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Abstract

Statistical Methods for Spatial Data in Public Health
By Behzad Kianian

Data in public health often contain a spatial component relevant to understand-
ing underlying relationships of interest. Accounting for different manifestations of
spatial components in statistical analyses is frequently challenged by a dearth of de-
veloped methodology or high computational costs. First, we consider the problem of
estimating treatment effects from observational data with propensity score matching
allowing for the presence of spatial and multi-level confounding. We build on recently
developed distance-adjusted propensity score matching (DAPSm) and propose a two-
stage approach that first matches within clusters (WC), and then uses the DAPSm
approach to match remaining subjects (WC+DAPsm). We demonstrate the benefits
and robustness of our approach through an extensive simulation study. We apply
our method to a population of patients in Georgia who have recently started dialysis,
where both the treatment (informed of transplant options) and outcome (1-year re-
ferral for transplant) may be plausibly affected by individual, facility, and area-level
factors.

Next, we consider the task of using satellite-derived aerosol optical depth (AOD) as
a predictor for particulate matter (PM2.5) concentrations, allowing broader coverage
than the network of air pollution monitors. However, AOD contains large contiguous
areas of missing data due to cloud cover. We propose imputing missing AOD data
using lattice kriging, a large-scale spatial statistical method, and random forest, a
regression tree-based machine learning method, as well as a distance-based ensemble
for combining the two methods. Throughout our application, we construct cross-
validation folds and testing data based on spatially clustered holdouts more closely
mimicking observed data patterns than traditional random holdouts. Our results
show that the proposed distance-based ensemble outperforms individual methods.

For the third topic, we discuss on-going work assessing the equity of COVID-19
testing site access in the Atlanta area. We adapt methods from the environmental
justice literature using empirical cumulative distribution functions to compare demo-
graphic subgroup access to testing sites. We consider different measures of access, and
we conduct Monte Carlo simulations of test site placements under different sampling
schemes to assess factors associated with site placement.
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1

Chapter 1

Propensity score matching for

multi-level and spatial data

1.1 Introduction

In observational studies, estimating treatment effects often is complicated by large

observed and unobserved differences between treated and control groups. Within

the potential outcomes framework, propensity score matching has gained popularity

over the last several decades for its potential to adjust for the observed differences

between treated and control groups to generate more credible estimates of treatment

effects under certain assumptions (Rosenbaum and Rubin, 1983; Stuart, 2010). Va-

lidity of propensity score matching results depends crucially on the assumption of

no unmeasured confounding, such that all pre-treatment variables relevant for both

the outcome and treatment assignment are assumed to be measured and included in

the propensity score estimation procedure. In many settings, however, unobserved

confounders may exist at the local geographic (spatial-) and facility-level.

Disclaimer: A portion of the data reported here have been supplied by the United States Renal
Data System (USRDS). The interpretation and reporting of these data are the responsibility of the
authors and in no way should be seen as an official policy or interpretation of the U.S. government.
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Recent work has extended propensity score matching techniques to the setting of

spatially-indexed or areal data, where unmeasured spatial confounders may impact

the credibility of estimates under usual propensity score matching techniques (Pa-

padogeorgou et al., 2019a; Davis, 2018). Other work has attempted to address the

issue of matching in the presence of multi-level data where there may be unmeasured

confounders at the cluster-level (also referred to as facility-level for the remainder)

(Stuart and Rubin, 2008; Arpino and Mealli, 2011; Arpino and Cannas, 2016; Rickles

and Seltzer, 2014). Recent research has also addressed similar issues in the context

of weighting with propensity scores using inverse probability of treatment weighting

(IPTW) (Davis et al., 2019; Li et al., 2013a). To our knowledge, existing research

has not considered the setting with both spatial and multi-level confounding present

in a matching framework.

Our motivating application examines patients with End Stage Renal Disease

(ESRD) who have recently initiated regular dialysis at a dialysis facility, following

work by Johansen et al. (2012). The patient’s supervising physician at the facility

is required to fill out a medical evidence form (CMS-2728) with important informa-

tion on the patient’s characteristics. Additionally, the supervising physician should

indicate whether the patient was informed of their kidney transplant options or not,

and if not, why not. A substantial proportion of patients are not informed of their

transplant options because they were “not assessed”. We note that this metric is not

validated and there is evidence to suggest that it contains substantial measurement

issues (see Salter et al. (2014) and the Discussion below).

Our interest lies in understanding the impact of being “not assessed” on 1-year

referral for transplant. In estimating the treatment effect in the treated group, several

important issues arise. First, the patients who are being informed and the patients

who are not assessed may be different in substantively important ways: for example,

initial health status may be important both for whether the patient was informed
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soon after diagnosis as well as whether they received a referral for transplant within

a year. Second, dialysis facilities can vary substantially from one another in terms of

1-year patient referral (Patzer et al., 2015) and on patients being informed of trans-

plant options. Third, there may be geographic variation in patients being informed

and their referral rates. Existing research has shown geographic and neighborhood

variation on a number of measures such as pre-ESRD nephrology care (Yan et al.,

2013; Hao et al., 2015; McClellan et al., 2009) and arteriovenous fistula (AVF) use

(Hopson et al., 2008; McClellan et al., 2010). Patients may also face different underly-

ing environmental exposures based on where they live (related to renal function) (Xu

et al., 2018), and comparisons between patients may be strengthened by adjusting

for these kinds of differences.

This article adapts and synthesizes recent work to the data setting where subjects

are both clustered within facilities and spatially-indexed, with the purpose of estimat-

ing the average treatment effect on the treated (ATT). In these settings, the researcher

may not have access to detailed confounders at the facility- and spatial-level, despite

their perceived importance for treatment assignment and health outcomes. These

unmeasured components present a challenge in generating credible estimates of treat-

ment effects.

The methodology we propose here builds on recent work by Arpino and Cannas

(2016) and Papadogeorgou et al. (2019a). First, we estimate a propensity score using

observed covariates and spatial coordinates only. This model attempts to adjusts

for potential spatial confounders solely through the inclusion of fixed effect terms for

the projected latitude and longitude coordinates. Treated patients are then matched

to control patients only within the same facility using this propensity score. This

procedure supposes that the facility-level confounder is of primary importance as

compared to the spatial-level confounder. Many treated subjects may not have viable

matches within the same facility; for example, a facility may have had few patients,
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or the vast majority of patients may have received the same treatment.

The second step of the proposed procedure uses the recently developed distance-

adjusted propensity score matching (DAPSm) method (Papadogeorgou et al., 2019a)

while adding random effects (intercepts) or fixed effects for the facility to the propen-

sity score model to account for the facility-level unmeasured confounders (Arpino and

Mealli, 2011). The algorithm then generates matches based on weighting propensity

score differences and spatial distances between treated and controls. In this way,

the method aims to match as many treated subjects as possible while attempting

to adjust for both facility and spatial confounders at both stages. Even if a treated

subject cannot be matched to a control within the same facility in the first stage,

the procedure aims to match treated and controls if their estimated propensity scores

are similar and their spatial distance is not too great. The novelty of this proposed

approach lies in combining recent methods separately developed in the multi-level

setting and the spatial setting for the data setting where both features are likely to

be present.

We compare the statistical performance of our approach to other viable methods:

for example, matching on the estimated propensity score which includes facility ran-

dom or fixed effects along with spatial coordinates in a single step; using the DAPSm

method in a single step; or using a two-stage method where the second stage matches

allows for matches outside of the subject’s facility with standard propensity score

matching, as in the preferential within-cluster method proposed in Arpino and Can-

nas (2016). We compare approaches, including the proposed combined approach, in

a simulation study under several different scenarios. Ultimately, we demonstrate that

accounting for facility- and spatial-level confounding in a setting motivated by our

data application is an important step towards better understanding treatment effect

estimation.
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1.2 Potential outcomes framework and setting

For subjects i = 1, .., n, let the binary treatment Zi = 1 for the treatment group (not

informed of transplant options because not assessed), and Zi = 0 for the control group

(informed of transplant options). Let Yi(Z) represent the potential outcomes under

different treatment assignments, such that Yi(1) and Yi(0) represent the potential

outcomes under treatment and control, respectively. For notational convenience,

certain subscripts are dropped for the subsequent development (i.e. Yi(Z) = Y (Z))

when there is no ambiguity. In the data application’s primary outcome, Y represents

the binary 1-year referral for transplantation measure.

The treatment effect is defined as Y (1) − Y (0), but only one potential outcome

is observed for any individual. Analyses of data, both randomized and observational,

instead focus on average treatment effects. The estimand of interest for the moti-

vating application is the average treatment effect on the treated: ATT = E[Y (1) −

Y (0)∣Z = 1]. This estimand requires the estimation of two pieces: E[Y (1)∣Z = 1]

and E[Y (0)∣Z = 1]. The former quantity can be estimated from the data directly

following some basic assumptions, while the latter quantity requires additional as-

sumptions and imputation, as we cannot know what the outcomes would be had

treated individuals not been treated.

We highlight several key assumptions in propensity score studies. First, we assume

the Stable Unit Treatment Value Assumption (SUTVA) holds, which states that a

subject’s potential outcomes do not depend on other subjects’ treatment allocation

(Stuart, 2010; Rubin, 1980). In multi-level and network applications, we may question

whether the SUTVA actually holds. The purpose of this article is not to examine

the SUTVA in detail, but we briefly discuss the issue in our discussion section with

respect to the data application.

