increase in unskilled labor after an IST shock. Technological

advancements have generally simplified numerous tasks for both consumers and workers,

and its adoption costs have declined over time. Consequently, in this section I investigate

whether the estimated decline in the skill-ratio truly warrants a conclusion that the iden-

tified IST shock improved the productivity of unskilled labor. This would be reflected in

a contemporaneous increase in unskilled labor hours. Such findings would be in contrast

to the idea behind capital-skill complementarity, which views capital and unskilled labor

as perfect substitutes. As a direct supply side test, I include unskilled labor to the model

defined in the preceding section and study its response to an IST shock. For identifying

the shocks, I propose a triangular structure to impose long run restrictions. This entails

extending the assumptions already made and further restricting unskilled labor from af-

fecting any of the variables in the long run. Firstly, I restrict unskilled labor from affecting

the relative price as an extension of Fisher’s assumption that only an IST shock affects

the relative price. Secondly, I argue that wage adjustments will ensure that in the long

run the skill-ratio recovers from any imbalance caused by an increase in unskilled labor.

Specifically, an increase in unskilled labor will yield lower wages for the unskilled, hence for
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a better pay, workers will have to acquire skills (thus skilled labor will increase to offset the

imbalance). Lastly, I argue that long run productivity should not be affected by an increase

in unskilled labor. The short run increase in productivity will eventually be offset by the

reduced or stagnant level of innovations expected in a market infiltrated with unskilled

workers.

The results from this exercise are presented in figure 11. The skill-ratio still declines im-

mediately after an IST shock, but in the long run it returns to the initial equilibrium.

Also, in this model labor productivity appears to be unaffected by an IST shock on impact,

although the response is not statistically significant and it decreases eventually. Since the

responses of the relative price and the skill-ratio are consistent with previous specifications,

the identified shock is the same IST shock as identified before. Meanwhile, unskilled labor

increases contemporaneously after an IST shock, before dropping to levels below the initial

equilibrium. After a NTS, unskilled labor drops and recovers in a humped shape, as is

normally the case with labor input and neutral technology. The results from this specifi-

cation are consistent with the notion of a de-skilling IST shock, and offer no support for

capital-skill complementarity in US Manufacturing. The two key qualifying conditions are

that this is only on impact, and only demonstrated the supply side of the labor market.

2.5.2 Demand Side Test: Specification with the Skill Premium

The results obtained so far depict an initial de-skilling effect of the IST shock. However, as

pointed out above, they are mainly from the supply side of the labor market, i.e. they have

only shown that after an IST shock the supply of unskilled labor increases. For an all-round

demonstration of a de-skilling effect, I would have to provide evidence that the demand for

unskilled labor also increases after the shock. This can be done via the study of the wage

patterns after the shock. As a result, I incorporate the skill premium into my specification.

This is defined as the wage ratio for skilled and unskilled workers, and its business cycle

behavior patterns have been linked to skill-biased technology shocks. This can be seen,
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for the aggregate production function, in papers such as Katz and Murphy (1992), Autor,

Kratz and Krueger (1999), Krusell et al. (2000), Acemoglu (2002). For sectoral production

functions, notable papers to have modeled skill premium include Kahn and Lim (1998),

and Berman et al. (1994). The effect of an IST shock on the skill-premium also serves

as a more direct test for capital-skill complementarity as well. Recently, Lindquist (2005)

designed a dynamic general equilibrium model that allows for capital-skill complementarity,

and found that it explains business cycle fluctuations in the skill premium better than a

model without capital-skill complementarity. He thus concluded that this complementarity

is an important factor for wage inequalities over the business cycle.

In this paper, the wage patterns displayed in figure 8 also call for a consideration for wages

in my empirical specifications. In testing for capital-skill complementarity, I observe the

dual effect of a positive IST shock on both the skill-ratio and the skill premium. An increase

in the skill premium after an IST shock signifies both skill-bias and capital-skill comple-

mentarity. An increase in both variables after the shock would be indicative of a presence

of capital-skill complementarity, whereas a decrease in the skill premium offers no support

for capital-skill complementarity. Additionally, Lindquist(2004) argues that capital-skill

complementarity tends to produce a pro-cyclical (increasing) skill premium, thus empha-

sizes that a skill premium decline offers no evidence of capital-skill complementarity. The

relationship between the skill premium and the input factors can be seen by taking first

order conditions for equation 23, which yields the following expression for the wage ratio19

W s
t

W u
t

=
1− µ
µ

(1− λ)
σ

ρ

[
λ(AktKt)

ρ + (1− λ)(N s
t )ρ
]σ−ρ

ρ

(
Nu
t

N s
t

)(1−σ)

, (25)

and taking the logs yields

log

(
W s
t

W u
t

)
=
σ

ρ

1− µ
µ

(1− λ)
σ − ρ
ρ

log
[
λ(AktKt)

ρ + (1− λ)(N s
t )ρ
]

+ (1− σ)log

(
Nu
t

N s
t

)
.(26)

19The full derivation is presented in Appendix A.



56

Based on the expression above, my specification includes the relative price, the skill-ratio

and the skill premium. Under capital-skill complementarity, Akt would increase the skill

premium since in that case σ > ρ would hold. Given the nature of the raw data in this

paper, I compute the skill premium as the ratio of wages per worker for skilled and unskilled

workers. This controls for any increase in wages resulting from an increased number of

workers.

Figure 12 presents the responses of the relative price, skill-ratio and the skill premium to an

IST shock. As in preceding subsections, emphasis will be placed on the impact responses

of each variable. It can be seen in the figure that the skill premium drops in response to an

IST shock, as does the skill ratio. This offers evidence against capital-skill complementarity

in US Manufacturing. Importantly, since the skill premium represents a schedule for the

demand for skill, its decrease signifies a decline in the demand for skilled labor relative to

that of unskilled labor. Thus it can be stated that the drop in the skill-ratio, on impact,

is not merely due to an increase in the supply of unskilled labor, but also in its demand.

Whilst this offers support for a compositional shift in labor demand, it is the reverse of

what is shown in figure 8. Furthermore, even with the inclusion of the skill premium, the

initial de-skilling effect of an IST shock remains.

2.5.3 Discussion

The results and conclusions draw so far are all based on impact results. Often, not much

emphasis is placed on impact responses, but since this study uses annual data, impact

responses ought to be given attention. For instance, the contemporaneous declines in the

skill-ratio observed here lasts for approximately two years, which is a substantially long

horizon and one that cannot be ignored. The key question to ask is whether the results

warrant a conclusion that the IST shock identified in this paper does drive the labor patterns

observed in US Manufacturing data between the period 1958 − 2009? It seems that this

could be a strong conclusion. The patterns in the data exhibit a long-run trend, and we saw

that at longer horizons, the identified IST shock perfectly fits the data patterns. Therefore,

a balanced conclusion would be that the IST shock in this paper is able to explain the data
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in the long run, but in the short run it fails to match the data patterns observed.

2.6 Robustness Check: a skill-biased shock from the skill premium

The failure of the identified IST shock to explain the data in its entirety implies that

there might be a distinction between a sector-biased technology shock and a skill-biased

technology shock, especially in the short term. It leaves open the task to identify a perfectly

skill-biased technology shock. In pursuit of this goal, I revisit the growth model in Kahn

and Lim (1998), in which they separately identifies efficiency parameters for each input

factor as follows

Yt = A∗tF (KtA
k
t , N

u
t , N

s
t A

s
t ). (27)

According to the interpretation in Kahn and Lim (1998), each A variable represents an

increase in effective input per physical unit, thus As for example, is the effective input per

skilled worker. The original paper does not specify the functional form attached to the

production function, here I incorporate the CES as done in previous sections. The outcome

is

Yt = A∗t

[
µ(Nu

t )σ + (1− µ)(λ(KtA
k
t )
ρ + (1− λ)(N s

t , A
s
t )
ρ)

σ
ρ

] 1−α
σ

(28)

where A∗t and Akt are still neutral and investment-specific technology shocks, respectively.

Taking the first order conditions yields the following equation for the skill premium

W s
t

W u
t

= (1− λ)
1− µ
µ

σ

ρ

[
λ(AktKt)

ρ + (1− λ)(AstN
s
t )ρ
]σ−ρ

ρ
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(
Nu
t

N s
t

)(1−σ)

. (29)

The expression above can be viewed as a demand schedule for skill. The parameter of

interest is Ast , which will be interpreted as a skill-biased technology shock. I will identify

Ast in a VAR setting where I will use sign restrictions to control for other sources of an

increase in the skill premium. It can be seen that an increase in the skill premium can come

from capital increases, a decrease (increase) in the supply of skilled (unskilled) labor, and
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from an increase in Ast . The first source is controlled for by the inclusion of the relative

price in the model, and due to the findings in this paper showing that the IST is de-skilling,

this also controls for the increase related to unskilled labor. What is left to control for is

the increase in the supply of skilled labor. To this end, I specify a four-variable SVAR

model consisting of the relative price, the skill-ratio, the skill premium, and skilled labor.

