
Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the re-
quirements for an advanced degree from Emory University, I hereby grant
to Emory University and its agents the non-exclusive license to archive,
make accessible, and display my thesis or dissertation in whole or in part in
all forms of media, now or hereafter known, including display on the world
wide web. I understand that I may select some access restrictions as part
of the online submission of this thesis or dissertation. I retain all ownership
rights to the copyright of the thesis or dissertation. I also retain the right
to use in future works (such as articles or books) all or part of this thesis or
dissertation.

Signature:

Victor O. Larsen Date



An ε improvement to the asymptotic density of k-critical graphs

By

Victor O. Larsen
Doctor of Philosophy

Mathematics

Ronald Gould, Ph.D.
Advisor

Luke Postle, Ph.D.
Advisor

Dwight Duffus, Ph.D.
Committee Member
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Abstract

An ε improvement to the asymptotic density of k-critical graphs
By Victor O. Larsen

Given a graph G the chromatic number, denoted χ(G), is smallest number
of colors necessary to color V (G) such that no adjacent vertices receive the
same color. A graph G is k-critical if χ(G) = k but every proper subgraph
has chromatic number less than k. As k-critical graphs can be viewed as
minimal examples of graphs with chromatic number k, it is natural to ask
how small such a graph can be.

Let fk(n) denote the minimum number of edges in a k-critical graph
on n vertices. The Ore construction, used to build larger k-critical graphs,
implies that

fk(n+ k − 1) ≤ fk(n) + (k − 1)

(
k

2
− 1

k − 1

)
.

A recent paper by Kostochka and Yancey provides a lower bound for fk(n)
which implies that the asymptotic density φk := limn→∞ fk(n)/n = k

2−
1

k−1 .
In this work, we use the method of discharging to prove a lower bound on

the number of edges which includes structural information about the graph.
This lower bound shows that the asymptotic density of a k-critical graph
can be increased by ε > 0 by restricting to (Kk−2)-free k-critical graphs.

We also prove that the graphs constructible from the Ore construction
and Kk, called k-Ore graphs, are precisely the graphs which attain Kos-
tochka and Yancey’s bound. Moreover, we also provide results regarding
subgraphs which must exist in k-Ore graphs. For the discharging argument,
carried out in two stages, we also prove results regarding the density of
nearly-bipartite subgraphs in k-critical graphs.

In the final chapter we examine the minimal set of subgraphs, called
k-critical structures, which one needs to forbid to obtain an ε increase
in asymptotic density. This lays the groundwork for future research into
asymptotic density in k-critical graphs.



An ε improvement to the asymptotic density of k-critical graphs

By

Victor O. Larsen
M.S. Mathematics, Emory University, 2014

B.A. Mathematics, Middlebury College, 2009

Advisor: Ronald Gould, Ph.D.
Advisor: Luke Postle, Ph.D.

A dissertation submitted to the Faculty of the Graduate School
of Emory University in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

in Mathematics
2015



Acknowledgments

There are a great number of people whose influence, large or small, has
shaped not only this thesis but also my mathematical career and educational
outlook. I would like to extend my thanks to each one of these people even
though only a small percentage are named below.

I would like to thank all of my past teachers including those who in-
spired my love of learning and teaching, those who focused my attention on
mathematics, and those who have provided me exemplary role models as an
educator. In particular, I appreciate the willingness of John Schmitt, Chuck
Dunn, and Skip Garibaldi to serve as mentors long after my role as their
student had ended.

I would like to thank my both of my advisors; Ron Gould for his guidance
and mentorship, and Luke Postle for his seemingly unending supply of ideas
and techniques. I could not imagine having achieved this much without both
of their support, time, and feedback. The other members of my committee,
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Chapter 1

Introduction and history

1.1 Graph coloring

In this work, we assume that the reader has knowledge of basic concepts of

graphs (formal definition, adjacency, connectivity, etc.). All non-standard

terminology and notation will be specifically defined, but for any other def-

initions the reader can refer to a standard textbook such as [8]. This work

was inspired by recent developments concerning Ore’s Conjecture [16] on k-

critical graphs. Let us briefly recall basic coloring definitions and then state

Ore’s Conjecture.

A k-coloring φ of a graph G is simply a labelling φ : V (G) → [k]. If the

coloring φ has the additional property that for every uv ∈ E(G) φ(u) 6= φ(v),

then we say that the k-coloring is proper. If there is a proper k-coloring of

a graph G, then we say that G is k-colorable. Graph coloring has useful

applications in scheduling, and in these applications we want to be as efficient

as possible. Although we can easily prove that every graph G is |V (G)|-
colorable, this is of no practical use. Rather, we are concerned with the

chromatic number of a graph G, which is the smallest k for which G is k-

colorable. We denote the chromatic number of a graph G by χ(G).

An early classic theorem regarding the chromatic number of a graph is

Brooks’ Theorem [3]. Recall that ∆(G) is the maximum degree of a graph.
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Theorem 1.1. If G is a connected graph other than a complete graph or an

odd cycle, then χ(G) ≤ ∆(G).

There is an obvious connection between the number of edges in a graph

and the chromatic number of that graph. As we add more edges, there are

more restrictions preventing an arbitrary k-coloring from being a proper k-

coloring. Brooks’ Theorem provides a bound on the chromatic number in

terms of local density. It is trivial to show that χ(G) ≤ 1 + δ(G) by making

a greedy coloring argument. Brooks’ Theorem shows that we can be more

efficient by 1 color class as long as G is not a complete graph or an odd cycle.

For other classes of graphs, it is possible to be even more efficient.

The Borodin-Kostochka Conjecture [2] is as follows.

Conjecture 1.2. If G is a connected graph with ω(G) ≤ ∆(G) − 1 and

∆(G) ≥ 9, then χ(G) ≤ ∆(G)− 1.

Using the probabilistic method, this has been proven in [18] for very large

∆(G).

If we introduce further restrictions, we often obtain stronger results. A

graph G is planar if it can be embedded in a plane such that no edges are

crossing. A well-known coloring theorem for planar graphs is the celebrated

Four Color Theorem [1].

Theorem 1.3. Every planar graph is 4-colorable.

This is of particular interest because the method of proof involves discharg-

ing, which is also the method used in this work. Discharging involves assign-

ing charge to a graph in a particular way (we assign charge to each vertex),

moving the charge around using discharging rules and reducible configura-

tions to find a contradiction. One can contradict any sort of global hypothesis

such as planarity, an assumption on maximum average degree, or—as we do

in this work—number of edges.
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The original proof of the Four Color Theorem is famously complex, involv-

ing nearly 2,000 configurations. That proof has been updated and stream-

lined to involve ‘only’ 633 configurations [19] but still remains highly detailed.

The proof becomes much simpler, and the theorem stronger, if we introduce

further restrictions on G. Namely, all planar graphs which are triangle-free

are 3-colorable [9]. In our work as well, we obtain a strengthening of previ-

ous results if we forbid certain subgraphs. This is a common theme in the

literature of coloring problems.

1.2 k-critical graphs

We return to the idea of density in a graph and its effect on the chromatic

number. Removing an edge from a graph takes away one obstacle for an

arbitrary k-coloring to be a proper k-coloring. Therefore, the chromatic

number of G − e is either χ(G) or χ(G) − 1. The graphs we are concerned

with are k-critical graphs. A graph G is k-critical if χ(G) = k and every

proper subgraph is (k − 1)-colorable. This is equivalent to requiring that

χ(G− e) = χ(G)− 1 for each edge e ∈ E(G).

A natural example of a k-critical graph is Kk. Also, using the Hajós con-

struction (see [20], page 217) or the Ore composition (Definition 3.1) one can

combine any two k-critical graphs to create other k-critical graphs. When

studying coloring problems, the class of k-critical graphs is of particular inter-

est as it is a natural starting point for general statements about k-chromatic

graphs. For example, if we could prove the Borodin-Kostochka conjecture

for every k-critical graph then it would follow that it holds for all graphs.

From this perspective, we say that k-critical graphs are minimal examples

of k-chromatic graphs. It is natural to ask how small such graphs could be.

This leads to the study of the parameter fk(n), the minimum number of edges

in a k-critical graph on n vertices. Ore’s Conjecture [16] is the following.
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Conjecture 1.4. If k ≥ 4, then

fk(n+ k − 1) = fk(n) + (k − 1)

(
k

2
− 1

k − 1

)
.

Another measure of a k-critical graph is the asymptotic density, which we

define to be φk := lim
n→∞

fk(n)

n
. Ore’s Conjecture [16], if proven, would imply

that the limit φk exists and that φk = k
2
− 1

k−1 .

1.3 History of fk(n)

We want to survey the history of bounds on fk(n). The first natural bound

comes from a connectivity argument. Clearly δ(G) ≥ k− 1 for any k-critical

graph (or a greedy coloring will properly (k − 1)-color G) so therefore

fk(n) ≥ k − 1

2
n.

In terms of asymptotic density, this shows that, if the limit φk exists then

φk ≥ k
2
− 1

2
for k-critical graphs. Throughout the literature there have been

many improvements on bounds for fk(n); however, we will focus our attention

on φk.

The reason for examining φk comes from an observation about the Hajós

construction (see [20], page 217). Given a k-critical graph G, if we look at

the graph G′ resulting from a Hajós construction of G and Kk, then we have

added k − 1 vertices and added one less than the number of edges in a Kk.

That is,

|V (G′)| = |V (G)|+ k − 1 and |E(G′)| = |E(G)|+ (k − 2)(k + 1)

2
.

It follows that fk(n+k−1) ≤ fk(n)+ (k−2)(k+1)
2

, which implies that φk exists

and that

φk ≤
1

k − 1

(
(k − 2)(k + 1)

2

)
=
k

2
− 1

k − 1
.
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This observation led Ore to pose Conjecture 1.4. Thus, it follows that k
2
− 1

2
≤

φk ≤ k
2
− 1

k−1 .

The first improvement to the lower bound on fk(n) came in 1957 when

Dirac [6] showed that fk(n) ≥ k−1
2
n + k−3

2
for k ≥ 4 and n ≥ k + 2. When

n 6= 2k − 1, Kostochka and Stiebitz [12] obtain the improvement

fk(n) ≥ k − 1

2
n+ k − 3.

Both of these results are significant in their own right, but in terms of asymp-

totic density of a k-critical graph these results offer no improvement over the

first bound obtained by a connectivity argument.

Gallai [7] was able to improve the lower bound on asymptotic density, as

well as calculate many exact values for fk(n). The bound he gives for k ≥ 4

and n ≥ k + 2 is fk(n) ≥ k−1
2
n+ k−3

2(k2−3)n. This was further improved to

fk(n) ≥ k − 1

2
n+

k − 3

2(k2 − 2k − 1)
n

by Krivelevich [15]. Although these results bring the lower bound on φk

closer to the upper bound, as k grows this improvement diminishes.

Ore’s Conjecture was proven to be asymptotically true in a recent paper

by Kostochka and Yancey [14]. They show the following result.

Theorem 1.5. If k ≥ 4 and G is k-critical then

|E(G)| ≥
⌈

(k + 1)(k − 2)|V (G)| − k(k − 3)

2(k − 1)

⌉
.

Note that (k+1)(k−2)
2(k−1) = k

2
− 1

k−1 , so Ore’s Conjecture is asymptotically true.

In a subsequent work [13], they verified that the graphs which attain this

bound are exactly the k-Ore graphs (defined in Chapter 3). The method of

proof of Theorem 1.5 is to define a potential function which is a measure of

density in the graph. By bounding the potential of a k-critical graph using
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a discharging argument, they obtain a bound on the number of edges as a

corollary. The proof in this work mirrors the proof of Theorem 1.5, with

significant modifications to account for the extra information we give on the

structure of k-critical graphs. Our aim is to increase asymptotic density

past the upper bound of k
2
− 1

k−1 and to do this, we must forbid certain

subgraphs. In Chapters 2–6, we lay out a proof which yields an improvement

for (Kk−3)-free k-critical graphs.

A similar attempt to push asymptotic density above the bound given by

Ore’s Conjecture was made by Postle [17] in the case where k = 4. For a 4-

critical graph G, Theorem 1.5 implies that |E(G)| ≥ 5
3
|V (G)| − 2

3
. However,

in [17] it is shown that there exists an ε > 0 such that

|E(G)| ≥
(

5

3
+ ε

)
|V (G)| (1.1)

when G is a 4-critical graph with girth at least 5. It can be shown that,

in order to obtain any improvement in the asymptotic density, {K3, C4}
is, in fact, a minimal set of graphs one needs to forbid as subgraphs. For

k-critical graphs with k > 4, a minimal set of subgraphs which we must

forbid to obtain an improvement in asymptotic density is the set of k-critical

structures (Definition 7.1). In Chapter 7, we examine a bound on these k-

critical structures in k-Ore graphs. However, an analogous result to Equation

1.1 using k-critical structures for k > 4 cannot be obtained through the

methods of this work.

1.4 Results

We now briefly summarize the results of this work and their implications.

The most significant result of this paper is a strengthening of the conclusion

of Theorem 1.5. We make a modification to the potential function which
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includes the function T (G) (see Definition 3.3) which counts, in a particular

way, the Kk−2 and Kk−1 subgraphs of a graph G.

Below is the precise formulation of the potential function used in this work

to prove results on k-critical graphs for a fixed k. This is examined in depth

in Chapter 4.

Definition 3.4 Given a graph G, we define the potential of a graph to be

ρε(G) := ((k − 2)(k + 1) + ε) |V (G)| − 2(k − 1)|E(G)| − δT (G)

for a fixed epsilon with 0 ≤ ε ≤ 4
k3−2k2+3k

and δ = (k − 1)ε. Because

ε remains fixed throughout the proof, we omit this subscript. Using this

new potential function, we are able to prove (for any 0 ≤ ε ≤ 4
k3−2k2+3k

)

the following theorem via a discharging argument. The reader can find a

definition of k-Ore graph in Chapter 3.

Theorem 3.5 If G is a k-critical graph with k ≥ 4 then

1. ρ(G) = k(k − 3) + kε− 2δ if G = Kk,

2. ρ(G) ≤ k(k−3)+ |V (G)|ε−
(

2 + |V (G)|−1
k−1

)
δ if G is k-Ore and G 6= Kk,

and

3. ρ(G) ≤ k(k − 3)− 2(k − 1) if G is not k-Ore, for k ≥ 33.

On its own, this result is slightly opaque so we highlight important corol-

laries below.

Corollary 1.6. If k ≥ 33 and G is k-critical then

|E(G)| ≥
⌈

((k + 1)(k − 2) + ε) |V (G)| − k(k − 3) + 2δ − kε− δT (G)

2(k − 1)

⌉
where ε ≤ 4

k3−2k2+3k
and δ = (k − 1)ε.

Note that by setting ε = 0, we get the same result as Theorem 1.5, although

there is an extra restriction on k. Importantly, this gives us structural in-

formation about the graphs which realize or approach the lower bound on
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φk given by Theorem 1.5. Graphs which have fewer Kk−2 subgraphs and are

close to the bound will have, in general, more edges than those with many

Kk−2 subgraphs.

In fact, if G is a (Kk−2)-free k-critical graph, then T (G) = 0 and we have

shown the following result. Let fk(n) be the minimum number of edges in a

(Kk−2)-free k-critical graph on n vertices.

Corollary 1.7. The asymptotic density φk := limn→∞
fk(n)
n

of (Kk−2)-free

k-critical graphs is bounded below by

φk ≥
(k − 2)(k + 1) + ε

2(k − 1)

where ε ≤ 4
k3−2k2+3k

.

If we restrict our attention to k-Ore graphs then Corollary 1.6 holds for k ≥
4 rather than just k ≥ 33. Therefore, the structural implications of Corollary

1.6 hold for the family of k-Ore graphs even with smaller k. However, we are

not able to obtain any increase in asymptotic density on this set of graphs

because, by Lemma 3.11, there are no k-Ore graphs which are (Kk−2)-free. In

Chapter 7, we explore a second new definition of potential function. Instead

of T (G), we introduce the counting function Tcs(G) which counts k-critical

structures, which is a minimal set of subgraphs we must forbid to see an

increase in asymptotic density. This yields the following result.

Theorem 7.2 If G is k-Ore and k ≥ 4 then for a = 7(k − 1) the following

is true.

1. If Tcs(G) ≥ 3 then Tcs(G)− 2 ≥ |V (G)|−1
2a

and

2. if Tcs(G) ≤ 2 then a ≥ |V (G)|.

The first statement of Theorem 7.2 is similar to the bound which gives

the coefficient of δ in the second statement of Theorem 3.5. This observation
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gives hope that a theorem analogous to Theorem 7.2 which uses Tcs(G) rather

than T (G) could be proven. However, such an endeavor is beyond the scope

of this work.

When we restrict our attention to k-critical graphs which are not k-Ore, a

stronger statement than Corollary 1.6 is possible. This is also a corollary to

Theorem 3.5.

Corollary 1.8. If k ≥ 33 and G is a k-critical graph which is not k-Ore

then

|E(G)| ≥
⌈

((k + 1)(k − 2) + ε) |V (G)| − k(k − 3)− δT (G)

2(k − 1)

⌉
+ 1

where ε ≤ 4
k3−2k2+3k

and δ = (k − 1)ε.

If we set ε = 0, this proves that k-critical graphs which are not k-Ore have

at least one edge more than the bound given by Theorem 1.5. Therefore this

work independently verifies the result of [13], that the graphs which attain

the bound in Theorem 1.5 are exactly the k-Ore graphs.

Theorem 3.5 is the main result of this work. The first statement of the

theorem is a straightforward calculation using the definition of potential and

the second statement requires a lemma (Lemma 3.7) about how T (G) behaves

for k-Ore graphs. The rest of this work (excepting the final chapter) focuses

on proving the third statement—which is the most complex of the three—via

a discharging argument which is split up into two stages. In the method of

discharging, each vertex is given initial charge relative to its degree. The

assumption that G is a minimal counterexample to the third statement of

Theorem 3.5 implies that the total charge on the graph is positive. Therefore,

there must be vertices in V (G) whose initial charge is positive (we say that

these vertices are unsatisfied); this is exactly the vertices of degree k − 1.

To move towards a contradiction, we will create rules by which high degree

vertices send charge to neighbors of degree k−1 while still retaining negative
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charge for themselves. Not all vertices can be satisfied in this way, so we finish

with a second round of discharging.

In Chapter 2, we begin by looking at bounds on the number of edges from

an independent set I ⊆ V (G) of degree k − 1 vertices in a k-critical graph

G. This requires looking at kernel-perfect directed graphs and list-coloring

arguments. We also state a result by Kierstead and Rabern [11] which is

used to finish the discharging argument.

In Chapter 3, we define k-Ore graphs and the Ore composition operation.

We then prove the first two statements of Theorem 3.5. We also introduce

some structural lemmas about subgraphs that must exist in k-Ore graphs,

which we use in the following chapters.

In Chapter 4, we begin our thorough investigation of the potential function

ρ. Corollary 4.7 implies that every proper induced subgraph G[R] ( G has

potential that is higher than ρ(G). Therefore ρ(G) = min{ρG(R) | R ⊆
V (G)}, and we are able to use ρ as a global parameter for discharging.

Because discharging arguments make a global assumption and then examine

specific local structures, it is crucial for this global assumption to also hold on

all induced subgraphs. The main goal of this chapter is to establish Lemma

4.19, which is used in determining the local structure near vertices of degree

k − 1 in a minimal counterexample to the third statement of Theorem 3.5.

This will help inform the rules in the first stage of discharging.

In Chapter 5, we classify all vertices of degree k − 1 into three different

categories, depending on their local structure. The main lemma is Lemma

5.5 which shows that any adjacent vertices of degree k − 1 must give rise to

one of two structures, each of which has enough charge to compensate for

the degree k − 1 vertices near it.

In Chapter 6, we complete the proof by discharging in two stages. In the

first stage, we ensure that two classes of degree k − 1 vertices are satisfied.

The third class cannot be directly satisfied this way so in the second stage,
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we examine the total charge on the graph and use it to get a bound on

|E(G)|. From our assumption on potential and the result by Kierstead and

Rabern, we have two other bounds on |E(G)|. These bounds cannot be

simultaneously satisfied and we complete the proof of Theorem 3.5.

In Chapter 7, which is self-contained, we examine k-Ore graphs under a dif-

ferent definition of potential. We exclude different structures from k-critical

graphs G, which gives more information about the structure of k-Ore graphs.

These structures, called k-critical structures, are the minimal set of subgraphs

which we have to forbid to obtain an ε improvement in the asymptotic den-

sity φk for k-critical graphs and thus the proof of Theorem 7.2 is far from

straightforward. Without increasing the complexity far beyond the scope of

this work, we cannot extend these results to general k-critical graphs.
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Chapter 2

Graph definitions and

preliminaries

2.1 Definitions

We begin with some graph notation that is frequently used in this work and

then some preliminary lemmas which will be used in Chapter 6 during dis-

charging. In this work, we focus on k-critical graphs, a special type of graph

with chromatic number k. Recall the following definitions of the chromatic

number and k-critical graphs. A proper k-vertex-coloring, or simply proper

k-coloring is a labelling such that adjacent vertices of G receive different

labels. The chromatic number of a graph G is the smallest k for which G is

properly k-colorable. A k-critical graph is a graph G with chromatic number

k but for any e ∈ E(G), the graph G− e is properly (k − 1)-colorable.

There are a few other definitions for graphs that we use frequently through-

out this work which we make note of below. Definitions not specifically stated

in this work can be found in [8].

For a graph G we say that two subgraphs H1, H2 are incident if V (H1) ∩
V (H2) 6= ∅, we say that an edge e is incident to a vertex x if x is one of the

endpoints of the edge, and we say that an edge e is incident to an edge f if

x ∈ V (G) is an endpoint of both edges.
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The neighborhood, NG(x), of a vertex x ∈ V (G) is the set of all adjacent

vertices. The closed neighborhood, NG[x], is the set NG(x) ∪ {x}.
For a graph G with two vertices x, y we define the graph G/xy to be

the graph obtained from G by identifying the vertices x and y. That is,

V (G/xy) := (V (G) ∪ {xy}) − {x, y} and the new vertex xy is adjacent to

each vertex in NG(x) ∪NG(y).

2.2 Almost-bipartite subgraphs in a k-critical

graph

We begin this work on k-critical graphs by examining edge bounds of an

almost-bipartite subgraph of a k-critical graph G. By almost-bipartite sub-

graph, we are referring to an induced subgraph on disjoint sets A,B ⊆ V (G)

such that A is an independent set. Because we only specify that A is in-

dependent, the induced subgraph G[A ∪ B] is not necessarily bipartite. In

proving these results, we consider putting an orientation on edges of G to

create a digraph D. On this digraph, we will make a list-coloring argument

to achieve bounds on the number of edges in an almost-bipartite subgraph.

Definition 2.1. For a graph G with disjoint vertex subsets A,B, we define

G(A,B) to be the bipartite graph obtained from G[A ∪ B] by removing all

edges from G[B] and G[A]. We define eG(A,B) to be the number of edges in

G(A,B).

For a graph (or digraph) G, a list L is a mapping which assigns to each

v ∈ V (G) a set of available colors for v. Let L(v) be a set of available colors

for each v ∈ V (G). We say that G is L-colorable if there is a proper coloring

φ of G such that φ(v) ∈ L(v) for all v.

In [14], the authors prove (Lemmas 8 and 9) the following statement, where

deg+
D(v) is the out-degree of v in the digraph D.