Following the notation of Papadogeorgou et al. (2019a), we consider a minimal set

of confounders C, which may contain individual confounders such as age and health
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insurance status, facility confounders like quality of care, and spatial confounders

such as neighborhood socioeconomic status. The assumption of ignorability states

that:

Y (1), Y (0) ⊥ Z ∣C. (1.1)

This assumption is also referred to as the conditional independence assumption, se-

lection on observables, or no unmeasured confounding (if C is observed). Rosenbaum

and Rubin (1983) show that if there is no unmeasured confounding conditional on

C (Equation 1.1), then there is also no unmeasured confounding conditional on the

propensity score, defined as P (Z = 1∣C):

Y (1), Y (0) ⊥ Z ∣P (Z = 1∣C). (1.2)

In order to proceed with propensity score approaches, we additionally assume overlap:

0 < P (Z = 1∣C) < 1. (1.3)

The overlap assumption ensures that in propensity score matching approaches, every

treated subject has a control subject with a similar propensity score. When interest

is solely in estimating the ATT (as is the case here), the above assumptions can be

weakened to be Y (0) ⊥ Z ∣C and P (Z = 1∣C) < 1 (Heckman et al., 1997; Caliendo

and Kopeinig, 2008; Imbens, 2004). Under these assumptions, different approaches

like propensity score weighting, matching, and sub-classification can be used to bal-

ance treated and control units on the observed characteristics to closely resemble a

randomized control trial.

In many settings, we may not have the full set of minimum confounders C. Sup-

pose that C = (X, V,U), where V and U are unmeasured scalars representing facil-

ity and spatial confounding, respectively, and X are the observed covariates. Then

matching based on an estimate of P (Z = 1∣X) would no longer identify the ATT.
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Although U and V are not measured directly, the spatial location and the facility

assignment are often available to the researcher. The method we propose uses this

information to reduce potential unmeasured confounding in a two-stage matching ap-

proach. This method synthesizes methods recently developed in the literature, which

we detail in the next section.

In propensity score matching, treated and control pairs are formed based on the

difference in the estimated (logit) propensity score. In this study, we restrict our

attention to caliper 1:1 nearest-neighbor matching without replacement. For each

treated subject, a greedy algorithm searches for the nearest matching control subject

in a set of controls where the logit propensity score difference is less than some

threshold value (i.e. the “caliper”), defined in terms of standard deviations of the

logit propensity score in the entire sample (Austin, 2011b). As controls are selected

for treated subjects, they are no longer considered for future treated subjects (i.e.

matching is done “without replacement”). If successful, the resulting matched dataset

from this process will have similar distributions of the propensity score and observed

confounders. Other variants of this approach include optimal matching (as opposed

to greedy nearest-neighbor matching) or matching with replacement, where controls

can be matches for multiple treated subjects. We restrict our attention in order

to maintain focus on the other properties of the proposed estimator in comparison

with other methods and to simplify the number of varying factors. Austin (2014)

found that nearest-neighbor matching did no worse than optimal matching methods,

and that caliper methods without replacement did not do worse than methods with

replacement.
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1.3 Methodology for multi-level and spatial data

We propose a two-stage matching algorithm in order to adjust for potential con-

founders at the spatial- and facility-level. This method assumes that the facility

confounder is of greater importance than the spatial confounder based on a prior

belief about the data application. To motivate the two-stage approach, recall that

C = (X, V,U). In this setting, we assume that there each subject belongs to one

of j = 1, ..., J facilities, and that each individual has a pair of spatial coordinates

s = (s1, s2).

For treated subject k and control k′, if one could match exactly on observed

covariates X and the facility assignment, this would ensure that Vk = Vk′ even though

V is unmeasured. Furthermore, if the researcher could ensure that the pair of treated

and control subjects had the same location of exposure to U such that sk = sk′ ,

then we could also ensure that Uk = Uk′ , despite U being unmeasured. Following

Papadogeorgou et al. (2019a), since individuals will not be exactly in the same spatial

location, we instead assume that there exists some δε for all ε > 0 such that if ∣sk−sk′ ∣ <

δε then ∣U(sk)−U(sk′)∣ < ε. Matching on P (Z = 1∣X), facility assignment, and spatial

location simultaneously would likely result in a large portion of the treated sample

being unmatched, due to the curse of dimensionality and due to some facilities having

few patients or having patients predominantly in one treatment group or another. For

this reason, we introduce a staged matching approach that attempts to somewhat

adjust for facility and spatial-level confounding while retaining more of the treated

patients. We examine the resulting number of unmatched treated patients within our

approach in detail in the simulation study and application below.
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1.3.1 Stage 1: Matching within facility

At the first stage, we propose estimating the propensity score with observed covariates

X and the spatial location s = (s1, s2), using logistic regression for all of the available

data:

logit[P (Z = 1∣X, s)] = α0 + αX
TX + αs1s1 + αs2s2 + αs12s1s2 + αs21s

2
1 + αs22s

2
2. (1.4)

Matching then proceeds using 1:1 nearest-neighbor caliper matching on the logit

propensity score, using 0.2 standard deviations in the sample as the caliper width

(Austin, 2011b), and restricting matches to occur in the same facility. Note that we

do not include any facility indicators in the propensity score in this first stage, as

matching will only occur within facilities. In this framework, the result is that V will

be balanced despite not being measured.

Spatial coordinates (s1, s2) together with their interactions are included as fixed

effect terms in the logistic regression model in order to capture basic spatial patterns

in treatment assignment in the observed data. Other functional forms based on

spatial coordinates could also be substituted. Thus, U may be balanced if the true

spatial pattern of treatment assignment is captured by this basic formulation. If

the true spatial pattern cannot be captured in this way, the method will balance

V (more important) but do less well in balancing U (less important) across treated

and controls. The matching thus reflects the researcher’s belief in the perceived

importance of different kinds of confounding.
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1.3.2 Stage 2: Distance adjusted propensity score matching

with facility effects

The first stage may leave many treated patients unmatched, depending on the study.

Analyses based on sub-samples may not be generalizable, thus we proceed with a

second stage of matching. As with the first stage, the goal is still to generate balance

on observed covariates X while also attempting to balance for unobserved confounders

V and U at the facility- and spatial-level.

Papadogeorgou et al. (2019a) propose a method called distance adjusted propen-

sity score matching (DAPSm) that matches treated units with control units based on

a combination of estimated propensity score difference and spatial distance. Define

the estimated propensity score for unit i as PSi = P (Zi = 1∣Xi), and define the Eu-

clidean distance between two units i and k as Distik. The distances between treated

and controls are then standardized to range from 0 to 1 in the sample to match the

range of propensity score differences. The distance-adjusted propensity score (DAPS)

is then defined as:

DAPSik = w × ∣PSi −PSk∣ + (1 −w) ×Distik, (1.5)

where the weight w ∈ [0,1] controls how much to weight spatial distance relative

to the propensity score difference. Setting the weight w = 1 will mean that the

DAPS for a pair of treated and control patients is entirely equal to the propensity

score difference, and w = 0 implies that the DAPS is equal to the spatial distance

only. Papadogeorgou et al. (2019a) discuss details on selecting a weight and an

algorithm for selecting matches. In their simulation studies, they find their method

has good performance compared to alternative methods in terms of MSE compared

to the gold-standard propensity score matching approach. Although their method is

developed to use point-referenced data, we use areal-level centroid coordinates in our



11

data application.

We use the DAPS for matching with particular propensity score formulations: we

estimate propensity scores with either random effects (random intercept for the

facility):

logit[P (Zi = 1∣Xi)] = α0 + αT
XXi + γj[i] (1.6)

where γj[i] ∼ N(0, σ2), or fixed effects:

logit[P (Zi = 1∣Xi)] = α0 + αT
XXi +

J−1

∑
l=1

αfac,lI(l = j[i]) (1.7)

where I(⋅) is an indicator function and j[i] indicates the facility assignment for unit

i.

These propensity score models are estimated based on the full data in order to most

accurately estimate random or fixed effects and covariate effects on the propensity

of receiving treatment. Matching is done by using the DAPSm technique described

above on the remaining treated and control subjects not matched in stage 1 by finding

matches sequentially, starting from the smallest DAPS score. For this approach, a

caliper could be specified for either the DAPS score itself, or solely on the propensity

score (PS) difference, as in stage 1. If a caliper is specified on the PS difference, then

regardless of the weight w specified, matches will still not exceed the caliper-specified

difference on the estimated PS.

The final output of these two stages is a combined set of matches between treated

and controls, where either facility is matched exactly and space is adjusted for through

fixed effect terms for s in the propensity score model, or the facility is adjusted for

through a random/fixed effect in the propensity score and spatial distance is ac-

counted for using the DAPS, a weighted sum of spatial distance and propensity score

difference. Further adjustments can also follow if the researcher believes there are

interactions between V and X in the propensity score model; for example, if one
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believes facilities systematically treat insured patients differently from uninsured pa-

tients, matches between treated and control can be forced to have the same insurance

status in stage 1, or random slopes that vary by facility can be introduced in stage 2.

We implement this procedure in R (R Core Team, 2020), building upon the DAPSm

package (Papadogeorgou et al., 2019b).

