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The usefulness of anthropometry is undermined by poor measurement quality, 
which has led to calls from the global nutrition community for new technology to improve 
the quality of child anthropometry. In response, a full-body 3D imaging system, 
AutoAnthro, was designed to measure child stature, arm circumference (MUAC) and 
head circumference (HC). The research that makes up this dissertation came from the 
Body Imaging for Nutritional Assessment Study (BINA), which was a large-scale 
validation study of AutoAnthro.  

BINA collected manual and 3D scan-derived measurements from 474 children under 
five years of age in Atlanta, USA. We first analyzed manual measurement quality to 
confirm that we collected gold standard anthropometry. We then evaluated the reliability 
and accuracy of 3D scan-derived measurements against manual measurements, and 
included an assessment of how similar the two methods were in classifying nutritional 
status. Finally, we evaluated the efficiency, invasiveness, and user experience of 3D 
imaging by conducting a time-motion study on a subsample of BINA participants, and by 
interviewing BINA anthropometrists. To place our research into context we carried out 
literature reviews on anthropometric data quality and the use of 3D imaging for 
anthropometry.  

After finding excellent quality of manual measurements we concluded that BINA 
could provide a meaningful evaluation of 3D imaging for child anthropometry. In 
comparing the two methods we found that measurement reliability of repeated scans 
was excellent, and similar to manual measurement reliability for stature, HC and 
MUAC. We found systematic bias when analyzing accuracy — 3D imaging 
overestimated stature and HC and underestimated MUAC. After adjusting scan-derived 
measurements to remove systematic bias, 3D imaging and manual measurement yielded 
similar mean z-scores, z-score standard deviations (SD), and prevalence. Sensitivity and 
specificity of adjusted, scan-derived measurements was good to excellent for all 
measures. Qualitative data showed anthropometrists considered the use of AutoAnthro 
an easy, ‘streamlined experience’ when measuring cooperative children, but scanning 
uncooperative children was difficult. We found that scanning took less time and was 
less stressful for children than manual measurement.  

Technology could be the most efficient driver of anthropometric data quality 
improvement. We do not yet know if AutoAnthro will lead to improved quality of child 
measurements, but BINA showed that a 3D imaging system produced reliable 
measurements of children under five years of age, which suggests that 3D imaging can 
be an appropriate anthropometric tool for infants and young children. Further research 
and development is needed, particularly to determine if AutoAnthro improves quality 
and to address our findings of systematic inaccuracy and anthropometrists’ lack of 
confidence in scanning uncooperative children. The potential value of 3D imaging for 
anthropometry is not limited to quality improvement; adoption of the technology could 
result in collection of hundreds of measurements during regular nutritional assessment, 
and lead to the discovery of new indicators that make anthropometry a better predictor 
of outcomes of interest.  
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Research in Technology Context 
Evidence before this research 

 

3D imaging systems for anthropometry have been around since the 1950s. In the 1980s 
technology advanced from photographs to using lasers for body digitization. By the 
2000s the falling cost of 3D imaging systems (from USD $100s of thousands to less 
than $10,000) made commercial application feasible, and the technology was deemed 
accurate and reliable enough to be used in national sizing surveys of adults and older 
children around the globe. Multiple studies in the health sector found that the 
technology used in sizing surveys could reliably produce measurements for the 
assessment of nutritional status. In 2010 a lower cost (<USD $1,000), portable imaging 
technology, light-coding, was introduced to the market in the Microsoft Kinect. A few 
studies evaluated the use of the Kinect for adult anthropometry and found good 
reliability. The vast majority of studies and research using 3D imaging for 
anthropometry did not include children under four years of age because imaging 
systems were not designed to handle movement. Prior to our research, there was one 
3D imaging system designed for young children, StarScanner, which used technology 
similar to that used in sizing surveys, and was designed specifically to scan a 
newborn’s head to design orthoses. 3D imaging is not used in the health sector for 
regular nutritional assessment of adults or children.  

 

Added value of this research 

 

In 2013 light-coding technology was placed in an open-source, handheld scanner; the 
Structure Sensor. In this research we evaluated the AutoAnthro 3D imaging system, 
which uses a Structure Sensor scanner and custom software. To our knowledge 
AutoAnthro is the first 3D imaging system designed specifically for full-body 
anthropometry of infants and young children. Our research is the first evaluation of 
AutoAnthro, and to our knowledge it is the first research on using a single, handheld 
scanner for anthropometry. AutoAnthro and StarScanner share the same capture 
strategy for handling movement — taking multiple scans of short duration and 
stitching them together. Our research showed that the capture strategy worked well 
for newborns, infants under six months of age, and children three years of age and 
over; but that more software development is needed to make anthropometrists 
comfortable in scanning children six months to three years of age who are not 
cooperative. Our findings on the reliability and accuracy of scan-derived 
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anthropometry of children under five were similar to previous studies in the health 
sector on adults, and those studies concluded that 3D imaging could be used as a 
measurement tool. We also found that 3D imaging was less stressful than manual 
measurements for children, which was not assessed in the literature that we reviewed.  

 

Implications of all the available evidence  

 

3D imaging is not a new idea for anthropometry, but there have been significant 
barriers to regular use of the technology in the health sector. The high cost and 
requirement for dedicated space to setup multiple cameras in fixed locations meant 
that 3D imaging was not appropriate for regular nutritional assessment and screening. 
For children, an additional barrier was that 3D imaging systems were not designed for 
child anthropometry. The development of a low-cost, handheld, single, scanner 
addressed barriers and opened the door to making 3D imaging a common tool for 
adult anthropometric data collection. The development of AutoAnthro and our 
research showed that 3D imaging also has the potential to be a useful tool for 
nutritional assessment and screening of children. Based on findings from a single 
study we cannot yet make policy or practice recommendations. More research on 
portable 3D imaging systems, including AutoAnthro, is needed before we can make 
recommendations on replacing manual measurement equipment with 3D imaging for 
infants and young children.   
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Chapter 1 . Introduction 
 

Anthropometry, or measurement of the human body, is an ancient practice. 

Texts from Ayurvedic and Traditional Chinese Medicine show that human beings 

have attributed meaning to variation in human surface morphology for thousands of 

years (2, 3). Anthropometric methods were standardized in science in the 18th and 

19th centuries, and while interpretation of anthropometry changed dramatically over 

the centuries, with measurements applied to health and wellbeing, productivity and 

fighting ability, fortune-telling, and eugenics; methods for anthropometry changed 

little since the 1800s (3, 4). Today’s anthropometric tools are rudimentary. We rely on 

wooden boards, tapes and calipers; which are some of the same basic tools found in 

B.C. China (3). These basic tools are used to measure body length, height and various 

circumferences and skinfold thicknesses; and anthropometric data are used to 

calculate indices, such as height-for-age and body mass index, which are compared 

to a reference population and associated to disease risk to give meaning to the 

measurements. Anthropometric indicators provide a direct assessment of body size, 

and are also routinely used to indirectly estimate body composition (fat, muscle, 

etc.). However, anthropometric indicators are not good proxies for body 

composition. Fortunately, modern nutritional assessment is not limited to 

anthropometry, and there have been numerous advances in measuring body 

composition. We now have the ability to more directly measure body composition 

through laboratory techniques such as air displacement plethysmography, stable 

isotope dilution, dual energy x-ray absorptiometry, and neutron activation analysis 
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(5). New technology improved measurement of body composition, but did little to 

improve anthropometry.   

 

1.1 Calls for Improved Anthropometric Data Quality 
 

The lack of advancement in anthropometric methods is problematic. First, we 

still rely on anthropometry as a poor proxy for body composition because the cost 

and complexity of laboratory techniques make them unsuitable for routine 

assessment. Second, current equipment, especially length/height boards, are bulky 

and heavy, which places a burden on anthropometrists in remote areas who are 

asked to carry this equipment from village to village and house to house. Third, and 

most importantly for our research, current methods are susceptible to human error 

(6) and when applied outside of a research setting often result in poor quality 

anthropometric data.  

Skinfold thicknesses and some circumference measurements are particularly 

unreliable (7-9), and accurate measurement of child length is often a problem (1). 

Poor quality child anthropometry is common in both health facilities and surveys, 

and the issue is not limited to low-resource settings (9-13). Anthropometric data 

quality was evaluated extensively in large-scale surveys in developing countries, 

such as the Demographic and Health Survey (DHS) and the Multiple Indicator 

Cluster Survey (MICS), which routinely measure weight and length/height. 

Evaluations covering hundreds of surveys in developing countries found too many 

2 

 



 

biologically implausible measurements (11-13) and overdispersion of length/height-

for-age z-scores (HAZ) (11). Overdispersion, or too much variability, is a result of 

poor reliability, and causes overestimation of prevalence. A recent study found that 

DHS and MICS carried out in Western and Central Africa from 1990-2012 may have 

overestimated the prevalence of stunting (HAZ <-2 SD) by ~10 percentage points 

(14). Poor quality was attributed to incorrect age and inaccurate measurement of 

stature, particularly length (11). Stature is prone to measurer error because current 

methods require correct positioning of the child and correct reading of the 

measurement. Measurer error is exacerbated by an uncooperative child — it can be 

difficult to get young children to stay still during measurement, and children under 

two often actively resist the stature measurement because they are distressed by the 

requirement to lie down on a length board.  

Anthropometric data quality varies between countries and between surveys 

in the same country; making it difficult to meaningfully compare countries, analyze 

trends over time, or target public health interventions. At the individual level poor 

quality limits our ability to monitor growth and leads to misclassification of 

nutritional status. The usefulness of anthropometry is undermined by poor 

measurement quality, which has led to calls from the global nutrition community for 

new technology to improve the quality of child anthropometry (11, 15). 
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1.2 Overview of Research Purpose, Materials and Methods 

 

The Bill and Melinda Gates Foundation responded to the call for improved 

anthropometric methods by supporting Body Surface Translations Inc. (BST) to 

develop AutoAnthro, a full-body 3D imaging system designed to measure child 

stature, arm circumference (MUAC) and head circumference (HC). BST had previous 

experience estimating accurately and the weight of pigs using surface morphology 

derived from 3D imaging as a predictor; weight is a key determinant of readiness for 

the market and 3D imaging made this measurement easier.  BST partnered with 

nutrition experts at Emory University to assist in technology development and to 

evaluate AutoAnthro. The research that makes up this dissertation came from the 

Body Imaging for Nutritional Assessment Study (BINA), which was a large-scale 

validation study of AutoAnthro. BINA collected manual and 3D scan-derived 

measurements from 474 children under five years of age in Atlanta, USA.  

In order to draw conclusions on the ability of 3D imaging to accurately 

measure children, BINA needed to collect gold-standard manual anthropometry. 

Our first paper, chapter three of the dissertation, determined if the quality of manual 

anthropometry collected in BINA was good enough to be considered gold-standard. 

We evaluated manual anthropometry quality by examining digit preference, 

biological plausibility of z-scores, z-score standard deviations, and reliability; 

comparing results to the quality of manual anthropometry used to develop the 2006 

WHO Child Growth Standards, and to various standards of anthropometric data 

quality. In our first paper we also provided detailed methodology for manual 
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anthropometry data collection in BINA, and gave recommendations on how to 

collect high quality manual anthropometry and how to improve the assessment of 

anthropometric data quality.  

In chapters four and five, our second paper, we answered BINA’s core 

research question on whether or not AutoAnthro provided accurate and reliable 

measurements of children under five years of age. We evaluated the reliability and 

accuracy of 3D scan-derived measurements against manual measurements, and 

included an assessment of how similar the two methods were in classifying 

nutritional status. In chapters four and five we also included detailed methodology 

on producing measurements with 3D scanning, along with recommendations for 

further research.  

In our third and final paper, chapter six, we evaluated the efficiency, 

invasiveness, and user experience of AutoAnthro. For our third paper we conducted 

a time-motion study on a subsample of BINA participants, and qualitative interviews 

of BINA anthropometrists; adopting a mixed-methods (quantitative and qualitative), 

collaborative (designed and implemented with anthropometrists) approach to 

provide a comprehensive assessment. We compared measurement time for scanning 

against manual measurement, and analyzed interviews using grounded theory. 

Paper 3 also provided recommendations for improvements to AutoAnthro. 

 To place our research in context we carried out literature reviews on 

anthropometric data quality and the use of 3D imaging for anthropometry. For the 

latter we searched PubMed for studies including “3D” and “anthropometry” in the 
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titles, which returned 13 results. We reviewed all papers without restriction, 

including date and language. We used references from reviewed papers and expert 

advice to identify 33 additional sources. By using PubMed we intentionally biased 

our literature review towards the use of 3D imaging in the health sector. For the 

literature review on anthropometric data quality we primarily relied on references 

from known papers and expert advice. We also searched PubMed for 

“anthropometry” and “accuracy” or “reliability.” 

  

6 

 



 

Chapter 2 . Background 
 

2.1. 3D Imaging for Anthropometry – The Past (1800s and 1900s) 

 

Photogrammetry can be traced back to the 1800s when Laussedat used 

photographs for topographic mapping (16). In the 1940s and 1950s anthropologists 

interested in somatotyping developed and tested standardized procedures of 

photogrammetry for anthropometry (17). Early photogrammetry used one camera, 

deriving measurements from a 2D image based on a background that provided scale 

(17). It was quickly recognized that there were limitations to measuring a 3D human 

from a 2D image, and as early as 1952 methods were developed to use a pair of facial 

photographs to create a rough, 3D representation of a human face (18). The use of 2D 

photographs for 3D reconstruction; referred to as stereo photogrammetry, 3D 

photogrammetry, or biostereometrics when applied to biology; required the use of 

multiple cameras and a calibration object (18). Manual identification of landmarks or 

grid points in early stereo photogrammetry was labor intensive, but processing was 

eventually automated (19). One of the earliest uses of automated processing of 3D 

photogrammetry for anthropometry was to assess the nutritional status of 

astronauts; the researcher used a Cray supercomputer and software from the United 

States Air Force (USAF) that was designed for aerial mapping (M. Golden, personal 

communication, April 18, 2017, (20)). In the late 1960s Moire pattern imaging, a 

photographic method utilizing projection of grids, was used for topographic maps; 
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and by the late 1970s the technique was applied to anthropometry in research on 

plastic and reconstructive surgery (19).  

In the 1980s 3D imaging for anthropometry advanced from photographs to 

body digitization with lasers via ‘range imaging’, which is a blanket term covering 

various methods that project light onto the person being measured and use 

triangulation to construct a 3D surface map (19, 21). A number of terms are used to 

describe range imaging methods, including laser scanning and structured light (19). 

Like with the 3D photogrammetry, the USAF was again involved in technology 

development for range imaging. The USAF worked with Anthropology Research 

Project Inc. and the Idaho National Engineering Laboratory to adapt commercial 

scanning technology to anthropometry, and in 1986 the USAF helped Cyberware Inc. 

(dissolved in 2011) adapt their range imaging system (designed to make 3D 

sculptures) to anthropometry (22). Around the same time in the UK another range 

imaging system was developed, the Loughborough Anthropometric Shadow 

Scanner, and like in the US the system was developed through a public private 

collaboration, but in the UK the collaboration involved the garment manufacturing 

industry (23). In both the US and the UK the major driver for the development of a 

3D imaging system for anthropometry was that sizing surveys, needed for garment 

design and ergonomics, were labor intensive (22, 23). The garment industry wanted 

sizing surveys with large samples (4500 to 6500) and 40 measurements per subject — 

with these requirements manual methods took too much time and money (23). By 

the late 1990s a large scale sizing survey, the Civilian American and European 

Surface Anthropometry Resource (CAESAR), employed the use of 3D imaging for 
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anthropometry for a target sample size of ~12,000 (22). The CAESAR survey collected 

data in the US, the Netherlands, and Italy using a Cyberware scanner in the US and a 

Vitronic (Wiesbaden, Germany) scanner in Europe. The survey was supported by 

more than 20 industrial partners, primarily garment and automotive, and was 

overseen by the Air Force Research Laboratory with technical support from the 

Netherlands and Loughborough University (22). 

 

2.2. 3D Imaging for Anthropometry – 2000-Present 

 

By the 2000s the cost of 3D range imaging systems dropped dramatically, 

from USD $100s of thousands to under ten thousand dollars; and 3D imaging was 

common in national sizing surveys around the globe (21, 24-26). In 2001 SizeUK used 

the TC2 scanner ([TC]2, Cary, USA), and multiple countries then used the same or 

similar technology and the same naming convention for their own survey, giving us 

SizeUSA, SizeJapan, SizeKorea, SIzeThailand, and others (24, 25, 27). Researchers 

started to use the 3D data from sizing surveys for health applications. In 2007 Wells 

et al examined associations between body shape and body mass index using SizeUK 

data (24), and researchers in Thailand used SizeThailand data to study diabetes and 

obesity (27).  

Although there is more advanced imaging available in the health sector, such 

as computed tomography and magnetic resonance imaging, interest remains in 3D 

imaging systems because of lower cost and no radiation exposure (19). Researchers 

used photograph or scan-derived anthropometry to diagnose scoliosis, 
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underdevelopment of the optic nerve, and melanoma; to assess treatment of skin 

ulcers, and to predict obstructive sleep apnea (28). Researchers have also tested 

commercial range imaging scanners for measurements relevant to the assessment of 

nutritional status, such as height (29), circumferences (30-32), body surface and 

volume (24, 33, 34), and body shape (24, 35, 36). Some of the studies considered the 

use of 3D imaging in nutritional epidemiology. Jaeschke et al found that scan-

derived measurements correlated as well as manual measurements with biochemical 

markers of metabolic syndrome (31), and Lin et al developed a new index from scan-

derived waist, breast and hip area; the Health Index; and found good correlation 

between the new index and biochemical markers of metabolic disorders (36). Scanner 

technology used in studies on assessment of nutritional status were the same or 

similar to those used in sizing surveys. Sizing surveys and research over the last 

decade showed that 3D scanners are a promising tool for anthropometry, but the use 

of 3D scanners for nutritional assessment is not common outside of research in the 

health sector. Commercial scanners are used in anthropology and forensics (37), and 

in the health sector for orthotics and orthodontics (38, 39), but we do not yet find 3D 

scanners used in primary healthcare clinics or health and nutrition surveys.  

The experience of the Body Benchmark Study provides insight into why the 

3D imaging systems that are commonly used for sizing surveys are not yet common 

in the health sector. In the early 2000s Select Research (Worcestershire, England), a 

company that carried out sizing surveys for the garment industry, researched 

applications for 3D imaging in the health sector (40). In 2007, in collaboration with 

the Mayo Clinic and Heartlands Hospital, Select Research launched the Body 
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Benchmark Study, a study that set out to replace anthropometric proxies of body 

composition, specifically BMI, with a new 3D measurement derived from 3D scans, 

the Body Volume Index (BVI) (40). The study results were made public in 2010 and 

the overall conclusion was that BVI offered advantages over traditional measures 

(40). In 2010 the NHS reviewed the research and rejected a proposal to install 3D 

scanners across the NHS; the company reported that they were advised by the NHS 

to develop a low-cost, mobile solution (40). The imaging systems used by Select 

Research, sizing surveys, and the medical research described in the previous 

paragraph require multiple cameras in a fixed position for stereo triangulation, and a 

long-scanning period (~10 seconds); and while the cost of such a system may be 

reasonable for some uses, it was too expensive for implementation across primary 

healthcare centers.  

In the 1990s in a review of digital photogrammetry Mitchell concluded that 

the requirements for the use of photogrammetry in the health sector are a 

“surprisingly low level of cost“ and no requirement for a “work-station,” pointing 

out that surface morphology is not crucial to a patient’s health because of the 

availability of internal examination (41). The same barriers applied to the attempt to 

bring range imaging technology to the NHS in 2010. An additional limitation of 

range imaging systems was that the long scanning period made it difficult to 

measure children, especially children under three years of age that move constantly. 

In the 1950s Dupertuis, a man interested in standardizing anthropometric 

photogrammetry for somatotyping, reported that the “technique seems admirably 

suited to longitudinal growth study after the first few years (17).” Dupertuis limited 
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his tests to adults and children over three years of age. By 2010 3D imaging was not 

yet used for monitoring child growth and there were no solutions for full body 

imaging of infants and young children. 

In this decade a 3D scanner was specifically designed for children. 

StarScanner (Vorum, Vancouver, BC, Canada) is an US FDA approved medical 

device to scan a newborn’s head for cranial remolding orthoses (39); the device was 

licensed to Orthomerica and is now in hundreds of medical facilities. The 

StarScanner, like the systems before it, requires fixed, multiple cameras. It was not a 

low-cost, mobile solution, but it made its way into the health sector by fitting a 

specialized need. In 2010 PrimeSense (acquired by Apple in 2013) licensed its “light-

coding” technology for use in the Microsoft Kinect. Light-coding is range imaging 

that requires a single device: an infrared projector and sensor are contained in the 

same device and stereo triangulation is achieved by comparing the sensor image to 

an image of the projector’s pattern that is hardwired into a microchip. Light-coding 

reduced the cost and size of 3D scanners and led to the use of 3D imaging in the 

gaming industry. A few studies were carried out to evaluate the use of Microsoft 

Kinect for anthropometry. One study measured stationary cylinders as a proxy for 

human circumferences (43); another study compared Kinect to a more expensive 

range imaging system for various measurements (16); and a third study made 

estimates of body volume with the Kinect (16, 44). None of the studies included 

infants or children under five years of age, and they all used multiple Kinect devices 

in fixed positions. In 2013 a Kickstarter campaign funded the development of 

12 

 



 

Structure Sensor (Occipital, San Francisco, CA, USA), an open-source, light-coding 

3D scanner that attaches to a tablet or phone (Figure 2-1).  

 

Figure 2-1 A. Hardware setup for the Body Imaging for Nutritional Assessment 

Study — Structure Sensor connected to tablet. B. Structure Sensor 

connected to mobile phone 

 

The development of low-cost, ultra-portable, open-source scanners provided an 

opportunity to extend the use of 3D imaging to common uses of anthropometry in the 

health sector, such as nutritional screening and surveillance. The open-source nature 

of Structure Sensor makes it ideal for the development of new software. AutoAnthro, 

the 3D imaging system evaluated in this dissertation, is made up of custom software 

from BST for the Structure Sensor scanner. Previously, BST worked with a large, 

custom 3D scanner that was carried on the back of the operator, and their imaging 

system required that the pigs be snared to prevent movement. AutoAnthro uses a 

single, handheld scanner that is not in a fixed position, and the system was developed 

to allow for some movement with regular nutritional assessment and growth 

monitoring of newborns, infants and young children in mind. 

 

A.  B.  
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Abstract:  
Anthropometric data collected in clinics and surveys are often inaccurate and 

unreliable. The Body Imaging for Nutritional Assessment Study (BINA) evaluated the 
ability of 3D imaging to correctly measure stature, head circumference (HC) and arm 
circumference (MUAC) for children under five years of age. This paper describes the 
protocol for and the quality of manual anthropometric measurements in BINA, a study 
conducted in 2016-17 in Atlanta, USA. Quality was evaluated by examining digit 
preference, biological plausibility of z-scores, z-score standard deviations, and 
reliability. We calculated z-scores and analyzed plausibility based on the 2006 WHO 
Child Growth Standards (CGS). For reliability, we calculated intra- and inter-observer 
Technical Error of Measurement (TEM) and Intraclass Correlation Coefficient (ICC). 
We found low digit preference; 99.6% of z-scores were biologically plausible, with z-
score standard deviations ranging from 0.92 to 1.07. Total TEM was 0.40 for stature, 
0.28 for HC, and 0.25 for MUAC in centimeters. ICC ranged from 0.99 to 1.00. The 
quality of manual measurements in BINA was high and similar to that of the 
anthropometric data used to develop the WHO CGS. We attributed high quality to 
vigorous training, motivated and competent field staff, reduction of non-measurement 
error through the use of technology, and reduction of measurement error through 
adequate monitoring and supervision. Our anthropometry measurement protocol, 
which builds on and improves upon the protocol used for the WHO CGS, can be used 
to improve anthropometric data quality. The discussion illustrates the need to 
standardize anthropometric data quality assessment, and we conclude that BINA can 
provide a valuable evaluation of 3D imaging for child anthropometry because there is 
comparison to gold-standard, manual measurements.   
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3.1. Introduction 
 

The Multicenter Growth Reference Study (MGRS) and subsequent development 

of World Health Organization (WHO) Child Growth Standards (CGS) in 2006 

provided a single set of reference measurements for children around the globe (1). The 

WHO CGS have been commonly adapted for routine use in low- and middle-income 

countries as well as in some high-income countries, including the US, for purposes of 

individual growth monitoring, clinical research, and public health program 

monitoring (2). With the new reference came a single measuring protocol that could 

be adopted in health facilities and surveys everywhere (3); however, the MGRS 

protocol requires extensive training and supervision, and repeated measurements (3). 