14

Lemma 2.2. Suppose that A is an independent set in a graph G and B =

V (G) − A. Let D be the digraph obtained from G by replacing each edge in

G[B] by a pair of opposite arcs and replacing each edge connecting A with B

by an arc with arbitrary orientation. If L is a list such that

|L(v)| ≥ 1 + deg+
D(v) for all v ∈ V (D)

then D is L-colorable.

The following lemma is a specific case of another result (Corollary 11) in

[14].

Lemma 2.3. Let G be a k-critical graph with disjoint vertex subsets A,B

such that

1. A is independent,

2. degG(a) = k − 1 for each a ∈ A, and

3. degG(b) = k for each b ∈ B.

Then eG(A,B) ≤ 2|A|+ 2|B|.

We will need to prove similar lemmas where the vertices b ∈ B all have

degree k + 1, or have degree d with k ≤ d ≤ k + 1.

Lemma 2.4. Let G be a k-critical graph with disjoint vertex subsets A,B

such that

1. A is independent,

2. degG(a) = k − 1 for each a ∈ A,

3. and degG(b) = k + 1 for each b ∈ B.

Then eG(A,B) ≤ 3(|A|+ |B|).
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Proof. Suppose that the hypotheses of the lemma hold. If A or B are empty

then eG(A,B) ≤ 3(|A|+ |B|) is trivial, so we may assume that they are not

empty. Let G′ = G[A∪B] and let G′′ = G(A,B). We claim that δ(G′′) ≤ 3.

Suppose, for sake of contradiction, that δ(G′′) ≥ 4.

From G′′ we construct a new graph H be splitting each vertex b ∈ B into

ddG′′(b)/4e vertices of degree at most 4. Let B′′ be the partite set obtained

from B in this manner. Then H is a bipartite graph, degH(a) ≥ 4 for each

a ∈ A, and degH(b) ≤ 4 for each b ∈ B′′. Hall’s Theorem ([10]) gives a

matching M ⊆ E(H) that covers A. Because each edge in H corresponds to

an edge in G′′ = G(A,B), we will also say that M ⊆ E(G′′)

Now we construct a digraph D from G′ by replacing each edge in G[B] by

a pair of opposite arcs, orienting all edges of M ⊆ E(G′′) toward A, and

orienting all remaining edges in E(G′′) towards B. Because G is k-critical,

we can properly (k − 1)-color G − {A ∪ B} with φ using color set C. For

each v ∈ A ∪B, we let

L(v) := C −
⋃

x∈V (G)−(A∪B)

xv∈E(G)

φ(x).

Note that for any v ∈ (A∪B) we get |L(v)| ≥ (k− 1)− degG(v) + degG′(v).

Therefore for a ∈ A and b ∈ B, we have |L(a)| ≥ degG′(a) and |L(b)| ≥
degG′(b) − 2. It follows that deg+

D(a) = degG′(a) − 1 ≤ |L(a)| − 1. Further,

because each b ∈ B has at most d1
4

degG′′(b)e incident arcs which are oriented

towards A and because each b has at least 4 neighbors in A it follows that

deg+
D(b) ≤ degG′(b)−

⌊
3

4
degG′′(b)

⌋
≤ (|L(b)|+ 2)− 3 = |L(b)| − 1.

By Lemma 2.2 D is L-colorable. But this implies that φ can be extended to

properly (k−1)-color G, which is a contradiction. Therefore, we have shown

that δ(G′′) ≤ 3.

We now prove by induction on (|A| + |B|) that eG(A,B) ≤ 3(|A| + |B|).
This is trivial for |A| + |B| = 2, which is the base case. Now suppose that
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|A|+ |B| = ` and that the lemma holds for |A|+ |B| < `. Because δ(G′′) ≤ 3,

there is a vertex x with degG′′(x) = d ≤ 3; without loss of generality, suppose

that x ∈ A. By the inductive hypothesis eG(A− {x}, B) ≤ 3(|A|+ |B| − 1).

Therefore eG(A,B) ≤ 3(|A|+ |B|)− 3 + d ≤ 3(|A|+ |B|).

Lemma 2.5. Let G be a k-critical graph with disjoint vertex subsets A,B0, B1

and let B := B0 ∪B1. If

1. A is independent,

2. degG(a) = k − 1 for each a ∈ A,

3. and degG(b) = k + i for each b ∈ Bi with 0 ≤ i ≤ 1.

Then eG(A,B) ≤ 2|A|+ 2|B0|+ 4|B1|.

Proof. Suppose that the hypotheses of the lemma hold. If A or B are empty

then eG(A,B) ≤ 2|A|+2|B0|+4|B1| is trivial, so we may assume that they are

not empty. Let G′ = G[A ∪ B] and let G′′ = G(A,B). We claim that either

there is some a ∈ A with degG′′(a) ≤ 2 or some bi ∈ Bi with degG′′(bi) ≤ 2+2i

for 0 ≤ i ≤ 1. Suppose, for sake of contradiction, that degG′′(a) ≥ 3 for all

a ∈ A and degG′′(bi) ≥ 3 + 2i for all bi ∈ Bi with 0 ≤ i ≤ 1.

From G′′ we construct a new graph H be splitting each vertex b ∈ B into

ddG′′(b)/3e vertices of degree at most 3. Let B′′ be the partite set obtained

from B in this manner. Then H is a bipartite graph, degH(a) ≥ 3 for each

a ∈ A, and degH(b) ≤ 3 for each b ∈ B′′. Hall’s Theorem ([10]) gives a

matching M ⊆ E(H) that covers A. Because each edge in H corresponds to

an edge in G′′ = G(A,B), we will also say that M ⊆ E(G′′)

Now we construct a digraph D from G′ by replacing each edge in G[B] by

a pair of opposite arcs, orienting all edges of M ⊆ E(G′′) toward A, and

orienting all remaining edges in E(G′′) towards B. Because G is k-critical,
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we can properly (k − 1)-color G − {A ∪ B} with φ using color set C. For

each v ∈ A ∪B, we let

L(v) := C −
⋃

x∈V (G)−(A∪B)

xv∈E(G)

φ(x).

Note that for any v ∈ (A∪B) we get |L(v)| ≥ (k− 1)− degG(v) + degG′(v).

Therefore for a ∈ A and bi ∈ Bi we have |L(a)| ≥ degG′(a) and |L(bi)| ≥
degG′(bi) − 1 − i. It follows that deg+

D(a) = degG′(a) − 1 ≤ |L(a)| − 1.

Further, because each bi ∈ Bi has at most d1
3

degG′′(bi)e incident arcs which

are oriented towards A and because each bi has at least 3 + 2i neighbors in

A it follows that

deg+
D(bi) ≤ degG′(bi)−

⌊
2

3
degG′′(bi)

⌋
≤ (|L(bi)|+1+i)−

⌊
6 + 4i

3

⌋
= |L(bi)|−1.

By Lemma 2.2 D is L-colorable. But this implies that φ can be extended to

properly (k−1)-color G, which is a contradiction. Therefore, we have shown

that there is either some a ∈ A with degG′′(a) ≤ 2 or some bi ∈ Bi with

degG′′(bi) ≤ 2 + 2i for 0 ≤ i ≤ 1.

We now prove by induction on (|A|+ |B|) that eG(A,B) ≤ 2|A|+ 2|B0|+
4|B1|. This is trivial for |A|+ |B| = 2, which is the base case. Now suppose

that |A|+ |B| = ` and that the lemma holds for |A|+ |B| < `. Suppose that

there is some a ∈ A with degG′′(a) = d ≤ 2. By the inductive hypothesis

eG(A− {a}, B) ≤ 2(|A| − 1) + 2|B0| + 4|B1|. Therefore eG(A,B) ≤ 2(|A| −
1) + 2|B0|+ 4|B1|+ d ≤ 2|A|+ 2|B0|+ 4|B1|.

Now suppose instead that there is some bi ∈ Bi with degG′′(bi) = d ≤ 2+2i.

By the inductive hypothesis and assumption on degree of bi it follows that

eG(A,B) ≤ (2|A|+ 2|B0|+ 4|B1| − 2− 2i) + d ≤ 2|A|+ 2|B0|+ 4|B1|.
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2.3 Further edge bound on k-critical graphs

The following lemma, used in the second stage of discharging in Chapter 6, is

a restatement in terms of k-critical graphs of a theorem from Kierstead and

Rabern (Theorem 4.5) [11]. Let mic(G) be the maximum of
∑

v∈I degG(v)

over all independent vertex subsets I of G.

Lemma 2.6. Given a k-critical graph G with at least one vertex of degree

k − 1,

2|E(G)| ≥ (k − 2)|V (G)|+ mic(G) + 1.

In this work, we omit the +1 because the other two terms scale with

|V (G)|.
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Chapter 3

Ore compositions and k-Ore

graphs

We can equivalently define a k-critical graph to be a graphG with chromatic

number k such that every proper subgraph of G has chromatic number at

most k − 1. In this sense, k-critical graphs can be thought of as minimal

graphs that are not (k − 1)-colorable. It is natural to ask how small such

graphs can be. Recall that fk(n) is the minimum number of edges of a

k-critical graph on n vertices. In a recent paper, Kostochka and Yancey

[14] proved that a k-critical graph must have edge density above a certain

threshold. Namely, they proved that if k ≥ 4, n ≥ k and n 6= k + 1 then

fk(n) ≥
⌈(

k

2
− 1

k − 1

)
n− k(k − 3)

2(k − 1)

⌉
.

Further, this bound is tight since it is attained by an infinite class of k-critical

graphs. In a subsequent paper, Kostochka and Yancey [13] proved that

k-critical graphs which attain these bounds are precisely the k-Ore graphs

described below. Therefore, in exploring new bounds on edge-density of k-

critical graphs, it is important to begin our discussion with results on k-Ore

graphs.
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3.1 Ore composition and potential function

Definition 3.1. An Ore composition of two graphs G1 and G2 is a graph

obtained by the following procedure:

1. delete an edge xy from G1,

2. split some vertex z of G2 into two vertices z1 and z2 of positive degree,

3. identify x with z1 and identify y with z2.

Note that an Ore composition of G1 and G2 does not necessarily obtain a

unique graph. Further, the order in which we list the graphs is important;

we say that G1 (always listed first) is the edge-side and G2 (always listed

second) is the split-side of the composition. The identified vertices xz1 and

yz2 are the overlap vertices of the composition. Further, we say that xy is

the replaced edge of G1 and that z is the split vertex of G2. A graph G is a

k-Ore graph if and only if it is in the smallestclass of graphs which is closed

under the Ore composition operation and contains Kk. This means that any

k-Ore graph can be obtained if we start with Kk and make repeated Ore

compositions with copies of Kk and any intermediate graphs created along

the way.

On occasion, we are interested in decomposing a k-Ore graph G into the

graphs G1 and G2 that were used to obtain G. When we split a vertex z of

the split-side, the resulting graph can be properly (k − 1)-colored, but the

new vertices z1 and z2 must receive different colors. Therefore, if we focus on

colorings of G1 then the restrictions caused by the replaced edge xy ∈ E(G1)

are the same as the restrictions caused by the split-side of the composition.

We may view the graph G as a graph G′ isomorphic to G1 where the edge

xy ∈ E(G′) corresponds to a subgraph D ⊆ G which is the split-side of the

Ore composition of G after the vertex z has been split into two vertices. We

call the edge xy ∈ E(G′) an edge-replacement to distinguish it from the edges
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which are in both G and G1. Replacing an edge-replacement e in G′ with its

corresponding subgraph D ⊆ G is equivalent to taking an Ore composition

of G′ and D/xy.

Proposition 3.2. Suppose that G is a k-Ore graph. Then there exists a graph

H = Kk with ` edge-replacements {e1, . . . , e`} corresponding to subgraphs

{D1, . . . , D`} of G. The graph G can be obtained from H by replacing each

ei with Di.

Proof. Let G be a k-Ore graph. We will prove this by induction on |V (G)|.
If G is Kk then the result is trivial, so we may assume that G is the Ore

composition of two k-Ore graphs G1 and G2 with overlap vertices {x, y}.
Let D ⊆ G be the subgraph G[(V (G) − V (G1)) ∪ {x, y}]. This subgraph is

isomorphic to the k-Ore graph G2 after the split-vertex z is split into two

vertices x, y of positive degree.

By induction G1 can be reduced to H1 = Kk where the graph H1 has r

edge-replacements. Suppose that xy is an actual edge in H1. Then G is

reducible to H = Kk where H has the same r edge-replacements as H1 and

also has the edge-replacement xy corresponding to D. Suppose instead that

xy is not an edge in H1. Then xy is an edge in a subgraph D1 ⊆ G1 which

corresponds to an edge-replacement e1 in H1. Now G is reducible to H = Kk

where e1 is an edge-replacement corresponding to a subgraph which is an

Ore composition of D1 and G2.

Kostochka and Yancey’s bound on fk(n) also gave an asymptotic confirma-

tion of Ore’s Conjecture; that is, Kostochka and Yancey’s result proves that

ϕk := limn→∞
fk(n)
n

= k
2
− 1

k−1 . One of the goals of this work is to increase

the asymptotic density when k ≥ 33 for the class of k-critical graphs that do

not contain Kk−2 as a subgraph, which leads to a strengthening of Kostochka

and Yancey’s result.
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Figure 3.1: H1 ⊆ G is in bold on the left; H2 ⊆ G is in bold on the right.

In order to obtain this improvement, we define a graph function T which

‘counts’ the Kk−1 and Kk−2 subgraphs in a particular way.

Definition 3.3. Suppose that the graph H is a disjoint union of r Kk−1 and

s Kk−2 subgraphs. Then T (H) is defined to be 2r + s. More generally, we

define T (G) for an arbitrary graph G as follows:

T (G) := max
H⊆G
{T (H) | H is a disjoint union of Kk−1 and Kk−2 components}.

We let T (G) be the maximum over all choices of subgraphs H ⊆ G which

are disjoint collections of Kk−1 and Kk−2 subgraphs. For example, for k = 5,

Figure 3.1 shows two subgraphs H1 and H2 of G. Both T (H1) and T (H2)

are 2 and so it follows that T (G) ≥ 2 (in fact, we can check that T (G) = 2

in this example). These two choices of subgraphs also highlight that there

could be multiple subgraphs H ⊆ G which witness T (G). Throughout our

proofs, we make no assumptions on how these subgraphs are chosen.

We can now define the potential of a graph.

Definition 3.4. Given a graph G, we define the potential of a graph to be

ρε(G) := ((k − 2)(k + 1) + ε) |V (G)| − 2(k − 1)|E(G)| − δT (G)

for a fixed ε with 0 ≤ ε ≤ 4
k3−2k2+3k

and δ = (k − 1)ε.

Because ε remains fixed throughout the proof, we omit this subscript. The

theorem is then proven for any potential function ρε with ε in the specified
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range. Different values of ε in this range will lead to different corollaries,

as discussed in Chapter 1. The main goal of this work, and the aim of the

remainder of this chapter and the subsequent three chapters, is to prove the

following theorem about potential of k-critical graphs:

Theorem 3.5. If G is a k-critical graph with k ≥ 4 then

1. ρ(G) = k(k − 3) + kε− 2δ if G = Kk,

2. ρ(G) ≤ k(k−3)+ |V (G)|ε−
(

2 + |V (G)|−1
k−1

)
δ if G is k-Ore and G 6= Kk,

and

3. ρ(G) ≤ k(k − 3)− 2(k − 1) if G is not k-Ore, for k ≥ 33.

When k ≥ 33, this is a complete statement about potentials for all k-critical

graphs. For k < 33 the first two statements hold but, due to constraints in the

discharging argument that we use in Chapter 6, we are not able to prove the

third statement for small k without significantly increasing the complexity of

the discharging arguments. Note that T (Kk) = 2 and so the first assertion

of Theorem 3.5 is immediate from the definition of ρ(G). In the following

Section, we will examine the function T (G) where G is a k-Ore graph or an

Ore composition and we will prove the second assertion of Theorem 3.5.

3.2 Results on k-Ore graphs

First, we prove the following lemma about Ore compositions:

Lemma 3.6. If G is an Ore composition of G1 and G2, then T (G) ≥ T (G1)+

T (G2)−2. Moreover, if G1 = Kk or G2 = Kk then T (G) ≥ T (G1)+T (G2)−1.

Proof. Suppose that G is an Ore composition of G1 and G2 . Let e be the

replaced edge of G1 and z be the split vertex of G2. From the definition of an

Ore composition T (G) ≥ T (G1 − e) + T (G2 − {z}). Note that T (G1 − e) ≥
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T (G1)− 1 and T (G2−{z}) ≥ T (G2)− 1, because removing a single element

can decrease T (G) by at most 1. Thus, we get T (G) ≥ T (G1) + T (G2) − 2

as desired. If G1 = Kk then T (Kk − e) = 2 for every edge e ∈ E(G1);

also, if G2 = Kk then T (Kk − {v}) = 2 for every v ∈ V (G2). Removing an

element from a Kk graph does not decrease T (Kk). Therefore, it follows that

T (G) ≥ T (G1) +T (G2)− 1 if either G1 or G2 is Kk. Further, if both G1 and

G2 are Kk then T (G) = 4.

Let G be a k-Ore graph. We can show inductively that there exists an

` ≥ 0 such that |V (G)| = k + `(k − 1) and |E(G)| = (`+1)k(k−1)
2

− `. When

G is a k-Ore graph that is not Kk, then it is an Ore composition and we can

use Lemma 3.6 to get a bound on T (G).

Lemma 3.7. If G is a k-Ore graph and G 6= Kk then T (G) ≥ 2 + |V (G)|−1
k−1 .

Proof. We proceed by induction on |V (G)|. Since G is k-Ore and G 6= Kk,

then G must be the Ore composition of two k-Ore graphs G1 and G2. Note

that if G is an Ore composition of G1 and G2 then, by the definition of Ore

composition, |V (G)| = |V (G1)| + |V (G2)| − 1 If G1 and G2 are both Kk

graphs, then |V (G)| = 2k − 1 so we need to show that T (G) ≥ 4. We know

that T (Kk − e) = T (Kk − {z}) = 2 regardless of the choice of replaced edge

e and split vertex z in the composition. Thus T (G) ≥ 4 as desired.

Suppose thatG1 = Kk andG2 6= Kk. Then by Lemma 3.6 and the inductive

hypothesis, we have that

T (G) ≥ T (G2) + 1 ≥
(

2 +
|V (G2)| − 1

k − 1

)
+ 1 = 2 +

|V (G)| − 1

k − 1

as desired. A similar argument covers the case where G1 6= Kk and G2 = Kk.

Finally, suppose that neither G1 nor G2 is Kk. Then because |V (G)| =

|V (G1)|+ |V (G2)| − 1, it follows from Lemma 3.6 that

T (G) ≥
(

2 +
|V (G1)| − 1

k − 1

)
+

(
2 +
|V (G2)| − 1

k − 1

)
−2 =

(
2 +
|V (G)| − 1

k − 1

)
.
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We obtain the second assertion of Theorem 3.5 as a corollary.

Corollary 3.8. If G is a k-critical graph that is k-Ore and G 6= Kk then

ρ(G) ≤ k(k − 3) + |V (G)|ε−
(

2 + |V (G)|−1
k−1

)
δ.

Proof. To prove this, we recall that

ρ(G) := ((k − 2)(k + 1) + ε) |V (G)| − 2(k − 1)|E(G)| − δT (G).

Also, a k-Ore graph which is not Kk has k+`(k−1) vertices and (`+1)k(k−1)
2

−`
edges for some ` ≥ 1. Therefore, using Lemma 3.7, it is a straightforward

calculation to show that ρ(G) ≤ k(k − 3) + |V (G)|ε−
(

2 + |V (G)|−1
k−1

)
δ.

3.3 Diamonds and emeralds

Definition 3.9. A subgraph D ⊆ G is a diamond of G if D = Kk − uv and

degG(x) = k− 1 for each x ∈ V (D)−{u, v}. The vertices u and v are called

the endpoints of the diamond.

Definition 3.10. A subgraph D ⊆ G is an emerald of G if D = Kk−1 and

degG(x) = k − 1 for each x ∈ V (D).

Lemma 3.11. If G is k-Ore and v ∈ V (G), then there exists a diamond or

emerald of G not containing v.

Proof. We will prove this by induction on the order of G, |V (G)|. Let G be

a k-Ore graph and let v ∈ V (G) be an arbitrary vertex. If G = Kk then

G − {v} is an emerald of G not containing v. Otherwise, we have that G

is an Ore composition of two k-Ore graphs G1 and G2 with overlap vertices

{a, b}. We choose this composition to minimize the number of vertices in

the edge-side G1. If v ∈ V (G1) then, inductively, there is a diamond or an
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emerald D in G2 not containing the vertex ab ∈ V (G2). Note that D is also

a diamond or emerald of G not containing v.

Therefore, we may assume that v ∈ V (G2)− V (G1). If G1 = Kk, then G1

is a diamond of G and we are done. Otherwise, G1 is a composition of two

k-Ore graphs H1 and H2 with overlap vertices {x, y}. If the edge ab ∈ E(G1)

is in E(H2) then there is a decomposition of G with H1 as the edge-sde,

which contradicts the minimality of G1. Thus, ab ∈ E(H1) and by induction

there is a subgraph D of H2 which is a diamond or emerald not containing

xy ∈ V (H2). Note that D is also disjoint from vertex v, and is also a diamond

or emerald in G because ab ∈ E(H1). This completes the proof.

Note that one could prove as a corollary that there is a diamond or emerald

in G disjoint from any edge e ∈ E(G).

Lemma 3.12. If G is k-Ore and D = Kk−1 is a subgraph of G, then either

G = Kk or there exists a diamond or emerald in G disjoint from D.

Proof. We will prove this by induction on |V (G)|. Let G be a k-Ore graph

and let D = Kk−1 be a subgraph of G. If G = Kk then we are trivially

done, so suppose that G is an Ore composition of two k-Ore graphs G1 and

G2 with overlap vertices {a, b}. We choose this composition to minimize

|V (G1)|. Note that D lies entirely on the edge-side or the split-side of this

composition. If V (D) ⊆ V (G1) then by Lemma 3.11 there is a diamond or an

emerald in G2 not containing the vertex ab ∈ V (G2). This is also a diamond

or an emerald of G and it is necessarily disjoint from D.

Therefore, we may assume that D lies on the split-side. We examine two

cases based on if V (D) contains one of the overlap vertices {a, b} or not.

First, suppose that V (D) contains neither a nor b. Then if G1 = Kk, then

G1 is a diamond that is disjoint from D. Otherwise, G1 is a composition

of two k-Ore graphs H1 and H2 with overlap vertices {x, y}. If the edge

ab ∈ E(G1) is in E(H2) then there is a decomposition of G with H1 as
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the edge-side, which contradicts the minimality of G1. Thus, ab ∈ E(H1)

and by Lemma 3.11 there is a diamond or an emerald in H2 not containing

xy ∈ V (H2). Note that this does not contain a or b, so is also a diamond or

emerald of G which is disjoint from D.

Now we suppose that V (D) and {a, b} are not disjoint. Because ab /∈ E(G),

|V (D)∩{a, b}| = 1 and without loss of generality, we assume that a ∈ V (D).