1.3.3 Other methods

An earlier two stage approach to matching was proposed in Arpino and Cannas (2016)

which considered a single-level propensity score for both steps, and found superior

performance compared to alternatives. Arpino and Mealli (2011) and Arpino and

Cannas (2016) also evaluated fixed effect and random effect propensity score models

and found they both improved upon the propensity score matching approach without

any facility adjustment.

Stuart and Rubin (2008) consider another approach in the context of a study of

schools, with a treated and control group, where only observed subject characteristics

need to be controlled for. Because of incomplete matches provided by the original

control group, additional matches are drawn from a secondary control group, which

may differ in cluster-level covariates. Their method then adjusts for potential cluster-

level biases introduced from matches made with the secondary control group. Rickles

and Seltzer (2014) extend this approach to a multisite study and consider a two-stage

matching approach, where treated units that are not matched to controls within the

same cluster in the first stage are then matched to controls in a different but similar

cluster, as determined by some baseline cluster-level covariates. They adjust any

systematic difference in outcomes that results from matching to a different cluster,

and they estimate the ATT both within and across all clusters.

Li et al. (2013a) considers multi-level data in the context of a weighting approach,

where random intercepts and fixed effects for facilities are considered in the propensity
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score and outcome models in a doubly-robust approach. They generally found that

ignoring the cluster in both the propensity score and outcome model led to much

higher bias, but that the outcome model specification was more impactful than the

propensity score model specification. Davis et al. (2019) consider a similar approach

with conditional autoregressive (CAR) random effects for area-level data to adjust for

potential geographic confounding, and Davis (2018) similarly considers a matching

approach in the presence of geographic confounding. The approaches of Davis (2018),

Davis et al. (2019), and Li et al. (2013a) could potentially be extended to the setting

where patients are in small areas and facilities by including both spatial and facility

random effects in the propensity score model.

1.4 Simulation study

1.4.1 Data generation

To illustrate and assess performance of our proposed two-stage approach, we consider

the following simulation study. Our data generation emphasizes a stronger facility-

level association with the treatment assignment mechanism and outcome, with an

unobserved spatial covariate being present but of secondary importance. We aim

to generate a reproducible set of simulations that display facility- and spatial-level

confounders resembling potential data applications. We proceed by first generating

the patient and facilities and the assignment of patients to facilities in two sepa-

rate settings (distance-based vs. random); second, we specify the propensity score

and outcome models based on observed and unobserved covariates in two scenarios

(continuous or binary outcome).

For all of the simulations, one of two background datasets is used to determine

where patients and facilities are located, and how patients are assigned to facilities.

We used 2010 Census data on block groups in the state of Georgia for the simula-
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tion; N = 1000 patients were sampled from these block groups using a multinomial

distribution with probabilities equal to the block group share of the state population.

J = 80 facilities similarly were sampled, but only from block groups with above av-

erage populations. Both patients and facilities were assigned to population-weighted

centroids (projected coordinates) of their respective block groups, and the coordi-

nates were then randomly jittered so that locations were unique for all patients and

facilities.

Two background datasets were generated that assigned patients to facilities dif-

ferently:

• Setting 1: Distance-based. Distance is strongly related to facility assignment

(but random), to resemble many data applications. An exponential function is

used to generate probabilities of facility assignment for each patient, and then

a multinomial function is used to randomly assign the facility to the patient.

• Setting 2: Random. For each patient, facility assignment is based on a

multinomial probability distribution where each facility is given equal proba-

bility. This setting is considered so that the spatial confounder and facility

confounder are independent of each other.

Figure A.1 in the Appendix demonstrates visually the patient assignment to facility

in these two settings. Data generation then proceeds as follows:

1. Four standard normal covariates are generated for each patient: X1,X2,X3,X4 ∼

N(0,1).

2. A spatial covariate U is generated using a Normal distribution with a Matern

covariance function, where smoothness and range parameters follow one of 4

pairs: (1.46,1), (1.46,0.1), (0.1,1), (0.1,0.1). U is then standardized. Figure

A.2 in the Appendix illustrates the impact of these smoothness/range parame-

ters on the spatial covariate’s realization.
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3. A facility covariate is generated from a normal distribution: V ∼ N(0,2).

4. Treatment assignment is based on probabilities of treatment generated by the

following (true) propensity score model:

logit[P (Z = 1∣X, V,U)] = −2.3+0.5V +0.3U+0.2X1+0.3X2−0.2X3−0.3X4 (1.8)

The steps here closely resemble the setting of Papadogeorgou et al. (2019a) with some

deviation in the precise parameters chosen in the propensity score model. The model

above generates roughly 11% treated patients in the sample, comparable to what we

see in our data application. The models emphasize the importance of the facility over

the spatial unmeasured covariate, but both are important for both the treatment

assignment and outcome.

Our simulations show results for both the continuous and binary outcome case.

For a continuous outcome, we use the following model similar to Papadogeorgou et al.

(2019a), where the ATT is 1:

Y = Z + 2V + 0.5U + 0.55X1 + 0.21X2 + 1.17X3 − 0.11X4 + ε,

where ε ∼ N(0,1).

For the binary outcome, incidence is sampled from a Bernoulli distribution where

the probability of incidence is specified through a logistic regression model:

logit[P (Y = 1∣X, U, V )] = −2 + 0.29Z + 0.5V + 0.3U + 0.2X1 + 0.3X2 − 0.2X3 − 0.3X4.

Parameters were chosen such that the ATT is approximately 0.05, and if no one in

the sample were treated, the outcome incidence would be approximately 15%, using

the methodology of Austin (2010, 2014). K = 500 datasets are generated for each

case. The settings and shorthand are summarized in Table 1.1.
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Abbreviation Outcome Type Facility Assignment True ATT
S1-A through S1-D Continuous Distance-Based 1.0
S2-A through S2-D Continuous Random 1.0
S3-A through S3-D Binary Distance-Based ≈ 0.05
S4-A through S4-D Binary Random ≈ 0.05

Table 1.1: Simulation Settings
A through D reflect the different Matern smoothness/range combinations for U

A: (1.46, 1), B: (1.46, 0.1), C: (0.1, 1), D: (0.1, 0.1)

1.4.2 Methods compared

We consider separately the propensity score estimation and the matching algorithm.

The propensity score models considered in simulations are as follows:

1. Single-level (S): A propensity score model with only observed covariates and

spatial coordinates, with no fixed effect or random effect for the facility (single-

level), as in (1.4).

2. Random Effects (RE): A propensity score model that adds random intercept

terms for the facilities to the single-level model.

3. Fixed Effects (FE): A propensity score model that adds fixed effects for the

facilities to the single-level model.

Depending on the use case, the above formulations may include or exclude the spatial

coordinate terms at the estimation stage. In particular, when using DAPSm method,

the method itself takes into account distance between treated and control units, so

the propensity score method used will exclude the spatial coordinates. The matching

methods considered (in conjunction with the propensity score models above) are as

follows:

1. Propensity Score Matching (PS): Matching on the propensity score model

in a single step. We consider all 3 propensity score models (S, RE, FE) above

with spatial coordinate terms included for this method. Arpino and Mealli
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(2011) and Arpino and Cannas (2016) include these approaches in their simu-

lation study.

2. Within-cluster (WC): This method limits matches between treated and con-

trol to the same facility. This method may discard and ignore entire facilities

with small numbers of patients. This method will be based on the single-level

propensity score model with spatial coordinates included. Arpino and Mealli

(2011) assessed this approach.

3. Preferential within-cluster (WC+): Broadly based on the method from

Arpino and Cannas (2016) which generates matches within the same facility

when possible (subject to caliper), and otherwise pulls matches outside of the

facility. Their method considers matching with replacement, but we consider

matching without replacement here as it is more typical in biostatistical appli-

cations and based on the recommendation of simulation studies (Austin, 2014).

The first stage uses the single-level propensity score (S), but the second stage

may be any of the 3 propensity score methods (all with spatial coordinates

included): WC+S, WC+RE, WC+FE.

4. DAPSm: Using the DAPSm approach in Papadogeorgou et al. (2019a), which

matches based on balancing distance and the estimated propensity score. All

3 propensity score models are considered here, with the spatial coordinates

excluded from the estimation of the propensity score: DAPSm-S, DAPSm-

RE, DAPSm-FE.

5. Preferential within-cluster + DAPSm (WC+DAPSm): A new approach

described above combining the two previous methods that proceeds in two

steps: (a) Use the single-level propensity score with spatial coordinates to gen-

erate matched pairs within the same facility; (b) For the remaining unmatched

treated subjects, use the DAPSm method in conjunction with each of the 3
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propensity score estimates (excluding spatial coordinates): WC+DAPSm-S,

WC+DAPSm-RE, WC+DAPSm-FE.

6. Gold Standard: Matching using the propensity score that includes unobserved

covariates U and V .

Greedy nearest-neighbor matching without replacement is used for all estimation

methods. A caliper of 0.2 standard deviations of the logit propensity score is used

for all methods, except for DAPSm, where the caliper is based on the propensity

score instead of the logit propensity score. Details on fitting parameters are found in

the Appendix. Results for the DAPSm method presented in the main text are based

on choosing the smallest weight that balances the observed covariates. Alternative

approaches, including a constant weight approach and a weight-search method using

the DAPS caliper (rather than the PS caliper), are presented in the Appendix.