The full MGRS protocol is not routinely followed in health facilities, nor is it used in 

large-scale surveys that evaluate nutrition such as Demographic and Health Surveys 

(DHS) and Multiple Indicator Cluster Surveys (MICS). The non-digital, manual 

measurements currently in use are susceptible to human error (4), and the use of 

inadequate measuring protocols can increase measurement error. Poor quality child 

anthropometry is common in both health facilities and surveys (5-9).  

There is recognition that the quality of child anthropometry should be assessed 

before using and disseminating the data. DHS, MICS and Standardized Monitoring 

and Assessment of Relief and Transitions (SMART) Survey methodologies include 

assessment of anthropometric data quality. The assessments are all loosely based on 

recommendations from a WHO expert committee convened in 1995 (10), but there are 

methodological differences. Recently, there have been calls to improve anthropometry 
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quality through the use of technology, and to revisit the 1995 WHO recommendations 

to standardize data quality assessment (11).    

The data we analyze is part of the Body Imaging for Nutritional Assessment Study 

(BINA), which compared a 3D imaging system to currently recommended non-digital, 

manual measurements of stature (length and height), arm circumference (MUAC) and 

head circumference (HC) in 474 children under five years of age. In order to draw 

conclusions on the ability of 3D imaging to replace manual anthropometry, the study 

needed to collect gold-standard manual anthropometry. This paper describes the 

training, standardization and data collection methods for manual anthropometry in 

BINA; evaluates the quality of BINA manual anthropometry; and provides some 

recommendations for achieving gold standard manual anthropometry and 

standardizing data quality assessment to guide clinicians, researchers and public 

health program managers. 

 

3.2. Materials and Methods  
 

Primary caregivers of all children participating in BINA gave written, informed 

consent and the study was approved by the Emory Institutional Review Board. 

 

3.2.1. Field Staff Training and Standardization 

  
 

All five field staff selected for the BINA Study held college degrees, with three of 

the five holding a master’s degree at the time of the study. In August 2016 field staff 
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completed a three-week training led by trainers from Emory University who had 

extensive experience with anthropometry in clinic, survey, and research settings; 

including experience in the study used to develop the 2006 WHO CGS. Training 

consisted of theoretical and practical sessions on 3D imaging and manual 

measurements, and field staff were trained to function as both anthropometrists and 

assistants. Emory University faculty and field staff developed training materials and 

a study manual.  

Training culminated with a three-day standardization test for manual 

anthropometry at a local daycare center, which consisted of a lead anthropometrist 

from Emory University and all field staff taking repeated measurements of ten 

children under five years of age. As anthropometrists, field staff were assessed on all 

measurements except weight, and data was analyzed using ENA Software 2011 (12) 

and a Microsoft Excel Spreadsheet from the United States Centers for Disease Control 

and Prevention (US CDC) Micronutrient Survey Toolkit (13). Passing or failing the 

standardization test was based on accuracy and reliability results for the main 

measurements of interest (length and height). We determined accuracy by comparing 

each anthropometrist to the lead anthropometrist and to the mean of all 

anthropometrists. For reliability, we computed the Technical Error of Measurement 

(TEM), which determines if anthropometrists get similar results when carrying out 

repeated measurements. We also used the US CDC spreadsheets to visually present 

accuracy and reliability results to the anthropometrists, and to assess whether or not 

an anthropometrist’s first measurement was systematically lower or higher than the 

second measurement, also known as the measurement effect. There was no evidence 
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of substantial measurement effect. The accuracy and reliability of the lead 

anthropometrist and all anthropometrists for length and height were similar to results 

from the MGRS (3) and were classified as the highest ranking of “good” (<0.4 cm) 

according to the SMART suggested cut-off point of <0.4 cm for both intra-observer 

TEM and bias from an expert (14). Based on results of the standardization test, we 

retained all anthropometrists for the study.     

 

3.2.2. Sampling, Measurement and Data Entry Procedures 
 

Utilizing convenience sampling we recruited and measured children in facilities, 

primarily daycare centers, in Atlanta, GA, USA from September 2016 to February 2017. 

Detailed methods for participant selection and sample characteristics will be 

published alongside findings on 3D imaging accuracy and reliability.  

For manual anthropometry we followed measurement techniques used to 

develop the 2006 WHO Growth Standards (3), including measuring children under 

two years of age lying down and measuring to the nearest tenth of a kg and cm. We 

measured weight with digital scales with taring function (Rice Lake Weighing 

Systems, Inc., Rice Lake, WI), stature with an infant/child/adult wooden board (Weigh 

and Measure, LLC, Maryland USA), and circumferences with synthetic measuring 

tapes. We routinely checked calibration of scales using known weights and replaced 

damaged measuring tapes. The BINA study manual includes detailed descriptions of 

techniques and equipment used in the study and is available upon request. 

During data collection sessions, the five field staff split into two teams of two, with 

the fifth person acting as a floater. The techniques for scans and manual measurements 
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required an assistant, and teammates alternated as the anthropometrist and assistant. 

Anthropometrists also took turns as a floater, and the main roles of the floater were to 

prepare children for measurement and to act as a second assistant for younger 

children. Anthropometry procedures designed for household surveys often contain a 

role for the child’s caretaker. However, since we obtained data in settings where the 

caretakers were not present, a second assistant was needed to hold and/or position the 

child. 

After taking time to acclimate the child and establish rapport, and after 

undressing the child (to their diaper or to skin-tight shorts/leotards provided by the 

study), the field team started with 3D scans which was then followed by manual 

measurements. The first anthropometrist completed one session, measuring head 

circumference, MUAC, and length or height. Instead of one anthropometrist 

completing two sessions concurrently, the field team reversed roles and a new 

anthropometrist completed her first session of manual measurements. After both team 

members completed their first session, the process was repeated for the second 

session. We staggered manual measurements to reduce the likelihood of 

anthropometrists remembering their first measurement. To further minimize bias in 

inter-observer error, anthropometrists entered their own measurement results and did 

not inform the assistant of the number, which is different from the typical 

anthropometry procedure of the assistant recording results on behalf of the 

anthropometrist.      

 
  

26 

 



 

3.2.3. Quality Control and Data Cleaning 

 

Our custom software for electronic data capture included range checks for non-

digital measurements to catch data entry errors. If a measurement was below the 0.01 

percentile or above the 99.9 percentile, a pop-up box appeared on the screen and the 

anthropometrist could either re-enter or accept the value. The software also included 

automatic triggering of a third measurement for non-digital measurements. The 

triggers were programmed based on the MGRS standards for the maximum allowable 

difference (≤0.5 cm for head and arm circumference, and ≤0.7 cm for length) (3), but 

our study differed from MGRS in that we triggered within observer differences while 

MGRS triggered between observers. For each child, two anthropometrists entered 

demographic information, including date of birth, separately. Double data entry 

allowed us to identify discrepancies caused by data entry error, and we referred to the 

original consent form to make corrections.  

For manual anthropometry, field staff received ongoing monitoring and 

supervision. This included examining digit preference, the percent of intra-observer 

measurements exceeding the maximum allowable difference, measures of inter-

observer reliability namely TEM, and estimates of bias by comparing to an expert 

anthropometrist who measured a subsample of children. In addition to comparing to 

an expert anthropometrist, field staff also periodically compared with each other. Field 

staff regularly received data quality reports and supervision from expert 

anthropometrists. 
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3.2.4 Quality Tests 

 

For digit preference, we examined the proportion of non-digital, manual 

measurements (height, head circumference and arm circumference) with each of the 

possible digits (0-9) in the tenths place (mm). We analyzed the first measurement from 

each anthropometrist. Since each child was measured by two different 

anthropometrists, we included 948 observations in the analysis. We used the Stata SE 

13 (StataCorp, College Station, TX, USA) digdis package for analysis. We tested for any 

digit preference with Pearson’s Chi Squared Test. We calculated the difference 

between the expected and observed percentages and tested for preference of each 

individual digit using a two-sided Binomial Test. To determine how close our 

observed proportions were to a uniform distribution, we summed the difference 

between expected and observed for positive differences only. The sum gives the 

percentage of digits that would need to be reclassified (moved from an 

overrepresented digit to an underrepresented digit) to achieve a uniform distribution, 

which is similar to the Myer’s Blended Index (7) and the Digit Preference Score (14). 

We calculated the Digit Preference Score to allow comparisons with other research.  

We used the 2006 WHO Growth Standards to calculate z-scores for weight-for-

length/height (WHZ), length/height-for-age (HAZ), weight-for-age (WAZ), head 

circumference-for-age (HCZ), and arm circumference-for-age (ACZ). We assessed the 

plausibility of z-scores by determining the proportion of measurements flagged as 

falling outside of the plausible range as defined in WHO macros (WHZ <-5|>5; HAZ 

<-6|>6; WAZ <-6|>5; BMIZ <-5|>5; HCZ <-5|>5; ACZ <-5|>5) (15). We also examined 

flags used in Demographic and Health Surveys (DHS) for length and height 
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plausibility (lying down 45-110 cm, standing up 65-120 cm). In the WHO Macro, 

implausible length or height measurements are not flagged, but WHZ scores that 

cannot be calculated are automatically set to missing. We calculated z-score standard 

deviations (SD) and analyzed SD disaggregated by age (under and over two years of 

age) to determine if the quality of measurements differed by age. We also analyzed z-

scores for both the average of all measurements (repeated) and the first measurement 

of the first anthropometrist (single).  

We analyzed both intra- and inter-observer error for height, HC and MUAC using 

repeated measurements. Intra-observer technical error of measurement (TEM) was 

calculated with the following formula:  

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = �∑ (𝑇𝑇𝑖𝑖1 − 𝑇𝑇𝑖𝑖2)2𝑁𝑁
𝑖𝑖=1

2 ∗ 𝑁𝑁�   

, where N is the number of children and 𝑇𝑇𝑖𝑖1𝑇𝑇𝑖𝑖2 are the closest repeated manual 

measures for one child by one observer. For inter-observer TEM we compared the 

average measurement of one observer to the average measurement of another 

observer for the same child, changing the numerator in the equation above to 

(
𝑇𝑇𝑖𝑖𝑖𝑖1 +  𝑇𝑇𝑖𝑖𝑖𝑖2

2� −  𝑇𝑇𝑖𝑖𝑖𝑖1 +  𝑇𝑇𝑖𝑖𝑖𝑖2
2� )2. We calculated Relative TEM, also known as 

%TEM, by dividing TEM by the mean of all the measurements that went into 

calculating TEM and multiplying by 100 (16). Total TEM combines intra and inter-

observer reliability in the following formula:  

 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =  �𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇2 +  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇2 
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For correlation, we calculated the Intraclass Correlation Coefficient (ICC) using two-

way mixed effects (17) and an absolute agreement definition in SPSS 20 (IBM Corp., 

Armonk, NY, USA). 

 

3.3. Results from Quality Tests 
 

3.3.1. Digit Preference 

 

All measurements (stature, HC, and MUAC) showed evidence of terminal digit 

preference when we tested the child’s first measurement with Pearson’s Chi-Squared 

Test (p<.01, n=948). For all measurements, the terminal digit four was significantly 

overrepresented. In addition, eight was overrepresented for HC, and six was 

overrepresented for MUAC ( Table  3-1). The sum of the difference between observed 

and expected percentages for all overrepresented digits indicated that 5.8% of stature 

measurements and 9.7% of both head and arm circumference measurements would 

need to be reclassified to achieve a uniform distribution ( Table  3-1). The digit 

preference score was 5.5 for height, 8.7 for HC, and 8.3 for MUAC. 

 

3.3.2. Plausibility & Reliability 
 

Using means of repeated measures and ranges defined by WHO for biologically 

plausible z-scores one child (0.2%) was flagged, falling above the range for WHZ, 

BMIZ and ACZ. Also, the length of one child (0.2%) was lower than the plausible 
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range. With single measures, the length of one additional child was lower than the 

plausible range, and no additional children had implausible z-scores.  

For means of repeated measures, the standard deviation for all z-scores (HAZ, 

WHZ, WAZ, ACZ, and HCZ) was close to 1.0, ranging from 0.92 for WHZ to 1.07 for 

HAZ. Standard deviations using single measures were slightly higher, with the largest 

differences in ACZ (0.03) and WHZ (0.02) (Table 3-2). With increased variation we also 

found single measures had slightly higher prevalence estimates of children below or 

above some SD cutoffs for ACZ and WHZ (Figure 3-1), but differences were not 

statistically significant when tested with Chi-Square. For both repeated and single 

measures, z-score standard deviation was not consistently higher for children under 2 

years of age compared to children 2 years and older. Levene’s Test for Equality of 

Variances showed no statistical difference in z-score variance between the age groups 

for all indices (Table 3-2). 

The correlation between an anthropometrist’s first and second measurement of a 

child (intra-observer), and between two anthropometrists’ average measurements of a 

child (inter-observer) was near perfect. The Intraclass Correlation Coefficient for all 

intra- and inter-observer measurements was exactly 1.00 (95% confidence interval of 

1.00, 1.00) except for inter-observer arm circumference, with ICC of 0.99 (CI: 0.99, 0.99). 

Intra-observer TEM in centimeters was 0.22, 0.13, and 0.16 for stature, HC, and MUAC 

respectively. Intra-observer TEM values corresponded to relative TEMs of 0.26%, 

0.29%, and 1.04% respectively (Figure 3-2). As an illustration of TEM interpretation, 

the stature intra-observer TEM of 0.22 cm means that 2/3rds of repeated measurements 

were within ±0.22 cm and 95% of replicate measurements were within 2*TEM, or ±0.44 
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cm. Inter-observer TEM was higher than intra-observer for all measurements: stature 

TEM 0.34 cm, %TEM 0.42%; HC TEM 0.25 cm, %TEM 0.54%; and MUAC TEM 0.19 cm, 

%TEM 1.22% (Figure 3-2). Although MUAC inter and intra TEM was lower in absolute 

terms, MUAC relative TEM was approximately two to three times higher than stature 

and HC. Total TEM, combining inter- and intra-observer reliability, was 0.40 for 

stature, 0.28 for HC, and 0.25 for MUAC in centimeters.  

          

3.4. Discussion 
 

Our data shows that manual anthropometry in BINA was of excellent quality. 

Only 0.4% of the sample had biologically implausible z-scores or measurements, 

which is well below the 1% cutoff recommended by a WHO expert committee as an 

indicator of data quality problems (10). Our z-score SDs also indicated good quality 

because they were between 0.9 SD - 1.1 SD (14, 18), and there were no differences in 

SD between age groups; a higher SD among children under 2 is an indicator of poor 

quality and is attributed to difficulty in measuring the length of young, uncooperative 

children (7, 19). We found no terminal digit preference for zero or five, and the percent 

of measurements theoretically requiring reclassification for a normal distribution was 

low; we could obtain a normal distribution by changing 6% of terminal digits for our 

stature measurements compared to an average of 18% in 52 DHS from 2005-2014 (7). 

Biological plausibility, z-score SD, and digit preference are metrics commonly used to 

assess data quality of single anthropometric measures, and our study showed 

excellent quality according to all three metrics. In addition, the repeated measures in 

our study enabled analysis of inter- and intra-observer reliability. For stature the BINA 
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intra- and inter-observer TEMs of 0.22 and 0.34 cm respectively are within the range 

of inter-observer TEM at MGRS study sites (0.15-0.41 cm).The TEMs for all of our 

measurements were on par with TEMs observed at MGRS study sites and were within 

the 95% precision margin of MGRS expert anthropometrists (4).The quality of manual 

anthropometry in BINA is similar to the quality of anthropometric data used to 

develop the 2006 WHO growth standards. 

In our study, we achieved high quality manual anthropometry through following 

established protocols and adding additional quality control components. We followed 

advice from MGRS protocol authors to develop a study specific training manual, use 

proper, high quality equipment that is maintained, train and test staff with 

standardization, and provide adequate supervision during data collection (3). For 

measurement techniques, we drew from materials used in household surveys (20-23), 

which are largely based on a 1986 UN publication on measuring children (24). We also 

made sure that our techniques were aligned with the procedures used to develop the 

WHO Child Growth Standards by referring to MGRS protocol and the WHO 

anthropometry video used to train MGRS anthropometrists (3, 25). With the aim to 

strengthen their understanding of, and dedication to adhere to, study protocols, we 

included our field staff in development of the study manual. Field staff produced the 

first draft of the 3D imaging section of the manual and participated in revision and 

refinement of manual anthropometry sections. Field staff participation in study 

manual development led to recognition of the need to improve upon some of the 

borrowed materials. For example, the instructions for finding the mid-upper arm point 

did not adequately explain identification of the acromion process and illustrations 
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incorrectly depicted measuring the side of the arm. For head circumference, we added 

additional instructions for the anthropometrists to reposition at both the front and 

back of the head while removing and replacing the tape multiple times to find the 

largest circumference. Electronic data capture allowed us to avoid data entry errors 

through the use of range checks and double data entry at the point of data acquisition; 

and facilitated adequate monitoring and supervision. Identifying errors during 

measurement allowed us to re-measure children, reducing the number of implausible 

measurements. Like the MGRS and following recommendations from a 1995 expert 

committee (3, 10), we routinely assessed field staff accuracy and provided regular, 

timely feedback on the quality of anthropometry. Assessment of accuracy during data 

collection is not standard in common surveys such as DHS and MICS. Repeated 

measurements, which are rare outside of research study settings allowed us to include 

reliability in quality monitoring; and electronic data capture provided 

anthropometrists with real-time feedback on their own reliability through the use of 

automatic triggers.  

There have been suggestions to take repeated measures in surveys (11). Our 

results show little difference between single and repeated measures for z-score 

standard deviations and prevalence. However, differences may be greater with poor 

quality anthropometry, and repeated measures may influence quality. Triggering 

additional measurements provides an incentive to anthropometrists to improve 

reliability and avoid additional work. For survey institutions with a known history of 

poor quality anthropometry temporary adoption of duplicate measures by two 

anthropometrists, along with triggering of repeated measures based on inter-observer 
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maximum allowable difference, may help to improve quality and provide accurate 

results. Inter-observer error was higher in our study, which is consistent with findings 

in a developing country setting (19); the MGRS used inter-observer triggering and 

adoption of inter-observer triggers in surveys may improve quality more than intra-

observer triggers. In addition, repeated measures could be restricted to the most 

unreliable measures, such as length of children under two years of age and MUAC.   

 There is some consensus on what to assess for anthropometric data quality. A 

1995 WHO expert committee recommended looking at accuracy, reliability, biological 

plausibility, z-score standard deviation, and digit preference (10); and these metrics 

are incorporated into manuals and assessments for DHS and MICS. SMART survey 

methodology includes all of these metrics, along with additional metrics such as 

skewness and kurtosis. The 2011 Emergency Nutrition Software (ENA) for SMART 

has automated reports for standardization tests and data quality, with the latter 

referred to as a plausibility check (14). While quality assessments for DHS, MICS and 

SMART are similar, the methods are not exactly the same. For example, z-score ranges 

for biological plausibility can differ and there are multiple tests for digit preference. 

Our study provides a simplified method for assessing digit preference that does not 

require specialized software. Standardization of what to measure and how to measure 

anthropometric data quality is needed, but there may be larger institutional 

differences in how to interpret and act on data quality reports. One of the challenges 

in this study was determining the criteria to judge whether or not we achieved gold 

standard manual anthropometry. DHS and MICS do not have indicator thresholds for 

acceptable anthropometric data quality, and it is very rare for either to suppress data 
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because of poor quality. The ENA SMART plausibility check determines if data quality 

is acceptable with a composite score based on thresholds for multiple indicators (14). 

Another composite scoring system was developed by UNICEF-supported research (9), 

but the system is not regularly used. For many surveys data quality is assessed, but 

there is no standard criteria to judge whether or not results should be released.  

We can consider z-score standard deviation to illustrate the importance of 

reaching consensus on interpretation and action. WHO and the US CDC promote the 

use of normative ranges of SD to determine if survey quality is acceptable (10, 26), but 

the ranges are based on surveys that have evidence of poor data quality (7, 18). The 

most recent DHS data quality assessment showed that 30 of 52 countries had HAZ SD 

greater than 1.5, but only one country suppressed data because of poor quality (7). 

According to SMART data quality is not acceptable if HAZ SD is above 1.2 (14), and a 

recent modeling study showed that SD of 1.5 can result in substantial overestimation 

of stunting prevalence (18). Meanwhile, the published normative range for HAZ SD 

that some organizations use to deem data quality acceptable is 1.35-1.95 (10, 26). Digit 

preference provides another example of the need to focus on interpretation and action. 

Digit preference has been monitored for years as an indicator of data quality, but even 

very high measurement digit preference (80% theoretically needing reclassification for 

a normal distribution) has no meaningful impact on z-score means or prevalences (18). 

Weight and height heaping may be useful as a proxy for measuring whether or not 

anthropometrists follow protocol, but the indicator has little bearing on if and how 

data should be used. The ENA SMART plausibility check provides a good starting 

point for consensus. Efforts for standardization should consider that quality indicator 
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thresholds should be based not only on what is feasible, as was done in the MGRS for 

reliability and accuracy (3), but also on how quality affects the usefulness of individual 

growth monitoring, prevalence estimates, and population-level trend analysis.         

 

3.5. Conclusions 
 

Manual anthropometry in BINA should be considered gold standard, and the 

high quality can likely be attributed to highly motivated and competent field staff, 

reduction of non-measurement error through the use of technology, and reduction of 

measurement error through adequate monitoring and supervision. We made slight 

improvements to training materials and added to the MGRS protocol for quality 

control by utilizing electronic data capture and including field staff in the development 

of the study manual. BINA methodology can be followed to improve anthropometric 

data quality, but will need to be adapted for use in some contexts. For example, BINA 

field staff were highly educated and reported child age is accurate in the US; in a 

different context different strategies may be needed to allow field staff to contribute to 

manual development, and double data entry may not be sufficient to ensure quality 

age data. Furthermore, for systematic improvement of anthropometric data in clinics 

and surveys the availability of adequate methodology may not be enough. The lack of 

consensus on how to interpret and act on analysis of anthropometric data quality leads 

to results being published without reproach, which limits the institutional need and 

motivation to improve quality. Ultimately, while high quality anthropometry is 

possible with available manual equipment, improved technology may be the most 

efficient driver of widespread quality improvement; and BINA can provide a good 
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evaluation of 3D imaging for child anthropometry because manual measurements 

were of excellent quality.   