If G2 6= Kk then by induction, there is a diamond or an emerald in G2

disjoint from D. This is also disjoint from D in the graph G, so we may

assume that G2 = Kk. Because degG2
(ab) = k − 1, it follows that b ∈ V (G)

has exactly one neighbor on the split-side G2. By Lemma 3.11, there is a

diamond or emerald D′ in G1 disjoint from a. If D′ is a diamond, then it

is also a diamond of G that is disjoint from D because b ∈ V (D′) implies

that b is an endpoint of D′, since ab ∈ E(G1). If D′ is an emerald that does

not contain b, then it is an emerald of G that is disjoint from D. If D′ is an

emerald and b ∈ V (D′) then degG1
(b) = k− 1. However, in G, b is no longer

adjacent to a, and has exactly one neighbor on the split-side G2. Therefore

degG(b) = k − 1 as well and D′ is also an emerald of G that is disjoint from

D.
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Chapter 4

Potential and critical

extensions

4.1 Potential

We now recall the definition of the potential of a graph.

Definition 4.1. A graph G has potential

ρ(G) = ((k − 2)(k + 1) + ε) |V (G)| − 2(k − 1)|E(G)| − δT (G).

We can also define this function on vertex subsets R of a graph G. If

R ⊆ V (G), then let

ρG(R) = ((k − 2)(k + 1) + ε) |R| − 2(k − 1)|E(G[R])| − δT (G[R])

where we reacall that G[R] is the induced subgraph of G with vertex set R.

Below, we begin the list of complete subgraphs of a k-critical graph for a

fixed k, ordered from smallest potential to largest potential. The complete

subgraphs not listed all have larger potential than these four.

Fact 4.2.

1. ρ(K1) = k2 − k − 2 + ε.
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2. ρ(Kk−1) = 2k2 − 6k + 4 + (k − 1)ε− 2δ.

3. ρ(K2) = 2k2 − 4k − 2 + 2ε.

4. ρ(Kk−2) = 3k2 − 11k + 10 + (k − 2)ε− δ.

To prove Theorem 3.5, our strategy is to look at a minimal counterexample

and use proof by contradiction. Therefore, we now need to precisely define

what makes a graph minimal. Let G and H be two graphs.

Definition 4.3. The graph H is smaller than G if either |E(G)| > |E(H)|,
or |E(G)| = |E(H)| and G has fewer pairs of vertices with the same closed

neighborhood.

Definition 4.4. A graph G is good if it is k-critical and every smaller k-

critical graph satisfies Theorem 3.5.

Therefore, when we say that G is a minimal counterexample to the third

statement of Theorem 3.5, we mean that it is a good graph which is not

k-Ore and does not satisfy Theorem 3.5.

4.2 Critical extensions

If R is a proper subset of a k-critical graph G, then we can use the criticality

of G to define an extension of R. First, note that if R ( V (G), then we can

(k − 1)-color G[R] with some proper coloring φ : R → [k − 1]. We define

the graph GR,φ to be the graph obtained from G by identifying all vertices

in φ−1(i) to a single vertex xi for 1 ≤ i ≤ k − 1, adding the edge xixj for

1 ≤ i < j ≤ k−1, and then replacing any multiedges with single edges. Note

that we don’t remove adjacencies in G, so that if u ∈ R, v ∈ V (G)−R, and

uv ∈ E(G) then vxφ(u) ∈ E(GR,φ).

The following lemma is proved in [14], we include a proof for completeness.
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Lemma 4.5. If G is a k-critical graph with R ( V (G). Then GR,φ is not

(k − 1)-colorable.

Proof. Suppose the result fails to hold. Let G be a k-critical graph with

R ( V (G) and let φ : R → [k − 1] be a proper (k − 1)-coloring of G[R].

By assumption, there is a proper (k − 1)-coloring ψ of GR,φ. Recall that

V (GR,φ) = (V (G) − R) ∪ {x1, . . . , xk−1} and that GR,φ[{x1, . . . , xk−1}] is a

Kk−1. We change the labels of ψ so that ψ(xi) = i for each vertex xi ∈
V (GR,φ). However, ψ|V (G)−R ∪ φ|R is now a proper (k − 1)-coloring of G,

which is a contradiction. Therefore, the result must hold.

By Lemma 4.5, we know that there is a k-critical subgraph W ⊆ GR,φ.

Because G is k-critical, W must contain at least one vertex in {x1, . . . , xn}.
We let X := V (W ) ∩ {x1, . . . , xn} and R′ := (R ∪ V (W )) − X. Note that

R ( R′ ⊆ V (G). We say that R′ is a W -critical extension of R and that X

is the core of the extension.

Lemma 4.6. If R′ is a W -critical extension of R ( V (G) with core X, then

ρG(R′) ≤ ρG(R) + ρ(W )− ρ(K|X|)− δT (K|X|) + δ|X|. (4.1)

Proof. The three elements of a graph that contribute to potential are vertices,

edges, and the number of Kk−1 and Kk−2 subgraphs. Because R′ = R ∪
V (W ) − X, each side of Equation 4.1 counts the same number of vertices.

For the edges, each side of Equation 4.1 counts some edges that the other

does not. Note that ρG(R′) counts edges in G from R to V (W ) − X. The

right-hand side counts edges in GR,φ from X to V (W )−X. All other edges

(those inside G[R] and those inside W − {X}) are accounted for by both

sides of Equation 4.1. However each edge from R to V (W ) −X in G maps

to an edge from X to V (W )−X. Therefore we have the desired inequality

with respect to the edge-contribution to potential.
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Finally we look at the Kk−1 and Kk−2 subgraphs. Now T (G[R′]) must be

at least the sum of T (G[R]) and T (W − {X}). Also, T (W − {X}) must be

at least T (W )−|X| because each xi ∈ X could be in, at worst, one subgraph

counted by T (W ). Therefore, we get the desired inequality in Equation

4.1.

Corollary 4.7. For good graphs G with R ( V (G), ρG(R′) ≤ ρG(R)−2(k−
1)− δ.

Proof. By Fact 4.2, we can see that ρ(K|X|) + δT (K|X|)− δ|X| is minimized

when |X| = 1. Therefore, Lemma 4.6 becomes

ρG(R′) ≤ ρG(R) + ρ(W )− (k2 − k − 2 + ε− δ). (4.2)

If W is Kk, then because T (W ) = T (W − {x}) for x ∈ X we can ignore the

+δ in Equation 4.2. Therefore for W = Kk it follows that

ρG(R′) ≤ ρG(R) + (k2 − 3k + kε− 2δ)− (k2 − k − 2 + ε)

= ρG(R)− 2(k − 1) + (k − 1)ε− 2δ.

If W is k-Ore and W 6= Kk then it follows from Theorem 3.5 that

ρG(R′) ≤ ρ(G)+(k(k−3)+|V (G)|ε−
(

2 +
|V (G)| − 1

k − 1

)
δ)−(k2−k−2+ε−δ).

Because δ ≥ (k − 1)ε, this implies that ρG(R′) ≤ ρG(R)− 2(k − 1)− δ.
Finally, if W is not k-Ore, then ρ(W ) ≤ k(k − 3) − 2(k − 1) because G is

a good graph. Therefore we get ρG(R′) ≤ ρG(R)− 4(k − 1)− ε and because

−2(k − 1)− ε ≤ δ we have proven the corollary.

Corollary 4.7 implies that in a minimal counterexample G every proper

subgraph G[R] ( G has potential that is higher than ρ(G) because we can

continue making critical extensions, lowering the potential and growing the

subset until we reach an extension which is all of V (G). Therefore ρ(G) =
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min{ρG(R) | R ⊆ V (G)}, and we are able to use ρ as a global parameter for

discharging.

Suppose that R′ is a W -critical extension of R ( V (G) with core X. We

define |X| to be the core size of the W -critical extension. If R′ = V (G)

then we say that R′ is a spanning critical extension. Note that if R′ 6= V (G)

then G[R′] is (k− 1)-colorable; however, the coloring φ used on R cannot be

extended to a proper (k − 1)-coloring of R′ by construction. The extension

R′ is, in fact, a minimal subset of V (G) to which φ cannot be extended.

Finally, we define a complete critical extension. The extension R′ is com-

plete if both G[R′−R] = W [R′−R] and there is a one-to-one correspondence

between edges in W from R′−R to X, to edges in G from R′−R to R. If an

extension is complete, then the edge contribution in Lemma 4.6 is the same

on each side of Equation 4.1. That is,

|E(G[R′])| = |E(G[R])|+ |E(W )| − |E(K|X|)|.

For a general W -critical extension R′, it is possible that the left hand side of

the above equation is larger. If we have |E(G[R′])| = |E(G[R])|+ |E(W )| −
|E(K|X|)|+ i then we say that the extension is i-incomplete.

4.3 Collapsible sets and edge-additions

Given a graph G and a subset of its vertices R ⊆ V (G), the boundary of R,

denoted by ∂GR, is defined to be the set ∂R := {v ∈ R | uv ∈ E(G) for some

u ∈ V (G)− R}. If R is a subset of the vertices of two graphs G and H, we

will specify ∂GR and ∂HR for the boundary of R in each respective graph.

Definition 4.8. A proper vertex subset R is collapsible in G if for every

proper (k − 1)-coloring of R, the vertices of ∂R receive the same color.

We call such a set collapsible, because the subset R behaves like a fat vertex

with respect to coloring.
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Proposition 4.9. A subset R ( V (G) is collapsible in G if and only if every

critical extension has a core of size 1, is spanning, and is complete.

Proof. Suppose, first, that R is collapsible in G. Let φ be an arbitrary

proper (k − 1)-coloring of G[R]. Permute the colors, if necessary, so that

∂R receives color 1, and consider the graph GR,φ and a W -critical extension

R′. The vertex x1 ∈ V (GR,φ) is a cut-vertex. Let A = (V (G) − R) ∪ {x1}.
Because a k-critical graph cannot contain a cut-vertex and must have at least

k vertices, we know that W is a subgraph of GR,φ[A] and that the core X

contains only x1.

Now suppose, for sake of contradiction, that R′ ( V (G) and let y ∈ V (G)−
R′. Then we can properly (k − 1)-color G − {y} with ψ; this induces a

proper (k − 1)-coloring in R and, without loss of generality, we assume that

ψ(∂R) = 1. It follows that using ψ to color W −{x1} and coloring x1 with 1

gives a proper (k − 1)-coloring of W . Therefore, we have shown that R′ has

core size 1 and is spanning, and we now show that it is complete.

If G[R′ −R] has an edge f that is not in W [R′ −R], then we can properly

(k − 1)-color G− f with ψ and the same argument as above gives a proper

(k−1)-coloring of W . Suppose that an edge ux1 ∈ E(W ) corresponds to two

edges uv1, uv2 ∈ E(G) with v1, v2 ∈ R. Then G− uv1 can be (k− 1)-colored

by ψ. Because R is collapsible, ψ(v1) = ψ(v2) is distinct from ψ(u) and

thus ψ is actually a proper (k − 1)-coloring of G which is a contradiction.

Therefore, R′ must also be a complete extension. Because R′ and φ were

chosen arbitrarily, this shows the forward direction of the proposition.

We now prove the reverse implication. Suppose, for sake of contradiction,

that every W -critical extension of R has a core of size 1, is spanning, and

is complete and that φ is a proper (k − 1)-coloring of R where φ(u) 6= φ(v)

for u, v ∈ ∂R. Without loss of generality, we may assume that φ(u) = 1

and φ(v) = 2. We pick a W -critical extension R′ with core X. Because

|X| = 1 we may assume that x2 /∈ X. Because v ∈ ∂R and R′ is spanning,
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there is an edge zv in G from R′ − R to R that has no corresponding edge

in W as x2 /∈ V (W ). Therefore R′ is at least 1-incomplete, which is a

contradiction.

Lemma 4.10. There is no 2-cut in a minimal counterexample to the third

statement of Theorem 3.5.

Proof. LetG be a minimal counterexample to the third statement of Theorem

3.5. Suppose that there is a 2-cut {x, y}. Then by Dirac [5] deleting {x, y}
leaves us with two components H1 and H2, G̃1 = G−H2 is (k− 1)-colorable

by φ where φ(x) = φ(y), and G̃2 = G −H1 is (k − 1)-colorable by ψ where

ψ(x) 6= ψ(y). We could claim that G is an Ore composition of G̃1 + xy and

G̃2/xy if we are able to show that x and y have no common neighbors in G̃2.

Suppose that z is such a vertex. Then G − xz is (k − 1)-colorable by φ

and because G̃1 ⊆ G − xz, φ(x) = φ(y). However, φ(z) 6= φ(y) because

they are adjacent and so φ is also a proper (k − 1)-coloring of G. This

is a contradiction, so no such z exists. Thus we have shown that G is an

Ore composition of G̃1 + xy and G̃2/xy, which we rename to G1 and G2

(respectively) for the remainder of the proof.

Because G is not k-Ore, at most one of G1 and G2 is k-Ore. First, suppose

that G2 is not k-Ore. Any time we have an Ore composition of graphs we

know that

ρ(G) = ρ(G1) + ρ(G2)− k2 + 3k − ε+ δ (T (G1) + T (G2)− T (G)) .

By Lemma 3.6 and because G2 is not k-Ore, it follows that ρ(G) ≤ ρ(G1)−
2(k− 1)− ε+ 2δ ≤ ρ(G1). Therefore G1 must be k-Ore because it is smaller

than G. If G1 6= Kk and |V (G1)| = n, then the second assertion of Theorem

3.5 yields

ρ(G) ≤
(
k(k − 3) + nε− (n− 1)

δ

k − 1
− 2δ

)
− 2(k − 1)− ε+ 2δ
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= k(k − 3)− 2(k − 1) + (n− 1)

(
ε− δ

k − 1

)
≤ k(k − 3)− 2(k − 1),

which is a contradiction. So it follows that G1 must be Kk. But in this case

Lemma 3.6 gives T (G1) + T (G2)− T (G) ≤ 1, so we get ρ(G) ≤ (k(k − 3) +

kε − 2δ) − 2(k − 1) − ε + δ. Because δ ≥ (k − 1)ε, this is a contradiction.

The argument works exactly the same when we assume that G1 is not k-Ore.

Therefore we have shown that a minimal counterexample G must be at least

3-connected.

Definition 4.11. Let G be a k-critical graph. An edge-addition in G is a

non-edge xy such that for some k-critical graph H with xy ∈ E(H), H−xy ⊆
G and V (H) ( V (G).

Note that if a k-critical graph G has a collapsible subset R ( V (G) then

G admits an edge-addition. The connectivity of a k-critical graph means

|∂GR| ≥ 2 and R collapsible implies that xy is an edge addition in G for

x, y ∈ ∂GR.

Lemma 4.12. A minimal counterexample G to the third statement of The-

orem 3.5 admits no edge-addition.

Proof. Let G be a k-critical graph such that G is not k-Ore, ρ(G) > k(k −
3) − 2(k − 1), and G is the smallest k-critical graph that satisfies (1) and

(2). Suppose, for sake of contradiction, that there is a non-edge xy such that

G+ xy contains a k-critical subgraph H where V (H) ( V (G), .

Of all the edge-additions that exist in G, pick xy so that we minimize the

number of vertices in the k-critical subgraph H. Let R = V (H). Then

ρG(R) ≤ ρ(H) + 2(k − 1) + δ where equality implies that xy is in a Kk−1

or Kk−2 subgraph counted by T (H). Because R is a proper subset, we can

make a W -critical extension R′ and by Corollary 4.7 we have

ρG(R′) ≤ ρG(R)− 2(k − 1)− δ ≤ ρ(H). (4.3)
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Since ρ(G) ≤ ρG(R′) ≤ ρ(H) and H is smaller than G, it follows that H

must be k-Ore and ρ(H) ≤ k(k − 3).

We show now that R must also be collapsible in G. If R is not collapsible,

then we may assume that we chose the W -critical extension R′ so that it

is either not spanning, not complete, or has core of size larger than 1. If

R′ is not spanning then we can make another extension and by Corollary

4.7 and Equation 4.3 we have ρ(G) ≤ ρG(R′′) ≤ ρ(H) − 2(k − 1) − δ ≤
k(k − 3)− 2(k − 1), which is a contradiction. If R′ is i-incomplete for i ≥ 1

then, because each uncounted edge lowers the potential ρG(R′) by 2(k − 1),

we get ρ(G) ≤ ρG(R′) ≤ ρ(H) − i2(k − 1). This is also a contradiction.

Finally, if the W -critical extension R′ has a core of size larger than 1 then by

Fact 4.2 ρ(K|X|) is minimized when |X| = k − 1 rather than when |X| = 1.

One can check that using |X| = k − 1 instead of |X| = 1 in Corollary 4.7

implies that

ρG(R′) ≤ [ρG(R)− 2(k − 1)− δ]− (k2 − 5k + 6 + (k − 2)ε− (k − 2)δ).

Using Equation 4.3, and because 2(k− 1) ≤ k2− 5k+ 6 + (k− 2)ε− (k− 2)δ

when k ≥ 6, it follows that ρG(R′) ≤ ρ(H)− 2(k− 1) ≤ k(k− 3)− 2(k− 1),

which is a contradiction. Therefore, we have shown by Proposition 4.9 that

R is collapsible in G.

By Lemma 4.10 there is no 2-cut in G, so |∂R| ≥ 3 and we can say w ∈
∂R − {x, y}. Suppose H = Kk. Then G[R] = Kk − e and because |∂R| ≥ 3

it is not possible for R to be collapsible since the largest color class of any

proper (k − 1)-coloring of Kk − e is 2. Therefore, we may assume that H is

an Ore composition of k-Ore graphs H1 and H2 with overlap vertices {a, b}.
By the minimality of H, xy ∈ E(H1).

Because there is no 2-cut in G, then there must be u, v ∈ ∂R such that

u ∈ V (H1)−V (H2) and v ∈ V (H2)−V (H1). Now consider a proper (k−1)-

coloring φ of G[R]. We know that φ(u) = φ(v) because R is collapsible, and
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that φ(a) 6= φ(b). Without loss of generality, let φ(a) = 1 and φ(b) = 2. If

φ(u) /∈ {1, 2}, then we may assume that φ(u) = 3. In this case, switching the

colors 3 and 4 on H1 only will yield a proper (k−1)-coloring of G[R] in which

u and v receive different colors, which is a contradiction. Otherwise, we may

assume that φ(u) = 1. Now either φ(v) = φ(a) = 1 in every proper (k − 1)-

coloring of R, or we can switch φ(v) with another color to produce a proper

(k − 1)-coloring of R where φ(v) 6= φ(u). In the latter case we contradict

the fact that R is collapsible, and in the former case av is a non-edge of G

such that G+av has a k-critical subgraph of size at most |V (H2)|+ 1, which

contradicts the minimality of H. Therefore no edge-addition can exist in a

minimal counterexample to the third statement of Theorem 3.5.

Corollary 4.13. If G is a minimal counterexample to the third statement of

Theorem 3.5, then G has no collapsible subsets R with |R| ≥ 2.

Proof. Suppose that G has a collapsible subset R ( G and that |R| ≥ 2.

Then the connectivity of a k-critical graph implies that |∂R| ≥ 2. Thus

because R is collapsible, for distinct vertices x, y ∈ ∂R the edge xy is an

edge-addition, which is a contradiction.

Using the definitions of diamond and emerald, we have the following corol-

lary.

Corollary 4.14. A minimal counterexample to the third statement of The-

orem 3.5 cannot have a diamond or emerald.

Proof. If G has a diamond with endpoints u, v, then {u, v} is a 2-cut, which

contradicts Lemma 4.10. If G has an emerald D, then let R = V (G)−V (D).

Either ∂R receives only one color in each proper (k − 1)-coloring of G[R] or

there exists some proper (k − 1)-coloring φ where |φ(∂R)| > 1. If such a φ

exists then we can extend φ to V (D) and properly (k − 1) color all of G,
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which is a contradiction. But if ∂R receives one color in every proper (k−1)-

coloring of G[R] then for x, y ∈ ∂R we have that xy is an edge-addition, which

contradicts Lemma 4.12.

Note that for a graph G with a subgraph G′ ⊆ G, it is possible for D ⊆ G′

to be a diamond (or emerald) of G′ but not be a diamond (or emerald) of G.

For D to be a diamond (or emerald) of both G and G′, we need the edges

from V (D) to V (G) − V (D) to be the same in G as in G′ (although extra

edges in G to the endpoints of a diamond are allowable).

4.4 Generalization to i-collapsible and (i+1)-

edge-additions

Now we generalize our previous definitions of collapsible subsets and edge-

additions to further examine the structure of a minimal counterexample to

the third statement of Theorem 3.5.

Definition 4.15. A proper vertex subset R ( V (G) is i-collapsible in G if

for all proper (k − 1)-colorings φ of G[R] using color set C

min
c∈C

∣∣{uv ∈ E(G) | u ∈ φ−1(C − c) ∩R and v ∈ V (G)−R
}∣∣ ≤ i. (4.4)

Thus, a proper vertex subset R is i-collapsible if there is a majority color

class in φ(∂GR) which covers all but at most i edges from R into V (G)−R.

Note that 0-collapsible sets correspond to our previous definition of collapsi-

ble sets. We also generalize the definition of edge-addition such that i = 0

corresponds to the previous definition of edge-addition.

Definition 4.16. Let G be a k-critical graph. An (i+1)-edge-addition in G

is a set S of at most (i+1) non-edges such that there exists a k-critical graph

H with S ⊆ E(H), H − S ⊆ G, and V (H) ( V (G).
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Note that because no proper subgraph of G is k-critical, a 1-edge-addition

cannot come from a set of 0 edges. Thus, this definition for i = 0 is identical

to the previous definition of edge-addition.

Proposition 4.17. If R ( V (G) is a vertex subset where all W -critical

extensions of R are spanning, have core size 1, and are at most i-incomplete

then R is i-collapsible in G.

Proof. To show that R is i-collapsible in G we need to show that Equation

4.4 holds for all proper (k − 1)-colorings of R. Let φ be an arbitrary proper

(k − 1)-coloring using color set C and let R′ be a W -critical extension using

that coloring. By hypothesis, R′ = V (G) and we may permute colors of

φ so that the core of the extension is the vertex x1. Thus each edge from

φ−1(C−{1})∩R to V (G)−R is counted by |E(G[R′])| but not by |E(G[R])|+
|E(W )|−|E(K|X|)|. Because R′ is at most i-incomplete, there can be at most

i such edges. Therefore∣∣{uv | u ∈ φ−1(C − {1}) ∩R and v ∈ V (G)−R
}∣∣ ≤ i.

and by definition R is i-collapsible.

The following is an extension of a result (Lemma 16) in [14].

Proposition 4.18. If G is a k-critical graph with a i-collapsible subset R (
V (G) for i ≤ (k − 3)/2 then G admits an (i+ 1)-edge-addition.

Proof. Let G be a k-critical graph and let R ( V (G) be an i-collapsible

subset for i ≤ (k − 3)/2. Suppose, for sake of contradiction, that G admits

no (i + 1)-edge-addition. For each u ∈ ∂R, let w(u) = |{uv ∈ E(G) | v ∈
V (G)−R}|. Because G is a k-critical graph, it is (k−1)-edge-connected and

thus
∑

u∈∂R w(u) ≥ k − 1.

Now w : ∂R → {1, 2, . . .} is an integral positive weight function that sat-

isfies the hypotheses of Lemma 16 from [14]. Therefore, for each 0 ≤ i ≤
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(k − 3)/2 there exists a graph H with V (H) = ∂R and |E(H)| = i+ 1 such

that for every independent set M in H with |M | ≥ 2∑
u∈∂R−M

w(u) ≥ i+ 1.

That means that because G admits no (i+ 1)-edge addition, G[R] +E(H) is

(k−1)-colorable using color set C by φ. But φ is also a proper (k−1)-coloring

of G[R] and, further, every color class c ∈ C of size at least 2 has

|{uv ∈ E(G) | u ∈ φ−1(C − c) ∩R and v ∈ V (G)−R}| ≥ i+ 1.