1.4.3 Results

We highlight select results from the simulation study. Figure 1.1 summarizes stan-

dardized differences between treated and controls across simulations for select covari-

ates and simulation settings in the first scenario. An absolute value of 0.1 is often

cited in judging there to be no meaningful difference between two groups (Austin,

2011a). Figure 1.1(a) and 1.1(b) show balance for the unobserved spatial covariate

U in the high-smoothness, long-range setting (S1-A) and the low-smoothness, short-

range setting (S1-D), respectively. Similar to Papadogeorgou et al. (2019a), in the

latter setting, few methods are able to balance U well, including the DAPSm method.

In the high-smoothness, long-range setting, most methods appear to do a fair job

of balancing U , especially when compared to the case with no adjustments made. In

part, this is likely because the spatial trend can be mostly captured by including some

simple fixed effect terms for the projected longitude/latitude in the propensity score
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model. The proposed two-stage approach actually does slightly worse in balancing U

on average as compared to the preferential within-cluster methods without the use

of DAPSm (WC+S, WC+RE, WC+FE). This result stems from prioritizing balance

on the facility covariate V over U through the use of the propensity score caliper in

the second stage rather than imposing a caliper on the DAPS or distance. In the

Appendix, Figure A.4(a) and A.4(b) demonstrate that the two-stage approach that

uses the DAPS caliper for the second stage instead of the propensity score caliper

does substantially better in balancing U , at some cost to balance on V . For covariate

X4, all methods offer substantial improvements compared to the unadjusted sample;

the proposed two-stage approaches do about as well as any other approach tested.

Table 1.2 summarizes all simulation results in terms of average estimates, rel-

ative mean-squared error (compared to the gold-standard propensity score match-

ing model), and the proportion of treated subjects successfully matched with each

method. For the continuous outcome settings, average estimates in the two-stage pro-

posed method with the fixed effect propensity score model (WC+DAPSm-FE) are

the least biased (after the gold-standard approach) in a majority of the 8 settings.

The within-cluster only method also does well in terms of bias, but at the cost of

matching a portion of the treated sample (59% to 62% of treated subjects depending

on the simulation setting). The preferential within-cluster method with the fixed ef-

fects propensity score model without the use of the DAPSm approach (WC+FE) also

does consistently well across settings in terms of bias. Relative MSE results point

to similar conclusions, favoring WC+DAPSm-FE in several settings while matching

around 94% to 95% of the treated subjects, resulting in more efficient and generaliz-

able estimates.

The binary outcome results in the lower half of Table 1.2 demonstrate more mixed

results with no clear best method. Most methods with either random effects or fixed

effects, in either a single-stage or two-stage model, perform similarly in terms of bias.
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The proposed two-stage approach with fixed effects or random effects does consistently

well across settings, although it is not the clear top performer. The within-cluster

only method does well in terms of bias but has a substantially higher relative MSE

as compared to some of the other approaches tested.

Additional DAPSm and WC+DAPSm methods with different parameter choices

results appear in the Appendix. In the Appendix, we also consider the setting with

fewer facilities (J = 40 vs. J = 80) to assess the potential impact on the results. We

find that a larger proportion of subjects can be matched in the within-cluster only

method, but that otherwise the same conclusions hold regarding the performance of

the proposed two-stage estimator.
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(a) U : S1-A (Smoothness 1.46,
Range 1)
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(b) U : S1-D (Smoothness 0.1,
Range 0.1)
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Figure 1.1: Standardized difference for U , V , and X4 in distance-based setting
(S1-A and S1-D)



22

T
ab

le
1.

2:
S
im

u
la

ti
on

re
su

lt
s:

m
ea

n
A

T
T

es
ti

m
at

e,
re

la
ti

ve
M

S
E

,
an

d
av

er
ag

e
p
ro

p
or

ti
on

of
tr

ea
te

d
m

at
ch

ed

C
o
n
ti
n
u
o
u
s

M
ea

n
A

T
T

E
st

im
at

e
(T

ru
e

=
1
)

R
el

a
ti

ve
M

S
E

P
ro

p
o
rt

io
n

tr
ea

te
d

su
b

je
ct

s
m

at
ch

ed
M

et
h
o
d

1-
A

1-
B

1-
C

1-
D

2-
A

2-
B

2
-C

2
-D

1
-A

1
-B

1
-C

1
-D

2
-A

2
-B

2
-C

2-
D

1
-A

1
-B

1
-C

1-
D

2-
A

2-
B

2
-C

2-
D

G
ol

d
1.

01
1.

00
1.

01
1.

00
1.

0
1

1.
02

1
.0

0
1
.0

1
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1.

0
0

0
.9

7
0.

9
8

0.
97

0
.9

8
0.

9
8

0
.9

8
0
.9

8
0.

9
7

S
2.

81
2.

85
2.

91
2.

92
2.

8
5

2.
91

2
.9

9
3
.0

1
7
5
.8

7
7
9
.4

3
7
0
.3

2
8
0
.4

1
7
6
.6

4
8
0
.3

5
8
1
.2

1
8
1.

3
7

0
.9

9
0.

9
9

0.
99

0
.9

9
0.

9
9

0
.9

9
0
.9

9
0.

9
9

R
E

1.
77

1.
82

1.
87

1.
88

1.
7
6

1.
83

1
.8

7
1
.8

7
1
6
.5

9
1
7
.9

8
1
6
.3

8
1
9
.0

8
1
5
.1

0
1
7
.3

5
1
8
.1

6
1
7.

3
8

0
.9

5
0.

9
6

0.
96

0
.9

6
0.

9
5

0
.9

6
0
.9

5
0.

9
5

F
E

1.
07

1.
11

1.
17

1.
19

1.
0
4

1.
13

1
.1

6
1
.1

9
1
.2

7
1
.4

1
1
.7

1
2
.0

3
1
.1

0
1
.6

0
1
.6

4
1.

9
4

0
.9

9
0.

9
9

0.
99

0
.9

9
0.

9
9

0
.9

9
0
.9

9
0.

9
9

W
C

1.
02

1.
06

1.
14

1.
13

1.
0
0

1.
09

1
.1

2
1
.1

3
1
.2

4
1
.3

3
1
.6

3
1
.5

6
1
.2

8
1
.5

8
1
.5

7
1.

5
7

0
.6

2
0.

6
2

0.
61

0
.6

1
0.

5
9

0
.5

9
0
.5

9
0.

5
9

W
C

+
S

1.
90

1.
93

2.
02

2.
03

1.
9
9

2.
03

2
.0

9
2
.1

1
2
0
.3

6
2
1
.6

8
2
0
.9

5
2
4
.3

2
2
3
.3

4
2
4
.7

1
2
5
.9

1
2
6.

1
3

0
.9

9
0.

9
9

0.
99

0
.9

9
0.

9
9

0
.9

9
0
.9

9
0.

9
9

W
C

+
R

E
1.

33
1.

40
1.

46
1.

45
1.

3
5

1.
43

1
.4

5
1
.4

5
4
.2

4
5
.0

3
5
.3

1
5
.9

7
4
.2

1
5
.5

9
5
.6

2
5.

5
3

0
.9

6
0.

9
6

0.
96

0
.9

6
0.

9
5

0
.9

6
0
.9

6
0.

9
5

W
C

+
F

E
1.

05
1.

08
1.

15
1.

15
1.

0
2

1.
10

1
.1

3
1
.1

5
1
.0

5
1
.2

3
1
.4

9
1
.5

3
0
.8

8
1
.4

0
1
.3

3
1.

5
2

0
.9

9
0.

9
9

0.
99

0
.9

9
0.

9
9

0
.9

9
0
.9

9
0.

9
9

D
A

P
S
m

-S
2.

82
2.

77
2.

87
2.

88
2.

8
8

2.
86

2
.9

8
2
.9

8
7
6
.0

7
7
3
.4

7
6
7
.0

6
7
6
.7

3
7
9
.5

3
7
6
.1

3
8
1
.3

5
7
9.

0
5

0
.9

9
0.

9
9

0.
99

0
.9

9
0.

9
9

0
.9

9
0
.9

9
0.

9
9

D
A

P
S
m

-R
E

1.
61

1.
68

1.
75

1.
78

1.
7
6

1.
76

1
.8

2
1
.8

0
1
1
.2

3
1
3
.8

3
1
3
.1

7
1
5
.2

6
1
5
.6

5
1
5
.1

2
1
6
.2

7
1
5.

1
5

0
.9

4
0.

9
5

0.
95

0
.9

5
0.

9
5

0
.9

5
0
.9

4
0.

9
4

D
A

P
S
m

-F
E

1.
05

1.
06

1.
13

1.
14

1.
0
5

1.
08

1
.1

1
1
.1

4
1
.4

3
1
.1

5
1
.5

6
1
.5

7
1
.2

4
1
.2

4
1
.4

4
1.

6
4

0
.9

4
0.

9
4

0.
94

0
.9

4
0.

9
5

0
.9

5
0
.9

4
0.

9
4

W
C

+
D

A
P

S
m

-S
1.

94
1.

95
2.

03
2.

03
2.

0
1

2.
01

2
.0

9
2
.1

1
2
1
.4

2
2
2
.5

0
2
1
.4

4
2
4
.3

2
2
3
.9

8
2
3
.5

6
2
6
.0

2
2
5.

9
1

0
.9

9
0.

9
9

0.
99

0
.9

9
0.

9
9

0
.9

9
0
.9

9
0.