I identify Ast from the skill premium by imposing the restriction that a shock to the skill

premium should affect the skill premium and skilled labor in the same direction. This

ensures that the observed skill premium hike is not due to a reduction in the supply of

skilled labor.

2.6.1 Sign Restrictions

The sign restrictions will be imposed on the matrix of long run structural responses, since

they are intended to be in the long-run. The procedure is as follows; I first obtain an initial

estimate for the matrix B0 defined in section 3.2, and here I denote it R. One such credible

estimate could be a Cholesky decomposition of the (MSE(∞)). Note that R is only just

one of many possible decompositions of the (MSE(∞)) to obtain B0 with the intended

structural restrictions. Different rotations of R via selections of an orthonormal matrix,Q,

will impose the same restrictions. There are two commonly used methods to obtain Q, and

they have been shown to equally perform well. One is the Householder approach which

relies on randomly selecting a square matrix from a standard normal distribution, and us-

ing the QR decomposition until RQ satisfies the intended restrictions. The second method

is the Givens Rotation which rotates R using the rotation matrix,

 cos(θ) −sin(θ)

sin(θ) cos(θ)

,

until the rotations sought after in RQ are satisfied. The Givens rotation matrix satisfies the

orthonormal requirement by relying on the fact that cos2(θ) + sin2(θ) = 1. In this applica-

tion I adopt the Givens rotation method to impose opposing signs on the responses of labor

productivity and unskilled labor to a NTS. As a technical rule of thumb, to rotate an n

x n matrix R, the orthonormal matrix Q is obtained as the product Q = Q1xQ2x......xQk,

where k = n(n−1)
2 . Each Qi is an nxn identity matrix rotated using by the geometric rota-
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tion matrix given above. For instance, the sign restrictions in the current application are

placed on the bottom-right 3x3 sub matrix for R, therefore the final rotation matrix will

be given by Q = Q1xQ2xQ3 where Qi, for i = 1, 2, 3 are as follows,

Q1 =


cos(θ1) −sin(θ1) 0

sin(θ1) cos(θ1) 0

0 0 1

 , Q2 =


1 0 0

cos(θ2) −sin(θ2) 0

sin(θ2) cos(θ2) 1

 and

Q3 =


cos(θ3) 0 −sin(θ3)

0 1 0

sin(θ3) 0 cos(θ3)

 .

The values for θi are unique for each Qi, and are randomly selected from a grid [0, π],

where the number of values in the grid is selected subjectively. Any Q for which RQ fits

the restriction criteria is kept, and one that does not fit is discarded. Impulse responses

are then calculated using each fitting RQ, and the median impulse responses are reported.

The results from this exercise are shown on figure 13. The reported solid lines represent the

median impulse response functions from the draws that were consistent with the restrictions,

and dotted lines are the 16th and 84th percentiles. The results seem to only show partial

evidence of At being a skill-biased technology shock. Firstly, the impact responses to an IST

shock in this model are consistent with my earlier findings. The relative price increases, the

skill-ratio and the skill premium both decline, and so does skilled labor. These emphasize

the initial de-skilling effect of an IST shock. Secondly, the skill premium shock identified

here increases both the skill premium and skilled labor. Importantly, not only is this seen

on impact, but also over infinite horizons. On its own, this can be evidence of a completely

skill-biased technology shock. The interpretation is that the identified shock increased both

the supply and the cost of skilled labor, hence signifies an increase in the demand for skilled

labor. However, the only concern is the negative effect that this skill premium shock has
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on the skill-ratio, as produced by this model. If it was a truly skill-biased shock, we would

expect it to increase the skill-ratio as well. Otherwise, this shock could have originated

from the denominator of the skill premium i.e. an a reduction in unskilled wages from an

increase in the supply of unskilled labor. A potential correction for this would be to add

skilled wages and unskilled labor to the model, and impose additional sign restrictions such

that a skill premium shock should affect the skill premium, skilled labor, and skilled wages

in the same direction, while it affects unskilled labor with an opposite sign. An attempt

at this correction for the current version of the paper proved costly both in terms of time

and computer memory. A six-variable VAR requires 15 rotation matrices, and if M is the

number of points in the [0, π] grid, then the number of possible combinations is M15. For

a reasonably sized grid, this proved to be an effective restraint. Thus the robustness check

exercise remains inconclusive for the current version of this publication.

2.7 Conclusion

In this paper, I analyzed the effect of an investment-specific technology shock on the skill

composition of labor in US Manufacturing for the period 1958 − 2009. Studies of the

effect of an IST shock on total hours have already been done in the literature, hence the

contribution of this paper was the analysis of the dynamic effect on the composition of labor

for the chosen sample. The motivation lay in the labor compositional shifts observed in US

Manufacturing data, and the goal was to determine if investment-specific technical changes

can explain the compositional demand shifts. The demand shifts observed in the data

could prove useful in explaining the decline in total hours often observed after productivity

improvements. The intuition is that firms have been increasing (decreasing) their demand

for skilled (unskilled) labor, and since there are relatively more unskilled workers, this gets

projected as a decline in total hours. Therefore, an improved understanding of the forces

behind the compositional shifts are useful. An investment-specific shock was of interest in

this regard due to its two possible contrasting effects on labor composition. Through a series

of SVAR specifications, I found that an IST shock tends to lower the skill-ratio, seemingly

by increasing the productivity of unskilled labor. I showed that this led to an increase both



61

in the demand and supply of unskilled labor. However, since the data was of low frequency,

strong emphasis was placed on the contemporaneous responses. Thus the results in the

paper can be taken as providing evidence that the identified IST shock is de-skilling in

the short-run, but then tends towards skill-bias in longer horizons. Simultaneously, this

implies that the capital-skill complementarity concept likely takes time to come into effect.

As a robustness check an attempt was made to identify a technology shock that would

be skill-biased throughout the entire horizon. This was a technology shock from the skill

premium identified via a sign restriction VAR, and it yielded inconclusive results. While it

increased the skill premium and skill supply throughout the specified horizon, it lowered the

skill-ratio the entire horizon. One challenge with the skill premium shock is the inability

to give it a concrete economic interpretation, otherwise it remains a latent factor.
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2.8 Appendix A: A partial equilibrium growth model

Below is a simplified theoretical framework for the aggregate manufacturing sector. At time

t, industries use capital and labor as inputs to produce output, Yt. While it is common

practice in the literature to model two types of capital namely, structures and equipment,

I will only focus on equipment capital in this setting, and denote it by Kt. This is done

because ISTC is largely associated with the production of equipment capital rather than

structures, hence omitting the latter facilitates costless simplicity. Furthermore, I will divide

labor input into two broad categories, skilled and unskilled labor. Different variations of

such growth models often include intermediate inputs, but since the empirical section in

this paper will use value-added output, their omission here is justified. Industries produce

output Yt using the following CES production function, as in Lindquist (2005), Krusell

et al. (2000) and Kahn and Lim (1998);

Yt = A∗t

[
µ(Nu

t )σ + (1− µ)(λ(KtA
k
t )
ρ + (1− λ)(N s

t )ρ)
σ
ρ

] 1−α
σ
, (30)

where A∗t denotes neutral technology, while N j
t , for j = s, u, denote skilled and unskilled

labor input, respectively. Investment Specific Technology is represented by Akt .

This functional form is to enable capital-skill complementarity. The parameters, σ and ρ

above govern the elasticity of substitution between unskilled labor and capital and skilled

labor, and between capital and skilled labor. The function is designed to allow capital skill

complementarity, as in Krusell(1998). Each industry faces production costs in the form

of capital rent, rt, wages for unskilled labor, W u
t , and wages for skilled labor, W s

t . The

industries are assumed to participate in competitive markets and hence face market wages.