This does not immediately contradict that R is i-collapsible, because it gives

no information about color classes of size 1. To complete the proof, we now

examine the cases in [14] more closely.

Let ∂R = {u1, . . . , us} and, without loss of generality, assume that w(u1) ≥
w(uj) for all 2 ≤ j ≤ s.

Case 1. Suppose w(u2) + · · ·+ w(us) ≥ i+ 2.

For this case, we may further assume that w(u1) ≥ w(u2) ≥ · · · ≥ w(us).

Choose the largest j such that w(uj) + · · ·w(us) ≥ i + 1. Let α = (i + 1)−
(w(uj+1) + · · · + w(us)). Therefore α ≤ w(uj). Since i ≤ (k − 3)/2 and

w(u1) + · · · + w(us) ≥ k − 1, we also have w(u1) + · · · + w(uj) ≥ i + 1 + α.

By the choice of j and the ordering of the vertices, 0 < α ≤ w(uj) ≤ w(u1).

We draw α edges each connecting u1 with uj and i+ 1− α edges connecting

{uj+1, . . . , us} with {u1, . . . , uj} so that for each `, the degree of u` in the

obtained multigraph H is at most w(u`). Because G admits no (i+ 1)-edge-

addition this gives a proper (k−1)-coloring φ of G[R]+E(H) using color set

C, which is also a proper (k − 1)-coloring of G[R]. Let c ∈ C be any color

class.

Since φ−1(c) is independent, it follows that∑
u∈∂R−φ−1(c)

w(u) ≥
∑

u∈∂R−φ−1(c)

dH(u) ≥ 1

2

∑
u∈∂R

dH(u) = i+ 1.
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This contradicts the fact that R is i-collapsible in G.

Case 2. Suppose w(u2) + · · ·+ w(us) ≤ i+ 1.

We let E(H) = {u1uj | 2 ≤ j ≤ s}. Because G admits no (i + 1)-edge-

addition this gives a proper (k − 1)-coloring of G[R] + E(H) using color set

C, which is also a proper (k − 1)-coloring of G[R]. If c is any color class not

containing u1 then w(u1) ≥ i + 1, and that color class does not satisfy the

definition of i-collapsible. Suppose that φ(u1) = 1. Note that u1 is the only

vertex in ∂R that receives color 1, so it follows that w(u2) + · · ·+ w(us) ≤ i

because R is i-collapsible.

Let ψ be a proper (k − 1)-coloring of G[(V (G) − R) ∪ {u1}] such that

ψ(u1) = 1. Because G is k-critical, ψ = ψ|V (G)−R ∪ φ|R is not a proper

coloring. We pick ψ so that the number of edges from ∂GR to V (G) − R

that have endpoints colored the same by ψ is minimized. Without loss of

generality, φ(u2) = 2 and one of its neighbors in V (G)−R also receives color

2.

We will switch color class 2 in φ with another color class so that ψ colors u2

differently than all of its neighbors without increasing the number of edges

from ∂R to V (G)−R with endpoints colored the same. We cannot switch 2

with 1 in φ, so there remains (k− 2) choices. For each of the at most i edges

ujv from ∂R−{u1} to V (G)−R, we remove from the set of choices φ(uj) if

φ(uj) 6= 2 or φ(v) if φ(uj) = 2. This leaves at least k− 2− i ≥ (k− 1)/2 ≥ 1

choice. By switching color class 2 in φ, we contradict our choice of ψ. Thus,

either ψ is a proper (k − 1)-coloring of G or R is not i-collapsible, and we

have completed the proof.

Lemma 4.19. In a minimal counterexample G to the third statement of

Theorem 3.5, there is no proper subset R ( V (G) with |R| ≥ 2 and ρG(R) <

ρ(G) + 2(i + 1)(k − 1) + δ for 1 ≤ i ≤ k−4
2

. Further, G does not admit an

i-edge-addition for 1 ≤ i ≤ k−4
2

.
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Proof. We prove this by induction on i. First we examine the case where

i = 1. Lemma 4.12 shows that there is no 1-edge addition.

Now suppose, for sake of contradiction, that R ( V (G) is a proper vertex

subset where ρG(R) < ρ(G) + 4(k − 1) + δ. Taking an arbitrary W -critical

extension R′, Corollary 4.7 gives us ρG(R′) ≤ ρG(R)− 2(k− 1)− δ < ρ(G) +

2(k − 1). If the extension is not spanning then we can extend again and get

ρG(R′′) < ρ(G), which is not possible. If the extension is not complete, then

we lose at least an extra 2(k − 1) when extending from R to R′. This gives

ρG(R′) < ρ(G) which is not possible. Lastly, if the core of the extension R′

has size larger than 1, then the potential equation for an extension (Equation

4.2) in Corollary 4.7 uses |X| = k − 1 rather than |X| = 1. Using Fact 4.2,

one can check that, for k ≥ 6, the potential of the extension goes down at

least an additional 2(k − 1). Again, this implies that ρG(R′) < ρ(G) which

is not possible. Therefore, we have shown that R is a collapsible set in G

which contradicts Corollary 4.13.

We now prove this for general i. The inductive hypothesis is that there is

no proper subset R of size at least 2 and ρG(R) < ρ(G) + 2i(k − 1) + δ and,

further, there are no j-edge-additions for j < i. For sake of contradiction,

we assume that R is a proper subset of size at least 2 and that ρG(R) <

ρ(G) + 2(i + 1)(k − 1) + δ. By Corollary 4.7, a W -critical extension R′ has

potential ρG(R′) ≤ ρG(R)− 2(k − 1)− δ < ρ(G) + 2i(k − 1). The inductive

hypothesis implies that R′ = V (G), so all extensions are spanning. Also,

because ρ(G) = ρG(R′), the right hand side of the inequality cannot drop by

2i(k− 1), and so the extension can be at most (i− 1)-incomplete. If the core

of R′ has size larger than 1, then Equation 4.2 becomes

ρG(R′) ≤ ρG(R) + ρ(W )− (2k2 − 6k + 4 + (k − 1)ε− 2δ).

Because ρ(G) = ρG(R′) we can use the assumption on ρG(R) and the bound
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i ≤ k−4
2

to obtain the following inequality:

ρ(G) < ρ(G) + 2(i+ 1)(k − 1) + δ + ρ(W )− (2k2 − 6k + 4 + (k − 1)ε− 2δ)

which simplifies to

0 < −k2 + 3k − 2 + 3δ − (k − 1)ε+ ρ(W ).

Whether W is k-Ore or not, it is a smaller k-critical graph than G so by

Theorem 3.5 the right hand side of the inequality is negative, which is a

contradiction. Therefore, the core of the extension R′ has size 1.

By Proposition 4.17, R is (i − 1)-collapsible. Since every proper subset of

size at least 2 with ρG(R) < ρ(G) + 2(i+ 1)(k − 1) + δ is (i− 1)-collapsible

by the above argument, we may assume that we chose an (i− 1)-collapsible

set R of minimal size. By Proposition 4.18, G admits an i-edge-addition

and H ⊆ G[R] + Sis a k-critical subgraph. Because G does not admit an

(i− 1)-edge-addition, |S| = i.

Pick a set S of exactly i edges that minimizes the order of k-critical graph

H ⊆ G[R] + S. Let R0 = V (H); then ρG(R0) ≤ ρ(H) + 2i(k − 1) + iδ.

First, we suppose that H is not k-Ore. Then because H is smaller than G,

ρ(H) ≤ k(k − 3) − 2(k − 1) < ρ(G). Thus, like R, R0 is a proper subset of

size at least 2 with ρG(R0) < ρ(G) + 2(i+ 1)(k− 1) + δ. Also R0 ⊆ R, so by

the minimality of R it follows that R = R0.

As before, every extension of R is spanning, has core size 1, and is at most

(i− 1)-incomplete. Further, there must be some extension R′ that is (i− 1)-

incomplete. Otherwise, all extensions are at most (i− 2)-incomplete and by

Proposition 4.17 there is a (i− 1)-edge-addition, which would contradict the

inductive hypothesis. Choose such an (i − 1)-incomplete extension R′ and

examine the potential ρG(R′). Because R′ is a spanning and (i−1)-incomplete

extension, Lemma 4.6 and the i-edge addition in G[R] give that

ρ(G) = ρG(R′) ≤ ρG(R) + ρ(W )− 2(i− 1)(k − 1)− (k2 − k − 2 + ε− δ)
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≤ ρ(H) + 2i(k − 1) + iδ + ρ(W )− 2(i− 1)(k − 1)− (k2 − k − 2 + ε− δ)

< ρ(G) + ρ(W ) + (i+ 1)δ − ε+ 2(k − 1)− k2 + k + 2.

This calculation shows that 0 < ρ(W )− k2 + 3k + (i + 1)δ − ε. If W is not

k-Ore, then this is a contradiction because 2(k− 1) > (i+ 1)δ− ε. Therefore

W is k-Ore. Because |X| = 1, Lemma 3.11 implies that there is a diamond

or an emerald D in W − {X}. If it is a diamond, then this is a 1-edge

addition in G, which contradicts Lemma 4.12. If it is an emerald, then for

each ui ∈ V (D) we have degW−{X}(u) = k−1. However, in G, there could be

other edges incident to ui namely, those that cause the (i−1)-incompleteness

of R′. So at least (k − 1) − (i − 1) = k − i vertices ui ∈ V (D) have degree

k − 1 in G.

Suppose that u1, . . . , u` are the vertices with degG(ui) = k − 1. For each

i in 1 ≤ i ≤ `, label the unique vertex in NG(ui) − V (D) as vi. If any

vi 6= vj for 1 ≤ i < j ≤ `, then vivj is an edge-addition in G. To see this,

we properly (k− 1)-color G−{ui, uj}. There are two colors not used on the

partial coloring of D, suppose they are 1 and 2. If φ(vi) ∈ {1, 2} then we

color uj with φ(vi) and color ui with the other. Otherwise, we can greedily

color uj, ui in that order. Either way, we have obtained a proper (k − 1)-

coloring of G. Therefore, v1 = v2 = · · · = v`. Adding an edge from v1 to each

of u`+1, . . . , uk−1 yields a Kk. This (i− 1)-edge-addition is a contradiction.

Therefore, the graph H obtained by adding i edges to G[R] must be k-Ore.

Recall that we chose the set |S| of i edges to minimize the order of H. We

first examine the case where H is not Kk and then the case where H = Kk.

If H is not Kk, then H is an Ore composition of k-Ore graphs H1 and H2

with overlap vertices {a, b}. Let S = S ∩ E(H1) be the new edges on the

edge-side of the composition. If |S| ≤ i − 2 then S ∪ {ab} is a (i − 1)-edge-

addition, which is a contradiction. If |S| = i − 1 then S ∪ {ab} is a i-edge-

addition that contradicts the minimal order of H. Therefore S ⊆ E(H1) and

H2 − {ab} ⊆ G. By Lemma 3.11 there is a diamond or an emerald D in
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H2−{ab} away from the split-vertex of the composition. If D is a diamond,

then it admits a 1-edge-addition which is also a 1-edge-addition in G. This

contradicts Lemma 4.12.

Therefore D is an emerald of H2 − {ab}; however, D is not necessarily an

emerald in G because a vertex in V (D) could lie in ∂GR. In any proper

(k − 1)-coloring of G[R], the vertices V (D) = {u1, u2 . . . , uk−1} all receive

different colors. Recall that R′ has core size 1, is spanning, and is at most

(i−1) incomplete; thus, there are at most i vertices in V (D)∩∂GR, since only

one can share a color with X. Let u1, . . . , u` be the vertices in V (D)− ∂GR.

These vertices have a common neighbor v1 outside of V (D), otherwise we

have a 1-edge-addition. Adding an edge from v1 to each ui with ` < i ≤ k−1

is an i-edge-addition which gives a Kk and thus contradicts the minimality

of H.

Now we turn to the case where H = Kk. Let V (H) = {u1, . . . , uk} and

note that G[R] + S = H by the minimality of R. We label the vertices so

that u1uk ∈ S. Thus we can properly (k − 1)-color G[R] with φ using color

set C = [k− 1] such that φ(ui) = i for 1 ≤ i ≤ k− 1 and φ(uk) = 1. Because

R is (i− 1)-collapsible in G, we have

min
c∈C

∣∣{uv ∈ E(G) | u ∈ φ−1(C − c) ∩R and v ∈ V (G)−R
}∣∣ ≤ i− 1. (4.5)

Note that degH(u) = k−1 for any u ∈ R, and because G is a k-critical graph

we have degG(u) ≥ k − 1 as well. Thus, for each u ∈ R there are at least as

many edges of G from u to V (G) − R as the number of edges of S incident

with u. This means that∣∣{uv ∈ E(G) | u ∈ φ−1(C − c) ∩R and v ∈ V (G)−R
}∣∣ ≥ i

for each c 6= 1 and so that color class does not witness Equation 4.5. It

follows that the color class c = 1 must witness Equation 4.5 and, hence,

must cover all but at most i− 1 endpoints of edges in S.
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This implies that every edge in S−{u1uk} is incident to either u1 or uk. If

u1u2 and uku3 are both in S, then we can switch the labels u2 and uk. Then

no color class covers all but at most i − 1 endpoints of edges in S and we

obtain a contradiction. Therefore S either forms a star subgraph, or |S| = 3

and S forms a triangle subgraph. We examine these cases separately.

Suppose that S is a star and that u1 is the center of the star. In this case

we show that G[R − {u1}] is an emerald in G, which is a contradiction. In

order to satisfy Equation 4.5 each leaf of the star has exactly one edge to

V (G) − R and every u ∈ R not incident with S has no edges to V (G) − R.

Therefore degG(ui) = k − 1 for 2 ≤ i ≤ k and, by definition, G[R − {u1}] is

an emerald in G.

Suppose that S is a triangle and that S = {u1u2, u2u3, u1u3}. In order

to satisfy Equation 4.5 for any proper (k − 1)-coloring of G[R] each ui for

1 ≤ i ≤ 3 has exactly two edges to V (G)− R and every u ∈ R not incident

with S has no edges to V (G) − R. However, by assumption of the lemma,

i = 3 implies that k ≥ 10. This is a contradiction because k-critical graphs

are (k− 1)-edge-connected, and there are only 6 edges from R to V (G)−R.

This contradiction completes the proof.

Corollary 4.20. In a minimal counterexample to the third statement of The-

orem 3.5 G, any proper vertex subset R ( V (G) with |R| ≥ 2 has potential

ρG(R) ≥ ρ(G) + k2 − 3k + 2 + δ.

Proof. By Lemma 4.19, ρG(R) ≥ ρ(G) + 2(i + 1)(k − 1) + δ for all i ≤ k−4
2

.

One can check that this implies that ρG(R) ≥ ρ(G) + k2 − 3k + 2 + δ as

claimed.

We are also able to get degree conditions on neighbors of vertices of low

degree, which will be frequently used when discharging.
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Lemma 4.21. In a minimal counterexample G to the third statement of

Theorem 3.5, let x and y be adjacent vertices such that degG(x) = k− 1 and

NG[x] is not a subset of NG[y]. Then degG(y) ≥ |NG(x) ∩NG(y)|+ 1 + k−3
2

.

Proof. Suppose that G is a minimal counterexample to the third statement

of Theorem 3.5 and let x and y be adjacent vertices such that degG(x) = k−1

and let w ∈ NG[x]−NG[y].

For any proper (k − 1)-coloring of G− {x}, the vertices of NG(x) must all

receive distinct colors. Further, it is not possible to switch the color of y to

match w. Therefore, for any proper (k−1)-coloring φ of G−{x}, there must

be some vertex in NG[y]−NG[x] which is colored with φ(w).

If we add edges from w to every vertex in NG[y] − NG[x], this creates

a k-critical subgraph of G − {x}. Therefore |NG[y] − NG[x]| ≥ k−3
2

, be-

cause otherwise we contradict Lemma 4.19. This gives the desired bound on

degG(y).
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Chapter 5

Cloning

In this chapter, we define a second reduction operation called cloning.

Cloning will help us determine what types of vertices can be adjacent to

vertices of degree k − 1 in a minimal counterexample to the third statement

of Theorem 3.5. It is crucial to understand the structure near these vertices

if we are to succeed with a discharging argument, because vertices of degree

k − 1 are the vertices which need to be sent charge in order to complete the

full proof of Theorem 3.5. Many results in this section are about structures

that exist around vertices of low degree, meaning vertices of degree k − 1.

By examining graphs resulting from this cloning operation, we are able to

identify the configurations which need to be accounted for by our discharging

rules.

Definition 5.1. Let G be a k-critical graph with xy ∈ E(G) such that

degG(x) = k − 1. We define the operation of cloning x with y to mean

constructing a new graph Gy→x such that V (Gy→x) = (V (G) − {y}) ∪ {x̃}
and E(Gy→x) = E(G− {y}) ∪ {x̃v | v ∈ NG(x)} ∪ {x̃x}.

5.1 Clusters

We also use the notion of a cluster defined in [14]. Recall that for a graph G

and vertex x, the closed neighborhood of x is the set NG[x] = NG(x) ∪ {x}.
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Definition 5.2. A cluster is a maximal set R ⊆ V (G) such that for every

x ∈ R, degG(x) = k − 1 and for every pair x, y ∈ R, NG[x] = NG[y].

A cluster, then, is a set of pairwise adjacent vertices of low degree. Further,

if x ∈ V (G) is in a cluster C and xy ∈ E(G) then when we clone x with y,

the new vertex x̃ is added to the cluster C. Because large clusters will create

areas in the graph that need quite a lot of charge, we want to bound the size

of clusters in a minimal counterexample to the third statement of Theorem

3.5.

Proposition 5.3. Let C be a cluster in a minimal counterexample G to the

third statement of Theorem 3.5. Then |C| ≤ k − 3. Furthermore, if C ⊆ S

such that G[S] = Kk−1, then |C| ≤ k+1
2

.

Proof. Suppose that G is a minimal counterexample to the third statement

of Theorem 3.5 and that C is a cluster of size s in G. Clearly s < k because

otherwise G = Kk, which cannot be a counterexample. If s = k − 1 then C

is an emerald of G. If s = k − 2, then we label the neighbors of x outside

of C with u and v. Note that the graph G[C ∪ {u, v}] is a diamond of G.

Therefore, by Corollary 4.14 we have s ≤ k − 3.

Suppose that C is in a Kk−1 subgraph. Label the vertices of the Kk−1 with

{x1, . . . , xk−1}, so that xi ∈ C for 1 ≤ i ≤ s. For i ≤ s, all xi share a common

neighbor y outside of the Kk−1. If s ≥ k+2
2

then this corresponds to at most
k−4
2

edges that we can add between y and xi for i > s to obtain a Kk. By

Lemma 4.19, this k+2
2

-edge-addition is a contradiction.

Notice that if we clone a degree k − 1 vertex x using a vertex y with

degG(y) > k − 1 then Gy→x is a smaller graph than G. Further, if both x

and y have degree k− 1 in G, x is in a cluster of size s and y is in a different

cluster of size t with s ≥ t then Gy→x is smaller than G. The following

lemma is true for any k-critical graph G, not just a minimal counterexample

to Theorem 3.5.



50

Lemma 5.4. Given a k-critical graph G if xy ∈ E(G), x is in a cluster of

size s, degG(y) ≤ k − 2 + s, and x and y are not in a common cluster then

Gy→x is not properly (k − 1)-colorable.

Proof. Suppose that G is a k-critical graph with xy ∈ E(G) such that x is

in a cluster C of size s and degG(y) = k − 2 + s. Let φ be a proper (k − 1)-

coloring of Gy→x. Consider φ|V (G)−{y} as a partial proper coloring of G. We

extend φ by coloring y using a color distinct from its k − 2 neighbors not in

C. Because G is k-critical this is not a proper coloring; we may assume that

φ(x) = φ(y). This is the only impediment to φ being a proper (k−1)-coloring

of G. However, we can now color x with φ(x̃) instead and we have properly

(k − 1)-colored G. This contradiction completes the proof.

We return to a minimal counterexample G to the third statement of The-

orem 3.5. Suppose that xy ∈ E(G) and that degG(x) = k − 1, degG(y) ≤
k − 2 + s, and x and y are not in a common cluster. Now consider the

graph Gy→x. By Lemma 5.4, Gy→x is not (k − 1)-colorable. Therefore, we

let H ⊆ Gy→x be a k-critical subgraph. The new vertex x̃ has degree k − 1

in H which, for R = V (H)− {x̃}, implies that

ρG(R) ≤ ρ(H)− (k − 2)(k + 1)− ε+ 2(k − 1)(k − 1) + δ,

which we write as

ρG(R) ≤ ρ(H) + k2 − 3k + 4− ε+ δ. (5.1)

Lemma 5.5. Suppose that G is a minimal counterexample to the third state-

ment of Theorem 3.5 and xy ∈ E(G) such that

1. x is in a cluster Cx of size s,

2. degG(y) ≤ k − 2 + s, and

3. if y is in a cluster Cy then Cy 6= Cx and |Cy| = t ≤ s.
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Then for a k-critical subgraph H ⊆ Gy→x either H is k-Ore or H = Gy→x.

Moreover, H = Gy→x is only possible if degG(y) = k − 1.

Proof. LetG be a minimal counterexample to the third statement of Theorem

3.5 and suppose that there is an xy ∈ E(G) such that x is in a cluster Cx

of size s and degG(y) ≤ k − 2 + s. Suppose further that if y is in a cluster

Cy then Cy 6= Cx and |Cy| = t ≤ s. We clone x using y to obtain the graph

Gy→x. By Lemma 5.4, there exists a k-critical subgraph H ⊆ Gy→x. The

conditions on cluster size ensure that H ⊆ Gy→x is smaller than G. Suppose,

for sake of contradiction, that H is not k-Ore and H 6= Gy→x.

Let R = V (H) − x̃. Equation 5.1 gives a bound on ρG(R) which we need

to use. Let R′ be a W -critical extension of R in G. By Lemma 4.6 we get

ρ(G) ≤ ρG(R′) ≤ ρG(R) + ρ(W ) −
(
ρ(K|X|) + δT (K|X|)− δ|X|

)
. We will

examine this potential more closely in cases based on the size of X.

Suppose first that 1 < |X| < k − 1. Then from Fact 4.2 and Equation 5.1

it follows that

ρ(G) ≤ ρ(H) + ρ(W )− k2 + k + 6− 3ε+ 3δ.

Because H ⊆ Gy→x is smaller than G, is not a k-Ore graph, and G is a

minimal counterexample, this implies that k2 − k − 6 + 3ε − 3δ < ρ(W ).

This is a contradiction to Theorem 3.5, since W is smaller than G and thus

ρ(W ) ≤ k2 − 3k.

Suppose instead that |X| = k − 1. Then Fact 4.2 implies that

ρ(G) ≤ ρ(H) + ρ(W )− k2 + 3k − kε+ kδ. (5.2)

Again, H ⊆ Gy→x is smaller than G, is not a k-Ore graph, and G is a minimal

counterexample. Therefore this implies that k2− 3k+ kε− kδ < ρ(W ). This

is a contradiction unless W is k-Ore, so we may assume that W is k-Ore.

Under this assumption, the inequality in Equation 5.2 is tight in the sense

that lowering the right hand side by 2(k− 1) leads to a contradiction. Thus,
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if the W -critical extension R′ is not spanning or is not complete, then the

right hand side of Equation 5.2 is lowered by at least 2(k − 1) and we have

a contradiction.