9
9

W
C

+
D

A
P

S
m

-R
E

1.
28

1.
34

1.
41

1.
41

1.
3
6

1.
40

1
.4

4
1
.4

3
3
.4

7
4
.4

1
4
.7

1
5
.1

0
4
.7

0
5
.1

4
5
.2

4
5.

2
8

0
.9

5
0.

9
5

0.
95

0
.9

5
0.

9
5

0
.9

5
0
.9

5
0.

9
5

W
C

+
D

A
P

S
m

-F
E

1.
00

1.
05

1.
11

1.
10

1.
0
2

1.
08

1
.1

0
1
.1

0
1
.1

2
1
.1

9
1
.2

7
1
.2

6
1
.1

1
1
.3

1
1
.2

7
1.

3
1

0
.9

4
0.

9
5

0.
94

0
.9

5
0.

9
5

0
.9

5
0
.9

5
0.

9
5

B
in
a
ry

M
ea

n
A

T
T

E
st

im
at

e
(x

10
0)

(T
ru

e
≈

5
)

R
el

a
ti

ve
M

S
E

P
ro

p
o
rt

io
n

tr
ea

te
d

su
b

je
ct

s
m

at
ch

ed
M

et
h
o
d

3-
A

3-
B

3-
C

3-
D

4-
A

4-
B

4
-C

4
-D

3
-A

3
-B

3
-C

3
-D

4
-A

4
-B

4
-C

4-
D

3
-A

3
-B

3
-C

3-
D

4-
A

4-
B

4
-C

4-
D

G
ol

d
5.

0
5.

0
5.

0
4.

9
5.

3
5
.2

4
.7

5
.0

1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1.

0
0

0
.9

8
0.

9
8

0.
98

0
.9

8
0.

9
7

0
.9

8
0
.9

7
0.

9
8

S
10

.9
12

.2
12

.3
12

.4
12

.0
12

.3
1
2
.5

1
2
.6

2
.2

5
2
.6

6
2
.7

5
3
.0

5
2
.3

7
2
.8

5
2
.9

0
3.

1
5

0
.9

9
0.

9
9

0.
99

0
.9

9
0.

9
9

0
.9

9
0
.9

9
0.

9
9

R
E

6.
2

6.
3

7.
4

7.
1

6.
0

6
.7

6
.9

6
.9

1
.0

6
1
.0

0
1
.2

4
1
.2

2
1
.0

6
1
.1

3
1
.1

2
1.

2
2

0
.9

6
0.

9
6

0.
96

0
.9

6
0.

9
5

0
.9

6
0
.9

6
0.

9
6

F
E

5.
6

6.
0

6.
4

6.
7

6.
0

6
.3

6
.4

6
.7

1
.0

1
0
.9

4
1
.0

5
1
.1

6
0
.9

5
1
.0

1
1
.0

3
1.

1
2

0
.9

9
0.

9
9

0.
99

0
.9

9
0.

9
9

0
.9

9
0
.9

9
0.

9
9

W
C

5.
1

5.
4

5.
9

5.
6

5.
5

5
.6

5
.4

5
.9

1
.5

6
1
.6

1
1
.4

5
1
.6

1
1
.3

7
1
.5

5
1
.5

1
1.

7
7

0
.6

2
0.

6
1

0.
61

0
.6

1
0.

5
8

0
.5

9
0
.5

9
0.

5
9

W
C

+
S

8.
7

9.
3

9.
3

9.
4

9.
5

9
.7

9
.4

9
.8

1
.4

3
1
.6

2
1
.5

3
1
.7

3
1
.5

1
1
.7

5
1
.6

8
1.

8
9

0
.9

9
0.

9
9

0.
99

0
.9

9
0.

9
9

0
.9

9
0
.9

9
0.

9
9

W
C

+
R

E
5.

7
6.

0
6.

6
6.

6
6.

0
6
.4

6
.2

6
.5

0
.9

9
1
.0

7
1
.0

7
1
.1

5
0
.9

6
1
.0

8
0
.9

9
1.

2
4

0
.9

6
0.

9
6

0.
96

0
.9

6
0.

9
5

0
.9

6
0
.9

6
0.

9
6

W
C

+
F

E
5.

7
6.

2
6.

5
6.

5
6.

3
6
.4

6
.2

6
.8

0
.9

9
1
.0

6
1
.0

4
1
.1

6
0
.9

1
1
.0

5
1
.0

4
1.

1
7

0
.9

9
0.

9
9

0.
99

0
.9

9
0.

9
9

0
.9

9
0
.9

9
0.

9
9

D
A

P
S
m

-S
11

.9
11

.8
12

.1
12

.0
12

.4
12

.2
1
2
.3

1
2
.3

2
.5

6
2
.6

0
2
.5

7
2
.9

5
2
.4

9
2
.7

7
2
.7

4
3.

0
3

0
.9

9
0.

9
9

0.
99

0
.9

9
0.

9
9

0
.9

9
0
.9

9
0.

9
9

D
A

P
S
m

-R
E

5.
6

6.
2

6.
4

6.
5

6.
5

6
.5

6
.6

6
.6

1
.0

8
1
.0

0
1
.1

0
1
.2

1
1
.0

3
1
.0

8
1
.0

8
1.

1
0

0
.9

4
0.

9
5

0.
95

0
.9

5
0.

9
5

0
.9

5
0
.9

5
0.

9
5

D
A

P
S
m

-F
E

5.
3

5.
5

5.
8

6.
3

6.
2

5
.6

5
.8

5
.9

1
.0

1
1
.0

4
0
.9

4
1
.0

7
0
.9

3
1
.0

2
1
.0

4
0.

9
5

0
.9

4
0.

9
4

0.
94

0
.9

4
0.

9
4

0
.9

5
0
.9

4
0.

9
4

W
C

+
D

A
P

S
m

-S
9.

1
9.

4
9.

5
9.

5
9.

8
9
.7

9
.6

9
.7

1
.5

4
1
.7

4
1
.6

0
1
.7

7
1
.6

1
1
.7

8
1
.6

7
1.

8
7

0
.9

9
0.

9
9

0.
99

0
.9

9
0.

9
9

0
.9

9
0
.9

9
0.

9
9

W
C

+
D

A
P

S
m

-R
E

5.
5

6.
1

6.
3

6.
2

6.
7

6
.5

6
.3

6
.4

1
.0

0
1
.0

3
1
.0

9
1
.0

9
1
.0

1
1
.1

3
1
.0

1
1.

1
7

0
.9

5
0.

9
5

0.
95

0
.9

5
0.

9
5

0
.9

5
0
.9

5
0.

9
5

W
C

+
D

A
P

S
m

-F
E

5.
3

5.
7

5.
9

6.
0

6.
3

6
.1

5
.8

6
.2

1
.0

1
1
.0

5
0
.9

6
1
.1

2
0
.9

1
1
.0

8
1
.0

5
1.

1
8

0
.9

4
0.

9
5

0.
95

0
.9

4
0.

9
5

0
.9

5
0
.9

5
0.

9
5



23

1.5 Application

1.5.1 Analysis

We apply the methods considered in the simulation study along with the proposed

method of combining within-cluster matching with the DAPSm method to a study

of the 2017 US Renal Data System (USRDS) (United States Renal Data System,

2017) together with data on referrals for kidney transplants collected as part of the

Reducing D isparities I n Access to kidN ey T ransplantation (RaDIANT) Community

Study (Patzer et al., 2014, 2017). The focus of our application is to better understand

the relationship between informing incident End Stage Renal Disease (ESRD) patients

starting dialysis about transplant options and referrals for transplants within one year.

In this setting, the facility and (to a lesser extent) the area of residence may play

important roles in patient’s being informed and the patient’s referral status after one

year. Comparisons between patients who were not assessed (treated) and those who

were informed (controls) should take these factors into account, along with individual

patient characteristics.

At the time of being diagnosed with ESRD, a Medical Evidence Report (CMS-

2728) is filled out by the physician at the dialysis facility. Among the information

included is whether the patient was informed of kidney transplant options. The

question asked is: “Has the patient been informed of kidney transplant options?”. If

the answer is no, the follow-up question is “If patient NOT informed of transplant

options, please check all that apply.” Options include “Medically unfit”, “Patient

declines information”, “Unsuitable due to age”, “Patient has not been assessed”,

“Psychologically unfit”, and “Other”.

Johansen et al. (2012) considers the association of race and insurance type with

delayed assessment for transplantation among patients starting dialysis using this

question. The study of Johansen et al. (2012) is focused on “Patient has not been
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assessed.” In their study, comparisons were made between “Not assessed” and all

other patients: those who were informed and those who were not informed for other

reasons. For this application, we focus on the comparison of patients who were “Not

assessed” (and in no other category) and “Informed”; we focus on a single state

(Georgia) in a 2-year period from 2012-2013.

The primary outcome of interest is 1-year referral, but we additionally examine

1-year waitlisting and 1-year mortality to aid in conclusions and understanding the

quality of the matching approaches used. Patients are considered referred within

1 year if a referral was recorded at a transplant center within a year of the first

ESRD service date and prior to death. Additionally, we include the additional cases

as referred within 1 year: (1) waitlisting date within 1 year but with no recorded

referral date, (2) waitlisting date within 1 year but prior to the recorded referral

date, and (3) no referral or waitlisting date but a transplant date within 1 year of

first ESRD service date. To summarize, a patient is considered referred within 1 year

if they were referred, waitlisted, or received a transplant within 1 year of the first

ESRD date and the event occurred prior to death.