  

38 

 



3.6. Figures and Tables 
 

 Table  3-1 Terminal digit preference expressed as percentage of anthropometrists’ first measurement for height, head circumference 
and arm circumference ending in .0 to .9 compared to the expected 10% among children 0-4.9 years (n=948 observations from 474 
children), BINA 2017 

Terminal 
Digit (tenths 
place) 

Height   Head Circumference   Arm Circumference 

% Observed 
% Observed - 
% Expected P-Value  % Observed 

% Observed - 
% Expected P-Value  % Observed 

% Observed - 
% Expected P-Value 

0 8.5 -1.5 0.14  5.0 -5.0 0.00  5.9 -4.1 0.00 
1 9.2 -0.8 0.45  9.2 -0.8 0.45  10.7 0.7 0.48 
2 11.2 1.2 0.23  11.2 1.2 0.23  8.4 -1.6 0.12 
3 10.2 0.2 0.79  10.1 0.1 0.87  9.8 -0.2 0.91 
4 14.3 4.3 0.00  14.3 4.3 0.00  14.6 4.6 0.00 
5 9.7 -0.3 0.83  6.8 -3.2 0.00  6.4 -3.6 0.00 
6 9.8 -0.2 0.91  9.8 -0.2 0.91  12.3 2.3 0.02 
7 9.8 -0.2 0.91  9.6 -0.4 0.75  11.6 1.6 0.10 
8 9.1 -0.9 0.36  13.3 3.3 0.00  9.7 -0.3 0.83 
9 8.1 -1.9 0.06   10.8 0.8 0.42   10.5 0.5 0.55 
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Table 3-2 Mean z-score, standard deviation, and test of equal variance between age groups for height-for-age (HAZ), weight-for-
height (WHZ), weight-for-age (WAZ), arm circumference-for-age (ACZ), and head circumference-for-age (HCZ) from manual 
measurements (n=474), BINA 2017 

 

  

  

Total (0-4.9 years)   Less than 2 years (U2)   2-4.9 years (O2)   
Difference in Variance 
(Levene's Test)  

  n 
Mean 
z-score 

Standard 
Deviation 
(SD)  n 

Mean 
z-score 

Standard 
Deviation  n 

Mean 
z-
score 

Standard 
Deviation  

U2 
SD-
O2 
SD F P-Value 

Repeated 
measure 
mean 

Height-for-age 474 -0.29 1.07   223 -0.42 1.10   251 -0.18 1.03   0.08 0.12 0.73 
Weight-for-height 472 0.34 0.92 

 
222 0.32 0.88 

 
250 0.35 0.96 

 
-0.08 0.87 0.35 

Weight-for-age 474 0.06 1.04 
 

223 -0.05 1.02 
 

251 0.17 1.05 
 

-0.04 0.26 0.61 
Arm circumference-for-
age 

385 0.78 0.94 
 

135 0.84 0.92 
 

250 0.75 0.95 
 

-0.03 <0.01 0.93 

Head circumference-for-
age 

474 0.24 1.02   223 0.11 1.01   251 0.35 1.01   0.00 0.32 0.57 

Single 
measure 

Height-for-age 474 -0.30 1.08 
 

223 -0.43 1.11 
 

251 -0.17 1.02 
 

0.09 <0.01 0.96 
Weight-for-height 471 0.34 0.95 

 
221 0.34 0.92 

 
250 0.34 0.97 

 
-0.05 0.38 0.54 

Weight-for-age 474 0.06 1.04 
 

223 -0.05 1.01 
 

251 0.17 1.05 
 

-0.04 0.31 0.58 
Arm circumference-for-
age 

385 0.78 0.97 
 

135 0.85 0.98 
 

250 0.75 0.96 
 

0.02 0.25 0.62 

Head circumference-for-
age 

474 0.24 1.04   223 0.11 1.04   251 0.36 1.03   0.01 0.52 0.47 
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Figure 3-1 Prevalence by standard deviation cutoffs for weight-for-height 
and arm circumference-for-age z-scores for single and means of repeated 
measures among children 0-4.9 years of age, BINA 2017 

 
Figure 3-2 Measurement reliability in closest two manual measures from 
single observer (intra-observer) and measurement reliability in average of 
closest two manual measures between two observers (inter-observer) for 
stature, head circumference (HC) and arm circumference (MUAC) among 
children 0-4.9 years of age (intra-observer n=948, inter-observer n=474), 
BINA 2017 

0.4% 0.4%

7.0% 7.6%

21.8%
23.4%

3.6% 4.7%

0.3% 0.3%
2.8% 3.6%

41.6%41.8%

9.6% 9.9%

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

45.0%

du
pl

ic
at

e

sin
gl

e

du
pl

ic
at

e

sin
gl

e

du
pl

ic
at

e

sin
gl

e

du
pl

ic
at

e

sin
gl

e

du
pl

ic
at

e

sin
gl

e

du
pl

ic
at

e

sin
gl

e

du
pl

ic
at

e

sin
gl

e

du
pl

ic
at

e

sin
gl

e

<-2 WHZ <-1 WHZ >1 WHZ >2 WHZ <-2 ACZ <-1 ACZ >1 ACZ >2 ACZ

Pr
ev

al
en

ce
 fr

om
 w

ei
gh

t-
fo

r-
st

at
ur

e 
z-

sc
or

e 
(W

HZ
)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Stature HC MUAC Stature HC MUAC

Intra-Observer Inter-Observer

Technical Error of Measurement (TEM) Relative TEM (%TEM)

41 

 



 

 

References (Chapter 3) 
 
1. De Onis M, World Health Organization. Dept. of Nutrition for Health and 

Development. WHO child growth standards : length/height-for-age, weight-for-age, 

weight-for-length, weight -for-height and body mass index-for-age : methods and 

development. Geneva: World Health Organization; 2006. 

2. Wit JM, Himes JH, van Buuren S, Denno DM, Suchdev PS. Practical 

Application of Linear Growth Measurements in Clinical Research in Low- and 

Middle-Income Countries. Horm Res Paediatr. 2017. 

3. de Onis M, Onyango AW, Van den Broeck J, Chumlea WC, Martorell R. 

Measurement and standardization protocols for anthropometry used in the 

construction of a new international growth reference. Food Nutr Bull. 2004;25(1 

Suppl):S27-36. 

4. WHO Multicentre Growth Reference Study Group. Reliability of 

anthropometric measurements in the WHO Multicentre Growth Reference Study. 

Acta Paediatr Suppl. 2006;450:38-46. 

5. Yin H, Dai Y, Li H, Xie X, Ren H. The test–re-test reliability of routine infant 

anthropometry at primary care hospitals in Chongqing, PR China. Annals of Human 

Biology. 2013;40(4):309-17. 

6. Gerner B, McCallum Z, Sheehan J, Harris C, Wake M. Are general 

practitioners equipped to detect child overweight/obesity? Survey and audit. J 

Paediatr Child Health. 2006;42(4):206-11. 

42 

 



 

7. Assaf S, Kothari, M., Pullum, T. An Assessment of the Quality of DHS 

Anthropometric Data, 2005-2014. DHS Methodological Reports No 16. Rockville, 

MD, USA: ICF International; 2015. 

8. Pullum TW. An Assessment of the Quality of Data on Health and Nutrition in 

the DHS Surveys, 1993-2003. Methodological Reports No 6. Calverton, MD, USA: 

Macro International Inc.; 2008. 

9. Corsi DJ, Perkins JM, Subramanian SV. Child anthropometry data quality 

from Demographic and Health Surveys, Multiple Indicator Cluster Surveys, and 

National Nutrition Surveys in the West Central Africa region: are we comparing 

apples and oranges? Glob Health Action. 2017;10(1):1328185. 

10. WHO Expert Committee on Physical Status. The Use and Interpretation of 

Anthropometry. WHO Technical Report Series 854. Geneva: World Health 

Organization; 1995. 

11. USAID. Anthropometric Data in Population-Based Surveys, Meeting Report, 

July 14-15, 2015. Washington, D.C., USA: FHI 360/FANTA; 2016. 

12. SMART. ENA Software for SMART: ACF; 2015 [Available from: 

http://smartmethodology.org/survey-planning-tools/smart-emergency-nutrition-

assessment/. 

13. US CDC International Micronutrient Malnutrition Prevention and Control 

Program. Micronutrient Survey Toolkit Toronto: Micronutrient Initiative; 2016 

[Available from: http://surveytoolkit.micronutrient.org/. 

14. SMART Action Against Hunger - Canada and Technical Advisory Group. 

The SMART Plausibility Check for Anthropometry. Toronto; 2015. 

43 

 



 

15. WHO. WHO Anthro and macros Geneva: WHO; 2015 [Available from: 

http://www.who.int/childgrowth/software/en/. 

16. Ulijaszek SJ, Kerr DA. Anthropometric measurement error and the 

assessment of nutritional status. The British journal of nutrition. 1999;82(3):165-77. 

17. Muller R, Buttner P. A critical discussion of intraclass correlation coefficients. 

Stat Med. 1994;13(23-24):2465-76. 

18. Grellety E, Golden MH. The Effect of Random Error on Diagnostic Accuracy 

Illustrated with the Anthropometric Diagnosis of Malnutrition. PloS one. 

2016;11(12):e0168585. 

19. Ayele B, Aemere A, Gebre T, Tadesse Z, Stoller NE, See CW, et al. Reliability 

of measurements performed by community-drawn anthropometrists from rural 

Ethiopia. PloS one. 2012;7(1):e30345. 

20. Cogill B. Anthropometric Indicators Measurement Guide. Washington, D.C.: 

Food and Nutrition Technical Assistance (FANTA) Project, FHI 360; 2003. 

21. US CDC. National Health and Nutrition Examination Survey: 

Anthropometry Procedures Manual. Atlanta, GA, USA: US CDC; 2007. 

22. UNICEF. Multiple Indicator Cluster Surveys: Manual for Anthropometry. 

New York, NY, USA: UNICEF; 2014. 

23. ICF International. MEASURE DHS Biomarker Field Manual. Calverton, MD, 

USA: ICF International; 2012. 

24. United Nations. Department of Technical Co-operation for Development and 

Statistical Office., National Household Survey Capability Programme. How to weigh 

and measure children : assessing the nutritional status of young children in 

44 

 



 

household surveys. Preliminary ed. New York: United Nations; 1986. 94 p. + Annex 

in pocket. p. 

25. World Health Organization. Training Course on Child Growth Assessment: 

WHO Child Growth Standards. Geneva: WHO; 2008. 

26. Mei Z, Grummer-Strawn LM. Standard deviation of anthropometric Z-scores 

as a data quality assessment tool using the 2006 WHO growth standards: a cross 

country analysis. Bull World Health Organ. 2007;85(6):441-8. 

  

45 

 



 

Chapter 4 . Accuracy and Reliability of a Low-Cost, Handheld 
3D Imaging System for Child Anthropometry 
 
Joel Conkle, MPHa*, Parminder S. Suchdev, MD MPH a ,b,c,d, Eugene Alexander, 
PhDe , Rafael Flores-Ayala, DrPHa,c, Usha Ramakrishnan, PhD a,b, and Reynaldo 
Martorell, PhD a b 

a Doctoral Program in Nutrition and Health Sciences. Laney Graduate School. 
Emory University. Atlanta, GA, USA; joel.conkle@emory.edu 

b Hubert Department of Global Health. Rollins School of Public Health. Emory 
University. Atlanta, GA, USA 

c  Division of Nutrition, Physical Activity and Obesity. National Center for Chronic 
Disease Prevention and Health Promotion. U.S. Centers for Disease Control and 
Prevention. Atlanta, GA, USA 

d Department of Pediatrics, School of Medicine, Emory University. Atlanta, GA, 
USA 

e  Body Surface Translations, Inc.. Atlanta, GA, USA  

* Correspondence: joelconkle@gmail.com; Tel.: +1-404-725-7138 

46 

 



 

  

Abstract: Anthropometry is used clinically to identify and manage malnutrition, and 
in national surveys to guide nutrition programs. The usefulness of anthropometry, 
however, is undermined by poor measurement quality, which has led to calls for 
improved quality and new measurement approaches. We evaluated the ability of a 
three-dimensional (3D) imaging system to correctly measure child stature (length or 
height), head circumference (HC) and mid-upper arm circumference (MUAC).       

We manually measured 474 apparently healthy children 0-5 years of age in Atlanta, 
USA following techniques used to develop the 2006 WHO Child Growth Standards. 
We took 3D scans of the same children using an iPad Air® with Structure Sensor® and 
derived measurements from scans using AutoAnthro, custom software developed by 
Body Surface Translations. We evaluated the reliability and accuracy of 3D scan-
derived measurements against manual measurements.  

Measurement reliability of repeated scans was within 1 mm of manual measurement 
reliability for stature, HC and MUAC. We found systematic bias when analyzing 
accuracy — on average 3D imaging overestimated stature and HC by 6 mm and 3 
mm respectively, and underestimated MUAC by 2 mm. After adjusting 
measurements to remove systematic bias, 3D imaging yielded mean z-scores, z-score 
standard deviations (SD), and prevalence below or above z-score SD cutoffs that were 
similar to manual measurements (p>0.1). Based on a cutoff of one SD, specificity of 
adjusted, scan-derived measurements was above 0.95 for all measures, and 
sensitivity was above 0.90 for stature and MUAC. HC sensitivity was 0.87. 

The 3D imaging system used in this study is low-cost, portable and can handle 
movement, making it ideal for use in the field. However, additional research, 
particularly on accuracy, and further development of the scanning and processing 
software is needed before making policy and practice recommendations on the use 
of 3D imaging for child anthropometry. The Bill and Melinda Gates Foundation 
funded the study.  
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4.1. Introduction 
 

Body measurement, or anthropometry, can be compared to a reference 

population to define nutritional status and to monitor child growth. Length or height, 

weight, and head circumference (HC) are common measures for infants and children 

under 5 years of age. Anthropometry is used clinically to diagnose malnutrition (1-4), 

to identify underlying conditions (3), to assess risk for future disease (5, 6), and for 

clinical research (7). At the population level, public health practitioners include 

anthropometry in research and surveys to identify causes and effects of abnormal 

nutritional status, to monitor trends through surveillance, and to target and evaluate 

interventions related to nutrition (6). Anthropometry is also used to evaluate 

agricultural initiatives, and the global development community uses population-level 

anthropometry as an indicator of national economic development. Height-for-age is 

accepted as a more comprehensive indicator of poverty than income, (8) and there is 

recognition that nutrition is essential for human capital development (9). There is a 

target to improve stunting in the Sustainable Development Goals, (10) and 

anthropometric indicators are used for allocation of Official Development Assistance 

(11). 

Given that child growth has broad effects on health, nutrition, and 

development, it is important that anthropometric measurements are of high quality. 

Studies in primary care facilities of developed countries found that measurement error 

led to inaccurate and unreliable circumference measurement for adults (12, 13) and 

unreliable length and circumference measurements for children (14, 15). There is also 

evidence that a lack of standardization and maintenance of anthropometric equipment 
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in health facilities leads to misclassification of child weight status (16). Three separate 

evaluations covering hundreds of large-scale, established surveys in developing 

countries found that on average more than 3% of weight or height measurements were 

biologically implausible (17-19). According to a WHO Expert Committee, when more 

than one percent of measurements are considered biologically implausible, a survey is 

likely to be of poor quality (20).   

The usefulness of anthropometry is undermined by poor measurement quality, 

which has led to calls for the use of technology to improve quality of child 

anthropometry (17, 21). This study evaluated the ability of a portable, three-

dimensional (3D) imaging system to accurately and reliably measure child stature 

(length or height), head circumference, and mid-upper arm circumference (MUAC). 

 

4.2. Materials and Methods  
 

4.2.1. Study Design and Participants 
 

We designed the Body Imaging for Nutritional Assessment Study (BINA) to 

evaluate the accuracy and reliability of a 3D imaging system in comparison to manual 

measurements for child anthropometry. The study was approved by the Emory 

Institutional Review Board, and included two phases. In the first phase we calibrated 

software to process 3D scans into measurements by scanning and measuring 36 

children. In the second phase, the topic of this paper, we tested 3D imaging on a new 

sample of children. Children 0-5 years of age who were apparently healthy and whose 

primary caregiver gave informed, written consent were eligible for the study. 
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Caretakers received a $15 gift card for each child participating in the study. We 

recruited and measured children at 20 facilities in and around metro Atlanta, GA, 

USA; including at daycare, higher education, religious, and medical facilities. We 

selected recruitment sites to reflect a generally representative population of Atlanta 

children and included a maternity ward to oversample newborns. Daycare centers 

received gift cards for participating as a study site. We formed a convenience sample 

by recruiting children on-site, via email, and through facility administrative staff; 

recruitment was ongoing throughout data collection, which lasted from September 

2016 to February 2017. The intended sample size for the study was 500. 

  

4.2.2. Test Methods 
 

Five trained anthropometrists with post-secondary education performed all 

manual measurements and 3D scans. Anthropometrists received training over a three 

week period in August 2016 from expert anthropometrists at Emory University and 

passed a standardization test for manual anthropometry. Manual measurements 

followed the protocol used to develop the 2006 World Health Organization (WHO) 

Child Growth Standards (CGS) (22); detailed methods for manual anthropometry in 

BINA are published elsewhere (23). Staff from Body Surface Translations (BST) trained 

anthropometrists to take 3D scans in one day, and anthropometrists informally used 

3D scanners throughout the three week training period to familiarize themselves with 

the technology. During the standardization test anthropometrists scanned children 

50 

 



 

following study protocol, and after visual assessment we determined scans were of 

sufficient quality to proceed with the study. 

 

Each anthropometrist carried a 3D scanning device, an iPad Air®  (Apple, Cupertino, 

CA) with attached Structure Sensor (Occipital, San Francisco, CA, USA), and custom 

software from BST, AutoAnthro, for scanning and data entry of demographic 

information and manual measurements. We collected scans and then manual 

measurements consecutively at the same time of the day, usually in the morning. Each 

individual 3D imaging session comprised six scans, with three scans of the front of the 

child and three of the back. For each scan of children two years of age and older an 

assistant positioned the child’s arms in one of three poses (Figure S1); for children less 

than two years of age we positioned arms away from the torso, but not necessarily in 

the three identified poses. An individual scan captured 30 frames over one second. 

Multiple scans for one session provided redundancy in the case that movement 

blurred or hid a part of the child’s body. Consistent with manual anthropometry 

procedures, we scanned children two years of age and over standing up, and 

instructed younger children to lie down. Children were measured undressed to their 

diaper or in skin-tight shorts/leotards provided by the study. Each child was scanned 

and measured twice by two different people, resulting in four sessions of scans and 

four sessions of manual measurements per child. Multiple measurements allowed 

analysis of both inter- and intra-measurer reliability. Both members of a field team 

separately entered the child’s name, sex, race, ethnicity, and birth date from consent 

forms previously filled out by the child’s caretaker. AutoAnthro automatically 
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uploaded data, including scans, to an online database. There were no reported adverse 

events from scans or manual measurements. 

Anthropometrists received regular supervisor feedback on accuracy and 

reliability of manual measurements. Software included range checks to avoid data 

entry error for manual anthropometry, and automatic triggering of a third manual 

measurement based on Maximum Allowable Difference (22) to improve reliability. For 

demographic information we cleaned the data by checking for inconsistencies in 

double data entry. Following data collection we processed scans to produce scan-

derived measurements with no consideration of manual measurements. AutoAnthro 

had automated processing, which included automatically removing the image 

background and fitting the 3D point cloud obtained from each scan (Figure S2) to an 

animator’s model, producing an intermediate result of six fitted models. For final 

measurements, AutoAnthro combined the six fitted models into a single, final model 

with best fit; and derived measurements based on points pre-selected once on the base 

model (Figures S3 and S4). We used two separate animator’s models: one for children 

under one month and another for children 1-59.9 months. To improve fitting 

efficiency, we used median measurement-for-age from WHO CGS (24) to 

automatically scale the animator’s model prior to fitting.  

 

4.2.3. Analysis 

 
In this study, one anthropometrist could be triggered to take a third 

measurement for manual measurements, but not for scans. To determine a best-
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estimate from manual measurements, we excluded the outlying measurement in the 

case of a triggered, third measurement; and took the mean from the four remaining 

measurements (two from each anthropometrist). In this paper we refer to the average 

of four manual measurements as the “best-estimate,” and consider the best estimate 

the reference standard. For analyzing reliability we limited our analysis to the first two 

manual measurements, ignoring any triggered third measurement; which provided a 

like-for-like comparison with scan-derived measurements. In the text we refer to the 

mean of two manual measurements as “repeated-manual,” and to measurements 

derived from one manual measurement as “single-manual.” We analyzed scan-

derived measurements using different sets of scans. We used scan-derived 

measurements based on a single session (6 scans from a single observer), repeated 

sessions (average from two sessions of a single observer), and all sessions (mean of 

four sessions from two observers); referred to as “single-scan”, “repeated-scan”, and 

“all-scan” in the text. For single-manual and single-scan, we used the first observation 

from the first measurer for each child. For repeated-manual and repeated-scan we 

used both observations from the first observer.  

We analyzed accuracy, reliability, z-scores and classification bias using SPSS 

20 (IBM Corp., Armonk, NY, USA) and StataSE 13 (StataCorp, College Station, TX, 

USA). For accuracy we considered both systematic and random bias, evaluating 

Average Bias and Bland-Altman (BA) Plots (25). We used Technical Error of 

Measurement and the Coefficient of Reliability as described by Ulijaszek (26) to 

measure reliability, and for classification bias we analyzed individual level sensitivity 
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and specificity. Detailed methods for analysis are included in supplementary online 

text.  

 

4.3. Results 
 

4.3.1. Participation and Sample Characteristics 
  

Figure S5 shows the flow of participants in the study. We received informed 

consent for 555 children, of which 26 children were either not present or had aged out 

by the day of data collection. Of the remaining 529, we excluded 55 due to: refusal to 

be measured (n=18), incomplete measurements (n=8), health status (n=5), loss of data 

due to technical errors during upload (since corrected) (n=10), and use of child in 

calibration of the 3D imaging system (n=14); resulting in a final sample size of 474. 

Table 4-1 presents sample characteristics. There was racial and ethnic variation in the 

sample, and approximately equal numbers of boys and girls. A total of 47% of the final 

sample was under two years of age; newborns were overrepresented, and nearly all of 

the newborns were less than four days old. There was a low prevalence of wasting, 

stunting, underweight and overweight.  

 

4.3.2. Accuracy 

 
Table S1 shows the accuracy of scan-derived measurements when compared to 

best-estimate manual measurements. The average bias of scan-derived measurements 

in cm was +0.6 for stature, +0.3 for HC, and -0.2 for MUAC; and differences were 

consistent whether measurements were derived from single-scan, repeated-scan, or 
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all-scan. However, the number of scan sessions did have an effect on the spread of 

differences. Averaging repeated measurements reduced variance and narrowed the 

spread of differences as expected. For stature 97% of all-scan measurements were 

higher than manual measurements, or positive, and the 95% limit of agreement (LoA) 

showed that 95% of individual differences were within -0.1 to 1.2 cm; single-scan 

measurements were 78% positive with a LoA of -0.7 to 1.9 cm. 

Bland-Altman Plots and related statistics are presented in Figure 1. Compared to 

children 1-59.9 months of age 3D imaging was less accurate for newborns for all 

measures (stature, HC, and MUAC). When considering all children under five years 

of age, there was evidence that accuracy of scan-derived measurements changed by 

the size of the child for all measures. After disaggregating by age group 

(corresponding to the two animator’s models) Pitman’s Test was no longer statistically 

significant for stature and HC, indicating that accuracy was different between the two 

age groups, but that there was not differential accuracy by size within the two age 

groups for both measures. For MUAC, the Pitman’s Test remained statistically 

significant after disaggregating by age group, suggesting differential accuracy by size 

within both age groups. Subsequent linear regression of the difference between scan-

derived and manual measurements on an independent measure of size confirmed 

differential accuracy by size for MUAC — 3D imaging was less accurate for children 

with smaller MUAC. After separating children 1-59.9 months of age into quintiles 

based on MUAC, average bias of scan-derived measurements in cm was -0.31 (MUAC 

9.6-15.1 cm), -0.18 (MUAC 15.1-16.0 cm), -0.15 (MUAC 16.0-16.7 cm), -0.02 (MUAC 

16.7-17.6 cm), and -0.05 (MUAC 17.6-25.3 cm).  
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Among children 1-59.9 months of age there were no statistically significant or 

meaningful differences in accuracy by race or hairstyle (Table S2). The largest 

difference was a 0.04 cm difference in average bias for head circumference between 

Black and White children. 

 

4.3.3. Reliability 
 

Table S3 displays inter- and intra-observer TEM, %TEM and ICC for scan-

derived and manual measurements. TEM represents one standard deviation and a 

95% precision margin can be calculated by multiplying TEM by two. The intra-

observer TEM for stature among children of all ages was 0.62 cm for scan-derived 

measurements, indicating that for a single observer the second scan-derived stature 

was within ±0.62 cm of the first scan-derived stature for ~two out of three children, 

and that for 95% of children the difference was within ±1.2 cm. Manual measurement 

intra-observer TEM for stature among children of all ages was within ±0.72 cm for 95% 

of children. Intra-observer TEM from scan-derived measurements was higher than 

that from manual measurements for all measures and across all age groups (Figure 

2a). For stature and head circumference, the highest manual measurement intra-

observer TEM was among children 12-23.9 months of age, while children over three 

years of age had the lowest TEM. For intra-observer TEM based on scan-derived 

measurements, there were no meaningful differences by age group (Figure 2a).  

Inter-observer reliability in Table S3 compares the average from repeated 

measurements by one observer to the average of another observer. Inter-observer TEM 

from scan-derived measurements was similar to inter-observer TEM from manual 
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measurements across all measures and most age groups (Figure 2b). For all children 

under 5 years of age inter-observer TEM from repeated scans was within 0.1 cm of 

TEM from repeated manual measurements for all measures. We also looked at inter-

observer TEM based on single measurements. Single-scan inter-observer TEM was 

higher than single-manual inter-observer TEM (Figure 3). When using single 

measurements inter-observer TEM was higher than intra-observer TEM for manual 

measurement, but not for scans (Figure 3).  

Total TEM combines the intra- and inter-observer TEM from Table 4 into a 

single metric. For manual measurements Total TEM was 0.51 cm, 0.33 cm, and 0.31 cm 

for stature, HC and MUAC respectively; compared to 0.77 cm, 0.51 cm, and 0.43 cm 

for scan-derived measurements. Reliability coefficients based on Total TEM were 1.00, 

1.00, and 0.99 for stature, HC and MUAC from manual measurements; and 1.00, 0.99, 

and 0.98 for scan-derived measurements.     

 

4.3.4. Z-Scores and Classification 
 

For scan-derived measurements we calculated z-scores based on both 

unadjusted and adjusted measurements, with adjustments made to remove systematic 

inaccuracy by subtracting or adding the average bias in Figure 1 from/to each 

observation. All height-for-age z-scores (HAZ) and head circumference-for-age z-

scores (HCZ) were biologically plausible. One child was flagged for an implausibly 

high arm-circumference-for-age z-score (ACZ), and this same child was flagged by 

both manual and scan-derived measurements (with or without adjustment). Mean z-
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score values and percentages below or above SD cutoffs presented in Table 2 show 

that, as expected, the accuracy adjustments helped to reduce the difference between 

scan-derived and best-estimate results. Unadjusted, single-scan HC mean z-score was 

0.2 higher than the best-estimate mean z-score, and the percentages above 1 SD and 2 

SD were overestimated by five percentage points; after adjustment, single-scan HC 

and best-estimate mean z-scores were essentially the same and percentages differed 

by less than two percentage points (Table 2). Percentages based on adjusted, scan-

derived measurements from single or repeated sessions were within two percentage 

points of percentages based on best-estimate manual measurements for all measures 

(Table 2). Z-score SDs for single-scan were higher than z-score SDs from single-manual 

(Table 2), which is the effect of less reliability seen in Figure 3. Using repeated-scan 

brought the z-score SD closer to the level of manual measurements. 