Suppose that W is Kk, then because R′ is spanning, there is only one vertex

in V (G)−R. Therefore, V (G) = R∪{y} and V (H) = R∪{x̃} and it follows

that |V (G)| = |V (H)|. However, H is smaller than G and thus ρ(H) ≤ ρ(G).

Also, because their vertex sets overlap except at one vertex, T (H) and T (G)

differ by at most 1. Therefore, it is not possible for G to have more edges

than H, and we also have |E(G)| = |E(H)|. If degG(y) > k − 1 then this

contradicts the fact that H is smaller than G. If degG(y) = k − 1 then it

follows that H = Gy→x, which contradicts our assumption on H.

If W is not Kk, then X ⊆ V (W ) is a Kk−1 subgraph and by Lemma

3.12 there is an emerald or a diamond D in W disjoint from X. If D is a

diamond then because V (D) ⊆ V (W )−X ⊆ V (G) there is an edge-addition

in G, which contradicts Lemma 4.12. If D is an emerald, then D is also a

Kk−1 subgraph of G. However, because the extension R′ is complete, each

x ∈ V (D) has at most one adjacency with each color class in X and thus

degG(x) = k−1. Therefore D is an emerald of G, which contradicts Corollary

4.14.

Now we examine the final case; suppose that every W critical extension has

core size |X| = 1. With this assumption and Equation 5.1, it follows that

ρG(R′) ≤ ρ(H) + ρ(W )− 2k + 6− 2ε+ 2δ. (5.3)

If R′ is not a spanning W -critical extension, then R′ must satisfy Corollary

4.20. Therefore it follows that ρ(G) + k2 − 3k + 2 + δ ≤ ρ(H) + ρ(W ) −
2k+ 6− 2ε+ 2δ. Because H is smaller than G and is not k-Ore, this implies

that k2 − k − 4 + 2ε − δ < ρ(W ), which is a contradiction. Therefore R′ is

spanning.

We now check how incomplete this extension can be. If R′ is i-incomplete
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then Equation 5.3 becomes

ρG(R′) ≤ ρ(H) + ρ(W )− 2k + 6− 2i(k − 1)− 2ε+ 2δ.

The left hand side is ρ(G), since R′ is spanning. Thus, since H is not k-Ore

and is smaller than G, this yields

0 < ρ(W )− 2k + 6− 2i(k − 1)− 2ε+ 2δ. (5.4)

We know that ρ(W ) ≤ ρ(Kk) since it is also smaller than G, so if we assume

that i ≥ k−3
2

then we get 0 < −k + 3 + (k − 2)ε. This is a contradiction, so

we know that R′ is at most k−4
2

-incomplete.

If every W -critical extension of R is at most k−6
2

-incomplete, then by Propo-

sition 4.17 R is k−6
2

-collapsible. Then Proposition 4.18 implies that G admits

a k−4
2

-edge-addition, which contradicts Lemma 4.19. Therefore, we can pick a

W -critical extension R′ so that the extension is either exactly k−5
2

-incomplete

or k−4
2

-incomplete, depending on parity of k.

Suppose that W is not k-Ore. Then using the fact that ρ(W ) ≤ k2 − 3k −
2(k − 1) and i ≥ k−5

2
, Equation 5.4 becomes 0 < k + 1− 2ε+ 2δ − 2(k − 1),

which is a contradiction. Therefore we may assume that W is k-Ore.

By Lemma 3.11, there exists a subgraph D ⊆ W − {X} ⊆ G which is

a diamond or emerald of W . If D is a diamond, then it admits a 1-edge-

addition. This is also a 1-edge-addition in G, which contradicts Lemma 4.12.

Therefore, D is an emerald of W . Because of the incompleteness of the

extension, it is possible that D is not an emerald in G. However, R′ is at

most k−4
2

incomplete, so there are at most k−4
2

vertices of D that do not

have degree k − 1 in G. If u1, u2 ∈ V (D) have degree k − 1 in G and are

adjacent to w1, w2 ∈ V (G) − V (D) (respectively) with w1 6= w2, then w1w2

is a 1-edge-addition in G. Thus, there exists a vertex w ∈ V (G) − V (D)

such that all u ∈ V (D) with degG(u) = k − 1 are adjacent to w. But now

G[V (D) ∪ {w}] is a Kk missing at most k−4
2

edges. This k−4
2

-edge-addition

in G contradicts Lemma 4.19.
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Therefore, all cases lead to contradiction, and it must be that H is k-Ore

or H = Gy→x. Moreover, the only case (when W = Kk and |X| = k − 1)

that contradicts the assumption that H 6= Gy→x required degG(y) = k − 1.

Further, if H is k-Ore and H = Gy→x then W = Kk and |X| = k − 1.

Now if degG(y) > k − 1 then the right hand side of Equation 5.2 is at least

2(k − 1) smaller, which is a contradiction. So it follows that H = Gy→x is

only possible if degG(y) = k − 1.

5.2 Gadgets and Kk−3 subgraphs

We now explore the structure of subgraphs of a minimal counterexample to

the third statement of Theorem 3.5.

Definition 5.6. A gadget, H◦, is a graph obtained from a k-Ore graph H

by deleting a vertex x of degree k − 1 in a cluster of size at least 2. For a

graph G, a gadget of G is a subgraph in G that is a gadget.

Definition 5.7. A key vertex of a k-Ore graph H is a vertex which is on the

edge-side of every possible Ore composition that yields H. We also define a

key vertex of a gadget to be a vertex which is a key vertex of the corresponding

k-Ore graph.

Using this new language, we obtain the following corollary to Lemma 5.5

regarding adjacent vertices of degree k−1 which belong to different clusters.

Corollary 5.8. Suppose that G is a minimal counterexample to the third

statement of Theorem 3.5 and xy ∈ E(G) such that

1. x is in a cluster Cx of size s,

2. degG(y) ≤ k − 2 + s, and

3. if y is in a cluster Cy then Cy 6= Cx and |Cy| = t ≤ s.
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Then x is a key vertex of a gadget of G or x is in a Kk−3 subgraph of G.

Moreover, if the latter is true then degG(y) = k − 1.

Proof. LetG be a minimal counterexample to the third statement of Theorem

3.5 and suppose that there is an xy ∈ E(G) such that x is in a cluster Cx of

size s and degG(y) ≤ k − 2 + s. Suppose further that if y is in a cluster Cy

then Cy 6= Cx and |Cy| = t ≤ s. Then by Lemma 5.5, there is a k-critical

graph H which is a subgraph of Gy→x and either H is k-Ore or H = Gy→x.

Note that if H = Gy→x then degG(y) = k − 1.

If H is k-Ore, then H◦ = H−{x̃} is a gadget of G which contains the vertex

x. Suppose that H = Kk. Then trivially every vertex of H◦ is a key vertex.

Suppose instead that H is an Ore composition of two k-Ore graphs H1 and

H2 with overlap vertices {a, b}. If x̃ ∈ V (H2) then ab is a 1-edge-addition in

G, which contradicts Lemma 4.12. Therefore x̃ must be on the edge-side of

every Ore composition that yields H. Because x̃ and x have the same closed

neighborhoods in H, this is also true of x.

If H is not k-Ore, then H = Gy→x. Because degG(x) = degG(y), we know

that there are the same number of edges in H and G. But the hypothesis

s ≥ t implies that H is smaller than G and so H follows Theorem 3.5.

Therefore H must have lower potential than G. Because they have the same

number of edges, the potential can only have dropped because T (H) > T (G).

This implies that x̃, and hence x, is in a Kk−2 subgraph of H or is in a Kk−1

subgraph of H. In either case, x is in a Kk−3 subgraph of G.

Using Corollary 5.8, we will define the various types of vertices of degree

k − 1 which can exist in G. A vertex u1 ∈ V (G) of degree k − 1 could be

in a Kk−3 subgraph or could be a key vertex of a gadget. It is possible that

such a vertex is not found via Corollary 5.8 (meaning there is no adjacent

cluster to u1). We call these vertices structure-vertices. A vertex u2 could

belong to a cluster Cu2 which is adjacent to no other clusters. If such a vertex
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u2 is a key vertex of a gadget or is in a Kk−3 subgraph, then we will group

with with the other structure-vertices. If such a vertex u2 is not a structure-

vertex, then we call it a lone-vertex. If a vertex u3 of degree k − 1 has an

adjacent cluster Cv but is not a structure-vertex, then by Corollary 5.8 it

follows that |Cu3| < |Cv| (equality implies that u3 is a structure-vertex) and

that Cv contains key vertices of a gadget or is in a Kk−3 subgraph. We say

that such a vertex u3 is a near-vertex. In this way, we partition all vertices

of degree k − 1 in G into these three disjoint categories: structure-vertices,

lone-vertices, and near-vertices.

Proposition 5.9. If x is a structure-vertex in a minimal counterexample

to the third statement of Theorem 3.5, then x cannot be adjacent to two

near-vertices y, z, each belonging to a different cluster.

Proof. LetG be a minimal counterexample to the third statement of Theorem

3.5 and suppose that x is a structure vertex with two near-vertex neighbors

y, z such that y and z belong to different clusters.

If yz ∈ E(G) then, without loss of generality, we may assume that Gy→z

is smaller than G. By Corollary 5.8, z is a structure-vertex of G and cannot

be a near-vertex. This is a contradiction.

If yz /∈ E(G) then, in the graph Gx→z the degree of y is k − 2. Therefore,

by Lemma 5.4, there is a k-critical subgraph H ⊆ Gx→z. Because y /∈ V (H),

we know that H is smaller than G and therefore, by the proof of Corollary

5.8, z is a key vertex of a gadget. This contradicts the fact that z is a

near-vertex.
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5.3 Bounds on degrees of neighbors

of structure-vertices

By Proposition 3.2, every k-Ore graph H can be reduced to a Kk where

some number of edges of the Kk are replaced by split-side k-Ore graphs in

a composition operation when constructing H. We call such an edge an

edge-replacement. Recall that each edge-replacement uv corresponds to a

subgraph D ⊆ G where, for any proper (k − 1)-coloring of D, u and v must

receive different colors. If x is a key vertex in H, then x must be a vertex

of the Kk. Similarly, a gadget H◦ can be reduced to a Kk−1 with edge-

replacements. A key vertex x of H◦ will always be a vertex of this Kk−1,

and if degH◦(x) = k − 2 then the neighbors of x in H◦ are also key vertices

of H. This may not be immediately clear, but is shown in the proof of the

following lemma.

Lemma 5.10. Let x be a key vertex of a gadget H◦ of a minimal counterex-

ample G to the third statement of Theorem 3.5, and let degG(x) = k − 1. If

y is a different key vertex of H◦ then either NG[x] ⊆ NG[y] or degG(y) ≥
3(k − 3)/2 + 1.

Proof. Let G be a minimal counterexample to the third statement of Theo-

rem 3.5 and suppose that H◦ is a gadget of G with key vertices x, y where

degG(x) = k−1. If NG[x] ⊆ NG[y], then we are done so we may assume that

NG[x] is not a subset of NG[y]. We define H ′ to be a reduction of H◦ to a

Kk−1 graph where some edges are edge-replacements; by definition, x and y

are in V (H ′).

Suppose that there is an edge xu ∈ E(H ′) which is an edge-replacement

that corresponds to D ⊆ G. The graph D is (k − 1)-colorable but x and u

must receive different colors. Thus, in any proper (k−1)-coloring φ of D, the

color φ(u) must be given to a vertex in ND(x). But then we can add to D a
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set of edges S from u to each vertex in ND(x) and get a k-critical subgraph

in D+S. By Lemma 4.19, it follows that |ND(x)| ≥ k−3
2

. Therefore, because

degG(x) = k−1, the vertex x can not be incident with any edge-replacements

in H ′.

From this, it follows that xy ∈ E(G). Also, degH◦(x) = k − 2 and x must

have one neighbor w in V (G)− V (H◦). By Lemma 4.21 it follows that

degG(y) ≥ |NG(x) ∩NG(y)|+ 1 +
k − 3

2
= 3(k − 1)/2 + 1.

Suppose that y is not incident with any edge-replacement in H ′. Then

V (H ′) − {x, y} = NG(x) ∩ NG(y) and we get degG(y) ≥ 3(k − 1)/2 + 1.

Suppose that y is incident with an edge-replacement yu in H ′ that corre-

sponds to a subgraph C ⊆ G. As above, we can show that |NC(y)| ≥ k−3
2

.

Therefore, for each u ∈ V (H ′)−{x, y} that is not in NG(x)∩NG(y), we get a

contribution of at least k−3
2

to the degree of y in G. We have, in fact, proven

a slightly stronger statement than Lemma 5.10. Namely, that if NG[x] is not

a subset of NG[y] then degG(y) ≥ ((k − 3 − i) + ik−3
2

) + 1 + k−3
2

, where i is

the number of edge-replacements of H ′ incident to y.

Lemma 5.11. Let x be a key vertex in a gadget of G, where G is a minimal

counterexample to the third statement of Theorem 3.5 and degG(x) = k − 1.

Then x has at least k−3
2

neighbors of degree at least 3(k − 3)/2 + 1.

Proof. LetG be a minimal counterexample to the third statement of Theorem

3.5 such that H◦ is a gadget of G. Suppose that x is a key vertex of H◦ and

that degG(x) = k − 1. We define H ′ to be a reduction of H◦ to a Kk−1

graph where some edges could be edge-replacements. By definition of a key

vertex, x ∈ V (H ′) and the same argument as in the proof of Lemma 5.10

shows that x is not adjacent to any edge-replacements and x has exactly

one neighbor w in V (G)− V (H◦). We partition V (H ′) into sets A,B where

A := {u ∈ V (H ′) | uw ∈ E(G)} and B := {u ∈ V (H ′) | uw /∈ E(G)}. By

Lemma 5.10, each vertex b ∈ B has degG(b) ≥ 3(k − 1)/2 + 1.
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We can add to G a set S of |B| edges from w to each vertex b ∈ B. Because

each vertex in A ∪ B ∪ {w} needs a unique color, either this is a |B|-edge-

addition or V (G) = V (H◦)∪{w}. In the first case, by Lemma 4.19, it follows

that |B| > k−4
2

. We show now that the second case is impossible.

Suppose that V (G) = V (H◦)∪ {w}. Then H is a k-Ore graph with vertex

set V (H◦) ∪ {x̃} and degH(x̃) = k − 1. The potential of H is at most

ρ(H) ≤ k(k − 3) + kε − 2δ. Deleting the vertex x̃ and adding w (with its

adjacencies in G) gives us the graph G. This operation affects only one vertex

so |T (H)−T (G)| ≤ 1. If degG(w) > k−1 then ρ(G) ≤ ρ(H)−2(k−1)+δ ≤
k(k − 3)− 2(k − 1) + kε− δ which is a contradiction.

Therefore it follows that degG(w) = k− 1. But now in any proper (k− 1)-

coloring φ of G − {w}, the subset NG(w) must have exactly one vertex of

each color. There exists at least one edge-replacement uv ∈ E(H ′), otherwise

G = Kk which is a contradiction. Let D ⊆ G be the corresponding subgraph.

By Lemma 4.10, there cannot be a 2-cut in G so there must be an edge from

w to some vertex z ∈ V (D)− {u, v}. We may assume that φ colors D such

that φ(z) is different from φ(u) and φ(v), because otherwise {zu, zv} is a 2-

edge-addition which is a contradiction for k ≥ 8. However, because k−1 ≥ 4

we can switch the color class φ(z) so that |φ(NG(w))| = k − 2. This allows

us to properly (k − 1)-color G, which is a contradiction.

Lemma 5.12. If x is in a Kk−3 subgraph of G, where G is a minimal coun-

terexample to the third statement of Theorem 3.5, and degG(x) = k− 1 then

x has at least (k − 9)/6 neighbors of degree at least 3(k − 3)/2− 1.

Proof. LetG be a minimal counterexample to the third statement of Theorem

3.5 such that x ∈ V (G) is in a Kk−3 subgraph D ⊆ G and degG(x) = k − 1.

The vertex x has three neighbors w1, w2, w3 ∈ V (G) − V (D). We partition

V (D) into sets A,B where A := {u ∈ V (D) | uwi ∈ E(G) for 1 ≤ i ≤ 3}
and B := {u ∈ V (D) | uwi /∈ E(G) for some 1 ≤ i ≤ 3}.
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We can add to G the edges {w1w2, w1w3, w2w3} and wib for 1 ≤ i ≤ 3 and

b ∈ B. Adding this set S of 3 + 3|B| edges gives a Kk subgraph so is a

(3 + 3|B|)-edge-addition. By Lemma 4.19 it follows that |B| ≥ k−9
2

.

For b ∈ B, we know that NG[x] is not a subset of NG[b]. Also, x and b are

each adjacent to the k−5 other vertices in V (D). Therefore by Lemma 4.21,

b has degree at least (k − 5) + 1 + k−3
2

= 3(k − 3)/2− 1.

Lemma 5.13. If x is in a Kk−3 subgraph D ⊆ G, where G is a minimal

counterexample to the third statement of Theorem 3.5, degG(x) = k− 1, and

x has a neighbor y ∈ V (G)−V (D) which is in a different cluster, then x has

at least (k − 7)/2 neighbors of degree at least 3(k − 3)/2− 1.

Proof. LetG be a minimal counterexample to the third statement of Theorem

3.5 such that x ∈ V (G) is in a Kk−3 subgraph D ⊆ G, x has a neighbor

y ∈ V (G)− V (D), and both x and y have degree k− 1 in G. Further, x and

y are in different clusters. We partition V (D) − {x} into sets A,B where

A := {u ∈ V (D) − {x} | uy ∈ E(G)} and B := {u ∈ V (D) − {x} | uy /∈
E(G)}.

By Lemma 4.21, x and y cannot have too many neighbors in common

because degG(y) = k− 1. We get that k− 1 = degG(y) ≥ |A|+ 1 + k−3
2

, from

which it follows that |A| ≤ k−1
2

. But V (D) = A ∪ B ∪ {x} so this implies

that |B| ≥ k−7
2

.

Similar to Lemma 5.12, one can show using Lemma 4.21 that b ∈ B has

degree at least 3(k − 3)/2− 1.
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Chapter 6

Discharging

In this chapter, we complete the proof of the third statement of Theorem

3.5 using a discharging argument. The method of discharging, described very

elucidatingly in [4], is a global versus local argument. We use potential as

a global measure on the graph, and have already shown how certain local

structures (2-vertex cuts, i-edge-additions, i-collapsible sets, etc.) are not

allowed in a minimal k-critical graph which is not k-Ore and has potential

greater than k(k − 3) − 2(k − 1). There still remain areas of low potential

such as gadgets or clusters of size k − 3, and the goal of this chapter is to

show how the local structure at these areas contradicts the global hypothesis

on potential. We will give each vertex charge relative to its degree, and

then spread that charge throughout the graph using bounds obtained in

previous chapters. The goal of a general discharging argument is to give

each vertex charge which is not positive. This will lead to a contradiction,

whereby the total charge on the minimal counterexample G gives that ρ(G) >

k(k − 3)− 2(k − 1) is not possible.

However, we will go through discharging in two stages where only the first

stage is done in the traditional style. In the first stage, we send packets

of charge along edges, pushing from areas of high negative charge to areas

which have positive initial charge. This gives a bound on each vertex which

does not fall into four specific sets (vertex subsets L,M,P, and Q defined in

Definition 6.2), and also gives us a bound on the global charge of the graph.
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However, these bounds only hold for k ≥ 33, which gives the restriction on

the third statement of Theorem 3.5. It is possible that the third statement

is true for other k as well; however, it would take a much more complex set

of discharging rules to handle these cases.

In the second stage of discharging looks at averaging charge across the

graph, letting subsets with negative charge compensate for subsets with pos-

itive charge rather than pushing charge along a specific edge. In the end,

these arguments combine with the results of Chapter 2 to give a bound on

2|E(G)|. Using other bounds on this parameter, such as the bound estab-

lished by Kierstead and Rabern [11], we will arrive at a contradiction for

ε ≤ 4
k3−2k2+3k

.

6.1 Discharging: set-up and first stage

Let G be a minimal counterexample to the third statement of Theorem 3.5.

We define a charge function w : V (G)→ R so that

w(v) := (k − 2)(k + 1) + ε− degG(v)(k − 1).

Note that
∑

v∈V (G)w(v) = ρ(G) + δT (G) ≥ ρ(G). Below, we show the initial

charge for vertices of varying degrees in G.

Fact 6.1.

1. If degG(v) = k − 1 then w(v) = k − 3 + ε.

2. If degG(v) = k then w(v) = −2 + ε.

3. If degG(v) = k + 1 then w(v) = −k − 1 + ε.

4. If degG(v) = k + ` for ` ≥ 2 then w(v) = −2− `(k − 1) + ε.

We now define four disjoint subsets of vertices which will need to be dealt

with in the second stage of discharging.
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Definition 6.2. We define the following special vertex subsets.

L := {v ∈ V (G) | degG(v) = k − 1 and v has no neighbors of degree k − 1},

M := {v ∈ V (G) | v is in a cluster of size 2 and is a lone-vertex},

P := {v ∈ V (G) | degG(v) = k},

Q := {v ∈ V (G) | degG(v) = k + 1}.

Further, we remove a vertex x from L∪M if x is a structure-vertex. There-

fore, L ∪M contains only lone-vertices.

Let R be the set V (G) − (L ∪M ∪ P ∪ Q) which contains the rest of the

vertices of G. After two stages of discharging we will arrive at a contradiction

to our assumption that ρ(G) > k(k−3)−2(k−1). In the first stage we have

two rules to follow.

Discharging Rule #1: Every vertex of degree at least k + 2 reserves

charge −2 + ε and sends the remaining charge equally to all neighbors. Note

that a vertex of degree d which follows this rule has charge k2− k− d(k− 1)

after reserving −2 + ε. Therefore, it sends out charge
(
k
d
− 1
)

(k− 1) to each

of its neighbors.

Discharging Rule #2: Every vertex of degree k−1 which is a key vertex

of a gadget or in a Kk−3 sends charge −(k−1)/t to each vertex of an adjacent

cluster of size t < k − 3 which is not a key vertex of a gadget or in a Kk−3

subgraph.

Note that any vertex which follows Rule #2 is in a cluster of size s ≥ t and

therefore, by Proposition 5.9, sends charge at most −(k − 1).

Now let w′(v) be the charge function after applying Rules #1 and #2 to

G.

Lemma 6.3. For every vertex v ∈ R = V (G) − (L ∪M ∪ P ∪Q) applying

Rules #1 and #2 give w′(v) ≤ −2 + ε.
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Proof. We need to check this for vertices of degree k+2 or higher, and also for

lone-vertices in a cluster of size r (where 3 ≤ r ≤ k − 4), structure-vertices,

and near-vertices in a cluster of size r ≤ k − 4. We will do this on a case by

case basis.

Case 1. Suppose degG(v) ≥ k + 2.

Let v be such a vertex. By Rule #1, v has reserved charge −2 + ε and so

w′(v) follows the desired inequality.

Case 2. Suppose degG(v) = k − 1 and v is in a cluster of size r (where

3 ≤ r ≤ k − 4) which is not adjacent to another cluster.

Let C be a cluster of size r where 3 ≤ r ≤ k − 4, and let v ∈ C. Because

degG(v) = k − 1, v has k − r neighbors in V (G) − C. Label these vertices

y1, y2, . . . , yk−r. By Corollary 5.8, if any yi has degree less than k−1+r then

we can move to the case where v is in a Kk−3 subgraph or is a key vertex of a

gadget. Therefore, each yi follows Rule #1 and sends charge
(

k
k−1+r − 1

)
(k−

1) to v. Therefore the new charge of v is w(v) +
(

k
k−1+r − 1

)
(k − 1)(k − r).

