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Abstract

Efficient, stable, and reliable solvers for the steady incompressible Navier-Stokes

equations in computational hemodynamics.

By Alexander Fuller Viguerie

In recent years, improvements in medical imaging and image-reconstruction
algorithms have led to increased interest in the use of Computational Fluid Dy-
namics (CFD) as a clinical tool in hemodynamics. While such methods have long
been employed in the design of medical devices and in basic medical research,
many of the techniques commonly employed in these contexts are not ideal in
the clinical setting. In particular, in clinical settings typically one is faced with
more demanding turnaround times for simulations, less powerful computational
resources, and noisy, incomplete, or missing data.

In this thesis, we discuss these challenges and introduce CFD methods which
are more practical for direct clinical application. Frequently in these settings, the
variable of interest is the temporal average of some time-periodic quantity, such
as wall shear-stress, over a cardiac cycle. In these cases, the standard procedure is
to perform an unsteady simulation over several cardiac cycles and then to take the
time average of the last one. Here, we propose to instead surrogate the unsteady
time-averaged solution with the solution of a steady-state problem, allowing us
to compute it directly. This approach, if properly applied, can dramatically lower
computational cost as we show here; however in many respects the steady prob-
lem is arguably more difficult numerically than its unsteady counterpart.

We will address these difficulties and propose effective workarounds. In par-
ticular, we aim to develop methods for steady solvers that are efficient, stable, and
reliable. Roughly speaking, this work is divided into three parts, with each part
focusing on one of these aspects. Concerning efficiency, we extend the inexact al-
gebraic factorization approach popular for the unsteady problem into the steady
setting. We will address the issue of stability by taking inspiration from nonlinear
filtering techniques used in turbulence modeling to develop stabilization tech-
niques for the steady problem. Finally, we will develop and validate methods for
assigning boundary conditions in data-deficient settings while maintaining relia-
bility. Throughout each section, we will provide both theoretical and numerical
justification for our methods.
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1

Chapter 1

Introduction

1.1 Computational Fluid Dynamics as a clinical tool

In recent years, the use of Computational Fluid Dynamics models (hereafter

abbreviated as CFD) in cardiology has gained increased acceptance and popu-

larity. Though such models have long been used for basic research and in the

design of medical devices [97, 115, 34, 68, 97, 40], their application has extended

to the clinical level, with CFD simulations now being used to help inform medi-

cal treatment for individual patients. Such models may help physicians diagnose

patients, assess different treatment options, and have even been used to develop

new surgical treatments [25, 47, 97, 115, 129, 82].

In particular, CFD simulations have been used extensively as a diagnostic tool.

In many cases, in vivo measurements are costly and highly invasive, and may even

be impossible. In these instances, patient-specific CFD simulations provide an

attractive noninvasive alternative to in vivo tests. Notably, the startup HeartFlow

has secured FDA approval by using CFD to non-invasively assess the severity

of coronary stenoses requiring only a CT, eliminating the need for unnecessary

catheterization [29].
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The emergence of CFD as a tool for clinicians has been made possible in large

part due to the advances in medical imaging and image processing that have

occurred over the last several decades. Reliable algorithms for reconstructing

three-dimensional geometries of specific patients based on medical images have

been developed, allowing one to simulate blood flow inside the reconstructed

domain [4, 92]. Many packages now exist for the creation of such geometries, in

particular the freely available softwares Segment [52] and vmtk [5].

In addition to advancements in image reconstruction, the increase in both com-

putational power and in numerical methods for solving the equations of fluid dy-

namics have made this possible. Perhaps the most important development in this

regard was the Finite Element Method (see e.g. [102, 99]), which has been essen-

tial in enabling the numerical solution of the governing equations in nontrivial

three-dimensional geometries within a strong mathematical framework.

1.2 Challenges in the clinical setting

The use of CFD as a clinical tool presents several challenges when compared

to the academic or industrial setting. Unsteady simulations with upwards of

millions of degrees of freedom (DOF) and thousands of time-steps are common in

industrial and academic work and may require days, perhaps weeks, to complete.

While this guarantees accuracy and allows for more precise modeling, this is not

acceptable for clinical purposes. The turnaround time on simulations must be

roughly comparable, and should certainly not be significantly longer, to in vivo

tests in order for CFD to present a practical alternative to such tests. This generally

means that simulations should be completed in a matter of minutes.

In addition to the restrictions on computational time, in clinical settings com-

putational power may be severely limited. Computational resources may consist
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of only a single workstation or laptop. Thus, the large-scale simulations designed

for multicore machines, though standard in other contexts, may not be viable for

clinical applications. The demand for fast results coupled with limited comput-

ing power therefore requires different computational methods than those used in

other settings. While the emergence of high-performance cloud computing facili-

ties over the past several years has mitigated this problem somewhat, there remain

concerns regarding network reliability and, most importantly, data protection.

The availability of data is another common problem at the clinical level. The

proper prescription of boundary conditions is absolutely critical for the develop-

ment of reliable simulations that closely reflect reality. However, at the clinical

level such data is often unavailable, unreliable or incomplete. For example, one

may require flow rates for several branches of a lumen vessel, but some or all of

these flow rates may be unavailable. Relying solely on literature values in these

instances neglects important patient-specific information and may lead to inaccu-

rate results. While methods for data assimilation have been the subject of much

investigation, many of these approaches are computationally intensive and not

suitable for this application given the restrictions on computational resources.

1.3 Thesis outline

In this thesis we will address the aforementioned difficulties. We aim to de-

velop efficient CFD methods suitable for the clinical setting, that provide fast and

reliable results while remaining tractable in settings with limited computational

resources. In particular, the methods must be efficient, stable, and reliable. The

outline of the thesis is as follows.

In Chapter 2, we will introduce the Incompressible Navier-Stokes Equations

for a Newtonian Fluid, which will be our model equations for the entirety of this
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work. We will discuss the use of the steady Navier-Stokes equations as the basis

for our simulations as opposed to the unsteady (time-dependent) equations. We

will motivate and justify this by formally regarding the solution of the steady

problem as a surrogate for the time-average of the unsteady problem over a given

interval. The advantages and disadvantages of the steady problem compared to

the unsteady one will be briefly discussed here and is an important recurring

theme that we will revisit many times. Once the steady setting has been properly

motivated, we will introduce the mathematical theory of the steady problem and

traditional approaches for its solution. This will form an important foundation

for what follows. Also note that the notation established this chapter will be used

for the remainder of this work.

Chapter 3 will focus on efficient methods. We will develop efficient methods

based algebraic splitting methods for solving the steady Navier-Stokes problem.

These form a popular and efficient class of solution methods for the unsteady

problem; however their extension to the steady setting is not straightforward as

their construction relies on the presence of a time derivative term. We will show

how one may extend this approach and present several mathematical results re-

garding the steady extension. Numerical results in 2D and 3D will be presented

and discussed.

Chapter 4 builds directly on the work from the previous chapter. When ex-

tending inexact algebraic factorization methods to the steady setting, one intro-

duces several new challenges. In particular, the nonlinear iterations arising from

the methods in Chapter 3 are now partially explicit and therefore require stabi-

lization. In some instances, this stabilization delays convergence. We will demon-

strate how to retain many the advantages of the methods in Chapter 3 without an

explicit term via the use of grad-div stabilization. We will present several impor-

tant mathematical results and also demonstrate how this method may allow one
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to further approximate the Schur complement (to be defined later) and replace

it with a diagonal matrix inversion. Numerical results 2D and 3D will again be

presented and discussed.

In Chapter 5 we will focus on the development of stable methods. The steady

problem necessarily requires the solution of an iterative nonlinear problem. In

practice, this iteration may become unstable due to the presence of flow distur-

bances which may delay the convergence of the nonlinear iteration or prevent it

entirely. Traditional stabilization methods may be ineffective in these instances, as

they are designed to address instabilities triggered by high convective fields, while

many instabilities encountered hemodynamics are caused by other morphological

reasons. We will address this by introducing a new class of stabilization schemes

inspired by deconvolution filters popular for unsteady turbulence modeling. We

will show relevant mathematical results that establish the well-posedness of the

procedure and demonstrate its effectiveness with a series of 2D and 3D numerical

tests.

Chapter 6 will focus on the development of reliable methods, which refers to a

simulations’ ability to accurately reflect physical reality. In order for reliability to

be achieved, it is essential that boundary conditions be appropriately prescribed.

In clinical settings, however, we often encounter the problem of data-deficiency in

which measured data for prescribing boundary conditions is unreliable, incom-

plete, or missing entirely. In this situation we must develop methods for appropri-

ately determining and assigning boundary conditions with limited information.

After a brief discussion of the various ways to surrogating data and different

approaches for assigning data, we will develop new techniques for determining

boundary conditions that incorporate available patient-specific information, ge-

ometrical information, and well-known physical models. We then validate our

approach by comparing against a pool of actual patient data.
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Concluding remarks and possible future research directions based on the work

shown here will be presented in Chapter 7.



7

Chapter 2

The Steady Incompressible

Navier-Stokes Problem

This chapter introduces and develops the relevant background material for the

steady Navier-Stokes problem. We will begin by motivating this choice of model

by demonstrating how the steady problem can be regarded as a surrogate for the

time-average of the unsteady problem. We will then discuss several important

mathematical preliminaries regarding the well-posedness of the problem and the

standard techniques for its numerical solution.

2.1 Interpretation as time-average

Let Ω ∈ Rd be a suitable domain, where d = 2, 3 and let [0, T] be a given time

interval. We may assume without loss of generality that the initial time is zero.

The time-dependent incompressible Navier-Stokes problem for a Newtonian fluid
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in primitive variables then reads:

ρ
∂u
∂t
− ν∇ · (∇u +∇uT) + ρ(u · ∇)u +∇p = f in Ω× [0, T]

∇ · u = 0 in Ω× [0, T]

Bu = g on ∂Ω× [0, T]

u(x, 0) = u0 at t = 0

(2.1.1)

where ν is the kinematic viscosity and ρ is the fluid density, which are both

hereafter assumed to be constant and known. f is a forcing term, u is a d-vector

representing the unknown velocity and the scalar function p is the pressure, both

generally functions of time and space. B is an appropriate trace operator defining

the different types of boundary conditions of interest.

The top equation in (2.1.1) corresponds to the conservation of momentum,

and the second equation corresponds to the conservation of mass. These will

hereafter be referred to as the momentum and mass equations accordingly. The

mass equation in this case is our incompressibility constraint, and ensuring this

condition is enforced can be challenging.

From the physical point of view, the term −ν∇ · (∇u +∇uT) corresponds to

diffusive forces 1 and the term ρ(u · ∇)u to convective forces. We will refer to

these as the diffusive and convective terms accordingly. The behavior of a given

flow is determined largely by the relationship between these terms. Flows in

which the diffusive term dominates the convective term are regular and smooth,

while convection-dominated flows are more irregular and may exhibit physical

phenomena such as recirculation.

1We have used the full stress tensor formulation of the diffusive term: −ν∇ · (∇u+∇uT). This
term arises directly from the derivation of the equations (see e.g. [37]) For incompressible flows
this is equivalent to −ν∆u and for this reason one often sees the equations formulated in this
way. However, the weak forms of the different formulations are not the same. For the purposes
of this work the difference is largely irrelevant; however for certain types of problems, such as
fluid-structure interaction problems, this may be significant.
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As a general rule, (2.1.1) becomes more difficult to solve as the convective

term grows larger or the diffusive term grows smaller. The extent to which the

convective term dominates the diffusive term is most commonly indicated by the

Reynolds number, a dimensionless parameter defined by:

Re =
ρ|u|L

ν
(2.1.2)

Where |u| is a characteristic flow velocity and L is a characteristic length. For all

Reynolds numbers reported here we take L to be the inlet diameter and |u| to be

the mean inflow velocity unless otherwise stated. Higher values of Re correspond

to more convection-dominated flows.

Flows where Re is low-to-moderate (up to around 2000, though this may

change depending on the geometry) are called laminar flows and are character-

ized by a smooth, regular flow profile. As Re grows larger, flows transition to the

turbulent regime, and the profile becomes highly irregular and nonsmooth.

The numerical solution of (2.1.1) necessitates discretization of both the spatial

and temporal domains and often requires one to solve a discretized problem for

hundreds, if not thousands, of time steps. In general these types of unsteady

computations take a long time, perhaps days or even weeks, to complete.

However, for many cardiovascular quantities of clinical interest, one is not

interested in the entire temporal solution, but rather a time average. For in-

stance, one may be interested in the time-averaged wall-shear stress in a cere-

bral aneurysm over a cardiac cycle. In such cases, rather than computing the

entire time loop as required by (2.1.1), we would like to instead compute the

time-averaged velocity and pressure (defined as u = 1
T

∫ T
0 u dt and p = 1

T

∫ T
0 p dt

respectively, with [0, T] representing the time interval of a full cardiac cycle) di-

rectly.
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Let us decompose u and p into a sum of their respective time-averaged and

fluctuating parts:

u(x, t) = u(x) + u′(x, t)

p(x, t) = p(x) + p′(x, t)
(2.1.3)

This is known as the Reynolds decomposition in time of the velocity and pressure

respectively [103]. By construction:

u′ =
1
T

∫ T

0
u′ dt = 0 and

p′ =
1
T

∫ T

0
p′ dt = 0

(2.1.4)

Remark 2.1.1 We recall the following elementary properties of the time-average

operator f = 1
T

∫ T
0 f dt:

1. For c constant in time (though not necessarily space): c = c

2. For f1, f2 time-dependent and c1, c2 constant in time (though not necessarily space):

c1 f1 + c2 f2 = c1 f1 + c2 f2

3. For any time-dependent f : f = f

4. For any time-dependent f , differential operator in space D: D f = D f

We now write (2.1.1) in terms of (2.1.3) and apply the time-average operator. From

(2.1.4) and the properties of the time-average listed above, it is easy to see that

−ν∇ · (∇(u + u′) +∇(u + u′)T) = −ν∇ · (∇(u + u′) +∇(u + u′)T)

= −ν∇ · (∇u +∇uT),
(2.1.5)
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and similarly,

∇(p + p′) = p

∇ · (u + u′) = ∇ · u.
(2.1.6)

For the nonlinear term, one has:

ρ((u + u′) · ∇)(u + u′)

= ρ
(
(u · ∇)u + (u′ · ∇)u + (u · ∇)u′ + (u′ · ∇)u′

)
= ρ

(
(u · ∇)u + (u′ · ∇)u + (u · ∇)u′ + (u′ · ∇)u′

)
.

(2.1.7)

Since u is constant in time, property (2) of the time-average in Remark 2.1.1 im-

plies:

ρ((u + u′) · ∇)(u + u′)

= ρ
(
(u · ∇)u + (u′ · ∇)u + (u · ∇)u′ + (u′ · ∇)u′

)
= ρ(u · ∇)u + ρ(u′ · ∇)u′.

(2.1.8)

where the last line follows from (2.1.4). From (2.1.5), (2.1.6), and (2.1.8), the time-

average of (2.1.1) is then given by the following system of partial differential equa-

tions:

−ν∇ · (∇u +∇uT) + ρ(u · ∇)u + ρ(u′ · ∇)u′ +∇p = f in Ω

∇ · u = 0 in Ω

Bu = g on ∂Ω

(2.1.9)

These are the stationary Reynolds-Averaged Navier Stokes Equations, commonly

abbreviated as RANS. This formulation specifically corresponds to the time aver-

aged RANS equations. Though first introduced as a time average, more general
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formulations based on ensemble-averaging are also (note these formulations are

identical to (2.1.9) for the case of statistically stationary flow) [106, 128, 75, 14].

Unsteady RANS formulations also exist, in which (2.1.1) are not averaged over

the whole time-domain, but rather over a series of subintervals. These are some-

times referred to as URANS (Unsteady Reynolds-Averaged Navier Stokes Equations)

to distinguish them from (2.1.9) [75, 113, 61, 118]. URANS is commonly used

in situations in which turbulent dynamics exhibit periodic characteristics (as ob-

served, for instance, with vortex shedding past a bluff body). In this case, one

may employ phase-averaging (2.1.1) to resolve the unsteady periodic fluctuations

in the flow field [118, 61, 113, 14]. We will hereafter assume a statistically station-

ary flow regime and restrict our attention to the steady time-averaged formulation

(2.1.9) in this work.

The system is not closed due to the presence of the term ρ(u′ · ∇)u′. This

term is known as the Reynolds stress or turbulent stress term. In order to close the

system, this term must be modeled. Many different Reynolds stress models have

been proposed and studied. We refer the reader to [103, 83, 128, 93] for more

detailed discussion of different models.

For flows with low-to-moderate Reynolds numbers (laminar flows), however,

it is reasonable to assume that the contributions of the Reynolds stress term are

insignificant and the term may simply be disregarded [93]. For cardiovascular ap-

plications, this encapsulates many flows of significant clinical interest, including

flows in major arterial systems (notably the coronary and carotid arteries) as well

as venous flow. This assumption is generally not valid for flows in the Aorta [40].

As it is commensurate with our application, we will hereafter assume this flow

regime and denote u and p as simply u and p for ease of notation. We note that

the numerical methods discussed here will still hold for cases when the Reynolds

stress term is non-negligible and modeled explicitly, however we will not consider
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these cases.

This now gives us a steady-state system. The steady setting offers several

advantages over the unsteady problem for our purposes. Most importantly, we

will generally require far fewer iterations to achieve a satisfactory solution. Rather

than computing hundreds (or thousands) of time steps, ideally we can compute

a reasonable surrogate for the time-average in a far fewer number of nonlinear

iterations (generally on the order of tens).

However, the steady problem is not without its difficulties and the develop-

ment of efficient solution methods remains an open problem [64]. As we will see

later, terms originating from time derivatives are numerically beneficial and give

one efficient ways for managing the nonlinearities. In the unsteady problem, one

may easily decouple the velocity and pressure variables and solve for them sepa-

rately. This is less straightforward in the steady case. While the steady problem

generally requires require fewer iterations, the tradeoff is that now each iteration

is much more difficult to solve. Finally, for the steady problem we must rely on

some sort of nonlinear iterative process to obtain a solution, introducing all of

the potential difficulties associated with such schemes (such as convergence and

stability concerns). In contrast, such iterations may be avoided for the unsteady

problem without sacrificing stability (for example, by using semi-implicit time

discretization, see e.g. [99, 102]).
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2.2 Mathematical Background and Preliminaries

The Steady Navier-Stokes Problem for an incompressible Newtonian fluid in

primitive variables is given by

−ν∇ · (∇u +∇uT) + ρ(u · ∇)u +∇p = f in Ω

∇ · u = 0 in Ω

Bu = g on ∂Ω,

(2.2.1)

where all the notation is the same as before. (2.2.1) resembles (2.1.1) but with

no time derivative. As in (2.1.1), B is a trace operator defining the boundary

conditions. In particular, we consider standard options, namely

Dirichlet conditions : u(ΓD) = gD,

and

Neumann conditions :
(

pn− ν∇
(

u + uT
)
· n
)
(ΓN) = gN,

where ∂Ω = ΓD ∪ ΓN, ΓD ∩ ΓN = ∅, n is the unit normal vector to the boundary

and gD and gN are given. In the following, we will assume for simplicity data

g = 0 on both Dirichlet and Neumann boundaries. From the physical point of

view, the terms in (2.2.1) have the same interpretation as described in the previous

section.

The theory of this problem is addressed e.g. in [45, 116, 70] . The weak

formulation is promptly obtained by standard arguments. Let V be the Sobolev

space
(

H1
ΓD

)d
(Ω) and Q = L2(Ω) (in the case ΓN = ∅, Q is the space L2

0(Ω) of

the null-average L2 functions). Denote the dual space of V as V′ with its norm
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defined in the standard way where (·, ·) is the usual scalar product in L2:

‖φ‖−1 := sup
v∈V, v 6=0

|(φ, v)|
‖v‖V

(2.2.2)

Let us define

a(·, ·) : V ×V → R, s.t. a(w, v) = ν
∫

Ω
(∇w +∇wT) : ∇v, (2.2.3)

b(·, ·) : V ×Q→ R, s.t. b(w, q) = −
∫

Ω
∇ ·w q, (2.2.4)

c(·, ·, ·) : V ×V ×V → R, s.t. c(w, v, z) = ρ
∫

Ω
(w · ∇)v · z. (2.2.5)

Then the weak formulation of the steady problem reads: find u ∈ V and p ∈ Q

s.t. for any v ∈ V, q ∈ Q

a(u, v) + c(u, u, v) + b(v, p) + b(u, q)− ( f , v) = 0 (2.2.6)

The bilinear form a(·, ·) is continuous and coercive in V ×V if ΓD 6= ∅. In partic-

ular, this means that there exists a positive constant Ca s.t.2

a(v, v) ≥ Ca‖v‖2
V , ∀v ∈ V. (2.2.7)

Also, the trilinear form is continuous too, so that there exists a constant Cb

such that

|c(w, v, u)| ≤ Cb‖w‖V‖v‖V‖u‖V . (2.2.8)

2We notice that this inequality is the standard Poincaré inequality when using the Laplacian
formulation of the equations. When using the full tensor, as we do here, the same inequality
follows from the Korn inequality.
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for all w, v, u in V. Finally, for a homogenous Dirichlet boundary value problem,

if we have divergence free vectors, we get the skew-symmetry of c(·, ·, ·), i.e.

c(w, v, u) = −c(w, u, v)⇒ c(w, v, v) = 0, ∀v, u ∈ H1
0(Ω). (2.2.9)

In order to compute the solution of the problem (2.2.6) we must linearize the non-

linear quadratic term via some type of iterative procedure. Two classical methods

for linearization are Picard iterations and Newton iterations.

Provided one has an initial guess u0 (this may be e.g. the solution of the Stokes

problem [102]), at an iteration k + 1 the Picard iteration is given by: find uk+1 ∈ V

and pk+1 ∈ Q s.t. for any v ∈ V, q ∈ Q [45]:

a(uk+1, v) + c(uk, uk+1, v) + b(v, pk+1) + b(uk+1, q)− ( f , v) = 0 (2.2.10)

While the Newton iteration is given by: find uk+1 ∈ V and pk+1 ∈ Q s.t. for any

v ∈ V, q ∈ Q [45]:

a(uk+1, v) + c(uk, uk+1, v) + c(uk+1, uk, v) + b(v, pk+1) + b(uk+1, q)

−c(uk, uk, v)− ( f , v) = 0
(2.2.11)

Under mild assumptions on f and ν, both (2.2.10) and (2.2.11) are known to

converge to the true solution (u, p), with Picard converging linearly. That is, for a

constant χ > 1 at an iteration k + 1:

‖uk+1 − u‖V + ‖pk+1 − p‖L2 ≤
1
χ

(
‖uk − u‖V + ‖pk − p‖L2

)
(2.2.12)

While Newton converges quadratically (note χ is not necessarily the same as in
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2.2.12):

‖uk+1 − u‖V + ‖pk+1 − p‖L2 ≤
1
χ

(
‖uk − u‖2

V + ‖pk − p‖2
L2

)
(2.2.13)

We will provide a proof for the convergence of the discrete version of the Picard

iteration in the Chapter 2.3.1. The convergence of Newton’s method is more

technical and we direct the reader to [66, 45] for the proof of its convergence.

While Newton converges quadratically in theory, it depends more heavily on

the initial guess than Picard, and may fail to converge in the absence of a suf-

ficiently close u0. In practice a close enough initial guess may be unavailable,

particularly for higher Re. Picard iterations are therefore often preferred, despite

their slower convergence, due to their superior reliability. Hybrid schemes are

also used, wherein one begins the iteration with several Picard iterations to get

sufficiently close to the desired solution before switching to the Newton scheme.

The Oseen Problem

The Oseen problem for a vector field b, is closely related to the problem (2.2.1)

and is given by:

−ν∇ · (∇u +∇uT) + ρ(b · ∇)u +∇p = f in Ω

∇ · u = 0 in Ω

Bu = g on ∂Ω,

(2.2.14)

with corresponding weak formulation:

a(u, v) + c(b, u, v) + b(v, p) + b(u, q)− ( f , v) = 0. (2.2.15)
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The Oseen problem strongly resembles (2.2.1), however the convective field is no

longer defined by the velocity vector u but by a given vector field b. Assuming b

is known and does not depend on u or p, the equations (2.2.14-2.2.15) are linear,

in contrast to the nonlinear equations (2.2.1-2.2.6).

We can regard the Picard linearization method (2.2.10) for solving (2.2.1) as

solving a sequence of linear Oseen problems where at an iteration k + 1 we have

b = uk. This interpretation of the nonlinear problem is important, as we will see

that the efficient solution of each Oseen sub-problem is crucical for the efficient

solution of (2.2.1). As much of the literature regarding key aspects of incom-

pressible flow problems explored here (including stabilization and linear solution

techniques) is formulated in terms of the Oseen problem [8, 53, 28, 79, 81, 16], we

believe that this connection between the linear and nonlinear problems is impor-

tant to emphasize.

The Stokes Problem

The Stokes problem is another problem related to (2.2.1) and is given by:

−ν∇ · (∇u +∇uT) +∇p = f in Ω

∇ · u = 0 in Ω

Bu = g on ∂Ω,

(2.2.16)

with corresponding weak formulation:

a(u, v) + b(v, p) + b(u, q)− ( f , v) = 0. (2.2.17)

The Stokes problem resembles (2.2.1) and (2.2.14), but without a convective term.

Physically, these equations are an appropriate model for incompressible Newto-
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nian flows in which convective forces are negligible (Re << 1).

In hemodynamics, these equations are not particularly useful . Flows in certain

small vessels, such as capillaries, have suitably low Reynolds numbers, however

the non-Newtonian nature of flow in these vessels makes these equations an un-

suitable model [40]. Nonetheless, the solution of these equations can often serve

as a good initial guess for the iterative methods to solve the steady Navier-Stokes

problem discussed here. For this reason, as well their general importance in the

study of incompressible flow problems, we believe they are they are worth briefly

acknowledging.

Different Weak Formulations

Before closing this section, we note that the weak formulations of (2.2.1) are

not unique. In particular, there are several different weak formulations of the

convective term that are consistent with (2.2.1). The trilinear form (2.2.5) is one

such formulation of the convective term. Several other forms exist, and while they

are all consistent with the original equations, their discrete solutions will differ in

general [21]. One such alternative formulation that we will make use of later in

this work is the skew-symmetric formulation:

c∗(·, ·, ·) : V ×V ×V → R, s.t.

c∗(w, v, z) =
ρ

2

(∫
Ω
(w · ∇)v · z−

∫
Ω
(w · ∇)z · v

)
.

(2.2.18)

Additionally we will also use the diffusive term in Laplacian form at various points,

which corresponds to the following formulation:

a∗(·, ·) : V ×V → R, s.t. a∗(w, v) = ν
∫

Ω
∇w : ∇v (2.2.19)
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This is the weak formulation obtained when one replaces the diffusive term in

(2.2.1) with −ν∆u. The two forms are equivalent in the strong formulation as

∇ · u, though in the weak formulation one observes different behavior at the

boundaries from the contributions of the term ∇uT [46].

2.3 The Discrete Problem

For the numerical solution of (2.2.1) we must discretize the differential oper-

ators. In this work we refer to the Finite Element Method (FEM) for the spatial

discretization.

With FEM, we postulate the velocity-pressure solution to be piecewise polyno-

mial over a triangulation T of the domain Ω featuring a representative mesh size

h. To guarantee the discrete problem is nonsingular, we assume that the polyno-

mial degrees for the velocity and pressure approximation fulfill the so called the

Babushka-Brezzi (or ‘inf-sup’) condition [102, 45]: There exists a positive constant

β > 0 such that

inf
qh∈Qh

sup
vh∈Vh

(∇ · vh, qh)

‖qh‖‖∇vh‖
≥ β > 0. (2.3.1)

For instance, we may resort to piecewise quadratic velocity and piecewise (con-

tinuous) linear pressure fields (Taylor-Hood pair). From now on, we denote by uh

and ph the discrete velocity and pressure belonging to an inf-sup compatible finite

dimensional space pair Vh × Qh ⊂ V × Q. We denote by Nu(Np) the number of

degrees of freedom for the discrete velocity (pressure). The discrete form of the

problem (2.2.10) at an iteration k + 1 is then given by the following saddle-point
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system:

K + C(uk) BT

B 0


uk+1

pk+1

 =

 f

0

 (2.3.2)

Where K + C(uk) is a Nu × Nu matrix and B is a Np × Nu matrix. K is commonly

referred to as the stiffness matrix and corresponds to the diffusive term in (2.2.1).

For ϕi being the generic FEM quadratic basis function associated with the i−th

degree of freedom, [K]ij = a(ϕj,ϕi).

Similarly, C(uk) corresponds to the convective term in (2.2.1) and

[C(uk)]ij = c(uk,ϕj,ϕi).

Finally, letting ψi be a generic basis (piecewise linear) function representing

the pressure, B is a Np × Nu matrix defined by

[B]ij = b(ϕj, ψi).

By standard arguments based on the coercivity of a(·, ·), K is readily proved to be

symmetric positive-definite (s.p.d.) and C(uk) to be skew-symmetric for ΓN = ∅.

The discrete version of (2.2.11) at an iteration k + 1 is defined similarly and is

given by the following saddle-point system:

K + C(uk) + Ĉ(uk) BT

B 0


uk+1

pk+1

 =

 f + C(uk)uk

0

 . (2.3.3)

with

[Ĉ(u)]ij = c(ϕj, u,ϕi).

For the majority of this work, we will focus Picard iterations for simplicity; how-
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ever most of what follows also applies for the Newton scheme.

2.3.1 Analysis of the discrete Picard iteration

In this section we analyze the discrete version of (2.2.10). Given that much

of the subsequent analysis in this work follows a similar approach, we feel that

providing this analysis is instructive. For simplicity, we will assume homogenous

Dirichlet boundary conditions; that is, uh = 0 almost everywhere on ∂Ω. The

work shown here is based on classical results that can be found in e.g. [66, 116, 70].

Given an LBB compatible velocity-pressure space Vh × Qh ⊂ V × Q, the dis-

crete version of (2.2.6) is obtained in the natural way: find uh ∈ Vh and ph ∈ Qh

s.t. for any vh ∈ Vh, qh ∈ Qh:

a∗(uh, vh) + c(uh, uh, vh) + b(vh, ph) + b(uh, qh)− ( f , vh) = 0. (2.3.4)

Note that we use the Laplacian form of a (2.2.19). Since Vh × Qh ⊂ V × Q, the

discrete version of the a∗ and c forms retain their properties (2.2.7) and (2.2.8),

and since we are assuming homogenous Dirichlet boundary conditions, skew-

symmetry (2.2.9) holds for c as well. We will assume existence of a solution pair

(uh, ph) to (2.3.4) and prove conditions for which such a solution is unique.

At an iteration k + 1 the discrete Picard linearization of (2.3.4) is then given by:

find uk+1
h ∈ Vh and pk+1

h ∈ Qh s.t. for any vh ∈ Vh, qh ∈ Qh:

a∗(uk+1
h , vh) + c(uk

h, uk+1
h , vh) + b(vh, pk+1

h ) + b(uk+1
h , qh)− ( f , vh) = 0. (2.3.5)

We derive an estimate before proceeding to our main results. Define the space
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Xh ⊂ Vh of discretely divergence-free functions as:

Xh := {vh ∈ Vh, b(vh, qh) = 0 ∀qh ∈ Qh}. (2.3.6)

Note that vh ∈ Xh does not necessarily imply ∇ · vh = 0 pointwise. This will be

addressed in more detail in Chapter 4. Letting vh = uh and qh = ph in (2.3.4)

gives:

ν‖∇uh‖2
L2 + c(uh, uh, uh) + b(uh, ph) + b(uh, ph) = ( f , uh). (2.3.7)

Note b(uh, ph) = 0 and c(uh, uh, uh) = 0 by uh ∈ Xh and the skew-symmetry of c

respectively, reducing (2.3.7) to:

‖∇uh‖L2 = ν−1 ( f , uh)

‖∇uh‖L2
(2.3.8)

From the standard Poincare inequality (2.2.7), the norms ‖∇v‖L2 and ‖v‖V are

equivalent [99, 116, 70], hence from (2.2.2):

‖∇uh‖L2 ≤ ν−1‖ f‖−1 (2.3.9)

for any solution uh of (2.3.4). By the inequality (2.2.7) one may also obtain the

equivalent condition3 :

‖uh‖V ≤
‖ f‖−1

νCa
(2.3.10)

We now use this estimate to prove the following uniqueness result:

Lemma 2.3.1 If ν2 > Cb‖ f‖−1, then the solution pair (uh, ph) to the problem (2.3.4) is

3The equivalence of the two conditions (2.3.9) and (2.3.10) implies that all convergence results
proven with the Laplacian form (2.2.19) of the diffusive term hold for the full stress tensor formu-
lation (2.2.3).
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unique.