Also, under free capital mobility assumption, rent is market based. Given output prices,

Pt, each industry’s optimization problem can be expressed as follows:

Max
Kt,Ns

t ,N
u
t

PtA
∗
t

[
µ(Nu

t A
u
t )σ + (1− µ)

(
λ(KtA

k
t )
ρ + (1− λ)(N s

t A
s
t )
ρ
)σ
ρ

] 1−α
σ −rtKt−W u

t N
u
t −

W s
t N

s
t .(31)



63

The first order conditions for optimality imply that the input cost for each factor of pro-

duction equals the marginal product, as seen below:

rt = Zt(1− µ)
(
λ(AktKt)

ρ + (1− λ)(N s
t )ρ
)σ−ρ

ρ
(Kt)

ρ−1λ(Akt )
ρ (32)

W s
t = Zt

σ

ρ
(1− µ)

[
λ(AktKt)

ρ + (1− λ)(N s
t )ρ
]σ−ρ

ρ
(1− λ)(Nt)

σ−1, (33)

W u
t = Ztµ(Nu

t )σ−1 (34)

where we have that

Zt = PtA
∗
t

1− α
σ

[
µ(Nu

t )σ + (1− µ)(λ(KtA
k
t )
ρ + (1− λ)(N s

t )ρ)
σ
ρ

] 1−α−σ
σ

(35)

From the above, we can express skill premium as follows:

W s
t

W u
t

= (1− λ)
1− µ
µ

σ

ρ

[
λ(AktKt)

ρ + (1− λ)(N s
t )ρ
]σ−ρ

ρ

(
Nu
t

N s
t

)(1−σ)

. (36)

Note that
(
Ns
t

Nu
t

)(σ−1)
=
(
Ns
t

Nu
t

)σ (Nu
t

Ns
t

)
=
(
Nu
t

Ns
t

)−σ (Nu
t

Ns
t

)
=
(
Nu
t

Ns
t

)1−σ

Taking logs yields the following expression for the skill premium,

log

(
W s
t

W u
t

)
=
σ

ρ

1− µ
µ

(1− λ)
σ − ρ
ρ

log
[
λ(AktKt)

ρ + (1− λ)(N s
t )ρ
]

+ (1− σ)log

(
Nu
t

N s
t

)
.(37)

This equation can loosely be interpreted as a demand schedule for skill, and it is shown

to depend on the supply of skilled and unskilled labor, capital and the accompanying

technology parameter. In particular, the skill premium qualitatively decreases with an

increase in the supply of skilled labor, and the opposite is true for unskilled labor.
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Figure 6 – Responses in a Single-Technology Model: an IST shock and Total Hours
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*The solid lines are point estimate impulse responses, and dotted lines are 65% bootstrap confidence intervals.
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Figure 7 – Responses in a Single-Technology Model: Neutral Technology Shock and Total
Hours
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Figure 8 – Labor Averages Across Sectors:
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Figure 9 – Responses in a Single-Technology Model: an IST Shock and the Skill-ratio
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Figure 10 – Responses in a Multiple-Technology Model
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Figure 11 – Specification with Unskilled Labor:
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Figure 12 – Specification with the Skill Premium:
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Figure 13 – Specification with sign restrictions:
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3 Chapter 3

Evaluating Inflation Targeting Based on the Distribution

of Inflation and its Volatility (with Dr. E. Maasoumi)

Abstract

In this paper the Financial Development Index (FDI) is used to rank 57 of the world’s

leading financial systems. Its calculation is based on the following 7 economic pil-

lars: (1) Institutional environment,(2) Business environment, (3) Financial stability, (4)

Banking financial services, (5) Non-banking financial services, (6) Financial markets,

and (7) Financial access. Pillar (4) is constructed from bond markets, stock markets,

foreign exchange markets, and derivative markets. Pillar (5) includes a country’s IPO

activity, namely the IPO market share, IPO proceeds amount, and IPOs share of world

IPOs. The stock market index provides a short-term account of financial activities,

whereas the FDI provides a long-term broader account of the financial structure and

health of an economy. As the performance and success of a given monetary policy would

less likely be judged on short-term dynamics, it seems sensible to use the annual FDI

as one of several economic and country attributes in a policy evaluation of Inflation

Targeting. The paper offers a potential outcomes analysis of the impact of inflation

targeting on inflation and inflation volatility, and focuses on advanced economies that

adopt “inflation targeting” as a formal monetary policy. In order to deal with the coun-

terfactual question, namely what would be the inflation rate for an adopting country

had it not adopted this policy, the paper offers a new matching technique that subsumes

the traditional Propensity Scores methods as a special case. The paper has different

proposals for assessing “matching” based on the whole distribution of any “scores”. Ad-

ditionally, the paper goes beyond the Average Treatment Effect (ATE) and examines

the entire distribution of inflation and its “variability”. It is found that the adoption

of Inflation Targeting has helped lower inflation (not just the mean) for the targeting

countries. However, it is shown that exact numerical quantification of this policy effect

is as highly subjective as choosing ideal social welfare functions. The paper also finds

no evidence of a larger gain for “late adopters” of inflation targeting. As for inflation

variability, there is some robust evidence of small and often statistically insignificant

reduction in variability due to targeting.
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3.1 Introduction

The potential effect of Inflation Targeting as a policy tool has been examined in a number

of studies with the “average” impact on inflation being the main focus. In this paper, we

examine the impact of targeting as a potential outcome, compared with the counterfactual

outcome: what would be the inflation rate for the adopting country had it not adopted

inflation targeting. We follow the general technique of “matching”. This requires identifi-

cation of one or more countries that are non-adopters, but with substantially identical or

similar characteristics. The latter are well known multiple indicators that form a condition-

ing variable set in the literature for treatment effects, and Propensity Scores (PS) approach

popularized by Rosenbaum and Rubin (1983).

This is a classical multiple indicator problem, an indexing puzzle, that does not seem to

have been fully developed as such. To put it succinctly, how does one“represent” an econ-

omy with a single index based on multiple indicators of characteristics? Propensity Scores

method is shown here to be a special “statistical” solution that obtains a [0; 1] score for

each country and “interprets” these scores as treatment “probabilities”. We show that this

interpretation is somewhat arbitrary, and the same set of multiple indicators are capable

of producing very different “scores”, statistically or otherwise.

One of the main indicators in this paper is the Financial Development Index (FDI). At-

tempts to measure financial development in an economy can be seen in works as early as in

Von Furstenberg and Fratianni (1996), who proposed the use of spreads between returns on

investments and savings. Currently, the World Bank and others combine various economic

attributes to rank 57 of the world’s leading financial systems. Its calculation is based on

the following 7 economic pillars: (1) Institutional environment, (2) Business environment,

(3) Financial stability, (4) Banking financial services, (5) Non-banking financial services,

(6) Financial markets, and (7) Financial access. Pillar (4) is constructed from bond mar-

kets, stock markets, foreign exchange markets, and derivative markets. Pillar (5) includes
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a country’s IPO activity, namely the IPO market share, IPO proceeds amount, and IPO

share of world IPOs. It would seem that the stock market index provides a short-term

account of financial activities, whereas the FDI provides a long-term broader account of

the financial structure and health of an economy. As the performance and success of a given

monetary policy would less likely be judged on short term dynamics, it seems sensible to

use the annual FDI as one of several economic and country attributes in a policy evaluation

of Inflation Targeting based on “matching” techniques.

The first formal adoptions of inflation targeting as a significant monetary policy date back

to about two decades. Advocated benefits of this policy include increased transparency,

credibility, and accountability by the monetary authority. Brash (2002), and Schmidt-

Hebbel and Tapia (2002) discuss the experiences of the pioneers of inflation targeting, New

Zealand and Chile, regarding these benefits. Additionally, this policy is widely credited

as a major contributor to lower inflation experiences of the same time period. But formal

empirical studies evaluating its absolute and relative performance have produced mixed

results. Ben S. Bernanke and Adam S. Posen (2002) refer to this consequential conundrum

as the Inflation Targeting Debate, and the issue remains unresolved. Although there has

been a general consensus that countries with a formal inflation targeting policy framework

(henceforth Targeters) have experienced a downward trend in their inflation levels, a sim-

ilar trend has also been observed amongst individual countries without a formal inflation

targeting policy (henceforth Non-Targeters).

The challenge of identifying and isolating this policy effect is thus well suited to the

potential-outcome paradigm, based on matching/propensity scores, selection bias and treat-

ment effect regressions, differences-in-differences, as well as the traditional “structural mod-

els” approaches. An example is Ball and Sheridan (2003) whose difference-in-differences

approach, controlling for initial inflation levels, produced no significant impact of inflation

targeting on inflation levels. This led the authors to conclude that the observed downward

trend is not necessarily due to policy changes but could merely be attributed to regression
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to the mean.

Following this attempt, Vega and Winkelried (2005), and Lin and Ye (2007), among others,

applied a treatment effects approach to control for the potential problem of selection bias

that was ignored in Ball and Sheridan (2003), and estimated the “average effect” of inflation

targeting. Vega and Winkelried (2005) used a matched difference-in-difference estimator

for 109 countries (23 of whom were Targeters) and found that Targeters had lower inflation

levels relative to Non-Targeters. However, care should be taken in interpreting their findings

because the authors increased the original sample size by including countries with greatly

varying characteristics, with its attendant impact on the quality of matched Targeters and

Non-Targeters . When Lin and Ye (2007) limited their sample size to only 22 developed

economies (7 Targeters) they found no significant “average effect” of inflation targeting.