For individual level agreement we analyzed sensitivity and specificity of HAZ 

<-1 SD, HCZ>1 SD, and ACZ>1 SD among children 1-59.9 months with the best-

estimate considered “true” nutritional status. Sensitivity for stature measured the 

probability that a child’s HAZ based on the adjusted scan-derived measurement was 

<-1 SD given that HAZ based on the best-estimate was <-1 SD. Stature sensitivity was 

0.95, 0.92, and 0.93 for single-manual, single-scan, and repeated-scan respectively; 

indicating that out of 100 children identified as HAZ <-1 SD by the best-estimate, 95, 

92 and 93 children would also be identified by single-manual, single-scan, and 

repeated-scan respectively (Table 3). Stature specificity was also high; out of 100 

children not identified as HAZ <-1 SD, 98, 96, and 97 of those children would also not 

be identified as having HAZ <-1 SD by single-manual, single-scan, and repeated-scan 
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respectively. For stature and arm circumference, sensitivity and specificity of single- 

and repeated- scan was excellent and performed nearly as well as single-manual. For 

scan-derived head circumference specificity was excellent, but sensitivity was 0.84 and 

0.87 for measurements based on single-scan and repeated-scan respectively (Table 3).  

   

4.4. Discussion 
 

In a previous publication we concluded that BINA collected gold-standard, 

manual anthropometry based on analysis of biological plausibility, reliability, and z-

score standard deviations (23). In this paper we compared measurements derived 

from 3D imaging to our gold-standard, manual measurements. For biological 

plausibility 3D imaging and manual measurement were exactly the same, with both 

methods producing plausible measurements >99% of the time; this finding indicates 

acceptable quality based on WHO expert committee criteria for biological plausibility 

(20). We also found that repeated-scan 3D imaging produced measurement reliability 

that was within 1 mm of manual measurement reliability for stature, HC and MUAC; 

a level of reliability that puts 3D imaging on par with manual measurements collected 

in the Multicenter Growth Reference Study (MGRS) used to develop the 2006 WHO 

CGS (23, 27). Considering only biological plausibility and reliability, 3D imaging 

performed as well as gold-standard manual measurements for child anthropometry. 

However, 3D imaging systematically underestimated or overestimated child size 

when compared to our best-estimate of size from manual measurement. We were able 

to obtain accurate results from 3D imaging that yielded mean z-scores and z-score 
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standard deviations similar to manual measurements, but only after making 

adjustments to remove systematic inaccuracy. After adjustment the percentages of the 

population below or above z-score cutoffs for HAZ, HCZ, and ACZ according to 3D 

imaging were similar to manual measurements, and there was a high probability that 

a child identified as being below or above z-score cutoffs by manual measurement 

would be identified the same way by 3D imaging. Anthropometry is used to classify 

the nutritional status of individuals and populations. There is no single standard for 

judging the adequacy of child anthropometry reliability and accuracy (23), but 

ultimately if a method correctly classifies nutritional status and can detect changes in 

nutritional status over time, reliability and accuracy of that method should be 

considered acceptable. In our study 3D imaging was reliable enough to be considered 

a good method for collecting child anthropometry, but systematic inaccuracy caused 

misclassification. Additional discussion on reliability, and an examination of our 

findings in relation to monitoring and classification of nutritional status is included in 

supplementary online text.  

Before reaching any conclusion on the readiness of 3D imaging for child 

anthropometry, we would need to determine if the systematic inaccuracy found in this 

study is population specific. If the same under- and overestimation was found in a 

different sample with different anthropometrists, we could then identify and fix the 

cause of the bias in the model fit or simply build adjustments into the software. Human 

error in manual measurement of MUAC and scan processing software that did not 

account for the soft tissue compression and body positioning specified in manual 

measurement protocol could have caused the systematic inaccuracy found in this 
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study.   Research similar to BINA should be carried out, ideally in developed and low 

and middle income countries, to help answer questions on systematic inaccuracy and 

also to address some of the other limitations of our study. The scanners used in our 3D 

imaging system do not function well in direct sunlight, which was not a constraint in 

BINA because we took scans inside of facilities. The 3D imaging system may perform 

differently in the context of a household survey or during community-based 

screening. Additional limitations to our study stem from sampling design, the 

nutritional status of our sample, and automated processing. Our sample was well-

nourished; we did not have a sufficient number of children with abnormal nutritional 

status to analyze prevalence or sensitivity/specificity for clinically significant 

indicators, such as obesity, wasting and severe stunting. In addition, our sample was 

not random, age was not normally distributed, and findings cannot be generalized to 

any specific age group. The processing of 3D scans was not fully automated as 

planned; anthropometrists took more scans than needed and manually selected the 

best quality scans, and the orientation (front/back) of each scan was manually coded. 

Further software development is needed to achieve full automation. Additional 

discussion, including detailed hypotheses for the causes of bias, is included in 

supplementary online text.   

3D imaging is not new for anthropometry (28-32), but the system used in our 

study was inexpensive and brought unique functionality. The scanning device we 

used is off-the-shelf, commercial hardware; and is a fraction of the cost of other 

systems (~$878 for hardware making up single scanner). The scanning device is small, 

lightweight, and the software developed by BST only requires a series of snapshots, 
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which allows some subject movement. The 3D imaging system used in our study, 

AutoAnthro, is an ideal replacement for bulky height boards used in surveys, and to 

our knowledge it is the first portable 3D system specifically designed for whole body 

scanning of infants and young children. In conclusion, our findings indicate that 

AutoAnthro can produce reliable child anthropometry, but further research and 

development is needed before 3D imaging can be recommended as a solution to 

improving the quality of anthropometric data.   
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4.4. Figures and Tables 
 

Table 4-1 Sample characteristics, BINA 2017 

Age in months, mean (range) 25.7 (0-59) 
Age Groups 

 
  

  Newborn (<1 month) 82 (17%) 
  1-11.9 months 66 (14%) 
  1-1.9 years 75 (16%) 
  2-2.9 years 85 (18%) 
  3-4.9 years 166 (35%) 
Sex    
  Female 228 (48%) 
Race 

 
  

  Black 201 (42%) 
White 134 (28%) 
Asian 40 (8%) 
Multiple, Other or Not Reported 99 (21%) 

Ethnicity 
 

  
  Non-Hispanic 385 (81%) 

Hispanic 77 (16%) 
Not Reported 12 (3%) 

Anthropometric Indices 
 

  
  Weight-for-Age Z-score (WAZ), mean ± SD 0.06 1.04 
  Height-for-Age Z-score (HAZ), mean ± SD -0.29 1.07 
  Weight-for-Height Z-score (WHZ), mean ± 

SD 
0.34 0.92 

  Head Circumference Z-Score (HCZ), mean 
± SD 

0.24 1.02 

  Arm Circumference Z-Score (ACZ), mean ± 
SD 

0.78 0.94 

Nutritional Status    
  Underweight (<-2 SD WAZ) 11 (2.3%) 

Stunted (<-2 SD HAZ) 21 (4.4%) 
  Wasted (<-2 SD WHZ) 2 (0.4%) 
  Overweight (>2 SD WHZ)  22 (4.7%) 
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0-4.9 years of age ≥1 month of age <1 month of age 

A. 

 
Pitman's Test: r = -0.112, n = 474, p = 0.015 
Limits of agreement: -0.710 to  1.939 
Mean difference:  0.615 (CI  0.555 to  0.674)  

B. 

 
Pitman's Test: r = -0.005, n = 392, p = 0.919 
Limits of agreement: -0.756 to  1.897 
Mean difference:  0.571 (CI  0.505 to  0.636) 

C. 

 
Pitman's Test: r =  0.188, n = 82, p = 0.091 
Limits of agreement: -0.412 to  2.062 
Mean difference:  0.825 (CI  0.689 to  0.961)  

D. 

 
Pitman's Test: r = -0.232, n = 474, p = 0.000 
Limits of agreement: -0.581 to  1.206 
Mean difference:  0.312 (CI  0.272 to  0.353)  

E. 

 
Pitman's Test: r = -0.044, n = 392, p = 0.386 
Limits of agreement: -0.616 to  1.140 
Mean difference:  0.262 (CI  0.218 to  0.306)  

F. 

 
Pitman's Test: r =  0.132, n = 82, p = 0.237 
Limits of agreement: -0.261 to  1.367 
Mean difference:  0.553 (CI  0.464 to  0.642) 
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G. 

 
Pitman's Test: r =  0.378, n = 474, p = 0.000 
Limits of agreement: -0.970 to  0.583 
Mean difference: -0.193 (CI -0.228 to -0.158)  

H. 

 
Pitman's Test: r = 0.259, n = 392, p = 0.000 
Limits of agreement: -0.893 to  0.608 
Mean difference: -0.142 (CI -0.180 to -0.105)  

I. 

 
Pitman's Test: r =  0.291, n = 82, p = 0.008 
Limits of agreement: -1.149 to  0.274 
Mean difference: -0.437 (CI -0.516 to -0.359)  

Figure 4-1 Bland-Altman plots of best-estimate manual measurements subtracted from single-scan measurements and related 
statistics, BINA 2017 
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A. Intra-observer 

 

B. Inter-observer 

 
Figure 4-2 Intra- and inter-observer technical error of measurement (TEM) for scan-derived and manual measurements 
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Figure 4-3 Single-measurement inter-observer technical error of measurement (TEM) 
versus intra-observer TEM for scan-derived and manual measurements 
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Table 4-2 Z-score mean, standard deviation (SD) and prevalence by selected z-score-
for-age cutoffs among children 1-59.9 months of age 

Row Labels 
Sample 
Size 

Z-score 
Mean 

Z-score 
SD 

Prevalence by z-score-for-age 
cutoff 

Stature    HAZ <-1 SD HAZ <-2SD 
Best-estimate 
Manual 392 -0.25 1.10 21.9 4.6 
Single Manual 392 -0.24 1.10 22.7 4.3 
Unadjusted Single 
Scan 392 -0.07 1.12 17.6 3.8 
Adjusted Single Scan 392 -0.25 1.13 23.5 5.4 
Adjusted Repeated 
Scan 392 -0.25 1.11 22.7 4.6 
Head Circumference    HCZ >1 SD HCZ >2 SD 
Best-estimate 
Manual 392 0.34 1.02 27.3 3.3 
Single Manual 392 0.34 1.04 27.3 3.8 
Unadjusted Single 
Scan 392 0.53 1.07 32.9* 8.4*** 
Adjusted Single Scan 392 0.34 1.08 26.8 5.4 
Adjusted Repeated 
Scan 392 0.35 1.03 26.5 3.8 
Arm Circumference    ACZ >1 SD ACZ >2 SD 
Best-estimate 
Manual 385 0.78 0.94 41.6 9.6 
Single Manual 385 0.78 0.97 41.8 9.9 
Unadjusted Single 
Scan 385 0.67 1.04 37.9 9.1 
Adjusted Single Scan 385 0.77 1.03 41.6 10.6 
Adjusted Repeated 
Scan 385 0.76 1.01 40.5 11.4 
*,***Significantly different from Best-estimate  manual prevalence with Chi-Square at p<.10 and 
p<.01 
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Table 4-3 Sensitivity and specificity of adjusted, scan-derived measures when 

compared to best-estimate manual measures among children 1-59.9 months 
of age 

    Sensitivity Specificity 

ROC Area 
(Average 
of 
sensitivity 
and 
specificity) ROC Area 95% CI 

      Lower Limit 
Upper 
Limit 

Stature (HAZ < -1 SD)       
  Single Manual 0.95 0.98 0.97 0.94 0.99 
  Single Scan 0.92 0.96 0.94 0.91 0.97 
  Repeated Scan 0.93 0.97 0.95 0.92 0.98 
Head Circumference (HCZ >1 SD)      
  Single Manual 0.94 0.98 0.96 0.94 0.99 
  Single Scan 0.84 0.95 0.89 0.86 0.93 
  Repeated Scan 0.87 0.96 0.92 0.88 0.95 
Arm Circumference (ACZ>1 SD)      
  Single Manual 0.93 0.95 0.94 0.91 0.96 
  Single Scan 0.91 0.94 0.93 0.90 0.95 
  Repeated Scan 0.93 0.96 0.95 0.92 0.97 
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Chapter 5 . Supplementary Materials for Accuracy and Reliability 
of a Low-Cost, Handheld 3D Imaging System for Child 
Anthropometry 
 

5.1. Supplementary Methods 
 

5.1.1. Accuracy 
 

We assessed the accuracy of 3D imaging by comparing scan-derived measurements 

to the best-estimate from manual measurement. We calculated average bias with the 

following formula: 

𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇𝐴𝐴𝑇𝑇𝐴𝐴𝑇𝑇𝑇𝑇𝐴𝐴 =  Σ𝑖𝑖=1 
𝑁𝑁 (𝑇𝑇𝑖𝑖1 −  𝑇𝑇𝑖𝑖𝑖𝑖1)/𝑁𝑁  

, where 𝑇𝑇𝑖𝑖1 is the scan-derived measurement and 𝑇𝑇𝑖𝑖𝑖𝑖1 is the best-estimate for each child. 

We used SPSS 20 (IBM Corp., Armonk, NY, USA) to test statistical significance of average 

bias with a two-sided, paired t-test with alpha of 0.05. Average bias is a metric of 

systematic bias. We also carried out Sign Tests — another metric of systematic bias that 

tests whether there were the same number of positive and negative differences using a 

Binomial Test.  

Using StataSE 13’s (StataCorp, College Station, TX, USA) baplot module we created 

Bland-Altman (BA) Plots (25) to assess if accuracy remained constant across different child 

body sizes and to look at random bias. For the y-axis of the BA Plot we subtracted the 

best-estimate from the single-scan value, and for the x-axis we used the mean of single-

scan and best-estimate. We used Pitman’s Test of Difference in Variance (33) to test the 

70 

 



  

correlation between accuracy and the size of the child, and we calculated and plotted 

Limits of Agreement, which is the 95% precision interval for individual differences and is 

a metric of random bias. We disaggregated analysis based on age groups corresponding 

to animator’s models (<1 month and 1-59.9 months). If accuracy was not consistent across 

different sizes, indicated by a statistically significant Pitman’s Test, we carried out the 

additional step of regressing the difference on the second single-scan as suggested by 

Bartlett and Frost (33); they advocated for the use of linear regression to rule out difference 

in SD as the cause of a statistically significant Pitman’s Test, proving that accuracy is truly 

biased.  

We tested for differences in accuracy by caregiver-reported race and observed 

hairstyle using One Way Analysis of Variance (ANOVA). For comparing accuracy 

between races and hairstyles we used all-scan and best-estimate measurements to reduce 

variance and improve power. We coded hairstyle as a binary variable based on visual 

inspection of scans to identify children with protruding hair or hairstyles that could 

potentially affect scan-derived measurements. For race we defined three categories, 

namely Black, White, and Other; with the latter including Asian, Other, Multiple, and Not 

Reported. For ANOVA we tested the assumption of homogeneity of variances with 

Levene’s Test (34), and used Welch Test when variances were not homogenous (35). We 

did not further disaggregate race by ethnicity because of sample size constraints.      
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5.1.2. Reliability 
 

We calculated intra-observer technical error of measurement (TEM) for scan-derived 

and manual measurements with the following formula:  

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = �∑ (𝑇𝑇𝑖𝑖1 −𝑇𝑇𝑖𝑖2)2𝑁𝑁
𝑖𝑖=1

2 ∗ 𝑁𝑁�   

, where N was the number of children and 𝑇𝑇𝑖𝑖1𝑇𝑇𝑖𝑖2 were the first and second measurements 

for one child (repeated measurements) by one observer. For inter-observer TEM we 

compared average measurements with the following formula: 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =  �
Σ𝑖𝑖=1𝑁𝑁 (𝑇𝑇𝑖𝑖𝑖𝑖1 +  𝑇𝑇𝑖𝑖𝑖𝑖2

2� −  𝑇𝑇𝑖𝑖𝑖𝑖1 +  𝑇𝑇𝑖𝑖𝑖𝑖2
2� )2 

2 ∗ 𝑁𝑁
�   

, where 𝑇𝑇𝑖𝑖𝑖𝑖1 𝑇𝑇𝑖𝑖𝑖𝑖2 were repeated measurements from one observer and 𝑇𝑇𝑖𝑖𝑖𝑖1𝑇𝑇𝑖𝑖𝑖𝑖2 were 

repeated measurements from another observer of the same child. We also analyzed inter-

observer TEM based on single measurements. For inter- and intra-observer TEM we 

calculated relative TEM, or %TEM, by dividing TEM by the measurement mean and 

converting to a percent; and used SPSS 20 to calculate the Intraclass Correlation 

Coefficient based on absolute agreement. Total TEM combined inter- and intra-observer 

TEM with the following formula:  

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =  √𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇2 +  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇2  

, where 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 came from repeated measurements. We calculated an overall R, or 

Coefficient of Reliability, with the following formula from Ulijaszek (26): 

𝑅𝑅 =  1 −  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
2

𝑆𝑆𝑆𝑆2
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, where 𝑆𝑆𝐷𝐷2 was the pooled variance of the four measurements used to calculate Total 

TEM. We divided the sample into five age groups considering sample size for 

disaggregated analysis of reliability. 

 

5.1.3. Z-scores and Classification  
 

We calculated z-scores based on the 2006 WHO CGS using WHO SPSS 20 macros 

(36). Anthropometric indices and nutritional status included in sample characteristics 

were based on best-estimate manual measurements. For additional analysis of z-scores 

and classification, we selected children 1-59.9 months of age to evaluate the animator 

model with sufficient sample size. To compare z-score means, standard deviations and 

prevalence we calculated z-scores from the best-estimate, single-manual, single-scan and 

repeated-scan. We tested for statistical significance of prevalence differences using Chi-

Square and comparing to the prevalence from the best-estimate. We included both 

adjusted and unadjusted scan derived measurements, with adjustment made by 

subtracting or adding the average bias found in our analysis of accuracy from/to each 

observation. We evaluated individual level classification with Stata’s diagt module, 

reporting sensitivity and specificity for stature-, head circumference-, and arm 

circumference-for-age below or above 1 standard deviation. For individual level 

classification we considered the best-estimate “true” nutritional status. We selected z-

score SD cutoffs based on having an adequate percentage of the sample selected by the 

cutoff for meaningful comparisons of z-scores and classification. We did not have 
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sufficient sample size to analyze differences in z-scores and classification for newborns, 

or to analyze individual level classification at lower cutoffs, such as <-2 SD.   

 

5.2 Supplementary Discussion 
 

5.2.1. Single- vs Repeated-Scan Reliability 
 

We designed the 3D imaging system to derive measurements based on a single 

scan session. In this study we found that single-scan was less reliable than single manual 

measurements, but that averaging two measurements from two scan sessions (repeated-

scan) improved TEM and achieved reliability comparable to repeated manual 

measurements. Repeated-scan achieved excellent reliability and single-scan was less 

reliable, but the difference between single and repeated scan reliability was not large 

(indicated by difference between inter- and intra-observer TEMs in table S3). 

Furthermore, the differences in z-score SDs and percentages below or above SD cutoffs 

for single- and repeated-scan were small and statistically insignificant. Additional 

research that is adequately powered to detect small differences in prevalence is needed to 

determine if the protocol for deriving measurements from 3D imaging should be changed 

from using a single-scan to repeated-scan. We believe the use of repeated scans is feasible 

and would not be overly burdensome for the anthropometrist or child because repeating 

scans would only add ~one minute to measurement time. We will be able to quantify the 
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effect of a change in protocol on the time required for collecting child anthropometry in a 

time-motion study that is underway to compare 3D imaging with manual measurements. 

We did not have maximum allowable difference triggers to improve reliability of 

3D imaging because scan-derived measurements are not immediately available, and so 

did not use triggered, third manual measurements for calculating inter-observer TEM in 

this study. However, we compared inter-observer TEM results from this study to a 

previous publication where we did use the third manual measurements (23) and we found 

that triggers did little to improve our manual measurement reliability; the reliability of 

repeated-scan is similar to manual measurements with or without the use of maximum 

allowable difference triggers for manual measurements.  

 

5.2.2. The Effect of Reliability and Accuracy on Monitoring and Classification 
 

We showed that 3D imaging produced reliable measurements; we also need to 

consider how this reliability would affect the quality of anthropometric data outside of a 

research setting. Most large-scale surveys do not take repeated measurements and so 

cannot be analyzed for reliability, but reliability is directly related to z-score SD. Reliability 

is a metric of random error, and as random error increases z-score SD increases. If z-score 

SD is too high, there may be overdispersion, which can cause overestimation of 

prevalence below or above z-score cutoffs. High quality surveys have z-score SD between 

0.9-1.1 (37, 38); in this study 3D imaging z-score SD was within 0.9-1.1 for all measures. 

An evaluation of the quality of 52 DHS found that 1 out of 52 had HAZ SD between 0.9-
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1.1, and 30 out of 52 had HAZ SD above 1.5 (17). A SD of 1.5 can lead to overestimation of 

prevalence. A recent study found that DHS and MICS carried out in Western and Central 

Africa from 1990-2012 may have overestimated the prevalence of stunting (HAZ <-2 SD) 

by ~10 percentage points on average (38). Overdispersion from poor quality 

anthropometry can also result in overestimation of overweight and obesity. Poor quality 

anthropometric data is common in large-scale surveys, and quality is variable between 

countries and between surveys in the same country; making it difficult to meaningfully 

compare countries or analyze trends over time. The reliability of 3D imaging and manual 

anthropometry in BINA was good enough to make meaningful comparisons between 

countries and over time. Our reliability findings also indicate that 3D imaging can be used 

for growth monitoring. Considering a well check schedule of visits at 1, 2, 4, 6, 9, 12, 15, 

18 and 24 months; the differences in stature between visits is 3.2-5.5 cm according to the 

2006 WHO CGS median. The inter-observer TEM for repeated-scan indicates that 

repeated measurements from 3D imaging can be within 1.5 cm 99.9% of the time — 3D 

imaging random error would not cause overlapping estimates in growth monitoring.  

We measured accuracy with average bias, a metric of systematic bias. In the MGRS 

average bias was considered acceptable if it was within ±2.8 times the expert intra-

observer TEM (27); based on MGRS criteria 3D imaging accuracy was acceptable for all 

measures in our study. However, our findings indicate that the criteria used to assess 

average bias for the 2006 WHO CGS may be too lenient for the purposes of our study. For 

head circumference the acceptable average bias was set at ±0.34 cm in the MGRS (27). In 

our study the average bias for head circumference from scan-derived measurements 
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among children 1-59.9 months of age was well within the acceptable range at 0.26, but our 

HC average bias led to a statistically significant five percentage point overestimation of 

the percent of the population above 1 SD and 2 SD when compared to manual 

measurement (Table 2). Since 3D imaging produced measurements that were essentially 

as reliable as manual, we can conclude that the differences in prevalence are due to 

inaccuracy, showing that HC average bias of 0.26 is likely not acceptable. The acceptability 

of average bias should be based on producing similar prevalence estimates and avoiding 

misclassification of individuals. For prevalence estimates there is no single criteria for how 

close is close enough, but we can consider how prevalence is used to posit reasonable 

criteria. The WHO cutoff for a moderate public health problem for wasting is 5%, which 

is ~2.5 percentage points from what is expected in a healthy population. It is reasonable 

to say that differences in prevalence between an index test and a reference standard 

cannot exceed 2.5 percentage points for child anthropometry. From another perspective, 

differences between the two methods should ideally not be statistically detectable in a 

common, large scale-survey; and should allow for meaningful program evaluation, which 

would put the level closer to ~1 percentage point. A typical program goal may be to reduce 

stunting by one to two percentage points annually over three to five years. A program 

effect may be statistically masked by error over two percentage points. After adjustment 

prevalence differences between repeated-scan and best-estimate in our study were less 

than one percentage point for stature and head circumference, and less than two 

percentage points for MUAC; which is probably good enough for common uses of 

prevalence estimates. For individual classification sensitivity and specificity above 0.90 is 
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generally considered excellent. We were able to achieve excellent classification at the 

individual level, but only after adjusting measurements to remove systematic bias. 

 

5.2.3. Bias Hypotheses 
 

3D imaging overestimated head circumference, while underestimating MUAC. 