Proof. Assume that there exist two solution pairs (uh, ph) and (ũh, p̃h) satisfying

(2.3.4). By definition:

a∗(uh, vh) + c(uh, uh, vh) + b(vh, ph) + b(uh, qh)− ( f , vh)

= a∗(ũh, vh) + c(ũh, ũh, vh) + b(vh, p̃h) + b(ũh, qh)− ( f , vh)
(2.3.11)

Defining eu = uh− ũh, adding and subtracting c(uh, ũh, vh) and simplifying gives:

a∗(eu, vh) + b(eu, qh) + b(vh, ph − p̃h)

= − c(uh, eu, vh)− c(eu, ũh, vh)
(2.3.12)

Letting (vh, qh) = (eu, ph − p̃h) above gives b(eu, ph − p̃h) = 0 as eu ∈ Xh and

c(uh, eu, eu) = 0 by skew-symmetry. From (2.2.8) and (2.3.9):

ν‖∇eu‖2
L2 ≤ Cb‖∇eu‖2

L2‖∇uh‖L2

≤ Cb
‖ f‖−1

ν
‖∇eu‖2

L2(
ν− Cb‖ f‖−1

ν

)
‖∇eu‖2

L2 ≤ 0

(2.3.13)

If ν2 > Cb‖ f‖−1, then (2.3.13) implies eu = 0 and hence uh = ũh, establishing

the uniqueness of the velocity. We note that by (2.2.7) this is equivalent to the

condition ν2C2
a > Cb‖ f‖−1. To verify the uniqueness of the pressure, observe that

eu = 0 implies from (2.3.12):

b(vh, ph − p̃h) = 0 (2.3.14)

for all vh in Vh. By the inf-sup condition (2.3.1), this gives ph = p̃h, completing

the proof.
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Define the data-dependent constants:

η :=
Cb‖ f‖−1

ν2 , (2.3.15)

χ :=
ν2C2

a
Cb‖ f‖−1

. (2.3.16)

From the lemma, we know that if the small-data hypothesis

η < 1 or equivalently, (2.3.17)

χ > 1 (2.3.18)

holds, then the solution pair (uh, ph) of the problem defined by (2.3.4) is unique.

We will use both η and χ and their respective (equivalent) small-data hypotheses

(2.3.17) and (2.3.18) throughout this work, depending on which is more conve-

nient to use for the current problem. We now proceed to the main result:

Theorem 2.3.1 Assume (2.3.17) holds and let (uh, ph) be the resulting unique solution

pair to (2.3.4). Then the sequence given by (2.3.5) converges to (uh, ph).

Proof. We proceed by induction. Denote ek = uk
h − uh as the error in the velocity

field between the solution at an iteration k of (2.3.5) and the solution of (2.3.4).

We assume that:

‖∇ek‖L2 ≤ ηk‖∇e0‖L2 , (2.3.19)

and seek to show that

‖∇ek+1‖L2 ≤ η‖∇ek‖L2 ≤ ηk+1‖∇e0‖L2 . (2.3.20)

By the assumption (2.3.17), this will imply ‖∇ek+1‖L2 → 0 as k→ ∞. Subtracting
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(2.3.4) from (2.3.5) gives:

a∗(ek+1, vh) + b(v, pk
h − ph) + b(ek+1, qh)

= − c(uk
h, uk+1

h , vh) + c(uh, uh, vh)
(2.3.21)

Since ek+1 ∈ Xh, b(ek+1, qh) = 0. Adding and subtracting c(uk
h, uh, vh) from the

right-hand side:

a∗(ek+1, vh) + b(v, pk
h − ph) = −c(uk

h, ek+1, vh)− c(ek, uh, vh). (2.3.22)

Letting vh = ek+1 implies b(ek+1, pk
h− ph) = 0 by ek+1 ∈ Xh and c(uk

h, ek+1, ek+1) =

0 by skew-symmetry. From (2.2.8):

ν‖∇ek+1‖2
L2 = −c(ek, uh, ek+1)

≤ Cb‖∇ek‖L2‖∇uh‖L2‖∇ek+1‖L2 .
(2.3.23)

Owing to (2.3.9) and (2.3.17):

‖∇ek+1‖L2 ≤ Cbν−1‖∇ek‖L2‖∇uh‖L2

≤ Cb‖ f‖−1

ν2 ‖∇ek‖L2

≤ η‖∇ek‖L2 ,

(2.3.24)

which was to be shown.

To complete the proof, all that remains is to verify that the condition (2.3.20)

holds for the base case: ‖∇e1‖L2 ≤ η‖∇e0‖L2 . Let u0
h = 0. Then e0 = uh trivially

and u1
h is given by the solution to the problem: Find u1

h in Vh and p1
h in Qh s.t. for

all vh in Vh, qh in Qh:

a∗(u1
h, vh) + c(0, u1

h, vh) + b(vh, p1
h) + b(u1

h, qh) = ( f , vh) (2.3.25)
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The term c(0, u1
h, vh) = 0 trivially, reducing (2.3.25) to the Stokes problem (2.2.16)-

(2.2.17) with the diffusive term in Laplacian form.

Subtracting (2.3.4) from (2.3.25) gives:

a∗(e1, vh) + b(vh, p1
h − ph) + b(e1, qh) = c(uh, uh, vh) (2.3.26)

Letting (vh, qh) = (e1, p1
h − ph) above gives b(e1, p1

h − ph) = 0. Recalling that

e0 = uh and applying (2.3.9) and (2.2.8):

ν‖∇e1‖2
L2 = c(uh, uh, e1)

= c(uh, e0, e1)

≤ Cb‖∇uh‖L2‖∇e0‖L2‖∇e1‖L2

≤ Cb‖ f‖−1

ν
‖∇e0‖L2‖∇e1‖L2

(2.3.27)

Dividing the left and right hand sides by ν‖∇e1‖L2 , from (2.3.15):

‖∇e1‖L2 ≤
Cb‖ f‖−1

ν2 ‖∇e0‖L2

≤ η‖∇e0‖L2

(2.3.28)

verifying that the condition holds for k = 1, completing the proof. Note that the

above result also justifies the use of the solution to the Stokes problem (2.2.17) as

an initial guess for the Picard iteration.
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Chapter 3

Algebraic Splitting Methods for the

Steady Problem

1 In this chapter we discuss methods to solve the discrete problem by segre-

gating the velocity and pressure variables and solving for them separately. This

is often desirable as solving a full saddle-point system of the form (2.3.2) mono-

lithically can be difficult due to both its large size and its conditioning properties.

Much work has been done on developing effective preconditioners for this discrete

Oseen problem, the class of problem solved at each step of a Picard iteration, (see

e.g. [53, 8, 37, 123]), however their application to the discrete nonlinear system still

presents challenges as the linearization changes at each iteration and therefore the

preconditioner must be updated accordingly.

Although the saddle-point system for the unsteady problem also changes at

each time step (unless one uses a fully explicit discretization of the nonlinear term,

though this approach suffers from time instabilities in practical applications), the

presence of the time derivative introduces a mass matrix 1
∆t M. For small ∆t, this

1This chapter is a modified version of the article: A. Viguerie and A. Veneziani. “Algebraic
splitting methods for the steady incompressible Navier-Stokes equations at moderate Reynolds
numbers.” Computer Methods in Applied Mechanics and Engineering, 330:271-291, 2018. [122]
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term is generally dominant and enables one to effectively apply preconditioners

that do not require updating, such as the Cahouet-Chabard preconditioner [37].

The presence of the mass term also enables one to easily decouple velocity

and pressure and solve a series of smaller, simpler problems rather than solv-

ing the monolithic system. These schemes may be based on functional analysis

arguments [17] or inexact algebraic factorizations [124, 101, 100]. Though such

schemes are popular and effective for the unsteady problem, their construction

relies explicitly on the presence of the time derivative and as a result the exten-

sion of such ideas to the steady problem is not immediate.

Because of the relative ease of solving the linear systems in the unsteady prob-

lem (and the difficulty of their solution for the steady problem), a common ap-

proach is to regard the steady problem as the asymptotic limit of an unsteady

problem and simulate the problem as a transient problem over a long time inter-

val. While this allows one to use the aforementioned sorts of efficient solution

schemes, it may require the solution of hundreds or thousands of time steps, and

the advantages gained by using a steady-state model to reduce simulation time is

quickly lost.

In this section we extend the class of inexact algebraic factorization meth-

ods popular for the unsteady problem [124, 101, 100] and develop analogous ap-

proaches for the steady problem while maintaining many of the desirable prop-

erties of these methods. We will first briefly discuss the unsteady versions of

these schemes and then introduce our analogous approaches for the steady prob-

lem. We will present several results relevant to our new approach and validate its

efficiency with test cases in two and three dimensions.
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3.1 Algebraic Splitting Methods

At their core, algebraic splitting methods are based on inexact LU factorizations

of the discrete saddle-point problem (2.3.2). For the sake of notation, let A be the

(1,1) block in the saddle point system (often called the velocity block for obvious

reasons) where the dependence on k is understood. Then the saddle-point system

(2.3.2) admits the following block LU-factorization (see e.g. [9, 91]):

A BT

B 0


u(k+1)

p(k+1)

 =

A 0

B −BA−1BT


I A−1BT

0 I


u(k+1)

p(k+1)

 =

 f

0

 (3.1.1)

Although this block LU factorization formally yields a segregated computation of

velocity and pressure, it is not practical. The system for the pressure requires the

solution of the so called (pressure) Schur complement Σ = −BA−1BT. This matrix

changes at each iteration and cannot be computed, as A−1 is neither available nor

worth computing, for both computational and storage costs induced by the fill-in

of the inversion.

A possible approach is to solve the Schur complement by an iterative method

so that when the matrix needs to be multiplied by a vector, we instead solve a

system in A. We recall that A = K + C (the dependence of C on k is understood

here) which in general is neither symmetric nor positive-definite due to the skew-

symmetry of C. Therefore, solving systems in both A and Σ is difficult in general

due to their lack of favorable numerical properties. This means that the nested

iterations obtained in this way (as A is usually solved by an iterative method

too) rapidly increase the computational costs and the advantage of segregation is

easily lost for problems where the contributions of C are significant.

As previously mentioned, there exist effective workarounds to this problem in

the case of the unsteady problem. The idea is that we may approximate the LU
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factorization (3.1.1) with a system that is easier to solve while still converging to

our desired solution.

We now briefly consider the discrete version of the problem (2.1.1), which is

similar to (2.3.2). We discretize with the finite element method in space, and use a

finite difference scheme for the time discretization. For simplicity, we use a simple

first-order semi-implicit Euler scheme here, so at each time step n we solve the

system:

At BT

B 0


un+1

pn+1

 =

 f + 1
∆t Mun

0

 (3.1.2)

with At(un) = 1
∆t M + An where ∆t is the time step, An ≡ K + C(un) is as before

and M (called the mass matrix) comes from the bilinear form m(u, v) : V×V → R:

m(u, v) =
∫

Ω
u · v. (3.1.3)

If I denotes the identity matrix, observe that:

1
∆t

M + An =
1

∆t
M(I + ∆tM−1An)⇒ (

1
∆t

M + An)−1 = ∆t(I + ∆tM−1An)−1M−1

(3.1.4)

For ∆t sufficiently small, we can ensure that ρ(∆tM−1An
1) < 1 and exploit the

well-known Neumann series identity for (I + ∆tM−1An
1)
−1 to observe that

(
1

∆t
M + An

)−1

=
( ∞

∑
j=0

(−1)j(∆tM−1An)j)∆tM−1 ≈ ∆tM−1 (3.1.5)
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with a first order truncation of the Neumann expansion. Hence we can regard

∆tM−1 as a first-order approximation for A−1
t . With this approximation in mind

we then consider a block factorization of (3.1.2) similar to (3.1.1) defined as:

At BT

B 0

 =

At 0

B −BH1BT


I H2BT

0 I


un+1

pn+1

 =

 f + 1
∆t Mun

0

 (3.1.6)

For H1 = H2 = A−1
t , we get the exact block factorization of the original system

(3.1.2). The Inexact Factorization methods seek to replace H1 and H2 with approxi-

mations of A−1
t , a natural choice being ∆tM−1 . Replacing both H1 and H2 with

∆tM−1 gives the so called Algebraic Chorin-Temam method, as it was pointed out

that there is a formal analogy with the original Chorin-Temam projection scheme

based on the Ladyzhenskaya decomposition theorem [17, 117, 104, 96, 95, 91].

Using ∆tM−1 for H1 and A−1
t for H2 is another viable option leading to the so-

called Yosida method. These methods are discussed and analyzed in detail in

[91, 101, 100]. In analogue with the original unsteady schemes, we will refer to

inexact factorizations of the steady problem in which H1 = H2 as Algebraic Chorin-

Temam-type methods and where H1 6= H2 as Yosida-type methods, even if the matrix

approximations used no longer correspond formally to the original projection

schemes.

The common denominator of this approach is the approximation of the Schur

complement having the velocity mass matrix as a critical ingredient, with the

parameter ∆t modulating the accuracy of the approximation. Variants to the

original scheme have been eventually introduced to guarantee higher order of

time accuracy and to trigger time adaptivity [43, 108, 44, 123, 124, 125]. It is worth

noting that the higher accuracy is not obtained by including more terms in the

Neumann expansion, as that would cause some stability and practical problems
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[30]. In fact, the approximation of the Schur complement with A−1
t replaced

by the inverse of the mass matrix is particularly convenient, as the mass matrix

is not only s.p.d., but also diagonal for finite difference, spectral and lumped

finite elements. This allows for specific ad hoc solvers based on the sparse QR

factorization of Σ [125].

The absence of the mass matrix in the stationary problem prevents an im-

mediate extension of the approach to the steady case. Thus, the goal here is to

find a way that accelerates the computation of the steady solution by splitting

velocity and pressure with a convenient approximation of the Schur complement.

Following the unsteady approach, for the block-factorized system (3.1.1), we ap-

proximate the Schur complement with the following arguments.

We first replace the Picard iteration with the following variant. Let α ∈

[0, 1] be a positive parameter . The modified Picard scheme reads: given the guess

(uh
(k), ph

(k)) ∈ Vh ×Qh, find (uh
(k), ph

(k)) in the same space pair s.t.

a(uh
(k+1), vh) + αc(uh

(k), uh
(k+1), vh) + b(ph

(k+1), vh)

= ( f , vh)− (1− α)c(uh
(k), uh

(k), vh)

b(qh, uh
(k+1)) = 0

(3.1.7)

for any vh ∈ Vh and qh ∈ Qh.

At the algebraic level, for Aα ≡ K + αC(u(k)) (we do not emphasize the depen-

dence on k for easiness of notation), the modified Picard iteration reads

Aα BT

B 0


uk+1

pk+1

 =

 f − (1− α)C(u(k))u(k)

0

 (3.1.8)

For α = 1 we clearly have the standard Picard scheme, while for α = 0 we have

a full explicit treatment of the nonlinearity. While the convergence rate is linear
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for the original scheme[66], when α approaches 0, we expect the pool of possible

initial good guesses for the convergence to shrink. This will be confirmed in the

analysis below.

Notice that2

Aα = K(I + αK−1C) (3.1.9)

By a similar argument as seen for the unsteady case (with ∆t), if α is chosen such

that:

ρ(αK−1C) < 1, (3.1.10)

then we have:

(K + αC)−1 =
(

K(I + αK−1C)
)−1

=

(
∞

∑
j=0

(−1)j(αK−1C)j

)
K−1 (3.1.11)

justifying the approximation:

(K + αC)−1 ≈ K−1 (3.1.12)

as a first order truncation of the Neumann expansion. With the LU factorization

approximated in this way, we propose the following algorithm for the solution of

the single iteration of (3.1.8):

Aαu∗ = f − (1− α)Cu(k)

BK−1BT p(k+1) = Bu∗

Ku(k+1) = Ku∗ − BT p(k+1) = f − (1− α)Cu(k) − αCu∗ − BT p(k+1)

(3.1.13)

2The dependence of C on the iterate u(k) is understood.
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Since K is not dependent on the current iteration, we do not need to reassem-

ble any associated preconditioner for the approximated Schur complement at

each step. Additionally, our approximated Schur complement is guaranteed to

be s.p.d., allowing for the use of efficient iterative methods.

The sequence of systems (3.1.13) provides the backbone of our method. It

corresponds to what we previously called Algebraic Chorin-Temam scheme in the

unsteady case, as we use the same approximation of A−1 in both its occurrences

of the factorization. However, a substantial difference must be noted between

the steady and unsteady schemes. In the (algebraic) Chorin-Temam method, the

final operator recovering the end-of-step velocity is a projection. In the algebraic

scheme, this corresponds to the velocity mass matrix. A drawback of this is that

there is virtually no control on the tangential boundary conditions for the end-

of-step velocity. For this reason, some authors preferred the intermediate velocity

to be qualified as the physical field, despite it not being divergence free [50, 49].

On the contrary, in the Yosida approach, for H2 = A−1
1 , the end-of-step velocity

is solved by a second order operator and the control of the end-of-step velocity

boundary conditions is retained.

In the steady case, also following the strategy á la Chorin-Temam, the final step

is obtained by solving a second order (diffusion) operator, so the enforcement of

the boundary conditions to the end-of-step velocity is fulfilled. Because of this,

we find that the Yosida-like strategy in the steady case is not justified and we do

not pursue it any longer.

If Aα denotes the matrix of the modified Picard scheme

Aα,u ≡

Aα BT

B 0

 ,
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the matrix resulting from the splitting scheme reads

Aα,s ≡

Aα 0

B −BK−1BT


I K−1BT

0 I

 =

Aα AαK−1BT

B 0


= Aα,u +

0 αCK−1BT

0 0

 .

As the boxed term points out, the splitting error affects only the block (1,2) of

the original system. This means that the approximated end-of-step velocity is

truly (discretely) divergence free. In addition, the error term scales with α so, as

expected, vanishes for α→ 0.

To enhance the convergence rate and the robustness of the method we intro-

duce below two variants that eventually we combine in the final formulation of

the scheme.

Remark

At the continuous level, the first step of our splitting scheme reads: given u(k)

−∇ ·
(

ν∇û(k+1) +∇Tû(k+1)
)
+ α

(
u(k) · ∇

)
û(k+1)

= f + (α− 1)
(

u(k)·
)
∇u(k)

(3.1.14)

This formulation sheds light on the role of α and consequently its selection.

The Péclet number of this problem reads

P =
α||u(k)||∞h

2ν

so we argue that the numerical approximation with standard finite elements is

convective stable when

αh <
2ν

||u(k)||∞
. (3.1.15)
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Since α is selected by the user, this inequality leads to two conclusions:

1. α has a stabilizing effect, so that it can mitigate the need of a fine mesh

required by the original Picard scheme;

2. we may use this inequality to develop an adaptive strategy for the automatic

selection of this α, that is then assumed to depend on k. We test and validate

this approach later in this work.

Remark

A similar approach can be applied to the Newton method. Weighting the

linearized term of the Newton iteration by the parameter α and evaluating the

residual term weighted by 1− α at the previous iteration, the modified Newton

scheme reads given the guess (uh
(k), ph

(k)) ∈ Vh × Qh, find (uh
(k), ph

(k)) in the

same space pair s.t.

a(uh
(k+1), vh) + α

(
c(uh

(k), uh
(k+1), vh) + c(uh

(k+1), uh
(k), vh)

)
+ b(ph

(k+1), vh)

= ( f , vh) + (2α− 1)c(uh
(k), uh

(k), vh)

b(qh, uh
(k+1)) = 0 (3.1.16)

for any vh ∈ Vh and qh ∈ Qh.

This is consistent with the original problem for any value of α (as promptly

realized by setting uh
(k+1) = uh

(k)).

As the Newton method requires an initial guess good enough, we expect the

choice of α - that affects the pool of good guesses, as we will see later - to be

even more delicate with this approach. On the other hand, the Newton method

is faster and the actual effect of this improved convergence rate on the splitting

algorithm will be investigated elsewhere.
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3.1.1 The incremental variant

By mimicking a popular approach for the unsteady problem [108, 55], we

consider the following incremental pressure form of the problem, letting δpk+1 =

pk+1 − pk, given u(k) and p(k), solve

K + αC BT

B 0


 uk+1

δpk+1

 =

 f − (1− α)Cuk − BT pk

0

 (3.1.17)

The relevance of the incremental approach is promptly realized by noting

that the consistency error affects only the block (1,2) of the matrix of the sys-

tem. Should the method be convergent, the splitting error of the nonincremental

scheme will gather on the momentum equation as αCK−1BT p where p is the con-

vergence pressure. This vanishes for α→ 0. In the case of the incremental scheme,

the solution δp→ 0 when approaching convergence. This means that the conver-

gence solution solves the exact problem for all the values of α. The incremental

scheme is therefore "strongly consistent", as the convergence solution is exact (up

to numerical discretization errors) regardless the value of the parameter.

3.1.2 Relaxation

The parameter α is introduced to modulate the weight of the convective com-

ponent and to make the Schur complement approximation acceptable. While

for α = 0 the splitting error is null, the original Picard convergent (and robust)

iteration is obtained for α = 1. The proper selection of this parameter is there-

fore critical for the overall performance of the method. To add some flexibility,

we introduce a second parameter for the purpose of enhancing the convergence.

Denoting by ûk+1 the velocity field obtained by the basic unrelaxed (either incre-
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mental or not) scheme, the relaxed scheme computes

uk+1 = γûk+1 + (1− γ)uk

with γ ∈ (0, 1]. The actual bound on the relaxation parameter γ that guarantees

convergence will be discussed in the next section.

The final splitting incremental relaxed scheme then reads as in Algorithm 1.

Algorithm 1 Incremental relaxed segregated scheme for the steady Navier-Stokes equa-
tions.

1: while Convergence criterion not met: do
2: solve Aα ˆ̃uk+1 = f + (α− 1)Cuk − BT pk

3: solve BK−1BTδpk+1 = B ˆ̃uk+1

4: solve Kûk+1 = K ˆ̃uk+1 − BTδpk+1

5: update the pressure: pk+1 = δpk+1 + pk

6: relax the velocity: uk+1 = γûk+1 + (1− γ)uk

7: check tolerance
8: end while

Remark

The expected bottleneck in the algorithm is represented by the approximated

Schur complement BK−1BT. For K to be the pure diffusion operator (i.e. for

∇ · (∇ +∇T) reduced to the Laplace operator), we may notice that this matrix

is spectrally equivalent to a pressure mass matrix [102]. In principle, we could

replace this matrix with a lumped pressure mass matrix so as to minimize the

cost of the solution of the system. Nevertheless, in our numerical experiments

(not shown) we found that this choice is overall detrimental for the performance

of the entire splitting scheme. While we will further investigate this option and

its smart implementation, we notice however that the pressure mass matrix is a

natural and excellent preconditioner for the approximate Schur complement. It

will be used in the entire section on Numerical Results.
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3.1.3 The Yosida-like variant

In principle, following [101], we can think of a variant to the splitting scheme

where the third step is not approximated:

Algorithm 2 Steady Yosida Method.

1: while Convergence criterion not met: do
2: solve Aα ˆ̃uk+1 = f + (α− 1)Cuk − BT pk

3: solve BK−1BTδpk+1 = B ˆ̃uk+1

4: solve Aαûk+1 = f + (α− 1)Cuk − BT pk − BTδpk+1

5: update the pressure: pk+1 = δpk+1 + pk

6: relax the velocity: uk+1 = γûk+1 + (1− γ)uk

7: check tolerance
8: end while

In this case, the splitting error is gathered in the mass conservation equation as

opposed to the momentum equation as in our proposed scheme. In the unsteady

splitting method, this leads to the Yosida scheme. As pointed out previously, the

Yosida approach has the advantage of enforcing the entire boundary conditions

to the end-of-step velocity. In the present case, our method also enforces the

boundary conditions, and is therefore more justified. In particular, the third step

of our method requires the solution of a s.p.d. system, which can be solved more

efficiently than the corresponding system in Algorithm 2. For this reason we do

not analyze in detail this variant.

3.1.4 Algebraic Splitting-Inspired Preconditioner

As mentioned previously, the use of algebraic splitting schemes is widespread

for unsteady problems. In addition to their direct application, such schemes have

been used to develop block preconditioners for the monolithic unsteady Navier-

Stokes problem [123, 43, 33]. Similarly, we may extend the ideas of the previous

section to develop block preconditioners for the modified α-Picard scheme (3.1.7):
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P−1 =


Ãα 0

B S


I K̃−1BT

0 I



−1

(3.1.18)

Alternatively, we may instead define a block-upper triangular preconditioner:

P−1 =

Ãα BT

0 S


−1

(3.1.19)

where S is an approximation of −BA−1
α BT and Ã, K̃ are approximations of Aα

and K, though we may also use the original matrices. Such block-triangular or

block-LU preconditioners are common for this problem [37, 123, 53]. This may be

an effective approach for a few reasons. It is well-known that for high Reynolds

numbers, the approximation of the Schur complement becomes more difficult.

The pressure mass-matrix Mp, simple to construct and apply, provides a good

approximation for the Stokes problem and for low Reynolds numbers, but loses

effectiveness as the Reynolds number increases. Common approximations used

in these situations include the least-squares commuter and pressure-convection

diffusion (PCD) preconditioners. However, while these preconditioners are ef-

fective, they require reassembly at each iteration and occasional difficulties can

arise from the need to assign boundary conditions for the second-order operators

used to construct the matrices [37]. In contrast, for sufficiently small α in (3.1.7),

the pressure mass-matrix again becomes a reasonable approximation of the Schur

complement. We could also in principle approximate S by solving a system in

BK−1BT (as we do in the splitting scheme), however this is unlikely to improve

efficiency.

Another possible advantage of this approach is that, as previously shown, the
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modified Picard scheme provides convective stabilization without requiring the

introduction of new terms. Further, for large scale problems with higher Reynolds

numbers, solving the A block, either exactly or approximately, in a block trian-

gular (or block diagonal) preconditioner such as those shown in [37] becomes

quite challenging. The modified velocity block Aα = K + αC is comparatively

dominated by the SPD diffusive matrix K, making its preconditioning and solu-

tion much easier. For instance, for small enough α one would expect Laplacian

preconditioners to be effective. In fact, for small enough α one may also justify

the use of Ãα = K̃. This preconditioner has low assembly costs and is easy to

implement; however the explicit term in the underlying scheme still necessitates

the use of under-relaxation.

In general we do not expect this approach to be as efficient as the splitting

scheme, as the pressure mass matrix is an optimal preconditioner for the approx-

imate Schur complement, ensuring a low number of outer iterations indepen-

dently of h. Nonetheless, the above scheme provides the advantage of reduced

splitting error and being easily adaptable to existing codes which use precondi-

tioners of this type. Further, in applications where solving the velocity block and

inner Schur Complement block exactly, as required in the splitting schemes, is

not possible, one may implement the above preconditioners with easier-to-solve

approximations of Aα (or K). Compared to similar block-triangular precondi-

tioners, it is easy to implement and has a lower assembly cost, with the Schur

complement approximation not requiring any updating. Further investigation of

preconditioners of this type could be the subject of future work.
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3.2 Analysis of the modified Picard scheme

In this section, we provide a complete convergence analysis of the modified

Picard scheme. The proof follows a similar approach to the one shown in Section

2.3.1. As in that section, we assume for simplicity that the boundary conditions

are of (homogeneous) Dirichlet type over the entire boundary ∂Ω, so that V =

H1
0(Ω) and Q = L2 \R. As a consequence, as mentioned earlier the trilinear form

is skew-symmetric, i.e.

c(v, u, u) = 0

for any v ∈ V and divergence free velocity u ∈ V.

Recall the bound (2.3.10):

‖uh‖V ≤
‖ f‖−1

νCa
(3.2.1)

where ‖ · ‖−1 denotes the norm of the dual space of H1
0(Ω). We assume that the

small-data hypothesis (2.3.18) holds:

χ =
ν2C2

a
Cb‖ f‖−1

> 1. (3.2.2)

which guarantees a unique solution to the problem from Lemma 2.3.1. As we are

concerned with moderate Reynolds numbers, we assume additionally that:

χ > 2, (3.2.3)

which is helpful for our analysis. This assumption is reasonable, as a small-to-

moderate Reynolds number implies that ν is relatively large in comparison to the

data ‖ f‖−1.

Theorem 3.2.1 Let u(0)
h × p(0)h be an initial guess for the modified Picard scheme, be-
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longing to Vh ×Qh. Under the assumptions (3.2.2), (3.2.3), for α ∈ [0, 1], and k > 0 the

sequence u(k)
h × p(k)h computed by the modified Picard scheme converges to the (unique)

solution of the steady Navier-Stokes problem if the initial guess is close enough to the

exact solution. For α→ 1, the assumption (3.2.3) can be relaxed to (3.2.2).

Proof

Let3 e(k) ≡ uh
(k) − uh and ε(k) ≡ ph

(k) − ph be the errors associated with the

modified Picard scheme at iteration k.

By direct subtraction of the (weak) Navier-Stokes problem from the modified

Picard iteration we obtain the error equation, for any vh ∈ Vh, qh ∈ Qh:

a(e(k+1), vh) + b(ε(k+1), vh)− b(qh, e(k+1))

= − α
(

c(uh
(k), uh

(k+1), vh)− c(uh, uh, vh)
)

= (1− α)
(

c(uh
(k), uh

(k), vh)− c(uh, uh, vh)
)

.

(3.2.4)

In particular, we select vh = e(k+1) and qh = ε(k+1) so that the the left hand

side reduces to a(e(k+1), e(k+1)). Let us focus on the two terms within parentheses

on the right hand side.

a
(

c(uh
(k), uh

(k+1), e(k+1))− c(uh, uh, e(k+1))
)

=
(

c(uh
(k), e(k+1), e(k+1)) + c(e(k), uh, e(k+1))

)
= c(e(k), uh, e(k+1)).

3We do not add the subscript h to the error symbols. Even if appropriate, we feel it makes the
notation much heavier.



45

Also,

a
(

c(uh
(k), uh

(k), e(k+1))− c(uh, uh, e(k+1))
)

=
(

c(uh
(k), e(k), e(k+1)) + c(e(k), uh, e(k+1))

)
=
(

c(e(k), e(k), e(k+1)) + c(uh, e(k), e(k+1)) + c(e(k), uh, e(k+1))
)

By collecting all these results, for the coercivity of the bilinear form a(·, ·) we

obtain

νCa‖e(k+1)‖2
V ≤ Cb

(
‖uh‖V‖e(k)‖V‖e(k+1)‖V

+ (1− α)
(
‖uh‖V‖e(k)‖V‖e(k+1)‖V + ‖e(k)‖2

V‖e(k+1)‖V

)) (3.2.5)

After trivial manipulation, and recalling (3.2.1) we find

‖e(k+1)‖V ≤ (2− α)
Cb‖ f‖−1

ν2C2
a
‖e(k)‖V +

(1− α)Cb
νCa

‖e(k)‖2
V . (3.2.6)

if we set ρ ≡ ‖e(k)‖V and σ ≡ ‖e(k+1)‖V , we have the inequality

ωρ2 + ζρ > σ

with

ω =
(1− α)Cb

νCa
, ζ = (2− α)

Cb‖ f‖−1

ν2C2
a

=
2− α

χ
.