One can check that the second derivative of this with respect to r is positive

for all k > 1.
d2

dr2
[w′(v)] =

2k(1− 3k + 2k2)

(r + k − 1)3
.

Therefore, we only need to check that w′(v) ≤ −2+ ε for the endpoints r = 3

and r = k − 4.

When r = 3, v starts with charge k−3+ε and receives a total of −2(k−1)(k−3)
k+2

charge. Thus w′(v) = −k+ 9− 30
k+2

+ ε, and for k ≥ 8 we get w′(v) ≤ −2 + ε.

When r = k − 4, v starts with charge k − 3 + ε and receives a total of
(5−k)(k−1)4

2k−5 charge. Thus w′(v) = −k + 4 + 15
2k−5 + ε, and for k ≥ 8 we get

w′(v) ≤ −2 + ε.

Case 3. Suppose degG(v) = k − 1 and v is a key vertex of a gadget.



65

Let v be a key vertex of a gadget. By Lemma 5.11, v has at least k−3
2

neighbors of degree at least 3
2
(k − 3) + 1; we will call these high-degree

neighbors. For k ≥ 21, high-degree neighbors have degree at least 4
3
k. Recall

that each high-degree neighbor sends charge
(
k
d
− 1
)

(k − 1), where d is the

degree of the vertex, by Rule #1. Therefore v gets charge −1
4

(k − 1) of less

from each high-degree neighbor. Also, by Rule #2, v may give away, at

worst, charge −(k − 1) to adjacent near-vertices. This would raise w′(v) by

at most (k − 1). Therefore it follows that

w′(v) ≤ −(k − 1)

4
· k − 3

2
+ k− 3 + ε+ (k− 1) =

−1

8

(
k2 − 20k + 19

)
− 2 + ε.

For k ≥ 19, we have w′(v) ≤ −2 + ε.

Case 4. Suppose degG(v) = k − 1 and v is in a Kk−3 subgraph.

Let v be a vertex of degree k − 1 that is in a Kk−3 subgraph D. By

Lemma 5.12, v has at least k−9
6

neighbors of degree at least 3
2
(k − 3) − 1;

we will call these high-degree neighbors. For k ≥ 33, high-degree neighbors

have degree at least 4
3
k. Recall that each high-degree neighbor sends charge(

k
d
− 1
)

(k − 1) by Rule #1. Therefore v gets charge −1
4

(k − 1) of less from

each high-degree neighbor. As long as v does not give away charge by Rule

#2, we have

w′(v) ≤ −(k − 1)

4
· k − 9

6
+ k − 3 + ε =

−1

24

(
k2 − 64k + 81

)
+ ε.

For k ≥ 33 it follows that w′(v) ≤ −2 + ε.

If v also gives away charge by Rule #2, then we may assume that v has a

neighbor u ∈ V (G) − V (D) which is in a different cluster. At worst, v has

given away −(k−1) charge, which will increase w′(v) by at most that amount.

Lemma 5.13 implies, however, that there are more high-degree neighbors so

v has more charge to give. In this case we have

w′(v) ≤ −(k − 1)

4
· k − 7

2
+ k − 3 + ε+ (k − 1) =

−1

8

(
k2 − 24k + 39

)
+ ε.
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One can check that for k ≥ 23, this gives w′(v) ≤ −2 + ε.

Case 5. Suppose degG(v) = k − 1 and v is in a cluster of size r < k − 3

which is adjacent to a vertex of degree k− 1 which is a key vertex of a gadget

or in a Kk−3 subgraph.

Let v be in a cluster Cv of size r < k − 3, and let u be an adjacent vertex

of degree k− 1 which is a key vertex of a gadget or in a Kk−3 subgraph. Let

u be in a different cluster, Cu, of size s. If s ≤ r then by Corollary 5.8, v is

a key vertex of a gadget or is in a Kk−3 subgraph and is covered by Case 3

or Case 4. Thus we may assume that s > r. By Rule #2, v and each other

vertex in Cv receives −(k − 1)/r charge from each vertex of Cu. Because

s > r, the final charge on v is

w′(v) ≤ k − 3 + ε− k − 1

r
· s < −2 + ε.

Note that there was an approximation in Cases 3 and 4, where we used 4
3
k

as the degree of a high-degree vertex rather than the actual degree. If we

instead use the precise degree, the equations are more complicated to solve.

Using a CAS one can check that, even without approximating, Lemma 6.3

only holds for k ≥ 33. Therefore, we paid no penalty in strength of argument

when we used numbers for which the calculations were easier.

6.2 Second stage: averaging charge over the

graph

Now we are done with the first stage of discharging. The second stage involves

global arguments about total charge on G. By Lemma 6.3, we know that the

charge on each vertex in R = V (G) − (L ∪M ∪ P ∪ Q) is at most −2 + ε.
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However, Rule #1 also had an effect on the sets L and M because a vertex in

one of these special sets could have had neighbors of degree k + 2 or higher.

A charge of −2(k−1)
k+2

(the charge sent by a vertex of degree k + 2) or less is

sent along each edge from a vertex in R to a vertex in L∪M . We count the

number of such edges with the function e(L ∪M,R). Because vertices of L

and M are not adjacent to vertices of degree k − 1 that are not in the same

cluster, Rule #2 had no effect on any of the four special sets. Therefore, the

total charge on the graph is∑
v∈V (G)

w(v) =
∑

v∈V (G)

w′(v) ≤ ε|V (G)| − 2|R|+ (k− 3)|L|+ (k− 3)|M | − 2|P |

−(k + 1)|Q| − 2(k − 1)

k + 2
e(L ∪M,R). (6.1)

To further investigate this, we need a bound on the number of edges counted

by e(L ∪M,R). For a vertex v ∈ L each edge incident with v goes to an

edge in either P ∪ Q or R. For a vertex v ∈ M each edge (other than the

edge inside the cluster) goes to an edge in either Q or R. It is not possible

for there to be an edge from v ∈M to P because, by Corollary 5.8, v would

be a structure-vertex and therefore would not belong to M . Using this, it

follows that

e(L ∪M,R) = (k − 1)|L| − e(L, P ∪Q) + (k − 2)|M | − e(M,Q). (6.2)

We now combine two bounds on e(L, P ∪ Q). First, we make the simple

observation that e(L, P ∪Q) ≤ (k− 1)|L|. Using Lemma 2.5 with the vertex

sets L, P, and Q it follows that, for any real numbers a, b ≥ 0 such that

a+ b = 1,

e(L, P ∪Q) ≤ a (|L|(k − 1)) + b (2|L|+ 2|P |+ 4|Q|) .

By letting a = k−4
2k−2 we get

e(L, P ∪Q) ≤
(
k − 4

2
|L|
)

+

(
k + 2

k − 1
|L|+ k + 2

k − 1
|P |+ 2(k + 2)

k − 1
|Q|
)
. (6.3)
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Also, by Lemma 2.4 we have that e(M,Q) ≤ 3|M | + 6|Q|. Substituting

this and Equation 6.3 into Equation 6.2, we obtain the following bound on

e(L ∪M,R):

e(L ∪M,R) ≥ (k + 2)(k − 3)

2(k − 1)
|L| − k + 2

k − 1
|P |+ (k − 5)|M | − 8k − 2

k − 1
|Q|.

Using this we can rewrite Equation 6.1 as∑
v∈V (G)

w(v) ≤ ε|V (G)| − 2|R|+ (k − 3)(|L|+ |M |)− 2|P | − (k + 1)|Q|

−(k − 3)|L|+ 2|P | − 2(k2 − 6k + 5)

k + 2
|M |+ 16k − 4

k + 2
|Q|.

This equation simplifies to∑
v∈V (G)

w(v) ≤ ε|V (G)| − 2|R| − k2 − 5k + 11

k + 2
|M | − k2 − 15k + 6

k + 2
|Q|

≤ ε|V (G)| − 2(|V (G)| − |L| − |P |)

because the fractional coefficients on |M | and |Q| are both at least 2.

Recall our assumption that G is a minimal counterexample. This implies

that ρ(G) > k(k − 3)− 2(k − 1) > 0 and thus we have 0 <
∑

v∈V (G)w(v) ≤
ε|V (G)| − 2|V (G)|+ 2(|L|+ |P |). It follows that

|L|+ |P | > |V (G)|
(

1− ε

2

)
.

This tells us that all but fewer than nε/2 of the vertices in G are in L or P .

We will use this information and the potential of G to get lower and upper

bounds for 2|E(G)|. Note that 2|E(G)| ≥ k|P |+(k−1)|L|, so we get a lower

bound

2|E(G)| > k|V (G)|
(

1− ε

2

)
− |L|. (6.4)

Also, ρ(G) > k(k − 3)− 2(k − 1) > 0 implies that

2|E(G)| <
(
k − 2

k − 1
+

ε

k − 1

)
|V (G)|. (6.5)
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It follows from combining Equations 6.4 and 6.5 that

|L| > |V (G)|
k − 1

(
2− ε− ε(k2 − k)

2

)
. (6.6)

This bound on L now allows us to build a new lower bound on 2|E(G)| which

will lead to a contradiction and complete the proof of Theorem 3.5. Recall

that mic(G) is the maximum of
∑

v∈I degG(v) over all independent vertex

subsets I of G. The special set L is an independent set of G by construction,

and so for a minimal counterexample G it follows that

mic(G) ≥ |L|(k − 1) > |V (G)|
(

2− ε− ε(k2 − k)

2

)
.

Using Lemma 2.6, we update the lower bound on 2|E(G)| and, on subsequent

lines, make a closer comparison of the upper and lower bound.(
k +

ε− 2

k − 1

)
|V (G)| > 2|E(G)| > (k − 2)|V (G)|+ mic(G)

(
k +

ε− 2

k − 1

)
|V (G)| > |V (G)|

(
(k − 2) + 2− ε− ε(k2 − k)

2

)
ε− 2

k − 1
> −ε− ε(k2 − k)

2

4

k3 − 2k2 + 3k
< ε.

Therefore, because ε ≤ 4
k3−2k2+3k

, these two bounds lead to a contradiction.

This contradiction implies that there is no minimal counterexample G to

Theorem 3.5 which is k-critical, not k-Ore, and has ρ(G) > k(k−3)−2(k−1).

Therefore, the third statement of Theorem 3.5 has been proven. As stated

in Section 1, this result gives us a variety of corollaries. First, we have

shown a bound on potential for all k-Ore graphs which includes information

about subgraphs in the k-Ore graphs. As the size of k-Ore graphs grows, the

potential goes down by at least δ − (k − 1)ε ≥ 0 for every increase in k − 1

vertices (which corresponds to an Ore composition with Kk).
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Second, the graphs which are not k-Ore are at least 2(k − 1) less than

k(k − 3). This corresponds to being one edge worth of potential away from

the upper bound on potential shown by Kostochka and Yancey [14]. For

ε = δ = 0 this proves independently (for the case where k ≥ 33) the result

in [13] that the k-critical graphs which attain the bound in [14] are exactly

the k-Ore graphs.

We have also shown that for k-critical graphs without Kk−2 or Kk−1 sub-

graphs (for these graphs, T (G) = 0) that the asymptotic density is above

that given by Ore’s Conjecture. That is, where fk(n) is the minimum num-

ber of edges in a (Kk−2)-free k-critical graph on n vertices, we have shown

that

φk := lim
n→∞

fk(n)

n
≥ k

2
− 1

k − 1
+

ε

2(k − 1)
.
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Chapter 7

Tcs(G), a modification of T (G)

In this chapter, we take a second approach to building a potential function.

This second potential function encodes different information, but still yields

a similar overall result for k-Ore graphs. In the new potential function, the ε

increase on the coefficient of |V (G)| is paid for with Tcs(G) (defined below),

which counts structures called k-critical structures. Each k-critical structure

contains either a Kk−1 or a Kk−2, so therefore the ε increase can be paid with

a much lower cost than the function T (G) used in the previous chapters.

The k-Ore graphs are precisely the class of graphs which attain the bound

in [14]. This is proved in [13] and also is independently proved in this work

as a corollary to Theorem 3.5. Therefore, k-Ore graphs are of particular

importance when examining density of edges in a k-critical graph and it

is worthwhile to obtain a second bound on edge density in k-Ore graphs.

Further, this result gives us reason to believe that the ε increase in asymptotic

edge density that (Kk−2)-free k-critical graphs have could be extended to a

broader class of k-critical graphs.

Before stating the main result of this chapter, we need to establish some

terminology. Let K−k−1 be the complete graph on k − 1 vertices minus one

edge. We define a family of graphs T , where G ∈ T if and only if

1. for special vertices u, v ∈ V (G) the graph G− {u, v} is K−k−1,

2. degG(u) + degG(v) = k − 1,
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3. NG(u) ∩NG(v) = ∅,

4. and degG(v) and degG(u) are both at least 2.

Note that if G is a graph in the family T , then when we identify the special

vertices u, v ∈ V (G) we obtain a diamond (Definition 3.9).

Definition 7.1. Let G be any graph. A subgraph H ⊆ G is a k-critical

structure if either H = Kk−1, H = Kk − 2K2, or H ∈ T . We then define

Tcs(G) to be the maximum number of vertex-disjoint k-critical structures in

the graph G.

In this chapter, our aim is to prove that there is a linear bound on the

number of k-critical structures in a k-Ore graph. To do this we will prove

the following theorem.

Theorem 7.2. If G is k-Ore and k ≥ 4 then for a = 7(k − 1) the following

is true.

1. If Tcs(G) ≥ 3 then Tcs(G)− 2 ≥ |V (G)|−1
2a

and

2. if Tcs(G) ≤ 2 then a ≥ |V (G)|.

7.1 k-critical structures

Recall that a subgraph D ⊆ G is a diamond of G if D = Kk − uv and

degG(x) = k − 1 for each x ∈ V (D) − {u, v}. The vertices u, v ∈ V (D)

are called endpoints and we now define the vertices in V (D) − {u, v} to be

interior vertices. Note that if D is a diamond of G with endpoints u, v, then

G is an Ore composition of Kk and G∗ for some graph G∗. Further, in the

graph G, if we delete the interior vertices of D and identify u and v to a

single vertex then we obtain a graph that is isomorphic to G∗. We call this

process a vertex-collapse of D, or simply a collapse of D. When we collapse
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a diamond D ⊆ G with endpoints u, v, we will always label the resulting

graph G∗ and call the single vertex in V (G∗)− V (G) a fat vertex and label

it uv. Also note that for any edge e ∈ E(D) either D− e contains a Kk−1, or

D − e = Kk − 2K2. Therefore D − e always contains a k-critical structure.

We recall what it means to split a vertex, which leads to a definition of

another important subgraph called a k-split. Given a graph G, and a vertex

x ∈ V (G), we can create a new graph H by splitting the vertex x. We split x

by deleting it, adding two new vertices x1, x2, and connecting them to vertices

in V (G)−{x} so that NH(x1)∪NH(x2) = NG(x), NH(x1)∩NH(x2) = ∅, and

neither NH(x1) nor NH(x2) is empty. If we identify the vertices x1, x2 in H

the resulting graph is denoted H/x1x2. Note that H/x1x2 is isomorphic to

G if H is constructed as above. Let H be the family of graphs obtained from

Kk by splitting a vertex x ∈ V (Kk) such that x1 and x2 both have degree at

least 2. Note that every graph in H has k − 1 vertices of degree k − 1 and

two special vertices of degree at most k − 3.

Definition 7.3. A subgraph D ⊆ G is called a k-split if D is isomorphic to

a graph in H and degG(x) = k− 1 for each vertex x ∈ V (D) with degD(x) =

k − 1. These vertices are called interior vertices of the k-split and the two

special vertices of degree at most k − 3 in D we call the endpoints of the

k-split.

Note that if D is a k-split with endpoints u, v in G, then G is an Ore

composition of G′ and Kk for some graph G′. Further, in the graph G, if we

delete the interior vertices of D and add the edge uv then we obtain a graph

that is isomorphic to G′. We call this process an edge-reduction of D. The

new edge e is called an edge-replacement to indicate that it came from an

edge-reduction of a k-split. Let f ∈ E(D) be any edge in a k-split. Then

D− f either contains a Kk−1 or D− f is a graph in the family T . Therefore

D − f always contains a k-critical structure.
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In the proof of the main result of this chapter, we will make use of graph

functions θ∗ and θ′ which we define now. If G contains r ≥ 1 diamonds,

then we label the diamonds D1, D2 . . . , Dr. We let G1 be the graph obtained

from G by vertex-collapsing D1 with endpoints u1, v1 to the fat vertex u1v1.

Suppose that some Dk with k > 1 was incident to D1 in G. As the interior

vertices of a diamond are only adjacent to other vertices of that diamond,

these two diamonds must intersect in G at an endpoint. We may assume that

Dk has endpoints u1, vk in G for vk 6= v1. But in G1 one of the endpoints is

now the fat vertex u1v1. We say that Dk remains intact despite the relabelling

of its endpoints. Therefore, every Dk with k > 1 is a diamond in G1 and we

can vertex-collapse D2 to obtain the graph G2. At each step, we collapse the

diamond with smallest index Dk creating the graph Gk, until we reach the

end and have obtained the graph Gr. We say that θ∗(G) = Gr; this can be

equivalently thought of as collapsing all diamonds in G simultaneously.

If G contains r ≥ 1 k-splits, then we label the k-splits D1, D2, . . . , Dr.

We let G1 be the graph obtained from G by edge-reducing D1. Because

the interior vertices of D1 are only adjacent in G to vertices of D1, every

k-split Dk with k > 1 remains intact in G1. Therefore we can edge-reduce,

one at a time, the k-split with smallest index Dk creating the graph Gk.

At the end of this process, we have obtained the graph Gr. We say that

θ′(G) = Gr; this can be equivalently thought of as edge-reducing all k-splits

in G simultaneously.

7.2 Preliminaries

The following result is the analog of Lemma 3.6 and will be needed for the

proof of the Theorem 7.2

Lemma 7.4. If G is an Ore composition of G1 and G2 then Tcs(G) ≥
Tcs(G1) + Tcs(G2) − 2. Moreover, if G1 = Kk or G2 = Kk then Tcs(G) ≥
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Tcs(G1) + Tcs(G2)− 1. Lastly, if both G1 and G2 are Kk, then Tcs(G) = 2.

Proof. Suppose that G is an Ore composition of G1 and G2. Let e be the

replaced edge of G1 and z be the split vertex of G2. From the definition

of an Ore composition Tcs(G) ≥ Tcs(G1 − e) + Tcs(G2 − {z}). Note that

Tcs(G1−e) ≥ Tcs(G1)−1 and Tcs(G2−{z}) ≥ Tcs(G2)−1, because removing

a single element can remove at most one k-critical structure. Thus, we get

Tcs(G) ≥ Tcs(G1) + Tcs(G2)− 2 as desired. If G1 = Kk then Tcs(Kk − e) = 1

for every edge e ∈ E(G1); also, if G2 = Kk then Tcs(Kk − {v}) = 1 for every

v ∈ V (G2). Thus removing an element from a Kk graph does not remove a k-

critical structure. Therefore, it follows that Tcs(G) ≥ Tcs(G1)+Tcs(G2)−1 if

either G1 or G2 is Kk. Further, if both G1 and G2 are Kk then Tcs(G) = 2.

Proposition 7.5. Let G be a k-Ore graph. Then Tcs(G) ≤ 1 if and only if

G = Kk.

Proof. Note that Tcs(Kk) = 1. Now let G be a vertex-minimal k-Ore graph

where Tcs(G) ≤ 1 and G 6= Kk. Because G is k-Ore but not Kk, G is an Ore

composition of G1 and G2 where G1 and G2 are both k-Ore. By Lemma 7.4

it follows that

1 ≥ Tcs(G) ≥ Tcs(G1) + Tcs(G2)− 2

so 3 ≥ Tcs(G1) + Tcs(G2). Hence Tcs(Gi) ≤ 1 for i = 1 or i = 2, and by

the minimality of G we conclude that Gi = Kk. In this case Lemma 7.4

instead implies that Tcs(G1) + Tcs(G2) ≤ 2 so, in fact, G1 = G2 = Kk.

However, in this case Tcs(G) = 2 by Lemma 7.4. This contradiction proves

the proposition.

The following lemma is similar to Lemma 3.11, however this lemma covers

only k-Ore graphs G with Tcs(G) = 2

Lemma 7.6. If G is k-Ore and Tcs(G) = 2 then
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1. for all e ∈ E(G) either Tcs(G − e) ≥ 2 or there exists a diamond or a

k-split in G− e.

2. for all x ∈ V (G) either Tcs(G− {x}) ≥ 2 or there exists a diamond or

a k-split in G− {x}.

Proof. We will prove the lemma by induction on |V (G)|. Let G be a k-

Ore graph with Tcs(G) = 2 such that all smaller k-Ore graphs satisfy the

conclusions of the lemma. Note that G 6= Kk by Proposition 7.5 because

Tcs(G) = 2. Thus, G is an Ore composition of two k-Ore graphs G1 and

G2. Let f ∈ E(G1) and y ∈ V (G2) be the replaced edge of G1 and split

vertex of G2, respectively. We claim that Tcs(Gi) ≤ 2 for i = 1, 2, and prove

this claim by contradiction. Suppose Tcs(G1) ≥ 3. If Tcs(G2) ≥ 2 then we

have by Lemma 7.4 that 2 = Tcs(G) ≥ Tcs(G1) + Tcs(G2) − 2 ≥ 3, which is

a contradiction. If Tcs(G2) = 1 then G2 = Kk and Lemma 7.4 implies that

2 = Tcs(G) ≥ Tcs(G1) +Tcs(G2)− 1 ≥ 3, which is also a contradiction. Thus,

we conclude that Tcs(G1) ≤ 2. A similar argument proves that Tcs(G2) ≤ 2

as well.

Now let e ∈ E(G) from the hypotheses of the lemma be given. There

are two cases, either e ∈ E(G1) or e ∈ E(G2). Suppose e ∈ E(G1). For

Tcs(G2) = 2, then by induction Tcs(G2 − {y}) ≥ 2 or there exists a diamond

or k-split in G2 − {y}. Because G2 − {y} ⊆ G− e, any k-critical structures,

diamonds, or k-splits in G2 − {y} also exist in G − e and the lemma holds.

If instead Tcs(G2) = 1, then the graph G′2 ⊆ G obtained by splitting G2 at

the vertex y is a k-split. Removing e from G does not destroy this k-split,

so there exists a k-split in G− e.
Now we examine the case where e ∈ E(G2). If Tcs(G1) = 2 then by

induction Tcs(G1−f) ≥ 2 or there exists a diamond or k-split in G1−f . But

G1 − f ⊆ G − e because e ∈ E(G2), so any k-critical structures, diamonds,

or k-splits in G1− f also exist in G− e and the lemma holds. If Tcs(G1) = 1
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then G1 − f ⊆ G− e is a diamond. Therefore, we have shown that the first

statement of the lemma holds in all cases.

We now turn to the second statement. Let x ∈ V (G) be given. Suppose

x ∈ V (G2). If Tcs(G1) = 2 then by induction Tcs(G1 − f) ≥ 2 or there exists

a diamond or k-split in G1 − f . But, as before G1 − f ⊆ G − {x}, so any

k-critical structures, diamonds, or k-splits in G1 − f also exist in G − {x}
and the lemma holds. If Tcs(G1) = 1, then G1 − f is a diamond in G− {x}.
This case includes the situation where x is an overlap vertex of G1 and G2.