We note that the relevant question from the medical evidence form (CMS-2728)

used to determine “treatment” for this study is not validated and may be prone

to serious misclassification. Salter et al. (2014) provide some evidence based on a

sample of n = 388, finding a large portion of patients who were reported as informed

did not themselves report being informed, and a large portion of patients who were

not reported as informed did report being informed. In considering the relationship

between the CMS-2728 question and 1-year referral for transplant in our study, we

can consider our study as an additional assessment of measurement error in this

measure. If the recorded question does not signify anything about actual 1-year

referral, one possible interpretation is that the question may not accurately capture

whether patients were actually informed or not. We note this measurement error issue
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as a serious limitation for the interpretability of the results; our primary purpose

in presenting these results are to demonstrate the use of the proposed methods in

conjunction with existing methods for better understanding the data. We caution

against strong causal conclusions from this analysis.

The 2017 USRDS contains information on 3,081,768 patients in the patient stan-

dard analytic file. The final analytical sample then consists of 4,906 patients who

resided in and initiated dialysis in Georgia from 2012 to 2013. Details on the exact

inclusion criteria for the study are provided in the Appendix.

In the analytical sample, 36.9% had a one-year referral in this sample, and 9.7%

were not assessed for their transplant options by the dialysis facility. Covariates are

largely taken from the 2728 form, including race, ethnicity, age, sex, incidence year,

BMI, glomerular filtration rate (CKD-EPI method), co-morbidities, pre-ESRD care,

medical coverage, employment status, facility numbers of patients, social workers and

registered nurses, and county-level covariates. ZIP code centroids of the patients’

addresses at the first ESRD service date are used to capture spatial location.

In the main text, we present results for the DAPSm methods using a propen-

sity score caliper of 0.2 standard deviations. The weight for the DAPSm methods is

chosen based on minimizing imbalance for observed covariates, resulting in a weight

of 0.05 for the DAPSm-S, DAPSm-RE, and DAPSm-FE methods using a thresh-

old of 0.15 in absolute standardized differences. For the WC+DAPSm methods, a

weight of 0.5 that balanced the propensity score difference and distance equally was

used. For all other methods, a 0.2 standard deviation of the logit propensity score

is used. Additional assessments of sensitivity to various tuning parameters appear

in the Appendix, including the use of a DAPS caliper instead of a propensity score

caliper.
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Table 1.3: Summary of covariates across treated and control patients

Informed Not Assessed

(n = 4428) (n = 478) Standardized

Variable Mean (SD) difference

Incidence Year = 2013 0.49 (0.50) 0.52 (0.50) 0.06

Incidence Age 58.19 (13.53) 57.46 (13.20) -0.06

Female 0.46 (0.50) 0.43 (0.50) -0.05

Race

White 0.38 (0.48) 0.27 (0.45) -0.23

Black 0.60 (0.49) 0.72 (0.45) 0.26

Other 0.02 (0.15) 0.01 (0.09) -0.15

Hispanic 0.03 (0.16) 0.02 (0.14) -0.03

Log(BMI) 3.38 (0.26) 3.39 (0.26) 0.04

Height 169.63 (11.69) 169.70 (11.27) 0.01

Log(Weight) 4.43 (0.28) 4.44 (0.27) 0.04

Log(GFR-EPI) 2.09 (0.56) 2.00 (0.61) -0.14

Hemodialysis 0.90 (0.30) 0.97 (0.16) 0.44

Access type

AVF 0.12 (0.33) 0.11 (0.32) -0.03

Graft 0.02 (0.15) 0.04 (0.20) 0.08

Catheter 0.75 (0.43) 0.82 (0.38) 0.18

Other/NA 0.10 (0.30) 0.03 (0.16) -0.47

Diabetes

Insulin 0.43 (0.50) 0.42 (0.49) -0.02

Oral 0.10 (0.29) 0.11 (0.32) 0.05

No Meds 0.06 (0.23) 0.07 (0.26) 0.07
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Table 1.3: Summary of covariates across treated and control patients

Informed Not Assessed

(n = 4428) (n = 478) Standardized

Variable Mean (SD) difference

Retinopathy 0.06 (0.24) 0.04 (0.19) -0.14

Hypertension 0.90 (0.30) 0.91 (0.29) 0.03

ASHD 0.08 (0.27) 0.06 (0.25) -0.06

Congestive heart failure 0.26 (0.44) 0.27 (0.44) 0.03

Other Cardiac 0.16 (0.37) 0.12 (0.32) -0.12

Peripheral vascular disease 0.07 (0.26) 0.08 (0.27) 0.02

Amputation 0.03 (0.17) 0.04 (0.20) 0.06

CVA, TIA 0.08 (0.27) 0.10 (0.29) 0.06

Inability to ambulate 0.04 (0.20) 0.06 (0.23) 0.06

Inability to transfer 0.02 (0.14) 0.03 (0.16) 0.03

Need assistance 0.09 (0.29) 0.09 (0.29) -0.01

Institutionalized 0.04 (0.20) 0.05 (0.23) 0.06

Drug and Alcohol Dependence

Alcohol 0.02 (0.12) 0.03 (0.17) 0.09

Drug 0.01 (0.11) 0.02 (0.14) 0.07

Tobacco 0.09 (0.29) 0.07 (0.26) -0.08

COPD 0.08 (0.27) 0.06 (0.24) -0.06

Cancer 0.05 (0.22) 0.05 (0.21) -0.03

Toxic nephropathy 0.01 (0.07) 0.00 (0.05) -0.08

No co-morbidities 0.02 (0.14) 0.02 (0.14) 0.02

Employment status

Unemployed/Med LOA/Other 0.36 (0.48) 0.51 (0.50) 0.30

Ret-age/Ret-disability 0.52 (0.50) 0.41 (0.49) -0.24
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Table 1.3: Summary of covariates across treated and control patients

Informed Not Assessed

(n = 4428) (n = 478) Standardized

Variable Mean (SD) difference

Employed/Student/Homemaker 0.12 (0.32) 0.09 (0.28) -0.12

Insurance

Group 0.22 (0.41) 0.14 (0.35) -0.21

Medicaid 0.24 (0.43) 0.30 (0.46) 0.13

Medicare 0.57 (0.50) 0.50 (0.50) -0.13

Other 0.10 (0.30) 0.12 (0.33) 0.07

VA 0.02 (0.14) 0.02 (0.13) -0.03

Medicare Adv. 0.08 (0.28) 0.07 (0.25) -0.07

Primary Cause

Diabetes 0.43 (0.50) 0.41 (0.49) -0.04

Glomerulonephritis 0.06 (0.24) 0.03 (0.18) -0.15

Hypertension 0.41 (0.49) 0.46 (0.50) 0.09

Other 0.08 (0.27) 0.08 (0.26) -0.01

Unknown 0.02 (0.14) 0.02 (0.15) 0.02

Pre-ESRD Nephrology Care

No 0.31 (0.46) 0.32 (0.47) 0.03

Unknown 0.09 (0.29) 0.24 (0.42) 0.34

Yes 0.60 (0.49) 0.44 (0.50) -0.32

EPO

No 0.62 (0.48) 0.53 (0.50) -0.19

Unknown 0.26 (0.44) 0.41 (0.49) 0.31

Yes 0.12 (0.32) 0.06 (0.24) -0.24

Pre-ESRD Dietary Care
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Table 1.3: Summary of covariates across treated and control patients

Informed Not Assessed

(n = 4428) (n = 478) Standardized

Variable Mean (SD) difference

No 0.77 (0.42) 0.62 (0.48) -0.31

Unknown 0.18 (0.38) 0.33 (0.47) 0.33

Yes 0.05 (0.22) 0.05 (0.21) -0.02

Hemoglobin

< 10 g/dL 0.55 (0.50) 0.60 (0.49) 0.09

>= 10 g/dL 0.29 (0.46) 0.27 (0.44) -0.05

(Missing) 0.15 (0.36) 0.13 (0.34) -0.07

Serum Albumin

< 3.5 g/dL 0.52 (0.50) 0.56 (0.50) 0.08

>= 3.5 g/dL 0.25 (0.43) 0.23 (0.42) -0.05

(Missing) 0.24 (0.43) 0.22 (0.41) -0.05

County

Pct. white non-Hispanic 53.26 (17.67) 51.16 (17.66) -0.12

Household poverty 18.23 (5.54) 20.11 (5.82) 0.32

Log(Pop.) 11.80 (1.39) 11.53 (1.59) -0.17

Facility

Facility - Hospital Based 0.04 (0.19) 0.02 (0.13) -0.18

For-profit 0.88 (0.33) 0.83 (0.38) -0.13

Non-profit 0.12 (0.33) 0.17 (0.37) 0.12

Profit status unknown 0.00 (0.05) 0.01 (0.08) 0.05

FTE RN 3.72 (2.56) 3.43 (2.25) -0.13

FTE SW 0.83 (0.48) 0.84 (0.51) 0.02

FTE RN / Patients 0.05 (0.02) 0.05 (0.02) 0.04
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Table 1.3: Summary of covariates across treated and control patients

Informed Not Assessed

(n = 4428) (n = 478) Standardized

Variable Mean (SD) difference

FTE SW / Patients 0.01 (0.01) 0.01 (0.01) 0.07

# patients end of year 79.03 (42.85) 72.76 (38.13) -0.16

# patients start of year 74.53 (40.36) 70.78 (36.89) -0.10

1.5.2 Results

Overlap

Table 1.3 summarizes the covariates used in the propensity score model for the an-

alytical sample for treated and controls. Notably, the “not assessed“ group is more

likely to be Black and more likely to be on hemodialysis. Other notable differences

include insurance, employment status, and pre-ESRD care. The propensity score

overlap in the full, un-matched sample is shown in Figure 1.3 (a) through (c). There

is largely overlap between the Not Assessed (treated) and Informed (control) groups

in the single-level logit propensity score (a), which includes individual covariates, ZIP

code coordinates, county, and facility covariates. However, when fixed effects for the

facility are included in the propensity score model, the results change markedly in

Figure 1.3(b). There are clear areas where there is no overlap – these are facilities

with all patients being informed of their transplant options, or none being informed.