Now, if ρ > ωρ2 + ζρ we have that σ = βρ with 0 < β < 1 proving that the

modified Picard method is convergent with dumping factor β. For α = 1 this is

trivially true, as expected by the original Picard scheme, since we find ω = 0, ζ =

χ−1 < 1.
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In general, since α ∈ [0, 1], the inequality ρ > ωρ2 + ζρ leads to

ρ <
1− ζ

ω
=

νCa

(1− α)Cb

χ− 2 + α

χ
.

Notice that for α ∈ [0, 1] under the assumption (3.2.3), the right hand side is

positive and the bound can be fulfilled.

If we assume that the velocity initial guess is such that

‖uh
(0)‖V <

νCa

(1− α)Cb

χ− 2
χ

, then by induction the entire sequence is convergent.

Notice, however, that for α → 1 this restriction relaxes, and (3.2.2) suffices for the

right hand side to be positive as the original Picard method is recovered.

We finally notice that the assumption (3.2.3) is sufficient for the Theorem. It

can be replaced by an assumption on α close enough to 1, precisely α > 2− χ (for

χ < 2).

Remark

The previous analysis suggests a possible practical approach to obtain a good

initial guess. In practice, we can initiate the iterative process with α = 1 (original

Picard) and eventually switch to α < 1 so as to apply the splitting scheme. This

approach is robust, even if it requires one to solve the problem with a mesh fine

enough to stand the physical Reynolds number. In a previous Remark, we sug-

gested using α to mitigate the mesh requirements for a given (moderate) Reynolds

number. A smart dynamic fine tuning of α can clearly attain the purpose of both

robustness and efficiency. This dynamic strategy will be investigated elsewhere.

For the problems presented herafter, we did not find any problem for the initial

guess, so we opted for “small” constant values of α to guarantee computational

efficiency.
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3.3 Analysis of the splitting method

A complete convergence analysis of the splitting scheme is still missing, and

requires a deep analysis of the error equations governing the behavior of the

difference between the solution of the modified Picard method and the segregated

solution. A similar analysis for the unsteady splitting Yosida scheme was carried

out in [100]. Here, we limit ourselves to the consistency analysis, showing that

the splitting error locally (i.e. at each modified Picard iteration) vanishes with

α. Then, we discuss the empirical selection of the relaxation parameter related

to boundness of the generic guess u(k)
h,s . Here s denotes the solution of the split

scheme as opposed to u that we use for the unsplit modified Picard iterate.

We resort to algebraic arguments. To this aim, we will extensively use the

following formula, for two generic invertible matrices R and T,

R−1 − T−1 = −R−1(R− T)T−1. (3.3.1)

3.3.1 Consistency

As mentioned earlier, the splitting scheme is an inexact block LU factorization

of the original saddle point system. Notice that the (1,2) block of the splitting

matrix reads

AαK−1BT = BT + αCK−1BT.

The consistency of the splitting error block with the unsplit method for α → 0

follows promptly as K, C and B are independent of α.

For the sake of notation, we denote

S ≡ BK−1BT and Σα ≡ BA−1
α BT.
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By direct inspection we find that:

A−1
α,u =

(I − A−1
α BTΣ−1

α B)A−1
α A−1

α BTΣ−1
α

Σ−1
α BA−1

α −Σ−1
α


and:

A−1
α,s =

(I − K−1BTS−1B)A−1
α K−1BTS−1

S−1BA−1
α −S−1

 .

To analyze the error introduced at each iteration, let us assume to perform one

iteration of the unsplit as well as of the split method starting from the same guess

u(k)
h , p(k)h . Denoting

f α ≡ f − (1− α)Cu(k)
h ,

we have then the two systems

Aα,u

uh,u
(k+1)

ph,u
(k+1)

 =

 f α

0

 , Aα,s

uh,s
(k+1)

ph,s
(k+1)

 =

 f α

0

 .

Let es
(k+1) ≡ uh,u

(k+1) − uh,s
(k+1) and εs

(k+1) ≡ ph,u
(k+1) − ph,s

(k+1) denote the

splitting error for velocity and pressure respectively. By direct computation, the

local splitting error reads

es
(k+1)

εs
(k+1)

 =


(
K−1BTS−1BA−1

α − A−1
α BTΣ−1

α BA−1
α

)
f α

(
S−1 − Σ−1

α

)
BA−1

α f α

 . (3.3.2)
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From (3.3.1), we obtain

K−1 − A−1
α = αK−1CA−1

α ,

S−1 − Σ−1
α = −S−1 (S− Σα)Σ−1

α

= −S−1B
(

K−1 − A−1
α

)
BTΣ−1

α

= −αS−1BK−1CBTΣ−1
α

Also, set

Zα = K−1CA−1
α BTΣ−1

α BA−1
α

and since K is s.p.d. we obtain

K−1BTS−1BA−1
α − A−1

α BTΣ−1
α BA−1

α

= K−1BT
(

S−1 − Σ−1
α

)
BA−1

α +
(

K−1 − A−1
α

)
BTΣ−1

α BA−1
α

= α
(

I − K−1BTS−1B
)

Zα

= αK−1/2
(

I − K−1/2BTS−1BK−1/2
)

K1/2Zα.

After introducing the QR factorization of the matrix K−1/2BT by standard argu-

ments the previous matrix reads

αK−1/2QT

0 0

0 INp

QK1/2Zα.

For the assumption on the Reynolds number, we postulate that the matrix Aα

is invertible for any value of α ∈ [0, 1] and its spectrum depends continuously on
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α and it is bounded accordingly. The same holds for Σα and Zα. Consequently,

es
(k+1)

εs
(k+1)

 = α

 WZα f α

−S−1BK−1CBTΣ−1
α BA−1

α f α

 (3.3.3)

where

W ≡ I − K−1BTS−1B = K−1/2QT

0 0

0 INp

QK1/2

has Nu null eigenvalues and Np eigenvalues = 1. This points out that the splitting

error reads αwα where the vector wα has a norm bounded with α ∈ [0, 1]. This

proves the local consistency of the splitting error at each with α→ 0.

3.3.2 Boundedness and empirical selection of the relaxation pa-

rameter

As proven in the analysis of the modified Picard scheme, the introduction

of an explicit component in the iteration can in general cause some stability is-

sues which can be mitigated through the introduction of the relaxation step with

parameter γ. While, in practice, the selection of an appropriate parameter can re-

quire some trial and error, we nonetheless can demonstrate some heuristic guide-

lines for its selection. Here we consider the splitting method applied to a simpli-

fied problem with no forcing term, as for any stability analysis, so that f α reduces

to (α− 1)Cuk (we keep working on the non incremental scheme).

By direct inspection, the unrelaxed velocity, hereafter denoted by û(k+1) com-

puted by the splitting scheme reads
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û(k+1) = (A−1
α − K−1BTS−1BA−1

α ) f α = (α− 1)WA−1
α Cu(k).

Notice that from (3.3.1), we have

A−1
α = K−1 − αK−1CA−1

α

so that

(α− 1)WA−1
α C = (α− 1)WK−1C

(
I − αA−1

α C
)

= (α− 1)WK−1C
(

I − αK−1C
)
+O(α2)

Hereafter, we approximate the matrix up to terms of order α,

(α− 1)WA−1
α C ≈ (α− 1)WK−1C.

Fix ε > 0. Since ρ(W) = 1 as noted in the previous Section, there exists a matrix

norm ‖ · ‖ such that ‖W‖ < (1 + ε).

Now, for the relaxed velocity, we have

u(k+1) = γû(k+1) + (1− γ)u(k) =
[
(α− 1)γWK−1C + (1− γ)

]
u(k)

so that for the norm introduced before and assuming that α‖K−1C‖ < 1 (justified

by (3.1.10)):

‖u(k+1)‖ ≤
(
(α− 1)

α
γ(1 + ε) + (1− γ)

)
‖u(k)‖.

Now,

| (α− 1)
α

γ(1 + ε) + (1− γ)| ≤ 1
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leads to:

γ ≤ 2α +O(ε)

Therefore, we empirically follow the bound:

γ < 2α (3.3.4)

in Sect. 3.4, as this resulted to be effective.

3.4 Numerical results

3.4.1 Analytical Solution Test

We devise a test problem with a known analytic solution to verify the conver-

gence of the method. We consider problem (2.2.1) defined on Ω = [0, 1]2 with

ν = .01. We define our forcing term as:

f = −2ν

sin(x) cos(y) + 1
2 sin(2x) + cos(x)

cos(x) sin(y) + 1
2 sin(2y) + cos(y)


with the corresponding solution

uex = [− sin(x) cos(y), cos(x) sin(y)]′, pex = sin(x) + sin(y)

We simulated the problem with both a coarse (800 elements) and a fine (5000

elements) mesh for several different values of α and γ. We note that as the solution

is inviscid, changing the viscosity does not affect the behavior of the solver and

this test is not well-suited for assessing our method’s robustness with respect to

ν. Thus the purpose of this test is to verify the consistency of our method with an

expected solution and to see how the convergence depends on the α, γ, and the
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mesh size. As convergence criterion we compared the L2 norm of velocity between

each iteration for tolerance levels of 1e-3, 1e-4, and 1e-5. These computations were

performed in FreeFem++ on a 2013 MacBook Pro. We solved the linear systems

with UMFPACK, except for the Schur Complement step which was solved with

PCG (using the simple Stokes pressure mass preconditioner, see e.g. [119]) with a

stopping tolerance of 1e-6. The results are reported in Tab. 3.1 and 3.2.

Coarse Mesh, 800 Elements
Parameters Tolerance ‖u− uex‖H1 ‖u− uex‖L2 ‖p− pex‖L2 Num. Iter.

α = .175, γ = .3 1e-3 .0313 .00197 .00185 19
α = .175, γ = .3 1e-4 .00325 .000161 .000345 25
α = .175, γ = .3 1e-5 .00072 1.86e-5 .00022 32
α = .2, γ = .35 1e-3 .02061 .00129 .00128 17
α = .2, γ = .35 1e-4 .00210 7.75e-5 .000253 23
α = .2, γ = .35 1e-5 .000671 1.57e-5 .000206 32
α = .25, γ = .4 1e-3 .01259 .00179 .00207 18
α = .25, γ = .4 1e-4 .00158 .00021 .000371 31
α = .25, γ = .4 1e-5 .000674 1.748e-5 .000212 47

Table 3.1: Performance of the segregated scheme on the Analytical Solution Test. Coarse

Mesh.

Fine Mesh, 5000 Elements
Parameters Tolerance ‖u− uex‖H1 ‖u− uex‖L2 ‖p− pex‖L2 Num. Iter.

α = .175, γ = .3 1e-3 .0313 .00197 .00169 18
α = .175, γ = .3 1e-4 .00320 .000163 .000174 25
α = .175, γ = .3 1e-5 .00033 1.61e-5 4.46e-5 32
α = .2, γ = .35 1e-3 02055 .00127 .00114 17
α = .2, γ = .35 1e-4 00202 7.28e-5 .000109 23
α = .2, γ = .35 1e-5 000153 8.16e-6 3.32e-5 32
α = .25, γ = .4 1e-3 .01251 .00179 .00204 18
α = .25, γ = .4 1e-4 .00144 .000211 .000264 31
α = .25, γ = .4 1e-5 .000171 1.40e-5 4.04e-5 47

Table 3.2: Performance of the segregated scheme on the Analytical Solution Test. Fine

mesh.

These results confirm the convergence to the desired solution for appropriate

values of α and γ and that convergence rate is independent of mesh size. Conver-
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gence was most rapid for α = .2 and γ = .35. We also observe that, as expected,

refining the mesh results in better convergence to the exact solution, particularly

for the pressure. This confirms that the splitting error does not dominate the dis-

cretization error after refining the mesh, despite little change in the convergence

rate.

3.4.2 Laminar Flow Past a Cylinder

Problem Setting

We now test the method on the classic benchmark problem of flow past a

cylinder in both the 2D and 3D settings. We model our problem setting as the one

given in [110].

We prescribe at the inflow the Dirichlet boundary condition:

u(0, y) =
1

.412 (1.2y(0.41− y), 0), 0 ≤ y ≤ .41 in 2D

u(0, y, z) =
1

.414 (6.56yz(.41− y)(.41− z), 0, 0), 0 ≤ y, z ≤ .41 in 3D
(3.4.1)

We prescribe no-slip boundary conditions along the cylinder and the top and

bottom of the domain and traction-free boundary conditions at the outflow. The

benchmark parameters of interest are the lift and drag coefficients at the cylinder

cl and cd respectively and the difference in pressure between the front and back

of the cylinder defined as:

∆p = p(.15, .2)− p(.25, .2) in 2D

∆p = p(.45, .2, .205)− p(.55, .2, .205) in 3D
(3.4.2)

The drag and lift coefficients cd and cl are defined classically in two dimensions

as:
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cd =
2

U2L

∫
Γcyl

ν
∂u
∂n

ny − pnx ∂Γcyl, cl = −
2

U2L

∫
Γcyl

ν
∂u
∂n

ny + pny ∂Γcyl (3.4.3)

and in three dimensions as:

cd =
2

U2LH

∫
Γcyl

ν
∂u
∂n

ny − pnx ∂Γcyl, cl = −
2

U2LH

∫
Γcyl

ν
∂u
∂n

ny + pny ∂Γcyl (3.4.4)

where n is the unit normal vector and U, L and H are the characteristic velocity,

length and height respectively. Here the kinematic viscosity ν is set to .001. As

shown in [7], the computation of cd and cl based on this formulation may yield

inaccurate numerical results. Accordingly, we employ a technique used in [65] to

rewrite (3.4.3) as a volume integral. Define vd as (vd)|Γcyl = (1, 0)T and vanishing

at all other boundaries. Following the argument given in [65] we see that for two

dimensions we obtain the alternate formulation

cd = −500
∫

Ω
ν∇u : ∇vd + (u · ∇)u · vd − p(∇ · vd) ∂Ω (3.4.5)

For three dimensions, we define vd as (vd)|Γcyl = (1, 0, 0)T, vanishing at all other

boundaries and obtain:

cd = −500
.41

∫
Ω

ν∇u : ∇vd + (u · ∇)u · vd − p(∇ · vd) ∂Ω (3.4.6)

Similarly, defining vl as (vl)|Γcyl = (0, 1)T and vanishing at all other boundaries

for two dimensions we find:

cl = −500
∫

Ω
ν∇u : ∇vl + (u · ∇)u · vl − p(∇ · vl) ∂Ω (3.4.7)

For three dimensions, let vl as (vl)|Γcyl = (0, 1, 0)T and vanishing at all other
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boundaries:

cl = −
500
.41

∫
Ω

ν∇u : ∇vl + (u · ∇)u · vl − p(∇ · vl) ∂Ω (3.4.8)

For our finite element discretization, we use standard Taylor-Hood P2/P1 for

velocity and pressure. We test convergence by comparing the L2 norm of the

current iteration with the previous iteration and stop iterating at a tolerance level

of 1e-3. For accuracy, we compare our values to benchmark values found in the

literature. For 2D we use the values reported in [86]:

cd = 5.57953523384, cl = 0.010618948146, ∆p = 0.11752016697 (3.4.9)

and for the 3D case we use the values found in [63]:

cd = 6.1853267, cl = .0094012217, ∆p = 0.17077855 (3.4.10)

2D Results

For this problem our experimental design was as follows: we considered two

mesh levels: coarse and fine. We use our inequality (3.1.15) with ‖u‖∞ = .3 (the

maximum inflow velocity) to determine α for each mesh level. Referring to (3.3.4),

we set γ = 1.9α. The values of these parameters for each mesh are reported in the

tables below.

For each mesh level, we compare the performance our method in terms of

both accuracy and time with standard Picard iterations. To solve the linear prob-

lem at each iteration in Standard Picard, we will test both direct and iterative

approaches. We will use UMFPACK for the direct solves and GMRES precon-

ditioned with block-triangular approximate Schur complement preconditioners

of the kind found in [37] for the iterative solves (again using UMFPACK for the
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2D Flow Past Cylinder, Coarse Mesh (831 triangles,4037 DOF)
Method cd/cd Rel.Err. cl/cl Rel.Err. ∆p/∆p Rel.Err. Num. Iter. Time/Iter. Total time

α = .13, γ = .25 5.560/.0034 .0315/1.97 .1166/.0073 16 .21s 3.36s
UMFPACK 5.558/.0037 .0109/.0302 .11668/.0057 6 .242s 1.45s

GMRES (PCD) 5.589/.0036 .0109/.029 .1168/.0057 6 .56s 3.36s

2D Flow Past Cylinder, Fine Mesh (1815 triangles, 8615 DOF)
Method cd/cd Rel.Err. cl/cl Rel.Err. ∆p/∆p Rel.Err. Num. Iter. Time/Iter. Total time

α = .19, γ = .36 5.619/.0071 .0108/.0195 .1167/.00709 13 .44s 5.72s
UMFPACK 5.568/.0020 .10167/.0047 .1162/.0104 6 .5s 3s

GMRES (PCD) 5.568/.0020 .0106/.0051 .1162/.0104 6 1.28s 7.68s

Table 3.3: Numerical Results on the 2D Schaefer/Turek Flow Past a Cylinder Test Case.

inner solves, tolerance of 1e-6). In particular, we will approximate the Schur

complement with the Pressure-Convection Diffusion (PCD) preconditioner (using

UMFPACK for the inner solves). We note that the PCD preconditioner requires

updating at each step.

These computations were performed in FreeFem++ on a 2017 MacBook Pro.

For our splitting method, we solved the linear systems with UMFPACK, except

for the Schur Complement step which was solved with PCG preconditioned with

the scaled Stokes lumped pressure mass preconditioner (see e.g. [119], [37]) with

a stopping criterion of 1e-6 for the outer solve and UMFPACK for the inner solves.

To check the convergence, we computed the difference in L2 of the current and

previous velocity at each step and terminated the iteration at for a value below

1e-3. We report our results in Tab. 3.3.

Our method performs well. On the coarse mesh, it failed to compute the lift

coefficient accurately; however for both mesh levels all other parameters were

computed with good accuracy. In terms of cost, we observe that the number of

iterations is larger when using our method, which is consistent with our expec-

tation. However, the cost of each iteration is lower. Our scheme has the lowest

average iteration time across all of the methods, outperforming even the direct

solver on a small-scale 2D problem. When considering the savings at each itera-

tion, we see that our method outperforms preconditioned GMRES. For problems
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of this type, however, the savings per iteration do not appear significant enough

to outperform a Picard scheme with a direct solver.

3D Test Case

In three dimensions we tested the algorithm locally on a moderate mesh with

36095 elements, giving 174941 total degrees of freedom. This is comparable to

a mesh level used for this problem in [63], where the relevant parameters were

computed up to three accurate leading digits. We therefore expect to be able to

attain acceptable results for this mesh level. We also computed two fine-mesh

solutions on a cluster with four Intel Xeon E5-4627 CPUs with 40 cores and 1 TB

of memory. The mesh levels for the cluster computations were 75223 tetrahedra

and 333677 total degrees of freedom and 152055 tetrahedra and 675460 degrees of

freedom.

Based on our mesh configuration and the problem parameters, we estimate the

Peclet number to be around .22 and set α and γ in accordance with (3.1.15) and

(3.3.4). Our experimental design is similar to the one in the previous subsection,

comparing our scheme with the same set of standard Picard solution methods

(UMFPACK and GMRES with the PCD preconditioner) for the MacBook simula-

tion. On the cluster we compared our method only to GMRES with PCD, as the

problem was too large for UMFPACK. We report the results in Tab. 3.4.

Our approach performs excellently in this case, significantly outperforming

the direct solver and performing comparably to PCD-preconditioned GMRES in

the coarse case and outperforming it for the fine mesh cases. Although we require

twice as many iterations (as in the 2D case), the savings gained in the assembly

and solution process make up for the higher iteration count. The savings were

especially pronounced on the cluster. The methods performed similarly in terms

of accuracy.
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3D Flow Past Cylinder, 36095 tetrahedra (174941 DOF, MacBook)
Method cd/cd Rel.Err. cl/cl Rel.Err. ∆p/∆p Rel.Err. Num. Iter. Time/Iter. Total time

α = .175, γ = .325 6.152/.0053 .0092/.0229 .1694/.0082 14 68.2s 954.8s
UMFPACK 6.149/.0059 .0099/.0581 .1693/.0086 7 178.8s 1251.6s

GMRES (PCD) 6.149/.0059 .0099/.0582 .1693/.0086 7 147.8s 1034.6s
3D Flow Past Cylinder, 75223 tetrahedra (333677 DOF, 40-Core Cluster)

Method cd/cd Rel.Err. cl/cl Rel.Err. ∆p/∆p Rel.Err. Num. Iter. Time/Iter. Total time
α = .175, γ = .325 6.141/.0072 .0097/.0337 .1704/.0022 15 269.5s 4042.5s

GMRES (PCD) 6.134/.0082 .0099/.0575 .1702/.0031 7 782.4s 5476.8s

3D Flow Past Cylinder, 152055 tetrahedra (675460 DOF, 40-Core Cluster)
Method cd/cd Rel.Err. cl/cl Rel.Err. ∆p/∆p Rel.Err. Num. Iter. Time/Iter. Total time

α = .175, γ = .325 6.135/.0081 .0093/.0127 .1677/.0180 15 633.52 9502.9s
GMRES (PCD) 6.123/.0100 .0095/.0175 .1666/.0247 7 2757.6s 19303.4s

Table 3.4: Numerical Results on the 3D Schaefer/Turek Flow Past a Cylinder Test Case.

A finer mesh did not necessarily guarantee more accurate computations of our

parameters of interest. As this behavior was observed for both our method and for

the comparison, it is most likely a result of the specific mesh configurations and

not the solution techniques. The literature shows that the computation of these

values varies widely across different problem configurations, and our values were

within the ranges reported in [110] for each mesh level.

Note that the timings reported are taken from two different machines (a Mac-

Book for the coarse simulation and a cluster for the fine simulations). Referring

to the solutions on the cluster, our method appears to scale well with the problem

size, with the advantage becoming more pronounced as problem size increases

(26% speedup for 75223k tetrahedra and 51% for 152055k tetrahedra). For the

coarse mesh run on a MacBook, our method outperformed the other methods;

however the advantage was less pronounced (8% speedup compared to PCD-

GMRES, 23.7% compared to the direct solver).

This is unsurprising, as the pressure mass matrix is optimal with respect to

mesh size for our approximate Schur complement system [37] and hence the it-

erative solver used to compute its solution does not require more iterations as

the problem size increases. Additionally, the preconditioner does not require
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reassembly at each nonlinear iteration, which is a major bottleneck with PCD-

preconditioned GMRES for large-scale problems.

In addition to the savings in computational time, there are other practical

reasons one may prefer our approach. Importantly, it is very straightforward to

implement and can be easily adapted to existing Stokes solvers which segregate

velocity and pressure. Additionally, as we split the nonlinear term, the velocity

block Aα in step 1 is dominated by the diffusive term, making it relatively easy to

precondition. We expect this advantage to be significant for problems too large

for Aα to be solved directly; for problems of this scale the preconditioning of the

A block when using a PCD-type preconditioner can be difficult.

3.4.3 Heywood-Rannacher-Turek Bifurcation: Dependence on Re

and Automatic Parameter Selection

In this section we solve the problem on a bifurcated domain shown in Fig. 3.1

(inspired by a similar geometry in [56]) for ν = .01, ν = .0067, and ν = .005. The

purpose of this test is twofold: first, we want to see how changes in ν affect the

method’s performance. Second, we want to test the selection of α and γ by an

adaptive approach based on the inequalities (3.1.15) and (3.3.4).

At each iteration k, we chooose αk and γk adaptively by computing the local

Peclet number for each element K:

PK =
‖uk‖KhK

2ν
(3.4.11)

The theory states that we should enforce PK < 1; however in practice we find

that enforcing PK < 2 provides faster convergence without sacrificing stability.
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Therefore, we set:

αk = .75 min
K∈T

4ν

‖uk‖KhK
(3.4.12)

Using (3.3.4), we then set γk = 1.9 αk.

Figure 3.1: Domain for the Heywood-Rannacher-Turek Bifurcation test case.

Along the sides we prescribed no-slip boundary conditions. At the inlet we

prescribed a standard parabolic profile with maximum velocity 1.0 and at the

outlets homogeneous Neumann conditions. We stop the iteration when the dif-

ference in velocity L2 norm compared to the previous iteration is below 1e-3. The

results are reported in Tab 3.5. Note that the splitting errors correspond to the

difference in norm between the solution computed with our method and a mono-

lithic solution computed with a direct solver. The results are reported in Tab.

3.5.

As expected, the number of iterations required for convergence increases with

the Reynolds number, as we must correspondingly choose smaller α and γ. The

required number of iterations appears to increase linearly with decreases in ν, as

we expect. The adaptive selection of α seems quite robust, not significantly im-
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Bifurcation Test
h ν Iterations Time/Iter Velocity Error (L2) Pressure Error (L2)
.1 .01 24 .857s .0041 .0162

.075 .01 23 1.71s .0036 .0166
.05 .01 26 2.68s .0030 .0163
.1 .0067 42 .877s .0065 .0142

.075 .0067 39 1.72s .0055 .0109
.05 .0067 41 2.69s .0054 .0108
.1 .005 69 .904s .0034 .0083

.075 .005 70 1.82s .0036 .0094
.05 .005 68 2.84s .0042 .0079

Table 3.5: Results for the Heywood-Rannacher-Turek 2D bifurcation.

pacting the required number of iterations or the solution accuracy. This suggests

that larger values of α may be used as the mesh is refined.

We also notice that the time per iteration across each test appears to depend on

the mesh size h, but is largely unaffected by the Reynolds number. This is unsur-

prising as we solve the Aα-block system with a direct solver and the approximate

Schur complement does not contain any convection-dependent terms. We expect

that if one uses iterative solvers for Aα and the inner solve of the approximate

Schur complement (which does depend on ν) this will no longer be true; how-

ever referring to (3.1.15) we note that our splitting approach will serve to partially

mitigate the impact of ν on the velocity solves.

This test demonstrates that as Re increases, the convergence of our method

slows and we require more iterations. This the expected behavior for all nonlinear

iterative schemes for this problem. This test also confirms that an adaptive ap-

proach based on (3.1.15) and (3.3.4) for automatic parameter selection is a possible

strategy that eliminates the need for user input. The adaptive scheme presented

here is a simple one and by no means the only option. We feel that more investi-

gation of similar schemes may lead to further improvements in performance and

are a possible area for a follow-up to this work.
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3.4.4 3D Brain Aneurysm

Our last test is designed to demonstrate our method’s applicability for large-

scale, nontrivial problems of clinical interest in hemodynamics. We test our

method on case 32 from the publicly available ANEURISK database [3]. We will

then compare our solution with the time-average of the unsteady benchmark com-

putation.

We run our simulation with a fine mesh with 354980 tetrahedra and 1621338

total degrees of freedom on a cluster with four Intel Xeon E5-4627 CPUs with 40

cores and 1 TB of memory (the same cluster used in Section 5.2.3). We use the

same problem configuration as the benchmark computation, with ν = .04 g/cm-s

(based on [23]). For the inflow, we prescribe a parabolic Poiseulle profile with a

flow rate of .4005 ml/s (determined based on [24]). We prescribe no-slip bound-

ary conditions along the walls and homogenous Neumann boundary conditions

at the outflows. We terminate the nonlinear iterations when the difference in L2

norm of velocity between consecutive iterations falls below 1e-3. For the purposes

of comparing solution times, we also compute the solution with a monolithic ap-

proach in which the linear system at each step is solved with GMRES precon-

ditioned with the Pressure Convection-Diffusion preconditioner. We report the

timings in Tab. 3.6.
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Figure 3.2: We compare the WSS along the highlighted curve.

We compare the wall shear stress on the center of the vessel along the pictured

curve in Fig. 3.2 of our simulation with the benchmark computation. The curve

is formed by the intersecting surface with a plane with origin (3.74, 3.29, 1.39)

normal to (1, 0, 0) beginning at the point (3.74, 3.29, 1.30) and ending at the point

(3.74, 3.29, 1.04). The curve was intentionally chosen to be far from the inlet

to minimize the impact of the Dirichlet boundary condition on the flow. Note

that our computation is steady-state while the benchmark computation is time-

averaged; since the Reynolds number is low (approximately 40) we may assume

the impact of the unsteady Reynolds stresses is low and therefore the steady-state

solution provides a reasonable approximation of the time-average. We plot the

results in Fig. 3.3 and Fig. 3.4.



65

BSA Aneurysm, 354980 tetrahedra (1621338 DOF, 40-Core Cluster)
Method Num. Iterations Avg time/Iteration

α = .25, γ = .45 13 2521.3s
GMRES (PCD) 7 7754.0s

Table 3.6: Results for the 3D BSA Aneurysm test case.

Figure 3.3: Comparison of computed wall-shear stress with the benchmark computation.
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Figure 3.4: Comparison of benchmark computation (left) and the solution computed with

our method (right).

We observe several things: first, we are in excellent agreement with the bench-

mark computation. We again see our method results in computational savings

when compared to monolithic approach using GMRES preconditioned with PCD,

while retaining the same level of accuracy. Though we again require nearly twice

as many iterations (13 compared to 7) each iteration is less than half the total

cost, resulting in roughly 40% savings in computational time. In terms of acccu-

racy, the GMRES solution and the solution computed with our method appear

identical. This demonstrates the method’s possible utility on problems of clinical

or research interest and its competitiveness with standard steady-state solution

techniques.
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Chapter 4

Splitting Methods Using Grad-Div

Stabilization

1 The approaches of the previous chapter represent an effective extension of

the traditional algebraic splitting schemes to the steady setting. However, there

are some limitations with this approach. Most crucially, their performance re-

quires the selection of parameters α and γ. While criterion for the automatic se-

lection of these parameters exists, for higher Reynolds numbers α may be small,

leading to small γ, delaying convergence. We therefore would like to develop

a scheme that retains the good aspects of the previously discussed schemes (in

particular, a segregated velocity/pressure approach with a stationary Schur com-

plement that is easy to precondition and solve) while mitigating its drawbacks

(selection of user parameters, necessary under-relaxation possibly slowing con-

vergence). We are able to develop such schemes using grad-div stabilization (see

e.g. [53, 88]).

1This chapter is a modified version of the following works: L. Rebholz, A. Viguerie, and M.
Xiao. “Efficient nonlinear iteration schemes based on algebraic splitting for the incompressible
Navier-Stokes equations,” in revision; A. Viguerie and M. Xiao. “Effective Chorin-Temam Alge-
braic Splitting Schemes for the Steady Navier-Stokes Equations,” in preparation.
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4.1 Grad-div Stabilization for Steady Navier-Stokes

We remind the reader that the incompressibility condition in the Incompress-

ible Navier-Stokes equations corresponds to conservation of mass and is given

by:

∇ · u = 0.

However, in the weak formulation at the discrete level the incompressibility con-

dition reads: ∫
Ω
(∇ · uh) qh = 0

for all qh in Qh. This enforces mass conservation over the domain, but does not

necessarily imply ∇ · uh = 0 pointwise, depending on the choice of finite element

pair Vh × Qh. For example, Taylor-Hood finite element pairs Pk/Pk−1 are not

pointwise divergence-free in general [22]. Define the following the bilinear form:

gdiv(·, ·) : V ×V → R, s.t. gdiv(w, v) = ξ
∫

Ω
(∇ ·w)(∇ · v). (4.1.1)

This is known as the grad-div stabilization term. Adding gdiv to the weak Navier-

Stokes equations corresponds to adding the term −ξ∇(∇ · u), zero by incom-

pressibility, to the (2.2.1). It is therefore consistent with our original equations.

