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Abstract

Learning Structured Knowledge from Real-World Data
without Excessive Annotations

By Jiaying Lu

In a world where vast quantities of data are continually generated by humans every
day, the majority of the data remains unstructured, posing a significant challenge to
knowledge discovery and insight generation. Unleashing the full potential of these
valuable information sources requires organizing the data with interconnections and
contexts. This dissertation delves into the fundamental task of transforming unstruc-
tured real-world data into structured knowledge, all without an excessive reliance on
manual annotations. Particularly, I investigate three areas of research, including: (1)
Constructing concept maps from unstructured text data. We first develop an inno-
vative unsupervised concept map construction method by utilizing syntactic parsing
techniques [48]. Then we further study how to translate the initial parsing-based
concept maps into more concise task-oriented concept maps under the guidance of
weak supervision signal from downstream tasks [50]. (2) Aligning and completing
taxonomic knowledge graphs (KGs). Given the widely available KGs scattered in
different sites, it is urgent to integrate them into a comprehensive knowledge base
to harness knowledge-centric applications. We propose a novel perspective to lever-
age expert-curated taxonomies as the backbone to aligning various KGs [52] under
a few-shot manner. We further study how to complete taxonomic KGs after initial
alignment between them [49]. (3) Empowering downstream applications with struc-
tured knowledge. Finally, we explore how to harness the performance of downstream
applications with learned structured knowledge. For instance, we utilize similarity-
based communities for multiclass classification [51]. Together, these works cover the
whole life cycle of construction, integration, completion, and utilization of structured
knowledge.
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Chapter 1

Introduction

1.1 Motivation

Structured knowledge, in a general sense, refers to organized and well-structured

information that is typically represented in a systematic, formal, and readable format.

It is designed to capture and represent knowledge about a specific domain, subject,

or field in a way that is easy for humans and machines to understand and use.

Structured knowledge is fundamental for both low-level AI models and high-level

applications such as data interoperability and integration. Specifically, structured

knowledge plays a crucial role in building safe, robust, and responsible AI models

in several ways: training data enrichment, data quality assurance, fact validation

and verification, and explainable models. Moreover, structured knowledge enables a

wide range of knowledge-rich applications, including: semantic webs, factual question-

answering systems, recommendation engines, etc.

While numerous of data is generated daily, most of the data remains unstructured.

It is urgent to extract structured knowledge from the data in an automatic manner.

In this dissertation, I introduce my efforts on the development and implementation

of supervision-efficient methods to learn structured knowledge from real-world data.
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These methods play a pivotal role in organizing, categorizing, and making sense of

unstructured data, ultimately enabling meaningful insights and informed decision-

making in data-driven applications.

1.2 Research Roadmap

L
ea
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tr
u
ct
u
re
d

K
n
ow

le
d
ge

Concept Maps

Unsupervised Construc-
tion: Lu and Choi [48]

Weakly-supervied Gen-
eration: Lu et al. [50]

Taxonomic KGs

Taxonomy KG Align-
ment: Lu et al. [52]

Taxonomic KG Comple-
tion: Lu and Yang [49]

Applications

Multimodal Classifi-
cation: Lu et al. [51]

Healthcare: [18], [19]

Figure 1.1: A roadmap for this dissertation.

Fig. 1.1 provides an overview of the roadmap for my dissertation. I investigate

three aspects of “learning structured knowledge”. They are:

Learning to Construct Concept Maps. I have conducted two projects on con-

structing concept maps without excessive annotation. In “Evaluation of Unsuper-

vised Entity and Event Salience Estimation” [48] (accepted by the FLAIRS’21 as a

conference paper), we propose an unsupervised syntactic parsing-based concept map

generation algorithm. In “Weakly Supervised Concept Map Generation through Task-

Guided Graph Translation” [50] (accepted by IEEE TKDE’23 as a journal paper),

we propose a graph translation-based concept map generation framework.

Learning to Align and Complete Taxonomic Knowledge Graphs. I have
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conducted two projects on aligning and completing taxonomic KGs. In “HiPrompt:

Few-Shot Biomedical Knowledge Fusion via Hierarchy-Oriented Prompting” [52] (SI-

GIR’23), we explore utilizing few-shot prompting empowered by large language mod-

els (LLMs) to tackle the entity alignment between biomedical taxonomies and biomed-

ical KGs. In “Open-World Taxonomy and Knowledge Graph Co-Learning”, where we

investigate utilizing taxonomies as loosely-defined schema to align open-world KGs

and then complete the aligned TaxoKGs.

Applications of Structured Knowledge. I have conducted several projects on ap-

plying structured knowledge in various downstream applications. One major project

“MuG: A Multimodal Classification Benchmark on Game Data with Tabular, Tex-

tual, and Visual Fields.” [51] (Findings of EMNLP’23) is about applying a multimodal

sample-similarity-based graph approach for multimodal classification task. Moreover,

I also collaborate with researchers to explore the utility of structured knowledge in

the healthcare domain. For instance, we leverage concept maps to help COVID-19

document retrival [18], and we write a survey on knowledge graphs for healthcare

applications [19].

1.3 Dissertation Outline

In my dissertation, chapters are organized as follows.

1. Chapter 1 introduces the motivation for my dissertation, along with the orga-

nization of the whole dissertation.

2. Chapter 2 introduces two projects on concept map constructions.

3. Chapter 3 introduces two projects on taxonomic knowledge graph alignment

and completion.

4. Chapter 4 introduces projects on utilizing structured knowledge on downstream
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applications, along with my collaborative works on structured knowledge for

healthcare.

5. Chapter 5 concludes the dissertation.
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Chapter 2

Learning to Construct Concept

Maps

2.1 Background

Standing out for the clear and concise structured knowledge representation, concept

maps have been widely applied in knowledge management [44, 45], document sum-

marization [26, 25], information retrieval [18] and educational science [61, 16]. Fig.

2.3 shows toy examples of concept maps derived from a document describing “Moon

Landing”, where nodes in the graph indicate important concepts and links reflect

interactions among concepts. Although concept maps are helpful in both providing

interpretable representations of texts and boosting the performance of downstream

tasks, the creation of concept maps is challenging and time-consuming.

In this chapter, two of my first-author papers are included. The first one is “Eval-

uation of Unsupervised Entity and Event Salience Estimation” [48] (FLAIRS’21),

where we propose an unsupervised syntactic parsing-based concept map generation

algorithm. The second one is “Weakly Supervised Concept Map Generation through

Task-Guided Graph Translation” [50] (IEEE TKDE’23), where we propose a graph
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translation-based concept map generation framework. GT-D2G takes our parsing-

based concept maps as initial graphs, and translates them into more concise and

task-oriented structures.

2.2 Unsupervised Syntactic Parsing-based Concept

Map Construction

We propose unsupervised syntactic parsing-based concept map construction in [48].

This work utilizes entity and event salience estimation as the performance-indicating

task. Our parsing-based concept map construction is flexible. Depending on the

purpose, different variants can be utilized. For instance, in entity and event salience

estimation, we explicitly allow noun phrases and verb phrases to be nodes in the

concept maps, thus reflecting entities, events, and their interactions. In entity-centric

downstream tasks such as document classification, our concept maps can be entity-

only graphs, as used in GT-D2G [50].

We refer readers to our manuscript [48] for the details of entity and event salience

estimation. In this section, we mainly introduce the syntactic parsing method used

for concept map generation.

2.2.1 Preliminaries

Problem Definition

The unsupervised concept map generation task can be defined as follows: Given a

text corpus Dl = (d1, . . . , dil), we aim at generating concept maps }i = {Ci,Mi} for

each document di.
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Entity Definition

Inspired by definitions in previous work, we consider all base Noun Phrases (base

NPs)1 as entity candidates, excluding eventive nouns. Although some base NPs, such

as president or two weeks, may refer to multiple real-world objects which violate

the rigid definition, this simplification is beneficial to pseudo annotation. Another

advantage of using base NPs instead of higher-level NPs is the more fine-grained

entity annotation.

Event Definition

An event describes “who did what to whom when and where”. Therefore, the event

trigger (what) itself can not represent a complete event. In our definition, event

triggers and core arguments are essential components of events. Verbs, Eventive

Nouns (deverbal nouns, proper names referring to historically significant events),

phrase constituted by Light Verb + Noun and predicative Adjectives are gener-

ally considered as event triggers in prior studies. For annotation simplicity, adjec-

tives are not included in our definition. Since not all verbs and nouns are valid event

triggers, we create a pre-defined vocabulary using following procedures:

1. We collect the candidate list of verbs and deverbal nouns from FrameNet [2]

and NomBank [57] utilizing the same 569 frames generated by [47].

2. We then manually add valid head words (around 47) of proper names such as

epidemic, earthquake, etc.

3. Similar to previous work, we remove auxiliary and copular verbs2, light verbs3,

and report verbs4, as they are rarely representative events.

1heuristics for base NP using context-free grammar: NP->DT N̄; N̄->NN; N̄->NN N̄; N̄->JJ

N̄; N̄->N̄ N̄
2Auxiliary and copular verbs include appear, become, do, have, seem, be.
3Light verbs include do, get, give, go, have, keep, make, put, set, take.
4Report verbs include argue, claim, say, suggest, tell.
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This gives us a total of 2645 verb lemmas and 516 eventive nouns. Regarding core

arguments, we consider entity and sub-event participants specifying who or whom is

involved in the event.

2.2.2 Proposed Approach

Our approach consists of two modules: the candidate generation module and the graph

construction module. The candidate generation module parses every sentence

in the document d into the dependency tree and extracts entity spans Xentity, and

event spans Xevent according to the POS taggers and syntactic relations. After all

candidates are extracted, the graph G is then expanded with these spans as new nodes

interchangeably denoted as V . Then the graph construction module collects these

generated entity and event nodes and connects them accordingly. Different from

most previous work which considers the graph as a fully-connected graph, edges are

added according to the dependency tree arcs which lead the plot graph G a partially-

connected graph. Multiple types of edges including dependency edges, coreferential

edges, and inter-sentence edges are added to better reflect semantic and syntactic

relations between nodes.

2.2.3 Candidate Generation Module

Figure 2.1 shows an example of entity and event candidate spans generated by a de-

pendency tree. For simplicity, each span in figure 2.1 is represented by the dependent

head. The extraction result can be regarded as the remaining dependency tree after

removing auxiliary words.

As mentioned before, entities and events have their own syntactic properties:

1) Entities are generally noun phrases.

2) Events are verbal predicates or nominal predicates.
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It is then intuitively to derive context-free grammar rules that leverage the POS tag-

ging and dependency relation information to extract entities and events. Since the

extraction process is relatively deterministic, the result is reliable. Our implementa-

tion uses a BERT-based Dependency Parser from [35] and can be extended using any

dependency parser.

Bryant

Sunday

helicopter he

flames
hills

Calabasas

killed

travelingcrashed

burst

[Kobe Bryant] was killed [Sunday] when [the helicopter] [he] was
traveling in crashed and burst into [flames] in the [hills] above
[Calabasas].

Figure 2.1: Dependency-based Candidate Generation

2.2.4 Graph Construction Module

After all entity and event candidates are extracted, it is natural to construct a graph

to capture the relation structure of information. In addition to the intra-sentence

dependency relations from dependency parsing, inter-sentence level relations such as

adjacent sentence syntactic roots, and coreference resolution are also introduced in

our graph construction module. In the following subsections, we will describe the

proposed construction algorithm for the graph.
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Bryant

Sunday

helicopter he

flames
hills

Calabasas

killed

traveling

burst

Gianna

13

others

died

crashe
d

Figure 2.2: Dependency-based Graph with extra edges introduced. Dependency,
Coreferential, and Adjacent sentence edges are denoted by blue, purple, and red
edges, respectively.

Dependency-based Graph Construction

Figure 2.2 shows a dependency-based graph for two sentences about Kobe Bryant’s he-

licopter crash. Adjacent noun phrase edges, coreferential edges, and adjacent sentence

syntactic roots edges are further included in the graph to capture more information.

First, the initial dependency-based graph is already established after the candidate

extraction phase. The edge wdep
ij between two nodes vi and vj are weighted according

to the sum of the inverse tree distance between each span headword of hwi and hwj,

as equation 2.1 denoted. The tree distance is defined as the minimum number of

edges to be traversed to reach one node from another. It is also worth noting that in

dependency-based graph nodes that share the same span have not been merged yet.

wdep
ij =

1

tree dist(hwi, hwj)
, ∀eij ∈ Edep (2.1)

Next, adjacent NPs and syntactic roots are connected accordingly. Edges between

Adjacent NPs(ENPs) reflect the information propagation between neighbor entities

and contain both intra- and inter-sentence level information. The edge weights wNPs

are set by the inverse of tree distances as well. On the other hand, edges between

adjacent syntactic roots Eroots reflect the information propagation between neighbor
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sentences. Since the dependency tree only provides within sentence distances, we can

assign a constant to wroots (in practice, we choose 1) as the virtual distance for each

edge of Eroots. Therefore, equation 2.1 can be expanded to include edges in ENPS

and Eroots.

Moreover, spans in the same coreferential clusters are connected. The coreferen-

tial clusters can be obtained from either the ground truth of the corpus or system-

generated result. The edge weights wcoref of Ecoref can also be assigned to a constant

(we still use 1 in experiments) because spans in one cluster are equally important.

Finally, NP spans consisting of the same tokens within one article D would then

be merged into one node x in the plot graph G, except for single pronoun spans.

Therefore,

xi = {si,j, ..., si,k} where si,j = si,k (2.2)

In equation 2.2, si,j denotes the jth span of node xi. The overall weights between

node xi and xj then become the sum of different types of weights, which is shown in

Equation 2.3. wdep
kl , wNPs

kl , wroots
kl , wcoref

kl represent edge weights from dependency tree,

adjacent Nps, adjacent syntactic roots and coreference resolution clusters between

spani,k and spanj,l, respectively.

wij =
∑

si,k∈xi

∑
sj,l∈xj

1

wdep
kl + wNPs

kl + wroots
kl + wcoref

kl

(2.3)

After the edge weights are set, classic unsupervised graph ranking such as TextRank

[58] algorithms can be directly employed. The importance of nodes in the graph is

calculated and then used as indicators of whether entities or nodes are salient.
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2.3 Weakly Supervised Concept Map Generation

through Task-Guided Graph Translation

We propose GT-D2G (Graph Translation-based Document to Graph) [50], an au-

tomatic concept map generation framework that leverages syntactic parsing-based

pipeline [48] proposed in Ch. 2.2 to derive semantic-rich initial graphs, and translates

them into more concise structures under the weak supervision of downstream task

labels. The concept maps generated by GT-D2G can provide interpretable summa-

rization of structured knowledge for the input texts.

(a) AutoPhrase [73] (b) TextRank [59] (c) CMB-MDS [26]

(d) doc2graph [98] (e) GT-D2G (Ours)

Figure 2.3: Toy examples of concept maps on the topic “Moon Landing” generated
by different methods.