This paper extends the prior examinations in a number of ways: We offer an extended

method of “matching” which goes beyond the Propensity Scores and subsumes it. We offer

multiple indicator indices that are “ideal” in a certain strong sense, as ideal aggregators.

These aggregate indices are completely new and subsume the FDI and other financial in-

dicators enumerated above. Secondly, we emphasize the distribution of inflation outcomes,

both for targeters and the counterfactual, based on their matched “non-targeters”. Also,

acknowledging the possibility of longer term consistency of a policy regime, this study sepa-

rates the Targeters into three groups: Late Targeters (those who have had five to ten years

of targeting), Early Targeters (with ten or more years of targeting), and an “overall” which

includes all targeters for any lengths of time.

Finally, we reveal a range of “average treatment effects” that are supported by the extended

matching technique, making it clear that numerical quantification of inflation rate effects is

more challenging and subjective than identifying a direction of change. The distributional

approach lifts the “veil of ignorance” associated with focusing on mean effects, and the
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extended matching technique is capable of identifying robust or fragile inferences.

The information theoretic basis of our extended matching methodology was first introduced

in Maasoumi and Eren (2006). Information theory is relied upon since it offers very attrac-

tive measures of diversion and distance between entire distributions. Our approach is able

to provide a consistent view of the distances between entire distributions of inflation rates,

including a view of the mean effects that helps direct comparison with the prior literature.

We find that the adoption of Inflation Targeting has helped to lower and stabilize inflation

(not just the mean) for the targeting countries. But it is shown that statistical significance

and exact numerical quantification of this policy effect is fragile, and as highly subjective as

picking ideal social welfare functions! We also find no evidence of a bigger gain for “early”

adopters of inflation targeting.

The rest of the paper proceeds as follows: the second section discusses the treatment effect

methodology and the data used in this paper. The results from the treatment effect proce-

dure are presented in Section 3. The fourth section performs a multiple period differences-

in-differences exercise to investigate any possible contribution of regression to the mean.

Section 5 considers the treatment effect of targeting on inflation variability. Sections 6 gives

an analysis of the entire distributions of inflation, with Section 8 looking at the “distances”

between the distribution functions of inflation rates. Section 7 provides some numerical

evidence supporting ideal weights and entropy divergence parameters. Section 9 concludes.

3.2 Methodology and Data

In this paper “treatment“ received or the policy event is the formal and announced adoption

of an inflation targeting monetary policy by the central bank of a country, and the outcome
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will be the level of inflation (and later its variability over time). To put this in perspective,

let Y 1
it be the potential outcome for country i that is considered to be a Targeter at time

t, and let Y 0
it be the potential outcome for the same country i without being a Targeter at

time t. Let W = 1 indicate that inflation targeting was formally adopted, and W = 0 indi-

cate the opposite case. Lastly, let X be a set of multiple observable characteristics for each

country. In this study the set is selected based on both theory and previous studies and

it consists of the following variables: the first lag of inflation (past inflation), the growth

of money supply, trade openness, an indicator of financial development, deviation of real

GDP from its trend, government spending as a percentage of real GDP, a dummy variable

for membership in the EU, and another dummy variable for prior use of a fixed exchange

rate as a monetary policy regime.

Our initial goal is to estimate the conditional average treatment effect of the formal adoption

of inflation targeting on the Targeters (ATT). This entails comparing the average outcome

of the Targeters under inflation targeting (Y 1
it |W = 1) and the potential outcome of the

Targeters had they not adopted inflation targeting (Y 0
it |W = 1). The counterfactual is a

missing observation, that is (Y 0
it |W = 1) is unobservable. Under certain assumptions (see

below), the treatment effect estimated is given by;

ATT = (Y 1
it |W = 1, X)− (Y 0

it |W = 1, X) (38)

= (Y 1
it |W = 1, X)− (Y 0

it |W = 0, X) (39)

The reliability of the obtained estimates depends on a high level of similarity in the char-

acteristics of the matched Targeters and Non- Targeters. To see clearly how this works one

ought to first conceive the adoption of inflation targeting in a randomized experiment and

examine certain key assumptions well known in the literature such as the following:

i) If X is a sufficiently rich set of observable characteristics that predict a country’s adop-
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tion of inflation targeting then the probability of adoption is independent of the potential

outcomes i.e.

W = 1

= 1 ⊥ Y 1
it , Y

0
it |Xi.

This is known by various names including conditional independence, selection on observ-

ables, or unconfoundedness.

ii) For every value of the observed characteristics each country has a positive probability

of adopting inflation targeting, i.e. 0 < prob(W = 1|Xi) < 1. This is known as the overlap

assumption.

iii) An additional condition for increased matching accuracy is a significant overlap

between the characteristics of the matched Targeters and Non-Targeters. Such an overlap is

referred to as common support and it ensures that the matched entities exhibit substantial

similarities. It is often achieved via eliminating the entities (countries) with treatment

probabilities/scores very close to either one or zero.

Propensity scores may be used in a number of ways. Rosenbaum and Rubin (1983) showed

that conditioning on the propensity scores rather than the raw observables satisfies the

second assumption above as well i.e. 0 < prob(W = 1|e(Xi))¡ 1 where e(Xi) is the propen-

sity score. But entities may be matched directly based on several different measures of

“closeness” between their propensity scores.

3.2.1 Matching

As stated above, maximizing the similarity between the treated and the counterfactuals is

a crucial step. This paper pays additional attention to the concept of “matching”. Propen-

sity Score matching has been the standard method, as in Vega and Winkelried (2005) and

Lin and Ye (2007). The principal challenge here is a multidimensional comparison of two

entities based on dimensions of observed X. This is a large subject matter outside of the
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treatment effect literature which appears to have been ignored within the PS literature.

For a latest example for developments and challenges in multidimensional characterizations

see Decancq and Lugo (2013). These challenges concern the questions of what weights are

appropriate for each dimension, what degree of relationship (substitution or complemen-

tarity) exists between different dimensions, the interplay between the latter two questions,

and heterogeneity among population members, among others. We will see shortly that PS

is a relatively narrow ”aggregation” technique that addresses these questions, implicitly,

and non-optimally. We propose a decision theoretic mechanism for selecting the ”aggrega-

tor” functions that include PS, especially the linear index model favored in much of the PS

literature. Essentially this is an aggregation or “Score” function which takes the form of a

generalized hyperbolic mean:

Si = (
m∑
j

αjX
−β
ij )

−1
β , β 6= 0, (40)

where the weights placed on each covariate must sum to one, for example αj=
1
nx

, with nx

being the number of elements in X. β is the substitution parameter, and is also related to

entropy measures. We note that generalized geometric mean (”Cobb-Douglas”) is a special

case when β = 0.

This aggregator function was developed by Maasoumi (1986) as an ideal composite of several

dimensions that characterize an entity, be it an individual, a country, or a household. Its

derivation comes from minimizing, with respect to S, the following Multivariate Generalized

Entropy measure of closeness and affinity between the whole distribution of the aggregator

S, and the distributions of all of its constituents, the several dimensions in X:

Dβ(S,X;α) =
m∑
j=1

αj{
n∑
i=1

Si[(
Si
Xij

)β − 1]

β(β + 1)
} (41)

Since all of the objective information about a variable is summarized by its distribution,
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no other aggregation score can be more efficient than S. The S functions cannot be beaten

based on objective data-based criteria. But there is no a priori strong rule for selecting

parameter values such as the “weights” (α), or the substitution parameter (β). Maasoumi

(1986) provides a discussion of the axioms that underly measures of divergence and en-

tropies. But, as discussed in Granger et al. (2004), there is a special place for β = −1/2,

as it is the only measure that is also a metric, and therefore especially suited for the type

of “distance” assessments that are made for matching exercises where the triangularity

rule must be satisfied. Below, we report results based on select values of the unknown

subjective parameters. In addition, in section 7 we briefly report on a numerical search

method to find the minimum of the criterion function (4) over a fine grid of values for β

and α. Interestingly, we find β = −1/2 is also the “optimum” value! Estimation of these

deep preference parameters must be viewed with caution. They are subjective and likely

as divergent as social preference functions.