For suitable ξ > ν, the term gdiv penalizes ∇ · uh 6= 0, forcing ‖∇ · uh‖ to be

small and improving the accuracy and stability of the solution [88, 51]. Grad-

div stabilization is an especially effective way to improve solution accuracy in

situations when additional mesh refinement is not feasible (as may be common in

clinical hemodynamics). Although the theory requires that ξ > ν, it is well-known

that ξ ∼ O(1) gives good performance for many applications [105, 51, 62].

At an iteration k + 1, the grad-div stabilized Picard iteration is given by: find
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uk+1
h ∈ Vh and pk+1

h ∈ Qh s.t. for any vh ∈ Vh, qh ∈ Qh:

a∗(uk+1
h , vh) + c∗(uk

h, uk+1
h , vh) + b(vh, pk+1

h ) + gdiv(uk+1
h , vh) = ( f , vh) (4.1.2)

b(uk+1
h , qh) = 0 (4.1.3)

By Theorem 2.3.1, (4.1.2-4.1.3) converges to a unique solution (uh, ph)
2 obeying

the bound:

‖∇uh‖L2 ≤
Cb‖ f‖−1

ν
(4.1.4)

provided that the small-data hypothesis (2.3.17) holds:

η :=
Cb‖ f‖−1

ν2 < 1 (4.1.5)

For the remainder of this section, we assume a discrete functional space Vh × Qh

and denote (uh, ph) as simply (u, p) without ambiguity. As before, the algebraic

problem associated with (4.1.2-4.1.3) has the form:

A + D BT

B 0


u

p

 =

 f

0

 (4.1.6)

where D is the matrix arising from the grad-div stabilization term and A = K +C

as before, with K corresponding to the diffusive term and C to the convective

term3.

We define the Steady Incremental Grad-Div Picard-Algebraic Chorin-Temam Itera-

tion (hereafter abbreviated as GISACT) as follows:

2The addition of the grad-div term does not affect the result of Theorem 2.3.1 (in fact
it strengthens it), as the same argument shown there establishes that the sequence given by
ξ‖∇ · ek+1‖2

L2 + ‖∇ek+1‖2
L2 decays to zero as k→ ∞.

3The dependence of A and C on the iterate uk is understood.
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Algorithm 4.1.1 Given initial guess (u0, p0), at an iteration k + 1 the Steady Incremen-

tal Grad-Div Picard-Algebraic Chorin-Temam Iteration is given by:

1. Find zk+1 ∈ Vh satisfying for all v ∈ Vh:

a∗(zk+1, v) + c∗(uk, zk+1, v) + gdiv(zk+1, v) = ( f , v) + b(v, pk)

2. Find (wk+1, δk+1
p ) ∈ Vh ×Qh satisfying for all (v, q) ∈ Vh ×Qh:

a∗(wk+1, v)− b(δk+1
p , v) + gdiv(wk+1, v) = 0,

b(wk+1, q) = −b(zk+1, q)

3. Find uk+1 ∈ Vh satisfying for all v ∈ Vh,

a∗(uk+1, v) + gdiv(uk+1, v) = b(v, δk+1
p ) + a∗(zk+1, v) + gdiv(zk+1, v)

4. Set pk+1 = δk+1
p + pk.

Note that we use the Laplacian formulation for the diffusive term 2.2.19 and the

skew-symmetric formulation of the convective term 2.2.18. This will be helpful in

the analysis to follow.

While defining step 2 as above is crucial for the purposes of our analysis,

observe that at discrete level step 2 is given by:

K + D 0

B −B(K + D)−1BT


I (K + D)−1BT

0 I


wk+1

δpk+1

 =

 0

−Bzk+1

 (4.1.7)

Where D is the matrix arising from the grad-div stabilization. The block-LU

solution is then obtained by:
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(i) Solve (K + D)w̃k+1 = 0;

(ii) Solve B (K + D)−1 BT δpk+1 = −Bzk+1 − Bw̃k+1;

(iii) Correction step: wk+1 = w̃k+1 − (K + D)−1δpk+1

However, by the full rank of K + D, we have w̃k+1 = 0, reducing (ii) to

B (K + D)−1 BT δpk+1 = −Bzk+1. Referring again to Alg. 4.1.1, we do not utilize

wk+1 in the subsequent steps and its value does not affect that of δpk+1, allowing

us to disregard (iii).

The discrete form of Algorithm 4.1.1 is therefore equivalent to solving the

following sequence of problems:

(
K + C(uk) + D

)
zk+1 = f + BT pk (4.1.8)

B (K + D)−1 BT δpk+1 = −Bzk+1 (4.1.9)

(K + D) uk+1 = (K + D) zk+1 + BTδpk+1 (4.1.10)

pk+1 = δpk+1 + pk (4.1.11)

This can also be interpreted as solving the following inexact-LU factorization of

(4.1.6) in pressure-incremental form:

A + D 0

B −B(K + D)−1BT


I (K + D)−1BT

0 I


 uk+1

δpk+1

 =

 f − BT pk

0


Referring to (3.1.6), as H1 = H2 above, we see that this indeed a Chorin-Temam

type splitting, justifying its name. This scheme retains many of the favorable

properties of the schemes shown in Chapter 3. In particular, our approximate

Schur complement is SPD and easy to precondition (an optimal preconditioner

is given by (ν + ξ)M−1
p [8]) and as it does not change at each iteration, there

is no need to update the preconditioner [88]. However, unlike the schemes in
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the previous section, this approach does not require under-relaxation. This is

advantageous as under-relaxation is known to slow down convergence.

However, one should note that the presence of the matrix D now makes the

velocity systems more difficult to solve compared to the analogous systems in

the earlier schemes. Several preconditioners have been used in the literature,

in particular algebraic multigrid and ILU approaches [53, 26] as well as block

triangular approximations [13]. However, the best way to precondition and solve

K + C + D remains an open question [88]. This is in contrast to the schemes from

the previous section, in which the solution of the velocity was comparatively easy.

Remark 1. A closely related Steady Incremental Grad-Div Picard-Yosida Iteration

(IPY) also exists and is defined as follows:

Algorithm 4.1.2 Given initial guess (u0, p0), at an iteration k + 1 the Steady Incremen-

tal Grad-Div Picard-Yosida Iteration is given by:

1. Find zk+1 ∈ Vh satisfying for all v ∈ Vh:

a∗(zk+1, v) + c∗(uk, zk+1, v) + gdiv(zk+1, v) = ( f , v) + b(v, pk)

2. Find (wk+1, δk+1
p ) ∈ Vh ×Qh satisfying for all (v, q) ∈ Vh ×Qh:

a∗(wk+1, v)− b(δk+1
p , v) + gdiv(wk+1, v) = 0,

b(wk+1, q) = −b(zk+1, q)

3. Set pk+1 = δk+1
p + pk.

4. Find uk+1 ∈ Vh satisfying for all v ∈ Vh,

a∗(uk+1, v) + c∗(uk, uk+1, v) + gdiv(uk+1, v) = ( f , v) + b(v, pk+1)
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This has the corresponding algebraic form:

A + D 0

B −B(K + D)−1BT


I (A + D)−1BT

0 I


 uk+1

δpk+1

 =

 f − BT pk

0


Referring again to (3.1.6), as H1 6= H2 we verify that this is a Yosida-type splitting

by our naming convention. Much of what follows in the analysis and numeri-

cal tests sections holds also for this scheme. Due to the similarity between the

methods, we focus on the Algebraic Chorin-Temam variant in this thesis in the

interest of brevity and avoiding redundancy. We will, however, compare against

this alternate approach during our numerical tests.

Remark 2. One may also use this approach to define Newton-type iterations

for both Alg. 4.1.1 and 4.1.2. One obtains these algorithms by replacing step 1 in

both 4.1.1 and 4.1.2 with:

Find zk+1 ∈ Vh satisfying for all v ∈ Vh:

a∗(zk+1, v) + c∗(uk, zk+1, v) + c∗(zk+1, uk, v) + gdiv(zk+1, v)

= ( f , v) + b(v, pk) + c∗(uk, uk, v)

And for Alg. 4.1.2, replacing step 3 with:

Find uk+1 ∈ Vh satisfying for all v ∈ Vh,

a∗(uk+1, v) + c∗(uk, uk+1, v) + c∗(uk+1, uk, v) + gdiv(uk+1, v)

= ( f , v) + b(v, pk+1) + c∗(uk, uk, v)

We will include an analysis of the Newton version of Algorithm 4.1.1 and note

that the analysis of the Newton version of Algorithm 4.1.2, is similar. A brief

numerical test verifying the faster convergence of these methods is included at
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the end of this section. We recall (2.3.9):

4.1.1 Analysis

Theorem 4.1.1 Assume ν‖∇(u − u0)‖2
L2 + ξ−1‖p − p0‖2

L2 ≤ ‖∇u‖2
L2 and ξ ≥ ν,

where (u, p) is the solution of (4.1.2)-(4.1.3) and (u0, p0) ∈ Vh × Qh the initial guess.

Let (uk+1, pk+1) ∈ Vh × Qh be the solution of Algorithm 4.1.1 at step k + 1, then it

converges linearly to (u, p), provided 4

η < min{ν
(

8β−2(2ν + 2ν1/2 + 3) + 2(1 + ν1/2)2
)−1

, (16β−2 + 3)−1, 1}

Proof. Denote ek+1
u := u− uk+1 and ek+1

z := u− zk+1. As all norms in Vh and

Qh in this analysis are L2(Ω), we denote ‖ · ‖L2 as simply ‖ · ‖ hereafter. Our proof

will assume:

ν‖∇ek
u‖2 + ξ−1‖p− pk‖2 ≤ ‖∇u‖2, (4.1.12)

and we seek to show that:

ν‖∇ek+1
u ‖+ ξ−1‖p− pk+1‖ ≤ η

(
ν‖∇ek

u‖+ ξ−1‖p− pk‖
)

(4.1.13)

which will imply the condition at the next iteration.

Subtracting step 1 of Algorithm 4.1.1 from the unique steady solution equation

(4.1.2), we obtain for all v ∈ Vh,

ξ(∇ · ek+1
z ,∇ · v) + ν(∇ek+1

z ,∇v) = (p− pk,∇ · v)− c∗(ek
u, u, v)− c∗(uk, ek+1

z , v).

4Note β is the inf-sup constant (2.3.1).
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Choosing v = ek+1
z vanishes the last nonlinear term, and provides the bound

ξ‖∇ · ek+1
z ‖2 + ν‖∇ek+1

z ‖2 ≤ ξ−1‖p− pk‖2 + νη2‖∇ek
u‖2, (4.1.14)

thanks to the definition of η, the bound (4.1.4) on the true solution u, Young’s

inequality and (2.2.8).

Next, we bound ‖p− pk+1‖. Begin by adding Steps 1 and 2, which gives for all

v ∈ Vh,

ξ(∇ · (wk+1 + zk+1),∇ · v) + ν(∇(wk+1 + zk+1),∇v)

= (pk,∇ · v)− c∗(uk, zk+1, v) + ( f , v),
(4.1.15)

and we note that (wk+1 + zk+1) ∈ Xh. Subtracting the unique steady solution

equation (4.1.2) from this, we obtain the error equation for all v ∈ Vh :

ξ(∇ · (wk+1 + zk+1 − u),∇ · v) + ν(∇(wk+1 + zk+1 − u),∇v)

= (pk − p,∇ · v)− c∗(ek
u, ek+1

z , v)− c∗(u, ek+1
z , v)− c∗(ek

u, u, v)
(4.1.16)

Choosing v = (wk+1 + zk+1 − u) ∈ Xh gives (pk − p,∇ · (wk+1 + zk+1 − u)) = 0,

yielding the bound:

ξ‖∇ · (wk+1 + zk+1 − u)‖2 + ν‖∇(wk+1 + zk+1 − u)‖2

≤ 2C2
bν−1‖∇ek

u‖2‖∇ek+1
z ‖2 + νη2‖∇ek+1

z ‖2 + νη2‖∇ek
u‖2,

(4.1.17)

thanks to (2.2.8), Young’s inequality, (4.1.4). Using the assumption that ν‖∇ek
u‖2 ≤

‖∇u‖2, this reduces to

ξ‖∇ · (wk+1 + zk+1 − u)‖2 + ν‖∇(wk+1 + zk+1 − u)‖2

≤ (ν + 2)η2‖∇ek+1
z ‖2 + νη2‖∇ek

u‖2.
(4.1.18)
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We now use this bound to bound the pressure error, after applying inf-sup to

(4.1.16) to find

β‖p− pk+1‖ ≤ ξ‖∇ · (wk+1 + zk+1 − u)‖+ ν‖∇(wk+1 + zk+1 − u)‖

+ Cb‖∇u‖‖∇ek+1
z ‖+ Cb‖∇u‖‖∇ek

u‖+ Cb‖∇ek
u‖‖∇ek+1

z ‖

≤ ξ‖∇ · (wk+1 + zk+1 − u)‖+ ν‖∇(wk+1 + zk+1 − u)‖

+ η(ν + ν1/2)‖∇ek+1
z ‖+ ην‖∇ek

u‖.

(4.1.19)

Squaring both sides, using that ξ ≥ ν, and reducing yields

β2‖p− pk+1‖2 ≤

4ξ
(

ξ‖∇ · (wk+1 + zk+1 − u)‖2 + ν‖∇(wk+1 + zk+1 − u)‖2
)

+ 4ξ
(
(ν1/2 + 1)2η2‖∇ek+1

z ‖2 + η2ν‖∇ek
u‖2
)

.

(4.1.20)

Using the bound (4.1.18) and multiplying both sides by ξ−1 reduces this estimate

to

ξ−1‖p− pk+1‖2 ≤

4β−2
(
(2ν + 2ν1/2 + 3)η2‖∇ek+1

z ‖2 + 2νη2‖∇ek
u‖2
)

.
(4.1.21)

Next, we use (4.1.21) and (4.1.14) to bound ‖∇ek+1
u ‖. Adding Step 1 and Step

3, and then subtracting it from (4.1.2) obtains

ξ(∇ · ek+1
u ,∇ · v) + ν(∇ek+1

u ,∇v)

= (p− pk,∇ · v)− c∗(ek
u, u, v)− c(u, ek+1

z , v)− c∗(ek
u, ek+1

z , v).
(4.1.22)

Letting v = ek+1
u and applying Cauchy-Schwarz inequality, (2.2.8) and as-
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sumption ‖∇ek
u‖2 ≤ ν−1‖∇u‖2 produces

ξ‖∇ · ek+1
u ‖2 + ν‖∇ek+1

u ‖2

≤ ‖p− pk+1‖‖∇ · ek+1
u ‖+

(
νη‖∇ek

u‖+ (ν + ν1/2)η‖∇ek+1
z ‖

)
‖∇ek+1

u ‖
(4.1.23)

Applying Young’s inequality yields

ξ‖∇ · ek+1
u ‖2 + ν‖∇ek+1

u ‖2

≤ ξ−1‖p− pk+1‖2 + 2νη2‖∇ek
u‖2 + 2(1 + ν1/2)2η2‖∇ek+1

z ‖2
(4.1.24)

Adding it to (4.1.21) and combining it with (4.1.14) and (4.1.21), we obtain

ξ−1‖p− pk+1‖2 + ν‖∇ek+1
u ‖2

≤
(

2(1 + ν1/2)2 + 8β−2(2ν + 2ν1/2 + 3)
)

η2ν−1ξ−1‖p− pk‖2 (4.1.25)

+
(
(2(1 + ν1/2)2 + 8β−2(2ν + 2ν1/2 + 3))η2ν−1 + 2 + 16β−2

)
η2ν‖∇ek

u‖2

Using the small data condition η < ν
(
8β−2(2ν + 2ν1/2 + 3) + 2(1 + ν1/2)2)−1

,

η < (16β−2 + 3)−1, we find that:

ξ−1‖p− pk+1‖2 + ν‖∇ek+1
u ‖2

≤ ηξ−1‖p− pk‖2 +
(

η + 16β−2 + 2
)

η2ν‖∇ek
u‖2

≤ η
(

ξ−1‖p− pk‖2 + ν‖∇ek
u‖2
) (4.1.26)

We have thus proven that ξ−1‖p− pk+1‖2 + ν‖∇ek+1
u ‖2 is a contractive sequence

in k, and thus converges. Since the solution of the (finite dimensional) problem

(4.1.2)-(4.1.3) is unique and bounded by the data, we have that the limit of the

incremental Picard-Yosida iteration converges to the solution of (4.1.2)-(4.1.3).
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4.2 Numerical Results

In this section, we present two numerical tests: a 2D flow in a bifurcated

domain and 3D BSA aneurysm. Here we want to show two things: that our

incremental method converges linearly to the solution of discrete steady Navier-

Stokes system (4.1.2), and that the approximation of the Schur complement does

not severely affect the convergence rate.

4.2.1 Case 1: 2D Bifurcation Flow.

We first test our proposed Algorithm 4.1.1 by solving the 2D steady Navier-

Stokes problem in the same bifurcated domain used in section 3.4.3 (seen in Fig.

3.1) . For the discretization, we employ Taylor-Hood P2/P1 elements on a fine

mesh of 8988 elements (h = .05), leading to 41,589 total DOF. We prescribe a

parabolic inflow profile with peak velocity 2.0 and assign traction-free boundary

conditions at both outflows. We solve for ν = .0133 and ν = .0067 for ξ = 1 and

ξ = 2 using the software FreeFEM on a 2017 MacBook Pro.

We compare the solutions computed by Algorithm 4.1.2 (IPY) and Algorithm

4.1.1 (GISACT) to the reference solution from the standard Picard iterations up

to a very high level of accuracy (1e-12). To ensure the best possible accuracy, we

solved the full saddle-point system with UMFPACK at each iteration. For IPY

and GISACT, we solve both velocity systems with UMFPACK (Step k.1 and Step

k.2), and the Schur Complement with CG preconditioned by the lumped pressure

mass-matrix for outer solve and UMFPACK for inner solve.

For the purposes of comparison, we also computed the solution for the same

problem configuration with a standard Picard scheme (4.1.2-4.1.3). At each itera-

tion we solved the full saddle-point system with GMRES preconditioned with the
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Figure 4.1: Bifurcation test streamlines; ν = .0133 (top), ν = .0067 (bottom).

following block-triangular preconditioner found in [53]:

P−1 =

Aξ BT

0 −(ν + ξ)−1Mp


−1

(4.2.1)

where Mp is the lumped pressure mass matrix and Aξ the velocity block with

grad-div stabilization. We will solve the exact velocity block using UMFPACK.

In the available literature using this preconditioner, typically the exact velocity

block (rather than an approximation) is solved either directly or with an iterative

method [53, 26]. We set the outer solve tolerance to 1e-6. These computations

were performed with FreeFem++.
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Figure 4.2: Comparison of convergence for test case 1, ν = .0133.
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Figure 4.3: Comparison of convergence for test case 1, ν = .0067.

For ν = .0133 (fig. 4.2), we observe a similar rate of convergence for stan-

dard Picard and GISACT. IPY converges more slowly, with ξ = 1 being non-

competitive and ξ = 2 converging faster but still more slowly than standard

Picard or GISACT. For ν = .0067 (fig. 4.3) , we see that IPY with ξ = 1 is again

not competitive, converging very slowly. However, GISACT with both values of ξ

and IPY with ξ = 2 are both comparable or slightly superior to standard Picard.

We note that in those figures above, the convergence of velocity although has

the trend of linear convergence, but there are some oscillations. We are not sure

as to their exact cause and this requires further investigation.

In Table 4.1 we provide information regarding the numerical cost of each non-

linear iteration. Here, outer Krylov iterations refers to the number of outer GM-

RES iterations for Standard Picard and the number of outer PCG iterations for



81

the approximate Schur complement solve for IPY and GISACT. The average solve

time is the time required to solve the systems at each nonlinear iteration, and

does not factor in the assembly costs (similar across all algorithms and therefore

excluded to more clearly show the differences between methods). For all three

methods, the number of outer iterations does appear to change significantly with

ν. Standard Picard shows a mild but observable dependence on ξ for its required

outer iterations, but both IPY and GISACT appear less sensitive in this regard.

Overall, the splitting schemes require fewer outer iterations per solve, resulting

in clear computational savings at each step.

2D Bifurcation: ν = .0133 (Re=200)
GISACT IPY Standard Picard

ξ Outer Krylov iter. Avg solve time Outer Krylov iter. Avg solve time Outer Krylov iter. Avg solve time
1.0 11 .600s 11 .594s 30 1.346s
2.0 10 .549s 10 .552s 25 1.134s

2D Bifurcation: ν = .00667 (Re=400)
GISACT IPY Standard Picard

ξ Outer Krylov iter. Avg solve time Outer Krylov iter. Avg solve time Outer Krylov iter. Avg solve time
1.0 11 .603s 11 .595s 30 1.409s
2.0 11 .598s 11 .593s 25 1.146s

Table 4.1: Iteration statistics for 2D Bifurcation test.

Let us now briefly consider the underlying operations at a given iteration for

both the Standard Picard and our grad-div splitting schemes. Using the precondi-

tioner 4.2.1, each outer GMRES iteration for Standard Picard requires a diagonal

matrix inversion in Qh, a matrix-vector multiply, and the solution of a system in

Vh. For both of the grad-div splitting methods, at each iteration we solve the Schur

complement system with PCG (P−1 = (ν + ξ)M−1
p ), requiring at each outer PCG

iteration a solve in Vh, two matrix-vector multiplies, and a diagonal mass matrix

inversion in Qh. We must also solve two more systems in Vh for the intermediate

and corrected velocity fields.

In both cases, the number of Vh solves is the dominant driver of cost and is

determined directly by the number of outer Krylov (GMRES for standard Picard,

PCG for splitting) iterations k, with standard Picard requiring k solves and the
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splitting methods requiring k + 2. As we used the same direct sparse linear solver

for all inner solves in Vh, by this reasoning we expect:

t∗ =
Avg. solve time

k∗
, k∗ =


Outer Krylov iterations for Standard Picard

Outer Krylov iterations + 2 for GISACT/IPY

Method ν ξ Avg solve time k∗ t∗

IPY .0133 1.0 .594s 13 .0457s
GISACT .0133 1.0 .600s 13 .0462s

Std. Picard .0133 1.0 1.356s 30 .0452s
IPY .0133 2.0 .552s 12 .0450s

GISACT .0133 2.0 .549s 12 .0458s
Std. Picard .0133 2.0 1.134 22 .0454s

IPY .0067 1.0 .595s 13 .0458s
GISACT .0067 1.0 .603s 13 .0464s

Std. Picard .0067 1.0 1.389s 30 .0463s
IPY .0067 2.0 .593s 13 .0456s

GISACT .0067 2.0 .598s 13 .0460s
Std. Picard .0067 2.0 1.146s 25 .0458s

Table 4.2: Relationship between average solve time and outer Krylov iterations across all

Bifurcation test cases.

to be more or less constant across all cases. Referring to Table 4.2 we confirm

this is the case, with the overall variation over t∗ being about one-thousandth

of a second, a relative difference of only 3 percent between the maximum and

minimum t∗.

We note briefly that the insensitivity of solve times to ν observed here is a

consequence of using direct solvers for the inner blocks. If one solves the inner

blocks iteratively, we expect the solve times to change with ν; however we still

expect the outer iteration count to remain ν-independent. We will explore this

issue in the following section.

Overall, from this test we conclude that the convergence of GISACT is roughly
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the same, or slightly faster, than Standard Picard for both values of ξ. IPY is

somewhat slower than both Picard and GISACT for ξ = 1, but performs compa-

rably for ξ = 2. Changing ξ does appear to affect the convergence of GISACT

somewhat, but on the whole it appears less sensitive to ξ than IPY. In terms of

cost per iteration, we find both IPY and GISACT to be cheaper than Standard Pi-

card, resulting in around 50% savings in solve time. As shown by Table 4.2, these

temporal savings are explained by the differences in outer iteration count.

4.2.2 Case 2: 3D Brain Aneurysm.

We next test our method on case 32 from the publicly available ANEURISK

database [3], which is the same geometry used in Chapter 3. We use P2/P1

Taylor-Hood elements on a coarser mesh than used previously, with 36,693 total

tetrahedra leading to 224,180 total DOF and ran the simulations with the software

FreeFem++ 2017 MacBook Pro. We chose to run the simulations locally, as op-

posed to a cluster, as we wanted to test our algorithm’s suitability for small-scale

local computations, often encountered in clinical settings. We solve the velocity

blocks with the sparse direct solver UMFPACK. For the Schur complement sys-

tem we use PCG preconditioned with the lumped pressure Mass matrix with an

outer stopping tolerance of 1e-6, again using UMFPACK for the inner solve. We

end our computation when the difference in L2 norm of velocity between consec-

utive iterations falls below 1e-3. We test both grad-div splitting schemes (4.1.1)

and (4.1.2). For the standard Picard comparison, we solved the problem using the

same comparison solver configuration as in section 4.2.2 (GMRES preconditioned

with 4.2.1).
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Figure 4.4: Results for BSA Aneurysm Test Case

Figure 4.5: Left: Benchmark solution, Right: computed solution (using IPY)

We observe good agreement with the benchmark values, though due to the

coarse mesh the agreement is not quite as strong as the results shown in Section

3.4.4. We note again that as our computation is a steady computation and the

benchmark computation was a time-averaged unsteady computation, we do not
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3D BSA Aneurysm, 224,180 DOF: Q = .4005 ml/s, ν = .04 g/cm-s (Re=40)
Method Nonlin. Iter. Outer Krylov Iter. Avg solve time Avg. total time Total time

IPY 12 32 34.5s 67.0s 804.0s
GISACT 8 32 33.8s 66.1s 528.8s

Std. Picard 7 48 47.9s 89.2s 713.6s

Table 4.3: Avg. time/solve only includes the system solve time; avg. total time includes

assembly costs. Outer Krylov iterations denotes avg. num. of outer GMRES iterations

for Standard Picard and outer PCG iterations for the Schur complement step for splitting

methods per nonlinear iteration.

expect perfect agreement. The GISACT splitting converged in 8 iterations at 66.1

seconds per iteration (528.8 total seconds), while IPY reached convergence in 12

iterations at 67.0 seconds per iteration (804.0s seconds). Standard Picard required

7 iterations and 89.2 seconds per iteration (713.6 seconds). GISACT is clearly su-

perior to the standard Picard scheme for this test, while the slower convergence

of IPY negates its advantage in cost per iteration, leading to worse overall perfor-

mance than standard Picard.

Dependence on ν and Q; Numerical cost.

Using the same Aneurisk 32 geometry, we ran further tests at Re=100 and

Re=160 to assess the robustness of the methods with respect to different flow

configurations. We recall that the Reynolds number (2.1.2) can be increased by

either decreasing ν or increasing the inflow rate Q. Although the different con-

figurations of ν and Q may have identical Re, the problems are not the same,

neither physically nor numerically, and we should not expect the same behavior

from numerical schemes. From the perspective of hemodynamics, both situations

are relevant and correspond to distinct physical phenomena. For example, when

modeling the effect of a blood-thinning medication, one may change ν and not Q,

while the opposite may be more appropriate for modeling a change in cardiac out-
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put5. This distinction is important for the accurate computation of dimensional

parameters. Therefore, in this test we assess performance for both situations: one

in which we keep our original flow rate of .4005 ml/s and lower the viscosity, and

one in which we keep the original viscosity of .04 g/cm-s and increase the flow

rate. We again solve all inner blocks with sparse direct solvers. We report the

results in Table 4.4.

3D BSA Aneurysm, 224,180 DOF: Q = 1.005 ml/s, ν = .04 g/cm-s (Re=100)
Method Nonlin. Iter. Outer Krylov Iter. Avg solve time Avg. total time Total time

IPY 19 31 32.2s 63.8s 1212.2s
GISACT 15 31 33.1s 65.7s 985.5s

Std. Picard 11 66 70.1s 113.2s 1245.2s
3D BSA Aneurysm, 224,180 DOF: Q = .4005 ml/s, ν = .016 g/cm-s (Re=100)

Method Nonlin. Iter. Outer Krylov Iter. Avg solve time Avg. total time Total time
IPY 15 28 31.4s 63.7s 955.5s

GISACT 13 28 31.1s 63.5s 825.5s
Std. Picard 11 47 47.1s 87.8s 965.8s

3D BSA Aneurysm, 224,180 DOF: Q = 1.6005 ml/s, ν = .04 g/cm-s (Re=160)
Method Nonlin. Iter. Outer Krylov Iter. Avg solve time Avg. total time Total time

IPY 30 31 32.5s 63.9s 1917.0s
GISACT 27 31 32.7s 64.8s 1749.6s

Std. Picard 28 90 95.3s 138.6s 3880.8s
3D BSA Aneurysm, 224,180 DOF: Q = .4005 ml/s, ν = .01 g/cm-s (Re=160)

Method Nonlin. Iter. Outer Krylov Iter. Avg solve time Avg. total time Total time
IPY 28 26 28.6s 60.7s 1699.6s

GISACT 26 26 28.5s 59.9s 1557.4s
Std. Picard 28 45 47.7s 89.8s 2514.4s

Table 4.4: Avg. time/solve only includes the system solve time; avg. total time includes

assembly costs. Outer Krylov iterations denotes avg. num. of outer GMRES iterations for

GMRES and outer PCG iterations for the Schur complement step for splitting methods

per nonlinear iteration.

For all methods, the number of required nonlinear iterations increases as both

ν decreases and Q increases. The required number of nonlinear iterations is iden-

tical for standard Picard for cases with the same Reynolds number, however for

the splitting schemes we observe minor differences, with the high ν/high Q cases

converging slightly more slowly. This appears to affect the IPY scheme more than
5While both situations are relevant and important, the scenario in which we keep ν constant

and vary Q is encountered much more frequently.
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GISACT.

We now turn our attention to the cost per each nonlinear iteration. Referring

to the results in Table 4.4, we see that GMRES preconditioned with 4.2.1 (used

for standard Picard), is robust with respect to ν, confirming the findings in [53],

but its performance worsens significantly with increases in Q. In comparison, the

algebraic splitting schemes are robust with respect to both parameters, showing

no sensitivity at all to Q and a mild improvement in performance as ν decreases.

Over these tests, the GISACT splitting method demonstrates clear superiority

over the comparison in both performance and versatility. The IPY scheme is also

clearly superior over the comparison in terms of cost per iteration, however this

advantage is offset somewhat by its slower convergence, leading to more modest

advantages and worse overall performance for the Re=40 case.

Note that we do not have any benchmark data for Re=100 and Re=160; how-

ever by comparing to a reference solution computed with monolithic methods (to

ensure the best possible convergence and accuracy) to a high degree of precision

(stopping tolerance of 10−8) as in the previous section, we again confirm that our

schemes converge to the desired solution at a rate comparable to that of standard

Picard. We show plots for the case with Q = 1.6005, ν = .04 below in Figure 4.6.

We observe the same pattern as in the previous test, with GISACT converging at

about the same rate as standard Picard and IPY slightly more slowly.
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Figure 4.6: Aneurisk 32, Q = 1.6005 ml/s, ν = .04 (Re=160): Convergence in L2 norm

for velocity (left), pressure (right).

Figure 4.7: Aneurisk 32 normalized WSS for Re=40 (left), Re=100 (center), Re=160

(right) (ν = .04 g-cm/s for each, Q varying)

3D Brain Aneurysm: Iterative Inner Solves

In many applications, problems may become too large to use direct methods,

even for the inner solves. In these instances we must also use iterative methods

to solve the Aξ and Kξ = K + ξD blocks. If solved to a sufficiently high tolerance

level, we do not expect iteratively solved inner blocks to have an significant im-
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pact on the number of outer Krylov iterations. However, note that the majority

of inner solves for the splitting schemes are for the system Kξ , while for GMRES

preconditioned with 4.2.1, one solves Aξ . The lack of a convective term makes

Kξ considerably easier to precondition and solve iteratively than Aξ , especially

for higher Reynolds numbers. Thus, for the splitting schemes the majority of the

cost is passed to an easier system. We therefore expect IPY and GISACT to main-

tain or improve their advantages in cost per iteration over our implementation of

standard Picard when iterative inner solves are used.