Traditionally, concept map generation follows a multi-step pipeline including con-

cept extraction, relation identification, and graph assembling [26, 1, 37], where aux-

iliary resources and carefully designed heuristics are often required. However, the

separation of concept map construction and downstream tasks easily deviates the

generated graphs from what the real task needs. For example, Figures 2.3a, 2.3b,

2.3c provide examples of concept maps constructed from such unsupervised ad hoc

processes. Although the sample document has the label of science, the extracted

concepts of “U.S. Moon Landing” (2.3a), “Soviet” (2.3b) and “Chinese Chang’e 4”

(2.3c) are more related to the label of politics. As a consequence, these deviating



13

concepts will likely degrade the performance of document classification. Moreover,

nodes chosen by these traditional methods often lack conciseness due to their heavy

reliance on ad hoc pipelines. For instance, in Fig. 2.3a, the concept map contains

redundant concepts such as “Moon” and “Moon Surface” as concepts mined by Au-

toPhrase are mainly based on frequency features; while in Fig. 2.3c, the concepts are

rather verbose due to the OpenIE component for concept generation in CMB-MDS.

On the other hand, research efforts have been made to automatically generate

concept maps from documents under weak supervision from text-related downstream

tasks. Doc2graph [98] is one pioneering study that achieves this goal through a fully

end-to-end neural network model. However, due to the lack of linguistic analysis, the

generated concepts often suffer from semantic incompleteness and the links between

concepts are often noisy. For example in Fig. 2.3d, one compound concept “moon

landing” is preferable to two separated concepts “landing” and “moon” as the former

carries more precise and complete semantic information. Moreover, while the weakly

supervised training diagram enables doc2graph to generate concept maps at scale,

we observe the downside of being not label-efficient. In other words, doc2graph is

sensitive to training signals and it requires a significant amount of weak supervision

to construct meaningful concept maps. Finally, the size of concept maps generated

by doc2graph is fixed due to its rigid technical design, while the ideal size of graphs

should vary according to the complexity of the documents being represented.

Inspired by both existing methods, we propose a graph translation-based neu-

ral concept map generation framework that simultaneously leverages existing NLP

pipelines and receives weak supervision from downstream tasks, dubbed as GT-D2G

(Graph Translation-based Document To Graph). The integration of NLP pipelines ef-

fectively assistsGT-D2G in addressing the semantic incompleteness issue of doc2graph

by introducing both words and phrases as concept candidates. Meanwhile, the initial

semantic-rich graphs constructed by the NLP pipeline bring in a priori knowledge
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from the linguistic side, thus alleviating the label inefficient issue of doc2graph. In

GT-D2G , concepts and their interactions are generated iteratively through a sequence

of nodes and adjacency vectors, which ensures deeper coupling between nodes and

links for more meaningful results and resolves the fixed size issue of doc2graph. On

the other hand, guided by the weak supervision from downstream tasks, GT-D2G is

also able to generate task-oriented concept maps that provide preferable support to

specific downstream tasks, while eliminating the redundancy issue of traditional un-

supervised methods, specifically through the incorporation of a penalty over content

coverage. To sum up, concept maps generated by our proposed GT-D2G method are

task-oriented, semantic-rich, concise, size-flexible, and label-efficient, as illustrated in

Fig. 2.3e.

In this work, an extensive suite of experiments has been conducted on text corpora

from three domains: news, scientific papers, and customer reviews. Through exper-

iments on the downstream task of document classification, we demonstrate that the

proposed GT-D2G framework outperforms both traditional concept map generation

baselines and the state-of-the-art neural method doc2graph, while a comprehensive

ablation study shows the effectiveness of each of our novel designs. The quality and

interpretability of generated graphs are supported by rigorous human evaluation and

rich case studies. Finally, we specifically validate the labeling efficiency of GT-D2G

in the label-efficient learning settings and the flexibility of generated graph sizes in

controlled hyper-parameter studies.

2.3.1 Problems Definition

We focus on the novel problem of weakly supervised concept map generation. It

can be defined as follows: Given a text corpus Dl = (d1, . . . , dil) with corresponding

labels Y = (y1, . . . , yil) of certain downstream text-related tasks, we aim at gener-

ating concept maps gi = {Ci,Mi} for each document di ∈ Du where Du is a set of
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unlabeled documents. As can be seen from the definition, there are no ground-truth

concept maps paired with the input text. Instead, weak or distant supervision from

downstream tasks is provided. The downstream text-related tasks are very flexible,

possibly ranging from document classification, retrieval, ranking, relation inference,

etc. The major output is concept maps G for all documents D = Dl ∪ Du. A doc-

ument d ∈ D is indeed a sequence of words, i.e., di = (wi,1, . . . , wi,|di|). A concept

map gi = {Ci,Mi} is an undirected graph which focuses on the concepts Ci and their

interactions Mi in the span of di. Ci = (ci,1, . . . , ci,|ci|) is a set of n concepts that can

be words, phrases, or sentence fragments depending on the downstream tasks, and

Mi ⊆ Rn×n indicates the interaction strength (i.e., edge weight) among concepts in

Ci. Moreover, the auxiliary output is the predicted labels Ŷ for unlabeled documents

Du.

2.3.2 GT-D2G

Figure 2.4: Overview of proposed GT-D2G framework.

Fig. 2.4 gives an overview of the proposed GT-D2G (Graph Translation based

Document-To-Graph) framework: A proper NLP pipeline is used to extract salient

phrases from document d and construct the initial semantic-rich concept map ginit.

A Graph Encoder then encodes each node of ginit into a node-level embedding Qi,

and also represents the whole ginit as a dense vector by aggregating all its node

embeddings. A Graph Translator is responsible for identifying the nodes needed

to be kept in the target graph gtgt as well as proposing links among kept nodes

iteratively. Once the nodes and links are generated, the target graph gtgt is fed into
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a Graph Predictor to produce a document label ŷ, which can be trained towards

the ground-truth label y. The whole encoder-translator-predictor neural network is

thus weakly supervised by the classification signal in an end-to-end fashion. In the

following subsections, we expand with more technical details.

Enriching Concept Maps with Semantics

As we motivated before, one major drawback of doc2graph [98] is that single words

are directly picked from the raw texts through a Pointer Network [84] and considered

as nodes in the final concept map. However, words purely picked by a simple Pointer

Network can easily be of low-quality [90]. Moreover, phrases are often preferable to

represent concepts, especially noun phrases as semantically complete concepts [73].

For instance, extracting two nodes “deep”, “learning” from a computer science pa-

per is incomplete while “deep learning” as one concept node is semantically more

meaningful and accurate. Some researchers propose to concatenate words that occur

adjacently in the input document as extracted phrases to solve this issue, although

potential heuristic post-processing is needed. In GT-D2G, we aim to enrich concept

maps with semantics by leveraging our own syntactic parsing-based pipelines [48].

For simplicity and generalization concerns, we intentionally choose the most popular

yet reliable NLP tools for initial concept map construction, which can be further

extended according to application scenarios.

Node Generation. To avoid complicated pre-processing, we use multiple classic

NLP tools in GT-D2G to extract noun phrases, verb phrases, and adjectives as node

candidates in the initial concept map. Sentence segmentation, pos-tagging, lemma-

tization, and constituency parsing are conducted for every document. Since con-

stituency parsing detects sub-phrases of given sentences, we then first extract basic

noun phrases from constituency parsing results. The basic noun phrases extraction

algorithm is deterministic so that any noun phrase not containing other noun phrases
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is considered valid. After all basic noun phrases are identified, verb phrases and ad-

jectives remaining in the text are extracted. Other discourse units such as adverbs

and prepositions are discarded since they typically do not contain much knowledge or

information. Due to the fact that multiple words can refer to the same concept, de-

terminants such as “a”, “an”, “the” are removed from the node mentions, and words

are replaced by their lemmas. Moreover, pronouns need to be merged into coreferent

mentions to obtain a clean initial concept map. Thus, the coreference resolution tech-

nique is used to resolve all pronoun expressions in documents. We use the popular

Stanford CoreNLP [54] for all the steps mentioned above.

Link Generation. For links between extracted nodes, we follow the sliding window

idea introduced in keyphrase extraction studies [59]. Nodes that occur within a fixed-

sized sliding window are connected to each other. Therefore, the initial concept maps

are undirected graphs ginit = {Cinit,Minit}. The link construction module is flexible

in GT-D2G so that any algorithms can be applied to construct weighted links or

directed links. For instance, we can directly use the whole parsing tree or filter out

certain types of relations for link generation. The graph ensemble process is trivial

once nodes and links are extracted.

Task Guided Graph Translation

Graph Encoder. Before graph translation, the model has to first learn to un-

derstand the initial graph. For this purpose, we adopt the recent successful graph

representation learning model, i.e., Graph Convolutional Network (GCN) [40] as our

Encoder. The node embeddings Q(k) are learned after the k-th layer of GCN by the

following equation

Q(k) = ReLU(D̃
− 1

2M̃D̃
− 1

2Q(k−1)W
(k)
Q ), (2.4)
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Figure 2.5: Graph Translator. Green rectangles denote RNN cells that take the
previous time step chosen node qt−1 and generated adjacency vector θt−1 as input.
The RNN state vector ht is updated at every time step, and is initialized by the
graph level representation of initial graph Qginit

.

where W
(k)
Q is learnable parameters in the k-th layer of GCN, M̃ ⊆ Rn×n is the

adjacency matrix M init with additional self-connections and D̃ii =
∑

j M̃ ij is the

diagonal degree matrix. The input node embeddings Q(0) are the concatenations of

phrase embeddings, normalized frequency feature, and normalized location feature.

The phrase embedding of each node is the average of pre-trained word embeddings (in

practice, we use GloVe [64]). The frequency feature and the location feature reflect

the importance of the concept in the original text and are normalized by min-max

scaling per graph. Besides the node-level embeddings, we also compute the graph-

level embedding as Qginit
= 1

n

∑n
i=1Q

k
i to encode the global contextual information

in the initial graph.

Graph Translator. Our graph translator aims to choose the most informative nodes

that are also beneficial to downstream tasks from the initial graph, while proposing

links among the chosen nodes accordingly. In particular, the Graph Translator gen-

erates a sequence of nodes and their corresponding adjacency vectors based on the
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initial concept map ginit– to be specific, its node-level embeddings Qi (i ∈ [1, n]) and

graph-level embedding Qginit
produced by the Graph Encoder. Since we expect to

preserve the semantic rich and task-relevant concepts in the initial graph and only

pick out a subset of nodes, we adopt the Pointer Network [84] from keyword selection

and novelly extend it into a graph version to generate a sequence of pointers for the

selection of the most important nodes from the initial concept map. After each node

is selected, we get inspiration from GraphRNN [101] to also generate its correspond-

ing adjacency vector which contains links to previously selected nodes. However, the

original GraphRNN only works on the transductive learning setting when there is an

actual graph as input to learning from. Therefore, we need to make several novel

modifications to GraphRNN before seamlessly integrating it into our Graph Pointer

Network (GPT) towards our novel setting of task-guided graph translation.

Graph Pointer Network. Since the original Pointer Network [84] works on sequential

text data, we convert the non-sequential nodes in the initial concept map into a

pseudo node sequence according to positions of node mentions in the source document,

illustrated as the yellow bars in Fig. 2.5. The order of pseudo node sequence is flexible

and can be replaced with any other order for proper reasons (e.g., node degree order).

Here we just follow the most intuitive way and do not observe significant performance

differences when using other orders. In our GPT, we use a one-directional RNN

decoder to model the process of translating a sequence of nodes and links from an

initial graph, denoted as the green rectangles in Fig. 2.5. In practice, we choose GRU

[17] as the implementation. In order to start the translation from the whole initial

graph, the hidden state of the RNN decoder is initialized by h0 = Qginit
, and the

input of the first step is x1 = (0, . . . , 0)⊺. Therefore, the hidden state that encodes

the “graph translation state” is updated by

ht = RNN(xt,ht−1), (2.5)
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where ht−1 denotes the hidden state from the last time step, and xt denotes the input

at the current time step. More specifically, we compute xt as the representations of

both nodes and links generated from the last time step, which can be denoted as

xt = [qt−1;θt−1], (2.6)

where [·; ·] denotes vector concatenation. qt−1 = Qi is the node embedding from

the Graph Encoder of the last selected node i, and we defer the explanation towards

adjacency vector θt−1 to the later part of this subsection.

Deeply coupled node and link generation. Once we obtain the RNN decoder hidden

state ht, the node selection process can be described by the following equations

ei,t = v⊺ tanh(W [Qi;ht]), (2.7)

pt,i = p(qt = Qi) =
exp(ei,t)∑n
j=1 exp(ej,t)

, (2.8)

where v ⊆ Rde and W ⊆ Rdh×de are learnable parameters for calculating the unnor-

malized node selection score e·,t at time step t for every node in initial graph node

set Cinit. Our GPT then selects the i-th node with the maximum score by

i = argmax
i

(pt,i), (2.9)

adds the selected node into the translated target graph and feeds qt = Qi into

the RNN decoder at the next time step. To improve the semantic completeness of

selected concept nodes, we also adapt the coverage loss in [81], by maintaining a

coverage vector ct =
∑t−1

t′=0 p(qt′) that accumulates the generated attention so far,

while adding the following loss to enforce the model to pay more attention to nodes

not covered yet:
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Lcov =
∑
di∈D

∑
tj∈di

min(p(qt′), ctj ). (2.10)

To deeply couple the generation process of nodes and links so that the target

graph (i.e., final concept map) is meaningful, we get inspired by the recent deep

graph generation model of GraphRNN [101]. Specifically, in our GPT, at each time

step, after a new node is generated, we immediately generate its associated adjacency

vector regarding all links between it and all previously generated nodes, as denoted

by smaller blue rectangles in Fig. 2.5 and described in the following equation

θt = fout(ht), (2.11)

where θt is the length t− 1 adjacency vector for the chosen node at time step t that

is output by fout. Based on slightly different goals for link generation, we design

two variants of fout: the path variant and the neigh variant. The former models the

adjacency vector generation as generating a path connecting some previously picked

nodes to the currently picked one, focusing on the higher-order sequential information

among concepts. Hence, fpath
out is implemented as another RNN that connects to the

hidden state of the RNN decoder. On the other hand, the neigh variant interprets the

generation problem as generating all possible neighbors of the currently picked node

from all previously picked nodes, focusing on the first-order neighborhood structures

of concepts. Therefore, fneigh
out is implemented as a multi-layer perceptron (MLP)

with non-linear activation. The weights of fout are shared across all time steps to

reduce the number of parameters and alleviate overfitting. In our experiments, we

find the neigh variant to be preferable over the path variant, which can be intuitively

attributed to the fact that structural information is more important than sequential

information among concepts.

Graph Predictor. After generating a sequence of nodes q1, . . . , qT and adjacency
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vectors θ1, . . . , θT , we assemble the target graph as

gtgt = {Ctgt,Mtgt} = {(q1, . . . , qT ), (θ1, . . . , θT )}. (2.12)

For the downstream graph-level prediction, we adopt a Graph Isomorphism Network

(GIN) [96] due to GIN’s superior discriminative power to capture different graph

structures. More specific, we adopt the sum operator as the neighborhood aggregation

function, and an MLP as the center node and neighbor nodes combination function:

q(k) = ReLU((Mtgt + (1 + ϵ(k))I)q(k−1)W (k)
q ), (2.13)

where Mtgt ⊆ RT×T is the adjacency matrix of translated concept map, I ⊆ RT×T is

a identity matrix (i.e., self connection), and ϵ(k),W (k)
q are learnable parameters for

GIN’s k-th layer. Furthermore, the graph label (i.e., document category in our case)

ŷ is obtained by an additional two-layer MLP on the graph representation:

ŷ = MLP(concat(sum(q(k))|k = 1, . . . , K)), (2.14)

where the graph representation is achieved by summing all node embeddings from

the same layer, and then concatenating summed embeddings across all layers.