The propensity score model that includes a random intercept for the facility yields

a distribution of scores in between the single-level and fixed effects model, but there

is still a substantial area of non-overlap, suggesting there will be treated units who
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Figure 1.2: Absolute standardized differences for all methods
Standardized differences are absolute differences in means divided by standard deviation of the covariate among the

treated.

cannot be matched to any controls.

For patients in facilities with only treated or only control subjects, the estimated

propensity scores are very close to 0 and 1, particularly when fixed effects are included.

Because a caliper is used in matching, the matched samples with random and fixed

effects only include the middle area of overlap between treated and control patient

propensity scores. This changes the meaning of the estimand given that the matched
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Figure 1.3: Distributional balance for logit propensity scores
Models displayed include individual, county and facility covariates along with ZIP x/y projected coordinates. Blue

density curve represents treated/“Not Assessed”. Fixed effects model excludes facility indicator for Hospital vs.
Free-Standing due to convergence issues.

sample does not include all of the treated subjects.

These results suggest that facility is very strongly related with treatment assign-

ment. Matching that uses the random effects or fixed effects model will be limited

to the area of common support. If facility assignment is believed to be important

for referrals, it is then difficult to distinguish between the effects of the treatment

of interest and the facility for a substantial portion of the sample. Ignoring facility

indicators in either the fixed effects or random effects model would only be justifi-

able if one believed the facility was unassociated with the outcome (one-year referral)
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conditional on all of the other individual and facility-level covariates included in the

propensity score model (Stuart, 2010). Thus we are left with two options that show

the limits of propensity score matching in this scenario: (1) match most of the sample

while excluding the facility ID (either through fixed indicators or random effects), or

(2) matching on a substantially smaller fraction of the sample where there is overlap

while taking into account the facility ID. We present various methods in this vein to

assess how balance and outcome estimates are sensitive to this choice, but we rec-

ognize immediately that propensity score matching will limit the conclusions we can

draw given this lack of overlap.

Balance

Figure 1.2 demonstrates balance across the covariates included in the propensity score

model for all methods, sorted by imbalance in the unadjusted sample, emphasizing

absolute standardized differences greater than 0.2 and 0.1. In total, 10 covariates

are greater than the 0.2 threshold in absolute standardized differences. All methods

reduce this number to 0, but the within-cluster only method, perhaps due to matching

only 43% of the sample, still leaves a substantial number of covariates imbalanced

using the 0.1 threshold (Table 1.4). The proposed two-stage approach with either a

random effect or fixed effect included in the propensity score model (WC+DAPSm-RE

and WC+DAPSm-FE) gets the proportion of treated subjects matched to 58% and

59%, respectively, and they reduce the number of imbalanced covariates compared

to the within-cluster only method. However, these methods are still intrinsically

limited by the lack of overlap of the propensity score distributions between the treated

and control patients. The approaches using the single-level propensity score match

nearly the entire sample and produce good balance on the observed covariates –

but there is clearly a questionable assumption being made about the role of dialysis

facilities. Normally, propensity score models would be adjusted if there were still
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lingering imbalance on observed covariates, but we wish to compare methods based

upon broadly similar propensity score models in this exploratory analysis.

Outcome and Interpretation

Figure 1.4(a) and Table 1.4 show estimates and 95% confidence intervals from differ-

ences in proportions in the matched samples for 1-year referral. Confidence intervals

are constructed from two-sample difference in proportions with no adjustment for the

matched nature of the data. The unadjusted result shows essentially no effect from

being recorded as not assessed vs. informed of transplant options, receiving referrals

within 1-year at roughly the same rate. These estimates vary across methods but are

substantively small, ranging from -1.52 to 2.34 – the variability across methods and

size of the uncertainty is too great to make any conclusions about the impact of not

being assessed for transplant referrals within 1-year. As mentioned previously, the

estimated effects may point to the recorded treatment being an unreliable metric for

whether patients are actually informed of their options, thus providing little signal for

one-year referral. Figure 1.4(b) summarizes estimates for 1-year waitlisting. Among

all patients in the analytical sample, 6.7% were waitlisted within a year. In con-

trast to 1-year referral, where the effects across matching methods are generally small

and close to zero, the 1-year waitlisting results suggest mostly small and consistently

negative results. Again, these results may suggest that CMS-2728 is not accurately

recording whether patients are truly being informed of their transplant options or

not.

Finally, 1.4(c) suggests that there may be lingering confounding present after

matching with the various methods. In particular, we would not expect that being

informed of transplant options at the start of ESRD would have an effect on 1-year

mortality – the mechanism is likely to operate much more slowly, by allowing people

to obtain transplants over the course of several years more quickly than persons who
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were not informed when starting dialysis. Although 1-year mortality is not a pre-

treatment measure, substantial deviations between the treatment and control groups

in this measure may suggest that there are unobserved differences in the two treat-

ment groups, where one group is healthier than the other at the start of ESRD after

matching. In our analytical sample, there is an overall 1-year mortality proportion

of 13.3%, with the “not assessed” group having a 1-year mortality proportion that is

1.56% lower than the “informed” group before matching. Several of the approaches

result in a matched samples where the not assessed (treatment) group has a higher

1-year mortality proportion than the informed (control) group.

In addition to assessing differences in proportions between treated and control pa-

tients, we look at linear probability models that adjust for any imbalanced covariates

over 0.1 absolute standardized differences after matching in Figure A.6(b) for 1-year

referral. While linear probability models are not well suited for modeling binary out-

come data, the coefficient on the treatment effect is more readily interpretable as a

risk difference. Including covariates that may remain imbalanced after matching fol-

lows the suggestions of Ho et al. (2007), where matching is treated as a pre-processing

approach before using a parametric model. Figure A.6(c) shows similar model ad-

justments in a logistic regression; a drawback of this approach is that conditional and

marginal odds ratios need not be the same (Austin, 2007). These additional results

largely show the same patterns in effect estimates. Finally, in the Appendix in Figure

A.7 and Table A.8, we also present results from Cox proportional hazards models

for time-to-waitlisting and time-to-referral for 1-year of follow-up. Estimates of the

cause-specific hazard ratio are presented, where death acts as a competing risk for

our outcome of interest (Austin et al., 2016). Again, substantive conclusions here do

not change.

Because the DAPSm methods may be sensitive to the choice of weight or the type

of caliper chosen, the Appendix presents results for both the propensity score caliper
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as well as the DAPS caliper for many weights ranging from 0 to 1, demonstrating

some variability in the effect estimates (Figures A.8-A.11). In particular, when using

a propensity score caliper on the second DAPSm stage of the proposed two-stage

approach (Figure A.10), the estimates did not vary greatly based on the DAPSM

weight chosen. However, using the DAPS caliper (Figure A.11) produced a wider

range of estimates, with a small negative effect estimated when the weight was close to

0 (strongly favoring spatial distance vs. the propensity score difference in calculating

DAPS). The single-stage DAPSm methods with the DAPS caliper similarly showed

small negative effect estimates for very small weights. Differences in estimates suggest

some sensitivity to the parameters chosen, but in all cases, the uncertainty of the

estimates is large, and our substantive conclusions do not change.
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(b) Outcome: 1-year waitlisting
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(c) Outcome: 1-year mortality

Figure 1.4: Estimates of ATT: proportion difference between not assessed (treated)
and informed (control)
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1.6 Discussion

Applications with individual-level health data with unmeasured potential confounders

at the facility- and spatial-level pose a challenge for standard propensity score match-

ing techniques. We propose a two-stage approach that synthesizes recently developed

methods that leverage matching within facilities in the first stage and spatial distance

together with the propensity score in the second stage to obtain matches that may

more plausibly adjust for unobserved confounders at the facility- and spatial-level.

Comparing estimates across a variety of approaches, using propensity score models

with and without fixed or random effects in the proposed two-stage approach, along

with existing methods, can provide a useful assessment of the variability of results.

Our simulation study demonstrated that the two-stage approach generally did as

well as competing methods by attempting to adjust for potential confounders at the

spatial- and facility-level. With a continuous outcome, the proposed method with

fixed effects often had superior performance in terms of bias and MSE. With a binary

outcome, most methods that adjusted for the facility through a fixed or random

effect appeared to do well on various metrics, and our proposed method did not do

substantially better or worse than these competing methods. We also demonstrated

that in the setting where the facility confounder is likely to be of primary importance

and the spatial confounder of secondary importance, most methods that adjust for the

facility, either through within-cluster matching or through the inclusion of a random

or fixed effect, greatly reduce bias and MSE relative to methods that use a single-level

propensity score with no matching on the facility.