Maasoumi and Eren (2006) apply the generalized hyperbolic mean to data from Dehejia and

Wahba (2002) to estimate the treatment effect of participation in the National Supported

Work Demonstration on real earnings in 1978. They assessed its matching performance

over a range of values for the weights and substitution parameter (based on the Kullback-

Leibler measure of divergence between entire distributions), and compared it to propensity

score matching. The fragility of inferences is made amply clear for the treatment effect, as

is the arbitrariness of the PS method, especially when based on the probit/logit of a linear

index of X. It helps to see the relationship between the S scores and the traditional PS:

Note that at β = −1, the S function is linear. Suppose that at this value, we implement

a probability transform with a CDF function, such as the Normal or Logistic, to obtain

scores in the range [0, 1]. This is what probit and logit methods in effect do, in addition to

conducting a maximum likelihood search for the “best” values of the α coefficients. While

ML estimated coefficients are optimal in a certain statistical fit sense, it is not clear in what

way they may be “optimal” as international consensus weights for the relative “value” of
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each component of the economy characteristics included in X! Further, the attribution to

the PS so estimated as “the probability of treatment” is not within the realm of objective

scientific examination. It is a paradigm assumption. In our empirical work here, we consider

the probability transforms of S functions, with and without estimated α values from a

regression, to allow direct comparison and to place in context the PS assessments.

3.2.2 Data and Empirical Analysis

The data used in this study is a panel of 30 countries all described as advanced economies

by the IMF. The data is annual and ranges from the year 1980 to 2007. The end date was

chosen to avoid the global economic instability triggered by the financial crisis. Our panel

differs from that used by Ball and Sheridan (2003), and Lin and Ye (2007) in that it provides

for more observations since it has slightly more countries and covers a relatively longer time

period. It also differs from that of Vega and Winkelried (2005) in that it has countries that

are relatively less different in terms of economic status. The period of “great recession”

since 2008 is characterized by fear of deflation and high unemployment, with aggressively

expansionary monetary policy. In this environment, it would be difficult to designate any

of the major countries as targeting inflation, notwithstanding prior designations. Including

data for post 2008 period would challenge identification of the policy effect we are aiming

to isolate.

The growth of annual Consumer Price Index (CPI) is used as a measure of inflation, and

broad money is used to measure money supply (these two variables were obtained from the

IMF’s International Financial Statistics). Real GDP per capita, government spending, and

trade openness were all obtained from the Penn World Tables, whilst the Financial Develop-

ment Indicator was obtained from the World Bank’s World Development Indicators. Data

on EU membership and fixed exchange rate regime was obtained from individual central

bank websites and from the official European Union website. As for the adoption dates for

Targeters, we follow Ben S. Bernanke and Adam S. Posen (2002), Ball and Sheridan (2003),

and Lin and Lin and Ye (2007) who use the year of the first quarter in which an official

target was announced. These dates coincide with those collected from individual central



82

bank websites as well. Two countries adopted and later dropped inflation targeting. These

are Finland and Spain who both joined the European Monetary Union.
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Table 7 – Summary Statistics:

Country IT Inflation Trade Financial Dev’t Money Growth Govt. Spending GDP

Australia 1994 4.81 36.56 63.88 0.22 13.43 26429

Austria - 2.81 79.37 92.24 0.17 12.75 27381

Belgium - 3.11 142.93 55.96 0.28 15.67 25726

Canada 1991 3.77 63.94 108.65 0.38 14.74 27291

Cyprus - 4.26 105.93 150.93 0.16 12.64 16501

Denmark - 3.81 76.87 75.23 -1.02 19.05 26061

Finland 1993-97 3.86 62.99 65.70 0.21 17.54 23028

France - 3.83 47.47 90.62 0.08 17.39 24170

Germany - 2.23 55.90 97.49 0.57 13.05 25472

Greece - 11.87 50.31 44.44 -0.05 14.33 19051

Hong Kong - 4.4 266.16 149.01 0.14 4.17 27944

Iceland 1992 16.52 71.68 76.07 0.17 17.01 27924

Ireland - 5.41 130.84 78.05 -0.05 11.58 22993

Israel 1992 50.76 73.59 70.59 -0.69 26.13 18909

Italy - 6.14 45.21 63.76 -0.18 12.96 23732

Japan - 1.24 22.24 183.93 -0.23 12.35 25782

Repub. of Korea 1998 5.90 68.98 70.68 -0.26 10.21 14182

Luxembourg - 3.19 220.57 103.98 0.08 8.71 49040

Malta - 3.00 162.50 84.00 -0.01 14.73 14968

Netherlands - 2.59 116.50 107.66 0.81 17.67 26633

New Zealand 1990 5.76 58.61 78.57 0.60 15.57 19499

Norway 2001 4.38 72.97 71.35 0.39 15.26 34905

Portugal - 9.29 64.25 89.40 0.0008 13.40 15738

Singapore - 1.96 365.70 103.15 -0.97 6.46 26399

Spain 1994-98 6.09 45.39 91.38 0.01 12.55 20886

Sweden 1993 4.43 72.74 97.29 0.08 23.18 24358

Switzerland 2000 2.28 76.33 151.14 0.75 6.80 32101

Taiwan - 2.79 99.19 68.66 0.14 12.05 15720

United Kingdom 1992 4.78 53.69 105.38 0.24 17.00 23306

United States - 3.85 22.10 141.25 0.36 9.97 33312
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3.3 Results

This section presents the traditional average treatment effect on the treated (ATT) of

inflation targeting. We present results for both the traditional PS method, and based

on our hyperbolic mean Score functions. We also offer a sensitivity analysis by varying

parameters (β and α) used in computing the latter. Specifically, we first present ATT

estimates obtained via Propensity Score matching in which the covariate set (X) used in

the probit regression is the same as that used in the computation of the hyperbolic mean.

Secondly, we present the estimates obtained under hyperbolic mean matching for a selected

set of betas (β={+/-
1
8 , +/-

1
4 , +/-

2
3 , +/-

3
4 , +/-1}), each beta used with three kinds of alphas

as follows: i) αj = 1/n where n is the number of covariates in(X), ii) different alpha values

such that
∑n

j=1 αj = 1 where αj , the weight of each covariate in the computation of the

functional form, is determined by each covariate’s average marginal effect on the likelihood

of adopting inflation targeting, and iii) αj is the weighted coefficient of each covariate in

a linear index probit regression. When β = −1, this last set of probit weights is directly

comparable with the linear index PS matching results (slight differences due to the absence

of an intercept in our score functions).

Three sets of results are presented based on the length of time targeting has been in effect:

any length (denoted Overall), the formal adoption of targeting for at least five years but

less than ten years (Five Years), and formal adoption of targeting for at least ten years (Ten

Years). We report estimates from the commonly used One-to-One matching method, and

results from alternative multiple matching methods (radius, kernel, local linear, and nearest

neighbor) are qualitatively consistent and can be provided upon request. With One-to-One

matching each Targeter is matched to only one Non-Targeter. This method allows the use

of matched pairs when evaluating the “similarity”, of their entire distributions, an exercise

that we also carry out below.
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3.3.1 Inflation Level

Table 8 presents the estimated ATTs of adopting an inflation targeting policy on the level

of inflation. The first two columns specify the parameters (β and α) under which the hy-

perbolic mean is calculated (here β > 0), and the remaining columns respectively show the

estimated overall effect, the effect after 5 and 10 years of targeting. As seen on the table,

we obtain ATTs whose negative sign is robust to the matching tools and variations of the

hyperbolic mean parameters. This is an implication that on average the level of inflation for

Targeters has been lower at the mean than that of Non-Targeters over the chosen sample

period. However, important ATT differences still exist between our score functions and PS.

Propensity Score matching, for instance, yields estimates that are both smaller and mostly

statistically insignificant (first row of the Table 8). Such estimates could prompt one to

argue for a very subdued and largely insignificant contribution of inflation targeting in the

chosen sample.