Consideration of the protocol for manual measurements provides a hypothesis for the 

different directions of average bias. When measuring head circumference, 

anthropometrists were instructed to apply enough tension to compress the hair and 

underlying soft tissue. For MUAC, the measuring tape was s meant to be flush with the 

skin without any compression. 3D imaging may have overestimated head circumference 

because compression of soft tissue was not taken into account during calibration. If 

compression is the source of bias for head circumference, we may expect no average bias 

for MUAC because there is no compression for MUAC. Interestingly, for MUAC ≥ 16.7 

cm we found essentially no systematic bias, and it was only among smaller children 

(MUAC 9.6-15.1 cm) that we found substantial underestimation. It is possible that 

underestimation by 3D imaging for MUAC was caused by manual measurement error. It 

can be more difficult to measure MUAC on younger children because increased adiposity 

along with decreased cooperation make it more difficult to maintain the measuring tape 

flush against the skin. It is possible that BINA anthropometrists systematically left small 

gaps between the skin and measuring tape when measuring MUAC of younger children, 

and that manual measurements are less accurate than 3D imaging for young children.  
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The protocol for manually measuring head circumference may also help to explain 

another finding: 3D imaging was better at selecting the same children above or below SD 

cutoffs for stature and MUAC than it was for HC. The protocol for measuring manual HC 

calls for shifting the measuring tape up and down to select the largest circumference; there 

is no fixed position. The current 3D imaging system is based on measuring fixed, pre-

specified points; and does not account for being able to shift the measuring tape up and 

down. To achieve excellent sensitivity 3D imaging system software may have to be 

developed to identify the largest circumference and not just rely on pre-specified points. 

When processing scans we returned the final 3D model to a “neutral” position to 

take stature measurements. Comparing the “neutral” position to WHO measuring 

protocol, we did not take into account the Frankfort Plane and the back of the head was 

not aligned with the heels, buttocks, and back of shoulders. It is not clear what effect 

model positioning had on the accuracy of scan-derived stature and if positioning is a 

reasonable hypothesis for overestimation. Another possibility for overestimation is that 

3D imaging did not adequately take into account hair compression that occurs when 

taking manual stature measurements. 

 

5.2.4. Study Limitations – Automation and Anthropometrists  
 

Per study protocol children were required to adopt fixed positions when taking 

scans, but anthropometrists could not touch the child because touching impaired the 

ability to process the scans into measurements. During pretesting we discovered that an 
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anthropometrist could help to put the child into position if both the measurer and the 

child held a common object, such as a large, plastic spoon. However, for some children 

this approach did not work due to lack of cooperation, thus we further altered the protocol 

by allowing anthropometrists to take excess scans. When anthropometrists took extra 

scans, they then selected the 12 best scans for each child and deleted the rest. Another 

departure from the original protocol was that anthropometrists could not always take 

scans in the specified sequence of orientation: front and then back. With many children 

anthropometrists had to be opportunistic and take scans of a child when they were still, 

ignoring their orientation. For processing scans we had to manually code orientation after 

data collection. Processing scans was initially designed to be fully automated; the manual 

input to delete excess scans and define the child’s orientation make our findings less 

generalizable because there is more potential for human error, and we do not know if the 

number of scans taken per child affected accuracy or reliability. Further development of 

the 3D imaging system scanning and processing software is needed to achieve full 

automation. 

Our primary interest in researching 3D imaging for child anthropometry was to 

improve the quality of anthropometric data. Anthropometrists in BINA, who were well 

educated, highly motivated, and well-trained, achieved high quality anthropometric data 

with both 3D imaging and manual measurement. Compared to manual measurement, we 

spent substantially less time on training and supervision for 3D scanning, but it is not yet 

possible to determine if 3D imaging would lead to better quality in a setting that produces 

poor quality anthropometric data from manual measurement. Qualitative research on 
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BINA anthropometrists’ experiences using 3D scanners is currently underway and this 

may help to provide some evidence on the potential of 3D imaging to improve 

anthropometric data quality. However, conclusive evidence may not be available until the 

use of 3D imaging for infant and young child anthropometry is evaluated in a real-world 

application, such as a large-scale survey. 
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5.3 Supplementary Figures and Tables 
 

 
Figure 5-1. 3D scan arm poses for children two years of age and over, BINA 2017 

 

 

Figure 5-2. 3D scan as it appears before processing, BINA 2017 
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Figure 5-3. S3 Points (in black) selected on base model to measure head and arm 
circumference 

 

 

 

Figure 5-4. The basic fitting processa 

aScan data is in green, articulated model surface in red, “bones” and “joints” in blue.  On the left, the initial size and pose of model 
relative to data.  On the right, the model has been automatically sized and posed to fit the scan data. 
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Figure 5-5. Flow of participants, BINA 2017 
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Table 5-1. Accuracy of scan-derived measurements when compared to best-
estimate, manual measurements among all children under five years of 
age, BINA 2017 

   Paired T-Test Percent of 
Positive 
Differencesb   

Measurer and 
Observation 

Mean 
from 
Scan 

Mean Difference 
(Scan-Manual) 

T value for 
Difference From 
0a 

Difference 95% 
Limits of Agreement 

  
    

Lower 
Limit 

Upper 
Limit 

Stature (Length or Height) 

 Single scan session 

  Measurer 1 (M1) 
Observation 1 (O1) 82.9 0.61 20.2 -0.7 1.9 78% 

  M1, Observation 2 
(O2) 82.9 0.56 19.2 -0.7 1.8 78% 

  Measurer 2 (M2), 
O1 82.9 0.58 20.1 -0.7 1.8 80% 

  
M2, O2 82.9 0.60 21.1 -0.6 1.8 80% 

 Average from two scan sessions 

  
M1 82.9 0.59 26.8 -0.4 1.5 90% 

  
M2 82.9 0.59 29.2 -0.3 1.5 91% 

 
Average from four scan sessions 

  
M1&M2       

  
M1&M2 82.9 0.59 39.2 -0.1 1.2 97% 

Head Circumference 

 
Single scan session 

  
M1, O1 46.1 0.31 15.2 -0.6 1.2 72% 

  
M1, O2 46.1 0.32 16.9 -0.5 1.2 73% 

  
M2, O1 46.1 0.32 16.7 -0.5 1.1 77% 

  
M2, O2 46.1 0.34 16.4 -0.6 1.2 73% 

 Average from two scan sessions 

  
M1 46.1 0.32 22.1 -0.3 0.9 83% 

  
M2 46.1 0.33 22.1 -0.3 1.0 84% 

 Average from four scan sessions 

  
M1 & M2 46.1 0.32 29.9 -0.1 0.8 93% 

Arm Circumference 

 Single scan session 

  
M1, O1 15.2 -0.19 -10.9 -1.0 0.6 34% 

  
M1, O2 15.2 -0.20 -12.4 -0.9 0.5 35% 

  
M2, O1 15.2 -0.20 -11.7 -0.9 0.5 33% 

  
M2, O2 15.2 -0.17 -10.1 -0.9 0.6 36% 

 Average from two scan sessions 

  
M1 15.2 -0.20 -15.6 -0.7 0.4 25% 

  
M2 15.2 -0.19 -14.5 -0.7 0.4 28% 

 Average from four scan sessions 
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M1 & M2 15.2 -0.19 -19.7 -0.6 0.2 20% 

aAll mean differences significantly different from zero at p<.0001 
bFrom binomial test percentages are all significantly different from 50% at p<.0001 

 
 

 

Table 5-2. Accuracy by race and hairstyle considering best-estimate manual measurements 
and scan-derived measurements from all sessions among children 1 to 59.9 months 
of age, BINA 2017 

  
Race or 
Hairstyle n 

Mean Difference 
(scan-manual) 

Standard 
Deviation (SD) One-Way Analysis of Variance 

      F Significance 

Stature by Race   
0.30 0.74 

  
Black 136 0.53 0.33 

 
  

  
White 126 0.55 0.32 

   

  
Other 130 0.56 0.31 

   

Head Circumference by Race 
 

1.37 0.25 

  
Black 136 0.30 0.24 

   

  
White 126 0.26 0.17 

   

  
Other 130 0.27 0.22 

   

Head Circumference by Hairstyle 
 

0.39 0.53 

  
Large hair 347 0.28 0.22 

   

  

Not large hair 45 0.26 0.21 

   

Arm Circumference by Race  
0.02 0.98 

  
Black 136 -0.15 0.20 

   

  
White 126 -0.15 0.18 

   

  
Other 130 -0.14 0.19 

    
Asymptomatically F distributed       
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Table 5-3 Intra-observer reliability and inter-observer reliability based on repeated manual measurements and repeated scan 
sessions by age group, BINA 2017 

Intra-observer Reliability 

 Sample Size Average (cm) 
Mean Absolute 
Difference (cm) 

Technical Error of 
Measurement (TEM) 
(cm) 

Relative TEM 
(%TEM) 

Intraclass Correlation 
Coefficient (ICC) 

Row Labels  Manual Scan Manual Scan Manual Scan Manual Scan Manual Scan 

Stature (Length or Height)            
All (0-4.9 years) 948 82.3 82.9 0.3 0.7 0.36 0.62 0.4 0.8 1.00 1.00 

Newborn (<1 month) 164 48.8 49.6 0.3 0.8 0.34 0.66 0.7 1.3 0.96 0.86 

1-11.9 months 132 66.2 66.8 0.4 0.8 0.35 0.65 0.5 1.0 1.00 0.99 

12-23.9 months 150 81.2 81.8 0.4 0.7 0.51 0.63 0.6 0.8 0.99 0.98 

24-35.9 months 170 90.3 90.8 0.3 0.7 0.41 0.57 0.5 0.6 0.99 0.98 

36-59.9 months 332 101.7 102.2 0.2 0.7 0.23 0.62 0.2 0.6 1.00 0.99 

Head Circumference            
All (0-4.9 years) 948 45.7 46.1 0.2 0.5 0.20 0.41 0.4 0.9 1.00 1.00 

Newborn (<1 month) 164 34.0 34.6 0.2 0.4 0.20 0.38 0.6 1.1 0.97 0.89 

1-11.9 months 132 43.1 43.5 0.2 0.5 0.21 0.46 0.5 1.1 0.99 0.97 

12-23.9 months 150 47.5 47.8 0.2 0.5 0.32 0.42 0.7 0.9 0.96 0.94 

24-35.9 months 170 48.8 49.0 0.1 0.5 0.14 0.40 0.3 0.8 0.99 0.94 

36-59.9 months 332 50.2 50.5 0.1 0.5 0.13 0.41 0.3 0.8 0.99 0.93 

Arm Circumference            
All (0-4.9 years) 948 15.4 15.2 0.2 0.4 0.20 0.35 1.3 2.3 0.99 0.99 

Newborn (<1 month) 164 10.7 10.3 0.2 0.4 0.18 0.32 1.7 3.2 0.95 0.88 

1-11.9 months 132 14.7 14.4 0.2 0.4 0.25 0.38 1.7 2.7 0.98 0.95 

12-23.9 months 150 15.9 15.8 0.2 0.5 0.22 0.40 1.4 2.5 0.97 0.91 
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24-35.9 months 170 16.6 16.5 0.2 0.0 0.18 0.35 1.1 2.1 0.98 0.93 

36-59.9 months 332 17.2 17.1 0.2 0.3 0.19 0.32 1.1 1.9 0.99 0.96 

 
Inter-observer Reliability (average of repeated measures) 

 Sample Size Average in cm 
Mean Absolute 
Difference (cm) 

Technical Error of 
Measurement (TEM) 

Relative TEM 
(%TEM) 

Intraclass Correlation 
Coefficient (ICC) 

Row Labels manual manual scan manual scan manual Scan manual scan manual scan 

Stature (Length or Height)            
All (0-4.9 years) 474 82.3 82.9 0.4 0.5 0.37 0.46 0.5 0.5 1.00 1.00 

Newborn (<1 month) 82 48.8 49.6 0.5 0.5 0.49 0.44 1.0 0.9 0.92 0.93 

1-11.9 months 66 66.2 66.8 0.4 0.5 0.40 0.47 0.6 0.7 1.00 0.99 

12-23.9 months 75 81.2 81.8 0.4 0.5 0.42 0.45 0.5 0.5 0.99 0.99 

24-35.9 months 85 90.3 90.8 0.3 0.6 0.35 0.48 0.4 0.5 0.99 0.99 

36-59.9 months 166 101.7 102.2 0.3 0.5 0.26 0.44 0.3 0.4 1.00 0.99 

Head Circumference            
All (0-4.9 years) 474 45.7 46.1 0.3 0.4 0.26 0.30 0.6 0.7 1.00 1.00 

Newborn (<1 month) 82 34.0 34.6 0.3 0.4 0.28 0.31 0.8 0.9 0.94 0.92 

1-11.9 months 66 43.1 43.5 0.2 0.3 0.22 0.26 0.5 0.6 0.99 0.99 

12-23.9 months 75 47.5 47.8 0.3 0.4 0.33 0.35 0.7 0.7 0.96 0.95 

24-35.9 months 85 48.8 49.0 0.2 0.4 0.21 0.31 0.4 0.6 0.98 0.96 

36-59.9 months 166 50.2 50.5 0.2 0.3 0.27 0.28 0.5 0.6 0.97 0.97 

Arm Circumference            
All (0-4.9 years) 474 15.4 15.2 0.3 0.3 0.24 0.25 1.6 1.7 0.99 0.99 

Newborn (<1 month) 82 10.7 10.3 0.3 0.3 0.28 0.28 2.6 2.7 0.89 0.90 

1-11.9 months 66 14.7 14.4 0.3 0.3 0.30 0.25 2.1 1.7 0.96 0.98 

12-23.9 months 75 15.9 15.8 0.2 0.3 0.22 0.26 1.4 1.7 0.97 0.96 

24-35.9 months 85 16.6 16.5 0.2 0.3 0.22 0.23 1.3 1.4 0.97 0.97 

.9 months 166 17.2 17.1 0.2 0.3 0.21 0.25 1.2 1.4 0.98 0.98 
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Abstract:  

3D imaging for body measurements (e.g., anthropometry) is regularly used for design of 
garments and ergonomic products. In recent years the development of low-cost 3D 
scanners provided an opportunity to extend the use of 3D imaging to the health sector. 
We developed and tested the AutoAnthro System, the first mobile, full-body, 3D 
imaging system designed specifically for child anthropometry. In a previous publication 
we showed that the AutoAnthro System produced reliable scan-derived measurements 
of child length, height, head circumference and arm circumference. This study evaluated 
the efficiency, invasiveness, and user experience of the newly developed 3D imaging 
system.  

We used a mixed-methods, collaborative approach that included a quantitative time-
motion study and qualitative interviews of anthropometrists. The time-motion study 
employed continuous observation of manual measurement and scanning based on 
milestone timing, and we designed and analyzed the qualitative component based on 
grounded theory from a constructivist point of view. For the qualitative component we 
analyzed in-depth interviews and a focus group discussion with line-by-line coding, 
memoing and network mapping. We collected data in February 2017.  

We observed measuring and scanning of 22 children, and completed five in-depth 
interviews and one focus group discussion with participation from all five 
anthropometrists. We found that for cooperative children, anthropometrists considered 
the use of 3D imaging an easy, ‘streamlined experience,’ but with uncooperative children 
or when experiencing ‘software glitches,’ anthropometrists reported that capturing a 
good quality scan was out of their control. The mean time to complete a full set of scans 
was 68 seconds (standard deviation (SD) 29), compared to 135 seconds (SD 22) for a set 
of manual measurements (stature, head circumference, and arm circumference). We 
observed that crying was more common during manual measurement, and 
anthropometrist interviews confirmed that 3D imaging was less stressful for children 
than manual measurement.  

Overall, the anthropometrists were not yet ready to completely abandon traditional, 
manual equipment for 3D scanners. Revising the AutoAnthro System to address 
anthropometrists’ concerns on capturing good quality scans of uncooperative children 
should help to facilitate widespread use of 3D imaging for child anthropometry in the 
health sector. 
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6.1. Introduction 
 

3D imaging for anthropometry was developed in 1989 for use in the garment 

industry, which relied on sizing surveys for pattern development (1). By the late 1990s a 

large-scale sizing survey provided scan-derived anthropometric data to manufacturers 

for design of garments and ergonomic products (2). 3D scanners are now commonplace 

in national sizing surveys, with multiple countries adopting the technology (3-5). 3D 

imaging has also been used for anthropometry in the health sector. Over the last decade 

multiple studies tested various 3D scanners for measurements of clinical interest, such as 

adult height (6), waist/hip circumference (7, 8), body fat (9, 10), body surface and volume 

(3, 11, 12), and body shape (13). Research on metabolic syndrome used scan-derived 

anthropometry (8, 14), and over the last few years large-scale epidemiological studies of 

adults used 3D scanners (13, 15). However, previous research on 3D imaging for 

anthropometry used expensive, stationary scanners, 3D imaging is not yet used in health 

and nutrition surveys, and its use in health facilities is limited to research and specialized 

purposes, such as cranial remolding orthoses (16).  

The development of “light-coding” technology reduced the cost and size of 3D 

scanners and led to use in the gaming industry; and in 2013 a Kickstarter campaign funded 

the development of Structure Sensor (Occipital, San Francisco, CA, USA), an open-source 

3D scanner that attaches to a tablet or phone. The development of low-cost, mobile, open-

source scanners provided an opportunity to extend the use of 3D imaging to common uses 

of anthropometry in the health sector, such as nutritional screening and surveillance. We 
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tested the AutoAnthro System, a tablet-based 3D imaging system for anthropometry 

designed for children under five years of age. In a previous publication we showed that 

the AutoAnthro System produced reliable, scan-derived measurements of child length, 

height, head circumference and arm circumference (17). This study evaluated the 

efficiency, invasiveness, and user experience of the newly developed 3D imaging system. 

The purposes of our research were to inform further development of AutoAnthro and to 

assess the potential for widespread use of 3D imaging for child anthropometry.  

 

6.2. Materials and Methods  
 

The Body Imaging for Nutritional Assessment Study (BINA) compared traditional, 

manual anthropometry to 3D imaging; and was approved by the Emory Institutional 

Review Board. For BINA we used AutoAnthro (BST, Atlanta, GA, USA), a custom 

software developed by Body Surface Translations (BST) for capturing and processing 

scans using the Structure Sensor. We calibrated AutoAnthro based on a sample of 36 

children. We then carried out a cross-sectional, validation study on 474 apparently healthy 

children under five years of age. Five trained anthropometrists conducted all 

measurements and scans in daycares and medical facilities in Atlanta, USA. Detailed 

methodology for BINA is available in previous publications (17, 18). This paper presents 

quantitative and qualitative research on the experience of using 3D scanners for 

anthropometry. We conducted a time-motion study and qualitative interviews of 

anthropometrists, adopting a mixed-methods approach to provide a comprehensive 

assessment of experience. We collected data at the end of the BINA study (February 2017) 
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to maximize anthropometrists’ experience with AutoAnthro. We worked with 

anthropometrists to improve the relevance and application of our research (19), referring 

to Evidence Based Principles to Guide Collaborative Approaches to Evaluation (20) to 

inform our collaborative approach. BINA anthropometrists helped to design the research, 

developed tools, reviewed and revised manuscript drafts and approved the final 

manuscript.  

 

6.2.1. Time-Motion 

 

The study compared time required to take manual measurements versus 3D scanning 

using continuous observation based on milestone timing (21). We followed Suggested 

Time and Motion Procedures (STAMP) developed by Zheng et al (22) and developed and 

pretested the study protocol and tools. The lead researcher and one BINA anthropometrist 

defined all measurement tasks and developed cues for start/stop times based on those 

tasks. A single observer recorded time using a stopwatch in order to improve reliability. 

The intended sample size was a minimum of 22 children, based on achieving 0.9 power 

using a Paired T Test (α<.05) to detect a 30 second difference between measurement 

methods, which we considered a meaningful difference for efficiency of nutritional 

screening. The time motion study sample was a subsample of children who were 

measured in BINA, and we used purposeful selection to ensure that ~½ of the subsample 

was under 2 years of age.  
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We did not include the time to establish rapport or undressing because these activities 

were required for both scans and manual measurement. The protocol for manual 

measurement required undressing to undergarments while the scan based measurements 

required that the child be undressed to undergarments or to skin-tight leotard/shorts. We 

also did not measure the time required to set up equipment, but did include data entry in 

manual measurement time. Each child was scanned and measured twice by two different 

measurers, resulting in four sets of scans and four sets of manual measurements. A set of 

scans consisted of six one-second scans and a set of manual measurements included 

length or height, head circumference and arm circumference. To compare scans and 

manual measurements we timed the four sets as one unit, which simplified measurement 

by reducing the number of cues. Weight was not included in timing of manual 

measurements because we did not calculate weight from scans. The mean time for taking 

a single set of scan measurements was calculated by dividing the total time by four. To 

determine the time required for each manual measurement type (stature, HC, and MUAC) 

we observed a single measurer and took the mean from their two observations. We 

paused timing of measurements when measurers were interrupted. If the interruption 

was not related to the child’s behavior we did not record the length of the interruption. In 

the case that a child became too upset to continue measuring and the measurer had to stop 

measuring to calm the child, we timed the interruption, and noted if it occurred during 

scans or manual measurements. Timing interruptions allowed us to calculate 

measurement time with and without interruptions; we felt that the two estimates were 

needed because pausing measurements may have been more common in BINA than in a 
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household survey because of the facility setting and the absence of the primary caregiver. 

While timing measurements we also observed if a child cried and noted if crying occurred 

during scans, manual measurements, or both. We used SPSS 20 (IBM Corp., Armonk, NY, 

USA) for data analysis. 

 

6.2.2. Interviews 

 

The first author (JC) led the qualitative component of the study and had relevant 

training in the methods used in this study. He also supported training of anthropometrists 

and supervised data collection for the main BINA study. Before carrying out interviews 

the lead researcher had developed opinions on the new technology through experience 

with BINA; every effort was made to not influence the responses of interviewees. We used 

grounded theory from a constructivist point of view for qualitative design and analysis 

(23). 

We sought to include everyone with extensive experience using the AutoAnthro 

System, which limited the intended sample to the five BINA anthropometrists, who all 

agreed to participate. In consultation with anthropometrists, we first conducted the 

written, in-depth interviews (IDI) and followed IDIs with a focus group discussion (FGD) 

that was facilitated by the lead researcher. One of the anthropometrists and the lead 

researcher developed a questionnaire with open-ended and probing questions on the 

identified categories of efficiency, invasiveness and the general user experience; with the 

latter category broadly covering the advantages and disadvantages of 3D imaging in 
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comparison to manual measurements. The lead researcher and one anthropometrist 

independently coded IDIs line-by-line, and the lead researcher created code families and 

memos based on both sets of coded IDIs. We used ATLAS.ti 7 (Scientific Software 

Development GmbH, Berlin, Germany) for analysis.  

Following the analysis of all individual, written interviews, we designed a semi-

structured interview guide with open-ended questions for the focus group discussion. 

The primary purpose of the focus group discussion (FGD) was to clarify and expand on 

points raised in the written responses. The lead researcher facilitated the FGD which was 

held in a private conference room at Emory University. The proceedings were audio-

recorded with a mobile phone and transcribed with Dragon NaturallySpeaking (Nuance, 

Burlington, MA, USA). The lead researcher coded the FGD line-by-line and revised code 

families generated from IDIs to incorporate the new information from the FGD. The lead 

researcher created a network map of code families to facilitate further memoing, and 

identified theories from the data. As authors, anthropometrists reviewed and revised 

findings, which functioned as a ‘member check’ to enhance trustworthiness of findings. 

We referred to the 2014 Standards for Reporting Qualitative Research from O’Brien (24) 

to report qualitative findings. 
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6.3 Results 
 
6.3.1. Time-Motion 

 

We observed and recorded measurement time for 27 children under five years of age. 

On average it took just over a minute (68 seconds) to complete a set of scans compared to 

over two minutes (135 seconds) for a set of manual measurements. The differences in 

measurement time between scans and manual measurement were statistically significant 

but did not differ by age group (Table 1). At the individual level, manual measurements 

took longer to complete for all children except one. For the child whose scans took longer 

the scanner was malfunctioning. There was little difference between stature, HC and 

MUAC for measurement time; with each measurement taking close to 40 seconds (Figure 

1). Differences remained small after disaggregating by age group. For children under two 

years, the time for the various manual measurements ranged from 39 to 42 seconds, and 

for children over two years from 44 to 47 seconds.  

Around 20% of children cried during manual measurements, and all of them were 

under two years of age (Table 2). Only one child cried during scans (4%), and that child 

also cried during manual measurements. Measuring was interrupted by the child’s 

behavior on two occasions; both interruptions occurred during manual measurements 

and the average time of the interruption was 43 seconds. Including interruptions 

increased average manual measurement time by ~one second, increasing mean 

measurement time to 136 seconds.   
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6.3.2. Interviews 

 

We completed five IDIs and one FGD, with participation in both from all five 

anthropometrists who had extensive experience using the AutoAnthro System. The five 

anthropometrists were all women with postsecondary degrees. After merging similar 

codes, we identified 96 action-oriented codes and 15 code families: time, cooperation, ease 

of use, staff, learning, invasiveness, caregiver, individual, child’s age, clothing, experience, 

touch, safety, environment, and dependability. Table 3 presents the code families and 

selected, associated codes and quotations. We identified two core themes, or theories, 

from the data that related to favorable and unfavorable perceptions of using the 

AutoAnthro System: ‘streamlined experience’ and ‘quality control’.  