We verify this by running the case Re=40 and both cases of Re=100 solving

inner blocks with iterative methods. We will solve Aξ and Kξ using GMRES

preconditioned with the block-triangular preconditioner proposed in [13]. For

the Aξ solves in (4.2.1), we set the stopping tolerance to 1e-3. This tolerance was

chosen as our tests showed that higher tolerances lead to an excessive amount of

outer solves and more restrictive tolerances lead to more inner solves without a

correspondingly significant decrease in total outer solves. We note that replacing

Aξ in 4.2.1 with the block triangular approximation was not effective. For the Aξ

and inner SC (Kξ) solves in the splitting schemes, we set the stopping tolerance

to 1e-6. We again use ξ = 1. The results are reported in Table 4.5. Here ‘inner

Krylov iterations’ refers to the average number of GMRES iterations required to

solve the inner blocks.

The key takeaway here is to observe that, although we are now solving the

inner blocks iteratively, both the outer Krylov iteration counts and the number of

nonlinear iterations are unaffected for GISACT and IPY. Recall that the number of

inner solves are somewhat misleading, as for GMRES we solve Aξ with a stopping

tolerance of 1e-3 and for IPY and GISACT we solve Kξ to a tolerance of 1e-6; Kξ

is in fact easier to solve. We again find significant savings for IPY and GISACT,

with the required time between 28% and 44% of the time for standard Picard in
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3D BSA Aneurysm, 224,180 DOF: Q = .4005 ml/s, ν = .04 g/cm-s (Re=40). Iterative inner blocks
Method Nonlinear Iter. Outer Krylov Iter. Inner Krylov Iter. Avg solve time

IPY 12 32 68 (115 for Aξ solves) 741.7s
GISACT 8 32 68 (115 for Aξ solve) 760.6s
GMRES 7 99 57 1659.6s
3D BSA Aneurysm, 224,180 DOF: Q = .4005 ml/s, ν = .016 g/cm-s (Re=100). Iterative inner blocks
Method Nonlinear Iter. Outer Krylov Iter. Inner Krylov Iter. Avg solve time

IPY 15 28 86 (196 for Aξ solves) 921.3
GISACT 13 28 91 (194 for Aξ solve) 955.4
GMRES 11 93 95 2995.3s
3D BSA Aneurysm, 224,180 DOF: Q = 1.005 ml/s, ν = .04 g/cm-s (Re=100). Iterative inner blocks
Method Nonlinear Iter. Outer Krylov Iter. Inner Krylov Iter. Avg solve time

IPY 19 32 67 (137 for Aξ solves) 758.3s
GISACT 15 32 67 (135 for Aξ solve) 744.7s
GMRES 11 133 71 2706.1s

Table 4.5: Results for Aneursym test with inner blocks solved iteratively.

each case. The savings in this case are even more dramatic than those observed

when solving the inner blocks directly.

The iterative solution of both Aξ and Kξ appears to depend on ν, with lower

ν making these systems more difficult to solve. However, this affects standard

Picard just as severely as it does GISACT and IPY. On the other hand, increases

in Q appear to make the solution of Aξ more costly, but do not affect Kξ , further

evidence of the splitting schemes’ superior robustness with respect to changes in

this parameter.

Overall, this test provides compelling evidence that the IPY and GISACT

schemes may provide significant savings over standard monolithic solving meth-

ods on nontrivial three-dimensional problems. This advantage is particularly pro-

nounced for cases in which the inner blocks are solved iteratively or when the

problem is convection-dominated with a relatively high ν. We do again observe

slightly slower nonlinear convergence for IPY compared to standard Picard; how-

ever the savings in cost per iteration generally offset this. GISACT, on the other

hand, does not appear to converge more slowly than standard Picard, and given

its savings at each iteration, clearly outperforms standard Picard for all cases on

this test.
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4.3 Newton-type Scheme

As mentioned before, it is also possible to define a Newton-type version of

Algorithms 4.1.1 and 4.1.2. We now present and study a higher order of version

of Algorithm 4.1.1, which is defined as follows. Note that the corresponding

analysis for the higher-order version of 4.1.2 is similar.

Algorithm 4.3.1 The higher order algebraic Chorin-Temam iteration for the steady Navier-

Stokes is given by:

Step 1: Guess u0 ∈ Vh, p0 ∈ Qh.

Step k consists of the following 4 steps:

k.1 Find zk+1 ∈ Vh satisfying for all v ∈ Vh,

gdiv(zk+1, v) + c∗(uk, zk+1, v) + c∗(zk+1, uk, v) + a∗(zk+1, v)

= ( f , v) + b(v, pk) + c∗(uk, uk, v).

k.2 Find (wk+1, δk+1
p ) ∈ (Vh, Qh) satisfying for all (v, q) ∈ (Vh, Qh),

gdiv(wk+1, v)− b(v, δk+1
p ) + a∗(wk+1, v) = 0,

b(wk+1, q) = −b(zk+1, q).

k.3 Find uk+1 ∈ Vh satisfying for all v ∈ Vh,

gdiv(uk+1, v) + a∗(uk+1, v) = b(v, δk+1
p ) + gdiv(zk+1, v) + a∗(zk+1, v),

k.4 Set pk+1 = pk + δk+1
p .
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4.3.1 Analysis

In this section, we prove the convergence of Algorithm (4.3.1) to the unique

solution of (4.1.2)-(4.1.3). We assume the following small data condition:

η̃ = (1 + ε)Cbν−2‖ f ‖−1 < 1 (4.3.1)

for some ε > 0. Note this is more restrictive than the standard small data condi-

tion (2.3.15) used previously.

Theorem 4.3.1 Let ε > 0 and

η̃ <

min
{

1, (9 + 10β−2)−1, ν−1(1 + ε)2‖ f ‖2
−1

(
2(1 + 12β−2) + (8 + 80β−2)−1

)−1
}

.

Denote by (u, p) the solution of system (4.1.2)-(4.1.3), (u0, p0) ∈ (Vh, Qh) the initial

guess of Algorithm 4.3.1, and (uk, pk) the step k solution. Then if ξ ≥ ν and ν‖∇(u−

u0)‖2 + ξ−1‖p− p0‖2 ≤ ‖∇u‖2, the sequence (uk+1, pk+1) converges to (u, p).

Remark

Even though Newton’s method converges quadratically, we would not expect

Algorithm 4.3.1 to converge quadratically, since approximations are being made.

From the proof, in particular (4.3.14), observe that if the pressure terms are small,

then quadratic convergence of the velocity is recovered.

Proof. We begin the proof by giving one assumption that the sequence {u− uk}

is bounded by min{ν−1/2, ε‖∇u‖} for all k ∈ N, where ε is the same constant

used in the definition of η̃. Hence for all k, we have

‖∇uk‖ ≤ ‖∇(u− uk)‖+ ‖∇u‖ ≤ (1 + ε)ν−1‖ f ‖−1. (4.3.2)
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by using the triangle inequality and the upper bound (4.1.4) of true solution u.

Also, we assume that

ν‖∇(u− uk)‖2 + ξ−1‖p− pk‖2 ≤ ‖∇u‖2, (4.3.3)

and by proving that the sequence defined by ν‖∇(u − uk)‖2 + ξ−1‖p − pk‖2 is

decreasing, this will imply the condition at the next iteration.

Denote ek+1
u := u − uk+1 and ek+1

z := u − zk+1. Subtracting Step k.1 of al-

gorithm 4.3.1 from the unique steady solution equation (4.1.2), we obtain for all

v ∈ Vh,

ξ(∇ · ek+1
z ,∇ · v) + ν(∇ek+1

z ,∇v)

= (p− pk,∇ · v)− c∗(ek
u, ek

u, v)− c∗(ek+1
z , uk, v)− c∗(uk, ek+1

z , v).

Choosing v = ek+1
z vanishes the last term, giving:

ξ‖∇ · ek+1
z ‖2 + ν(1− η̃)‖∇ek+1

z ‖2 ≤ ξ−1‖p− pk‖2 +
C2

b
ν(1− η̃)

‖∇ek
u‖4, (4.3.4)

thanks to the Young’s inequality, (4.3.2), the definition of η̃.

Next, we give a bound of ‖p− pk+1‖. Begin by adding step k.1 and step k.2,

and subtracting it from the unique steady solution equation (4.1.2), we obtain the

error equation for all v ∈ Vh,

ξ(∇ · (zk+1 + wk+1 − u),∇ · v) + ν(∇(zk+1 + wk+1 − u),∇w)

= (pk+1 − p,∇ · v) + c∗(ek
u, ek

u, v) + c∗(uk, ek+1
z , v) + c∗(ek+1

z , uk, v). (4.3.5)
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Letting v = zk+1 + wk+1− u ∈ Xh gives (pk+1− p,∇ · (zk+1 + wk+1− u)) = 0,

yielding the bound:

ξ‖∇ · (zk+1 + wk+1 − u)‖2 + ν‖∇(zk+1 + wk+1 − u)‖2

≤ 8νη̃2‖∇ek+1
z ‖2 + 2C2

bν−1‖∇ek
u‖4.

(4.3.6)

thanks to Young’s inequality, (4.3.2), and the definition of η̃.

Applying the inf-sup condition to (4.4.15) one finds:

β‖pk+1 − p‖ ≤ ξ‖∇ · (zk+1 + wk+1 − u)‖+ ν‖∇(zk+1 + wk+1 − u)‖

+ Cb‖∇ek
u‖2 + 2νη̃‖∇ek+1

z ‖.
(4.3.7)

Squaring both sides, using that ξ ≥ ν, and reducing yields:

β2‖pk+1 − p‖2

≤4ξ

(
ξ‖∇ · (zk+1 + wk+1 − u)‖2 + ν‖∇(zk+1 + wk+1 − u)‖2

+ ν−1C2
b‖∇ek

u‖4 + 2νη̃2‖∇ek+1
z ‖2

)
.

(4.3.8)

Using the bound (4.4.16) reduces this estimate to:

‖p− pk+1‖2 ≤ 4ξβ−2
(

10νη̃2‖∇ek+1
z ‖2 + 3ν−1C2

b‖∇ek
u‖4
)

. (4.3.9)

Combining (4.4.13) and (4.3.9) and multliplying both sides by ξ−1 produces:

ξ−1‖p− pk+1‖2

≤4β−2
(

10η̃2

1− η̃
ξ−1‖p− pk‖2 + ν−1M2

(
3 +

10η̃2

(1− η̃)2

)
‖∇ek

u‖4
)

.
(4.3.10)
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Next, we use (4.3.10) and (4.4.13) to bound ‖ek+1
u ‖. Adding step k.3 and step

k.1 and then subtracting from (4.1.2), we have:

ξ(∇ · ek+1
u ,∇ · v) + ν(∇ek+1

u ,∇v)

= (p− pk+1,∇ · v)− c∗(ek
u, ek

u, v)− c∗(ek+1
z , uk, v)− c∗(uk, ek

z, v). (4.3.11)

Choosing v = eu
k yields:

ξ‖∇ · ek+1
u ‖2 + ν‖∇ek+1

u ‖2

≤ ξ−1‖p− pk+1‖2 + 2ν−1C2
b‖∇ek

u‖4 + 8η̃2ν‖∇ek+1
z ‖2,

(4.3.12)

thanks to Young’s inequality, (4.3.2) and the definition of η̃.

Adding this bound with (4.3.10) gives:

ξ−1‖p− pk+1‖2 + ν‖∇ek+1
u ‖2

≤ 8η̃2

1− η̃
(10β−2 + 1)ξ−1‖p− pk‖2

+

(
2ν−2C2

b(12β−2 + 1) +
8η̃2C2

b
ν2(1− η̃)2 (10β−2 + 1)

)
ν‖∇ek

u‖4.

(4.3.13)

Using the assumptions η̃ < (9 + 10β−2)−1 and

α̃ < ν−1(1 + ε)2‖ f ‖2
−1
(
2(1 + 12β−2) + (8 + 80β−2)−1)−1,

ξ−1‖p− pk+1‖2 + ν‖∇ek+1
u ‖2

≤ η̃ξ−1‖p− pk‖2 +

(
2(12β−2 + 1) +

η̃

1− η̃

)
C2

b
ν3 ν2‖∇ek

u‖4 (4.3.14)

≤ η̃ξ−1‖p− pk−1‖2 +
(

2(12β−2 + 1) + (8 + 80β−2)−1
) η̃2ν

‖ f ‖2
−1(1 + ε)2

ν2‖∇ek
u‖4

≤ η̃
(

ξ−1‖p− pk‖2 + ν2‖∇ek
u‖4
)

.
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By (4.3.3), ν‖∇(u− uk)‖2 ≤ 1. We have therefore proved that ν‖∇(u− uk)‖2 +

ξ−1‖p− pk‖2 is a contractive sequence in k, and thus converges. Since the solution

of the problem (4.1.2)-(4.1.3) is unique and bounded by the data, we have that the

limit of Algorithm 4.3.1 converges to the solution of (4.1.2)-(4.1.3).

4.3.2 Numerical Test: 2D Bifurcation

In this section we verify the faster convergence of Newton’s method by re-

peating the same 2D bifurcation test (case ν = .0133) from Section 4.2.1 using the

Newton versions of the Yosida (iNY) and ACT (GISACTN) type splitting schemes.

We use the same solver setup as in that test, however we will change the stop-

ping tolerance for step 2 of iNY/GISACTN and the outer GMRES tolerance for

standard Newton from 1e-6 to 1e-12. This is to better visualize and monitor con-

vergence at high levels of precision. We run the test over the values ξ = 1, 5, 10.

We plot the results below in figure 4.86.

As the above figure shows, for ξ = 1.0 the Newton versions of our splitting

schemes do not perform well, either converging at the same rate as standard Pi-

card (iNY) or converging non-monotonically and more slowly (GISACTN). How-

ever, for the higher values of ξ, we begin to see the convergence speedup. The

convergence is still linear (unlike Usual Newton), but with a much improved

convergence rate compared to the corresponding Picard versions. This is not sur-

prising since the scheme’s linear error term (the pressure term) in the analysis

is scaled by ξ−1, so as ξ increases this term’s effect is reduced. This test sug-

gests that for problems with large pressure, or bad initial guesses at pressure, the

Newton version may not perform much better than the Picard version unless ξ is

taken relatively large. However, if the problems associated with large ξ are not a

6The reference solution was computed on the same mesh with standard Picard techniques until
the difference in L2 norms between consecutive velocity iterations fell below 1e-12. To ensure
maximum accuracy for the reference solution, we used only sparse direct solvers.
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Figure 4.8: Convergence for Newton-type splitting schemes

concern (as may be the case when using direct solvers, for instance), then using

the Newton version of these schemes is a possible way to accelerate convergence.

We note also that step 2 is not different for the Newton and Picard versions of

the scheme and hence the difference in numerical cost is only apparent in steps

1 (and step 3 for Yosida-type schemes), which comprise a comparatively minor

portion of the overall cost.

Remark. In terms of cost per iteration, the behavior was similar to the Picard

case shown earlier and hence we omit this information for brevity and to avoid

redundancy.

4.4 Approximation of the Schur Complement

We can improve the numerical efficiency of the scheme by approximating the

Schur Complement. For clarity in this section we will write K as νK and D as

ξD to emphasize the matrices’ dependence on these quantities. As proven in
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[53], at the discrete level the matrix D has the following form where Mp is the

pressure-mass matrix:

ξD = ξBT M−1
p B + ξ h R (4.4.1)

So in the limit as h tends to zero only the ξBT M−1
p B term remains. We will make

use of the following lemma:

Lemma 4.4.1 B(νK+ ξD)−1BT can be expressed as B(νK+ ξBT MpB)−1BT +O(h/ξ).

Proof. Begin by recalling the following formula for two invertible matrices X and

Y (see e.g. [54]):

(X + Y)−1 = X−1 − X−1Y(I + X−1Y)−1X−1 (4.4.2)

By (4.4.1):

(νK + ξD)−1 = (νK + ξBT M−1
p B + ξ hR)−1 (4.4.3)

Applying formula (4.4.2) with X = νK + ξBT M−1
p B and Y = ξ hR:

(νK + ξD)−1 = (νK + ξBT M−1
p B)−1 (4.4.4)

−hξ(νK + ξBT M−1
p B)−1R

(
I + hξ(νK + ξBT M−1

p B)−1R
)−1

(νK + ξBT M−1
p B)−1

Call the second term in (4.4.4) H. We will analyze the growth order of H with

respect to the parameters ξ, ν and h. Clearly:

(νK + ξBM−1
p B)−1 ∼ O

(
(ν + ξ)−1

)
(4.4.5)
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From (4.4.5) we then have:

H ∼ O
(

hξ(ν + ξ)−1
(

1 + hξ(ν + ξ)−1
)−1

(ν + ξ)−1
)

∼ O
(

hξ

(ν + ξ)2

(
1 +

hξ

ν + ξ

)−1
)

∼ O
(

hξ

(ν + ξ)2
ν + ξ

ν + ξ + hξ

)
∼ O

(
hξ

(ν + ξ)(ν + ξ + hξ)

)
(4.4.6)

We recall now that 0 < ν < ξ by hypothesis and therefore we assume:

O
(
(ν + ξ)−1

)
∼ O(ξ−1) (4.4.7)

And so the last line of (4.4.6) becomes:

H ∼ O
(

hξ

ξ2 + hξ2

)
∼ O

(
h

(1 + h)ξ

)
∼ O(h/ξ)

(4.4.8)

Left and right multiply (4.4.4) by B and BT respectively to obtain:

B(νK + ξBT M−1
p B)−1BT + BHBT (4.4.9)

which together with 4.4.8 gives:

B(νK + ξBT M−1
p B)−1BT +O(h/ξ) (4.4.10)

completing the proof. This suggests that we must have ξ >> h for B(νK +

ξBT M−1
p B)−1BT to be an effective approximation of B(νK + ξD)−1BT; for ξ ∼
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O(h), this approximation becomes less reliable as the other term is no longer

small. However, throughout this work we take ξ ∼ O(1), in which case this is not

an issue.

We will also use this identity (see [8]):

(
B(νK + ξBT M−1

p B)−1BT
)−1

= ν
(

BK−1BT
)−1

+ ξM−1
p (4.4.11)

It is a well-known fact ([37, 8]) that the matrix BK−1BT is spectrally equivalent to

Mp. Based on this fact and the preceding two lemmas, we then propose to use

the following approximation for the Schur complement:

(
B(νK + ξD)−1BT

)−1
≈ (ν + ξ)M−1

p (4.4.12)

where Mp is lumped so it is diagonal. This approximation replaces the inversion

of the Schur complement system with a diagonal matrix inversion, which can be

easily applied directly even for very large systems. Before we continue, let’s first

take a look at the new system by converting it back to finite element setup. Using

the ACT algorithm with this approximation is equivalent to: find zk ∈ Vh such

that for any v ∈ Vh:

a∗(zk, v) + gdiv(vk, v) + c∗(uk−1, zk, v) = ( f , v) + b(pk−1, v), (4.4.13)

then find (uk, pk) ∈ Vh × Qh satisfying for all (v, q) ∈ Vh × Qh:

(ν + ξ)−1(δk
p, q) = −b(zk, q), (4.4.14)

a∗(uk, v) + gdiv(uk, v) = a(zk, v) + gdiv(zk, v) + b(δk
p, v), (4.4.15)

pk = δk
p + pk−1. (4.4.16)
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Equations (4.4.13) - (4.4.16) are essentially the penalty projection methods shown

in [77], suitably adapted for steady problems. Both have the same intermediate

velocity solved by (4.4.13). As the projection step in [77] is heavily dependent on

timestep, in our work we must adjust it as (4.4.14)-(4.4.15) so that uk is divergence-

free. Finally, we recover the pressure by (4.4.16).

Using this approach, computational costs are reduced. Our numerical tests

confirm that this approach is efficient, though it does have some inherent limita-

tions. Numerical tests and a rigorous error analysis will follow.

Remark. As mentioned also in the previous chapter, algebraic splitting schemes

are readily adapted into preconditioners for the monolithic problem. The Schur

Complement approximation (4.4.12) suggests that the following preconditioner

may be effective:

P−1 =


Ãξ 0

B −(ν + ξ)−1Mp


I K̃−1BT

0 I



−1

(4.4.17)

This preconditioner is conceptually similar to the ones proposed by Heister and

Rapin [53] (used in previous simulations) and Benzi and Olshanskii [8], as it uses

the same approximation of the Schur complement. Indeed, this preconditioner

could be regarded as a block-LU version of the aforementioned block triangu-

lar preconditioners. These types of block-LU preconditioners are known to be

effective for the unsteady problem [123]. Further analysis and testing of this pre-

conditioner is a possible subject of future work.
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4.4.1 Analysis

In this section we rigorously analyze the approximation error incurred by the

use of (4.4.12). Let S̃ := B(νK + ξBT M−1
p B)−1BT, S := BK−1BT, and recall that

B(K + ξD)−1BT = S̃ +O(h/ξ).

We will proceed as follows: we will first show that ‖I − (ν + ξ)M−1
p S̃‖N is

bounded continuously by ξ in an appropriate norm ‖ · ‖N. That result combined

with (4.4.1) will imply that the approximation error is controlled by the mesh level

h and the user controlled parameter ξ.

Recall that S and Mp are spectrally equivalent (see e.g. [8],[37]) implying that

0 < dmin < σ(S−1Mp) < dmax < ∞ (4.4.18)

Where dmin and dmax are independent of the mesh size h. Fix ε > 0. As the

spectral radius of ρ(S−1Mp) < dmax there exists a matrix norm ‖ · ‖N such that:

‖S−1Mp‖N < ρ
(

S−1Mp

)
+ ε < dmax + ε < 2 dmax (4.4.19)

Theorem 4.4.1 ‖I − (ν + ξ)M−1
p S̃‖N is bounded by ν/ξ independently of h.

Proof. Observe that:

I − (ν + ξ)M−1
p S̃ = I −

(
S̃−1 1

ν + ξ
Mp

)−1

(4.4.20)
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Applying (4.4.11):

I − (ν + ξ)M−1
p S̃ = I −

(
ν

ν + ξ
S−1Mp +

ξ

ν + ξ
I
)−1

(4.4.21)

= I −
(

ξ

ν + ξ
(I +

ν(ν + ξ)

(ν + ξ)ξ
S−1Mp)

)−1

(4.4.22)

= I − ν + ξ

ξ

(
I +

ν

ξ
S−1Mp

)−1

(4.4.23)

Let ξ be such that:

‖ν

ξ
S−1Mp‖N ≤

1
2

(4.4.24)

with ‖ · ‖N defined as (4.4.19). Note that the choice of 1/2 here is simply for

convenience and one could use any value less than one without loss of generality.

By (4.4.24) the Neumann series converges:

(
I +

ν

ξ
S−1Mp

)−1

=
∞

∑
j=0

(
−ν

ξ
S−1Mp

)j
(4.4.25)

And therefore:

I − (ν + ξ)M−1
p S̃ = I − ν + ξ

ξ

∞

∑
j=0

(
−ν

ξ
S−1Mp

)j
(4.4.26)

= −ν

ξ
I −

∞

∑
j=1

(
−ν

ξ
S−1Mp

)j
(4.4.27)

= −ν

ξ
I − ν

ξ
S−1Mp

∞

∑
j=0

(−1)j+1
(

ν

ξ
S−1Mp

)j
(4.4.28)

(4.4.29)
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We then take norms using the norm defined in (4.4.19):

‖I − (ν + ξ)M−1
p S̃‖N = ‖ − ν

ξ
I − ν

ξ
S−1Mp

∞

∑
j=0

(−1)j+1
(

ν

ξ
S−1Mp

)j
‖N (4.4.30)

≤ ν

ξ
+

ν

ξ
‖S−1Mp‖N

∞

∑
j=0
‖ν

ξ
S−1Mp‖j

N (4.4.31)

≤ ν

ξ
(1 + 4 dmax) (4.4.32)

Noting that dmax is independent of h completes the proof.

This then immediately implies our main result:

Theorem 4.4.2 The splitting error ‖I− (ν+ ξ)M−1
p B(νK + ξD)−1BT‖ incurred by the

approximation (4.4.12) is bounded by ν/ξ and h/ξ and tends to zero as ξ → ∞.

Proof. Applying the previous theorem and Lemma 4.4.1 gives:

‖I − (ν + ξ)M−1
p B(νK + ξD)−1BT‖

≤ ‖I − (ν + ξ)M−1
p S̃‖+ ‖(ν + ξ)M−1

p O(h/ξ)‖

≤ ν

ξ
C1 +

h
ξ

C2

(4.4.33)

Theorem 4.4.3 The local splitting error at an iteration incurred by replacing (B(νK +

ξD)−1BT)−1 with (ν + ξ)M−1
p at an iteration k in the discrete version of (4.1.1) is

bounded by ν/ξ and h.

Proof. By direct inspection we may find that one step of the discrete problem

given by (4.1.1) is equivalent to solving the following system in the block matrix

AF (letting K̃ = (νK + ξD) and S̃F = BK̃−1BT for the sake of notation):

AF =

A AK̃−1BT

B 0


uk

δk
p

 =

 f + BT pk−1

0

 (4.4.34)



105

Letting M̃p = (ν+ ξ)Mp, the approximate inverse of AF using (4.4.12) is given by:

A−1
apx =

(I − K̃−1BT M̃−1
p B)A−1 K̃−1BT M̃−1

p

M̃−1
p BA−1 −M̃−1

p

 (4.4.35)

Let vF be the solution vector computed by solving the system (4.4.34) and vapx

the approximated solution computed by applying (4.4.35) to the same right hand

side b given in (4.4.34). Then we define the splitting error vector es = [eu, ep]T as:

es = vF − vapx = vF − A−1
apxb = vF − A−1

apx(AFvF) = (I − A−1
apx AF)vF (4.4.36)

Expanding this expression:

(I − A−1
apx AF)vF =

0 K̃−1BT(I − M̃−1
p S̃F)

0 I − M̃−1
p S̃F


 uF

δp,F

 (4.4.37)

Note that neither the momentum nor mass equation is satisfied, unlike the full

solution which conserves mass. By our bounds from part 1,

‖es‖ ≤
(

ν

ξ
C1 +

h
ξ

C2

)
‖δp,F‖ (4.4.38)

With a bound on the local splitting error, we can now prove a bound for the

global splitting error.

Theorem 4.4.4 Let vapx = [uapx, papx] be the solution obtained from Picard iteration

given by approximating the Schur complement solve with (4.4.12) and vF = [uF, pF] be

the solution obtained from 4.1.1. Then:

‖vapx − vex‖ ≤ C1
ν

ξ
+ C2

h
ξ
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for suitable ξ and h.

Proof. We will proceed by induction. Starting with the same initial guess v0 =

(u0, p0), the local splitting error derived in the previous theorem implies:

‖e1
s‖ <

(
ν

ξ
C1 +

h
ξ

C2

)
‖δ1

p,F‖

Define ε := ν
ξ C1 +

h
ξ C2. The above bound implies the existence of a vector η such

that v1
apx := v1

F + ε̃ η. Similarly, there exists a matrix ∆ such that A2
apx := A2

F + ε̃ ∆.

Note that the ε̃ are both O(ε) but possibly distinct.

Now assume that ‖ek−1
s ‖ ∼ O(ε) and that vF,k−1 is bounded. Then we again

have vk−1
apx := vk−1

F + ε̃ η for some η and Ak
apx := Ak

F + ε̃ ∆ for some ∆. We seek

to show that ‖ek
s‖ ∼ O(ε) (note that the base case holds for iteration ‖e1

s‖). This

establishes that vk
apx is always in an ε-neighborhood of vk

F for each k, implying

that as k→ ∞, vapx converges to a solution within an ε neighborhood of vF.

Ak
F vk

F = rk−1
F (4.4.39)

(Ak
F + ε̃ ∆)vk

apx = rk−1
F + ε̃ η̃ (4.4.40)

As the right-hand side depends on the solution at the last iteration. Then:

‖vk
F − vk

apx‖ =
∥∥∥((Ak

F)
−1 − (Ak

F + ε̃ ∆)−1
)

rk−1
F − (Ak

F + ε̃ ∆)−1ε̃ η̃
∥∥∥ (4.4.41)

≤
∥∥∥(Ak

F)
−1 − (Ak

F + ε̃ ∆)−1
∥∥∥ ∥∥∥rk−1

F

∥∥∥+ ε̃
∥∥∥(Ak

F + ε̃ ∆)−1
∥∥∥ ‖η‖ (4.4.42)

≤ ε̃
(
‖rk−1

F ‖+ ‖(Ak
F + ε̃ ∆)−1‖‖η‖

)
(4.4.43)

Where the last line follows from the continuity of matrix inverses. This completes

the proof.
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Note that strictly speaking Theorem 4.4.4 does not imply the convergence of

(uapx, papx) to (uF, pF), but only convergence to within a certain neighborhood.

The (true) convergence of (uF, pF) to the solution (u, p) of (4.1.2-4.1.3) then implies

that (uapx, papx) converges to within a certain neighborhood of (u, p) as well. This

neighborhood can be made arbitrarily small for large ξ; however for any fixed ξ

this only establishes convergence up to a fixed level of accuracy.

This theorem shows the practical limitations of this scheme. As stated previ-

ously, large ξ can make the problem difficult to solve. In practice, with ξ ∼ O(1),

the the bound predicted by Theorem 4.4.4 may be small due to low values of ν

and h; however for problems with higher viscosity or relatively coarse meshes, it

is possible that ξ ∼ O(1) is not sufficiently large to make the splitting error suit-

ably small, and taking ξ extremely large is not a viable option in general. While

the substantial numerical savings offered by this approach make it potentially

worthwile, we acknowledge it has significant limitations and may not be applica-

ble for some problems. Nonetheless, in our tests we still found that it performed

quite well. Although we did observe some evidence of limiting behavior likely

arising from the global splitting error, the effect was small.

4.4.2 Numerical Test: Bifurcation Flow

We repeat the same 2-dimensional bifurcation test previously used to compare

the solutions computed by Algorithm 4.1.1 (GISACT), and Algorithm 4.1.1 using

the approximated Schur complement (4.4.12) (Apx. GISACT) to the reference

solution from the standard Picard iterations up to a very high level of accuracy

(1e-12). For the reference case, we solved the full saddle-point system with UMF-

PACK at each iteration. For ACT, we solve both velocity systems with UMFPACK

(Step k.1 and Step k.2), and the Schur Complement with CG preconditioned by

the lumped pressure mass-matrix for outer solve and UMFPACK for inner solve.
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For Apx. GISACT, we use UMFPACK for the velocity solves (Step k.1 and Step

k.2), and solve the Schur complement system by multiplying a diagonal matrix.

For our comparison Picard method, we use the same solver configuration as used

in section 4.2.1. We will test the method for ξ = 1, 2, 3.

We display the L2 norm of velocity and pressure convergence, as well as the

nonlinear residuals, in Figures 4.9 and 4.10. Note here that ξ = 2 for the plotted

Picard and GISACT comparisons.
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Figure 4.9: Bifurcation test case, ν = .0133.
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Figure 4.10: Bifurcation test case, ν = .0067.

For ν = .0133 (fig. 4.9), the approximated Schur Complement solution con-

verges more slowly than GISACT with ξ = 1, as might be expected, but we

clearly observe monotonic convergence to the desired solution. For ξ = 2 the

convergence is still slower than full GISACT, but the gap narrows considerably,
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while for ξ = 3 the convergence is the same as standard Picard and full GISACT

in the velocity space. This is expected based on our bound (4.4.33), which sug-

gests that large ξ implies a better approximation. In the pressure space for ξ = 3,

we see the convergence start comparably to GISACT and Picard, but then flatten

out. Recall from Theorem 4.4.4 that the approximate Schur complement scheme

converges only to within a certain neighborhood, the size of which depends on

ξ; we suspect this flattening is caused by the solution reaching the threshold of

convergence. Unsurprisingly, the average solve time across all cases was .091s, a

small fraction of the times shown in Table 4.1.