Suppose instead that x ∈ V (G1)− V (G2). In this case, if Tcs(G2) = 2 then

inductively Tcs(G2−{y}) ≥ 2 or there exists a diamond or k-split in G2−{y},
and these structures also exist in G − {x} because G2 − {y} ⊆ G − {x}. If

Tcs(G2) = 1, then the graph G′2 obtained by splitting G2 at the vertex y is a

k-split. Because x /∈ V (G2), this k-split G′2 will be intact after removing the

vertex x from G. This completes the proof of the lemma.

For the following proposition we show that that to obtain a smaller k-Ore

graph, a diamond can be vertex-collapsed and a k-split can be edge-reduced.

Proposition 7.7. Suppose that G is k-Ore. If G contains a diamond D then

the graph G∗ obtained by vertex-collapsing D is also k-Ore. If G contains a

k-split D then the graph G′ obtained by edge-reducing D is k-Ore.

Proof. Suppose that neither statement of the proposition holds. Then let

G be a counterexample with a minimum number of vertices; note that G 6=
Kk as this has no diamonds or k-splits. Thus, we have that G is an Ore

composition of two k-Ore graphs G1 and G2.

Suppose that D is a diamond of G. Then we consider the graph H where

G is an Ore composition of Kk and H with overlap vertices which are the

endpoints of D ⊆ G. Note that H is the graph G∗ in the statement of the

proposition, so it remains to prove that H is k-Ore. Note that D must be a

diamond of G1 or G2; assume for now that D is a diamond of G1. By the
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minimality of G it follows that G1 is an Ore composition of Kk and G′1 where

G′1 is a k-Ore graph. But now we can realize H as an Ore composition of

G′1 and G2, both of which are k-Ore; therefore, H is k-Ore. The method of

argument when D is a diamond of G2 is identical.

Now suppose that D ⊆ G is a k-split. The k-split D must be a subgraph of

G1 or G2; assume D ⊆ G1. Further, G is also an Ore composition of H and

Kk with overlap vertices which are the endpoints of D. By the minimality of

G it follows that G1 is an Ore composition of G∗1 and Kk where G∗1 is k-Ore.

Now H is a Ore composition of G∗1 and G2, both of which are k-Ore; therefore,

H is k-Ore. The method of argument when D ⊆ G2 is identical.

7.3 Main result on k-Ore graphs

Here we restate and then prove the main result of this chapter. This proof

is broken up into 10 claims.

Theorem 7.2. If G is k-Ore and k ≥ 4 then for a = 7(k − 1) the following

is true.

• If Tcs(G) ≥ 3 then Tcs(G)− 2 ≥ |V (G)|−1
2a

and

• if Tcs(G) ≤ 2 then a ≥ |V (G)|.

Proof. Suppose the theorem does not hold. Then let G be a counterexample

with a minimum number of vertices. That is, let G be a k-Ore graph where

either Tcs(G) ≥ 3 and Tcs(G) − 2 < |V (G)|−1
2a

or Tcs(G) ≤ 2 and a < |V (G)|,
and let any k-Ore graph with fewer vertices than G follow the inequalities

of Theorem 7.2. By Proposition 7.5, we may assume that G 6= Kk and

Tcs(G) ≥ 2. Therefore G is an Ore composition of two k-Ore graphs G1 and

G2. Note that G1 and G2 follow the inequalities of 7.2.

Claim 7.8. No two diamonds are incident in G.
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Proof. Suppose two diamonds D,D′ are incident in G. Note that two distinct

diamonds could only intersect at their endpoint vertices; thus, we say that D

has endpoints u, v and that D′ has endpoints v, w. Collapsing D into a fat

vertex uv still leaves D′ intact, although the endpoint v ∈ V (D′) is now the

fat vertex uv. We can collapse this diamond as well. Then both diamonds

have collapsed into a single fat vertex uvw, and we have a new graph G′

which has 2(k − 1) fewer vertices than G.

By Proposition 7.7, G′ is k-Ore, so by the minimality of G, Theorem 7.2

applies to G′. We can recover G from G′ by expanding the fat vertex back

into two diamonds, one at a time. By doing this we have possibly removed

a k-critical structure in G′ which was using the vertex uvw; however, we

have also introduced two Kk−1 subgraphs, namely D − {v} and D′ − {v}.
Therefore, if t = Tcs(G

′) it follows that

Tcs(G) ≥ t+ 1. (7.1)

If G′ = Kk then, in fact, we can ensure that the fat vertex is not in

a k-critical structure and expanding the fat vertex into two adjacent dia-

monds adds two k-critical structures while removing none. Therefore we

have Tcs(G) = 3 and |V (G)| = 3k − 2. By supposition we have that

Tcs(G) − 2 < |V (G)|−1
2a

, but because this requires 2a < 3(k − 1), we have

a contradiction, so G′ 6= Kk.

Therefore, Proposition 7.5 implies that Tcs(G
′) ≥ 2, so Tcs(G) ≥ 3 by

Equation 7.1. If Tcs(G
′) = 2, then by the minimality of G we have that

|V (G′)| ≤ a. But then 1 ≤ (Tcs(G
′) + 1)− 2 ≤ Tcs(G)− 2 and because G is

a counterexample, we have

1 ≤ Tcs(G)− 2 <
|V (G)| − 1

2a
=
|V (G′)|+ 2k − 3

2a
≤ a+ 2k − 3

2a
.

This implies that a < 2k − 3, which is a contradiction.

Now we assume that Tcs(G
′) ≥ 3. Then by the minimality of G we have

Tcs(G
′) − 2 ≥ |V (G′)|−1

2a
. Because 2a ≥ 2(k − 1) and G has 2(k − 1) more
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vertices than G′ it follows that

Tcs(G)− 2 ≥ Tcs(G
′)− 1 ≥ |V (G′)| − 1

2a
+ 1 ≥ |V (G′)|+ 2(k − 1)− 1

2a

=
|V (G)| − 1

2a
.

Thus G is not a counterexample at all. Therefore we have proven that two

diamonds are not incident in G.

We now consider θ∗(G), which is obtained by taking all diamonds in G and

simultaneously collapsing them. By Claim 7.8, we know that any vertex in

θ∗(G) corresponds either to a single vertex in G, or a single diamond in G.

By repeated applications of Proposition 7.7 we can show that θ∗(G) is k-Ore.

Claim 7.9. θ∗(G) 6= Kk.

Proof. Suppose, for sake of contradiction, that θ∗(G) = Kk. If Tcs(G) = 2

then G can have at most two diamonds. In this case |V (G)| ≤ 3k − 2 so G

is not a counterexample at all. Therefore we may assume that Tcs(G) ≥ 3.

Let ` be the number of vertices in θ∗(G) which are fat vertices. If ` = 1, then

G is an Ore composition of Kk and Kk and Tcs(G) = 2. So we may assume

that ` ≥ 2. Suppose ` = 2. Then we have that 1 ≤ Tcs(G) − 2 < |V (G)|−1
2a

.

But |V (G)| = 3k − 2 and 2a ≥ 3(k − 1), so this is a contradiction.

Therefore, we can assume that ` ≥ 3. Then Tcs(G) ≥ ` and |V (G)| =

k − `+ k` = (`+ 1)k − `. Because a ≥ 3k − 3 we have

`− 2 ≤ Tcs(G)− 2 <
|V (G)| − 1

2a
=

(`+ 1)(k − 1)

2a
≤ (`+ 1)(k − 1)

2 · 3(k − 1)
=
`+ 1

6
.

For ` ≥ 3 this inequality is a contradiction. Therefore, we have proven that

θ∗(G) 6= Kk.

Claim 7.10. If D ⊆ θ∗(G) is a diamond then at most one vertex of D is a

diamond in G. That is, at most one vertex of D is a fat vertex. Furthermore,

this vertex can only be an interior vertex.
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Proof. Suppose that there is a diamond D ⊆ θ∗(G) where ` ≥ 2 vertices of

D are fat vertices, meaning they were diamonds in G. We replace each fat

vertex of D with a diamond to recover the subgraph D̂ ⊆ G which can be

vertex-collapsed to D; that is, θ∗(D̂) = D. Further, let θ∗(D) = x. Let G′

denote the graph obtained from G by collapsing D̂ to D, and let G′′ denote

the graph obtained from G′ by collapsing D to x.

Suppose G′′ = Kk. Then Tcs(G
′′) = 1 and Tcs(G) ≥ ` + 1 ≥ 3, because

when we replace x with D̂ we leave a Kk−1 ⊆ G − D̂ intact, and we add

` new Kk−1 subgraphs from the diamonds in D̂. We also have |V (G)| =

k + (k − 1) + `(k − 1) = (` + 2)(k − 1) + 1. Because G is a counterexample

with Tcs(G) ≥ 3 we have Tcs(G) − 2 < |V (G)|−1
2a

. This gives us the string of

inequalities

`− 1 ≤ Tcs(G)− 2 <
|V (G)| − 1

2a
=

(`+ 2)(k − 1)

2a
.

This implies that a < `+2
2`−2(k− 1), which has a maximum value (when ` = 2)

of 2. But a ≥ 2(k − 1), so this is a contradiction and G′′ cannot be Kk.

Thus, we may assume that Tcs(G
′′) ≥ 2. If Tcs(G

′′) = 2 then by the

minimality of G it follows that |V (G′′)| ≤ a, so |V (G)| ≤ a+ 3(k− 1). Then

we have

1 ≤ Tcs(G)− 2 <
|V (G)| − 1

2a
≤ a+ 3k − 4

2a
. (7.2)

This implies that a < 3k − 4, which is a contradiction. If Tcs(G
′′) ≥ 3

then by the minimality of G it follows that Tcs(G
′′) − 2 ≥ |V (G′′)|−1

2a
. Also,

Tcs(G
′′)+1 ≤ Tcs(G), because if we replace x with D̂, we possibly destroy one

k-critical structure that contained x, but we add at least two Kk−1 subgraphs

from the diamonds of D̂. Now we have

|V (G)| − 1

2a
> Tcs(G)− 2 ≥ Tcs(G

′′)− 1 ≥ |V (G′′)| − 1

2a
+ 1, (7.3)

which implies that |V (G)| > |V (G′′)|+ 2a. But |V (G′′)|+ 3(k− 1) ≥ |V (G)|
and it follows that 3(k − 1) > 2a, which is a contradiction. Therefore, there

is no diamond D ⊆ θ∗(G) with more than one fat vertex.
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Now we suppose that one the endpoints of the diamond D ⊆ θ∗(G) is a

fat vertex. Then Tcs(D̂) = 2, and Tcs(G
′′) + 1 ≤ Tcs(G) because replacing

x with D̂ may remove one k-critical structure, but also will add the two k-

critical structures in D̂. If G′′ = Kk, then Tcs(G) = Tcs(D̂) + 1 = 3 because

the Kk−1 of Kk − {x} remains intact. Also |V (G)| = 3k − 2. But this

implies that 1 < 3(k−1)
2a

, which is a contradiction. So we may assume that

G′′ 6= Kk. As Tcs(G) ≥ Tcs(G
′′) + 1, it follows from Proposition 7.5 that

Tcs(G) ≥ 3. Because of this and the fact that |V (G)| = |V (G′′)|+ 2(k− 1) <

|V (G′′)|+3(k−1), we have the same hypotheses that led to the contradictory

Equations 7.2 and 7.3.

In fact, each diamond D in θ∗(G) has exactly one fat vertex. If any diamond

in D ⊆ θ∗(G) had no fat vertices, then D ⊆ G so would have been collapsed

to a vertex in θ∗(G). When we expand the fat vertex of D ⊆ θ∗(G) and

recover D̂ ⊆ G, we define this structure to be a super-diamond. Using this

language, we say that each diamond in θ∗(G) comes from a super-diamond

in G.

Claim 7.11. No two diamonds intersect in θ∗(G).

Proof. Let D1, D2 be two diamonds in θ∗(G) whose vertex sets intersect.

Note that the diamonds can only share endpoints, so we may assume that

D1 has endpoints u, v and that D2 has endpoints v, w. We collapse D1 to a

fat vertex uv; by Proposition 7.7, the resulting graph H is k-Ore, and either

D2 is a diamond in G∗ with endpoints uv, w, or H is Kk.

First suppose that H is Kk. Then Tcs(θ
∗(G)) = 2, and |V (θ∗(G))| = 2k−1.

By Claim 7.10 each diamond in θ∗(G) has exactly one fat vertex, and they do

not overlap. Thus, |V (G)| = 4k−3. If Tcs(G) = 2, then |V (G)| = 4k−3 ≤ a

is a contradiction. If Tcs(G) ≥ 3 then 1 ≤ Tcs(G) − 2 < 4k−4
2a

implies that

a < 2(k − 1), which is also a contradiction. Therefore, we can assume that
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H is not Kk. Then by Proposition 7.7, when we collapse D2 ⊆ H so that we

get the single fat vertex uvw, the resulting graph will be k-Ore.

Now let C = D1 ∪ D2 be the subgraph of θ∗(G) that consists of both

diamonds; Tcs(C) = 2. We can replace each fat vertex in C with a diamond

in order to recover Ĉ ⊆ G. Note that θ∗(Ĉ) = C so Tcs(Ĉ) ≥ 2, and that

C can collapse further to uvw as above. Let G′ be the graph obtained from

G by collapsing Ĉ ⊆ G to C, and let G′′ be the graph obtained from G′

by collapsing C to uvw. Then |V (G)| = |V (G′′)| + 4(k − 1). If G′′ is Kk,

then Tcs(G) ≥ 3, because G′′ − {uvw} is a Kk−1 that remains intact when

we substitute Ĉ for the fat vertex. So 1 ≤ Tcs(G)− 2 < |V (G)|−1
2a

implies that

2a < |V (G)| − 1 = 5(k − 1), which is a contradiction. Therefore we may

assume that G′′ is not Kk. Then Tcs(G) ≥ Tcs(G
′′) + 1 because replacing

uvw with Ĉ possibly removes a k-critical structure in G′′ but adds at least

2 from Ĉ, and by Proposition 7.5 Tcs(G
′′) ≥ 2 which gives Tcs(G) ≥ 3. But

then

|V (G)| − 1

2a
> |Tcs(G)| − 2 ≥ Tcs(G

′′)− 1 ≥ |V (G′′)| − 1

2a
+ 1

implies that |V (G)| > |V (G′′)|+ 2a, meaning that 4(k− 1) > 2a, and this is

a contradiction.

Thus, we have shown that no such diamonds D1, D2 can exist in θ∗(G).

We now consider θ∗(θ∗(G)) , which is obtained by taking all diamonds in

θ∗(G) and simultaneously collapsing them. By Claims 7.8 and 7.11, we know

that every vertex in θ∗(θ∗(G)) corresponds to either a single vertex in G, a

single diamond in G, or a single super-diamond in G.

Claim 7.12. θ∗(θ∗(G)) is not Kk.

Proof. Suppose, for sake of contradiction, that θ∗(θ∗(G)) = Kk. First sup-

pose that Tcs(G) = 2. Since Tcs(G) ≥ Tcs(θ
∗(G)) it follows that θ∗(G) can
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have at most two diamonds. Thus |V (θ∗(G))| ≤ 3k− 2 and |V (G)| ≤ 5k− 4,

which is a contradiction as a > 5k − 4.

Therefore, we may assume that Tcs(G) ≥ 3. Let ` be the number of dia-

monds in θ∗(G). Then |V (G)| ≥ k + 2`(k− 1) = (2`+ 1)(k− 1) + 1 because

each diamond in θ∗(G) is a super-diamond in G by Claim 7.10. If ` ≤ 2

then we have 1 ≤ Tcs(G)− 2 < |V (G)|−1
2a

≤ 5(k−1)
2a

which is a contradiction as

a > 5(k− 1). If ` ≥ 3, then because each diamond in θ∗(G) corresponds to a

super-diamond in G and each super-diamond contains a k-critical structure,

we have Tcs(G) ≥ `. But a > 4(k − 1) so it follows that

`− 2 ≤ Tcs(G)− 2 <
|V (G)| − 1

2a
≤ (2`+ 1)(k − 1)

2a
≤ (2`+ 1)(k − 1)

2 · 4(k − 1)

=
2`+ 1

8
.

For ` ≥ 3, this inequality is a contradiction. Therefore, we have shown that

θ∗(θ∗(G)) 6= Kk.

Claim 7.13. There are no diamonds in θ∗(θ∗(G)).

Proof. LetD ⊆ θ∗(θ∗(G)) be a diamond with endpoints u, v. Replace each fat

vertex with either a super-diamond or diamond so that we recover D̂ ⊆ G

and θ∗(θ∗(D̂)) = D. Note that D must have at least one fat vertex that

corresponds to a super-diamond in G, otherwise θ∗(θ∗(D̂)) would be a single

fat vertex instead of a diamond. Let G′ be the graph obtained from G by

collapsing D̂ to D, and let G′′ be the graph obtained from G′ by further

collapsing D to a fat vertex uv. Let ` be the number of fat vertices in D; as

noted above, ` ≥ 1. Also, |V (G)| ≤ |V (G′′)|+ (2`+ 1)(k − 1).

Suppose first that ` ≥ 2. Then Tcs(D) ≥ `. When we replace uv with D̂,

we lose at most one k-critical structure in G′′, but gain at least ` structures

from D̂. Thus Tcs(G) ≥ Tcs(G
′′) + `− 1. As long as Tcs(G

′′) ≥ 2, this implies

that Tcs(G) ≥ 3. Otherwise, if G′′ = Kk, then we lose no structures when
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expanding uv, as G′′−{uv} = Kk−1. So in that case Tcs(G) ≥ Tcs(G
′′)+` ≥ 3.

In all cases Tcs(G) ≥ 3 and thus it follows that Tcs(G)− 2 < |V (G)|−1
2a

.

If Tcs(G
′′) ≤ 2 then Tcs(G) − 2 ≥ ` − 1 and |V (G′′)| ≤ a. From these

observations, it follows that

`− 1 ≤ Tcs(G)− 2 <
|V (G)| − 1

2a
<
|V (G)|

2a
≤ a+ (2`+ 1)(k − 1)

2a

=
1

2
+

(2`+ 1)(k − 1)

2a
.

But this implies that a < 2`+1
2`−3(k−1). When ` ≥ 2 it follows that a < 5(k−1),

but this is a contradiction.

Thus we may assume that Tcs(G
′′) ≥ 3. In this case,

|V (G)| − 1

2a
> Tcs(G)− 2 ≥ Tcs(G

′′) + `− 3 ≥ |V (G′′)| − 1

2a
+ `− 1

which implies that |V (G)| > |V (G′′)| + 2a(` − 1). But we know that with

` fat vertices in D, |V (G′′)| + (2` + 1)(k − 1) ≥ |V (G)|. Combining these

two inequalities, we get (2`+ 1)(k− 1) > 2a(`− 1), which can be written as
2`+1
`−1 (k − 1) > 2a. Because 2`+1

`−1 is a decreasing function for ` ≥ 2, we have

5(k − 1) > 2a, which is a contradiction.

We now suppose that ` = 1. In this case, the fat vertex x ∈ V (D) must

correspond to a super-diamond C ⊆ G. Note that C ⊆ D̂. Also note that a

super-diamond contains a Kk−1 that does not intersect either endpoint of the

super-diamond. Thus the vertices V (D)− {x} either form a Kk−1 or form a

graph in T that uses the endpoints of C as well. Either way Tcs(D̂) = 2 and

thus Tcs(G) ≥ 3.

If Tcs(G
′′) ≤ 2 then |V (G′′)| ≤ a by the minimality of G. By hypothesis,

1 ≤ Tcs(G)− 2 < |V (G)|−1
2a

and so 2a < |V (G)| − 1. But |V (G)| ≤ |V (G′′)|+
3(k−1) ≤ a+3(k−1) so this implies that a < 3k−4, which is a contradiction.

If Tcs(G
′′) ≥ 3 then by the minimality of G, Tcs(G

′′) − 2 ≥ |V (G′′)|−1
2a

. So

then

|V (G)| − 1

2a
> Tcs(G)− 2 ≥ Tcs(G

′′)− 1 ≥ |V (G′′)| − 1

2a
+ 1.
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This implies that |V (G)| > |V (G′′)+2a, but we also have |V (G′′)|+3(k−1) ≥
|V (G)| so then 3(k − 1) > 2a, which is a contradiction.

Therefore we have shown that θ∗(θ∗(G)) has no diamonds.

Claim 7.14. If D ⊆ θ∗(θ∗(G)) is a k-split then no more than one vertex of

D comes from a diamond or super-diamond.

Proof. Suppose that D is a k-split with endpoints u, v where ` ≥ 2 vertices of

D are fat vertices. We replace each fat vertex of D with a diamond or super-

diamond to recover D̂ ⊆ G, where θ∗(θ∗(D̂)) = D. We can also edge-reduce

D to an edge-replacement e = uv by adding the edge e = uv and deleting

all interior vertices. Let G′ be the graph obtained from G by collapsing D̂

to D and let G′′ be the graph obtained from G′ by edge-reducing D to e.

Replacing an edge-replacement with a k-split adds k− 1 vertices to a graph,

and replacing a fat vertex with a diamond or super-diamond adds at most

(2k − 2) vertices to a graph. Then |V (G)| ≤ |V (G′′)| + (2` + 1)(k − 1).

We claim that Tcs(G) ≥ 3, and to show this we inspect three cases when

T (G′′) ≥ 2, and then show how their conclusions are stronger for G′′ = Kk.

Case 1. Suppose ` ≥ 3

When we replace the edge-replacement e = uv with D̂ we lose at most

two k-critical structures in G′′ because u and v may be fat vertices that are

also in k-critical structures in G′′. However, we gain at least ` ≥ 3 k-critical

structures in D̂. Therefore Tcs(G) ≥ Tcs(G
′′)− 2 + `.

Case 2. Suppose ` = 2 and both fat vertices are endpoints of D.

When we replace the edge-replacement e with D̂, we lose at most two struc-

tures. However, as D−{u, v} = Kk−1, this k-critical structure remains when

u, v are replaced with diamonds and it follows that Tcs(D̂) ≥ 3. Therefore

Tcs(G) ≥ Tcs(G
′′)− 2 + 3 = Tcs(G

′′) + 1.

Case 3. Suppose ` = 2 and at least one fat vertex in D is an interior vertex.
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We replace the edge-replacement e ∈ E(G′′) with D̂. If e is in a k-critical

structure in G′′ then we lose that k-critical structure, but we gain at least

` k-critical structures in D̂. Hence, Tcs(G) ≥ Tcs(G
′′) − 1 + `. Otherwise,

e ∈ E(G′′) is not in a k-critical structure, and we lose at most one k-critical

structure, as one of the endpoints of e may be a fat vertex that is split in

D̂. However, we gain at least ` k-critical structures in D̂, so here as well

Tcs(G) ≥ Tcs(G
′′) − 1 + `. Therefore we always have Tcs(G) ≥ Tcs(G

′′) + 1

when Tcs(G
′′) ≥ 2.

Now consider when G′′ = Kk. We can lose at most one structure in G′′ since

only one exists. Therefore, in Case 1 we have Tcs(G) ≥ Tcs(G
′′)− 1 + ` ≥ 3.

In Case 2, we have Tcs(G) ≥ Tcs(G
′′) − 1 + 3 ≥ 3. And in Case 3 only one

endpoint of D can be a fat vertex. Without loss of generality let it be v.

Then G′′ − {v} = Kk−1 remains intact in G so Tcs(G) ≥ Tcs(G
′′) + 2 = 3.