However, this clearly contrasts with results obtained via our various hyperbolic means,

where 49 out of 54 estimates are significant at the 1% level, 4 at the 5% level, 1 at the 10%

level, and only 1 is statistically insignificant, indicating a strong influence of IT in lowering

inflation levels for Targeters. One interpretation is as follows: The linear index function

specifies infinite substitution between components of X! They are effectively “the same”

as far as characterizing the economy. When this level of substitution is made finite, with

other values of β, different influences are exerted by different components of the economic

variables in X, aside from the weights attached to each. This seems to raise the ATT

for a wide range of the substitution and weight parameters. It also suggests that the

corresponding implicit values of these same parameters may be close to the boundary sets,

since they do not contradict the general inference of an average reduction in inflation by

targeting.
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Table 8 – Estimated Average Treatment Effect on the Treated Across Different α and (β >
0) Values

Beta Alpha ATT: Overall 5 Years 10 Years

PS Matching -1.96 -0.45 -3.73

(1.185) (1.274) (2.048)

1/8 1/8 -2.33** -2.95*** -2.85**

(0.636) (0.708) (1.052)

Diff Weights -3.57*** -2.81*** -3.13***

(0.668) (0.638) (0.677)

Prob Coeff -3.38*** -2.24*** -2.58***

(0.636) (0.509) (0.949)

1/4 1/8 -3.20*** -3.88*** -3.84***

(0.642) (0.812) (1.074)

Diff Weights -3.32*** -3.18*** -3.62***

(0.694) (0.733) (0.734)

Prob Coeff -3.30*** -2.99*** -2.71***

(0.694) (0.724) (0.724)

1/2 1/8 -3.77** -3.76*** -3.91***

(1.154) (1.076) (1.088)

Diff Weights -3.81*** -2.79 -2.08

(1.097) (1.630) (2.249)

Prob Coeff -3.64*** -2.22*** -1.84*

(0.648) (0.501) (0.838)

2/3 1/8 -3.72*** -4.16*** -4.36**

(0.881) (1.008) (1.287)

Diff Weights -3.82*** -3.12*** -3.04***

(0.602) (0.712) (0.735)

Prob Coeff -3.11*** -2.04*** -3.52***

(0.606) (0.653) (0.868)
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Beta Alpha ATT: Overall 5 Years 10 Years

3/4 1/8 -2.88*** -4.16*** -4.36***

(0.645) (1.008) (1.287)

Diff Weights -3.77*** -2.67*** -2.71***

(0.602) (0.636) (0.741)

Prob Coeff -2.88*** -2.91*** -2.52***

(0.645) (0.660) (0.868)

1 1/8 -4.56*** -4.56*** -4.76***

(0.781) (0.876) (1.174)

Diff Weights -3.90*** -3.07*** -2.53***

(0.539) (0.576) (0.704)

Prob Coeff -3.79*** -4.34*** -3.83***

(0.736) (0.759) (0.85)

Table 9 presents ATT estimates obtained when β < 0. We still obtain negative ATTs,

mostly statistically significant and substantially larger than ATTs obtained from PS. As β

approaches -1, we approach the same small negative effects obtained from the PS method,

especially when the same probit estimated weights are used. Note that our S functions have

the same CES forms that were proven by ? to have a constant elasticity of substitution.

The relation between β and elasticity of substitution is given by the formula σ = 1
1+β .

Therefore, as β → −1 we approach perfect substitutability of these economic indicators.

These indicators are not likely to be considered as perfect substitutes by most observers,

hence our earlier inference that the PS results are boundary results or outliers.
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Table 9 – Estimated Average Treatment Effect on the Treated Across Different α and (β <
0) Values

Beta Alpha ATT: Overall 5 Years 10 Years

PS Matching -1.96 -0.45 -3.73

(1.185) (1.274) (2.048)

-1/8 1/8 -2.02* -0.99 -1.25*

(0.962) (0.678) (0.536)

Diff Weights -3.15*** -3.11*** -3.68***

(0.691) (0.783) (1.030)

Prob Coeff -2.75*** -2.07** -2.38**

(0.742) (0.702) (0.795)

-1/4 1/8 -0.16 -1.06 -0.03

(1.481) (1.165) (1.038)

Diff Weights -4.34** -4.35** -2.84

(1.508) (1.557) (1.984)

Prob Coeff -3.41*** -2.19** -2.01*

(0.839) (0.752) (0.864)

-1/2 1/8 -1.52 -1.97** -1.84*

(1.00) (0.667) (0.829)

Diff Weights -1.41 -2.20 -0.36

(1.348) (2.057) (1.121)

Prob Coeff -2.96*** -1.81** -1.96*

(0.808) (0.572) (0.777)

-2/3 1/8 0.57 -3.37 -10.46

(0.501) (4.10) (0.597)

Diff Weights -1.91 -0.70 -0.19

(3.402) (1.580) (0.158)

Prob Coeff -1.83* -1.88 -1.96***

(0.831) (1.086) (0.568)
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Beta Alpha ATT: Overall 5 Years 10 Years

-3/4 1/8 -1.10 -1.05 0.72

(1.322) (1.60) (2.379)

Diff Weights -1.06 -1.19* -1.02

(0.576) (0.564) (0.587)

Prob Coeff -1.80** -1.20* -1.54*

(0.557) (0.569) (0.748)

-1 1/8 -1.78 -2.40 -2.58

(1.195) (1.321) (2.243)

Diff Weights -0.08 -0.30 0.49

(0.908) (0.904) (0.939)

Prob Coeff -2.10*** -2.27** -2.92**

(0.575) (0.704) (1.007)

3.3.2 Distribution of Estimated Average Treatment Effect on the Treated Un-

der Various Parameter Specification

Figure 14 provides a graphical display of how the ATTs obtained with our hyperbolic mean

change as β changes. The treatment is Overall targeting and each graph represents a

different specification of αj . The solid line is the case where αj = 1
n , the green dashed line

for different αj values such that
∑n

j=1 αj = 1, and the red-circled line is for the case where αj

equals the probit coefficients. An average effect across the three specifications is represented

by the thick dashed line. Such an average is suggestive of a significant overall contribution

of inflation targeting in lowering inflation levels for Targeters. One also observes that the

overall effect of IT sharply declines for β values left of −0.65, particularly for constant and

probit coefficient alphas. Figure 15 displays the same information but for β > 0. Here the

overall effect generally increases with an increase in beta.
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Figure 14 – Graphical Displays of the Estimated Average Treatment Effect on the Treated
Across Negative Beta Values



91

Figure 15 – Graphical Displays of the Estimated Average Treatment Effect on the Treated
Across Positive Beta Values

In as much as our estimates are suggestive of a significant overall impact of inflation tar-

geting on Targeters, a conclusion can not be drawn as to whether the impact grows or

declines over time. The differences in the 5 year ATTs and 10 year ATTs do not warrant

such a claim. Owing to the contrasting conclusions possible from the results obtained from

the two matching tools, the subsection below utilizes the greater matching strengths of our

tools to demonstrate the validity of the results obtained via hyperbolic mean matching.
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3.3.3 A New Way of Evaluating Matching

The large differences between the ATTs obtained from the two matching tools (hyperbolic-

mean and the PS) on the same data call for a closer look at their matching performance.

The technique of One-to-One matching utilized herein enables the tracing and recovering

of the matched Targeter/Non-Targeter pairs used in obtaining the counterfactual inflation

level. We thus measure the affinity of these pairs by computing the similarity or closeness

between the hyperbolic means (or propensity scores) of the matched Targeters and Non-

Targeters. One appropriate tool for this exercise is the entropy measure, particularly by a

metric popularized by Granger et al. (2004) that generally measures the “distance” between

any two distributions. This in turn facilitates the comparison of multiple distributions in

terms of either similarity, distance, or dependence. Some of the desirable properties of the

entropy measure as designed by Granger et al. (2004) are as follows:

i) It is well defined for both continuous and discrete variables

ii) It is conveniently normalized to lie between 0 and 1 for continuous variates; zero if

distributions X and Y are identical, and unity if there is an exact measurable nonlinear

relationship between them, e.g. Y = g(X)

iii) It is equal to or has a simple relationship with the (linear) correlation coefficient for

Gaussian variables.

iv) It is a metric i.e. a true measure of “distance” that satisfies the triangular rule.

v) The measure is invariant under continuous and strictly increasing transformations. In-

variance is important since otherwise transformations would produce (e.g.) different levels

of dependence between two variables.

The formula for the entropy distance measure is given by

Sρ =
1

2

ˆ ∞
−∞

(
√

(f(x))−
√

(g(x)))2d(x), (42)

where f(x)and g(x) are marginal densities.

We now evaluate the distance between the distribution f(x) of the Targeters’ hyperbolic
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scores and the distribution, g(x), of the hyperbolic scores of the Non-Targeters they are

matched to. Entropy values are obtained for all three cases where the treatment is Overall,

Five years of targeting, and Ten years of targeting. We will conduct the same exercise for

the distributions of the propensity scores to evaluate PS’s matching performance. A smaller

entropy measure implies greater “closeness” or “similarity” between the distributions hence

a better match, based on the entire distributions. For the hyperbolic score-mean we only

report entropy calculations for β = −0.5 with the three variations of αj , as seen in Table

3 below. We considered other β values but this did not alter the qualitative conclusions.

The hyperbolic scores produce substantially smaller entropy distances for all the variations

of the hyperbolic mean compared to the propensity scores. This is indicative of a greater

closeness in the characteristics of the matched Targeters and Non-Targeters based on the

hyperbolic-mean. It further confirms our earlier statement about PS matching being a

boundary or outlying case.