For ν = .0067 (fig. 4.10), we notice that Apx. GISACT is still slower than

GISACT for ξ = 1, however the difference is much less pronounced than for the

case ν = .0133. For ξ = 2 and ξ = 3, we see nearly identical convergence behavior

for GISACT and Apx. GISACT. This is consistent with our expectation based on

Theorem 4.4.4, as the quality of the approximation depends on ν/ξ and therefore

as we decrease ν or increase ξ the approximated scheme should perform more

similarly to GISACT.

As expected, the convergence of the approximate GISACT depends both on

the grad-div parameter ξ and the viscosity parameter ν. For cases with higher ν,

it appears one must use a relatively high value of ξ in order for the approximate

scheme to converge at a similar rate; however as ν decreases the schemes behave

more similarly, to where one must use a higher value of ξ anyway in order for

GISACT to converge rapidly (as seen in section 4.2.1). In these instances, it ap-

pears the approximate scheme offers a similar convergence rate at a fraction of

the cost. Although we only expect the approximate scheme to converge up to a

certain level of accuracy, in this test this we found ξ ∼ O(1) provided a small

enough threshold for us to obtain accurate solutions.
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4.4.3 Numerical Test: Newton-type Version

We now compare the convergence of the Newton and Picard formulations

of our scheme and the effect of the approximate Schur complement. We run

the same bifurcation test with ν = .0133 as in section 4.3.1. We again compare

the standard GISACTN scheme with the approximate GISACTN scheme for ξ =

1, 5, 10. We plot the results below (fig. 4.11) :
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Figure 4.11: Bifurcation test, GISACTN and approximate GISACTN.

The first thing we note is that the approximate GISACTN algorithm does not

converge as quickly as standard GISACTN for any value of ξ. For ξ = 1, approx-

imate GISACTN does not seem to converge at all. We clearly see in the pressure

plot that the approximate version GISACTN with ξ = 10 reaches its neighbor-

hood of convergence around ten iterations, after which it does not converge fur-

ther. This is the expected behavior based on Theorem 4.4.4. Interestingly, in this

test this does not seem to happen in the velocity space.
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4.5 Comparison of Algebraic Splitting Methods

Before closing the discussion of efficient solvers based on algebraic splitting,

we would like to clarify a couple of important points regarding the schemes

shown in Chapter 3 and Chapter 4. Both types of methods attempt to solve the

same problem and, from a practical standpoint, are very similar in terms of imple-

mentation. However, the methods presented have somewhat different advantages

and disadvantages.

The methods in Chapter 3 are based on the introduction of a semi-explicit

term modulated by a parameter α. Generally, due to the explicit term, one must

also introduce an underrelaxation parameter. Because of this, these schemes have

the disadvantage of slower convergence compared to Chapter 4. However, the

lack of grad-div stabilization and the introduction of α also provide some positive

aspects. In particular, the weighted velocity block Aα is easier to solve and, com-

pared to the grad-div schemes in chapter 4, the inner block K of the approximate

Schur complement is also easier to manage.

In contrast, the methods in Chapter 4 do not require under-relaxation and do

not suffer from delayed convergence. However, while grad-div stabilization has

positive effects on accuracy and convergence, it does make the inner solves more

difficult, with the difficulty increasing as ξ increases. While higher ξ is beneficial

for the solution of the nonlinear problem, its effect on the conditioning of the

inner blocks is negative.

If using direct solvers for the inner solves, the superior convergence properties

and general positive impact of grad-div stabilization on solution accuracy make

the methods in Chapter 4 preferable over those in Chapter 3. If the inner solves

are a serious challenge, then one may prefer the methods from Chapter 3.

Importantly, although presented separately for ease of explanation, the meth-

ods shown in Chapter 3 and Chapter 4 are in no way mutually exclusive. It is
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certainly possible for one to develop hybrid schemes employing techniques from

both chapters. Such schemes may in fact allow one to retain advantages from both

methods. One may, for instance, use a very small ξ (ξ ∼ O(ν)) in order to im-

prove the convergence of the outer solve of the approximate Schur complement

in (3.1.13) without significantly increasing the difficulty of its inner solve. The

theory of 4.1.1 or 4.1.2 does not allow for ξ this small, but when used in conjunc-

tion with an α-splitting scheme the approximate Schur complement is justified by

the Neumann series argument. In general, these hybrid-type schemes will allow

one to pick larger values of α and γ while using smaller values of ξ, allowing for

potentially beneficial trade-offs. This is worthy of further investigation and may

be an interesting area for additional research.
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Chapter 5

Deconvolution-based Stabilization of

the Steady Problem

1A major difficulty encountered when solving problems in CFD is the issue of

stability. In practice, instabilities generating spurious numerical oscillations may

be triggered by the presence of significant dynamics at small scales unresolved

by the space discretization. In the case of the steady problem, the presence of

these numerical oscillations can disrupt the steady solution. In the numerical

approximation, this may delay or even prevent the convergence of the nonlinear

iterative solver. While the theory of the problem suggests that one may refine

the mesh in order to resolve these scales, in practice the amount of refinement

may greatly increase the number of unknowns, causing the problem to become

numerically intractable.

Small-scale dynamics are often triggered by high convective fields. In this

case, a number of stabilization techniques exist, in particular Streamline Diffu-

sion, GLS and SUPG-type methods (see e.g. [20, 59, 42, 58, 102, 99, 107] for

1This chapter is a modified version of the following work: A. Viguerie and A. Veneziani.
“Deconvolution-based stabilization of the incompressible Navier-Stokes equations,” in prepara-
tion.
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details). The classical Streamline Diffusion (or Streamline Upwind) method is

a multidimensional generalization of the well known Upwind scheme, where a

numerical viscosity - vanishing generally with the space-discretization step - is

added along the direction of the convective field. GLS and SUPG belong to the

family of strongly consistent methods, where the additional viscosity is the result

of a more sophisticated procedure that guarantees the consistency with the exact

solution also for the discrete problem. The additional stabilization term is gen-

erally weighted by the convective term, so these techniques are very effective in

high-convection regions. Strongly consistent schemes can be regarded an approx-

imation of a general variational multiscale residual-based formulation of the fluid

problem used in modeling the turbulence within the framework of Large Eddy

Simulation models [6].

Within the context of hemodynamics, however, small scale dynamics can also

be triggered by other phenomena besides high convective fields. Certain geomet-

rical features can also induce this behavior, for example recirculation in regions

induced by bends, obstructions, or rough boundaries. These small-scale behav-

iors may be physically meaningful or an entirely spurious numerical artifact. For

example, stenoses caused by atherosclerotic plaques may cause recirculation that

is also present in the physical problem. However, we may also observe these sorts

of small-scale dynamics due to roughness in boundaries caused by the reconstruc-

tion of noisy data, in which case the disturbed flow is non-physical. In both these

cases, even for relatively low convective fields, we may experience instabilities for

which traditional methods are not always the optimal approach.

Consider for instance the 2D example of flow in a pipe with a sharp 90-degree

curve. Here the velocity streamlines are pictured, colored according to the velocity

magnitude as illustrated in Fig. 5.1 (inflow bottom-left, outflow top-right). The

Reynolds number in this example is not exceedingly large (667), and the solution
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still falls within the steady regime. Nonetheless, the presence of the recirculation

region along the inner wall past the curve causes stability issues, making the

simulation of this test case quite challenging, requiring both a very fine mesh and

a large number of iterations to converge to a steady solution. In this case, the

regions causing the instability are exactly the recirculation areas, which are not a

high-convective region but rather a low-convection region. Therefore, stabilizing

the high-convective regions as is done with SUPG or Streamline Diffusion will

not effectively resolve the instabilities.

Figure 5.1: Example, illustrating instabilities arising from recirculation.

In this chapter, we present a modified version of the aforementioned stabiliza-

tion techniques, where the additional numerical viscosity is not designed on the
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strength and the direction of the convective field. We take inspiration from tech-

niques developed for Large Eddy Simulation approaches to turbulence modeling in

order present a different choice of the stabilization path. More specifically, the

definition of the numerical viscosity is based on the deconvolution filter used for

the indicator function in the LES modeling investigated in [72, 10]. This indicator

function can be effective in detecting unresolved small-scale dynamics that need

stabilization, even when they are not induced by high convective fields. While

our stabilization method is inspired by approaches used in turbulence modeling,

we note that the methods discussed here should not be regarded as turbulence

models.

We will begin this chapter by reviewing the construction and basic properties

of standard stabilization methods. We will then introduce and analyze our LES-

inspired approach, first in a consistent framework analogous to the Streamline-

Diffusion method, and then in a strongly consistent formulation. We will then

demonstrate the efficacy of our approach in comparison with traditional stabi-

lizations over a series of two and three dimensional test problems. In accordance

with the rest of this work, our focus here is in on the Steady Navier-Stokes prob-

lem, but we also note that our findings in this section apply also to the unsteady

problem.

5.1 Numerical stabilization

As the dynamics of fluids involve the interaction between large and small

scales, the mesh for numerical discretization should be fine enough to resolve all

scales of motion. The consequent computational cost can be prohibitively high.

As an alternative to using a fine mesh, one may also employ numerical methods

(“stabilizations”) to obtain reasonable solutions on coarse meshes. Techniques
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to stabilize (2.2.6) generally involve the addition of a new term to the velocity

equation on each element K.

To pursue convergence, these terms must be consistent with the original prob-

lem; that is, the original problem is the limit of the discrete stabilized problem

as h → 0 where h is the representative measure of the mesh size. There are sev-

eral well-known methods that follow this general procedure, and we will focus

broadly on two classes of these methods: Streamline-diffusion methods and strongly

consistent methods. The former are generally easier to implement, while the latter

have the advantage of strong consistency with the original problem, leading to

better convergence rates in general [20].

5.1.1 Classical Streamline-Diffusion Methods

For the purposes of generality, we will consider these methods as applied to

the Oseen problem (2.2.14-2.2.15) for a given vector field bh. This class of meth-

ods are derived from approaches originally developed for advection-diffusion-

reaction problems and involve the introduction of an additional term to the mo-

mentum equation of the form −Wk hK [(bh · ∇uh) bh]. This term adds additional

viscosity to the problem along bh. Here Wk is a user-defined scalar function and

hK is the function representing the size of the Kth mesh element. A popular

example is

Wk ≡ δK/‖bh‖K, (5.1.1)

where δK is in turn a user-defined scalar function (often but not necessarily con-

stant) and ‖bh‖K is the norm of b on the current element K. Another possible

choice, recommended in [119] is:

Wk ≡
δK

‖bh‖L2(Ω)

2hK‖bh‖L2(K)

1 + hK‖bh‖L2(K)
≤ 2δk
‖bh‖L2(Ω)

(5.1.2)
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Ideally, this additional diffusivity helps one gain by adding numerical viscosity

along the convective field, avoiding oscillations by minimizing crosswind numer-

ical diffusion [58, 102, 119]. In the weak form, for a given Wk and mesh size hK it

adds the form τ(·, ·, ·; Wk, hK) : Vh ×Vh ×Vh → R, s.t. [119, 102]

τ(bh, vh, zh; Wk, hK) ≡ ∑
K∈T

WkhK

∫
K
((bh · ∇)vh) · ((bh · ∇)zh) . (5.1.3)

Note that for a given reticulation T of a domain Ω, for a given bh, Wk > 0 and

hK, we have

τ(bh, vh, vh; Wk, hK) = ∑
K∈T

WkhK

∫
K
‖(bh · ∇)vh‖2

L2 ≥ 0. (5.1.4)

By standard arguments of functional analysis we also have

|τ(bh, vh, uh; Wk, hK)| ≤ C‖bh‖2
V‖vh‖V‖zh‖V . (5.1.5)

The weak formulation of the stabilized problem reads: given bh regular enough,

find uh ∈ V and ph ∈ Q s.t. for any vh ∈ Vh, qh ∈ Qh:

a(uh, vh) + c(bh, uh, vh) + b(vh, ph)+

τ(bh, uh, vh; Wk, hK) + b(uh, qh)− ( f , vh) = 0.
(5.1.6)

The well-posedness of this problem follows from the well-posedness of (2.2.6) un-

der standard assumptions [45, 102, 20, 99, 58, 119] and (5.1.4), (5.1.5). Referring to

(5.1.3), we note for each element K, the form τ depends on the element diameter

hK. As the mesh is refined hMAX ≡ maxK(hK) → 0, it follows that τ → 0 every-

where in T . This establishes the consistency of these stabilization methods, as the

numerical problem converges to the original one when the mesh size vanishes.

An iteration k + 1 of the Picard iteration (2.2.10) for problem (2.2.1-2.2.6) one
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sets b = uk
h, the velocity field from the previous iteration to give the stabilized

problem: Find uk+1
h ∈ V and pk+1

h ∈ Q s.t. for any vh ∈ Vh, qh ∈ Qh:

a(uk+1
h , vh) + c(uk

h, uk+1
h , vh) + b(vh, pk+1

h )+

τ(uk
h, uk+1

h , vh; Wk, hK) + b(uk+1
h , qh)− ( f , vh) = 0

(5.1.7)

Intuitively, this method works by adding artificial viscosity only in the direc-

tion of the solution streamlines. It can be regarded as a generalization of the

upwinding methods common in one-dimensional problems. For this reason it is

also referred to as the streamlined upwinding method in the literature [20, 58].

Remark. Note that the functional form τ can be conveniently regarded as a

quadrilinear form in general:

τ(wh, vh, yh, zh; Wk, hK) ≡ ∑
K∈T

WkhK

∫
K
((wh · ∇)vh) · ((yh · ∇)zh) (5.1.8)

5.1.2 Strongly Consistent Methods

Another important class of stabilization techniques are the strongly consistent

methods [59, 42, 99]. These techniques are consistent with the original problem

for any size of the mesh discretization, unlike the methods discussed in the pre-

vious section (which are only consistent for hMAX → 0). Methods of this type

work by the addition of the strong element-wise formulation of a residual term

of Lh(uh, ph; bh, f , vh, qh) to the problem (2.2.6), i.e. a stabilizing term such that

Lh(u, p; bh, f , vh, qh) = 0 ∀ (vh, qh) ∈ Vh ×Qh (5.1.9)

where (u, p) is the exact solution to (2.2.6). Hence, the true solution satisfies

the stabilized problem exactly and not just asymptotically, as in the previous

case. Consequently, these methods are generally more accurate than the classi-
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cal streamline-diffusion type methods described in the previous section [102]. In

fact, convergence rate - in an appropriate norm - depends on the degree of the

finite elements used, which is generally not true for classical Streamline Diffusion,

as a consequence of a standard application of the Strang Lemma [99]. Classical

Streamline Diffusion is often over-diffusive; while this can reduce the instabilities

so to accelerate the convergence to a steady solution, it adversely affects the ac-

curacy. Strongly consistent methods alleviate this problem [20, 58]. This comes

at a cost, however, and these methods are often more difficult to formulate and

implement, and in our experience may negatively affect the conditioning of the

associated linear systems. Two common methods of this type are the Streamlined

Upwind Galerkin Method (SUPG) and the Galerkin Least-Squares Method (GLS). For

the sake of brevity, we limit here only to SUPG.

For the steady Navier-Stokes problem, we let Lh be defined as (setting bh =

uh):

Lh(uh, ph; uh, f , vh, qh) =

∑K∈Th
δK (−ν∆uh + (uh · ∇) uh +∇ph − f , (uh · ∇) vh +∇qh)L2(K) .

(5.1.10)

Here, δK is an element-wise constant parameter defined by the user and is

generally dependent on the mesh size. The well-posedness of these and other

similar formulations is shown in [107]. The strong consistency is easily observed

by noting that if the above bilinear forms are evaluated with the exact solution

(u, p) then in both cases the above inner products will be zero for each K. The

unsteady case is defined analogously. In addition to their general convective stabi-

lizing properties, methods of this type enjoy the additional property of stabilizing

non-LBB inf-sup compatible element pairs for velocity and pressure (for example,

P1/P1) [107].
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5.2 LES-inspired stabilization

Our novel approach is inspired by the generalized Leray models [76] for Large

Eddy simulation explored in [72, 10]. These methods work by the construction of

a filtered velocity field u which identifies regions where the solution requires stabi-

lization. In the context of turbulence modeling, the idea of this filtering step is

the identification of relevant small scales, unresolved by the space discretization.

In this way, by construction, u is small in regions where u is “smooth” and large

where u is “not smooth”, indicating possible instabilities. The filtered velocity

field determines where the fluid velocity can be simulated directly and where

small scales should be explicitly modeled.

We borrow from this idea to develop our stabilization technique. We focus

particularly on the steady problem here, even though the idea of ‘large eddy

simulation’ is inherently unsteady. The application of such techniques to steady

problems represents, in fact, a novel approach.

Given an appropriate filter function Fu and an available velocity field uk we

can apply the following algorithm at an iteration k + 1 to promptly obtain a mod-

ified stabilization scheme:

1. Compute uk+ 1
2 = Fuk;

2. Solve (5.1.6) with a stabilization term guided by the filtered field uk+ 1
2 ;

3. Check Convergence: end if criterion met; else update and loop.

A major difference between the approach discussed in this work and the existing

methods for LES is that we use the filtered field to construct an alternative stabi-

lization, not to activate turbulence modeling. While in the existing literature, it

is used in conjunction with a differential filter to obtain a regularized convective

field for the current time step or as part of an evolution/relaxation scheme [10]
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we use the indicator function directly in a streamline diffusion-style manner as in

(5.1.6).

To motivate our deconvolution-based approach, we return to the same two-

dimensional example shown in the introduction. Observe the plot of u for the

same problem, obtained by applying a nonlinear deconvolution-based filter to u

function similar to those described in [15, 10], as we detail hereafter - see Fig. 5.2,

right panel.

Figure 5.2: A simplified example of small-scale dynamics induced by the geometry of a

domain with a relatively low Reynolds number. Left: velocity field u in a bending pipe.

Right: filtered field u = Fu with F specified in the text.

The figure illustrates why stabilizing along the vector field u is preferable to

the traditional streamline-diffusion scheme; the recirculation region is no longer

neglected. Thus, when we add numerical viscosity along u, we are now adding

it to the small-scale and then potentially unstable area, which does not happen

when using traditional streamline-based techniques.

Nonlinear filtering techniques are widely used in Large Eddy simulation, and
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many filters have been investigated in the literature. These filters may be physics-

based, such as those discussed in [72, 15] or may arise from mathematical argu-

ments, as in [12, 10]. In this work we focus our attention on deconvolution-based

nonlinear filters, which belong to this latter group [73]. This class of indicator

functions has an elegant mathematical formulation and demonstrates good per-

formance properties; however generally the use of these indicator functions en-

tails some extra numerical cost when compared to other types of indicator func-

tions. Let V be a Hilbert space and L : V → V be a linear, invertible, self-adjoint,

compact operator. By the spectral theorem (see e.g. [109]), we have:

Lu =
∞

∑
i=0

λi〈u, ei〉ei, L−1u =
∞

∑
i=0

1
λi
〈u, ei〉ei (5.2.1)

where {ei}∞
i=0 are eigenfunctions of F and form an orthonormal basis for V. Since

F is compact, it follows that F−1 is unbounded. Let D be a bounded, finite-

dimensional approximation of L−1, defined as:

D =
N

∑
i=0

1
λi
〈u, ei〉ei (5.2.2)

for some integer N. In regions where u is smooth, we expect that 〈u, ei〉 is only

significant for small values of i. We may then define the indicator function in the

following way:

Fu = u− D(Lu)

We expect Fu to be ‘small’ in the regions where u is smooth and ‘large’ where u

is not smooth (ie, where u requires regularization).

A popular choice for D is the Van Cittert deconvolution operator, given by:

DN =
N

∑
n=0

(I − L)n (5.2.3)
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N is typically small, and in this work we will use N = 0, so that

FD0 = u− L(u) (5.2.4)

A possible choice for L is the linear Helmholtz filter operator LH defined as:

LH =
(

I − µ2∆
)−1

(5.2.5)

where µ > 0 is the filtering radius and ∆ is the Laplacian: ∆ = ∑d
j=1

∂2

∂x2
j

where

d = 2, 3 is the number of spatial dimensions. From now on, we use this definition

of F ≡ (I − LH)u.

We must also address the prescription of boundary conditions associated with

the nonlinear filter LH. As the scope of filtering is not the same of LES modeling,

we significantly modify the original choice. Setting L(u) = u everywhere on the

boundary does not yield optimal results. In fact, the auxiliary field obtained by

the filtering is intended to identify regions that may be in proximity of the bound-

ary. As the essential no-slip condition on u limits the variability of L(u) near the

walls, this is not ideal for our purposes. The recirculation regions generally oc-

cur near walls and therefore we want to allow L(u) to be possibly large in these

regions. We opted for homogeneous Neumann conditions here, as they give the

best results. To take advantage from the Poincaré inequality, which is helpful for

the analysis, we then let L(u) = u on the outflows.

We then have a sort of rule-of-thumb for the selection of the boundary condi-

tions for the filter operator, in which we set natural conditions where the physical

filed is subject to Dirichlet conditions and vice versa. This is a purely numerical

choice, and we do not ascribe to it any physical meaning. We stress that u has

significance only as an auxiliary numerical tool. As the name “filtered velocity”
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can be misleading and may imply a physical interpretation, we will instead use

the term “filtered field”.

Remark 5.2.1 Some properties of the filter operator are immediately deduced once we

establish the link between the filtering operator F and the Yosida regularization of the

Laplace operator −∆ associated with the boundary conditions specified above. Following

[18] and Chap. 7 of [19], LH is the so-called resolvent of −∆ and µ−2F its Yosida

regularization. Notice that the domain of the resolvent is L2(Ω) and that the norm of the

resolvent as linear and continuous operator on L2 is ≤ 1.

From the general theory, the following properties follow for any µ 6= 0:

(a1) µ−2F = −∆(LH) for any field in L2(Ω);

(a2) µ−2F = −LH(∆) for any field in H1(Ω);

(b) ‖µ−2Fv‖L2 ≤ ‖− ∆v‖L2 for any velocity field v in H1;

(c) limµ→0 LHv = v for any field in L2;

(d) limµ→0 ‖Fv− (−µ2∆)‖L2 = 0 for any velocity field v in H1;

(e) (Fv, v) ≥ 0 for any field v in L2;

(f) ‖Fv‖L2 ≤ ‖v‖L2 for any field v in L2.

These properties emphasize that the filtered field pursues a non-negative (dissipative)

action (property (e)), with a regularizing action milder that the one of the Laplace operator

((b)).

Theorem 5.2.2 For a divergence-free vector field u, the filtered field u = Fu is also

divergence free.
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Proof. The proof follows from property (a2) listed above and the commuta-

tivity of the Laplace and divergence operators. In fact, we have

L−1
H Fu = −µ2(∆)u

so that if ∇ · u = 0,

∇ ·
(

L−1
H Fu

)
= 0.

Recalling that L−1
H = I − µ2∆, then

∇ ·
(

L−1
H Fu

)
= L−1

H (∇ · Fu) = 0

from which the theorem follows as the Helmholtz operator is invertible.

Remark. In general, at the discrete level, the divergence of the velocity uh is

only weakly free, i.e. ∫
Ω

∇ · uh qh = 0 ∀q ∈ Qh.

Unfortunately, the finite element pair of spaces Vh, Qh does not guarantee that

a weakly divergence-free field is also strongly divergence-free. In general, the

divergence of the filtered field will be nonzero. However, we notice that ∀q ∈ Qh

∫
Ω

∇ · Fuh qh =
∫
Ω

∇ · uh qh − µ2
∫
Ω

∇ · LHuh qh = −µ2
∫
Ω

∇ · LHuh qh.

So, the weak divergence scales with µ2.

Theorem 5.2.3 For a given velocity field u in H2(Ω) ∩ H1
0(Ω), ‖Fu‖V ≤ ‖u‖V .

Proof. From the definition of F,

Fu = u−
(

I − µ2∆
)−1

u (5.2.6)
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Let w in H2(Ω) be defined such that:

w =
(

I − µ2∆
)−1

u (5.2.7)

Trivially:

(
I − µ2∆

)
w = u

∆w =
1
µ2 (w− u)

= − 1
µ2 Fu

(5.2.8)

From (5.2.6), (5.2.7), and (5.2.8) we have have that Fu solves the following varia-

tional problem: Find Fu in H2(Ω) such that for all v in H2(Ω),

−
∫

Ω
Fu · v = −

∫
Ω

u · v +
∫

Ω
w · v (5.2.9)

Let v = ∆Fu. Integration by parts2 gives:

‖∇Fu‖2
L2 =

∫
Ω
∇u : ∇Fu−

∫
Ω
∇w : ∇Fu

=
∫

Ω
∇u : ∇Fu +

∫
Ω

∆w · Fu

=
∫

Ω
∇u : ∇Fu +

∫
Ω
(− 1

µ2 Fu) · Fu

=
∫

Ω
∇u : ∇Fu− 1

µ2‖Fu‖2
L2

(5.2.10)

Discarding the strictly positive second term on the right-hand side above and

2Recall that ∆ is associated with homogenous Neumann boundary conditions on Γin ∪ Γwall
and the Dirichlet condition Lu = u on Γout, equivalent to a homogenous condition Dirichlet here.
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applying Cauchy-Schwarz then gives:

‖∇Fu‖2
L2 ≤

∫
Ω
∇u : ∇Fu (5.2.11)

≤ ‖∇u‖L2‖∇Fu‖L2 (5.2.12)

‖∇Fu‖L2 ≤ ‖∇u‖L2 (5.2.13)

Which, by equivalence of the norms ‖∇v‖L2 and ‖v‖V , was to be shown.

5.2.1 Filtered-Streamline Diffusion

The filtered field ū is used in our modified classical streamline diffusion scheme

instead of the velocity field u. In an iterative Picard scheme, this leads to the fol-

lowing algorithm, a particularization of the one introduced at the beginning of

the present section.

Given the velocity uk
h:

1. Compute ūk+ 1
2

h = Fuk
h;

2. Solve the stabilized problem: find uk+1
h in Vh, pk+1

h in Qh such that for all vh

in Vh, qh in Qh:

a(uk+1
h , vh) + c(uk

h, uk+1
h , vh) + b(vh, pk+1

h )

+b(uk+1
h , qh) + τ(ūk+ 1

2
h , uk+1

h , vh; WK, hK)− ( f , vh) = 0
(5.2.14)

3. Check Convergence: end if criterion met; else update and loop.

Note that, unlike in (5.1.6) and (5.1.7), the convective field uk
h in the trilinear form

c is not the same as the convective field ūk+ 1
2 in the stabilization term τ. How-

ever, as property (5.1.4) still holds trivially and (5.1.5) follows from property (f)

in Remark (5.2.1), the iteration (5.2.14) is still well posed for given uk
h and ūk+ 1

2
h .
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Because of this distinction, it is somewhat ambiguous whether we should de-

fine WK based on the norm of the physical velocity ‖uh‖ or the filter field ‖ūh‖;

we found both approaches effective in our numerical experiments but somewhat

better performance when using the physical velocity.

This method requires the solution of the Helmholtz system at each iteration.

This represents an additional cost; however we note that the Helmholtz operator

does not change throughout during the iterative scheme and therefore the associ-

ated matrix need only be assembled once. A solution of this problem is therefore

an arguably small fraction of the cost of full Picard iteration on the saddle-point

system; in some tests we found it to be less than one percent of the computa-

tional time. Accordingly, if the stabilized method allows for convergence in fewer

iterations, we do not expect the cost of the filter problem to offset these savings.

We also notice that one may approximate the Helmholtz system using only

matrix-vector products by truncating the Neumann series at a finite number of

terms. This is justified for µ small enough to make the Neumann expansion

convergent:

uk+1/2
h =

(
I − µ2∆

)−1
uk

h ≈ (5.2.15)

N

∑
j=0

(
−µ2∆h

)j
uk = uk − µ2∆huk + . . . (5.2.16)

where ∆h is a matrix representing a discretization of the Laplacian with the

boundary conditions specified as above. How this approximation affects com-

putational time and accuracy is a possible subject for future investigation.

Convergence Proof

Here we present a convergence proof for the iteration (5.2.14). This proof is

inspired heavily by the convergence proof of the standard Picard method pre-
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sented in Chapter 2.3.1. As in the other convergence analyses shown in this work,

we assume homogenous Dirichlet boundary conditions. As we will be perform-

ing arithmetic operations with τ, we will express it as a quadrilinear form as in

(5.1.8) in order to make these manipulations more clear. For ease of notation, we

write τ(wh, vh, yh, zh; WK, hK) as simply τ(wh, vh, yh, zh), with the dependence on

the parameter WK and mesh size hK understood. We will assume that the bilinear

form a and trilinear form c shown here are in their Laplacian and skew-symmetric

forms, defined previously as a∗ (2.2.19) and c∗ (2.2.18) respectively.

We define the consistent Deconvolution-stabilized Navier-Stokes problem as: find

uh in Vh, ph in Qh such that for all vh in Vh, qh in Qh:

a(uh, vh) + c(uh, uh, vh) + b(vh, ph)

+b(uh, qh) + τ(ūh, uh, vh; WK, hK)− ( f , vh) = 0
(5.2.17)

The velocity solution uh of (5.2.17) satisfies the bound (2.3.10) derived for

(2.3.4) in Section 2.3.1:

‖uh‖V ≤
‖ f‖−1

νCa
, (5.2.18)

This is easily seen by applying the same arguments (2.3.7)-(2.3.8) to (5.2.17) and

noting that the additional term on the left-hand side ∑K∈T WKhK‖(ū · ∇)u‖2
L2(K) is

strictly positive. We also recall the definition of χ and assume the corresponding

small data hypothesis (2.3.18) is filled:

χ ≡ ν2C2
a

Cb‖ f‖−1
> 1. (5.2.19)

Theorem 5.2.1 Let us assume that there exists a unique solution pair (uh, ph) pair to

(5.2.17), resulting from regularity assumptions and the small data hypothesis (2.3.18).
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Assume data sufficiently regular such that uh ∈ H2(Ω). Then the sequence given by

(5.1.7) converges to (uh, ph) provided the initial guess (u0
h, p0

h) is sufficiently close and

δK is chosen such that:

δK <
Cb(χ− 1)

2 hMAX
(5.2.20)

is satisfied, where hMAX is the size of the largest element in T .

Proof.