Now we have shown the claim that Tcs(G) ≥ 3 and will show contradic-

tions regardless of whether Tcs(G
′′) ≤ 2 or Tcs(G

′′) ≥ 3. Suppose first that

Tcs(G
′′) ≤ 2. By the minimality of G it follows that |V (G′′)| ≤ a. Now if

` = 2 then |V (G)| ≤ a+ 5(k − 1). But then it follows that

1 ≤ Tcs(G)− 2 <
|V (G)| − 1

2a
≤ a+ 5k − 6

2a

and this implies that a < 5k− 6 which is a contradiction. Therefore we may

assume that ` ≥ 3. Then the argument of Case 1 implies that Tcs(G) ≥ ` so

`− 2 ≤ Tcs(G)− 2 <
|V (G)| − 1

2a
≤ a+ (2`+ 1)(k − 1)− 1

2a

<
1

2
+

(2`+ 1)(k − 1)

2a
.

It follows that ` − 5
2
< (2`+1)(k−1)

2a
and thus a < 2`+1

2`−5(k − 1). But 2`+1
2`−5 is a

decreasing function on ` ≥ 3 with a maximum at ` = 3. Therefore we have

shown that a < 7(k − 1), which is a contradiction.
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Now suppose instead that Tcs(G
′′) ≥ 3. Then by the minimality of G it

follows that Tcs(G
′′)− 2 ≥ |V (G′′)|−1

2a
. If ` = 2 then

|V (G)| − 1

2a
> Tcs(G)− 2 ≥ Tcs(G

′′)− 1 ≥ |V (G′′)| − 1

2a
+ 1

which implies that |V (G)| > |V (G′′)| + 2a. However, |V (G′′)| + 5(k − 1) ≥
V (G′′) so we have shown that 5(k−1) > 2a, which is a contradiction. There-

fore we may assume that ` ≥ 3. Then from Case 1 it follows that

|V (G)| − 1

2a
> Tcs(G)− 2 ≥ Tcs(G

′′)− 4 + ` ≥ |V (G′′)| − 1

2a
+ `− 2.

This implies that |V (G)| > |V (G′′)|+2a(`−2). But |V (G′′)|+(2`+1)(k−1) ≥
|V (G)| so together these inequalities show that 2`+1

`−2 (k−1) > 2a. When ` ≥ 3

this implies that 7(k − 1) > 2a, which is a contradiction.

Therefore, we have shown that any k-split D ∈ θ∗(θ∗(G)) has at most one

fat vertex.

Claim 7.15. No two k-splits are incident in θ∗(θ∗(G)).

Proof. Suppose that D1, D2 are k-splits in θ∗(θ∗(G)) with endpoints u, v and

v, w respectively. By Claim 7.14 it follows that each of D1 and D2 has at

most one fat vertex. Also, these fat vertices are disjoint, as they must be

interior vertices. We can edge-reduce D1 to a edge-replacement e = uv and

by Proposition 7.7 the resulting graph H is k-Ore. Also, H 6= Kk as D2 ⊆ H

has k + 1 vertices. Then we edge-reduce D2 to a edge-replacement f = vw.

Let C = D1 ∪ D2 be the subgraph of θ∗(θ∗(G)) that consists of both k-

splits. Tcs(C) = 2. If there are fat vertices in C, then we replace them

with a diamond or super-diamond to recover Ĉ ⊆ G, and it follows that

Tcs(Ĉ) ≥ 2. Note that Ĉ = C is possible. Let G′ be the graph obtained

from G by collapsing Ĉ to C and let G′′ be the graph obtained from G′ by

edge-reducing D1 ⊆ C to e = uv and D2 ⊆ C to f = vw.
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When we replace e with D1 we gain a k-critical structure overall unless the

edge e is used in a k-critical structure of G′′. Similarly, replacing f with D2

gains a k-critical structure overall unless the edge f is used in a k-critical

structure of G′′. But if e, f are both used in a k-critical structure, then

they are part of the same k-critical structure because they are incident at

the vertex v and k-critical structures are disjoint. So when we expand the

edge-replacements e, f we lose at most one structure, and gain Tcs(C) = 2.

Thus Tcs(G) ≥ Tcs(G
′) ≥ Tcs(G

′′) + 1 because Tcs(Ĉ) ≥ Tcs(C).

Suppose first that G′′ = Kk. Then |V (G′)| = k + 2(k − 1) = 3k − 2 and

|V (G)| ≤ 3k − 2 + 2(2k − 2) = 7k − 6 because each k-split in G′ may have

one fat vertex that was a super-diamond in G. But G′′ − {v} = Kk−1 and

this is not lost by replacing edge-replacements adjacent to v with k-splits. So

Tcs(G) ≥ Tcs(Ĉ) + 1 ≥ 3. Then it follows that 1 ≤ Tcs(G) − 2 < |V (G)|−1
2a

≤
7(k−1)

2a
, which is a contradiction.

Suppose now that Tcs(G
′′) = 2. Then by the minimality of G, |V (G′′)| ≤ a.

Because Tcs(G) ≥ Tcs(G
′′) + 1 = 3 it follows that

1 ≤ Tcs(G)− 2 <
|V (G)| − 1

2a
≤ |V (G′′)|+ 6(k − 1)− 1

2a
≤ a+ 6(k − 1)− 1

2a
.

From this it follows that a < 6k − 7, which is a contradiction.

Finally, we suppose that Tcs(G
′′) ≥ 3. Then |V (G)|−1

2a
> Tcs(G) − 2 ≥

Tcs(G
′′) − 1 ≥ |V (G′′)|−1

2a
+ 1, so it follows that |V (G)| > |V (G′′)| + 2a. But

|V (G′′)|+ 6(k− 1) ≥ |V (G)| and these two inequalities show that 6(k− 1) >

2a, which is a contradiction.

Therefore we have shown that no two k-splits are incident in θ∗(θ∗(G)).

We now consider θ′(θ∗(θ∗(G))) which is obtained by taking all k-splits in

θ∗(θ∗(G)) and simultaneously edge-reducing them. By Claim 7.14 no edge-

replacement is incident to a fat vertex and by Claim 7.15 no edge-replacement

shares an endpoint with another edge-replacement.
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Claim 7.16. θ′(θ∗(θ∗(G))) is not Kk.

Proof. To reduce notation, let G′ := θ∗(θ∗(G)) and G′′ := θ′(θ∗(θ∗(G))) for

this proof. Suppose, for the sake of contradiction, that G′′ = Kk. By Claim

7.12, θ∗(θ∗(G)) 6= Kk so there must be at least one edge-replacement in G′′.

Let m be the number of edge-replacements in G′′ and let ` be the number

of fat vertices in G′′. Note that m ≥ 1; also, 2m+ ` ≤ k because each edge-

replacement is adjacent to two distinct vertices which are not fat vertices.

It follows that Tcs(G
′) ≥ m as each edge-replacement in G′′ is a k-split

in G′ with a Kk−1 subgraph, and Tcs(G) ≥ m + ` as each fat vertex in G′′

corresponds to a diamond or super-diamond in G. Additionally, we know

that |V (G′′)| = k, and |V (G′)| = k + m(k − 1). As each k-split may have

a fat vertex not counted by `, and all fat vertices in G′ could be collapsed

super-diamonds, it follows that |V (G)| ≤ k+m(k−1)+m(2k−2)+`(2k−2) =

(3m+ 2`+ 1)(k − 1) + 1.

First, suppose that m ≥ 3. Then Tcs(G) ≥ m + ` ≥ 3 and because G is a

counterexample it follows that

m+ `− 2 ≤ Tcs(G)− 2 <
|V (G)| − 1

2a
≤ (3m+ 2`+ 1)(k − 1)

2a
.

So then 2a < 3m+2`+1
m+`−2 (k − 1). The derivative of 3m+2`+1

m+`−2 with respect to `

is −(m+5)
(m+`−2)2 so is negative for all m ≥ 3. Thus this function is maximized

when ` = 0 and we have 2a < 3m+1
m−2 (k − 1). Because m ≥ 3 this implies that

2a < 10(k − 1), which is a contradiction.

Second, suppose that m = 2. For ` ≥ 1 we get Tcs(G) ≥ m + ` ≥ 3. So it

follows that

` = m+ `− 2 ≤ Tcs(G)− 2 <
|V (G)| − 1

2a
≤ (3m+ 2`+ 1)(k − 1)

2a

=
(2`+ 7)(k − 1)

2a
.
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This gives 2a < 2`+7
`

(k − 1) and for ` ≥ 1 implies that 2a < 9(k − 1), which

is a contradiction.

Therefore we may assume that ` = 0 when m = 2. But in this case

Tcs(G) ≥ 3 as well because each edge-replacement e, f in G′′ contributes to

a Kk−1 in G′ and G′′ − {e, f} is a Kk − 2K2, which is a k-critical structure

that remains intact in G′ and G. So then 1 ≤ Tcs(G)− 2 < |V (G)|−1
2a

≤ 7(k−1)
2a

,

which is a contradiction because 2a ≥ 7(k − 1).

Finally, suppose that m = 1. For ` ≥ 2 we get Tcs(G) ≥ m+ ` ≥ 3 so

`− 1 ≤ m+ `− 2 ≤ Tcs(G)− 2 <
|V (G)| − 1

2a
≤ (2`+ 4)(k − 1)

2a
.

This implies that 2a < 2`+4
`−1 (k−1) and for ` ≥ 2 it follows that 2a < 8(k−1),

which is a contradiction.

So we may assume that ` ≤ 1 when m = 1. Then |V (G)| ≤ (3m+2`+1)(k−
1) + 1 ≤ 6k− 5. If Tcs(G) = 2, then we have a < |V (G)| ≤ 6k− 5 which is a

contradiction. If Tcs(G) ≥ 3 then we have 1 ≤ Tcs(G)−2 < |V (G)|−1
2a

≤ 6(k−1)
2a

.

This implies that 2a < 6(k − 1) which is also a contradiction.

We have shown that all values of m lead to contradiction, so therefore G′′ =

θ′(θ∗(θ∗(G))) 6= Kk.

Claim 7.17. θ′(θ∗(θ∗(G))) contains no diamonds or k-splits.

Proof. Suppose that θ′(θ∗(θ∗(G))) has a diamond D. It follows from Claim

7.13 that θ∗(θ∗(G)) has no diamonds so it follows that D must have at least

one edge-replacement. Let D be the structure in θ∗(θ∗(G)) obtained from G

by replacing each edge-replacement of D with a k-split. Then we can replace

each fat vertex in D with either a super-diamond or diamond to recover

D̂ ⊆ G. Let G′ be the graph obtained from G′ by collapsing D̂ to D and

let G′′ be the graph obtained from G′′ by edge-reducing any k-splits in D.

Thus D ⊆ G′′. Further, let G′′′ be the graph obtained by collapsing D to
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a fat vertex x. Each of these graphs are k-Ore by repeated applications of

Proposition 7.7.

Let m be the number of edge-replacements in D and let ` be the number of

fat vertices in D. Note that m ≥ 1. Then Tcs(D) ≥ m and Tcs(D̂) ≥ m+ `.

We claim that Tcs(D̂) ≥ 2. If m ≥ 2 this is clear, and if m = 1, then let e

be the edge-replacement in D. D − e is either a Kk − 2K2 if e is incident to

neither endpoint of D, or contains a Kk−1 if e is incident to an endpoint of

D. Thus Tcs(D̂) ≥ Tcs(D) = 2.

When replacing x with D̂ we possibly lose one k-critical structure in G′′′

but gain at least max{2,m+ `} from D̂. We claim now that Tcs(G) ≥ 3. For

Tcs(G
′′′) ≥ 2 there are two cases depending on m + `. When (m + `) ≥ 2

then Tcs(G) ≥ Tcs(G
′′′)− 1 + Tcs(D̂) ≥ 1 +m+ ` and when (m+ `) = 1 then

Tcs(G) ≥ Tcs(G
′′′) − 1 + 2 ≥ 3. The remaining case is when Tcs(G

′′′) = 1

and thus G′′′ = Kk by Proposition 7.5. Here, G′′′ − {x} is a Kk−1 that

remains intact in G. So in fact, no k-critical structures from G′′′ are lost when

expanding to D̂ and it follows that Tcs(G) ≥ 1 +m+ ` when (m+ `) ≥ 2 and

Tcs(G) ≥ 1 + Tcs(D̂) ≥ 3 when (m+ `) = 1. We have shown that Tcs(G) ≥ 3

in all cases and, in particular we have

Tcs(G) ≥ max{1, Tcs(G′′′)− 1}+ 2 when m+ ` = 1 and

Tcs(G) ≥ max{1, Tcs(G′′′)− 1}+m+ ` when m+ ` ≥ 2. (7.4)

We also want a bound on |V (G)|. By construction, |V (G′′)| = |V (G′′′)| +
(k − 1) and |V (G′)| = |V (G′′′)|+ (m+ 1)(k − 1). Because each k-split in G′

may have contained a fat vertex not counted by `, it follows that

|V (G)| ≤ |V (G′′′)|+ (m+ 1)(k − 1) + 2(m+ `)(k − 1)

= |V (G′′′)|+ (3m+ 2`+ 1)(k − 1). (7.5)
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First, suppose that Tcs(G
′′′) ≤ 2 so that |V (G′′′)| ≤ a. When m + ` ≥ 2 it

follows that

m+ `− 1 ≤ Tcs(G)− 2 <
|V (G)| − 1

2a
≤ a+ (3m+ 2`+ 1)(k − 1)− 1

2a

<
1

2
+

3(m+ `) + 1

2a
(k − 1).

This implies that a < 3(m+`)+1
2(m+`)−3(k−1) and for (m+`) ≥ 2 we get a < 7(k−1),

which is a contradiction. When (m+ `) = 1 then it must be that m = 1 and

` = 0. But now because 1 ≤ Tcs(G) − 2 < |V (G)|−1
2a

≤ a+4(k−1)−1
2a

, it follows

that a < 4k − 5, which is also a contradiction.

Now suppose that Tcs(G
′′′) ≥ 3. When m + ` ≥ 2 then we have, because

G′′′ follows Theorem 7.2, |V (G)|−1
2a

> Tcs(G)−2 ≥ (Tcs(G
′′′)−1+m+ `)−2 ≥

|V (G′′′)|−1
2a

−1+m+`. This implies that |V (G)| > |V (G′′′)|+2a(m+`−1). But

we also have that |V (G)| ≤ |V (G′′′)|+(3m+2`+1)(k−1) ≤ |V (G′′′)|+(3(m+

`) + 1)(k − 1). Together, these inequalities show that 2a < 3(m+`)+1
(m+`)−1 (k − 1).

For (m+ `) ≥ 2 it follows that 2a < 7(k − 1), which is a contradiction.

When m+ ` = 1 then ` = 0 and we have

|V (G)| − 1

2a
> Tcs(G)− 2 ≥ (Tcs(G

′′′)− 1 + 2)− 2 ≥ |V (G′′′)| − 1

2a
+ 1.

This implies that |V (G)| > |V (G′′′)| + 2a but we also have that |V (G′′′)| +
4(k−1) ≥ |V (G)|. Together these inequalities show that 4(k−1) > 2a, which

is a contradiction. Therefore there can be no diamonds D in θ′(θ∗(θ∗(G))).

Now suppose that θ′(θ∗(θ∗(G))) contains a k-split C. Because all k-splits in

θ∗(θ∗(G)) are now edge-replacements in θ′(θ∗(θ∗(G))), at least one edge of C

must be an edge-replacement. Let C be the subgraph of θ∗(θ∗(G)) obtained

from C by replacing each edge-replacement of C with a k-split. Then we

can replace each fat vertex in C with either a super-diamond or diamond to

recover Ĉ ⊆ G. Let G′ be the graph obtained from G by collapsing Ĉ to

C and let G′′ be the graph obtained from G′ by edge-reducing any k-splits
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in C. Thus C ⊆ G′′. Further, let G′′′ be the graph obtained from G′′ by

edge-reducing C to the edge-replacement f = uv. Each of these graphs are

k-Ore by repeated applications of Proposition 7.7.

Let m be the number of edge-replacements in C and let ` be the number

of fat vertices in C. Note that m ≥ 1. Also Tcs(C) ≥ m and Tcs(Ĉ) ≥ m+ `.

We claim that Tcs(Ĉ) ≥ 2. If m ≥ 2 this is clear, and if m = 1, then let e

be the edge-replacement in C. C − e is either in H if e is incident to neither

endpoint of C, or contains a Kk−1 if e is incident to an endpoint of C. Thus

Tcs(Ĉ) ≥ Tcs(C) = 2.

When replacing f = uv with Ĉ we possibly lose one k-critical structure

in G′′′ but gain at least max{2,m + `} from Ĉ. Exactly as in the diamond

case above, if Tcs(G
′′′) ≥ 2 then Tcs(G) ≥ Tcs(G

′′′) − 1 + Tcs(Ĉ). Also, if

Tcs(G
′′′) = 1 then G′′′ = Kk by Proposition 7.5 and G′′′ − f contains a

Kk−1 that remains intact in G. So in fact, no k-critical structures from G′′′

were lost and it follows that Tcs(G) ≥ 1 + m + ` when (m + `) ≥ 2 and

Tcs(G) ≥ 1 + Tcs(Ĉ) ≥ 3 when (m+ `) = 1.

Therefore when G′′′ has a k-split, Equations 7.4 and 7.5 also hold, just as

they did when G′′′ had a diamond. Thus, the same arguments will also lead

to contradictions for k-splits C ⊆ θ′(θ∗(θ∗(G))). Therefore, we have shown

that θ′(θ∗(θ∗(G))) contains no diamonds or k-splits.

End of proof of Theorem 7.2. Now we have a graph H = θ′(θ∗(θ∗(G)))

which is not Kk, and contains no diamonds or k-splits. By repeated appli-

cations of Proposition 7.7 we know that H is k-Ore. Because H is not Kk

it follows that H is an Ore composition of two k-Ore graphs H1 and H2

with overlap vertices {u, v}. Because H contains no diamonds or k-splits,

Tcs(Hi) ≥ 2 for i = 1, 2.

We replace all edge-replacements in E(H) and all fat vertices in V (H) −
{u, v} with the structures that were originally subgraphs of G. This gives

a graph G′ where G′ = G if neither u nor v is a fat vertex in H, or where
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we could obtain G′ from G by collapsing the necessary diamonds or super-

diamonds into the fat vertices u or v. Thus it follows that Tcs(G) ≥ Tcs(G
′).

Also G′ is k-Ore and we can realize G′ as an Ore composition of two k-Ore

graphs G′1 and G′2 with overlap vertices {u, v} (the same as the overlap ver-

tices of H). Because Tcs(G
′
i) ≥ Tcs(Hi) for i = 1, 2, we know that Tcs(G

′
i) ≥ 2

for i = 1, 2. We break the proof of the theorem into three cases.

First, we consider the case where Tcs(G
′
1) = Tcs(G

′
2) = 2. If Tcs(G

′
1) = 2

then it follows that Tcs(H1) = 2. But H1 − uv has no diamonds, so Lemma

7.6 implies that Tcs(H1 − uv) = 2. Thus, Tcs(G
′
1 − uv) = 2 as well. A

similar argument shows that Tcs(G
′
2 − {uv}) = 2. But this gives 4 disjoint

critical structures in G′ so we know that 4 ≤ Tcs(G
′) ≤ Tcs(G). Also, by the

minimality of G, we have that |V (G′i)| ≤ a for i = 1, 2. Thus |V (G′)| ≤ 2a−1

and because the vertices u, v could be at worst super-diamonds, it follows that

|V (G)| ≤ 2a− 1 + 4(k− 1). Putting these inequalities together we have that

2 ≤ Tcs(G)− 2 <
|V (G)| − 1

2a
≤ 1 +

4k − 5

2a
.

This implies that 2a < 4k − 5, which is a contradiction.

Second, we consider the case where one of Tcs(G
′
1) and Tcs(G

′
2) is 2, and

the other is at least 3. Suppose that Tcs(G
′
1) = 2. Then, by Lemma 7.6, it

follows that Tcs(G
′
1 − e) = 2. Thus Tcs(G) ≥ Tcs(G

′) ≥ 2 + Tcs(G
′
2) − 1 =

Tcs(G
′
2) + 1 by Lemma 7.4. Also, we have that |V (G′1)| ≤ a which implies

that |V (G)| ≤ |V (G′2)| + a + 4k − 5. However we then have the string of

inequalities

Tcs(G
′
2)− 1 ≤ Tcs(G)− 2 <

|V (G)| − 1

2a
≤ |V (G′2)| − 1

2a
+
a+ 4k − 5

2a
.

Because Theorem 7.2 holds for G′2, this implies that 1 < a+4k−5
2a

, or that

a < 4k−5 which is a contradiction. A similar argument yields a contradiction

when Tcs(G
′
2) = 2 and Tcs(G

′
1) ≥ 3.
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Third, we consider the case where Tcs(G
′
1) and Tcs(G

′
2) are both at least

3. If u, v ∈ V (G′) are not fat vertices, then G′ = G and we have that

|V (G)| = |V (G′1)|+ |V (G′2)| − 1. Then it follows from Lemma 7.4 that

Tcs(G)−2 ≥ Tcs(G
′
1)+Tcs(G

′
2)−4 ≥ |V (G′1)| − 1

2a
+
|V (G′2)| − 1

2a
=
|V (G)| − 1

2a
.

This contradicts the fact that G is a counterexample.

Therefore we may assume that at least one of u or v is a fat vertex in G′.

We claim that Tcs(G) ≥ Tcs(G
′
1) + Tcs(G

′
2)− 1; if this can be shown, then it

follows that

Tcs(G)− 2 ≥ Tcs(G
′
1) + Tcs(G

′
2)− 4 + 1

≥ |V (G′1)| − 1

2a
+
|V (G′2)| − 1

2a
+

2a

2a
≥ |V (G)| − 1

2a

where the last inequality is because |V (G)| ≤ |V (G′1)|+ |V (G′2)| − 1 + 4(k−
1) ≤ |V (G′1)|+ |V (G′2)| − 1 + 2a. This would contradict the fact that G is a

counterexample.

To show the claim we will first assume that exactly one of u, v is a fat

vertex in G′ and, without loss of generality, suppose that it is u. The graphs

G′2 − {uv} and G′1 − {u} are disjoint subgraphs in G, so it follows using

an argument similar to the proof of Lemma 7.4 that Tcs(G) ≥ Tcs(G
′
1) −

1 + Tcs(G
′
2) − 1. No k-critical structure in this lower bound uses the vertex

u ∈ V (G′) and so when we expand that fat vertex, we gain an additional

k-critical structure. Therefore Tcs(G) ≥ Tcs(G
′
1) + Tcs(G

′
2)− 1.

Now assume that both u and v are fat vertices in G′. The graphs G′2−{uv}
and G′1−{u, v} are disjoint subgraphs in G, so it follows using an argument

similar to the proof of Lemma 7.4 that Tcs(G) ≥ Tcs(G
′
1)− 2 + Tcs(G

′
2)− 1.

No k-critical structure in this lower bound use the vertices u, v ∈ V (G′) and

so when we expand the two fat vertices, we gain two additional k-critical

structures. Therefore Tcs(G) ≥ Tcs(G
′
1) + Tcs(G

′
2)− 1.

We have shown that Tcs(G) ≥ Tcs(G
′
1) + Tcs(G

′
2)− 1 whenever at least one

of u or v is a fat vertex in G′, and thus the case where Tcs(G
′
1) and Tcs(G

′
2)
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are both at least 3 will also lead to a contradiction. This completes the proof

of Theorem 7.2.
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