94

Table 10 – Entropies Between Distributions of Hyperbolic Means (and Propensity Scores)
for the Matched Targeter/Non-Targeter Pairs

Treatment: Overall

Alpha Hyperbolicmean Matching PS Matching

1/8 1.39578e-06 0.0004568471

Weighted Alphas 0.32649-03

Probit Coefficients 5.419207e-05

Treatment: Five Years

Alpha Hyperbolicmean Matching PS Matching

1/8 1.212895e-06 0.0003348465

Weighted Alphas 1.029983e-05

Probit Coefficients 2.721547e-05

Treatment: Ten Years

Alpha Hyperbolicmean Matching PS Matching

1/8 3.904863e-07 0.0002508912

Weighted Alphas 2.187506e-06

Probit Coefficients 6.819018e-06

In support of the above results, we present, in figure 3, graphs of the actual distributions

of the propensity scores (and hyperbolic means) of the matched Targeter/Non-Targeter

pairs. two observations particularly stand out from the four panels in the figure; firstly, PS

matching yields a relatively greater distance between the distributions of the matched pairs

whereas hyperbolic mean matching yields negligible differences between the distributions.

Again this signifies better similarities between matched pairs than can be obtained via PS

matching. Secondly, PS matching appears to work best at matching countries with extreme

probabilities of adopting inflation targeting. Since lagged inflation is one of the variables

used to compute the probabilities we can expect limited differences in inflation levels for the



95

matched pairs. This could partly account for the smaller ATTs produced in PS matching

leading to an underestimated effect of inflation targeting.

Figure 16 – Distributions of Hyperbolicmeans and Propensity Scores for Matched Pairs.

3.4 Multiple Period Differences-in-Differences

In order to provide a well-rounded conclusion on the effect of inflation targeting we fur-

ther provide a difference-in-differences estimate. In acknowledgment of Ball and Sheridan

(2003)’s claim of a possible regression to the mean effect, we control for initial conditions.
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Instead of the standard two-period estimation we deploy a multiple period differences-in-

differences approach as given by Stock and Watson (2003). Additionally, we control for

individual country and time effects leading to an estimate of annual inflation given by:

πit = a+ β1ITit + β2πit−1 + β3C effect+ β4T effect+ εt (43)

where ITit is a dummy variable for the official adoption of inflation targeting by country

i at time t, πit−1 is the first lag of inflation, C effect, and T effect are dummy variables

for country and time effects, respectively. The statistical significance of β1, our coefficient

of interest, would signify an effect of the adoption of inflation targeting. On the other

hand a combination of a statistically insignificant β1, and a significant β2 would be in

support of regression to the mean. We increase the sample size for this exercise such

that it now covers the period 1970 − 2007. We also generate a subsample that excludes

Israel (a Targeter), as she had six years of 3-digit hyperinflation and her country effect

coefficient was statistically significant. Table 4 presents the results where the first column

shows estimates obtained without controlling for initial conditions, and the second column

controls for initial conditions via the inclusion of πit−1. The subsample results are reported

on the third and fourth columns. For the ease of presentation we do not report the 57

coefficients for C effect and T effect. The inclusion of πit−1 in the full sample reduces

the treatment coefficient to almost a third of its original size (from −9.397 to −2.886)

and eliminates its statistical significance. The coefficient on πit−1 (β2) is positive, small

and only significant at the 10% level. With such results a regression to the mean is still

arguable. However, excluding Israel from the sample has important consequences. Firstly,

it produces a relatively smaller but significant treatment coefficient (β1). Secondly, upon

the subsequent inclusion of πit−1 β1 remains statistically significant, declining only by 61%,

whereas β2 is statistically significant at the 5% level but smaller.

Our findings prevent the drawing of a distinctive conclusion. By our model design we can-

not reject a weak presence of regression to the mean, yet at the same time the adoption of

inflation targeting is shown to be effective, especially after removing observations of hyper-
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inflation.

Table 11 – Multiple Differences-in-Differences Estimates

Full Sample Without Israel

Variable No Lag With Lag No Lag With Lag

IT -9.397*** -2.8864 -3.5607*** -1.3780**

(2.524) (1.586) (0.8177) (0.4862)

πit−1 0.7043* 0.1614***

(0.30066) (0.1163)

3.5 Effect of Inflation Targeting on Inflation Volatility

The impact of inflation targeting might not necessarily be limited to the achievement of

low inflation levels but could also impact its volatility. This is consequential for inflation

expectations. To investigate this possibility in our context we evaluate the “average” treat-

ment effect of targeting on inflation variability (measured as the deviation of inflation from

a three-year moving average). Our findings are suggestive of a negative effect of inflation

targeting on inflation variability as all our coefficient estimates are negative. However,

the magnitude of the coefficients are very small especially in comparison to the effect on

inflation levels, and mostly statistically insignificant. As seen on Table 5 only 5 ATTs are

significant at the 10% level, and 1 at the (5%) level. We even observe a few insignificant

positive ATTs for the Ten year treatment. All the significant ATTs are obtained under

hyperbolic mean matching with equal αj . Lin and Ye (2007) also performed a similar inves-

tigation in the context of propensity score matching, and they found very small and largely

insignificant coefficients. Their result is qualitatively replicated in our own propensity score

matching exercise. In Table 4 we present results from PS Matching and Hyperbolic mean

matching only for the case of β > 0.
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Table 12 – Treatment Effect Coefficients on Inflation Variability Across Different α and
(β > 0) Values

Beta Alpha ATT: Overall 5 Years 10 Years

PS Matching -0.002 -0.001 -0.006

(0.006) (0.005) (0.005)

1/8 1/8 -0.0089** -0.011* -0.012*

(0.004) (0.005) (0.007)

Diff Weights -0.043 -0.005 -0.006

(0.028) (0.011) (0.005)

Prob Coeff -0.015 -0.020 -0.03

(0.011) (0.018) (0.025)

1/4 1/8 -0.002 -0.0001 0.0004

(0.004) (0.003) (.004)

Diff Weights -0.005 -0.005 0.005

(0.006) (0.009) (0.005)

Prob Coeff -0.019* -0.020 0.001

(0.009) (0.014) (0.015)

1/2 1/8 -0.006 0.002 0.001

(0.004) (0.016) (0.005)

Diff Weights -0.004 -0.002 0.001

(.010) (0.008) (0.004)

Prob Coeff -0.019 -0.024 -0.026

(0.001) (0.016) (0.018)

2/3 1/8 -0.005 -0.005 0.001

(0.005) (0.006) (0.008)

Diff Weights -0.0005 -0.001 0.001

(0.009) (0.008) (0.006)

Prob Coeff -0.009. -0.007 0.001

(0.009) (0.013) (0.009)
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Beta Alpha ATT: Overall 5 Years 10 Years

3/4 1/8 -0.004 -0.0004 0.002

(0.006) (0.003) (0.005)

Diff Weights -0.089 -0.005 0.0007

(0.011) (0.010) (0.009)

Prob Coeff -0.018 -0.02 -0.03

(0.010) (0.014) (0.018)

1 1/8 -0.0095* -0.01* -0.009

(0.004) (0.005) (0.008)

Diff Weights -0.006 -0.006 -0.006

(0.099) (0.008) (0.009)

Prob Coeff -0.00057 -0.0006 0.004

(0.006) (0.0996) (0.0098)

3.6 Entire Distribution Analysis

It is worth noting that the evidence provided by the treatment effects estimates only con-

cerns comparisons of inflation (or its variability) at the mean of the distribution. An

interesting question that has rarely been asked relates to the effect of inflation targeting

on the rest of the distribution of inflation (or its variability). This section provides a closer

analysis of this effect by comparing the entire distributions of inflation for Targeters and

Non-Targeters. The aim is to detect distributional differences between the country groups

and also examine how the distributions for each group have evolved over time. The manner

of approach here is adopted from Quah (1997) and Maasoumi et al. (2007) who produce

density estimates of the distributions of economic growth rates to determine convergence

(divergence) patterns amongst countries. Specifically, the procedure involves the use of ro-

bust non-parametric kernel methods to produce consistent Rosenblatt-Parzen type density

estimates of the unknown PDFs and CDFs of inflation levels (and its variability). Band-

widths for the estimation are selected via likelihood cross validation. The panels in Figure 4
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present the resulting PDF and CDF estimates of inflation levels for Targeters (solid graphs)

and Non-Targeters (dotted graphs) in five year intervals starting from 1980 to 2005, and

two additional years 2006 and 2007. The distributions shown are generally symmetric and

clearly demonstrate the convergence towards lower mean values over time for both Tar-

geters and Non-Targeters. Moreover, the shift towards lower values is not limited to the

means as the same could be said of the distribution tails with high maximums of approx-

imately 60% the 1980s, 24% in the 90s, and low maximums of approximately 7% in 2007.