 

6.3.2.1. Streamlined Experience 

 

Favorable perception of the 3D imaging system was dominant. The term ‘streamlined 

experience’ borrowed from one of the interviewees, who reported that “scanning 

equipment…makes the process more streamlined.” We combined ‘streamlined’ with 

‘experience’ to emphasize that streamlining could be applied to both physical equipment 

and the measuring experience, and also to highlight the importance of previous child 

experience.  
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“One of the major benefits…is that the device is extremely light, can fit in a 
small bag, and is very easy to operate. This is unlike the manual equipment, 

which is heavy and cumbersome…The scanning equipment also does not need 
to be sanitized… Further, the scanning equipment can double as…an 

entertainment device…” 

 

The above quote highlights the physical characteristics of scanning equipment and 

how the use of a scanner effects other equipment needs. In addition to being smaller and 

lighter than a length board and a single piece of equipment compared to the multiple tools 

required for manual measurement, scanning reduced the need to carry additional 

supplies to sanitize the measuring equipment, and toys or other devices to encourage 

cooperation from children. Another anthropometrist stated that “the 3D imaging 

device…eliminates the need for other resources,” and referred to an additional advantage of 

the scanner doubling as an instrument to record measurements.  

For an anthropometrist the experience of measuring begins with learning to use 

anthropometric tools, and all five anthropometrists commented that learning to take scans 

was easy, pointing out that “besides having to adjust the box on the screen to fit the 

object/person…it is just like taking a picture,” and that there was “not a lot of user input required 

to actually perform the scan.” For the most part the ease of learning to scan carried over to 

using the scanner in the field.  

Most anthropometrists felt that in general taking scans was easier and faster than 

manual measurements. They pointed out that scanning saved time because they did not 

need to set up and sanitize equipment, or record measurements. They also felt that 

children were less fearful of scans than manual measurement because they related manual 
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measurement to a painful visit to the doctor’s office and scanning to “getting their picture 

taken.” Anthropometrists felt that children were familiar with tablets and taking pictures, 

and that this familiarity made it easy to establish rapport. They also reported that 

confinement in the length board was a major source of distress for children. Overall 

AutoAnthro provided a ‘streamlined experience’— it was easy to learn, the scanner itself 

was convenient, children did not experience stress, and taking scans was like taking a few 

pictures. However, all anthropometrists pointed out that taking scans was not always 

easy. 

“I think that overall, the scanning technology is easier/faster/more convenient 
for children of all ages. If I were tasked with measuring children with either 
tool, I would want to have the scanning technology as my primary method, 
and have the traditional tools as a backup for cases where it wasn’t feasible.”     

 

The anthropometrist quoted above preferred scanning over manual measurements, 

but also felt scanning may not always be feasible. All anthropometrists reported that 

scanning was “difficult, slower, and less dependable [than physical anthropometry] with an 

uncooperative/misbehaving child.” 

  

6.3.2.2. Quality Control 

 

Anthropometrists’ view of scanning as a streamlined approach changed when 

capturing a good scan was out of their control. Scanning was dependent on child 

cooperation because movement affected the ability to capture high quality scans, and lack 
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of cooperation was a common issue with children between the ages of 6 months and 3 

years. 

“I would say 3D scanning is more difficult, slower, and less dependable [than 
manual measurement] with an uncooperative/misbehaving child. Since we 

can’t touch them while getting a scan, they can run or move around, making 
it impossible to capture a good scan.” 

 

The problem of movement during scanning was exacerbated by two factors. First, the 

best solution to keep an active child still for the required second would be to physically 

hold them, but this was not possible during scanning because scan processing software 

required physical separation. Anthropometrists relied on various techniques to foster 

cooperation, but none of the techniques worked all of the time and sometimes 

anthropometrists “gave up getting good scans and decided to settle for…subpar scans.” Second, 

anthropometrists were confident in identifying a good or bad scan, but for a scan that was 

somewhere in between good and bad, a “subpar scan,” they were not certain if the scan 

was of adequate quality to process into accurate measurements.  

Another less common situation when anthropometrists felt that capturing a quality 

scan was out of their control was when they experienced “software glitches.” 

Anthropometrists knew that scanners could not function properly in direct sunlight 

because the scanner relies on infrared light that is washed out by direct sunlight, but they 

also reported reduced functionality under some “fluorescent lighting.” Dim light did not 

cause any scanner problems and for the most part anthropometrists were able to move 

around the room and ensure “suitable lighting” through trial and error. This was not a 
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problem when the anthropometrists could stay in one location within a facility for an 

entire day or multiple days, but became a challenge when they measured in a hospital 

setting where they had to move from room to room for each child; they considered finding 

“suitable lighting” a burden, in part because they could not always predict which lighting 

conditions constituted “suitable lighting.” On occasion scanners did not function for an 

extended period of time, and while anthropometrists presumed light was the likely cause 

they could not identify the exact reason and sometimes referred to such situations as 

“software glitches.” 

“The scanning equipment is fairly reliable, but there have been times where 
there are issues with getting the camera to pick up the child or focus, which is 

very frustrating…there have been about 4 occasions where it took several 
minutes just to get one scan.”  

 

At times anthropometrists were uncertain they would be able to complete a set of 

scans. With manual measurements there was little concern about completing 

measurements; uncooperative children could be held and there were no glitches with 

manual equipment. Additional qualitative findings on efficiency and invasiveness are 

integrated into the discussion. 

 

6.4 Discussion 
 

Four out of the five anthropometrists reported that scanning was faster than manual 

measurement and quantitative measurement showed that on average the time required 

for manual measurements was approximately two times longer than scans. During 
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observation we found that nearly all crying episodes occurred exclusively during manual 

measurement, and in interviews four out of five anthropometrists indicated that children 

were more comfortable with scans. For the most part, the quantitative and qualitative 

components of this study were in agreement. Anthropometrist interviews provided 

further insights into efficiency, invasiveness and the user experience; including that 

increased efficiency and reduced invasiveness made scanning a ‘streamlined approach’ 

for most children, but that scanning was not easy for uncooperative children.  

The vast majority of studies and research using 3D imaging for anthropometry did 

not include children under five years of age because imaging systems were not designed 

to handle movement. To our knowledge the AutoAnthro System is the first 3D imaging 

system designed specifically for full-body anthropometry of infants and young children. 

The only other 3D imaging system designed for young children is StarScanner 

(Orthomerica, Orlando, FL, USA), an approved medical device for measuring a newborn’s 

head to design orthoses for cranial remolding (25). The AutoAnthro and StarScanner 

systems share the same capture strategy for handling movement — taking multiple scans 

of short duration and stitching them together. Our study showed that the capture strategy 

worked well for newborns, infants under six months of age, and children three years of 

age and over. However, anthropometrists felt that for up to ½ of children six months to 

three years of age it was difficult to get them to stay still long enough for multiple, one-

second scans, and that often they settled for ‘subpar scans.’ Interestingly, in a previous 

publication we showed that in BINA the reliability of scan-derived measurements was 

not affected by the age of the child (17), which suggests that many of the ‘subpar scans’ 
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were good enough and cooperation did not often have an effect on measurement quality. 

BINA anthropometrists took more than 6 scans and selected the 6 scans that they 

considered as the “best quality” for processing into each measurement. We do not know 

if cooperation affects scan-derived measurement quality when anthropometrists take only 

6 scans. More research is needed to determine how often scans are of insufficient quality, 

and AutoAnthro should be improved to give anthropometrists confidence that they are 

capturing good quality scans. An ideal solution that is simple, but technologically 

complex would be to redesign the software to allow the anthropometrist or caregiver to 

hold the child during scanning. If quality is rarely affected by movement with the current 

software, as is suggested by reliability data, it may be sufficient to offer improved operator 

feedback that allows anthropometrists to distinguish between a “subpar scan” and a scan 

of adequate quality. Information on scan quality could be built into the software or 

provided through supervision. The need for additional feedback was expressed by an 

anthropometrist in the quote below. 

“…we have not had sufficient feedback to know if all our submitted images 

are adequate. We do get this type of feedback on our manual measurements. 

We can see if our first and second set of measurements are close and we can 

compare…to that of our partner…The times that we tested this and found 

that we were measuring consistently too big or too small, we could correct our 

technique.         
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Before BINA we did not have data on the reliability and accuracy of scan-derived 

anthropometry; now that we have such data it is possible to develop metrics of scan 

quality in relation to anthropometry. 

The current cost of the 3D scanner used in the AutoAnthro System (USD $379 (26)) is 

more than a length/height board (USD $122 (27)). The requirement to attach the 3D 

scanner to a cell phone or tablet adds cost to the imaging system, but electronic data 

capture is becoming more common in clinics and surveys, and the added cost of a mobile 

device is likely offset by eliminating the need for paper and data entry. In this study we 

found that 3D imaging brought efficiency gains related to training, staff, and 

measurement time that may help to further offset increased costs. We spent one day on 

3D imaging training, and anthropometrists felt that learning to use the scanner was easy. 

Our previous findings on reliability suggest that the one day training on 3D imaging was 

sufficient because scan-derived measurements were reliable and between-measurer 

reliability was the same as within-measurer reliability (17). Reduced training time could 

offer savings over traditional anthropometry, which relies on one to two week trainings 

of anthropometrists to achieve quality results. In addition to substantial training, manual 

anthropometry requires the use of a trained assistant. Anthropometrists felt that an 

assistant was needed for 3D imaging to help position the child, but that “it doesn't 

necessarily have to be someone who is trained.” In some settings 3D imaging may be able to 

rely exclusively on the caregiver to act as an assistant, reducing staff needs. The garment 

industry saw 3D imaging as a way to reduce the time required to carry out large sample 

size surveys with up to 40 separate manual measurements of each individual (1). We 
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found that 3D imaging took less time than the three manual measurements included in 

our study. For a household survey, the small difference in measurement time between 

scans and manual measures may not represent a meaningful difference for efficiency 

because much more time is spent traveling from house to house. For large-scale screening 

however, saving a minute per child could be considered important. However, in the 

health sector only child weight and length/height are commonly measured, with head 

circumference limited to newborns and infants, and MUAC used as an alternative to 

weight for length/height. Additional manual measurements are generally not used 

because of the difficulty and burden of measuring. Compared to the one or two common, 

manual measurements 3D imaging does little to reduce measurement time, but it does 

provide an opportunity to develop novel anthropometric indicators that are not feasible 

with manual measurement and that may be better predictors of outcomes of interest. 

Efforts to create new indicators based on 3D measures has already started, with the 

development of the Body Volume Index and the Health Index (12, 14). It is difficult to 

quantify the future value of new anthropometric indicators. Portability and reduced 

invasiveness are additional but important advantages of 3D imaging that are difficult to 

assign value to. The smaller dimensions and reduced weight (<0.5 kg) of the AutoAnthro 

System lessen the burden on anthropometrists and may reduce transportation costs when 

compared to a typical, wooden length/height board (7.7kg (27)), and anthropometrists 

reported that children experienced less stress during 3D imaging. After additional 

research is carried out and the scanning protocol is finalized, our findings can help to 

design a comprehensive costing study.    
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An important strength of this study is the research design; we used a mixed-methods, 

collaborative design that increased the relevance and trustworthiness of findings. 

However, there are some limitations that need to be considered when interpreting or 

generalizing the findings. We did not consider the time needed to process scans into 

measurements because the imaging system was designed to be fully automated. 

However, anthropometrists had to select the 12 best scans when they took extra scans, 

which was a frequent occurrence, and selection took a substantial amount of time. We 

expect that an updated version of AutoAnthro will be fully automated, but with the 

current version we underestimated measurement time by not taking into account 

selection and deletion of scans. Both qualitative and quantitative findings were based on 

a small sample size. According to the anthropometrists, scanning took longer for 

uncooperative children compared to cooperative children. We therefore expected to find 

a difference in scanning time by age because most uncooperative children were under two 

years of age, but this was not the case; the lack of differences may however be due to the 

small sample size for the time motion study. For the interviews there were only five 

anthropometrists with sufficient experience using the AutoAnthro System, and all of them 

had post-secondary education and were familiar with electronic devices such as tablets 

and smartphones. Future research on user experience could include multiple focus group 

discussions to get input from a larger number of anthropometrists, and findings from this 

study should not be extrapolated to anthropometrists or children/caregivers with less 

education and/or limited experience using similar technology. The sensitivity of scanners 

to light may be more problematic when scanning outside of a building or with frequent 
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movement from house to house, and if caregivers and children lack previous experience 

with mobile devices they may react differently to the technology. Anthropometrists 

reported that some primary caregivers did not consent to their child participating in the 

study because of privacy concerns and that the safety of the 3D scanner was a common 

concern of caregivers during recruitment. In BINA we did not use a formal sampling 

frame and it was not possible to determine the percentage of caregivers that refused 

consent. An additional limitation is that we did not collect qualitative data directly from 

parents/caretakers or children. Since we conducted most of the measurements in day care 

and hospital settings, caretakers were not often present during data collection and the 

majority of children in the study were not old enough to be interviewed.  

In a previous publication, we described the need for further research on AutoAnthro 

to replicate reliability findings and to remove systematic inaccuracy (17). This study 

further supports the need for additional research before we can make a recommendation 

for the widespread use of AutoAnthro in surveys or regular nutritional assessment. 

Specifically, research to develop scan quality control mechanisms is needed. The scanner 

needs to be tested in a household or community setting with different lighting conditions; 

and in a population that is not familiar with similar technology. In addition to providing 

information on different lighting conditions, a household study could determine the 

likelihood of a caregiver refusing to have their child scanned. As this study showed, it is 

important that future studies include a qualitative component to provide a 

comprehensive evaluation. Our findings on efficiency, invasiveness and the user 

experience could vary dramatically in a different setting. For additional qualitative 
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research it would be helpful to carry out a study with caretakers present; the caretakers 

themselves may provide valuable insights into invasiveness and the general experience 

with the technology; and it may also be possible to get feedback from older children. 

 

6.5 Conclusions 
 

In this study we found that anthropometrists were not yet ready to completely 

abandon traditional, manual equipment for 3D scanners. For most children under five 

years of age 3D imaging was an efficient and non-invasive way to capture anthropometric 

data. Revising the AutoAnthro System to address anthropometrists’ concerns on 

capturing good quality scans of uncooperative children should help to facilitate 

widespread use of 3D imaging for child anthropometry in the health sector.  
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6.6 Figures and Tables 
 

 
Figure 6-1 Mean measurement time and standard deviation for manual 

measurements completed by the first measurer, BINA 2017 

 

Table 6-1 Difference in the time required to complete scans and manual 
measurements, BINA 2017 

Age n 

Average 
time to 
complete 
scanning 
(seconds) 

Average time 
to complete 
manual 
measurements 
(seconds) 

Paired Samples T-Test (difference and 
95% confidence intervals (CIs) in seconds) 

 

 

Mean SD Mean SD 

Difference 
(scan-
manual) 

95% 
CI 
Lower 
Limit 

95% 
CI 
Upper 
Limit Significance 

Under Five 27 68 29 135 22 -67 -80 -54 <.001 
Under Two 11 63 23 121 20 -58 -80 -35 <.001 
Two to Five 16 71 32 144 18 -73 -91 -56 <.001 
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Table 6-2 Crying episodes and interruptions caused by non-compliance during 
scans and manual measurement, BINA 2017 

Age n 

Number of 
children 
crying during 
scans or 
manual 
measurement 

Number 
of children 
crying 
during 
scans 

Number of 
children 
crying 
during 
manual 
measurement 

Number of 
interruptionsa 

Average 
time of 
interruption 
(seconds) 

All 27 6 1 6 2 43 
Under 2 11 6 1 6 2 43 
2 to 5 16 0 0 0 0 n/ab 

a Both interruptions occurred during manual measurement 

b Not applicable because no interruptions in this age group  
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Table 6-3 Results of coding and memoing of anthropometrists’ interviews, BINA 2017 1 

Code Family Selected Codes (underlined) & Selected Quotations Summary of Memos (code families in bold) 
Time Cooperation Same for Both: “Generally, if a mild mannered child is 

cooperative for one set of measures they will be for the other, but the 3D 
scanning takes LESS TIME than the physical.” 
Child Moving: “There are “sweet spots” in terms of age that makes the 
scanning faster than traditional measurements. Newborns and young 
infants… can be scanned faster…”  

A major driver of the time required to complete measurements was child cooperation, 
which itself was driven by the age and temperament of the child, and invasiveness of 
the measurement method. Most anthropometrists reported that scanning took less time 
than manual measurements when children were cooperative. All anthropometrists 
reported that scanning took more time for uncooperative children compared to 
cooperative children, and some felt that scans took more time than manual 
measurements for children six months to three years of age.  
 

Cooperation Crying: “…reactions during physical measurements occurred while 
children under two were getting their length measurement taken. Most 
children, even the most compliant, did not enjoy the length board and 
usually cried, screamed, or tried to stand up.” 
Assessing Blame for No Cooperation: “…we just didn't start anything 
on them because they were so uncooperative, so I wouldn't blame that 
on the scans or the physical measurements. I would kind of blame it on 
the whole process. 
Distracting Child: “Except for height/length, there is not an exact [full 
body] pose…for physical measurements. The measurer can move 
around the child to do the measurements. It is easier to distract a child 
during the physical measurement process. They can watch a video or 
play a game on the iPad…”  

The method of measuring, scanning versus manual, was not the main determinant of 
cooperation. However, length was consistently reported to be particularly difficult. 
Anthropometrists viewed the child’s temperament as important, and viewed child’s age 
as the best predictor of cooperation. Anthropometrists reported that removal of clothing 
and “stranger anxiety” could initially cause distress of the child, leading to poor 
cooperation and refusal before attempting measurement in some cases. Some 
anthropometrists reported that once measurement began refusals occurred exclusively 
during scanning, while others reported refusals only occurred during manual measures. 
During measurement distraction was the main strategy used by anthropometrists to 
foster cooperation, and there was consensus that showing videos was the best distraction 
tool. Scanning uncooperative children was especially challenging because the child was 
unable to move, anthropometrists could not touch the child, and distraction was more 
difficult.  

Ease of Use Easy to Carry: “One of the major benefits…is that the device is 
extremely light, can fit in a small bag, and is very easy to operate. This 
is unlike the manual equipment, which is heavy and cumbersome 
during transportation.” 
Using both tools: “I think that overall, the scanning technology is 
easier/faster/more convenient for children of all ages. If I were tasked 
with measuring children with either tool, I would want to have the 
scanning technology as my primary method, and have the traditional 
tools as a backup for cases where it wasn’t feasible.” 
Child Moving: “I would say 3D scanning is more difficult, slower, and 
less dependable with an uncooperative/misbehaving child. Since we 
can’t touch them while getting a scan, they can run or move around, 
making it impossible to capture a good scan.” 
 

Anthropometrists commented that the physical characteristics of the scanner, small and 
lightweight, made it easy to use. Learning to use the scanner was easy according to 
anthropometrists, who also commented that the scanning equipment was sturdy and did 
not require sanitization. Anthropometrists did not consider charging the scanner battery 
to be a big burden, but did report that forgetting to charge led to data collection delays 
on occasion. There was no reported potential for harm to the child from the scanners, but 
anthropometrists reported needing to explain the safety of scanning technology to 
caregivers. Children’s previous experience with cameras facilitated easy use of scanners, 
but the requirement to remove clothing was a burden. Most anthropometrists reported 
that completing all required scans was generally easy, but that some ‘trial and error’ was 
necessary and that scanning became difficult in specific circumstances. Environment, 
specifically lighting (attributed to both natural and fluorescent light), affected scanner 
functionality and made data collection more difficult. The biggest reported challenge to 

 



  

use the scanners was getting an uncooperative child to stay in position long enough to 
obtain adequate scans without being able to touch the child.  

Staff Not Needing Trained Staff: “I think it's helpful to have two staff for 
manual measurements. It's helpful for scans to have a staffer and 
someone else to position the kid. It doesn't necessarily have to be 
someone who is trained.” 
Seeing Different Parts: “I think both always need two if you want to be 
accurate. For height and length someone has to be watching one end of 
the body. If you're doing scans, unless you have a perfect kid who was 
understanding your verbal directions…, [a single operator] would have 
to walk over change their arms, come back scan.” 

Reported staff needs varied from one to three depending on the measuring method and 
age of child. For uncooperative children under two years of age anthropometrists 
reported needing three people to get an accurate length measurement. For manual 
measures at least two trained staff were necessary because height measurement requires 
simultaneous viewing of different parts of the body to ensure correct positioning. For 
scanning there was some agreement that an assistant was needed for most children and 
helpful for all children, but the assistant did not necessarily need to be formally trained. 
Some anthropometrists reported that with a cooperative child who followed instructions 
some manual measurements and scanning could be completed by a single measurer. For 
both manual measures and scanning anthropometrists viewed the use of an assistant as 
important for reducing measurement time.  

Learning Working by Trial and Error: “Learning to use 3D imaging was relatively 
easy. Besides having to adjust the box on the screen to fit the 
object/person…it is just like taking a picture. Most of the lessons were 
learned through trial and error…” 
Being Confident in Measurement: “Instructions on using the 3D 
imaging was pretty straightforward…I’m not sure if all of the 
measurers’ questions concerning what constitutes a ‘good scan’ were 
ever completely answered. Though it was pretty obvious on what 
signified a ‘bad scan.” 

There was unanimous agreement that 3D imaging was easy to learn; it was like taking a 
picture. The custom software for scanning did not require much user input. However, 
trial and error was necessary during data collection to learn how to deal with various 
circumstances. For example, anthropometrists found that it was not possible to scan in 
hallways or to use two scanners at the same time on a single child. For the most part 
anthropometrists learned how to ensure that environment did not affect scans. 
However, at the end of data collection anthropometrists still did not feel that they could 
recognize a “good scan,” and they could not perfectly predict when lighting would affect 
scans.  
 

Invasiveness Receiving Medical Care: Children generally detest getting their 
recumbent length taken. If they are old enough, they might think they 
are getting a shot when we do MUAC, even when we explain what 
we’re doing. They often think whatever physical measurements we are 
going to do will hurt – because they associate us with medical 
professionals. They tend to not have these fears with scans. 
Being Scared: For traditional measuring a lot of children first tend to be 
a little afraid…because our process is very similar to what they 
experience when they visit the doctor’s office and they associate going 
to the doctor with getting painful shots. After seeing that what we are 
doing with them is not painful, I’ve noticed that most children are 
pretty relaxed and happy to be measured. For 3D imaging, children 
seem to have more fun and are excited to do the poses (sometimes too 
excited). Because it’s kind of like taking a photograph and there is way 
less touching involved, I think most children are way more comfortable 
with this method. 

Anthropometrists defined measuring invasiveness as causing the child to be 
“uncomfortable,” “anxious,” or “distressed;” and reported related behaviors of “crying,” 
“screaming,” or “moving away.” Removal of clothing was seen as invasive for some 
older children, and this was related to “stranger anxiety.” Nearly all anthropometrists 
reported that children were more comfortable with scanning because they were used to 
having a picture taken. Previous experience also affected manual measurement; all 
anthropometrists reported that children related manual measurements to a doctor's visit, 
with MUAC being related to getting shots. All anthropometrists reported that length 
caused the most distress, and the sense of confinement was cited by some as the 
underlying reason. Touching occurs for manual measurements and in some cases 
children were anxious about being touched, while for others touching was a source of 
comfort. Anthropometrists also considered the caregiver’s reaction when considering 
invasiveness. Anthropometrists reported that caregivers may be more comfortable with 
manual measures because they are already familiar with them, and because there is an 
aversion to taking what appears to be a picture when the child is undressed. However, 
negative reaction from caregivers was reported for the length measurement.   
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Caregiver Parents Make Harder: “I noticed that children tend to respond 
negatively to any of the measures when there was a parent around.” 
Discomfort with Stranger: Many times, the child/infant did not like 
being touched by strangers (us). The whole process generally went 
better when we had a caregiver assist. 
Feeling Awkward: “…showing a scan to the caregiver was a way to 
reassure them that the 3D image was much different than a photograph 
and that the child’s identity and privacy was protected.” 

Multiple anthropometrists felt that the presence of a caregiver made measurement more 
difficult, but all agreed that undressing the child was easier with a caregiver present. 
Some anthropometrists reported that uncooperative behavior of the child during 
measurement was more common when a parent was present. Some anthropometrists felt 
compelled to show caregivers the scan of the child to reassure them that it was not an 
identifiable photograph. Anthropometrists reported that caregivers expressed that 
previous manual measures of their child in the doctor’s office were inaccurate, and that 
they were hopeful the scanner could provide accurate measurement.    
 