We proceed by induction. Denote ek := uk
h − uh and ek := ūk+ 1

2
h − ūh. We

assume at an iteration k for some χ̃ > 1,

‖ek‖V ≤
1
χ̃k ‖e

0‖V (5.2.21)

and we seek to show that:

‖ek+1‖V ≤
1
χ̃
‖ek‖V ≤

1
χ̃k+1‖e

0‖V (5.2.22)

Based on the fact that ‖uh‖L2 ≤ ‖uh‖L2 (see Remark 5.2.1), we assume additionally

that for an initial guess close enough:

‖ūk+ 1
2

h ‖L2 ≤ ‖uh‖L2 (5.2.23)

Begin by subtracting (5.2.17) from (5.2.14) at the iteration k + 1 to obtain:

a(ek+1, vh) + b(vh, pk+1
h − ph) + b(ek+1, qh) + c(uk

h, uk+1
h , vh)− c(uh, uh, vh)

+τ(ūk+ 1
2

h , uk+1
h , ūk+ 1

2
h , vh)− τ(ūh, uh, ūh, vh) = 0 (5.2.24)

Noting that ek+1 is in the space Xh (2.3.6) implies b(ek+1, qh) = 0. After some

rearrangement and adding and subtracting c(uk
h, uh, vh), τ(ūk+ 1

2
h , uh, ūk+ 1

2
h , vh), and
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τ(ūk+ 1
2

h , uh, ūh, vh):

a(ek+1, vh) + b(vh, pk+1
h − ph) + τ(ūk+ 1

2
h , ek+1, ūk+ 1

2
h , vh) = (5.2.25)

−c(ek, uh, vh)− c(uk
h, ek+1, vh)− τ(ūk+ 1

2
h , uh, ek, vh)− τ(ek, uh, ūh, vh)

We now let vh = ek+1. This gives b(ek+1, pk+1
h − ph) = 0 by ek+1 ∈ Xh and

c(uk
h, ek+1, ek+1) = 0 by skew-symmetry, yielding:

νCa‖ek+1‖2
V + WKhMIN‖(ū

k+ 1
2

h · ∇)ek+1‖2
L2 (5.2.26)

≤ Cb‖ek‖V‖uh‖V‖ek+1‖V + ∑
K∈T

WKhK‖(ū
k+ 1

2
h · ∇)uh‖L2(K)‖(ek · ∇)ek+1‖L2(K)

+ ∑
K∈T

WKhK‖(ek · ∇)uh‖L2(K)‖(ūh · ∇)ek+1‖L2(K)

Applying the Cauchy-Schwarz inequality on the summation terms above gives:

νCa‖ek+1‖2
V + WKhMIN‖(ū

k+ 1
2

h · ∇)ek+1‖2
L2

≤ Cb‖ek‖V‖uh‖V‖ek+1‖V + WKhMAX‖(ū
k+ 1

2
h · ∇)uh‖L2‖(ek · ∇)ek+1‖L2

+ WKhMAX‖(ek · ∇)uh‖L2‖(ūh · ∇)ek+1‖L2

≤ Cb‖ek‖V‖uh‖V‖ek+1‖V + WKhMAX‖ū
k+ 1

2
h ‖L2‖∇uh‖L2‖ek‖L2‖∇ek+1‖L2

+ WKhMAX‖ek‖L2‖∇uh‖L2‖ūh‖L2‖∇ek+1‖L2

(5.2.27)

where the last line follows from the basic inequality: ‖(w ·∇)v‖L2 ≤ ‖w‖L2‖∇v‖L2 .

Let WK be such that:

WK := δK/‖uh‖L2 (5.2.28)

Then from (5.2.28), (5.2.23), ‖ūh‖L2 < ‖uh‖L2 and Theorem 5.2.3, (5.2.29) reduces



133

to:

νCa‖ek+1‖2
V + WKhMIN‖(ū

k+ 1
2

h · ∇)ek+1‖2
L2

≤ (Cb + 2δKhMAX)‖ek‖V‖uh‖V‖ek+1‖V

≤ (Cb + 2δKhMAX)
‖ f‖−1

νCa
‖ek‖V‖ek+1‖V

(5.2.29)

where the last line follows from (5.2.18). Then from (5.2.19):

‖ek+1‖V + WKhMIN
‖(ūk+ 1

2
h · ∇)ek+1‖2

L2

νCa‖ek+1‖V
≤
(

1
χ
+

2δKhMAX‖ f‖−1

ν2C2
a

)
‖ek‖V

(5.2.30)

Which implies the result if:

χ̃ ≡ ν2C2
a

(Cb + 2δKhMAX)‖ f‖−1
> 1 (5.2.31)

This holds provided3:

δK <
Cb(χ− 1)

2 hMAX
(5.2.32)

Note the right hand side of (5.2.32) is guaranteed to be positive by (5.2.19).

While (5.2.30) immediately implies (5.2.22), looking at its left hand side shows

that it in fact establishes a stronger result that explains how this method stabilizes.

By the established bounds, we may assume that for large enough k:

‖ek+1‖V ≤
WKhMIN

νCa
, implying: 1 ≤ WKhMIN

νCa‖ek+1‖V
(5.2.33)

3Verification that the base case holds for u0
h = 0 (as done in the proof of Theorem 2.3.1) is

straightforward and omitted for brevity.
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By which one obtains:

‖ek+1‖V + ‖(ūk+ 1
2

h · ∇)ek+1‖2
L2 ≤

1
χ̃
‖ek‖V (5.2.34)

The contraction constant χ̃−1 is similar to the constant χ−1 in the standard (non-

stabilized) Picard iteration [66], but is now bounding two positive terms depen-

dent on ek+1: the error in the H1 norm ‖ek+1‖V as well as the error along the

filtered field ‖(ūk+ 1
2

h · ∇)ek+1‖2
L2 . Based on this, we expect the stabilization term

to accelerate convergence by providing stronger control on the error in the regions

identified by ūk+ 1
2

h . This is confirmed by our numerical experiments.

5.2.2 A Strongly Consistent Method

Applying this approach to strongly consistent methods is not immediate. Clas-

sical strongly consistent methods rely on the residual:

−ν∆u + (u · ∇) u +∇p− f (5.2.35)

Implicit in this definition is the reliance on the streamline vector field u, which

serves both as the stabilization path and to guarantee strong consistency. Simply

replacing u with u in the convective term, as we did for the Filtered-Streamline

Diffusion method, yields:

−ν∆u + (u · ∇) u +∇p− f (5.2.36)

which is in general nonzero when evaluated at the exact solution and therefore

not strongly consistent. A different approach is required. Expanding (5.2.36) with
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the generic ū = u− D(Lu) gives

−ν∆u + (u · ∇) u− (D(L(u)) · ∇) u +∇p− f (5.2.37)

We therefore need a term to offset the contributions of (D(L(u)) · ∇) u in order

for (5.2.37) to be consistent with (5.2.35). This leads to the following SUPG-type

approach for stabilizing along u :

Lh(uh, ph; uh, f vh, qh) =

∑
K∈Th

hKWK (−ν∆uh + (uh · ∇) uh +∇ph − f , (uh · ∇) vh +∇qh)L2(K) .
(5.2.38)

Numerical experiments suggest however that this is unstable, and we will demon-

strate in the following section that indeed we cannot guarantee coercivity, and

hence well-posedness, for this problem. Let ̂̃u = D(L(u)) for the sake of notation

and note that ̂̃u = u− u. We then take advantage of our iterative framework and

at a given iteration k + 1 we introduce the following two bilinear forms:

LFIL(uk+1
h , pk+1

h ; uk+ 1
2

h , f , vh, qh) =

∑
K∈Th

hKWK

(
−ν∆uk+1

h + (uk+ 1
2

h · ∇)uk+1
h +∇pk+1

h − f , (uk+ 1
2

h · ∇)vh +∇qh

)
L2(K)

,

LEXP(uk
h, ̂̃uk+ 1

2
h , uk+ 1

2
h , vh, qh) =

∑
K∈Th

hKWK

(
(̂̃uk+ 1

2
h · ∇)uk

h, (uk+ 1
2

h · ∇)vh +∇qh

)
L2(K)

.

(5.2.39)

The term LEXP is entirely explicit. For a convergent iterative scheme uk+1
h ≈ uk

h,

and LEXP negates the contributions of (̂̃uk+1
h · ∇)uk+1

h without affecting the coer-

civity of LFIL. Then at each step we solve the following problem: Find (uk+1
h , pk+1

h )
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in Vh ×Qh such that

a(uk+1
h , vh) + c(uk

h, uk+1
h , vh) + b(vh, pk+1

h ) + b(uk+1
h , qh)+ (5.2.40)

LFIL(uk+1
h , pk+1

h ; uk+ 1
2

h , f ; vh, qh) = −LEXP(uk
h, ̂̃uk+ 1

2
h , uk+ 1

2
h , vh, qh) + ( f , vh)

for all (vh, qh) in Vh × Qh. The strong consistency is easily seen by noting when

evaluating (5.2.40) for an exact solution u we have uk
h = uk+1

h = u. Note that this

scheme is inherently steady and to properly apply it to the unsteady case requires

its use as a nonlinear solver at a given time step.

We defined the parameter WK as:

WK :=
δK

2‖uh‖K
min

(
1,

h ‖uh‖K Re
2‖uh‖L2

)

where δK is a small parameter. This definition was chosen based on empirical

investigation. Although we have broken it into two parts (explicit and implicit),

our term is still constructed with the residual of the physical velocity. Therefore,

we believe it is more consistent to construct WK in terms of uh rather than ūh, as

shown above. The proper selection of WK for the existing methods is a nontrivial

issue. We expect that the performance of this method can be properly tuned

and improved through informed selection of this parameter and this is worth

exploring in future work.

Remark. Like the related SUPG and GLS methods, this scheme also stabilizes the

element spaces, allowing one to use non-LBB stable finite element pairs (such as

P1/P1) for velocity and pressure. This can be seen by expanding the expression
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for LFIL:

LFIL(uk+1
h , pk+1

h ; uk+ 1
2 , f , vh, qh) =

∑
K∈Th

hKWK

(
−ν∆uk+1

h +

(
uk+ 1

2
h · ∇

)
uk+1

h − f ,
(

uk+ 1
2

h · ∇
)

vh +∇qh

)
L2(K)

+ ∑
K∈Th

hKWK

(
∇ph,

(
uk+ 1

2
h · ∇

)
vh

)
L2(K)

+ ∑
K∈Th

hKWK (∇ph, ∇qh)L2(K) .

(5.2.41)

The discretization of the term ∑K∈Th
hKWK (∇ph, ∇qh)L2(K) adds a nonsingu-

lar negative discrete Laplacian matrix to the (2,2) block of (2.3.2), ensuring the

nonsingularity of the system regardless of element choice [59].

Theorem 5.2.4 At each iteration, the stabilized problem (5.2.40) is well-posed.

Proof. We will utilize the following estimate for Oseen problems with

divergence-free vector fields [107]. Assume that u is strongly divergence-free.

Then by Theorem 5.2.2 uh is divergence-free as well.

Let

X := [ ∑
K∈Th

‖(uh · ∇)uh +∇ph‖2
K]

1/2

for the sake of brevity:

∣∣ ∑
K∈Th

hKWK(−ν∆uh, (uh · ∇)uh +∇ph)L2(K)
∣∣ ≤ 1

2

(
ν‖∇uh‖2

L2 + X2
)

(5.2.42)
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We first show the coercivity of the bilinear form:

A((uk+1
h , pk+1

h ), (vh, qh)) = a(uk+1
h , vh) + c(uk

h, uk+1
h , vh)

+b(vh, pk+1
h )− b(uk+1

h , qh) + LFIL(uk+1
h , pk+1

h ; uk+ 1
2

h , f ; vh, qh)
(5.2.43)

Set (vh, qh) = (uk+1
h , pk+1

h ). Then

A((uk+1
h , pk+1

h ), (uk+1
h , pk+1

h )) = ν‖∇uh‖2
L2 + c(uk

h, uk+1
h , uk+1

h )

+X2 + ∑
K∈Th

hKWK(−ν∆uk+1
h , (uk+ 1

2
h · ∇)uk+1

h +∇pk+1
h )L2(K).

(5.2.44)

The second term on the right-hand side is zero by the skew-symmetry of c. Then

by (5.2.42) we can group terms together and find:

A((uk+1
h , pk+1

h ), (uk+1
h , pk+1

h )) >
1
2
(ν‖∇uk+1

h ‖2
L2 + X2)

≥ ν

2
‖∇uk+1

h ‖2
L2

≥ C‖uk+1
h ‖2

V .

(5.2.45)

The continuity of A and the right-hand side are obvious assuming that f , uk+ 1
2

h ,

and ̂̃uk+ 1
2

h are bounded at each iteration k. The well-posedness follows. Note that

a proof of well-posedness at each iteration does not imply the convergence of the

iterative scheme to the desired solution; a rigorous proof of this (similar to that

provided for the consistent scheme in the previous section) is still missing. Re-

mark: It was mentioned earlier that stability is not guaranteed for the formulation

(5.2.38). One can see this by observing that after testing against (uk+1
h , pk+1

h ), one

obtains an expression similar to (5.2.44), but with the following term instead of

X2:

∑
K∈Th

hKWK((uk
h · ∇)u

k+1
h +∇ph, (uk+ 1

2
h · ∇)uk+1

h +∇pk+1
h )L2(K)
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which is not guaranteed to be strictly positive in general due to the different

convective fields on either side of the inner products.

5.3 Numerical Results and Discussion

In this section we test our methods on two 2D and two 3D test cases. Both 2D

and 3D cases were tested on FreeFem++ using a 2017 MacBook Pro.

5.3.1 2D Test Case 1: Flow Past a Step

In our first test, we solve the 2D Incompressible Navier-Stokes Equations at

Reynolds numbers of 166 and 2004 in the domain pictured in Figure 5.3.

Figure 5.3: Domain for the Flow Past a Step test case.

The domain is a 6× 1 rectangle with a .2× .2 rectangular step along the bot-

tom starting at x = 0.5. The flow becomes disturbed and a recirculation region

develops past the step as seen in Figure 5.4. This case can be regarded as a simple

two-dimensional model of an artery where a vascular prosthesis has been de-

ployed. We first computed a reference solution on a very fine mesh (38,280 DOF)

using standard Picard iterations to a high level of accuracy (stopping tolerance of

4The characteristic length here is .2, the height of the step.
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Figure 5.4: Velocity streamlines for test case, Re=200.

10−8 in the relative L2 velocity norm between consecutive iterates). Next, we com-

puted stabilized solutions on different mesh levels using the different techniques

discussed, including both the streamline-diffusion type and strongly consistent

methods.

For the purposes of comparison, we also computed solutions stabilized with

the classical streamline diffusion and SUPG methods. For all computations, we

used a Picard-type approach and iterated until the difference in velocity L2 norm

between iterations was below 1e-3. For all tests we used P2/P1 finite elements for

velocity and pressure respectively, and set µ = .2, δK = .1. We report the results

in the Table 5.1.

Flow Past a Step: Weakly Consistent Deconvolution Stabilization vs Streamline Diffusion
Re Ref. Iter. DOF Deconv. It. ‖uD − u‖L2/‖pD − p‖L2 SD Iter. ‖uS − u‖L2/‖pS − p‖L2

166 52 17292 23 .0029/.0133 30 .0035/.0143
166 52 28623 28 .0028/.0106 43 .0013/.0059
200 89 18192 28 .0046/.0186 40 .0051/.0139
200 89 28623 34 .0039/.0143 56 .0028/.0056

Flow Past a Step: Strongly Consistent Deconvolution Stabilization vs SUPG
Re Ref. Iter. DOF Deconv. It. ‖uD − u‖L2/‖pD − p‖L2 SUPG It. ‖uS − u‖L2/‖pS − p‖L2

166 52 17292 29 .0034/.0141 60 .0035/.0148
166 52 28623 39 .0016/.0058 52 .0013/.0048
200 89 17292 39 .0051/.0143 DNC NA/NA
200 89 28623 55 .0028/.0056 85 .0019/.0059

Table 5.1: Numerical results, 2D flow past a step.
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Our methods outperform the standard methods in all tests, requiring signifi-

cantly fewer iterations to reach convergence in each instance. While the weakly

consistent methods are known to suffer from reduced accuracy, this did not seem

to have significant impact on this case except for Re=200 on the fine mesh, where

weakly consistent deconvolution stabilization was less accurate than other meth-

ods. The above results establish that our scheme yields a more stable iteration,

however faster convergence of nonlinear residuals ‖uk − uk−1‖ does not necessar-

ily imply faster convergence to the reference solution.

Referring to Figures 5.5 and 5.6, we plot a comparison of the convergence of

deconvolution stabilization vs SUPG for Re=200 for both the coarse (17,292 DOF)

and moderate (28,623 DOF) meshes. It should be noted that standard Picard

failed to converge at these mesh levels. We show the convergence to the reference

solutions side-by-side with the nonlinear residuals. On the coarse mesh, we see

that our method (blue) converges up to interpolation error in both velocity and

pressure while for SUPG (red) the convergence becomes oscillatory, particularly

for the pressure. This is reflected in the behavior of the nonlinear iteration resid-

uals, which decrease monotonically for our method but oscillate and fail to drop

below the tolerance level for SUPG.

On the fine mesh, we observe convergence to the solution for both methods,

however convergence is much faster for the Deconvolution scheme. We still notice

oscillations in the convergence for SUPG, however in this instance they merely

slow the convergence and do not prevent it. We confirm here that our scheme

does in fact converge more rapidly and monotonically than the standard schemes

to the desired solution.

Remark: We must briefly clarify a point regarding this section (which applies

to the future numerical tests as well). We recall that the reference solution is

on a much finer mesh than our stabilized solutions, and therefore we only expect
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convergence up to the level of interpolation error. This is indeed what we observe.

In each instance for velocity and pressure we see the convergence ‘bottoming

out’ and flattening after a certain point, indicating that the stabilized solution

has converged up to interpolation error. ‘Convergence’ past this point is not

meaningful. What we are interested in is the rate at which the respective methods

reach convergence.

0 10 20 30 40 50
10

−3

10
−2

10
−1

10
0

Velocity Convergence

Iterations

L
2

 E
rr

o
r

 

 

Deconvolution Stabilization

SUPG

0 10 20 30 40 50
10

−2

10
−1

10
0

10
1

Pressure Convergence

Iterations

L
2

 E
rr

o
r

 

 

Deconvolution Stabilization

SUPG

0 10 20 30 40 50
10

−4

10
−3

10
−2

10
−1

10
0

Nonlinear Residuals

Iterations

L
2

 E
rr

o
r

 

 

Deconvolution Stabilization

SUPG

Figure 5.5: Convergence, Test Case 1. Re=200, 17292 DOF (Coarse).
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Figure 5.6: Convergence, Test Case 1. Re=200, 28623 DOF (Fine).

In (5.7) we show the velocity streamlines for the case Re = 200 colored ac-

cording to the magnitude of our filtered field u. We verify that our filter properly

identifies the recirculation region as requiring the most extra stabilization, despite

it being the region of least convection as shown in Figure 5.4.
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Figure 5.7: Streamlines for flow past a step, Re=200. Red regions indicate more stabi-

lization.

5.3.2 2D Test Case 2: Flow in a Curved Pipe

We follow an identical procedure as before for our next 2D case. We compare

our stabilized solutions for different mesh levels to a standard solution computed

on a fine mesh (47,070 DOF) for Reynolds numbers 600 and 667 in the domain pic-

tured in Figure 5.8. We report the results in Table 5.2. Although the two Reynolds

Figure 5.8: Domain for the 2D Curved Pipe test case.
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numbers appear close together, the behavior of the flow is quite different. We

found that for even slightly higher Reynolds numbers, such as 700, the solution

is no longer steady, even on extremely fine meshes. This test is designed to show-

case our stabilization method at the upper limit of the steady flow regime. Once

again, our approach results in significantly fewer iterations to reach convergence

while maintaining the same order of accuracy when compared to traditional sta-

bilization techniques. For this test case, we do observe that the weakly consistent

methods appear slightly less accurate when compared to the strongly consistent

methods, particularly on the fine meshes.

Curved Pipe: Weakly Consistent Deconvolution Stabilization vs Streamline Diffusion
Re Ref. Iter. DOF Deconv. It. ‖uD − u‖L2/‖pD − p‖L2 SD Iter. ‖uS − u‖L2/‖pS − p‖L2

600 53 11879 21 .0192/.0448 44 .0222/.0458
600 53 23015 35 .0076/.0191 42 .00502/.0103
667 96 11879 30 .0308/.0934 54 .0251/.0571
667 96 23015 38 .0089/.0231 62 .0066/.0108

Curved Pipe: Strongly Consistent Deconvolution Stabilization vs SUPG
Re Ref. Iter. DOF Deconv. It. ‖uD − u‖L2/‖pD − p‖L2 SUPG It. ‖uS − u‖L2/‖pS − p‖L2

600 53 11879 36 .0166/.0440 49 .0163/.0435
600 53 23015 39 .0035/.0075 53 .0025/.00592
667 96 11879 61 .0187/.0453 85 .0215/.0580
667 96 23015 61 .0053/.0101 95 .0035/.0078

Table 5.2: Numerical results, 2D curved pipe.

The sharp increase in the required number of iterations (for all methods) for

what appears to be a small increase in Reynolds number is expected based on the

critical nature of this flow regime.

Remark: As mentioned before, our scheme also stabilizes the pressure and

element spaces, enabling us to use non-LBB inf-sup compatible pairs for velocity

and pressure (such as P1/P1). We compute the same 2D curved pipe test at

Re=667 using P1/P1 on the same mesh level as our fine solution and report the

results in Table 5.3.

This element space greatly reduces the degrees of freedom (16,032 rather than

47,070). The time per iteration for one (non-stabilized, P2/P1) fine mesh solution
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Curved Pipe: Deconvolution Stabilization vs SUPG; Stabilized P1/P1

Re Ref. Iter. DOF Deconv. It. ‖uD − u‖L2/‖pD − p‖L2 SUPG It. ‖uS − u‖L2/‖pS − p‖L2

667 96 16032 59 .0170/.0469 71 .0163/.0432

Table 5.3: Numerical results, 2D curved pipe with stabilized P1/P1 elements.

was 2.64 seconds; for stabilized P1/P1 we observed 1.83 seconds per iteration. As

expected, we lose accuracy with this element space, however. We again see faster

convergence and similar error behavior using our method as compared to SUPG.

5.3.3 3D Test Case 1: Curved Pipe

Our next test case is a three-dimensional version of the curved pipe designed

to demonstrate our method’s applicability to 3D problems. We solve the 3D INS

equations at Re=700 the domain pictured in Figure 5.9. For this test, we computed

Figure 5.9: Domain for the 3D Curved Pipe test case.

a solution without stabilization using standard Picard iterations on a fine mesh

(155,872 DOF). We then computed a stabilized solutions on a coarse mesh (61,391

DOF) using our strongly consistent method and SUPG stabilization. We validated

our solutions by comparing the value of the pressure along the center plane of the

pipe as pictured in Figure 5.10.

We used the same tolerance and values for δ and µ as before. We again ob-



146

Figure 5.10: We compare the pressure along the pictured curve (red).

served improved performance; standard Picard required 34 iterations to converge

on the fine mesh and did not converge on the coarse mesh. The coarse solution

stabilized with SUPG converged in 47 iterations, while the solution stabilized with

our techniques converged in 32 iterations (Figure 5.11). To assess the accuracy of

our solution, we compare the pressure computed along the center of the vessel

(pictured in Figure 5.10). We observe in Figure 5.12 that the stabilized solutions

show good agreement with the fine mesh solution, with no significant difference

between the Deconvolution and SUPG solutions.
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Figure 5.11: Convergence residuals for the 3D Curved pipe case; we see that without

stabilization the solution does not converge on the coarse mesh.
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Figure 5.12: The pressure along the curve pictured in Figure 5.10.

5.3.4 3D Test Case 2: FDA Nozzle Benchmark, Re=500

For our final test case we consider the FDA Nozzle Benchmark case [1] for

Re=500. We use an identical geometrical configuration as found in [90]. This

test case differs from our previous test cases in that the primary instabilities arise

from the high-convection; we seek to show that our stabilization method remains

a viable choice in such instances. We note that our filtering method in no way

excludes unstable high-convection regions, but merely aims to capture other, ad-

ditional types of instability as well. Therefore, we do not necessarily expect our

methods to outperform standard techniques; however we seek to verify that they

remain competitive.

We set the density ρ = 1.056 g/cm3 and viscocity ν = .035 g/cm·s and pre-

scribe a Poiseulle parabolic inflow profile with a flow rate of 5.2062 ml/s. We

again set µ = .2, δK = .1. We monitor convergence by comparing the difference

in velocity L2 norm between consecutive iterations, and stop iterations when this

falls below 1e-3. We will also monitor the pressure drop p(0, 0,−4) − p(0, 0, 0)

between iterations to cross-validate the velocity convergence criterion.
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We run our simulations with P2/P1 finite elements on a coarse mesh contain-

ing 52,895 tetrahedra (243,958 total DOF), an order of magnitude coarser than the

meshes used in [90]. At this mesh level, a Picard iteration using standard Galerkin

techniques fails to converge, necessitating the use of stabilization techniques. We

compare our strongly consistent deconvolution scheme with SUPG in terms of

both convergence and agreement with the measured solution. The convergence

results are shown in Figure 5.13.
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Figure 5.13: Left: FDA nonlinear residuals; Right: FDA pressure drop residuals

SUPG converges slightly faster than the deconvolution scheme (19 iterations

compared to 24) in terms of our velocity residual, however we note that the pres-

sure drop converges more steadily and rapidly for deconvolution filtering. We

see that the iterations fail to converge without stabilization.

Comparing our results to the benchmark data (labeled 243, 297, 468, 763, and

999 in accordance with [1]), we find our normalized velocity and pressure drop

along the centerline (computed in the same manner as in [90], [10]) is in excellent

agreement with the reference experimental data (Figures 5.14 and 5.15). We do

not observe any noteworthy difference between SUPG and deconvolution filtering

in terms of accuracy.

Qualitatively, we see that in this case the nonlinear filter does indeed identify

high-convection regions as requiring stabilization, in addition to the recirculation
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Figure 5.14: Normalized centerline velocity: FDA experimental datasets 243, 297, 468,

763, and 999 compared with computed solutions.
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763, and 999 compared with computed solutions.
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regions (Fig. 5.16). This shows that, while this method was not designed for stabi-

lizing high-convection regions, it still can be used for this purpose. In particular,

this suggests that our method remains a good choice for problems in which one

encounters both convective and non-convective instabilities.

Figure 5.16: Top: velocity field u. Bottom: filtered velocity field u.
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Chapter 6

The Data-Deficient Boundary

Condition Problem

In order for a CFD simulation to have any clinical relevance, it is essential that

we achieve reliable results. Accuracy and reliability are distinct concepts. Accu-

racy ensures that the numerical solution to a given model problem is the correct

one; however, if the underlying model is not physically realistic, an accurate so-

lution to this problem will still fail to be clinically meaningful. Reliability refers to

a model’s ability to accurately reflect reality and produce results that are useful

from the physical point of view. We may verify directly whether or not a given

numerical solution is accurate by comparing it to a reference solution. To as-

sess reliability, we do not verify but rather validate our numerical simulations by

comparing the results against measured physical data.

Reliability is primarily an issue of modeling, while accuracy is primarily an

issue of numerical approximation. To ensure reliable results, we must ensure that

our underlying model is a satisfactory representation of physical reality. Within

our domain, the incompressible Navier-Stokes equations given by (2.2.1) are a

suitable physical model. That blood can accurately be represented as a Newtonian
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fluid for large vessels is well-validated [40, 115, 121]. However, in order to solve

these equations we must also prescribe appropriate boundary conditions. For

(2.2.1) to provide an accurate physical model, these conditions must be assigned

appropriately. Non-physical boundary conditions will lead to a non-physical so-

lution.

In an ideal situation, we would be able to use reliable patient-specific data,

such as flow rates, velocity fields, and pressure readings, to assign the most re-

alistic possible boundary conditions. Unfortunately, this situation is not common

in reality, and it is particularly uncommon for clinical hemodynamics problems.

Often in these settings patient data is incomplete, unreliable, or even completely

missing. We therefore must determine physically realistic boundary conditions

to assign. Several techniques have been proposed for this, including approaches

based on Kalman filtering and PDE-constrained optimization [32, 41, 11]. While

these are effective, they have a large computational cost and often involve solving

the underlying partial differential equation model multiple times. When compu-

tational time and resources are limited, these methods may not be viable.

In this section we will address the problem of determining reliable boundary

conditions without incurring large additional computational costs. In particu-

lar, we would like to avoid methods that require multiple PDE solves, such as

PDE-constrained optimization, while still incorporating any relevant known or

estimated data into our problem. We will structure this section by first giving an

overview of the defective-data problem in computational hemodynamics and the

different situations and types of data one may encounter. While we will only go

on to introduce novel approaches for a subset of these problems, we nonetheless

feel that providing a comprehensive background is helpful for placing our work

in proper context, as well as giving the reader a framework for areas of possible

future development. After narrowing our scope to a specific problem, we will
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then introduce a model problem arising from actual patient data in order to bet-

ter elucidate the situation. We will then use this example to explain why common

techniques are inadequate and to motivate and develop new techniques. We will

conclude by validating our approach against clinical data to establish its efficacy.

The work presented in this chapter is based on collaborative efforts with

Adrien Lefieux, Alessandro Veneziani, Don Giddens, and David Molony and is

part of ongoing (as of this writing) research sponsored by the Emory University

School of Medicine. Aspects of this work were presented by Adrien Lefieux at the

2017 SIAM Conference on Computational Science and Engineering [74].

6.1 Imposing and Determining Boundary Data

The proper selection and enforcement of boundary conditions is essential for

reliability in computational hemodynamics. Unfortunately, in clinical settings

there is typically a large gap between available data and a complete set of bound-

ary data. Additionally, often the available data is subject to noise and measure-

ment error, making its direct prescription potentially problematic even in the

event that it is available. The main goal is therefore to determine appropriate

boundary conditions in the absence of available data.

When dealing with boundary conditions, we face two issues: what boundary

data to prescribe and how to prescribe them. Both issues are important. The ques-

tion of how to prescribe boundary data refers to scheme used to enforce the data

at a given boundary. In general, there are three types of boundary conditions:

Dirichlet conditions, Neumann conditions, and Robin conditions. Which type of

boundary condition is most appropriate depends on several factors including the

type of data being enforced as well as computational and stability considerations.

The question of what data to prescribe is less clear-cut and refers to the determina-
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tion of appropriate boundary data when such data is unavailable or incomplete.

Once again, which method is best will depend on whatever data is available and

considerations based on the available computational power and time.

6.1.1 Imposing Boundary data

In this section we will briefly consider several important types of boundary

data. In particular, we will discuss the enforcement of velocity boundary condi-

tions, traction boundary conditions, and boundary conditions which incorporate

both velocity and traction data. In practice, measured velocities and tractions

are seldom known at the pointwise level, requiring us to instead surrogate these

variables with related quantities that are more easily measured. We will detail

possible strategies for surrogation and which type of boundary condition (Dirich-

let, Neumann, or Robin) is most appropriate.

Velocity and Flow Rate data

Velocity data, if available, is the easiest type of data to work with in general.

In the case that we have an accurate pointwise measurement of the velocity field,

we may prescribe this data at a boundary using Dirichlet (pointwise) conditions.

Unfortunately this situation is rare in reality. A more common and realistic

clinical scenario is one in which we have reliable measurements for the flow-rate

of blood at a given vessel boundary. Flow rates represent a weak type of velocity

data. Past a given boundary Γ, the flow rate Q tells us that

∫
Γ

u · n = Q (6.1.1)

where u is our velocity vector. This data is defective in that it gives us information

about the average flow behavior at a boundary, but does not provide information
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about the pointwise behavior of the velocity. A stable and common way to enforce

this information pointwise is through the construction of an inflow function g,

properly scaled so that:

∫
Γ

g · n = Q (6.1.2)

We then enforce u = g on Γ as a Dirichlet boundary condition. Near the bound-

ary, this may cause inaccuracies; therefore it is common to add flow extensions

in order to allow the impact of the artificial pointwise profile to subside near the

region of interest. This approach is stable and reliable, but adding the flow ex-

tensions requires possibly nontrivial modification of the geometry, increasing the

problem size and required preprocessing and computational time.

Another possible approach is to enforce flow rates using the Lagrange mul-

tiplier flux formulation as described in [39, 121]. One obtains this formulation

by augmenting the Navier-Stokes system with (6.1.1) as an additional constraint,

in effect enforcing the flow rate as a Neumann boundary condition [121]. This

approach is arguably more natural than (6.1.2) as it makes no additional assump-

tions on the spatial profile of the velocity field, eliminating the need for flow ex-

tensions. However, this approach is known to cause stability issues arising from

inflow through a section where a constant traction is prescribed (a mechanism

similar to the well known backflow instabilities), and the addition of the extra

constraint (6.1.1) makes the discrete problem more difficult to solve [94, 39, 31].

Techniques have been proposed to alleviatve one or both of these issues through

penalization [130, 94], however these approaches require the weak prescription of

a velocity field, for which a good choice may not be available given the data.

We may also employ the method suggested in [41], a variational approach in
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which given a flow rate Q is enforced by minimizing:

∣∣∣∣ ∫Γ
u · n−Q

∣∣∣∣2 (6.1.3)

such that u is a solution of the incompressible Navier-Stokes equations. While

this approach is effective, it has a heavy computational burden as it may involve

solving the underlying Navier-Stokes problem multiple times. This may render

this approach to impractical in clinical settings.