Training Techniques

The whole model is trained in a weakly supervised end-to-end fashion, by computing

the cross-entropy loss for the downstream task– document classification as we focus

on in this work, and the coverage loss for the node selection in our GPT. Specifically,
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we have

Lcls = −
∑
di∈D

p(ŷi) log p(yi), (2.15)

L = Lcls + λ ∗ Lcov, (2.16)

where λ is a tunable hyper-parameter.

One technical challenge exists for the node selection operation that selects the

node with maximum pointer attention i = argmax
i

(p(qt = Qi)) during the graph

translation process in GPT. Firstly, the max value selection operation implemented

as argmax is non-differentiable, thus leading to the lost gradient after node selection.

Secondly, argmax is a deterministic sampling operator, thus making the GPT loses

exploration ability. The exploration ability or stochastic sampling is important dur-

ing the early training stages of GPT, because the predicted probability to select a

node is not very reliable at that time. Inspired by the re-parameterization tricks for

categorical variables sampling [4, 53, 38], we adopt a hard-version Gumbel-Softmax

to sample one-hot vectors from the predicted probabilities, so that the node selec-

tion process in GPT is differentiable and stochastic. The sampled probability Pt,i to

choose node i at time step t then becomes:

Pt,i = softmax(log(pt,i) +Gi, τ), (2.17)

where pt,i is the predicted probability as defined in Eq (2.8), Gi ∼ Gumbel(0, 1)

is the i-th random variable sampled from the Gumbel distribution, and τ is the

temperature parameter for softmax. We set a relative large temperature to enforce

Pt = (Pt,1, Pt,2, . . . , Pt,n) has the one-hot vector shape. During training, we use Pt ·Q

to represent selecting one particular node for gradient backpropagation.

Moreover, to generate concept maps of flexible sizes, we incorporate the special
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“EOS” node at the first position of pseudo node sequence, denoted as “♢” in Fig.

2.5. The end of an output node sequence is determined when the “EOS” is predicted.

For the completeness of concept maps, we penalize node sequences that are too short,

which can be implemented by applying a penalty to “EOS” node predicted at every

time step as follows

Llen =
∑
di∈D

∑
tj∈di

Penalty(tj) · p(qtj = “EOS”). (2.18)

The function Penalty(t) > 0 defines a penalty curve depending on the current time

step t. In our implementation, we choose the RBF kernel function Φ(t, t′) = exp(−∥t−t′∥2
2σ2 )

for the penalty curve [15]. Therefore, the overall loss function for GT-D2G is:

L = Lcls + λ1 ∗ Lcov + λ2 ∗ Llen. (2.19)

To sum up, our whole framework is trained in an end-to-end fashion, while Graph

Encoder, Graph Translator, and Graph Predictor are guided by the downstream task

with the goal of reducing classification loss. In this way, each module is jointly learned

and enhanced. Moreover, the translation process is regularized by the coverage loss

and graph size loss, aiming to produce high-quality concept maps depending on the

input documents’ characteristics.

Complexity Analysis

To analyze the computational efficiency of the proposed model, we present the GT-

D2G training algorithm for one input initial concept map (one input document). The

actual implementation is based on mini-batch training, and is publicly available5. For

obtaining graph representation of the initial concept map (L3-L4), the time complex-

ity is O(Knd2 + Kmd), where K is the number of GCN encoder layers, d is the

5GT-D2G : https://github.com/lujiaying/GT-doc2graph

https://github.com/lujiaying/GT-doc2graph
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Data: initial concept map ginit = {Cinit,Minit}, input node embeddings
{Q0

v,∀v ∈ Cinit}, ground truth graph label y
Result: translated concept map gtgt = {Ctgt,Mtgt}, predicted graph label ŷ

Initialize GT-D2G parameters ;
while not converge do

/* Obtain graph representation of ginit */

Update node embedding Q(k) = GCNEnc(Q
(0); k) by Eq. 2.4;

Update graph embedding Qginit
= pooling({Q(k)

v ,∀v ∈ Cinit});
/* Translate ginit into gtgt step-by-step */

while not generate “EOS” node do
Prepare Graph Translator (RNN) input (xt,ht−1) by initilization or
previous step results;
Update hidden state of Graph Translator ht by Eq. (2.5);
Generate node qt by Eq. (2.7), (2.8), (2.9);
Generate adjacency vector θt by Eq (2.11);

end
/* Predict graph label */

Assemble the translated concept map gtgt by Eq. (2.12);
Predict the graph label ŷ by Eq. 2.13, 2.14;
/* Backpropagate the weak supervision */

Compute the overall loss L by Eq. (2.19);
Update model parameters with the gradients of L.

end
Algorithm 1: GT-D2G Training Algorithm

embedding dimensions (128 in all layers), n is the number of nodes in ginit (tens

of nodes in our experiments), m is the number of edges in ginit (e.g., close to one

hundred edges in our experiments). The time complexity can be further simplified

into O(Knd2) since nd ≫ m. For graph translation (L5-L9), the time complexity

is O(TKnd2), where T is the size of the translated concept map, K is reused to

represent the number of RNN decoder layers (e.g., we set both GCN encoder, RNN

decoder and GIN classifier layer sizes as 2), d is reused to represent the RNN embed-

ding dimensions (e.g., we set the hidden dimension to 128 for all modules). For the

graph label prediction(L10-L11), the time complexity is O(KTd2) which is similar to

GCN encoder analysis. Therefore, the overall time complexity for proposed GT-D2G

is O(Knd2 + TKnd2 +KTd2) = O(TKnd2).
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It is worth noting that the construction of initial concept maps is quite efficient, as

the toolkit we employed (e.g., JVM-based Stanford CoreNLP [54]) mainly utilize pre-

trained models or rule-based annotators for the NLP pipelines. Moreover, doc2graph’s

time complexity is O(TK∥D∥d2), where ∥D∥ denotes the number of words of input

document. GT-D2G is more efficient than doc2graph, due to the fact that ∥D∥ ≥ n

in most cases. However, the advantage of doc2graph is that it does not require NLP

pipelines to derive the initial concept maps.

2.3.3 Experiments

In this section, we evaluate our proposed GT-D2G framework focusing on the follow-

ing four research questions:

RQ1 : How is the quality of GT-D2G generated graphs?

RQ2 : How do GT-D2G and its variants perform in comparison to other document

classification methods?

RQ3 : Is GT-D2G label efficient?

RQ4 : Can GT-D2G generate flexible sizes of concept maps?

Experiment Settings

Datasets. Our experiments are conducted on three real-world text corpora [98]:

NYT, AMiner, and Yelp. Different from [98], for the Yelp dataset, we re-grouped the

1-5 star reviews into negative, neutral and positive ratings. The statistics of the three

datasets are listed in Table 2.1. For standard document classification, we follow the

setting in [98] to randomly split the labeled documents into 80% for training, 10%

for validation, and 10% for testing. We choose accuracy as the metric for document

classification tasks. To get a stable result, we run each model three times and report

the mean ± standard deviation.

Compared Methods. We compare GT-D2G with two sets of baselines described
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Table 2.1: Statistics of three datasets.

Dataset #doc #word #category
Init Concept Map

#node #edge #degree

NYT 13,081 88.64 5 34 84 4.9
Aminer 21,688 87.27 6 34 81 4.8
Yelp 25,357 71.59 3 28 76 5.4

as follows:

Graph-Based Methods as major competitors.

• AutoPhrase [73]: This is a Pos-Guided Phrasal Segmentation model for phrase

mining. We use the top-n highest quality phrases mined from input text as

concepts and connect concepts in same sentence. The edge weights is computed

as wij = 1−e−cij , where cij denotes sentence-level co-occurring times of concept

i and j.

• TextRank [59]: A word co-occurrence graph is first constructed using a sliding

window that connects any two words within the window. We use words with

top-n maximum PageRank values as concepts. The edge weights are computed

in the same way as AutoPhrase.

• CMB-MDS [26]: We use its pipeline to construct concept map and filter out

concepts with low importance scores to keep top-n concepts. The edge weights

are set to 1 according to the CMB-MDS implementation.

• doc2graph [98]: doc2graph is a neural concept map generation model that

is capable of generating concept maps through distant document classification

supervision. We follow their implementation to pre-define graph size as n.

Text-Based Methods as performance benchmarks.

• Bi-LSTM [31]: Bi-LSTM is a commonly used RNN model in text classi-

fication that learns the long-term dependencies in the document. We train
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Bi-LSTM on the training set using the output from last time-step to predict

document categories.

• BERT-base [21]: BERT has achieved excellent performance on a wide range

of NLP tasks as a state-of-the-art language model. In our experiment, We

fine-tune the pre-trained BERT-base model on the classification task.
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Figure 2.6: Human evaluation results on (a) NYT, (b)AMiner, (c)Yelp based on four
proposed metrics.

Implementation Details. We implement GT-D2G using Pytorch [62] and DGL

[87], with code publicly available5. Implementations of the compared baselines are

either from open-source project (BERT 6) or the original authors (Bi-LSTM / Au-

toPharse/ TextRank/ CMB-MDS/ doc2graph7). We optimize GT-D2G through the

Adam optimizer with learning rate to 3e−4 and max epoch to 500. The temperature

parameter τ for Gumbel-softmax starts from a big number (e.g. 3 or 5) and then

anneals along with training epochs to encourage exploration on the later stage. To

get a higher accuracy, we set batch size to 64 for training. The hidden layer dimen-

sion of GCN, RNN and MLP are set to 128, and the number of GNN layers in all

GCN, GIN models are 2. For RBF kernel function used to penalize overlength node

sequence, σ and tprime are set to 4 and 0, respectively. We choose GRU for RNN

6BERT : https://github.com/huggingface/transformers
7doc2graph: https://github.com/JieyuZ2/doc2graph

https://github.com/huggingface/transformers
https://github.com/JieyuZ2/doc2graph
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used in generating nodes and edges for simplicity sake. All other hyper-parameters

are tuned separately on the validation set.

Human Evaluation (RQ1)

Table 2.2: Correlation coefficients among the five peer annotators with manual re-
sponsiveness scores on a total of 300 documents of NYT, AMiner, Yelp (100 each).

Peer Scoring Node Link Info. Comp.
NYT 0.50 0.89 0.57 0.67

AMiner 0.76 0.80 0.75 0.93
Yelp 0.73 0.79 0.70 0.92

Human evaluation is critical to answer RQ1, i.e. evaluating the quality of gen-

erated concept maps, since there are no ground-truth concept maps on the three

document classification datasets. Five expert annotators are hired to evaluate graphs

generated from the text data by five methods: AutoPhrase, TextRank, CMB-MDS,

doc2graph, and GT-D2G. More specifically, on each dataset, we randomly sample 100

document with associated graphs of each method. or each document, annotators are

asked to rank the five concept maps in terms of four metrics:

Node: regardless of downstream tasks, whether nodes are semantic complete, in

proper length and not redundant.

Link: whether links between nodes are consistent with the text and make sense.

Informativeness: whether the generated graph is helpful for the downstream task.

Completeness: whether the generated graph covers the most salient information of

the original text from different aspects.

Correlation Coefficient is a widely used indicator to estimate the inter-annotator

agreement (ITA). However, we observe that explicitly annotating the rank among

all five concept maps leads to low inter-annotator agreement. Therefore, we allow

annotators to pick k (k ≤ 3) graphs for each metric as top graphs, as long as they

think these k graphs are of the same best quality. That means, if an annotator thinks
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two graphs by doc2graph and GT-D2G are competitive in Informativeness, she can

mark both two as top graphs without distinguishing which is the best. The top max-k

graph annotation guideline gives high Correlation Coefficient scores, as can be seen

in Table 2.2.

The human evaluation results are shown in Fig. 2.6. The value on y-axis indi-

cates the percentage of the data that the annotator think the method performs best

under the corresponding metric. For the metrics of Informativeness and Complete-

ness, annotators reached a high degree of consistency that our approach GT-D2G

outperforms other baseline methods significantly. Moreover, GT-D2G performs best

on NYT for Node metrics and NYT and AMiner for Link metrics.

Case Studies. The concept maps constructed by five methods are shown in Fig. 2.7

and 2.10. In general, AutoPhrase can represent meaningful concepts using phrases,

but sometimes prone to generate duplicate nodes (e.g., two “mobile device” in AMiner

example). TextRank select meaningful concepts in word-level which are beneficial for

the downstream tasks (e.g., “beethoven” in NYT, “mobile” in AMiner, and “amazing”

in Yelp), but the links among the selected concepts are not consistent with the original

text. The nodes generated from CMB-MDS usually contain abundant information

but are often in sentence-level, which are not concise and redundant. doc2graph

can generate useful concepts with meaningful links, however, the nodes are mainly

word-level (e.g., “mr.” instead of “mr. haimovitz” in NYT ) and sometimes con-

tain “<unk>” or “-” which indicate the limitation of this method. Our approach,

GT-D2G can represent concepts in both word-level and phrase-level ways which are

concise, semantic-rich, and beneficial for downstream tasks (e.g., “beethoven cello” in

NYT ).
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NYT (Arts): PLAINFIELD, Mass. — On a recent sunny afternoon, Matt Haimovitz entered a carpentry workshop here that doubles as a music studio and gently 
pulled the door shut. The garden of the 19th-century farmhouse echoed with the shouts of children ... but Mr. Haimovitz cupped his hand around its neck with loving 
pride: "This is my Beethoven cello."

AutoPhrase CMB-MDS

doc2graph GT-D2G

TextRank

Figure 2.7: Concept maps generated by various models for case studies.

Table 2.3: Document classification accuracies(%).

Model NYT AMiner Yelp

Bi-LSTM 87.52± 3.01 59.32± 2.71 78.46± 1.46
BERT-base 97.54± 0.16 73.62± 0.06 85.34± 0.08

AutoPhrase 92.42± 0.65 59.63± 0.85 72.66± 0.33
TextRank 89.48± 0.07 57.47± 0.31 70.25± 0.61
CMB-MDS 87.68± 0.72 51.93± 2.02 65.63± 2.07
doc2graph 90.81± 1.00 67.06± 1.32 79.89± 0.52

GT-D2G-init 93.65± 0.86 66.76± 1.77 80.15± 0.80
GT-D2G-path 95.26± 0.13 68.23± 0.23 80.86± 0.97
GT-D2G-neigh 95.34± 0.33 68.53± 1.02 80.92± 0.50
GT-D2G-var 95.46± 0.49 68.37± 1.05 80.98± 0.51

Classification Results (RQ2)

To answer RQ2, we conduct the document classification experiments on three text

corpora. The generated concept maps have n concepts. To compare our methods

with baseline methods conveniently, we set n = 10 for all graph-based baselines and

non-flexible GT-D2G variants (-path and -neigh). For GT-D2G-init, n is equal to the

total number of nodes of constructed initial graphs. For the flexible GT-D2G variant
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(-var), we set n ≤ 10. Table 2.3 shows the classification performance of our methods

and the compared methods. We observe that GT-D2G consistently outperforms all

baseline methods except BERT-base on all three datasets, which indicates that the

integration of semantic-rich initial concept maps from NLP pipelines and graph trans-

lation based on the weak supervision in our methods benefit the downstream tasks

significantly. Notably, both Bi-LSTM and BERT-base are not capable of generating

concept maps. As we mentioned before, the goal of GT-D2G is not to beat all SOTA

document classification methods, but to achieve a competitive performance while

providing interpretable structured knowledge representation. Consequently, in the

following comparison elaborations, we exclude these two methods when we mention

“baseline methods”.