Individual Dealing with Language Barrier: “I think it is pretty easy for children to 
understand what we need from them in order for us to get good scans.  
Challenges only occur when the child is really active…, or when there is 
some sort of barrier in communication.” 
Assessing Child Temperament: “Being able to detect the child’s 
temperament and learning style early on did contribute to the time it 
took to secure measurements. Each child responded to different 
distraction techniques and games in various ways. Identifying the type 
of child being measured early on was often helpful in decreasing 
measuring time.” 

Anthropometrists highlighted individual child characteristics when discussing 
measurement efficiency and ease of use, referring primarily to child “temperament.” 
Specific behaviors that made measuring more difficult and time consuming were: being 
active or unable to stay still, and seeking attention. Distraction techniques had to be 
adapted to the individual child. Over-activity and attention seeking were viewed as 
more problematic for scanning because of the inability to touch, and some 
anthropometrists believed that scanning exacerbated attention seeking. Multiple 
anthropometrists discussed language as a barrier for efficient scanning because of the 
inability to communicate positioning to the child or caregiver who acted as an assistant 
when English was not their first language. Language barriers affected scans and manual 
measurements because a lack of understanding made the child more afraid.    

Child’s Age Getting Usable Scans: “I think the age of the child does have an effect 
on which measure is faster. Most of the 3 and 4 year olds were easy to 
scan and measure. Children that were old enough to crawl (about 9 
months) and under 3 took longer to scan because we had a hard time 
keeping them still enough to capture usable 3D images.” 
Child Lacking Awareness: “Clearly young infants…are not aware of 
what is going on…they don’t seem to have a reaction to either the 
scanning or the physical measurements. Children over about 6 months 
become more difficult to manage. They may not want to stay in the 
position…for the scanning, and may resist being touched for the 
physical measurements. Children well over 3 years old frequently do 
understand…and can be quite cooperative.” 

All anthropometrists agreed that the age of the child was the largest determinant of the 
speed and ease of measuring. Infants under 6 months and children older than three 
years were the easiest to measure. When infants start to turn over and crawl the 
movement makes measuring more difficult. At one year of age awareness increases and 
children can become “knowingly uncooperative.” Child strength increases with age and 
children become harder to physically manipulate, which can make measuring more 
difficult from one year of age until the age at which children are better at following 
directions, 2.5 to three years of age. Within the more difficult age group of 6 months to 3 
years, children 12-24 months were particularly challenging because they did not like to 
lie down and are strong enough to resist. While both manual measurement and scanning 
were more difficult for the middle age group, the inability to touch the child made 
scanning more difficult for this age group.  

Clothing Undressing a Child: “Older children (36+months) are the age range that 
generally have the most concern about being undressed. The process of 
getting the child undressed and into another form of covering has taken 
up to 10 minutes, multiple visits, assistance from adults the child is 
comfortable with, and sometimes has required the case to be lost. 
Regardless of age of the child, parental figures have lost their 
willingness to consent due to the requirement to undress for scanning.” 

All anthropometrists reported that undressing the child was a challenge. Undressing 
caused distress before measuring began. Anthropometrists related discomfort with 
undressing to “stranger anxiety.” Older children were more reluctant to undress. One 
anthropometrist felt that undressing caused children to relate measuring to experience at 
the doctor’s office. Some anthropometrists reported that they themselves felt awkward 
undressing children, but that it became easier as the study progressed. 
Anthropometrists, who also recruited for the study, reported that some caregivers were 
hesitant or refused to consent to the study because children would be undressed.  
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Experience Receiving Medical Care: “The MUAC measuring tape seemed to 
remind children of the tourniquet applied to the arm before shots are 
administered.” 
Receiving Medical Care: “A pen or marker is typically used to mark the 
midpoint which can sometimes be confused as a needle for taking a 
shot and can have adverse effects on the child’s behavior.” 
Comfortable because Familiar: “I believe that children are more 
comfortable with a tape measure and the measuring board. These are 
items they have seen before and have some understanding of how they 
work.” 
Taking a Picture: I think the older children actually enjoy doing the 
scans, because they think they are being photographed doing poses. 
 

All anthropometrists commented that the previous experience of the child affected the 
measurement experience. One anthropometrist commented that children were taught 
not to undress for strangers, and another reported that undressing reminded children of 
visiting the doctor. One anthropometrist felt that children were more comfortable with 
manual measurement because they were familiar with the equipment. The most 
commonly reported beliefs from the anthropometrists were that children related 
scanning to having their picture taken and manual measurement to going to the doctor’s 
office. All anthropometrists said that manual measurement equipment made children 
relate the experience to going to the doctor, sometimes causing distress and 
uncooperative behavior. The children themselves made comments that convinced 
anthropometrists that they thought it was a doctor visit. Children were familiar with 
tablets and phones; and all anthropometrists agreed that older children related scanning 
to taking a picture. For the most part the idea of taking a picture made children more 
cooperative, but some felt it exacerbated attention seeking in some cases. The scanner 
made a “clicking” sound, which may have reinforced the idea of taking a picture.  
 

Touch Holding the Child: “Being able to hold the child in order to complete 
measurements (on the length board for example), certainly makes the 
process much faster. Not being able to hold the child frequently makes 
the scan process take much longer…” 
Holding the Child: “While capturing scans it would be extremely 
helpful if the child could be touched. This would aid in keeping them 
still and in their proper poses.” 
Getting Frustrated: “…the experience of taking scans with the really 
uncooperative child is so emotionally infuriating…It's pretty common 
for it to be difficult to do physical measurements where the kids scream 
and you can just tune them out, but when you try to take scans and 
they're running around it’s so frustrating and it makes you really 
upset...[It happened] Probably once a day.” 

Anthropometrists reported that some children were sensitive to being touched by 
strangers. For children that were sensitive to touch manual measurement was more 
distressing to the child than scanning, but anthropometrists did not consider touch 
sensitivity a big issue. The larger issue with touch was the inability to touch children 
during scanning, which made positioning the child and keeping the child still much 
more difficult and time consuming. Through trial and error anthropometrists started to 
use long spoons – during scanning the child could hold one end while the 
anthropometrist held the other end of the spoon, and it did not affect the quality of the 
scan or the ability to process the scan. The use of spoons helped mitigate the impact of 
not being able to touch the child, but it did not always work; and it was common for 
scanning to take longer for active children that did not follow instructions. For some 
anthropometrists the inability to physically restrain children during scanning was a 
frequent source of frustration. Others reported that feelings of frustration were not so 
frequent. 
 

Safety  Children Playing with Equipment: “The board does not move 
smoothly, so sometimes it can bump a child on the head as it snaps into 
place. The other main issue with the height board is that children often 
like to try to measure their own head, grabbing the moving part of the 
board and pulling it down. If the measurer isn’t quick enough, this 
results in them hitting themselves pretty hard on the head. I don’t think 
I’ve ever seen a child become upset by this though.” 

Anthropometrists did not report any harm to a child from scanning or manual 
measuring. The only reported safety concerns of the anthropometrists were that moving 
pieces of manual equipment could potentially hurt children, and anthropometrists did 
sometimes worry about hurting the child when physically manipulating them into 
position for manual measurement. For scanning, sanitization of equipment was not 
necessary, and one anthropometrist mentioned that there was less chance for spreading 
pathogens during scanning because there was less physical contact. Anthropometrists 
reported that some caregivers showed concern over 3D scanning "being harmful to the 
child internally," and over taking pictures of children without clothing.  
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Environment Other Children Influence Cooperation: “A factor to consider for both 

measuring types is the environment around the children. If it is cold in 
the room, both processes can be very uncomfortable. Some children do 
better with other peers around and some do not. Even things like 
having other toys in the room can be a distraction for both processes 
and increase the time spent on each case.” 
Lacking Certainty: “I still haven't figured out with the lighting how 
changing it affects the scans because it's not consistent.” 
Selecting Scan Location: “[Scanner malfunction from lighting] probably 
happened at every site when we first got there. At Midtown we were in 
different rooms every time and we had to figure that out every single 
time.” 

Anthropometrists mentioned some environmental concerns that affected both manual 
measurements and scanning, such as cold causing children to be uncomfortable and 
objects or other children in the room affecting cooperation. There were additional 
environmental factors that were reported only in relation to scanning. A flat surface was 
necessary for scanning, as was adequate space. Anthropometrists found that they 
needed enough distance between themselves and the child to capture the entire child in 
a scan, and that narrow spaces (such as a hallway) would make the scanner malfunction. 
Lighting was the most commonly mentioned environmental factor, and it seemed to be 
the hardest factor to account for. Anthropometrists reported that both natural and 
fluorescent light affected scans. At the end of data collection anthropometrists still did 
not always understand why light was causing scanner malfunction and could not always 
predict where lighting was appropriate for scans. For the most part lighting was not 
viewed as a big problem; anthropometrists would identify an appropriate place to scan 
children at each location and stay in that location. At one site anthropometrists had to 
move from room to room and this was the site where lighting presented the biggest 
problem for scanning.  
 

Dependability Lighting Affects Scan: “Overall, I think that the equipment for the 
physical measurements were more reliable and consistent because we 
didn’t have to worry about external factors such as lighting or space 
interfering with these measurements.” 
Lacking Certainty: “There were times that my scans had interference 
that I couldn’t determine the source. Was it poor lighting? Reflection 
from a surrounding material?” 
Experiencing Glitches: “On many occasions the measuring tapes have 
become damaged, but they are cheap… The scanning equipment is 
fairly reliable, but there have been times where there are issues with 
getting the camera to pick up the child or focus …there have been about 
four occasions where it took several minutes just to get one scan on a 
child...”  

Anthropometrists rated manual equipment as the most dependable because it was 
sturdy and consistent. With manual equipment there was no concern of external, 
environmental factors affecting measurement. Anthropometrists reported that 
measuring tapes frequently broke, but this was easily dealt with by using replacements. 
Anthropometrists viewed scanners as generally dependable, but there were exceptions. 
Scanners were viewed as “surprisingly sturdy.” There were no reported instances of 3D 
scanners getting damaged or breaking. Anthropometrists reported that charging the 
scanner and iPad was not a big burden and only took an hour, but sometimes operators 
forgot to charge in the evening and this caused delays in data collection. The main 
reason scanners were rated less dependable than manual measurement is that they did 
not always function properly. Anthropometrists reported experiencing “glitches” that 
caused delays in data collection. Malfunctioning was frequently attributed to lighting 
and in every location anthropometrists spent time to find a spot with appropriate 
lighting. In some cases anthropometrists could not determine the cause of scanner 
malfunction. Anthropometrists also highlighted that the dependability of the scanner 
was dependent on the child staying still. 
 

2 
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Chapter 7 . Discussion 
 

7.1. Summary of Findings 

 

In Chapter 3 we found that the quality of manual measurements in BINA was 

excellent, and similar to the quality of anthropometric data used to develop the WHO 

Child Growth Standards. We attributed high quality to vigorous training, motivated and 

competent field staff, reduction of non-measurement error through the use of 

technology, and reduction of measurement error through adequate monitoring and 

supervision. We concluded that BINA offered a valuable evaluation of 3D imaging for 

child anthropometry because there was comparison to gold-standard, manual 

measurements. In Chapters 4 and 5 we found that measurement reliability of repeated 

scans was excellent, and similar to manual measurement reliability for stature, HC and 

MUAC. However, we found systematic bias when analyzing accuracy — 3D imaging 

overestimated stature and HC and underestimated MUAC. We hypothesized that 

human/equipment error in manual measurement of MUAC, and scan processing 

software that did not correctly account for soft tissue compression and body positioning 

during manual measurement of HC and stature respectively could have caused 

systematic inaccuracy. After adjusting measurements to remove systematic bias, 3D 

imaging yielded mean z-scores, z-score standard deviations (SD), and prevalence below 

or above z-score SD cutoffs that were similar to manual measurements. Based on a 

cutoff of one SD, specificity of adjusted, scan-derived measurements was excellent for all 
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measures, and sensitivity was good to excellent for all measures. In Chapter 6 we 

showed that for cooperative children anthropometrists considered the use of 

AutoAnthro an easy, ‘streamlined experience,’ but with uncooperative children or when 

experiencing ‘software glitches’ anthropometrists felt that capturing a good quality scan 

was difficult and out of their control. From the time motion study we found that 

scanning took less time than a set of manual measurements (stature, HC, and MUAC) 

and we observed that crying was more common during manual measurement. 

Anthropometrist interviews confirmed that 3D imaging was less stressful for children 

than manual measurement.  

 

7.2. AutoAnthro anthropometry quality in relation to other 3D imaging 

systems 

 

7.2.1. Reliability 

 

Similar to our findings, previous research of range imaging systems concluded 

that scan-derived anthropometry was reliable (1-5). However, it is difficult to directly 

compare our reliability findings with previous research because studies used different 

analytical methods. Most studies only reported correlation coefficients and each study 

used a different type of coefficient. Correlation coefficients are difficult to interpret 

because they are highly dependent on the amount of variation in the sample. If you 
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measure a wide age group with high variation of size, a high correlation coefficient can 

say more about sample variation than measurement reliability. In the nutrition research 

community it is common to use the technical error of measurement1. The International 

Society for the Advancement of Kinanthropometry (ISAK), an organization that certifies 

anthropometrists, requires intra-observer %TEM of <2% for a level one anthropometrist 

and <1.5% for level two certification during examination (5). One of the studies that used 

Kinect scanners measured %TEM and found that when measuring stationary cylinders 

their 3D imaging system satisfied reliability requirements for level one anthropometrist 

accreditation for small cylinders and level two for large cylinders (5). In our research 

AutoAnthro intra-observer %TEM from single scan sessions was good enough to 

achieve level two anthropometrist certification for stature and head circumference in all 

age groups, but MUAC reliability was not high enough for accreditation. With repeated-

scan AutoAnthro intra-observer %TEM would be lower, and would likely qualify for 

level one anthropometrist accreditation for MUAC. In Chapters four and five we found 

that when using repeated measures AutoAnthro measurement reliability was similar to 

gold standard manual measurement, and sufficient for prevalence estimation, growth 

monitoring, and individual classification.  

 

1 Technical error of measurement is not well known outside of nutrition research, and it is not included in 
common software for statistical analysis, such as SPSS and Stata. Technical error of measurement is very 
similar to one standard deviation of the mean of the absolute difference between two measurements. If the 
nutrition community used the mean of the absolute difference with standard deviation and a 95% 
confidence interval, reliability results would be easier to calculate and more meaningful than TEM for 
people outside of the nutrition community. 
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7.2.2. Accuracy and Classification 

 

The ability of a 3D imaging system to produce correct measurements is 

dependent on the hardware (scanner) and software (computer program to process scans 

into measurements). When interpreting findings on accuracy both system components 

should be considered. The scanners and processing software used in national sizing 

surveys produced measurements that were accurate enough for industrial uses. When 

the same or similar scanners were tested in health sector research that used a variety of 

processing software some studies found accurate measurement (6), but many found 

systematic inaccuracy when looking at average bias —3D imaging produced higher 

average estimates than manual measurement for height (+~0.8 cm, (2)) and 

circumferences (+~1-3 cm, (2, 7, 8)). For circumferences the authors attributed the 

difference to anthropometrists compressing the skin by applying tension to the 

measuring tape. The study that used stationary cylinders reported overestimation of 

girth (0.7-0.9 cm) that was consistent for cylinders of different sizes (5). In our research 

we found similar levels of overestimation of height and HC, but AutoAnthro 

underestimated MUAC and underestimation only occurred among children with small 

arm circumferences. We reached the same overall conclusion on accuracy as authors 

from previous research — the finding of systematic inaccuracy does not diminish the 

potential of 3D imaging for anthropometry because the processing software can be 

adjusted to remove systematic bias. One caveat to our conclusion is that we 
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recommended additional research before making MUAC adjustments, which we 

elaborate on in the following section.  

For public health the most important factor when evaluating a 3D imaging 

system may be the ability to correctly classify nutritional status. Average bias provides 

little information on classification because it does not take into account the spread of 

differences. The International Organization for Standardization produced accuracy 

requirements for 3D imaging based on the confidence interval around average bias (5). 

In our research we measured classification agreement directly by looking at prevalence, 

sensitivity, and specificity; and found good agreement at the individual and population 

levels after adjusting to remove systematic inaccuracy. Classification agreement was 

presented in Chapter Four, and additional data are available in Figure 7-1. We did not 

identify any other studies that considered the ability of 3D imaging to correctly classify 

individuals by indicators of nutritional status.  

 

7.3. Study Strengths and Limitations 

 

Strengths and limitations for the individual studies that make up this research 

were covered in chapters three through six. Overall, the strengths of our research were 

that it was relevant because it responded directly to a call from the global nutrition 

community for the use of technology to improve anthropometric data quality and 

anthropometrists helped in the design of the research; and it was meaningful because 
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scan-derived measurements were compared to gold-standard manual measurements, 

and anthropometrists helped to analyze and interpret data. Reported as limitations in 

previous chapters, there were study characteristics that need to be taken into account 

when interpreting or generalizing findings. In summary, children in our sample were 

well-nourished and of a known age, the sample was not representative of any 

geographic area, our anthropometrists were highly educated, processing scans was not 

fully automated, data was collected inside of large facilities, both anthropometrists and 

the study population were familiar with electronic devices, qualitative research was 

based on a small sample of anthropometrists, and qualitative data on caregivers and 

children was not direct. A full explanation of these limitations was provided in previous 

chapters and we expand on the implications of some of the limitations in the next section 

on research and development needs. One study limitation that was not fully described 

in previous chapters was that BST had access to manual measurement data before 

processing scans into measurements because all data was uploaded to a server that BST 

managed. In BINA we tested calibrated software on a new sample of children that were 

not involved in calibration, BST remained blinded to manual measurement data, and 

BST did not use manual measurement data from the new sample to process scans. 

Nonetheless, the lack of a firewall between the company and the manual measurement 

data leaves the study open to critique. In future studies the company should not have 

access to manual measurement data until after scan-derived measurements are 

produced. 
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7.4. AutoAnthro Research and Development Needs 

 

In previous chapters we described a number of research needs to follow-up on 

BINA findings and to address study limitations, including the need to corroborate BINA 

reliability findings, to validate adjustments to remove systematic inaccuracy, and to 

determine if 3D imaging improves anthropometric data quality. An additional 

validation study can follow the same basic design of combining a comparison of scan 

derived measurements against gold, standard manual anthropometry with qualitative 

research that assesses the feasibility of using the imaging system in regular nutritional 

assessment, but a few modifications to the BINA study design are needed to address 

BINA limitations.  

Like BINA, if another study compares scanning to high quality anthropometry, 

there will be no conclusions on the ability of 3D imaging to improve anthropometric 

data quality. A separate study that includes 3D imaging in a setting of poor quality 

manual anthropometry could provide evidence on improving data quality, or a 

validation study could be designed with a secondary objective of assessing the ability of 

3D imaging to improve data quality. One possibility for assessing the ability of 

AutoAnthro to improve quality within a validation study is to incorporate 

anthropometrist training into a future study analysis plan. If inexperienced 

anthropometrists are used, a future validation study could evaluate the potential for 

anthropometric data quality improvement by comparing poor quality manual 

anthropometry collected during the training period to scan derived measurements 
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carried out at the same time. In BINA we typically scanned children at the same location 

within a facility over a number of days. We experienced the most ‘software glitches’ 

attributed to lighting when moving from room to room in a hospital setting. A future 

validation study can be carried out in the context of a household survey or during 

community-based screening to assess scanner performance in different lighting 

conditions. The use of a household survey could also address another limitation of 

BINA, which is that the sample was not representative of the target age group. In BINA 

newborns and children under two years of age were overrepresented, and there were 

few children between one week and six months of age. Our findings on reliability and 

accuracy cannot be extrapolated to an entire age group, such as children under two 

years of age or children 0-5 years of age. A future validation study that includes a 

representative age structure is needed to draw conclusions on the appropriateness of the 

technology for an entire age group. A future validation study can also be carried out in a 

low-income setting to address additional BINA limitations. In BINA our sample was 

well-nourished; and we did not have a sufficient number of children with abnormal 

nutritional status to analyze prevalence or sensitivity/specificity for clinically significant 

indicators, such as obesity, wasting and severe stunting. Additional studies in 

populations with high prevalence of abnormal nutritional status are needed for 

appropriate evaluation of classification bias. Children and caregivers that participated in 

BINA were familiar with cameras and mobile devices. Our qualitative findings on 

efficiency, invasiveness and the user experience cannot be extrapolated to a setting 

where people are not familiar with technology; and there may be additional barriers to 

133 

 



  

using the technology in a different population. During BINA recruitment caregivers 

often asked about potential harm from the scanner and privacy. Some caregivers did not 

consent for their children to participate in the study because of these concerns, but for 

the most part we were able to allay any fears by showing caregivers that the scanner 

image is not identifiable and explaining that the laser used in the 3D scanner poses no 

risk and that the same type of scanner is used by children in millions of households 

around the country in video game consoles. If carried out in a setting where people are 

not familiar with technology or have different views of technology, the qualitative 

component of a future validation study could gain valuable insight into additional 

barriers to the use of AutoAnthro.  

In the remainder of this section we elaborate on our recommendations for future 

research and development that pertain to improving the quality of scan-derived 

anthropometry. 

 

7.4.1. Research and development to improve the quality of scan-derived anthropometric 

data  

 

In chapter four we found that reliability of scan-derived measurements was 

within 1 mm of gold-standard manual measurement reliability when using repeated 

scans (average of two sessions), which is a negligible difference and means that scan-

derived anthropometry can be as reliable as manual measurement. Reliability of a single 

scan was slightly worse than manual measurement, but it was not clear if the decreased 
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reliability made any meaningful difference. We concluded that additional research is 

needed to determine if the protocol for deriving measurements from 3D imaging should 

be changed from using a single-scan to repeated-scan, and stipulated that repeating 

scans would only add ~one minute to measurement time. The time motion study in 

chapter six gave a precise estimate for the amount of time that would be added by 

repeating scans — 68 seconds. Future studies or surveys using AutoAnthro should 

include at least two scan sessions for each child (resulting in at least two sets of 

measurements per child) until there is definitive evidence that a single session does or 

does not provide adequate reliability.  

In chapter four we showed that scan-derived anthropometry was systematically 

inaccurate, and that inaccuracy led to misclassification of nutritional status. We 

recommended adjusting the software to remove systematic inaccuracy, and highlighted 

the need to carry out another study to see if our accuracy findings are repeated (or that 

the adjustments completely removed systematic inaccuracy). Adjustments to remove 

systematic inaccuracy can be made based on our average bias findings, but average bias 

figures should be corroborated by an analysis of why scanning produced inaccurate 

measurements. Also, it is important to note that we did not remove outliers in our 

analysis of average bias, and it may be necessary to remove outliers to determine the 

correct adjustment. Determining the source of inaccuracy should provide more 

confidence that adjustments are correct. In chapter five we speculated on the possible 

causes of inaccuracy for each measure; for stature and HC we hypothesized that the 

processing software did not adequately take into account the protocol for manual 
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measurement. The BINA database is ideal for testing the stature and HC hypotheses 

because we are confident that the manual measurements were good quality. For MUAC 

the adjustment to remove systematic inaccuracy is more complex because accuracy was 

not consistent for children of different sizes, and we hypothesized that inaccuracy may 

have been a result of human/manual equipment error as opposed to scanning hardware 

or software error, speculating that with younger children the measuring tape was not 

completely flush to the skin around the entire arm circumference. In BINA we did not 

use the same measuring tapes that were used in the MGRS because they were not 

available from our manual equipment supplier. The measuring tapes used in MGRS 

were made of metal and may have been less susceptible to gapping. In chapters four and 

five we included children less than six months of age when analyzing MUAC accuracy, 

but MUAC is typically used for children 6-59 months of age. Additional analysis 

confirmed that scanning systematically underestimated MUAC for children 6-59 months 

of age and the bias was not consistent by size within this age group (Figure 7-1). Similar 

findings in the 6-59 month age group showed that more work is needed to determine the 

cause of inaccuracy. AutoAnthro should be tested on stationary cylinders of a known 

size, with the sizes corresponding to the MUAC sizes found in BINA, to confirm that 

systematic inaccuracy was not a result of hardware or software error. Future studies on 

AutoAnthro could use the same metal measuring tapes that were used in MGRS to 

determine if gapping was the cause of systematic inaccuracy.  
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7.4.2. Software development for automated scan processing 

 

We altered the study protocol in response to study implementation challenges. 

First, at the beginning of data collection we shifted from taking only six scans per 

session to encouraging anthropometrists to take excess scans and select the six best scans 

for each session. That pivot was made to account for the difficulty of capturing a good 

quality scan when children were moving. Second, we allowed anthropometrists to alter 

the order of scans. Initially the protocol called for taking three front scans and then three 

back scans. During data collection anthropometrists found this impractical because they 

had to be opportunistic and take scans when the child was still, regardless of which 

direction the child was facing. After finishing data collection we attempted to adjust the 

processing software to automatically detect orientation (front/back), but it was not 

possible in the short timeframe available. We altered study protocol from complete 

automation of scan processing to manually coding child orientation in each scan. In its 

current state AutoAnthro requires manual input for both scan quality selection and child 

orientation. 