Traction and Pressure data

Traction data refers to data measuring the traction force T defined by:

−ν
(
∇u +∇uT

)
n + pn = T on Γ (6.1.4)

where n is the outward-pointing unit normal vector to Γ. We will show later

that these conditions are very easy to enforce due to the weak formulation of our

problem.

Actual pointwise data on the traction force is quite uncommon, so as in the

case of velocity data, we most commonly surrogate traction with a closely related

spatially indeterminate quantity. Note that in our applications typically ν << 1

and our boundary Γ is typically such that u enters or exits perpendicularly to Γ.

In this case, the term −ν
(
∇u +∇uT) n is either zero or small, allowing us to use

a pressure measurement P as a surrogate for T as follows [39]:

−ν
(
∇u +∇uT

)
n + pn = Pn on Γ (6.1.5)

This is important because while traction data is in general hard to obtain,

blood pressure is among the most commonly available clinical measurements.
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Pressure (and by extension traction) boundary data is most easily enforced as

a Neumann condition. If the data is assigned at an outflow, these conditions can

be easily assigned without much difficulty, provided that the flow is sufficiently

regular. However, when assigned as an inflow this approach may again suffer

from a lack of stability caused by flow reversal near the boundary [94]. We may

also encounter flow reversal instability at outflows arising from disturbed flow

patterns at the outlet reentering the domain. Recent work has made progress for

stabilizing the flow reversal in both cases, but it should be noted that the goal of

the stabilization is not the same for inflows and outflows. At outflows, the flow

reversal represents a physical solution and one does not seek to eliminate them,

but to obtain a stable solution incorporating their presence [35, 78, 36, 31]. At in-

flows, as in [94, 31], the flow reversal is non-physical and stabilization procedures

focus on eliminating them.

As with flow rates, one may also employ a variational approach wherein a

given P is enforced by minimizing [41]:

∣∣∣∣ ∫Γ
(pn− Pn)

∣∣∣∣2 (6.1.6)

subject to the constraint that p is a pressure field obtained by solving the incom-

pressible Navier-Stokes equations.

Velocity/Flow Rate and Traction/Pressure data

If both velocity and traction data is available at a boundary Γ, ideally we would

like to incorporate both pieces of information into our boundary conditions for

maximum accuracy. For instance, we may want to enforce:

−ν
(
∇u +∇uT

)
n + pn + θu = D on Γ (6.1.7)
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where θ is an appropriate parameter. This condition incorporates information

about both the traction and the velocity. Since it is constructed using both the

velocity and its derivatives, it is a Robin boundary condition.

We recall from the previous subsections that such pointwise information on

the traction and velocity is not common and is most commonly surrogated. The

pressure P and flow rate Q are more easily obtainable and may be regarded as

reasonable surrogates for velocity and pressure respectively. Defining g as in

(6.1.2), we may surrogate (6.1.7) with

−ν
(
∇u +∇uT

)
n + pn + u = Pn + g on Γ. (6.1.8)

Assuming that the u is dominated by its normal component (u · n)n on Γ (as is

common in our applications), another possible surrogate of (6.1.7) is given by:

−ν
(
∇u +∇uT

)
n + pn + θ(u · n)n = Pn +

Q
AΓ

n on Γ (6.1.9)

where θ is a suitable parameter and AΓ is the area of the outlet. The same back-

flow instability concerns addressed for traction boundary conditions also apply

in this instance, as similar energy arguments apply [31, 48].

As with flow rates and tractions, approaches based on variational minimiza-

tion are also possible, obtained by minimizing:

∣∣∣∣ ∫Γ
(pn− Pn)

∣∣∣∣2 + ∣∣∣∣ ∫Γ
θu · n− Q

AΓ

∣∣∣∣2 (6.1.10)

subject to the constraint that (u, p) are velocity and pressure fields solving the

incompressible Navier-Stokes equations respectively.
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6.1.2 Determining Boundary data

The issue of how to determine boundary data to enforce when the given data

is incomplete or missing is a less straightforward task. Which method is most

appropriate again depends on the nature of the available measured data (if it

exists at all) as well as computational time and power considerations.

A common approach is to assign Robin-type boundary conditions by using

a Windkessel-type model to determine appropriate values of P and Q in (6.1.8)

or (6.1.9). This approach is based on a physiological interpretation of arterial

flow as behaving like an electrical circuit [127]. The models used to determine

P and Q vary in complexity, ranging from simple algebraic equations to systems

of differential equations [40, 98, 67]. This approach is physically well-justified

and requires very little a priori information to implement. However, a common

denominator for all of these approaches is that they are inherently unsteady and

as such they are not suitable for steady problems. As discussed in Chapter 2,

steady problems are attractive for clinical applications for a number of reasons

and accordingly, we require a method for determining boundary data consistent

with the steady setting.

Empirical approaches based on physical models represent a possible such

method. These sorts of methods generally exploit some relationship between

geometric information and a suitable value that can be assigned as boundary

data. For example, [24, 27, 84, 60] establish empirical relationships between vessel

diameter and flow rate based on measured in vivo data and minimization princi-

ples. While these are easy to implement and suitable for steady problems, they

are constructed using large patient pools and may fail to give reliable results at the

individual level. In some instances, they may be inconsistent with the geometry.

We also note that geometric reconstructions are subject to noise and inaccuracy,

naturally causing problems when using such reconstructions to determine flow
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conditions. Figure 6.1 gives a flow chart detailing the process for determining and

assigning boundary conditions.

Figure 6.1: Flow chart: the determination and assignment of boundary conditions. Image

courtesy of Alessandro Veneziani.

6.2 Determining Boundary Conditions: A Model Prob-

lem

We motivate our discussion by using a concrete example to better illustrate

the problem. Consider the following domain Ω, reconstructed from a CT of a

patient’s right coronary artery (RCA) in Figure 6.2.

The boundary is defined by:

∂Ω = Γwall ∪ Γin ∪ {Γi}5
i=1

where Γwall denotes the vessel wall, while Γin and Γi=1:5, labeled in Figure (6.2),
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Figure 6.2: Reconstructed right coronary artery illustrating the problem of data deficiency.

denote the inlet and outlets for the blood flow respectively. The goal of this

simulation is to obtain an accurate measure of the blood pressure distal to the

stenosis (Pd) at the outlet Γ5. Our given data consists of an estimate of the inflow

rate Qin derived from literature values and existing clinical measurements of other

patients, and blood pressure anterior to the stenosis Pa at the inlet Γin.

For the boundary Γin, we may use the methods discussed in Section 6.1 to en-

force our flow estimate Qin as a boundary condition. For the purposes of stability

and simplicity, we will construct a parabolic inflow function gin, properly scaled

so that:

∫
Γin

gin · n = −Qin (6.2.1)

where the negative sign is in order to enforce the condition as an inflow, rather

than an outflow. Parabolic profiles are a good choice for circular or nearly-circular

outlets, as is the case here; for other geometries a different type of flow profile

may be more appropriate. The negative sign in (6.2.1) enforces the condition as

an inflow, rather than an outflow. Along the vessel wall we enforce the no slip
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boundary condition u = 0. Note that our conditions for Γin and Γwall are both of

Dirichlet type. Our model problem then reads:

,

−ν∇ ·
(
∇u +∇uT

)
+ ρ (u · ∇) u +∇p = f in Ω

∇ · u = 0 in Ω

u = gin on Γin

u = 0 on Γwall

(6.2.2)

Referring to (6.2.2), we see that the problem is not well-defined. In particular, we

do not have any boundary conditions prescribed for the outlets Γi, and based on

our given data, there is no obvious way to assign them. Our problem is now to

determine suitable boundary conditions for the outflows without incurring large

additional computational costs while preserving the reliability of the solution.

6.2.1 Traction-free Boundary Conditions

The naive approach would be to assign so-called traction-free boundary con-

ditions at each Γi. This is perhaps the most common method for dealing with

outflows [56], and was used for many of the simulations shown in this work.

These are often referred to as do-nothing boundary conditions as they are im-

posed automatically by a weak formulation of the problem. We demonstrate how

this occurs by writing (6.2.2) in its weak form.

Let ΓD = Γwall ∪ Γin be the Dirichlet portion of ∂Ω and ΓN = ∪5
i=1Γi be the out-

flows (where we do not have boundary data). Proceeding from similar arguments

as shown before, we choose an appropriate functional space V × Q for velocity

and pressure respectively and recast the problem as the following: Find u ∈ V
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and p ∈ Q such that for all v ∈ V, q ∈ Q:

−
∫

Ω
ν∇ ·

(
∇u +∇uT

)
· v +

∫
Ω

ρ (u · ∇) u · v +
∫

Ω
∇p · v =

∫
Ω

f · v∫
Ω
(∇ · u)q = 0

(6.2.3)

We can introduce a lifting function to enforce the Dirichlet boundary conditions

on ΓD (see e.g. [99, 102]). We then apply integration by parts to obtain:

ν
∫

Ω

(
∇u +∇uT

)
: ∇v +

∫
Ω

ρ (u · ∇) u · v

−
∫

Ω
p(∇ · v)− ν

∫
ΓN

(
∇u +∇uT

)
n · v +

∫
ΓN

p n · v =
∫

Ω
f · v,∫

Ω
(∇ · u)q = 0

(6.2.4)

where n is the outward-facing unit normal vector to the boundary ΓN. The

highlighted terms above arise automatically from the application of integration

by parts to (6.2.3). We see that by adding a term of the form:

∫
Γi

φ n · v (6.2.5)

to the right-hand side of the first equation in (6.2.4), one may then exploit the

presence of the highlighted terms to enforce the condition:

−ν(∇u +∇uT)n + pn = φn on Γi (6.2.6)

in a weak (average) sense over Γi.

Traction-free boundary conditions are assigned by simply adding no terms of

the form (6.2.5) to (6.2.2), which is why they are also called ‘do-nothing’ condi-

tions. However, rather than ‘doing nothing’, as that name would suggest, one is
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actually enforcing the condition:

∫
Γi

(
−ν
(
∇u +∇uT

)
n + pn

)
· v = 0 (6.2.7)

at each i. Since ν << 1 in our applications, we can assume the contributions of

ν
(
∇u +∇uT) n are negligible and hence we may regard traction-free boundary

conditions as enforcing at each i:

∫
Γi

pn · v = 0 (6.2.8)

Therefore, assigning traction-free boundary conditions at each outlet in the above

case is equivalent to enforcing that the mean pressure at each outlet is identically

zero, and more problematically, that the pressure drop is the same at each outlet

[56]. Such a flow configuration is obviously non-physical for our model problem;

we do not expect the mean pressure drop across each branch to be the same,

particularly when defects such as stenoses, known to cause pressure drops, are

present [40, 87]. In order to produce a reliable and physically accurate solution

to (6.2.2), this method is not viable and we must develop a more sophisticated

approach.

Briefly, we also note that one can prescribe a given pressure Pi at an outlet Γi by

letting φ = Pi in (6.2.5) [39]. However, given that the distal pressure is generally

unknown (and in fact in this case what we are trying to compute), this is not

helpful for our model problem. Indeed, for most clinical applications, pressure

distal to defects is difficult to measure non-invasively.
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6.2.2 Physical Models and Murray’s Law

Without any patient data to rely on, and traction-free conditions not being

an option, we must use a different method. As suggested in Section 6.1.2, a

possible and sensible technique may be to employ some sort of physical model to

assign our boundary conditions. In hemodynamics, Murray’s Law is a commonly-

employed model for these types of problems.

Murray’s Law for a branching lumen vessel states that for a parent vessel of ra-

dius r with n daughter branches with radii r1, r2, ..., rn the following relationship

holds between the branch radii:

rκ = rκ
1 + rκ

2 + ... + rκ
n (6.2.9)

Murray’s law is derived by minimizing the work done by laminar flow through

a vessel, and in its original formulation had κ = 3 [84, 112]. Later work has sug-

gested different values for κ, with the flow regime and geometrical considerations

causing κ to vary between 7/3 and 3, with the lower values corresponding to tur-

bulent flow regimes [120, 60]. Since we are assuming steady non-turbulent flow,

we will use the original exponent of κ = 3 in our computations; however we will

continue to denote the exponent as κ in the interest of consistency and generality.

Many experiments have been conducted to validate Murray’s law, with the ex-

periments confirming this relationship, though some deviation is to be expected

[57, 112, 126].

A consequence of Murray’s law is that it predicts a constant relationship Qi/rκ
i

between the radius ri and flow rate Qi for all branches Γi [112]. As we know Qin

and we can obtain the radii ri for each branch from our geometry Ω, from this

relationship we obtain the following estimate Qi for the outflow rate at a branch
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Γi:

Qi =

(
ri

rin

)κ

Qin (6.2.10)

This suggests a possible approach of assigning outflow conditions at each Γi with

parabolic outflow functions gi scaled such that:

∫
Γi

gi · n = Qi (6.2.11)

with the right-hand side positive in order to enforce this as an outflow.

While such an approach is attractive and physically well-justified, it cannot be

applied in general. While experiments confirm that Murray’s law holds approxi-

mately, as mentioned previously, discrepancies are often present. Arterial disease,

which affects a significant portion of our cases of interest, is known to cause ves-

sel deformation leading to deviation from Murray’s law [112, 111]. Lastly, as our

geometry is based on a reconstruction of an artery from a CT, we expect addi-

tional noise and error to induce some additional discrepancies. Therefore, the Qi

predicted by (6.2.10) will not satisfy:

5

∑
i=1

Qi = Qin (6.2.12)

in general; that is, these boundary conditions are incompatible with the incom-

pressibility constraint, which requires the sum total of outflows to equal the sum

total of inflows. While this approach is certainly a step forward from traction-free

boundary conditions, it is not suitable for our problem (6.2.2) in its current form.
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6.2.3 Unilateral Least-Squares Minimized Murray’s Law

As seen in the previous section, Murray’s Law offers us a physically valid

approach for relating known quantities (branch radii ri and inflow rate Qin) to

unknown quantities (Qi) and is known experimentally to hold at least approxi-

mately [57, 112, 126]. From this, we can obtain a complete set of boundary con-

ditions for our model problem (6.2.2). Unfortunately, this law cannot be applied

directly as normal deviations are expected in addition to the further discrepan-

cies from the physical model caused by the geometric reconstruction, causing an

incompatibility with the incompressibility constraint. We therefore would like to

modify Murray’s Law accordingly in order to recover incompressibility.

The most immediate and obvious approach is to use a Least-Squares minimiza-

tion: Find Q = [Q1, Q2, ..., Q5] such that:

arg min
Q

5

∑
i=1

(
Qi −

(
ri

rin

)κ

Qin

)2

s.t.
5

∑
i=1

Qi = Qin

(6.2.13)

This seems to satisfy all of our requirements; however there is a serious problem

with this formulation. The method (6.2.13) allows for both positive and negative

Qi in general. This makes it unsuitable for determining our boundary conditions,

as it may assign backflows at some of our outflow boundaries. As such flow

behavior is non-physical for coronary arteries, we must ensure that each Qi is an

outflow by enforcing that Qi ≥ 0 for each i1.

Taking this into account, our method for determining boundary conditions for

(6.2.2) is given by the following algorithm:

Algorithm 6.2.1 Unilateral Least-Squares Minimized Murray’s Law. For a prob-

1Backflows do occur in other vessels, in particular the Aorta, and when applying this approach
to these vessels we may not necessarily wish to enforce Qi > 0.
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lem on a branching lumen vessel with a parent branch of radius rin and n daugh-

ter branches with radius ri, i = 1 : n, given an inflow rate Qin the outflow rates

Qi at each daughter branch Γi are determined by solving the following problem: Find

Q = [Q1, Q2, ..., Qn] such that:

arg min
Q

n

∑
i=1

(
Qi −

(
ri

rin

)κ

Qin

)2

s.t.
n

∑
i=1

Qi = Qin,

Qi ≥ 0 ∀i

(6.2.14)

The computation of (6.2.1) is non-trivial, however software packages exist for

solving such problems. We used the Matlab subroutine lsqlin, part of the Matlab

Optimization toolbox [80].

6.3 Validation on Clinical Data

As detailed in the previous section, we developed the Unilateral Least-Squares

Minimized Murray’s Law (6.2.1) in order to efficiently solve the model pressure

drop problem shown in Section 6.1 in a clinical setting. We validated the algo-

rithm by solving the problem on a dataset obtained from clinical data consisting of

n = 7 patients, with the data coming from three different locations. We found that

our methods produced excellent agreement with the measured clinical data, while

remaining simple, easy to implement, and computationally inexpensive. We will

organize this section by briefly describing our study design and its objectives and

methodology, presenting information regarding our dataset, and concluding with

a presentation of our results.
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6.3.1 Study Design

This study aims to validate the Unilateral Least-Squares Murray’s Law (6.2.1)

method for assigning boundary conditions for patient-specific CFD simulations

on stenosed coronary arteries. Our goal is to successfully estimate the distal

pressure Pd past the stenosis. For each patient, we use a CT to reconstruct the

right-coronary artery (RCA). We reconstructed the main vessel, as well as the side

branches; however we note that the number of reconstructed side branches varied

on each case based on the CT. We included every side branch that we were able to

successfully reconstruct. All geometric reconstructions were done using the freely

available software Segment [52].

For each patient, we have a measurement of the pressure anterior to the steno-

sis Pa. We set the the blood density ρ = 1.06 g/cm3 and kinematic viscocity

ν = .035 g/cm.s based on [40, 87]. For our inflow rate Qin we used a value 5 ml/s

for each patient. This estimate is based on the flow rate measurements found in

[114, 87], adjusted to account for nitroglycerin dilation of the vessels during the

CT, which causes an increase in vessel size of approximately 23 percent [38].

The boundary conditions were assigned following the procedures outlined in

the preceding section. We enforced the inflow with Dirichlet boundary condi-

tions by constructing a parabolic inflow function gin scaled to match our Qin as

described in (6.2.1). At the vessel walls we assign the no-slip boundary condition

u = 0.

For the outflows, we determine the outflow rate Qi at each branch Γi with the

Least-Squares Minimized Murray’s Law algorithm (6.2.1). We enforce the flow

rates for the outflow branches Γ1, Γ2, ..., Γn−1, with weighted parabolic outflow

profiles gi constructed as shown in (6.2.11). We may leave the outlet of interest

Γn as a traction-free boundary condition. As the inflow and all other outflows are

enforced strongly with Dirichlet profiles, the incompressibility condition ensures
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that the outflow rate Qn at Γn will be satisfied according to (6.2.1) [39, 56, 121].

This leads to the following problem:

Problem 6.3.1 Problem for Validation Study: For the clinical validation of (6.2.1),

for each patient in our data pool with n total outflow branches, we solve the following

stationary incompressible Navier-Stokes problem:

−ν∇ ·
(
∇u +∇uT

)
+ ρ (u · ∇) u +∇p = f in Ω

∇ · u = 0 in Ω

u = gin on Γin,
∫

Γin

gin · n = −Qin

u = gi on Γi,
∫

Γi

gi · n = Qi, i = 1 : n− 1

u = 0 on Γwall

with ν = .035 g/cm.s, ρ=1.06 g/cm3, Qin=5 ml/s and Qi determined according to Uni-

lateral Least-Squares Minimized Murray’s Law (6.2.1). We then compare our computed

pressure distal to the stenosis Pcomp
d with the measured value Pmeas

d for the same parameter.

For the discretization and solution of the Problem 6.3.1, we used the Finite El-

ement method with Taylor-Hood P2/P1 elements for velocity pressure respec-

tively. To solve the nonlinear problem we used Picard iterations with Grad-Div

stabilization (ξ = 1) for additional stability (4.1.2), terminating the iterations when

relative difference between consecutive Picard iterations for the pressure drop

p|Γin − p|Γn (values taken from the centroid of each surface) dropped below 1e-3.

As our meshes were relatively small, we used sparse direct solvers to solve the

monolithic problem at each iteration. Computations were performed using the

software FreeFem++ on a 2017 MacBook Pro.

We conclude this section by noting that, although the anterior pressure Pa
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is our known patient data, we do not directly use this information during our

computation of (6.3.1). However, we do in fact use this information to recover our

variable of interest, the distal pressure Pcomp
d . Note briefly that the pressure p only

appears in (6.3.1) under the gradient operator and therefore we are technically

computing a pressure field p + C, with p unique up to an additive constant C,

which is in turn determined by the Neumann boundary conditions. We may

easily recover Pcomp
d by applying the formula:

Pcomp
d = Pa −

(
p|Γin − p|Γn

)
(6.3.1)

In our particular case, C = 0 as we applied homogenous Neumann (traction-free)

boundary conditions on Γn; however the above formula (6.3.1) is independent of

C.

6.3.2 Patient Data Pool

Our dataset consisted of n = 7 patients from three different data sites: A

(n = 2), B (n = 4), and C (n = 1). For each patient we had the measured pressure

anterior to the stenosis Pa and measured pressure distal to the stenosis Pmeas
d . We

provide the patient numbering, pressure measurements, and number of branches

in Table 6.1 (note that Pa and Pmeas
d are rounded to nearest mmHg). In Table 6.2

we provide the measurements of the vessel branches for each case, which we then

use as an input to the Unilateral Least-Squares Minimized Murray’s Law (6.2.1)

to compute the flow splittings provided in Table 6.3.

Each case is a right coronary artery (RCA) with the inlet branch Γin defined

where the artery exits from the Aorta. Flow extensions (respecting vessel size)

were added to Γin in order to allow the parabolic flow profile to develop before

entering the main vessel. Each outlet branch was treated similarly to the example
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Patient Data, Validation Study
Case number Data Site num. of outflows Pa (mmHg) Pmeas

d (mmHg)
1 A 5 100 88
2 A 3 88 74
3 B 3 70 60
4 B 4 92 89
5 B 6 95 86
6 B 4 118 92
7 C 4 80 74

Table 6.1: Patient information for validation study.
Branch radii (cm), Validation Study

Case Number
Vessel Branch 1 2 3 4 5 6 7

Γin .229 .239 .202 .166 .226 .221 .186
Γ1 .047 .053 .078 .077 .050 .091 .104
Γ2 .066 .072 .103 .035 .040 .101 .092
Γ3 .067 .219 .151 .038 .034 .137 .107
Γ4 .050 - - .136 .107 .147 .148
Γ5 .136 - - - .054 - -
Γ6 - - - - .148 - -

Table 6.2: Validation study, patient vessel branch radii (in cm).
Flow Splitting (% of Qin = 5 ml/s), Validation Study

Case Number
Vessel Branch 1 2 3 4 5 6 7

Γ1 15.26% 7.45% 18.94% 18.43% 10.80% 14.39% 17.77%
Γ2 16.81% 9.07% 26.47% 9.17% 10.25% 16.96% 12.33%
Γ3 16.90% 83.48% 54.59% 9.49% 10.03% 31.63% 19.16%
Γ4 15.47% - - 62.91% 20.21% 37.01% 50.73%
Γ5 35.55% - - - 11.04% - -
Γ6 - - - - 37.66% - -

Table 6.3: Validation study, flow splittings computed by (6.2.1). Note that these are

percentages of Qin = 5 for each case.
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shown in Figure 6.2, with the branch being truncated several millimeters after

its splitting from the main vessel. Flow extensions were added on a case-by-case

basis depending on how dissimilar the specific branch was from a circle. The

location of the final outlet Γn on the main vessel was determined based on the

clinical measurement location of Pmeas
d .

6.3.3 Results

The study produced strong results and supports the conclusion that (6.2.1) is

an effective and inexpensive way to prescribe boundary conditions for our prob-

lem. We found broad agreement between Pcomp
d and Pmeas

d , with the results being

reported in Table 6.4 (Pcomp
d and Pmeas

d rounded to nearest mmHg).

Patient Data, Validation Study Results
Case number Pmeas

d (mmHg) Pcomp
d (mmHg)

1 88 85
2 74 71
3 60 59
4 89 85
5 86 89
6 92 102
7 74 74

Table 6.4: Results for validation study.

In Figure 6.3 we display our results using two plots common in medical statis-

tics: a line-of-agreement plot (left) and a Bland-Altman plot (right). These plots

are designed to assess the agreement of two different measurement techniques.

In our case, these measurements are Pmeas
d and Pcomp

d . The line-of-agreement plot

is constructed by plotting one measurement along the y-axis and the competing

measurement along the x-axis, with stronger agreement between the two resulting

in clustering near the line of agreement y = x. Bland-Altman plots are constructed

by plotting the the mean of the two measurements along the x-axis and the dif-
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ference between the two measurements along the y-axis, with stronger agreement

resulting in clustering near the line y = 0. A more thorough description of these

plotting methods can be found in [2].
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Figure 6.3: Agreement between Pmeas
d and Pcomp

d for the validation study.

The plots show strong agreement between Pcomp
d and Pmeas

d , with the data

points clustered near the line of agreement on the left and near the line y = 0

on the right. The mean signed difference across all seven cases was -.53 mmHg,

suggesting that our method did not produce any systemic error. This is signifi-

cant in Bland-Altman analysis, as mean signed difference far from zero indicates

systematic disagreement between the two measurement methods [2]. The mean

unsigned difference was 3.41 mmHg with a standard deviation of 5.07 mmHg.

This is in line with expected variability for blood pressure across different mea-

surement times and methods from the available medical literature [69, 85, 89].

We acknowledge that our sample size of n = 7 is small and that further val-

idation across a larger number of patients is still required. Additionally, future

work in this direction should incorporate more patient and geometry-specific in-

formation into the inflow assumption. In this study we used a constant inflow

value for all cases, however more realistic inflow values will likely increase the
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overall accuracy of our evaluation. Despite the small patient size and the use

of several simplifying assumptions, we nonetheless observe compelling results

from this study. The results obtained seem to strongly support the effectiveness

of (6.2.1) as an accurate and inexpensive way to prescribe boundary conditions in

data-deficient settings.
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Chapter 7

Conclusions and Future Research

Recent improvements in medical imaging, image reconstruction, numerical

methods for computational fluid dynamics, as well as a general increase in com-

puting power, have now made CFD a potentially valuable clinical tool in hemo-

dynamics. However, several important challenges remain before its large-scale

adoption can be fully realized, with many of these difficulties requiring new ap-

proaches in CFD. Broadly, these concerns can be categorized into three groups:

efficiency, stability, and reliability.

Efficiency

Much of the difficulty in clinical CFD arises from the restrictive demands on

computational turnaround time. While unsteady simulations have long been em-

ployed for hemodynamics problems in other research settings, the time scale re-

quired to compute a full unsteady simulation is often large. In order for clinical

CFD simulations to be competitive with in-vivo tests, ideally simulations should

be completed within minutes, or hours at the most. We feel that the use of steady

simulations as a surrogate for the unsteady time average is a possible way to

reduce the computational time frame to a clinically viable level, though the ab-
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sence of a time derivative has long been known to make this problem difficult

numerically.

We introduced methods to counter this difficulty by extending the popular and

efficient class of inexact algebraic factorization methods for unsteady problems

(shown in e.g. [123, 125, 100, 101] ) to the steady setting. We found that these

methods retain many of the advantages of their unsteady analogues: in particular,

they are easy to implement and amenable to preconditioning, with the associated

preconditioners being effective, easy to implement, cheap to apply, and crucially,

do not require any updating during the nonlinear process.

We developed this class of solvers using two approaches: one in which we

introduced a semi-explicit discretization of the problem (Chapter 3) and one in

which we used grad-div stabilization (Chapter 4). Both classes of methods are

effective but have their drawbacks. The methods from Chapter 3 often require

under-relaxation delaying their convergence somewhat, while the methods from

Chapter 4 require the introduction of a grad-div parameter. The grad-div param-

eter ξ is known to cause additional numerical difficulties when large, and though

we found that large values of ξ are not usually necessary, it may nonetheless not

be a viable choice for some problems.

Though these types of methods were presented separately, the development

and validation of methods combining both approaches is a potential area for fu-

ture work. Introducing small-grad div parameters into the methods in Chapter 3

make the approximate Schur complement even easier to solve and allow one to

use a slightly larger parameter α, thereby reducing the amount of necessary un-

derrelaxation. The other way around is also true, in that using the semi-explicit

formulations from Chapter 3 may allow one to reduce the necessary size of ξ. In-

vestigating what formulations ultimately allow for the maximization of the posi-

tive aspects of each class of methods while minimizing the drawbacks may be a
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worthy topic for future investigation.

Stability

The use of steady solvers requires the introduction of nonlinear iterative schemes

whose convergence may be numerically delicate. In particular, small scale dynam-

ics, such as recirculating regions of flow, originating from aspects of the geometry

are known to delay or in some cases even prevent convergence. In hemodynam-

ics, such flow behavior may occur as a result of physical pathologies, such as

aneurysms or stenoses, or spuriously due to irregularities in the reconstructed

geometry arising from noisy input data.

Stabilization techniques based on adding numerical viscosity to convection-

dominated regions are well-established [20, 59, 42, 102, 99]. Such methods are

effective when the instabilities arise from convection, but in cases such as the

ones described earlier, where the instabilities come from recirculating flow and

similar phenomena, the instability is not caused by convection-domination and

these effectiveness of these approaches may be limited.

We introduced new stabilization approaches based on these methods, but

modified such that numerical viscosity is not added in the high-convection re-

gions, but in areas where the flow is irregular and small-scale dynamics are

present, which may be low-convection regions in general. In order to accom-

plish this, we used methods inspired by differential-filtering techniques used in

turbulence modeling (see e.g. [72, 71, 10, 15]). Though our stabilization methods

do not model turbulence, the filters used for turbulence modeling are nonetheless

useful in identification of disturbed flow regions, which we then use for applying

artificial viscosity in a manner similar to the standard stabilization methods. We

introduced both consistent and strongly consistent versions of our method and

demonstrated its effectiveness with two- and three-dimensional numerical tests.
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For future work, an obvious direction is to investigate the approaches intro-

duced Chapter 5 with different choices of filters. The determination of optimality

criteria for of the relevant filtering parameters is another potential topic of in-

terest. A rigorous convergence proof for the strongly consistent version of the

method is also desired.

Reliability

The last concern which we addressed is perhaps the most important, the de-

velopment of reliable methods. In this setting, reliability refers to the ability of a

simulation to provide results that are physically meaningful, allowing clinicians

to use the results to inform treatment decisions for specific patients. Due to the

lack of reliable patient-specific data often found in clinical settings, this problem

is an extremely challenging one as it requires the proper surrogation and deter-

mination of boundary conditions from a limited set of information.

While approaches based on variational problems have been proposed [41],

these suffer from high numerical costs which make their use in this setting diffi-

cult due to aforementioned restrictions on computational time. Other methods,

such as Windkessel-type models, are effective for unsteady settings, but the lack

of time-dependence prevents their use for steady problems. We introduced a

novel approach, suitable for steady problems, that does not require any varia-

tional minimization techniques. This method incorporates geometric information

with a widely-used physical model, Murray’s Law, to determine boundary data.

We applied this approach to a patient-specific dataset and confirmed that it gave

reliable results.

There is ample room for future work in this area. The method we proposed

is valuable not only in and of itself, but also as a potential framework for future

methods. Given a physical model, patient input data, and geometrical infor-
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mation, the same framework could also be to develop analogous techniques for

different physical models. This may have relevance outside of hemodynamics and

could extend to CFD in general.

Regarding the specific method (6.2.13) introduced in Chapter 6, further vali-

dation on a larger patient pool and for more general vessels, such as the carotid

arteries or other parts of the coronary tree, are necessary. Investigating differ-

ent choices of exponent in Murray’s law and how it affects the performance of

(6.2.13) is also potentially worthwhile. Additionally, it may be worth investigat-

ing the use of (6.2.13) with different methods for imposing boundary conditions,

such as the Lagrange-multiplier flux formulations shown in [121, 39]. Finally, for

cases in which pressure and flow data is available, an extension of the method for

Robin-type boundary conditions may also be useful.
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