Compared with traditional graph-based approaches, GT-D2G gains 3%, 15%,

11% over the best results of traditional approaches on NYT, AMiner, and Yelp, re-

spectively. Moreover, it surpasses the end-to-end doc2graph method by 5%, 2% and

1%, correspondingly. As mentioned in the toy example (Fig. 2.3) and Experiment

Settings, both AutoPhrase, TextRank and CMB-MDS are existing unsupervised con-

cept map generation models. These three models are capable of generating concept

maps according to their own customized metrics (e.g., frequency-based, connectivity-

based, summarization-based), but they can not utilize the downstream task’s signals

to supervising the generation process. Consequently, concepts generated by these

models are not task-oriented, thus leading to poor classification performance. On the

other hand, doc2graph is the only compared model that is specifically designed for

weakly-supervised concept map generation. As reflected in the experimental results,

doc2graph is the major competitor of our GT-D2G (excluding the SOTA document

classification models).

To better understand the effectiveness of our proposed techniques, we closely

study the four variants of GT-D2G regarding the effectiveness of NLP pipelines (-
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init), node-and-link iterative generation (-path and -neigh), and flexible-size graph

generation (-var). In particular, to evaluate the effectiveness of incorporating NLP

pipelines, we implement GT-D2G-init that directly encodes all nodes in the initial

semantic-rich concept maps to make predictions. Table 2.3 show that GT-D2G-

init outperforms all traditional graph-based baselines with 1.23 on NYT, 7.13% on

AMiner, and 7.49% on Yelp. Comparing GT-D2G-init with doc2graph, GT-D2G-init

achieves 1.23% and 0.26% gains on NYT and Yelp, while GT-D2G-init is worse by

0.3% on AMiner. Hence, the observed experimental results support the benefits of

utilizing concept maps derived from NLP pipelines. Upon GT-D2G-init, the other

three variants add the Graph Translator module to obtain a more concise concept

map, since the initial concept maps often contain 20-40 nodes and the translated

concept maps contain less than 10 nodes. According to the experimental results, the

translated concept maps are preferable to initial concept maps, as they can further

improve GT-D2G-init by 1.81% on NYT, 1.77% on AMiner, and 0.83% on Yelp.

To explore a proper way to generate edges, we implement and compare two meth-

ods, GT-D2G-path and GT-D2G-neigh. GT-D2G-path only generates edges based on

the relations of concepts in text sequence while GT-D2G-neigh links each node with

its all possible neighbors. As shown in Table 2.3, GT-D2G-neigh is consistently bet-

ter than GT-D2G-path on all three datasets, which well supports our argument that

generating edges among all possible neighbors is preferable to generating edges as a

sequence of paths starting from the node. Furthermore, GT-D2G-var addresses the

fixed size issue of doc2graph and the experiment results of GT-D2G-var illustrate the

benefits of generating flexible size of concept maps. More discussion about generating

size-flexible concept maps are in §2.3.3.
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Figure 2.8: Test accuracies by varying the proportions of training data (ranging from
0.1%, 0.25%, . . . to 10.00%).

Labeling Efficiency Evaluation (RQ3)

To demonstrate the labeling efficiency of GT-D2G over other concept map generation

methods, we conduct experiments with different proportions (0.1%, 0.25%, 0.50%,

0.75%, 1.00%, 2.50%, 5.00%, 7.50%, 10.00%) of the training data. To get a stable

test accuracy, we take the average value among three trials of each experiment by

applying different random seeds. The average test accuracies of NYTimes, AMiner,

and Yelp datasets were shown in Fig. 2.8 respectively, which answer RQ3.

We can observe that our approach GT-D2G has higher test accuracy than the

other approaches from the beginning, with only 0.1% of the training data. In addi-

tion, with the increasing of the training data size, our model has steeper growth curves

of test accuracy, which shows its effectiveness in exploiting limited supervision, and

makes it maintain excellent performance during the whole label efficiency evaluation

with limited labeled data. These results demonstrate the labeling efficiency of our

model, which is enabled by the semantic-rich initial concept maps (§2.3.2) and the

Gumbel-softmax training technique (§2.3.2). Therefore, GT-D2G can generate con-

cept maps at scales not only without ground-truth training graphs but also without

significant amounts of downstream task supervision.
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Flexibility Evaluation (RQ4)
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Figure 2.9: Graph size distributions on different max graph sizes.

As discussed in RQ2, the GT −D2G− var variant that is capable of generating

flexible sizes of concept maps achieves the best document classification performance

on two datasets (NYT and Yelp), while achieving the runner-up on the remaining

dataset (AMiner). The observed experimental results justify the importance of the

size-flexible property for concept map generation models.

To provide more insights, we further conduct experiments to explore the factors

that impact the sizes of generated concept maps. As noted in the Training Techniques

(§2.3.2), our framework is able to generate variable sizes of graphs by applying the

RBF kernel-based graph size penalty and the content coverage penalty. These two

penalties imply a trade-off between conciseness and completeness of generated concept

maps. Fig. 2.9 shows the size distribution of the generated graphs on three datasets

when the maximum graph size is set to be 10, 20, or 30 nodes. As can be seen, our GT-

D2G can generate graphs with variable sizes as the size distribution varies according

to the following two major factors: (a) input text complexity (across three datasets);

(b) the preset hyperparameter “max size” (across different max sizes). For the input

text complexity, we know that NYT and AMiner contain rather long and formal

news articles and scientific reports, while Yelp contains short and informal online

user-generated restaurant reviews. Consequently, concept maps derived from Yelp are



36

inclined to have small sizes, while concept maps from NYT and AMiner have more

evenly size distributions (when the max size is set to 30). For the hyperparameter

max size, we can clearly see the set value bounds the actual sizes of generated graphs.

AMiner (HCI): With the rapid growth of mobile device usage, daily life offers much empirical evidence that users frequently and persistently interact with mobile 
devices... but significantly, their frequent usage could also be a form of vigilant behavior.

AutoPhrase

TextRankdoc2graph GT-D2G

CMB-MDS

Yelp (Positive): This place brought me back to my Spanish travels. The owner is amazing and theres free live music/dancing. Definitely coming back...

GT-D2G

CMB-MDS

AutoPhrase

doc2graph

TextRank

Figure 2.10: Concept maps generated by various models for case studies (cont.).
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Chapter 3

Learn to Aligning and Completing

Taxonomic Knowledge Graphs

3.1 Background

Knowledge bases (KBs) have incorporated large-scale multi-relational data and mo-

tivated many knowledge-driven applications such as online encyclopedia [85] and e-

commerce product catalog [23]. Taxonomies and knowledge graphs (KGs), which

represent real-world entities’ abstract concepts and properties/behaviors/facts, con-

stitute the essential information in knowledge bases (KBs). Taxonomies are useful

tools to organize and index concepts of entities so that users can efficiently find the

information of interest [74, 55]. On the other hand, KGs store human understanding

of entities’ properties, facts, or behaviors in a structured way, which are essential for

knowledge representation and reasoning [22]. Extensive efforts have been made to

construct KBs [8, 76] that include both taxonomies and KGs.

In this chapter, two of my first-author papers are included. The first one is

“HiPrompt: Few-Shot Biomedical Knowledge Fusion via Hierarchy-Oriented Prompt-

ing” [52] (SIGIR’23), where we explore utilizing few-shot prompting empowered by
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large language models (LLMs) to tackle the entity alignment between biomedical

taxonomies and biomedical KGs. The second one is “Open-World Taxonomy and

Knowledge Graph Co-Learning”, where we investigate utilizing taxonomies as loosely-

defined schema to align open-world KGs and then complete the aligned TaxoKGs.

3.2 HiPrompt: Few-Shot Biomedical Knowledge

Fusion via Hierarchy-Oriented Prompting

We propose HiPrompt [52], a supervision-efficient knowledge fusion framework that

elicits the few-shot reasoning ability of large language models through hierarchy-

oriented prompts. Medical decision-making processes can be enhanced by comprehen-

sive biomedical knowledge bases, which require fusing knowledge graphs constructed

from different sources via a uniform index system. The index system often organizes

biomedical terms in a hierarchy1 to provide the aligned entities with fine-grained gran-

ularity. To address the challenge of scarce supervision in the biomedical knowledge

fusion (BKF) task, researchers have proposed various unsupervised methods. How-

ever, these methods heavily rely on ad-hoc lexical and structural matching algorithms,

which fail to capture the rich semantics conveyed by biomedical entities and terms.

Recently, neural embedding models have proved effective in semantic-rich tasks, but

they rely on sufficient labeled data to be adequately trained. HiPrompt bridges the

gap between the scarce-labeled BKF and neural embedding models. Empirical re-

sults on the collected KG-Hi-BKF benchmark datasets demonstrate the effectiveness

of HiPrompt.

In this work, we study the biomedical knowledge fusion (BKF ) problem that

aims to align entities from biomedical KGs into terms from the biomedical hierarchy.

1hierarchy: also mentioned as taxonomy. We will use these two terms interchangeably in this
section.
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Figure 3.1: A toy example of BKF to find entity-term alignment between KG and
hierarchy. Left : A KG containing biomedical entities. right : A hierarchy containing
biomedical terms.

Figure 3.1 gives a toy example of the BKF task. The BKF task is challenging due

to the following characteristics. First, inconsistent naming vocabularies are used

in different resources, as they are developed independently by different groups of

specialists. Second, unlike the existing KG entity alignment problem [78, 95] that

contains many labeled entity-entity pairs as training samples, biomedical knowledge

integration is supervision-scarce. Third, the topology of a KG and a hierarchy are

very different, where the KG is a general graph, while the hierarchy is a directed

acyclic graph.

3.2.1 Problem Definition

BKF aims at aligning existing specialized biomedical KGs into a uniform biomedical

index system that can be represented by a hierarchy. We define the biomedical KG

and hierarchy as follows: A biomedical KG is a multi-relation graph G = (E,R,RT ),

where E,R,RT are a set of various types of entities, a set of relation names, and

RT ∈ E ×R×E is the set of relational triples, respectively. A biomedical hierarchy

is a directed acyclic graph (DAG) H = (T, TP ), where T is a set of terms, and

TP ∈ T × T is a set of hypernym-hyponymy term pairs, respectively. The topology
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Rank the terms in the choices according to the similarity between them and the 
entity in the query.

Query: “Prostatic Neoplasms”?
Choices: “prostatic hypertrophy”; “prostate angiosarcoma”; “prostate cancer”.
Contexts: prostatic hypertrophy isA prostate disease. prostate angiosarcoma 
isA prostate sarcoma. prostate cancer isA prostate disease. ...
Answer:

(Pseudo Demonstration)

Query: “NFL”?
Choices: “English Football League”; “National Football League”.
Answer: 1.“National Football League”; 2.“English Football League”.

(Task Description)

(Test Prompt w/ Hierarchy Context)

1."prostate cancer"; 2."prostate angiosarcoma"; 3."prostatic hypertrophy".
(Response by LLM)𝑡$ 𝑡& 𝑡'

𝑒!

Figure 3.2: Overview of our HiPrompt framework, with a zoom-in on the LLM-based
re-ranker.

differences between KG and hierarchy distinguish our BKF task from other related

tasks (e.g., entity alignment, KG integration). Moreover, both entities E and terms

T contain rich associated semantic attributes (e.g., definition, synonyms). Finally,

we define our task as follows:

Definition 3.2.1 (biomedical knowledge fusion). Given a biomedical KG G, a biomed-

ical hierarchy H, a set of pre-aligned entity-term pairs [ea, ta]
M
a=1, and a set of un-

aligned entities [e1, e2, · · · , eN ] ∈ G. The goal is to link each unaligned entity to the

hierarchy LK = {(ei, tj)|ei ∈ G, tj ∈ H} such that tj is the most specific term in the

hierarchy for entity ei in KG. In our work, we focus on the few-shot settings where the

sample size M is very small to reflect the scarcity of labeled data that is ubiquitous

in the biomedical field.

3.2.2 HiPrompt

Figure 3.2 shows the overall architecture of our proposed HiPrompt framework. To

tackle the BKF task with limited training samples, our key insight is to utilize

LLMs via hierarchy-oriented prompting. However, LLMs can not accommodate very

lengthy input prompts (e.g., GPT-3 only supports up to 4096 tokens) that contain

all candidate terms along with their hierarchy contexts. A feasible workaround is

to exhaustively examine each candidate term given the query entity, but the infer-

ence cost would be dramatic [63]. Therefore, we propose to use the retrieve and

re-rank [86, 56, 30] approach to resolve the above challenges.
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Retrieval Module. The retriever provides an efficient solution for coarse-grained

candidate filtering, thus reducing the overall inference cost of HiPrompt. Given one

entity query ei from the KG G and all candidate terms T from the hierarchy H, the

retriever produces a coarsely ranked candidate list (t′1, t
′
2, · · · , t′K), to avoid unnec-

essary computations for the LLM-based re-ranker. HiPrompt framework is flexible

so that any unsupervised ranking function (e.g., TF-IDF [69], LDA [6]) can be used

to generate the ranked list. In practice, we choose the unsupervised BM25 [68] as

the ranking function. Since entities and concepts have rich attributive and structural

information, we further utilize these two types of information to expand [5] query

entities and candidate terms.

Re-Ranking Module. Given the query entity ei and the coarsely ranked candi-

date list (t′1, t
′
2, · · · , t′K), we request the LLM to re-rank the list to (t1, t2, · · · , tK)

where t1 is the most specific term of ei via the gradient-free prompt-based learn-

ing. Figure 3.2 provides an example of the input prompt and the response of the

re-ranker. The input prompt is composed of (1) curated textual task description,

(2) illustrative demonstration from few-show samples, and (3) the test prompt

constructed from the query entity and the coarsely ranked list. The LLM-based

re-ranker essentially tackles the BKF task by estimating the conditional probabil-

ity: PLLM(w1, w2, . . . , wn|prompt), where (w1, . . . , wn) is the output word sequence

with variable lengths. The desired re-ranked list can be converted from the output

sequence by a simple mapping function (t1, t2, · · · , tK) = f(w1, w2, . . . , wn).

For the template of demonstration, we use the query entity to form the question

string “Query: {ei}”, the coarse candidate list to form the choice string “Choices: {t′1;

t′2; . . . t′K}”, and the ground truth to form the answer string “Answer: {t1; t2; . . . ,

tK}”. While there is no such ground truth sample in the zero-shot setting, we pro-

pose the pseudo demonstration technique which adopts out-of-domain entity-term

pairs to showcase what is the perspective format. Both real and pseudo demonstra-
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tions are essential to generate output sequences in the consistent format [70, 41].