Of particular focus in this analysis is the post-1990 period, the era after the first formal

adoption of inflation targeting. It is understood that the sole impact of inflation targeting

cannot be necessarily isolated in these graphs, and that the advantage for Targeters is not

very obvious, but there are some suggestive observations made as pointed out below:

i) The 1990-1995 interval is the general adoption period for the Early Targeters, and

a significant improvement is seen on the Targeters’ inflation distribution. In 1990

the Targeters’ PDF lies largely rightward of the Non-Targeters’ distribution (perhaps

even an arguable case of first order stochastic dominance) implying relatively higher

inflation for Targeters. However, this changes in 1995 as the Targeters’ distribution

shifts leftward and removes any possible stochastic dominance

ii) Between 1990 and 1995 the left tail in the solid distribution shifts leftward of zero

suggesting increased deflation among Targeters whereas the reverse seems to hold for

Non-Targeters

iii) Also, the period between 2000 and 2005 contains the adoption dates for Late Tar-

geters, and we see another significant improvement for the Targeters. An evident case

of first order stochastic dominance (in 2000) is eliminated in 2005

iv) Lastly, the solid PDF graphs do not differ much in the years 2000, 2005 and 2006 which

could be suggestive of Targeters better stabilizing inflation than their counterparts

whose graphs still fluctuate heavily
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The distributional evidence supports our earlier findings in that it does not imply any

significant improvement of the impact of targeting over time. However, it demonstrates

an important coincidence between deflationary patterns and the adoption of inflation tar-

geting both for Early and Late Targeters. Alternative explanations for the above noted

observations can of course be arguable but such striking correlations are of great interest

and taken seriously in this study.
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Figure 17 – PDFs and CDFs of Inflation for Targeters (solid) and Non-Targeters (dashed)
for the Period 1980-2007
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Pursuing observation (iv) above, Figure 5 provides similar estimated distributions of in-

flation variability for Targeters and Non-Targeters over time. Evidently variability tends

to decline over time for both groups, with the Targeters starting off with relatively flat-

ter distributions. For the same reason as stated above particular interest is placed on the

post-1990 period. A well pronounced compression of the Targeters’ graph is witnessed

from 1990 to 1995, again coinciding with the early adoption dates for inflation targeting.

Improvements between 2000 and 2005 are common between the two groups hence the IT

impact is not very clear. Yet a closer look reveals that from 1995 onwards the variability

for Targeters is relatively more stabilized, especially at the tails, than the variability for

Non-Targeters characterized by heavily fluctuating standard deviations over time. Again

this does not explicitly provide any isolated effect of inflation targeting but it does provide

graphical demonstration that looking at the entire distributions of inflation variability, Tar-

geters have not done worse than Non-Targeters and have shown great improvement after

the introduction of IT.
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Figure 18 – PDFs and CDFs of Inflation Variability for Targeters (solid) and Non-
Targeters (dashed) for the period 1980-2007
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3.7 Optimum Values of Parameters

In this section we provide a brief report of a numerical search for the best values of the

unknown parameters β and . The criterion to be minimized is the generalized entropy

given in expression 41. For each fixed β in the range [−0.5,−0.25, 0.5], we search through

α values in the range [0.1, 1] to minimize 41. This is done in two stages. In the first stage,

we pick the “best” one hundred combinations of each beta and alphas. For each parameter

combination we refine the search to obtain the “best” fifty. The latter are ranked, and

the best values are reported in Table 7 with the corresponding minimum distance. The

best value for β is -1/2, which corresponds to the metric entropy value! The highest α

weight of .30 corresponds to the GDP component, but otherwise equal weight is optimal

for other variables. The detailed results are available from the authors. We do not intend

these values to be ”estimates” of these deep parameters. They are intended to provide a

benchmark and assist in robustification.
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Table 13 – Average Effect of Targeting on Inflation with “Best” Parameters

Treatment ATT Bootstrap Standard Error

Overall IT -2.26 1.58

5 Years IT -2.18∗ 1.07

10 Years IT -1.95∗∗ 0.61

Alpha for Inflation Lag, Money Growth, FDI, Trade, ER, EU is 0.10; αGDP =0.30, andβ=−0.5;
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3.8 Entropy Distances

This section provides a supplementary analysis of the distributions presented in the section

6. Specifically, the entropy measure introduced earlier (see 42) is deployed to provide a

formal quantitative report on the distances between the inflation distributions both be-

tween groups and within groups over time. The tables below present the entropy measures

(denoted Sρ) together with the 90th and 95th percentile values obtained under the null

hypothesis of no difference in the distributions. In Table 14 we have entropies for the

distributions of Targeters and Non-Targeters for each five-year interval and the additional

two years (2006, 2007). Firstly, apart for the years 1990, 2006, and 2007 the entropies are

significantly greater than zero at the 95th percentile. Hence the differences in the inflation

distributions for the periods (1995 and 2005) that follow the general adoption dates for

Early and Late Targeters are statistically significant. Secondly, from 1995 to 2005 the en-

tropies demonstrate a downward trend indicating the convergence towards lower inflation

levels. Constituting this trend are big drops from 1990 to 1995 and from 2000 to 2005.

Table 15 shows the entropies for the Targeters’ inflation distributions between five-year in-

tervals, whilst Table 16 does the same for Non-Targeters. For the Targeters all the entropies

for the interval 1995− 2000 and subsequent intervals are statistically significant at the 95th

percentile. Whereas only the distance between 2005− 06 are significant for Non-Targeters.

Table 14 – Entropy Distance(Sρ) Between Inflation Distributions for Targeters and Non-
Targeters

Year 1980 1985 1990 1995 2000 2005 2006 2007

Sρ 0.1540 0.0554 0.2943 0.2227 0.1070 0.0458 0.2864 0.4236

90th pcntl 0.1658 0.1857 0.1578 0.2269 0.1881 0.1011 0.1484 0.1742

95th pcntl 0.2068 0.2224 0.1931 0.2611 0.2434 0.1363 0.1696 0.2085
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Table 15 – Entropy Measures (Sρ) Between Inflation Distributions Across Time for Tar-
geters

Interval 1980-85 1985-90 1990-95 1995-00 2000-05 2005-06 2006-07

Sρ 0.0694 0.8017 0.2659 0.2694 0.0966 0.1816 0.3072

90th pcntl 0.2399 0.2986 0.1332 0.2443 0.2421 0.2034 0.1930

95th pcntl 0.2625 0.3406 0.1556 0.2815 0.2941 0.2289 0.3115

Table 16 – Entropy Measures (Sρ) Between Inflation Distributions Across Time for Non-
Targeters

Interval 1980-85 1985-90 1990-95 1995-00 20000-05 2005-06 2006-07

Sρ 0.1603 0.7435 0.7290 0.2346 0.3470 0.0182 0.6694

90th pcntl 0.1226 0.2142 0.1565 0.1581 0.1146 0.0613 0.5514

95th pcntl 0.1314 0.2500 0.2270 0.2031 0.1470 0.1174 0.1319
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3.9 Conclusion

This paper offers an extension in the recently introduced branch of inflation targeting

literature that uses treatment effects approach for performance evaluation. Its main con-

tribution is an alternative matching tool that goes beyond and subsumes what has been

the standard matching tool, propensity scores. Our tools, based on the hyperbolic mean

of several macroeconomic and financial indicators, produces a higher degree of closeness

between the matched pair of inflation targeting and non-inflation targeting countries. Our

findings point to significantly lower levels of average inflation for Targeters over the period

of 1980 to 2007. Similarly, average inflation variability has been lower for Targeters in

the same period although this effect is dependent on accounting for the different weights

attached to each observable variable in the computation of our hyperbolic function.

Furthermore, to evaluate the evolution of the impact of inflation targeting over time we we

created a long separation between Targeters by five years of additional targeting. However,

no significant differences are observed between the two categories warranting no claim of

an improved impact over time.

Another contribution of the paper is an extension of the analysis to the entire distribution

of inflation, as opposed to drawing conclusions merely based on effects on the mean. Such

a study provides clear evidence of the general convergence towards lower inflation levels

from all countries, not only limited to the mean but throughout the distributions. For

Targeters significant leftward shifts in the distributions towards lower levels are observed

around the era of formal adoption by Early and Late Targeters. Entropy measures used to

measure the significance of the differences between the distributions across countries and

over time provide results that attest to the above claims. Our findings support the notion

that the success of inflation targeting policies is not only on average, but is extensive across

quantiles and time.
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Possible extensions of our work could involve applying the same techniques to Targeters in

developing countries, and to evaluate how Targeters fared during the recently observed fi-

nancial crisis. Also, amid future inflationary fears during the current low inflation economic

recovery, should more countries adopt an inflation target as a policy trigger mechanism?

Our findings provide general support for this point of view.
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