For orientation we do not think it will be practical to require a specific scanning 

order in future data collection. Ideally, the processing software would be adjusted to 

automatically detect orientation. If automatic detection is not possible, an alternative 

would be to adjust the data collection component of the software to allow the 

anthropometrist to code orientation after taking each scan. The drawback to the latter 

approach is that it will increase measurement time, not only because selecting 
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orientation will take time, but also because the increased time spent in between scans 

will make it more difficult to take advantage of the child being still or holding a pose.  

When scanning children under five it is inevitable that movement will result in 

some poor quality scans, which means taking excess scans will continue to be necessary 

in future studies and software needs to be updated. To account for excess scans an 

immediate step to improving the software would be to adjust the data collection 

component of the software to allow the anthropometrist to mark a poor quality scan 

during data collection based on visual inspection, and to display a running tab of the 

number of ‘not poor quality’ scans completed. Software adjustment will facilitate scan 

selection and will help anthropometrists keep track of the number of completed scans, 

but it is not the ideal solution. The quality of the scan may not always be obvious to the 

anthropometrist, and like orientation selection, increased measurement time is a 

drawback of manually marking poor quality scans.  

Experience during BINA illustrates the value of taking scans in quick succession. 

During data collection anthropometrists had the ability to manipulate the amount of 

time that they could view a captured scan. A longer viewing time allowed a more 

thorough visual inspection of the quality of the captured scan, but anthropometrists kept 

viewing time to a minimum so as not to lose the opportunity to finish all of their scans 

when a child was being cooperative. Software adjustment to mark scans of poor quality 

and select orientation should be considered a temporary solution because it does not 

automate scan quality control and it will not give anthropometrists more confidence that 
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they are taking scans of an adequate quality; additional research is needed on scan 

quality to develop a more permanent solution, which is covered in the next section. 

 

7.4.3. Scan quality research and development 

 

The quality of 3D scans is dependent on the scanner, the software, the 

environment; and interactions between the three. Quality assessments of 3D images can 

look at noise (smoothness), outliers (data points that are out of place), and under-

sampling (holes or missing pieces of subject) to quantify scan quality (9). In BINA we 

were able to control for outliers and under-sampling. Including six scans in a session 

enabled the processing software to fill in under-sampled areas in one scan with data 

from another scan in the final model. In addition, anthropometrists considered under-

sampling during visual scan inspection to select the best quality scans, and the scan 

processing software automatically removed outliers. The BINA manual included scan 

quality criteria based on visual inspection and BST provided feedback on the quality of 

scans in pretesting and during the first month of data collection. Despite quality control 

efforts in BINA, at the end of data collection anthropometrists felt that frequently their 

scans of uncooperative children were not good quality. The perception of settling for 

‘subpar’ scans, along with the difficulty in fostering cooperation of children six months 

to three years of age, led anthropometrists to conclude that AutoAnthro could not yet 

replace manual equipment, particularly for uncooperative children.  
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If anthropometrists often captured poor quality scans within a specific age group 

we could expect to see differences in measurement quality by age. In chapters four and 

five we found no differences in the accuracy or reliability of scan-derived measurements 

by age. There are a couple possible explanations for why quantitative results did not 

support the perception of settling for subpar scans. First, it is difficult to assess scan 

quality because a single measurement comes from processing and merging six scans. It 

is possible that anthropometrists did often settle for subpar scans, but that it was rare for 

an entire session (six scans) to be poor quality. Considering anthropometrists took 

excess scans it is possible they nearly always captured one or two scans of adequate 

quality for processing into measurements. A second explanation for the difference 

between perception and quantitative findings stems from our lack of knowledge of how 

much scan noise is acceptable for processing into accurate measurements. Noise, or how 

3D points in close proximity relate to each other with respect to depth, can be thought of 

as a measure of surface smoothness. Processing software uses denoising algorithms to 

remove noise (10), but the underlying noise likely affects the quality of scan-derived 

anthropometric data. Motion and distance from the subject are two factors affecting scan 

noise, with the former being a highly variable factor when scanning young children. 

With visual inspection it was simple to detect a very smooth or very rough surface, but 

BINA anthropometrists had little confidence in visually judging the quality of scans that 

were somewhere in between smooth and rough, which was a common occurrence. 

BINA supervisors were not able to provide adequate instruction on assessing scan noise 

because we did not yet have data linking scan noise to measurement quality. The second 
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explanation for the discrepancy is that anthropometrists may have judged scans that 

were not smooth as subpar, when in fact they were adequate for processing into 

accurate measurements.  

We did not identify any studies that analyzed the effect of scan quality on 

anthropometric data. With BINA data we can now create a dataset that links scan 

quality to anthropometric data quality. Research on the associations between scan 

quality metrics and anthropometric data quality is needed to improve training and 

supervision, and to automate scan quality control. In BINA we used multiple metrics, 

such as reliability, accuracy and biological plausibility, to monitor the quality of manual 

measurements; but for scanning we relied solely on a simple list of visual inspection 

criteria. A first step for additional research on scan quality control is to evaluate the 

scans of children who were outliers in terms of scan-derived measurement reliability 

and accuracy. We did find a few outliers in the data and they may represent the rare 

case when scans were all poor quality. Displaying the scans of a session that resulted in 

inaccurate or unreliable measurement can help to train anthropometrists and will give 

supervisors a tool for monitoring and supervising scanning. The BINA dataset also 

provides the opportunity to carry out research that can facilitate automated scan quality 

control.  

An ideal solution to scan quality control would be to adjust software to 

automatically predict the accuracy of scan-derived measurements from an entire session. 

3D scan data was converted to anthropometry by fitting merged data from six scans to a 

scaled articulated model. There is a metric for how well the merged scan data fits the 
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articulated model, referred to as model fit. Theoretically, model fit should be highly 

correlated with the accuracy of scan-derived anthropometry, and software could 

automatically detect the quality of a scan session based on model fit to inform the 

anthropometrist when more scans are needed for accurate measurement. However, 

model fit scores are not available until scans are processed. In BINA scans were 

uploaded to the cloud and processed after data collection was finished. It is not yet 

possible to immediately process scans on the local device (the tablet or phone that the 

scanner is connected to). It is possible to process scans on the local device during data 

collection, but in the near term processing will take at least five minutes. For most 

applications five minutes is probably too long to wait during data collection for 

feedback on the necessity of taking additional scans. Nonetheless, the association 

between model fit and measurement accuracy should be carried out now because it will 

be useful for supportive supervision and the processing time may be reduced enough by 

technology development to allow for immediate feedback.   

Until model fit is immediately available, an alternative solution to predicting the 

accuracy of scan-derived measurements during data collection is needed. Research 

should be carried out on the correlations between anthropometric data quality and scan 

quality metrics that can be available immediately. A substantial amount of exploratory 

work is required for this research. We suspect noise was an important factor in BINA 

because of its relationship with movement and the lack of quality control. The 

previously mentioned analysis of scan sessions for production of training and 

supervision tools could help to determine which scan quality metric is most relevant to 
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poor quality scan-derived anthropometric data. In addition, more exploratory work will 

be needed because all of the scan quality metrics that are immediately available describe 

a single scan. Research will need to determine how best to group the scan quality data 

when predicting a single measurement from six scans. For example, we do not know if 

average noise across all six scans or a specific level of noise among fewer scans is the 

best predictor of anthropometric data quality. Research will also need to determine what 

combination of scan quality metrics is the best predictor: noise alone, noise and distance 

from the subject, noise and under-sampling, etc.  

It is worth noting that research on scan quality using the BINA database is 

limited because we did not keep all of the scans captured during the study. 

Anthropometrists deleted excess scans during data collection because we did not have 

sufficient server space, and so the BINA database does not contain most of the poor 

quality scans. With BINA data it is not possible to determine how often scans are of 

insufficient quality for processing into correct measurements, and we cannot know how 

much cooperation affects scan-derived measurement quality when anthropometrists 

take only six scans. It is possible that quality is rarely affected by movement with the 

current software, and if that is the case, it may be sufficient in a research setting to offer 

improved supervision that gives anthropometrists confidence that they are able to 

control quality and are collecting scans of adequate quality. Nonetheless, the pursuit of 

automated scan quality control is worthwhile, even if measurement quality is rarely 

affected, because automation will lead to more uniform results from different 
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anthropometrists and could facilitate the regular use of 3D imaging for child 

anthropometry in clinics and surveys. 

 

7.5. 3D Imaging for Anthropometry – The Future  

 

7.5.1. Role in improving the use of anthropometric data 

 

In the background we described an attempt by the Body Benchmark Study to 

bring 3D imaging to adult nutritional assessment through the development of a new 

anthropometric indicator. The development of AutoAnthro took a different approach, 

responding to a call to improve the quality of current measurements, specifically length. 

BINA was not designed to evaluate if AutoAnthro improved anthropometric data 

quality, but it was a first step in evaluating a potential technological solution to poor 

quality anthropometry. We were not able to draw any conclusions on improving data 

quality because our anthropometrists produced high quality measurements with both 

3D imaging and manual measurement. It is encouraging that scanning produced reliable 

measurements despite spending substantially less time on training and supervision for 

3D scanning than manual measurement, and that scan measurement reliability was not 

affected by age or the anthropometrist; but these findings did not provide conclusive 

evidence on quality improvement. When considering the future potential of 3D imaging 

to improve anthropometric data quality it is important to consider that most child 
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anthropometric indicators coming from large scale surveys also include age, and in 

many countries misreported age is a common source of error (11). From 2000 to 2010 the 

global average of birth registration increased from 58% to 65% (12), and as birth 

registration improves age misreporting will be less of an issue, but presently in least 

developed countries only 38% of births are registered (12). New technology for 

measurement will need to be combined with efforts to accurately assess age to fully 

improve anthropometric data quality in many parts of the world in the near term.  

The call for technology came from global nutrition and we designed our research 

through that lens. We focused primarily on measurements that are used as indicators to 

monitor infant and young child underdevelopment. These indicators are relevant to any 

setting, but in places that are experiencing the obesity epidemic the measurements that 

are used as proxies for body composition are also important, and they too suffer from 

poor data quality. In the US measurements obtained from manual anthropometry 

(without calculating volume) are collected in national surveys and used as proxies for 

body composition, but they have not yet supplanted BMI in regular nutritional 

assessment. In the US in 2016 the prevalence of overweight and obesity were determined 

using weight-for-height (WHZ) for children under 2 and body mass index (BMI) for 

children over 2 (13, 14). WHZ and BMI are proxies for total body fat that do not directly 

differentiate between fat and fat free mass (FM and FFM). In addition, WHZ and BMI do 

not provide information on body shape and cannot distinguish between subcutaneous 

and visceral fat. Since abdominal visceral fat is strongly associated with metabolic 

disturbances and disease, it is useful to have measures of both total body fat and the fat 
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distribution (15). Waist circumference (WC) and sagittal abdominal diameter (SAD) are 

proxies for abdominal visceral adiposity. In 2016 the US National Health and Nutrition 

Examination Survey (NHANES) included waist circumference (WC) for children over 2 

years of age and adults (16). A World Health Organization (WHO) expert committee 

recommended the use of waist circumference alongside BMI (17) and the US Centers for 

Disease Control and Prevention (US CDC) has reference values for waist circumference 

(18). The waist circumference to height ratio (WHtR) is considered a better predictor of 

morbidity risk compared to BMI for adults (19), WHO and multiple reviews advocated 

for the use of WHtR alongside BMI for children because of improved risk prediction 

from using multiple measures (17, 20, 21) Sagittal abdominal diameter is also considered 

to be a better measure of risk than BMI (16). Despite a substantial amount of evidence 

and advocacy for the use of WC, the measurement is not common in regular nutritional 

screening because it is not easy to measure and is often unreliable. In addition to 

improving the quality of measurements commonly used in developing country surveys 

(length), 3D imaging could also help to improve the quality of measurements used to 

monitor the obesity epidemic. By improving quality and making the measurement 

easier, 3D imaging could facilitate the use of waist circumference in regular nutritional 

assessment, and as the obesity epidemic spreads around the globe obesity related 

measurements derived from 3D scanning would likely become a regular part of 

nutritional surveys and assessment in all countries. 

We carried out this research on apparently healthy children. In presenting our 

research design and findings to clinicians it became obvious that while they were 
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interested in our results, they also wanted to know if 3D imaging for anthropometry 

could work for patients who cannot easily move into the positions required for manual 

measurement. There was specific interest in measuring patients with cerebral palsy and 

those that are bed-ridden, and clinicians were interested in estimating weight with the 

scanner. The AutoAnthro scan processing software did not require specific poses for 

children under two years of age, and the lack of posing did not seem to affect the quality 

of scan-derived measurements. If poses are not necessary, it is likely that AutoAnthro 

could also be used to measure surface morphology of people that are immobile. Also, 

the company that developed AutoAnthro has experience with estimating weight from 

3D scans, and further technology development could make it possible to extract an 

accurate weight in the near future. 3D imaging could play a role in improving the 

regular nutritional assessment of all people, regardless of their mobility status. The use 

of a portable 3D scanner for a specific problem may be an efficient way to start using the 

technology in the health sector. In the background we described StarScanner, the only 

other 3D imaging system designed for children. StarScanner addressed one specific need 

in the health sector and it is now used in hospitals in many. Bringing a solution to the 

measurement of immobile people could familiarize medical staff with the technology 

and facilitate wider use of AutoAnthro in the health sector. Barriers to the use of 3D 

imaging in the health sector are discussed further in the next section. 
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7.5.2. Technology development, cost and bringing down entry barriers 

 

Researchers and organizations working with 3D imaging for anthropometry 

need to consider that 3D scanners are being developed for a variety of purposes outside 

the health sector, and that the rapid pace of technology development may quickly affect 

recommendations from our research. We highlighted that AutoAnthro did not work in 

direct sunlight and that lighting may be an issue when using the technology in a 

household survey or community screening setting. Occipital, the same company that 

developed the scanner used in AutoAnthro, recently developed a new 3D scanner 

(Structure Core) that reportedly functions outside in direct sunlight (A. Rodnitzky, 

personal communication with product brief, September 12, 2017). Improvement of 3D 

imaging technology will continue, with scanners gaining new capabilities and 

producing better quality scans. In our discussion on accuracy and reliability of scan-

derived anthropometry we covered the factors that affect scan quality with the current 

hardware, such as movement. There are two ways technology development could 

influence our recommendations for quality control. First, the precision of the scanner 

itself will likely change over time and more precise scans could improve the quality of 

scan-derived anthropometry. Second, the factors that affect scan quality of Structure 

Sensor may have no impact on the scan quality of future scanners. 

In Chapter six we discussed the cost of AutoAnthro hardware and concluded 

that efficiency gains related to training, staff, and measurement time could offset the 

increased cost compared to manual equipment. In late 2017, as this dissertation was 
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being finalized, Apple unveiled a mobile phone (iPhone X) that has light coding 

technology built into the phone, with the scanner branded as a TrueDepth camera and 

marketed as a tool for face recognition. The iPhone X retails at $999 (22); a year from 

now when a new model is released it could be half that amount. Stand-alone light 

coding scanners will likely drop their price to compete, and so it is reasonable to predict 

that in the very near future, within a year or two, a portable 3D scanner will cost no 

more than a length board; and it may only be a matter of time before a mobile phone 

with a 3D scanner is at a similar price. Our research can be used to inform a costing 

study on 3D imaging for anthropometry, but any research needs to take into account the 

declining cost of scanners, and it may soon be a moot point if a 3D scanner is cheaper 

than manual equipment. Another cost consideration that we did not previously discuss 

is related to the value of the collected anthropometric data. In current health and 

nutrition surveys we collect a few measurements that are of little interest to people 

outside of the health sector. In using 3D imaging to improve anthropometric data 

quality, health and nutrition surveys would also be collecting data that interests 

industry. National sizing surveys are supported by industry; 3D imaging will bring new 

opportunities for public private partnership in carrying out large scale health and 

nutrition surveys and research.  

In the background we described the barriers to the use of 3D imaging for regular 

nutritional assessment in the health sector, namely cost and dedicated space. The cost 

barrier was likely removed in recent years, and if 3D scanners are not already affordable 

enough, they will be in the near future. Development of the portable 3D scanner used in 
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our research could have also removed the barrier of dedicated space because 3D 

imaging no longer requires an entire room to be setup with cameras in fixed positions. 

AutoAnthro does have potential for regular use in the health sector, but there are 

characteristics of the imaging system that could hinder entry or affect long-term use — 

the person being scanned cannot be touched by anyone and has to be undressed to their 

undergarments. Privacy concerns related to undressing could be resolved in most 

contexts and might not be a significant barrier to the use of AutoAnthro in the health 

sector. Likewise, development of automated quality control may help to enable 

widespread use of an imaging system that does not allow touching. Even if these 

characteristics do not affect entry, it is worth considering how future technologies could 

affect the use of AutoAnthro. Past innovation in child anthropometric equipment may 

shed light on future developments. Prior to recent calls to replace length boards with 

new technology, salter scales were largely replaced by digital scales with a taring 

function. The digital scales helped to reduce invasiveness by promoting cooperation 

from the child, who could be held in their mother’s arms, and reduced random error 

because of less child movement and less misreading of the scale by the measurer. Digital 

scales replaced salter scales not only because they were more accurate, but because they 

made the measuring experience easier and more pleasant for the child, the caregiver, 

and the anthropometrist. It is possible that a 3D imaging system that restricts touch and 

requires undressing will be supplanted by an imaging system that was designed for the 

mother to hold a child. 
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7.5.3. Moving toward Better Indicators and 3D Measurements 

 

Previously, we described how the garment industry was an early supporter of 

3D imaging for anthropometry because clothing design requires a large number of 

measurements. In the health sector anthropometry is primarily limited to a few 

measurements: weight and height for everyone, HC for newborns, WC for pregnant 

women, and MUAC for screening in low-resource settings. The use of multiple 

measurements has been stymied by the practical constraints of manual measurement. It 

appears that in recent years technology development has removed the main barriers to 

the regular use of 3D imaging in the health sector. The use of 3D imaging for 

anthropometry will provide an opportunity to make sure all of the known, important 

measurements are regularly captured and analyzed. One example is making waist 

circumference a part of regular nutritional assessment, which we discussed in a previous 

section. Another example is body fat. Body fat can be estimated from weight and body 

volume, but volume is extremely difficult to estimate with manual, 1D measurements. 

Currently, researchers use relatively expensive tests (air displacement plethysmography 

and dual-energy x-ray absorptiometry) to measure body volume, and the measure is not 

a part of regular nutritional assessment. Studies have shown that calculations of percent 

body fat based on scan derived measurements of body volume are both reliable and 

accurate (7, 23, 24). 3D imaging could help to make estimated body fat a routine 

measurement.  
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As 3D imaging for anthropometry becomes more common in the health sector 

there will be an opportunity to come up with novel measurements that are better 

predictors of outcomes of interest, but the development of such measures is dependent 

on longitudinal data that is connected to health outcomes. Some of the research on 3D 

imaging referenced in the background comes from this type of study, a large-scale, 

(n=10,000) longitudinal study on disease risk factors (25, 26). Another potential source of 

data is medical records. If scanning becomes a part of regular health checks, the data 

could be used to develop novel anthropometric indicators, especially if it is stored in a 

3D format. Many of the new indicators that come from 3D imaging are likely to be based 

on 3D measures. In the background we described the development of two new 

indicators based on 3D measures, and our findings on head circumference also provide 

an illustrative example of the potential for 3D measures. The sensitivity and specificity 

of 3D imaging for HC was worse than stature and MUAC, and we attributed the 

difference to the lack of a fixed position for manual measurement of HC. With manual 

measurement we try to routinely find the largest circumference, but that can be difficult 

because everyone has a head that is shaped differently. With HC we measure one 

circumference of the cranium to represent the entire cranium. 3D imaging makes it 

feasible to routinely measure cranial volume, which is a direct measure of cranium size 

that is probably a better predictor than HC. If 3D imaging for anthropometry sees a large 

jump in usage, one of the challenges in facilitating the development of new indicators 

will be to create a mechanism to share and pool data.  
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7.5.4. Connecting BINA to future development of 3D imaging for anthropometry 
 

 Our research focused primarily on using 3D imaging for measurements that are 

currently used in regular nutritional assessment of children, with a focus on indicators 

used for the assessment of undernutrition. Also, we restricted our analysis to healthy 

children to extrapolate findings to the majority of children. However, with an eye to the 

future, we also included weight, measured waist circumference on 11 children, and 

measured one child with cerebral palsy. We discussed how previous research showed 

that 3D imaging was appropriate for measurements related to the obesity epidemic, but 

that research and efforts to mainstream novel indicators have not been successful to 

incorporate 3D imaging into regular nutritional assessment. We did not identify any 

research on the use of 3D imaging for anthropometry of immobile populations. 

AutoAnthro addressed the main barriers of using the technology in the health sector by 

using a low cost scanner that is portable; and extended the use of 3D imaging for 

anthropometry to children by developing software capable of handling movement. 

Additional research is needed to determine if AutoAnthro can be used for regular 

nutritional assessment of children in the context of the obesity epidemic and for 

nutritional assessment of immobile populations. An initial step could be to evaluate the 

use of AutoAnthro for indicators that are currently in use. Additional analysis of BINA 

data that uses weight can evaluate the accuracy and reliability of scan-derived child 

BMI. We discussed that waist circumference is currently recommended for nutritional 

assessment of children; BINA data from the 11 children with WC can be used to develop 
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and calibrate AutoAnthro processing software to measure WC. BINA data and 

anthropometrist’s experience scanning a child with cerebral palsy can be used as a proof 

of concept for measuring immobile populations, and further development of 

AutoAnthro processing software to measure body volume could provide another proof 

of concept — that AutoAnthro, like other 3D imaging systems, can be used in place of 

more expensive techniques to measure body fat. Ultimately, additional studies that 

evaluate scan-derived waist circumference and body volume using an inexpensive, 

handheld scanner with software developed for children is needed. Like in previous 

studies of other more expensive 3D imaging systems, scan derived waist circumference 

can be compared to gold-standard manual measurements and body volume can be 

compared to gold standard machine measurement (BodPod, DEXA, or MRI). Our 

findings along with additional analysis of BINA data can help to design such a study.  
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7.6. Conclusions 

 

Manual measurement did provide high-quality anthropometry in this research 

and it is possible to improve manual measurement of circumferences and length in 

clinics and surveys. However, there may be limited institutional need and motivation to 

improve quality; and improved technology could be the most efficient driver of 

widespread quality improvement. We do not yet know if AutoAnthro will lead to 

improved quality of child anthropometric data, but BINA showed that a 3D imaging 

system produced reliable measurements of children under five years of age, which 

suggests that 3D imaging can be an appropriate anthropometric tool for infants and 

young children. Further research and development is needed, particularly to determine 

if AutoAnthro improves quality and to address our findings of systematic inaccuracy 

and anthropometrists’ lack of confidence in scanning uncooperative children. The 

potential value of 3D imaging for anthropometry is not limited to quality improvement; 

adoption of the technology could result in higher use of a variety of anthropometric 

indicators in regular nutritional assessment, and the discovery of new measurements 

that make anthropometry a better predictor of outcomes of interest. 
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7.7 Supplementary Tables and Figures 

 

Table 7-1 Sensitivity and specificity of adjusted, scan-derived measures when 
compared to best-estimate manual measures among children 1-59.9 months 
of age 

    <-1 SD   >+1 SD 
    Prevalence Sensitivity Specificity   Prevalence Sensitivity Specificity 
           
Stature          

  
GS 
Manual 21.9 . .  11.0 . . 

  
Single 
Manual 22.7 0.95 0.98  11.0 0.95 0.99 

  
Single 
Scan 23.5 0.92 0.96  12.0 0.91 0.98 

  
Repeated 
Scan 22.7 0.93 0.97  10.7 0.91 0.99 

Head Circumference         

  
GS 
Manual 9.4 . .  27.3 . . 

  
Single 
Manual 9.7 0.92 0.99  27.3 0.94 0.98 

  
Single 
Scan 9.9 0.78 0.97  26.8 0.84 0.95 

  
Repeated 
Scan 9.2 0.81 0.98  26.5 0.87 0.96 

Arm Circumference        

  
GS 
Manual 2.8 . .  41.6 . . 

  
Single 
Manual 3.6 1 0.99  41.8 0.93 0.95 

  
Single 
Scan 4.7 0.91 0.98  41.6 0.91 0.94 

  
Repeated 
Scan 3.9 1 0.99   40.5 0.93 0.96 
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Pitman's Test: r = 0.275, n = 359, p = 0.000 

Limits of agreement: -0.894 to 0.612 
Mean difference: -0.141 (CI -0.180 to -0.102) 

Figure 7-1 Bland-Altman plot of best-estimate manual measurements subtracted 
from single-scan for MUAC among children 6-59 months of age 
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