For the test prompt, we use the same template of the demonstration, while leaving

the answer string as “Answer:” for LLM to predict what comes next. To further

elicit LLMs with hierarchical constraints and dependencies of candidate terms, we

propose the novel test prompt with hierarchy context where hypernyms of each

candidate term are included in the context string. More specifically, we traverse the

biomedical hierarchy T to locate the hypernym terms t′i,p1 , · · · , t
′
i,pj

of a candidate

term t′i. Therefore, the context string is formed as “Contexts: {t′1 isA t′1,p; . . . ; t
′
K isA

t′K,p}”.

3.2.3 Experiments

Benchmark Datasets. We use the following data sources to create our KG-Hi-

BKF benchmark2: (1) SDKG [106]: a disease-centric KG that covers five cancers

and six non-cancer diseases. (2) repoDB [11]: we adopt their original triples, and

generate entity attributes by querying DrugBank [91] and UMLS Metathesaurus [7].

(3) DzHi [72]: a hierarchy derived from the widely used Disease Ontology [72] which

has a depth of 13. We first use the mapping existing in the resources themselves,

which leads to many-to-many linkages between two KBs. We further manually verify

the correctness of the many-to-many linkages and curate the datasets to the correct

stage. Table 3.1 shows the statistics of the created benchmark. As can be seen, the

linkages follow the one-to-one assumption [78], and the scale of labeled entity-term

pairs is very small.

Compared Models. We compare HiPrompt to the following two sets of baselines:

(a) Non-neural conventional models : (a.1) Edit Dist [67] that quantifies the distance

between entities and terms by the edit distance of their names. (a.2) BM25 [68]

that ranks a set of documents based on the query tokens appearing in each docu-

2KG-Hi-BKF benchmark is available at https://doi.org/10.6084/m9.figshare.21950282.

https://doi.org/10.6084/m9.figshare.21950282
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Dataset Source #Disease #Entities #Links

SDKG-DzHi
SDKG 841 19,416 635
DzHi 11,159 11,159 635

repoDB-DzHi
repoDB 2,074 3,646 709
DzHi 11,159 11,159 709

Table 3.1: Statistics of the KG-Hi-BKF benchmark.

ment. (a.3) LogMap [39] that matches entities and terms via logical constraints

and semantical features. (a.4) PARIS [77] that provides a off-the-shelf fusion tool

empowered by a parameter tuning-free probabilistic model. (a.5) AML [27] that is

based on non-literal string comparison algorithms. is a probabilistic matching system

based on probability estimates. (b) Neural embedding models : (b.1) SapBERT [43]

that learns to self-align synonymous biomedical entities through a Transformer. (b.2)

MTransE [14] that extends the translational KG embedding method TransE [9]

to multi-language system entity alignment by axis calibration and linear transfor-

mations. (b.3) SelfKG [46] that designs a self-negative sampling strategy to push

sampled negative pairs far away from each other when no labeled positive pairs are

available.

Setting Model
SDKG-DzHi repoDB-DzHi

Hits@1 Hits@3 nDCG@1 nDCG@3 WuP MRR Hits@1 Hits@3 nDCG@1 nDCG@3 WuP MRR

Zero-shot

Edit Dist 65.51 70.39 68.08 50.82 85.53 68.69 68.69 71.37 71.71 54.15 85.21 70.71
BM25 73.07 87.40 77.56 63.01 91.97 81.06 59.38 74.75 70.33 64.51 90.71 68.84
LogMap 75.75 79.06 76.97 54.82 85.06 77.38 86.60 87.73 87.38 60.79 91.68 87.09
PARIS 22.68 22.68 23.15 16.13 43.85 22.68 6.35 6.35 6.42 4.44 32.28 6.35
AML OOM OOM OOM OOM OOM OOM 78.00 78.56 78.67 54.90 86.02 78.26
SapBERT 69.61 87.24 76.38 63.86 93.78 78.97 75.04 90.69 81.24 73.51 94.25 83.61
SelfKG 57.95 69.45 58.98 47.29 74.25 64.70 72.78 81.10 75.95 63.78 88.41 77.71
HiPrompt 90.79 93.08 91.57 77.00 96.74 92.13 88.01 91.26 90.70 82.85 97.06 90.64

One-shot
SapBERT 69.56 87.22 76.34 63.84 93.29 78.93 75.00 90.68 81.21 73.51 94.13 83.59
MTransE 0.0 0.16 0.0 0.05 35.09 0.16 0.0 0.28 0.14 0.27 28.89 0.37
HiPrompt 92.11 95.11 93.53 77.63 97.25 93.91 88.28 91.53 90.61 81.31 96.39 90.28

Table 3.2: Main experiment results (in percentages).

Quantitative evaluations. We mainly focus on zero-shot and one-shot settings,

and utilize the remaining labeled samples as the test set to report quantitative re-

sults. Several strict and lenient evaluation metrics are used. For strict metrics that

appreciate only the exact correct prediction, we adopt Hits@k and mean reciprocal
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rank (MRR). For lenient metrics that also reward near-hits, we adopt nDCG@k

with exponential decay [3] and hierarchy-based term relatedness score WuP [94]. All

compared baselines are executed with their recommended hyperparameters. For all

non-neural conventional models, we only report the zero-shot results as they are un-

supervised methods. For neural embedding methods, we report the zero-shot results

utilizing released model weights (SapBERT) or conducting self-supervised training

(SelfKG), while reporting the one-shot results by fine-tuning these models (SapBERT,

MTransE) on the one demonstrative training sample. For our HiPrompt, we use GPT-

3 [12] as the LLM for re-ranker and set its temperature hyperparameters as 0 to lower

the completion randomness. Using a single prompt template is sufficient since initial

exploration shows that various templates do not have a significant impact on model

performance. We exclude the use of automatic prompt generation techniques [75, 105]

due to the limited availability of training data.

Main Results. Table 3.2 shows the quantitative results for zero-shot and one-shot

settings. HiPrompt largely outperforms all other methods in all evaluation metrics

under both settings, which demonstrates the effectiveness of the proposed hierarchy-

oriented prompting. Under the zero-shot setting, the non-neural unsupervised base-

line LogMap achieves the second-best performance. All examined models can success-

fully generate predictions except AML throws out-of-memory (OOM) errors on the

SDKG-DzHi dataset. PARIS performs worst in the zero-shot setting because it can

not predict aligned terms for each query entity. Instead, PARIS produces the align-

ment based on its own ad-hoc threshold. MTransE performs worst in the one-shot

setting since it is underfitting using just one training sample. Comparing the same

models (SapBERT, HiPrompt) between zero-shot and one-shot settings, we observe

the performance differences are negligible, thus indicating that effectively eliciting

the adaptive reasoning ability is one of the key factors to tackling supervision-scarce

BKF problem.
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Expan.
SDKG-DzHi repoDB-DzHi

Hits@5 Hits@10 Hits@20 Hits@5 Hits@10 Hits@20

Name 88.66 89.61 90.55 85.05 88.72 90.27
+Atr. 94.96 96.85 98.11 89.00 92.52 95.20
+Str. 90.08 90.71 91.81 88.15 90.27 92.24

+Atr.+Str. 96.85 97.64 98.74 91.11 93.65 95.63

Table 3.3: Retriever with various expansion strategies.

LLMs
SDKG-DzTaxo repoDB-DzTaxo

Hits@1 Hits@3 MRR Hits@1 Hits@3 MRR

One-shot (prompt w/o Hi. Context)
GPT-3 91.80 94.32 93.45 87.85 91.24 89.92
GPT-JT 75.08 86.44 81.80 58.33 69.77 66.42
OPT-6.7B 68.93 80.44 76.38 60.73 73.59 69.33

One-shot (prompt w/ Hi. Context)
GPT-3 92.11 95.11 93.91 88.28 91.53 90.28
GPT-JT 80.76 93.69 87.45 69.07 82.91 77.24
OPT-6.7B 72.40 84.86 79.64 63.70 77.68 72.41

Table 3.4: Re-ranker with various LLMs and prompts.

Ablation Studies. We further conduct ablation studies to evaluate the impact of our

hierarchy-oriented techniques. Table 3.3 compares the different expansion strategies

for HiPrompt’s retrieval module. As can be seen, if expanding the KG entities and

hierarchy terms with both attributive and structural features (“+Atr.+Str.” variant),

the retriever can achieve the best Hits@K performance. Table 3.4 compares different

LLMs and different prompts for HiPrompt’s re-ranking module. Among the examined

LLMs, GPT-3 with 175 billion parameters surpasses GPT-JT [80] with 6B parameters

and OPT-6.7B [103] with 6.7B parameters due to its large parameter space. When

adding the proposed hierarchy context to the name-only prompts, every LLM achieves

better performance on all metrics, thus demonstrating the importance of explicit

hierarchy-oriented information. We also observe that improvements for GPT-JT and

OPT-6.7B are more significant than GPT-3, since GPT-3 may already have such

hierarchical information encoded.
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Figure 3.3: Case Studies on unlabeled data. Terms highlighted in violet denote the
correct alignments for query entities.

Case Studies. Figure 3.3 shows the fusion results from BM25, EditDist, and

HiPrompt. In general, HiPrompt can find the most specific terms in the hierarchy for

the query entities, by satisfying the semantic similarities and hierarchical constraints

simultaneously. For instance, HiPrompt recognizes that “immune system disease” is

the most appropriate for the query “immune suppression”, rather than its hypernym

“disease of anatomical entity” that is too general, or hyponyms such as “immune sys-

tem cancer” or “allergic disease” that are too specific. On the other hand, EditDist

only considers lexical matching, thereby ignoring the different naming conventions

of the same biomedical concepts. BM25 also mainly relies on lexical matching, but

it incorporates the names, definitions, and synonyms of biomedical terms during the

matching, resulting in better performance in handling various names. However, BM25

ignores the hierarchical information, which leads to the inappropriate granularity of

aligned terms (e.g., the term “epidemic typhus” is too broad for the query entity

“typhus, epidemic Louse-Borne”).
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3.3 Open-World Taxonomy and Knowledge Graph

Co-Learning

We propose to create open-world TaxoKGs based on existing automatically con-

structed taxonomies and open KGs, to empower KBs towards easy accommodation

of emerging entities and relations. Most existing KBs are constructed under the

closed-world assumption, which often corresponds to a fixed schema and requires

ad-hoc canonicalization to integrate new knowledge. We observe that taxonomies

can serve to provide a loosely defined schema and mitigate the reliance on ad-hoc

canonicalization. To further improve the completeness of TaxoKG, we collect sev-

eral new benchmark datasets towards the development of HakeGCN, an innovative

hierarchy-aware graph-friendly model for TaxoKG completion.

The knowledge stored in KBs can be categorized into two types:

1. The taxonomic knowledge that contains hierarchical IsA relations between entities

and abstract concepts, which are stored in taxonomies (e.g., “(Cat, IsA, Mammal)”

in Fig. 3.4a);

2. The non-taxonomic knowledge that contains graph-structured interactions be-

tween entities and attributes of entities, which are stored in knowledge graphs (KGs)

(e.g., “(Cat, HasProperty, Fluffy)” in Fig. 3.4a).

Taxonomies are useful tools to organize and index concepts of entities so that users

can efficiently find the information of interest [74, 55]. On the other hand, KGs store

human understanding of entities’ properties, facts, or behaviors in a structured way,

which are essential for knowledge representation and reasoning [22]. Extensive efforts

have been made to construct KBs [8, 76] that include both taxonomies and KGs.

However, most existing KBs are in closed domains, and the creation process highly

relies on pre-defined schema [66] and exhaustive entity/relation canonicalization [92].

Although with guaranteed precision, closed-world KBs are limited in coverage and
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freshness. For example, if a KB is defined with a curated evolutionary biology schema

that focuses on taxon and related characteristics of organisms, it is hard to incorporate

knowledge triplets such as “(Cat, KeptAs, Pet) and (German Shepherd, TrainedAs,

Detection Dog)”. On the other hand, when a new triplet “(Kitty, KeptAs, Pet)” is

introduced, although as humans we know kitty is a synonym of cat, the closed-world

KB cannot easily incorporate the new knowledge unless the canonicalization tool can

identify Kitty as Cat. Therefore, closed-world KB is most suitable for fixed or slowly

evolving knowledge-enhanced applications.
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Figure 3.4: Toy examples of existing KBs and TaxoKG.

3.3.1 Problem Definition

The TaxoKG completion task is a variant of the general open-world KB completion:

Definition 3.3.1 (Open-world KB Completion). Given the incomplete KB B =

(V ,R, E) where V , R and E are entity set, relation set and triplet set, open-world

KB completion aims at inferring the missing triplets {(s, r, o)|(s, r, o) /∈ E , s ∈ Vs, r ∈

Rs, o ∈ Vs}, where Vs and Rs are entity superset and relation superset, respectively.

More specifically, TaxoKG B contains the taxonomy T and the knowledge graph G.

An AutoTAXO T = (Ve,Vc, ET ) is a collection of entity-concept pairs, where Ve and
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Vc are entity and concept sets, and ET = {(e, c)} ⊆ Ve × Vc is the set of taxonomic

edges, all of which carry the uniform IsA relation. An OpenKG G = (Ve,RG, EG) is

a collection of subject-relation-object triplets, where Ve is the entity set shared with

T , RG is the relation set that contains all other relations except for the taxonomic

ones, and EG = {(s, r, o)} ⊆ Ve × RG × Ve is the edge set connecting entities with

associated relations. Hence, there exist two sub-tasks for TaxoKG completion: (1)

the AutoTAXO concept prediction task and (2) the OpenKG relation prediction task.

The former is to assign a set of concepts Ce = {c1, c2, . . . , cm} for each entity e ∈ Ve,

whereas the latter aims to predict missing facts in the form of qs = (?, rk, oj) or

qo = (si, rk, ?). It is worth noting that e, s, o ∈ Vs
e , c ∈ Vs

c , and r ∈ RG
s, which means

we need to handle unseen entities, concepts, and relations.

3.3.2 TaxoKG-Bench: A Novel Benchmark with Six Datasets

for TaxoKG

To the best of our knowledge, our work is the first to study the open-world taxonomy

and knowledge graph co-learning problem. Hence, we create and release TaxoKG-

Bench with six datasets of large-scaleTaxoKG to the community for future studies3.

Creation Process

The goal of building TaxoKG-Bench is to provide a benchmark to evaluate models

on TaxoKG-based tasks such as its completion and applications. TaxoKG comple-

tion involves the ability to predict new-emerging concepts and novel facts for unseen

entities. TaxoKG-Bench integrates the following data sources:

• Three AutoTAXOs: MS Concept Graph (MSCG) [93], SemEval-2018 Task 9

2A:Medical (SEMedical) and 2B:Music (SEMusic) [13];

• Two OpenKGs: ReVerb [24] and OPIEC [28].

3TaxoKG-Bench: https://figshare.com/articles/dataset/Taxo-KG-Bench/16415727

https://figshare.com/articles/dataset/Taxo-KG-Bench/16415727
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Statistics of TaxoKG-Bench

MSCG × ReVerb andMSCG × OPIEC are two large-scale TaxoKGs containing bil-

lions knowledge triplets of before filtering. Therefore, we set high thresholds for them.

In particular, concepts with at least 20 grounded entities are kept in both MSCG ×

ReVerb and MSCG × OPIEC datasets, while entities with frequency greater than

or equal to 40, 25 are kept in MSCG × ReVerb and MSCG × OPIEC, respectively.

For relation, frequencies greater than or equal to 35, 3 are kept. Nevertheless, the

remaining knowledge triplets are still in million scales, which makes the evaluation

on these two Taxo-KGs very slow. We then conduct further down-samplings to build

lightweight yet diverse testbeds. Similarly, we set the concept threshold, entity thresh-

old, and relation threshold for SEMedical aligned and SEMusic aligned Taxo-KGs as

{3, 2, 2} and {3, 4, 3}, respectively.

Table 3.5: Statistics of the six datasets in TaxoKG-Bench.

Dataset # entity # concept # pair # mention # predicate # triplet
MSCG × ReVerb 5.6/1.0/3.6(K) 1.8/0.5/1.4(K) 6.4/1.2/4.0(K) 12.8/3.8/7.0(K) 10.3/2.2/4.8(K) 59.7/3.7/11.2(K)

SEMedical × ReVerb 256/48/163 261/131/219 256/48/163 7.3/1.3/2.9(K) 6.1/0.9/2.3(K) 21.3/1.3/4.0(K)
SEMusic × ReVerb 412/76/262 335/229/283 412/76/262 7.5/2.1/4.1(K) 8.9/1.7/3.7(K) 41.2/2.6/7.7(K)
MSCG × OPIEC 6.3/1.1/4.0(K) 1.8/0.6/1.4(K) 7.6/1.4/4.8(K) 5.5/1.8/3.2(K) 3.2/0.4/0.9(K) 51.2/3.2/9.6(K)

SEMedical × OPIEC 238/44/151 256/136/209 238/44/151 1432/255/564 508/75/199 2239/176/499
SEMusic × OPIEC 443/81/282 363/256/305 443/82/282 3.6/1.2/2.3(K) 1.4/0.3/0.6(K) 15.9/1.5/3.9(K)

After the downsampling process mentioned above, we then split the six TaxoKGs

into training, validation, and testing sets for setting up a reproducible benchmark. On

the AutoTAXOs side, we split the entity-concept pairs by randomly assigning 55%,

5%, and 35% entities into training, validation, and testing sets. On the OpenKG

side, we split subject-relation-object triplets by randomly assigning 80%, 5%, and

15% triplets into training, validation, and testing sets. In other words, each split set

is the union of the assigned ontology-relation set and instance-relation set.

For more details about TaxoKG-Bench, we encourage interested readers to refer

to our paper [49].
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3.3.3 HakeGCN: A Novel Method for Effective TaxoKG Com-

pletion

Polar
GCN

Taxonomy-based

TAXOKG encoder decoder

Neighbors Sampling

Phase-
Bounded
Scorer

Negative
Sampling
Loss

Figure 3.5: HakeGCN model architecture.

To tackle the TaxoKG completion task, our key insight is to leverage the mu-

tual enhancement between taxonomy and KG. Hence, we propose a novel model with

the learn-to-conceptualize and learn-to-generalize abilities via combining Hierarchy-

Aware Knowledge base Embedding and Graph Convolutional neural Networks,

namely HakeGCN. As Fig. 3.5 shows, it can be regarded as an encoder-decoder

model. HakeGCN includes a series of essential technical designs for TaxoKG com-

pletion: (1) The polar coordinates-based GCN encoder which joins the power of GCNs

in modeling multi-relations in KGs and polar coordinates in modeling hierarchical re-

lations. (2) The taxonomy-based sampling strategy to improve the GCN encoder in

learning from less-noisy neighbors. (3) The GCN-oriented phased bounded decoder

that modify the value boundary of the original phase coordinate score function in

HAKE [104], making it easier for the decoder to differentiate entities at the same

taxonomy level.

Handling Unseen Entities, Concepts and Relations

As §3.3.2 states, there are numerous unseen entities, concepts, and relations in the

TaxoKG completion task. Unfortunately, most existing KB completion models [9,

104, 71] are developed under the closed-world assumption, therefore their solution to
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embed entities/concepts/relations is to treat them as phrases and assign a look-up

embedding table for phrases seen in the training set. Consequently, these models

cannot handle new emerging phrases in the open-world setting. In HakeGCN, we

opt to create entity, concept, and relation representations from the tokens of the

surface mentions [10]. The entity and concept representations are then fed into the

GCN encoder as initial embeddings of vertices h0
v, and relation representations as

initial embeddings of edges h0
r. Therefore, for any vertex or edge h that is in the

form of a sequence of tokens {t1, t2, . . . , tL}, the representation is calculated by

h = f(h) = fphr(ftok(t1), ftok(t2), . . . , ftok(tL)), (3.1)

where the lowercase letter h denotes vertex or edge phrase, the boldface lowercase

letter h denotes the phrase embedding of vertex or edge, ftok : VTok → Rd denotes

the token embedding look-up mapping function, and fphr : RL×d → Rd
′
denotes the

phrase composition function. The choice of composition functions is flexible, which

includes average, sum, max, RNN and even Transformer. In HakeGCN, we choose

average for the sake of simplicity. The token embedding look-up table is shared among

vertices and edges.

After taking the average of token embeddings, we apply different single-layer per-

ceptrons on hv,hr to obtain the vertex and edge embeddings:

h0
v = PReLU(Wvhv + bv) and h0

r = PReLU(Wrhr + br). (3.2)

Here, we use v to represent any entity e ∈ V and concept c ∈ V that can be viewed

as the vertex of knowledge base B = (V ,R, E). Similarly, we use r to represent the

IsA relation RIsA ∈ R of AutoTaxo and any relation r ∈ R of OpenKG that can be

viewed as the edge of B. For the non-linear activation, we opt for PReLU [36]. The

superscript 0 denotes that we use them as the input of the GCN encoder.
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GCN Encoder with Polar Convolution and Taxo-based Neighbor Sampling

Our novel encoder is a generalization of inductive GCN encoders in polar coordinates

that benefits from the expressiveness of both graph neural networks and hierarchy-

aware polar embeddings. First, since the input vertex and edge embeddings are

Cartesian coordinate embeddings, we derive the relational neighbor aggregation and

embedding updating in the Cartesian system. Next, we derive a mapping from Carte-

sian coordinates to polar coordinates. We finally use the mapped polar embeddings

of vertices and edges as the input of the decoder.

Updating Embeddings in Cartesian Coordinate. Since most existing KG em-

bedding methods consider the input features or initial embeddings of entities and

relations in the Cartesian coordinate system [88], we first adopt the widely-studied

relational-GCNs in the Cartesian coordinate system. The choice of the GCN encoder

is flexible, as long as it takes both vertex and edge representations into account. We

propose our own GCN encoder, which is a generalized form of existing relation-GCNs:

mk+1
v =Agg({W k

dir(r) ϕ(h
k
u,h

k
r),∀(u, r) ∈ N (v)}), (3.3)

hk+1
v =PReLU(W k

v [h
k
v ∥m

k+1
v ] + bkv). (3.4)

The message mk+1
v on vertex v is collected from the neighbors N (v). The com-

position function ϕ(hu,hr) can be either hu − hr, hu ∗ hr or hu ⋆ hr [60]. The

aggregation operator Agg(·) can be chosen from average, sum, max or other func-

tions. In practice, we select ϕ(hu,hr) and Agg(·) through hyperparameter tuning.

Moreover, the relation-specific learnable parameter Wdir(r) [82] in Eq. (3.3) is

Wdir(r) =

 Wo, (u, r, v) ∈ E ,

WI , (u, r, v) ∈ Einv,
(3.5)
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where Einv denotes invert edges introduced to B for better vertex and edge repre-

sentations. In Eq. (3.4), [hk
v ∥ mk+1

v ] denotes concatenation of the node and the

message representations. Our novel design is that we do not introduce self-loops dur-

ing message aggregation, but concatenate the self node embeddings with aggregated

neighborhood embedding during node representation updating. Moreover, the edge

updating rule is:

hk+1
r =PReLU(W k

r h
k
r + bkr). (3.6)

Eq. (3.6) is only used to update edges in the training graph during the encoding phase,

the representation of relation r for predicting knowledge triplet (s, r, o) is calculated

through another similar transformation in the decoder.

Mapping from Cartesian to Polar Representations. The polar coordinate-

based embedding have shown promising results in closed-world KB completion [79,

104], as it utilizes the modulus dimension information to reflect depth of the taxon-

omy hierarchy and the phase dimension to represent the entities’ surrounding non-

taxonomic relations. The neighborhood aggregation and updating operations in the

HakeGCN encoder are defined in the Cartesian coordinate system, while it is ideal

for the decoder to consider both hierarchical and other relations in TaxoKG in the

polar coordinate system [104]. To bridge the gap between the Cartesian coordinate

embeddings from HakeGCN encoder and the polar coordinate embeddings used by

decoder, we conduct the following representation mapping:

ρ =
√

x2 + y2 and θ = atan2(y, x), (3.7)

where x, y ∈ R, ρ ∈ R+, and θ ∈ [−π,+π]. The atan2 function is a variation of the

arctangent function. During the polar convolution process above, vertex and edge
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embeddings in Cartesian coordinate can be denoted as h = [x ∥ y]. Assuming h’s

dimension is 2d, then h stores d pairs of Cartesian coordinates. Therefore, using

Eq. (3.7), h can be mapped into h = [ρ ∥ θ] containing d pairs of polar coordinates.

Inductive GCN for open-world TaxoKG. Since the TaxoKG completion task

is under the open-world setting, the GCN encoder needs to generalize to unseen

vertices and edges. Therefore, we construct the polar encoder as an inductive GCN

to efficiently generate vertex and edge embeddings for previously unseen data [33].

For the training set and testing set, two different graphs are built where the training

graph contains all seen entities, concepts, and relations, while the testing graph is

the union of the training graph and unseen entities, concepts (introduced as new

disconnected vertices) from testing sets. For relation representations, as the relations

may not show during training, we use the relation transformation perceptron defined

in Eq. (3.2) to obtain them.

Taxonomy-based Neighborhood Sampling. We propose a taxonomy-based neigh-

bor sampling strategy that intentionally keeps useful neighbors and discards noisy

ones, which is an advancement of existing uniform neighbor sampling [71]. The in-

tuition is to allow the GCN encoder to see more neighbors close on the taxonomy,

which contains less noise. Although the neighborhood information is helpful for KB

completion tasks, many existing GCN-based models keep all neighbors during train-

ing which introduces noisy and even hazardous information [100, 82]. For instance,

presented “platypus is a mammal but lays eggs”, GCN-based models may induct that

laying eggs is a positive factor to judge an animal belongs to the mammal category.

To relieve the noisy, RGCN [71] proposes to apply uniform random edge dropout

on its encoder, which may discard useful neighborhood information. Therefore, we

propose a taxonomy-based neighbor sampling strategy that intentionally keeps useful

neighbors and discards noisy ones. Taxonomy-based sampling assigns a higher prob-

ability for edges between the entity of interest and the neighbors connected by both
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entity-entity and entity-concept edges. The intuition is to allow the GCN to see more

neighbors on the taxonomy, which contains less noise. The value of higher chance is

chosen through hyper-parameter tuning

GCN-Oriented Phase Bounded Decoder

After getting the representations from the GCN-based encoder, the decoder scores

“(subject, relation, object)” triplets through a function f(s, r, o) : Rd×Rd′ ×Rd → R.

We adopt the polar coordinate score function [104] with a GCN-oriented boundary:

f(s, r, o) = −d(s, r, o) = −λmdm(s, r, o)− λpdp(s, r, o), (3.8)

where (s, r, o) denotes both entity-concept pairs (with the associated relation of “IsA”)

and entity-relation-entity triplets in TaxoKG, and d(s, r, o) denotes the distance

function. In particular, λm, λp ∈ R are two learnable parameters to balance the mod-

ulus distance dm(s, r, o) and the phase distance dp(s, r, o). We also propose a GCN-

oriented boundary for dp for effective optimization. Similar to HAKE [104], the modu-

lus and phase distance functions in Eq. (3.8) f(s, r, o) = −λmdm(s, r, o)−λpdp(s, r, o),

where (s, r, o) denotes both entity-concept pairs (with the associated relation of “IsA”)

and entity-relation-entity triplets in TaxoKG, and d(s, r, o) denotes the distance

function. In particular, λm, λp ∈ R are two learnable parameters to balance the mod-

ulus distance dm(s, r, o) and the phase distance dp(s, r, o). The modulus and phase

distance functions are defined by the following equations:

dm(s, r, o) = ∥hs,m ◦ hr,m − ho,m∥2 , (3.9)

dp(s, r, o) = ∥sin(hs,p + hr,p − ho,p)∥1 , (3.10)

where hs,ho denote the subject, object embeddings obtained from the GCN encoder
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production hu in Eq. (3.4), and hr denotes the relation embedding obtained from a

separate transformation in decoder using a similar process as in Eq. (3.6). For the

polar coordinate, h∗,m,h∗,p denote the embeddings in the modulus and phase part.

In Eq. (3.9), the operator ◦ : Rd ×Rd → Rd denotes the Hadamard product between

two vectors. Let ∆θ = hs,p + hr,p − ho,p. In the original phase distance function of

HAKE, there is a denominator 2 for ∆θ, which leads Eq. (3.10) to
∥∥sin(∆θ

2
)
∥∥. This

is due to h∗,p ∈ [0, 2π)d, and thus (hs,p + hr,p − ho,p) ∈ [0, 4π)d. In our own version

of the phase part distance function, we remove the denominator. Therefore, the h∗,p

produced by atan2 is bounded in [−π
2
,+π

2
]. This modification is essential because

the phase boundary amplifies triplets’ phase distances, thus making it easier for the

decoder to distinguish entities at the same level of the taxonomy.

Loss Function. We adopt the widely used negative sampling loss function [9, 97,

60, 104] with self-adversarial training [79]:

L = − log σ(γ − d(s, r, o))−
n∑

i=1

p(s′i, r, o
′
i) log σ(d(s

′
i, r, o

′
i)− γ), (3.11)

where σ is the sigmoid function, γ is a fixed margin that can be chosen by hyper-

parameter tuning, and (s′i, r, o
′
i) represents the ith sampled negative triplet of (s, r, o).

The term p(s′i, r, o
′
i) is the sampling probability of the particular negative triplet,

which can be calculated by:

p(s′i, r, o
′
i) =

exp(αfsamp(s
′
i, r, o

′
i))∑

j exp(αfsamp(s′j, r, o
′
j))

, (3.12)

where α is another hyper-parameter that represents the temperature of negative sam-

pling.
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3.3.4 Experiments

In this section, we evaluate our proposed HakeGCN through performance compar-

isons, in-depth analysis, and ablation studies.

Experiment Settings

Evaluation Protocols. For the AutoTAXO concept prediction subtask of TaxoKG

completion, we choose Mean Average Precision (MAP) and Precision at N (P@N) as

evaluation metrics [13]. MAP is based on top-15 predicted concepts. For the other

OpenKG relation prediction subtask, we follow previous KB completion studies [9] to

rank candidate entities under the “filtered” protocol, and we choose Mean Reciprocal

Rank (MRR) and Hits at N (H@N) as metrics.

Compared Methods. We adopt the following representative methods as baselines:

• Translation-based: TransE [9], HAKE [104];

• Semantic matching-based: DistMult [97], HolE [60];

• GCN-based: R-GCN [71], CompGCN [82];

• Mutual enhancement-based: LtCaG.

We integrate the same techniques introduced in §3.3.3 to mitigate unseen entities,

concepts, and relations for baselines. The detailed introduction of baseline methods

and choices of hyperparameters are described in the Appendix Section of paper [49].

Performance Comparisons

Tables 3.6a, 3.6b and 3.6c show the performance of compared models on TaxoKG-

Bench. Our näıve LtCaG model, which requires no training, surprisingly achieves

competitive performance to all complicated models except for HAKE in AutoTAXO

concept prediction metrics (MAP, P@10,30,50) on all six datasets. Our HakeGCN

consistently outperforms SOTA models on all datasets on both tasks, which demon-
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Table 3.6: TaxoKG completion results in different domains. For abbreviations, C-*
indicates metrics for concept prediction, while R-* indicates metrics for relation pre-
diction. Underlined numbers denote the second runners, while bold numbers denote
the winner.

(a) General domain.

MSCG × ReVerb MSCG × OPIEC
C-MAP C-P@1, 3, 10 R-MRR R-H@10, 30, 50 C-MAP C-P@1, 3, 10 R-MRR R-H@10, 30, 50

TransE .007 .001, .003, .002 7e-4 8e-4, .002, .004 .006 .004, .002, .001 .002 .001, .004, .008
HAKE .034 .013, .013, .010 .029 .065, .120, .153 .031 .014, .011, .010 .539 .787, .821, .837
DistMult .004 .004, .001, 5e-4 .001 3e-4, .004, .006 .001 9e-4, 3e-4, 3e-4 .080 .131, .159, .176
HolE .007 .003, .003, .002 7e-4 7e-4, .002, .004 .006 .004, .002, .001 .002 .001, .004, .008

R-GCN .003 5e-4, .001, 8e-4 .001 8e-4, .003, .007 .044 .044, .017, .006 .017 .031, .121, .179
CompGCN .014 .008, .005, .004 4e-4 2e-4, 6e-4, 8e-4 .004 .003, .002, .001 .011 .025, .051, .067
LtCaG .005 .003, .002, .002 .001 .002, .003, .004 .003 .002, .001, .001 .002 .002, .006, .009

HakeGCN .069 .033, .028, .017 .031 .058, .113, .150 .070 .052, .027, .014 .675 .756, .805, .832

(b) Medical domain.

SEMedical × ReVerb SEMedical × OPIEC
C-MAP C-P@1, 3, 10 R-MRR R-H@10, 30, 50 C-MAP C-P@1, 3, 10 O-MRR R-H@10, 30, 50

TransE .036 .104, .083, .050 .002 .002, .009, .012 .025 .045, .061, .030 .005 .007, .019, .030
HAKE .203 .307, .286, .216 .170 .343, .430, .459 .262 .371, .309, .256 .352 .450, .509, .544
DistMult .065 .188, .069, .033 .023 .070, .135, .187 .022 .159, .068, .032 .032 .061, .158, .218
HolE .029 .063, .063, .044 .002 .002, .005, .009 .024 .091, .030, .027 .006 .007, .018, .032

R-GCN .024 .018, .041, .052 .001 .001, .003, .004 .036 .159, .062, .037 .004 .003, .016, .026
CompGCN .119 .191, .184, .150 .003 .005, .012, .017 .041 .060, .044, .032 .009 .013, .023, .034
LtCaG .186 .245, .247, .172 .004 .005, .006, .008 .126 .166, .157, .122 .013 .021, .041, .051

HakeGCN .233 .331, .278, .204 .275 .424, .545, .603 .271 .377, .366, .251 .412 .508, .600, .652

(c) Music domain.

SEMusic × ReVerb SEMusic × OPIEC
C-MAP C-P@1, 3, 10 R-MRR R-H@10, 30, 50 C-MAP C-P@1, 3, 10 R-MRR R-H@10, 30, 50

TransE .012 .053, .035, .028 .002 .002, .006, .009 .041 .123, .082, .064 .002 .003, .008, .013
HAKE .201 .275, .270, .210 .131 .258, .344, .382 .284 .379, .363, .294 .321 .497, .612, .669
DistMult .035 .118, .092, .066 .019 .039, .123, .188 .047 .086, .078, .081 .017 .044, .092, .124
HolE .038 .118, .092, .066 .002 .002, .004, .007 .028 .062, .066, .043 .003 .003, .008, .015

R-GCN .005 .011, .010, .013 8e-4 7e-4, .002, .003 .014 .021, .039, .034 .002 .001, .005, .008
CompGCN .063 .092, .111, .095 .009 .019, .034, .042 .082 .199, .161, .112 .005 .012, .023, .036
LtCaG 182 .286, .251, .172 .003 .004, .006, .009 .287 .426, .378, .251 .025 .040, .055, .063

HakeGCN .238 .301, .307, .221 .178 .286, .412, .481 .328 .426, .417, .310 .421 .572, .694, .746

strates the substantial advantages of integrating taxonomy and KG to mutually com-

plete each other. There is an obvious pattern when entity and relation numbers grow

from hundreds in SEMedical × OPIEC to ten-thousands in MSCG × ReVerb, where

all baseline performances drop significantly due to the incapability of unseen enti-

ties and relations. HAKE is the second-best model that beats HakeGCN on some

metrics in medical and general domain datasets.
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Figure 3.6: In-depth analysis for different mod-
els.
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Figure 3.7: In-depth analysis for neighbors im-
pact.

In-depth Analysis

We conduct in-depth analysis on knowledge triplets generated by two strongest base-

line models CompGCN, HAKE, and HakeGCN, using the following manual (Valid-

ity) and automated (Freshness, Diversity) evaluating metrics:

• Validity (Val.): whether generated triplets are valid to humans4.

• Freshness (Fre.): the percentage of generated knowledge triplets that are novel5.

• Diversity (Div.): Pielou’s evenness index6 which is popular in environment science

to represent how equal the phrases in overall produced knowledge triplets is.

We collect results and compute the three metrics on the AutoTAXO concept predic-

tion task by the top-5 predicted concepts, given 100 entities from MSCG × ReVerb

and SEMusic × ReVerb. Similarly, we collect results on OpenKG link computed

from the top-5 predicted subject or object entities, given 100 triplet queries. In

Figure 3.6, the left three grouped bars (C-Val./Fresh./Div.) represent evaluation

results of concepts assigned to entities of interest, and the right three stacked bars

(R-Val./Fresh./Div.) represent results of generated open knowledge triplets. We ob-

serve that HakeGCN produces the highest quality knowledge triplets. In particular,

4The validity scores are annotated by two graduate students, Zishan Gu and Jiaying Lu, and
three undergraduate students, Jacob Choi, Leisheng Yu, and Dheep Dalamal.

5A triplet not present in original TaxoKG is considered as fresh. Align with the open-world
assumption, we treat each unique mention as a unique entity(concept, relation).

6Pielou’s eveness index: https://en.wikipedia.org/wiki/Species_evenness.

https://en.wikipedia.org/wiki/Species_evenness
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HakeGCN outperforms the two baseline models in both taxonomy and KG validity,

with competitive freshness and diversity.

Ablation Studies

Table 3.7: Ablation study results on HakeGCN technical designs.

SEMedical × ReVerb SEMdical × OPIEC

C-MAP R-MRR C-MAP R-MRR

HakeGCN .233 .275 .271 .412
w/o. taxo graph sampling .154 .268 .151 .376
w/o. polar conv .155 .254 .196 .331
w/o. phase bounded scorer .152 .239 .216 .311

Do our technical designs contribute to performance boost? To better under-

stand our proposed techniques, we closely study the key components of HakeGCN.

The three components are: taxonomy-based neighbor sampling, polar GCN, and

GCN-oriented phase bounded decoder. Table 3.7 presents the results on two med-

ical TaxoKG’s with the major metrics for both the AutoTAXO concept predic-

tion (C-MAP) and the OpenKG relation prediction (R-MRR) tasks. For row “w/o.

taxo graph sampling”, we use the uniform neighbor sampling; for “w/o. polar conv”,

we use the Cartesian coordinate-based graph convolution; for “w/o. phase bounded scorer”,

we use the existing unbounded score function from HAKE. Table 3.7 supports the

effectiveness of proposed techniques, since all three components improve the perfor-

mance of HakeGCN.

Table 3.8: TaxoKG completion performance when presented with the separated data
(SEMedical only or OPIEC only) v.s. the jointed data (SEMedical × OPIEC).

(a) Concept prediction results.

Model Data C-MAP C-P@10, 30, 50
HAKE AutoTaxo .186 .344, .355, .177
HAKE TaxoKG .262 .371, .309, .256
CompGCN AutoTaxo .075 .284, .117, .109
CompGCN TaxoKG .041 .060, .044, .032
HakeGCN AutoTaxo .105 .093, .093, .123
HakeGCN TaxoKG .271 .377, .366, .251

(b) Relation prediction results.

Model Data R-MRR R-H@10, 30, 50
HAKE OKG .350 .454, .517, .545
HAKE TaxoKG .352 .450, .509, .544
CompGCN OKG .006 .012, .030, .049
CompGCN TaxoKG .009 .013, .023, .034
HakeGCN OKG .375 .478, .555, .607
HakeGCN TaxoKG .412 .508, .600, .652
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Can taxonomy and KG mutually enhance each other? To support the util-

ity of TaxoKG integration, we further conduct ablation study on the taxonomy

completion (concept prediction task) and KG completion (relation prediction task)

performance when models are presented with only separated data instead of the

jointed data of TaxoKG. The results clearly show the significant benefit of jointly

modeling existing TAXOs and KGs. Specifically, our HakeGCN is the most effective

one in leveraging such joined data of TaxoKGs (consistently achieving the most gains

running on TaxoKGs over KGs and TAXOs only).

How do taxonomic and non-taxonomic neighbors impact the experiments?

We further analyze the impact of neighbor information from AutoTAXOs and OpenKGs.

In Figure 3.7, we plot the in-depth evaluation results of HakeGCN when using

neighbors on AutoTAXOs alone (NTaxo), OpenKGs alone (NKG), and both Auto-

TAXOs and OpenKGs (NTaxoKG). For the GCN encoder, NTaxo is implemented by

removing all taxonomic relation edges in the input graph, and NKG by removing all

non-taxonomic relation edges. The metrics and notations are the same as Figure 3.6.

As can be seen from Figure 3.7, using only one type of neighbors does not signifi-

cantly impact the freshness and diversity. In contrast, using both types of neighbors

from taxonomy and KG can produce more valid knowledge triplets (e.g. improving

from 0.02/0.07 to 0.09 in MSCG × OPIEC and from 0.37/0.53 to 0.58 in SEMedical

× ReVerb). Such results clearly demonstrate the substantial mutual enhancement

between the taxonomy and KG towards the completion of TaxoKG.
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Chapter 4

Applications of Structured

Knowledge

4.1 Background

So far, I have covered my research endeavors in learning to construct two specific types

of structured knowledge: concept maps (Ch. 2) and taxonomic knowledge graphs

(Ch. 3). In this chapter, I further introduce structured knowledge on diverse novel

applications. I consider the term “structured knowledge” in the broadest way. There-

fore, it includes but is not limited to:

• semantic graph, abstract meaning graph, syntactic parsing graph;

• concept map;

• taxonomy, ontology, hierarchy;

• knowledge graph, knowledge base, (structured) database;

• social network, community network;

• brain network, biological network.
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One of my first-author works are included. It is “MuG: A Multimodal Classification

Benchmark on Game Data with Tabular, Textual, and Visual Fields.” [51] (Findings

of EMNLP’23), where we propose a multimodal sample-similarity-based graph ap-

proach for multimodal classification task. Moreover, I have collaborated with other

researchers on leveraging concept maps to help COVID-19 document retrival [18],

and a survey on knowledge graphs for healthcare applications [19].

4.2 MuGNet: A Sample-Similarity-Based Graph

Neural Network for Multimodal Classification

We propose MuGNet [51], a sample-similarity-based graph neural network (GNN)

for multimodal classification. MuGNet dynamically constructs community graphs

based on sample similarity and effectively combines graphical representation learning

with multimodal fusion. In our novel multimodal classification benchmark MuG,

MuGNet achieve computability performance with state-of-the-art transformer-based

multimodal classifiers with more efficient throughput.

4.2.1 Problem Definition

Given a finite set of categories Y and labeled training pairs (xi, yi) ∈ XL × Y , mul-

timodal classification aims at finding a classifier f̂ : XL → Y such that ŷj = f̂(xj)

is a good approxmiation of the unknown label yj for unseen sample xj ∈ XU . It is

worth noting that the each multimodal sample x ∈ XL ∪XU consists of tabular fields

t, textual fields s, and image fields i (i.e., x = {t, s, i}).
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Figure 4.1: Model architecture of MuGNet.

4.2.2 MuGNet

MuGNet is our own multimodal classifier which is further proposed as a competitor

to existing models. We propose three key components to make MuGNet a powerful

graph neural network for the multimodal classification task. They are adaptive mul-

tiplex graph construction module, GAT encoder module, and attention-based fusion

module, as shown in Figure 4.1. Firstly, adaptive multiplex graphs are constructed to

reflect sample-wise similarity within each modality. Then, separate GAT encoders [83]

are employed to obtain dense embeddings of samples, by propagating information

between neighbors. Finally, tabular, text and image embeddings are combined by

inter-modality attention to obtaining the fused embedding for multimodal classifica-

tion. GNNs [99, 32] show great capability to leverage the graph structure, propagate

information, integrate features, and capture higher-order relationships. This leads

to accurate and robust classification performance across various domains. In this

work, we propose to regard the whole samples as a correlation network [89, 29] that

represents sample-to-sample similarities, while existing multimodal classifiers rarely

consider this before.

Adaptive multiplex graph construction module. Following the notation de-

fined in Ch.4.2.1, the adaptive multiplex graph construction module first utilizes
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pre-processing pipelines (e.g., monotonically increasing integer mapping for cate-

gorical inputs, no alteration for numerical inputs) or pre-trained feature extractors

(e.g., CLIP [65] for text and image inputs) to obtain dense multimodal features

F = f(XL) ∈ RN×(dt+ds+di), where F = {F t,F s,F i} denotes feature matrices for

tabular, text, and image modalities. The adaptive multiplex graph construction mod-

ule then derives multiplex sample-wise similarity graph G = {Gt,Gs,Gi} = {(At,F t),

(As,F s), (Ai,F i)}, where each modality-specific adjacency matrixAm ∈ RN×N ,∀m ∈

{t, s, i} is calculated based on the multimodal features

Am
i,j = sim(Fm

i ,Fm
j ). (4.1)

It is worth noting that the sample-wise similarity function sim is adaptive, and is cho-

sen from cosine similarity, radial basis function (RBF) kernel, or k-nearest neighbor.

For these modality-specific graphs, we use separate hyperparameters (e.g., threshold

for score-based functions, or the value of k for k-nearest neighbor) to control their

sparsity properties. The similarity function and its associated hyperparameters are

determined through hyperparameter tuning [42] on the held-out validation set, so

that the multiplex graph construction is adaptive to any downstream task.

GAT encoder module. We use the powerful multi-head graph attention neural

network (GAT) [83] as the encoder to obtain structure-aware representations of sam-

ples. Separate GATs are employed for each view of the multiple graph, so that

Hm = GAT (Am,Fm; θ), where Hm ∈ RN×dmh , and θ represents the learnable pa-

rameters of the GAT encoder. We want to state there is no information leakage

in MuGNet, because we follow the inductive learning setting of GNNs [34] where

the GAT encoder is trained on the multiplex graph G derived from labeled training

samples XL, and new unseen multiplex graph is derived from all samples XL ∪ XU

at the inference stage. Furthermore, we adopt a graph sampling technique (Graph-
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SAINT [102]) during the GAT training process, to improve the efficiency and gener-

alization. The graph sampling technique essentially samples a subgraph by random

walks for each training step, thus the “neighbor explosion” issue is alleviated with a

constrained number of neighbors per node and the variance of GAT is reduced with

fewer outliers or noise in the sampled graph.

Attention-based fusion module. After we obtain the structure-aware embeddings

of samples from the tabular, text, and image modalities Ht,Hs,Hi, the attention-

based fusion module is responsible for fusing them into one single embedding via

the attention-based fusion module. The attention weight αm
j ∈ R for j-th sample of

modality m is computed as:

αm
j =

exp(emj )∑
m′∈{t,s,j} exp(e

m′
j )

, (4.2)

emj = wa2 · tanh(Wm
a1
hm

j ), (4.3)

where emj ∈ R denotes the unnormalized attention weight, wa2 ∈ Rdma ×1,W a1 ∈

Rdmh ×dma denote learnable parameters, and hm
j ∈ Rdmh denotes the j-th row of Hm

(i.e., embedding of j-th sample of modality m). The fused embedding of j-th sample

is then calculated by:

hj = αt
jh

t
j + αs

jh
s
j + αi

jh
i
i. (4.4)

The fused embedding hj incorporates cross-modalities interactions and provides a

complete context for the downstream tasks. An additional two-layer MLP is trained to

predict the category of j-th sample ŷj = softmax(W cls2 · LeakyReLU(W cls1hj)). We

adopt cross-entropy between prediction ŷ and target y as MuGNet’s loss function.
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4.2.3 Experiments

Datasets

We create and release MuG with eight datasets for multimodal classification with

tabular, text, and image fields to the community for future studies. Raw data and

examples of how to appropriately load the data are provided in https://github.

com/lujiaying/MUG-Bench. MuG is under the ”CC BY-NC-SA 4.0” license1, and is

designated to use for research purposes. For a comprehensive introduction of creation

process and analysis for MuG, we refer interested readers to our EMNLP paper [51].

Dataset Game Pred. Target #Row #Class #Feat (tab/txt/img)

pkm t1 Pokémon Primary Type 719/45/133 18 23 (17/5/1)
pkm t2 Pokémon Secondary Type 719/45/133 19 23 (17/5/1)

hs ac HearthStone All card’s Category 8569/536/1605 14 18 (12/5/1)
hs as HearthStone All card’s Set 8566/533/1607 38 18 (12/5/1)
hs mr HearthStone Minion card’s Race 5421/338/1017 16 13 (7/5/1)
hs ss HearthStone Spell card’s School 2175/170/508 8 11 (5/5/1)

lol sc LoL Skin Category 1000/64/188 7 11 (3/7/1)

csg sq CS:GO Skin Quality 766/49/141 6 7 (5/1/1)

Table 4.1: The statistics of the eight datasets in MuG.

Performance Comparisons

Table 4.2a and 4.2b show the performance of all evaluated models on MuG. As can

be seen, multimodal classifiers (except AutoMM) consistently outperform unimodal

classifiers in both log-loss and accuracy. It demonstrates that the classification tasks

in MuG are multimodal-dependent where each modality only conveys partial infor-

mation about the required outputs. Among the three multimodal classifiers we used,

AutoGluon and MuGNet are the top-2 models with well-matched performances. In

Table 4.2a and 4.2b, AutoGluon achieves the best performance eight times, while

MuGNet also achieves the best performance eight times. More specifically, Auto-

1CC BY-NC-SA 4.0: https://creativecommons.org/licenses/by-nc-sa/4.0/

https://github.com/lujiaying/MUG-Bench
https://github.com/lujiaying/MUG-Bench
https://creativecommons.org/licenses/by-nc-sa/4.0/
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Method pkm t1 pkm t2 hs ac hs as hs mr hs ss lol sc csg sq

Unimodal Classifiers
GBM 1.838 2.038 0.911 2.352 0.913 0.603 0.198 1.107
tabMLP 1.442 1.909 1.172 2.155 1.247 0.672 0.533 0.718
RoBERTa 1.834 2.191 1.999 2.393 1.920 1.254 0.847 0.734
Electra 2.907 2.179 2.118 3.155 2.085 1.263 0.611 0.757
ViT 3.680 2.543 1.527 2.786 1.032 2.056 2.049 0.835
Swin 2.657 2.229 2.018 2.795 2.089 1.397 1.470 0.750

Multimodal Classifiers
AutoGluon 0.973 1.507 0.654 1.793 0.403 0.350 0.159 0.631
AutoMM 1.736 2.029 1.987 2.193 1.836 1.320 0.792 0.674
MuGNet 1.000 1.499 0.922 1.499 0.321 0.442 0.248 0.654

(a) Results in ‘log-loss’ (the less the better).

Method pkm t1 pkm t2 hs ac hs as hs mr hs ss lol sc csg sq

Unimodal Classifiers
GBM 0.489 0.489 0.726 0.421 0.737 0.795 0.963 0.610
tabMLP 0.662 0.481 0.627 0.377 0.617 0.776 0.851 0.681
Roberta 0.662 0.466 0.475 0.366 0.535 0.683 0.883 0.688
Electra 0.120 0.466 0.475 0.168 0.535 0.683 0.878 0.702
ViT 0.308 0.406 0.568 0.236 0.787 0.593 0.436 0.674
Swin 0.346 0.451 0.470 0.248 0.536 0.657 0.431 0.702

Multimodal Classifiers
AutoGluon 0.744 0.617 0.787 0.495 0.879 0.882 0.963 0.766
AutoMM 0.639 0.511 0.475 0.415 0.549 0.671 0.888 0.738
MuGNet 0.774 0.669 0.724 0.572 0.908 0.880 0.968 0.745

(b) Result in ‘accuracy’ (the more the better).

Table 4.2: Overall experimental results with explicit modality performance. The bold
text represents the best performance and the underlined text represents the runner-
up performance.

Gluon is superior in log-loss whereas MuGNet has better accuracy scores. AutoMM

performs the worst among multimodal classifiers, and it sometimes underperforms

unimodal classifiers. Considering that AutoMM trains powerful deep neural net-

works on a small scale of datasets and we have observed the gap between the training

loss and validation loss, it is highly possible that AutoMM is overfitting. While Au-

toGluon and MuGNet also adopt deep neural networks as base models, they are
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Figure 4.2: The critical difference diagrams show the mean ranks of each model for
the test data of the eight datasets. The lower rank (further to the right) represents the
better performance of a model. Groups of models that are not significantly different
(p < 0.05) are connected by thick lines.

more robust since AutoGluon proposes a repeated bagging strategy and MuGNet

utilizes graph sampling techniques to avoid overfitting. Among unimodal classifiers,

tabular models seem to outperform textual and visual models in most cases (six out

of eight datasets). There is a slight performance gain comparing textual models to

visual models because textual models are better on five datasets.

To better understand the overall performance of models across multiple datasets,

we propose using critical difference (CD) diagrams [20]. In a CD diagram, the average

rank of each model and which ranks are statistically significantly different from each

other are shown. Figure 4.2a and 4.2b show the CD diagrams using the Friedman

test with Nemenyi post-hoc test at p < 0.05. In summary, we observe that Au-

toGluon and MuGNet respectively achieve the best rank among all tested models

with respect to log-loss and accuracy, although never by a statistically significant

margin. Moreover, tabular models obtain higher ranks than other unimodal classi-

fiers. The similar observations from Table 4.2 and Figure 4.2 support that effectively

aggregating information across modalities is critical for the multimodal classification

task.
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Efficiency Evaluations
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Figure 4.3: Training duration on all datasets.

10−2 10−1 100 101 102 103
0

0.2

0.4

0.6

0.8

1

GBM

tabMLP
RoBERTa

Electra
ViT

Swin

AutoGluon

AutoMM

MuGNet

Test Duration (seconds)

T
es
t
A
cc
u
ra
cy
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datasets.

Although accuracy (or other metrics such as log-loss in our case) is the central

measurement of a machine learning model, efficiency is also a practical requirement
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in many applications. Trade-off often exists between how accurate the model is and

how long it takes to train and infer the model. Therefore, we record the training

durations and test durations of models to examine their efficiency. In Figure 4.3, we

show the aggregated training duration of evaluated models via a box plot. As can be

seen, tabular models require an order of magnitude less training duration than the

other models, while AutoGluon stands out as requiring significantly longer training

duration. Among tabular models, tabMLP is 4x faster than GBM in terms of the

median training duration. Except for tabular models and AutoGluon, other models

are approximately lightweight to train. It is worth noting that AutoGluon hits the

8-hour training duration constraint on every dataset, thus the variance of its training

durations across datasets is very small.

In Figure 4.4, we show the trade-offs between mean inference time and mean

accuracy of models. Since the accuracy is not commensurable across datasets, we

first normalize all accuracies through a dataset-wise min-max normalization. After

the normalization, the best model in each dataset is scaled to 1 while the worst model

is scaled to 0. Finally, we take the average on the normalized accuracies and the test

durations to draw the scatter plot. When both accuracy and efficiency are objectives

models try to improve, there does not exist a model that achieves the best in both

objectives simultaneously. As an illustration, MuGNet has the highest test accuracy,

but tabMLP has the fastest inference speed. Therefore, we adopt the Pareto-optimal2

concept to identify which models achieve “optimal” trade-offs. Pareto-optimal is

widely used in the decision-making process for multi-objective optimization scenarios.

By definition, a solution is Pareto-optimal if any of the objectives cannot be improved

without degrading at least one of the other objectives. Following this concept, we

observe that tabMLP, GBM, and MuGNet are the models with the best trade-

offs between accuracy and efficiency, as these models reside in the Pareto frontier in

2Pareto-optimal Definition: https://w.wiki/6sLB

https://w.wiki/6sLB
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Figure 4.4. Meanwhile, other models are suboptimal with regard to this trade-off,

since we can always find a solution that has higher accuracy and better efficiency

simultaneously than these models.

4.3 Collaborative Projects on Structured Knowl-

edge for Healthcare Applications

Healthcare data is inherently heterogeneous and multimodal. As a powerful rep-

resentation and reasoning tool, structured knowledge (or graph in general) can be

utilized in empowering healthcare applications. In this direction, we explore the

utility of generated concept maps in COVID-19 document retrieval tasks. I am the

co-author for this ECIR’22 paper [18], focusing on how Graph Neural Networks can

aid in Document Retrieval with a focus on CORD19 and Concept Map Generation.

Our experimental results show that semantic-oriented GNNs achieve better perfor-

mance than structure-oriented GNNs with the help of the unsupervised concept map

generation technique I proposed in Chapter. 2.2. For instance, E-Pool and RW-Pool

(two proposed semantic-oriented GNNs) improved document retrieval from the initial

candidates of BM25 by 11.4% and 12.0% on NDCG@20, respectively. These results

highlight the potential of structured knowledge for textual reasoning tasks such as

classification and retrieval.

On the other hand, we conduct a comprehensive review of healthcare knowledge

graphs. This project has been published as a survey paper [19], titled “A Review

on Knowledge Graphs for Healthcare: Resources, Applications, and Promises”. We

cover the definition, construction, and application of healthcare KGs. As can be seen,

most works from my dissertation focus on the construction perspective. In this paper,

we categorize existing healthcare KG construction into (1) constructing from scratch

and (2) constructing by integration. Regarding the application areas, healthcare
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KGs are promising in the following areas, including (1) basic science research such as

medical chemistry, and bioinformatics; (2) pharmaceutical development such as drug

development, and clinical trial; (3) clinical decision support; (4) public health such as

epidemiology, environmental health, policy & management, and social & behavioral.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this dissertation, I present a series of my first authored works on constructing

structured knowledge and how learned structured knowledge can benefit downstream

tasks. I first present novel methods on concept map constructions (Ch.2) and taxo-

nomic knowledge graph constructions (Ch.3). I then present the utility of structured

knowledge on the multimodal classification task (Ch.4). All these works share a com-

mon spirit of developing supervision-efficient algorithms for structured knowledge

construction, to accommodate real-world scenario challenges. The proposed methods

are mainly unsupervised (Parsing-based concept map generation in Ch. 2.2), weakly-

supervised (GT-D2G in Ch. 2.3), or few-shot-supervised (HiPrompt in Ch. 3.2). I

hope this dissertation can be the starting point for inspiring future research in learn-

ing structured knowledge that includes but is not limited to concept maps, knowledge

bases, social networks, and biological networks.
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5.2 Future Work

Combining the research areas I have explored and recent progress in the artificial

intelligence communities, the following directions can be investigated in the future:

• Mutual Enhancement between Structured Knowledge and Large Lan-

guage Models: this can be further divided into two sub-directions.

– Knowledge-enhanced LLMs: Although LLMs have achieved remarkable

success and generalizability in various applications, they still suffer from

context windows, static knowledge, hallucination, etc. Structured knowl-

edge is a curated data source that explicitly stores high-quality knowledge,

and can be periodically updated to catch ever-evolving world knowledge.

– LLM-enhanced Structured Knowledge: On the other hand, structured

knowledge is hard to construct and requires ad-hoc methods to handle

incompleteness. LLMs offer a variety of supervision-efficient utilities in

many fundamental knowledge-related tasks such named entity recognition,

information extraction, knowledge fusion, knowledge completion, etc.

• Structured Knowledge For Healthcare: The integration of structured

knowledge databases and advanced artificial intelligence models will be pivotal

in creating more efficient, accurate, and personalized healthcare solutions. By

harnessing structured knowledge, we can empower healthcare professionals with

instant access to a vast repository of medical information, facilitating quicker

and more accurate diagnoses and treatment recommendations. Additionally,

the continued development of knowledge graphs and ontologies will enhance

our ability to extract meaningful insights from vast and complex healthcare

datasets, enabling advancements in epidemiology, drug discovery, and patient

management. Furthermore, structured knowledge will play a crucial role in
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the ongoing evolution of telemedicine, as it enables AI-driven decision support

systems that can bridge geographical gaps and provide expert guidance in real-

time.
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