In the data application to incident dialysis patients in 2012-2013 in Georgia, plau-

sible estimation of the causal effect is limited by the following factors: (1) the facility

and question about informing patients about transplant options are difficult to sepa-

rate; (2) due to a substantial lack of overlap, taking into account the facility through

random or fixed effects results in a substantially smaller sample size that is no longer
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generalizable to the full treated population; (3) the study does not likely have suf-

ficient power to estimate a meaningful difference between the treated and control

populations; (4) differences in 1-year mortality suggest that matching may result in

treated and controls who may still differ in important ways; (5) for reasons laid out in

Salter et al. (2014), the treatment (not assessed vs. informed) is likely subject to sub-

stantial reporting error, and this reporting error may vary systematically by facility,

further complicating the validity of the analysis. In a sample of 388 patients, Salter

et al. (2014) find that in 27.8% of the patients, the provider reported informing the

patient about options when the patient did not report being informed. Furthermore,

patient-reported informed status and not provider-reported informed status was sig-

nificantly associated with an increased likelihood of waitlisting. These issues offer

several opportunities for further analyses and new research strategies. An additional

limitation is that our analysis can only include patients who have reached ESRD and

started dialysis; our analysis cannot include those who have chronic kidney disease

but who have not yet started dialysis, nor can we account for those who may have

died prior to ESRD.

Numerous issues are present with using CMS-2728 data as an accurate comparison

of patients. Eggers (2010) notes that the physician may not have access to a patient’s

medical history when filling out the form; alternatively, the form may be filled out by

an administrative assistant. Our analysis can be interpreted in this context: if the

recorded question accurately measured whether patients were being informed about

their transplant options, then we would expect there to be some statistical signal and

a meaningful estimated effect on referral for transplant after adjusting for patient,

facility, and spatial confounders. Since we see no effect across all methods we at-

tempted, we might conclude either that the measure has considerable measurement

error, or that the measure is not an important factor for 1-year referral. We also

may doubt whether any method here was able to appropriately fully adjust for con-
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founding. Finally, our results only hold for patients in Georgia who meet our various

inclusion criteria in 2012-2013. More research should be conducted to understand

the CMS-2728 measure and better measuring patient health at the start of ESRD for

comparison purposes.

Nonetheless, the use of a variety of different matching techniques, and including

the fixed or random effects in the propensity score, provides insight into the lack

of overlap and the difficulty in separating treatment effect from facility assignment

that might otherwise be ignored. We additionally acknowledge that there may be

substantial unobserved individual confounders not included in the analysis due to

the limited number of variables on the medical evidence form and the potential for

mismeasurement. In particular, few laboratory measurements of patients that would

indicate health status are available for the full sample, and socio-economic status is

not determined for individuals directly. Reported ZIP code centroids may also not

capture the relevant spatial scale for the unobserved spatial confounders. We also

focused on area-level covariates related to the patients’ residence, but it may also be

important to consider the area-level covariates of the dialysis facility.

Our study also assumes SUTVA holds. In applications where spatial and facility-

level factors are at play, there may be reason to expect that treatments assigned to

one patient impact another patient in the same area or facility (interference). Future

research should examine how to incorporate interference into such analyses; examples

of spatial causal analyses that consider interference include Keele and Titiunik (2018),

Zigler et al. (2012), and Verbitsky-Savitz and Raudenbush (2012). Papadogeorgou

et al. (2019b) considers interference and clusters with an application to air pollution

data.

There are other considerations for considering facility-level random or fixed effects.

Suppose that that we match individuals within the same facility, but that the facil-

ity distinguishes between patients based on some individual covariate (unobserved or



42

observed). We may not fully capture the nature of facility confounding through the

use of a fixed or random effect in this case. For example, a particular facility may

systematically treat uninsured patients differently from insured patients, or it may

base its decision for informing patients on some unobserved health status that is not

well captured by the observed covariates. Matching two individuals who have differ-

ent insurance statuses or health statuses within a facility may lead to an erroneous

conclusion in this case. Nevertheless, one may still believe on average the facility

impact on treatment assignment can be captured by the inclusion of a random or

fixed effect. Other approaches for considering facility-level confounding include one

proposed by Zubizarreta et al. (2012).

While our simulations provide insight into performance of several propensity score

matching approaches, more research is needed for developing these methods further

while explicitly incorporating both facility and spatial factors. Future research should

also address measurement error in the treatment variable, with or without validation

data, and consider facility-level variation in measurement error. Future work can also

consider instances where the spatial confounding may be considered to be of greater

importance than the facility.
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Chapter 2

Imputing satellite-derived aerosol

optical depth using a

multi-resolution spatial model and

random forest for PM2.5 prediction

2.1 Introduction

Ambient outdoor air pollution, particularly particulate matter less than 2.5 microm-

eters in aerodynamic diameter (PM2.5), poses a substantial risk to human health

(WHO, 2018; Lim et al., 2012; Lelieveld et al., 2015). Air pollution monitors that can

directly measure pollution concentrations are placed at a limited set of locations, re-

sulting in large areas without direct measurements of ground-level pollution exposure.

Aerosol optical depth (AOD) measures the amount of aerosol in the atmosphere and

can be remotely sensed by satellite instruments at various spatial resolutions (Levy

et al., 2013). A growing literature has developed for using satellite-derived AOD as a

proxy and predictor for PM2.5 concentrations, often in conjunction with land-use and
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meteorological variables, using a range of model types such as geographically weighted

regression, linear mixed effect models, and machine learning methods (Sorek-Hamer

et al., 2016; Chu et al., 2016; Shin et al., 2020).

However, AOD itself has substantial missingness, complicating the process of pre-

dicting PM2.5 concentrations. Gaps in AOD coverage are a result of cloud cover,

snow cover, and surface brightness; for the Moderate Resolution Imaging Spectrora-

diometer (MODIS) 10km product, on average each grid cell has no AOD available

on approximately 70% of days, with substantial variation across regions (Belle and

Liu, 2016; Belle et al., 2017). AOD’s patterns of missingness are also not random for

the purpose of PM2.5 prediction; cloud and snow cover may plausibly be related to

PM2.5 concentrations (Bi et al., 2019; Belle et al., 2017). At the scale of the conti-

nental United States, research suggests that missingness as a result of cloud cover is

not likely to greatly bias monthly and yearly PM2.5, although there is regional and

seasonal variation (Christopher and Gupta, 2010). However, Liang et al. (2020) show

that long-term PM2.5 estimates in China are substantially biased as result of missing

AOD observations. Furthermore, for health effects research, the relevant geographic

scale is small and more impacted by missingness. When using PM2.5 estimates based

on satellite-derived AOD with substantial missingness, time series studies will miss

many days and lose statistical power, and cohort studies will use potentially biased

exposure estimates, resulting in a loss of statistical power. A number of approaches

have been proposed for handling missing AOD observations when estimating PM2.5

(Shin et al., 2020). One approach has been to combine different AOD retrievals, al-

though this will still result in incomplete coverage; e.g., Geng et al. (2018) combines

AOD measurements from Terra and Aqua satellite using linear regression. Other

approaches have used AOD where available, but otherwise bypassed the need for

gap-filling AOD (Kloog et al., 2011, 2012; Lee et al., 2016).

Many recent studies use multi-stage approaches, where AOD is gap-filled, and
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then a model relating PM2.5 to the gap-filled AOD and other land-use and meteoro-

logical variables is fit. These gap-filling models may use land-use and meteorological

terms, as well as chemical transport model (CTM) estimates. Hu et al. (2017) forego

a statistical modeling procedure for gap-filling AOD, saving computational time, and

they replace missing AOD values with CTM (GEOS-Chem) estimates of AOD. Xiao

et al. (2017) and Huang et al. (2018) use linear models that include cloud fraction es-

timates, meteorological and land-use data together with smoothing splines to account

for spatial correlation for imputing AOD. Lv et al. (2016) gap-fill AOD using a model

that relates the ratio of daily and seasonal averages of PM2.5 to seasonal AOD values

for a grid cell for each city under study; a second stage then uses ordinary Kriging to

fill in remaining gaps. Because of the computational costs of ordinary Kriging, this

method will not scale well to large datasets, but previous studies suggest that smooth-

ing splines may not perform as well as Kriging in some settings (Laslett, 1994). Chen

et al. (2019) use a mixed effect model to first combine Terra and Aqua AOD measure-

ments, and interpolate missing AOD values using inverse-distance weighting (IDW).

IDW with a maximum distance will not be able to provide full coverage for AOD,

however, as there are large missing areas with no observed data. Random forest (RF)

is arguably the most popular machine learning method used for gap-filling, due to

the fast implementations available and its ability to account for complex non-linear

interactions of features (Breiman, 2001; Shin et al., 2020). Bi et al. (2019) uses a

two-stage model with RF being used to impute AOD using a number of relevant vari-

ables, including MODIS cloud and snow fractions. Stafoggia et al. (2019) and Zhang

et al. (2018) also impute AOD as part of a multi-stage process using RF. However,

judging performance based on “out-of-bag” measures or random holdouts of observed

data may be misleading in spatial prediction problems with large contiguous areas of

missing data. Furthermore, when a strong spatial pattern is present as in AOD, it is

unclear how RF performs compared to spatial statistical models.
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Importantly, models for gap-filling AOD are generally more costly to fit than

models for estimating PM2.5 due to the much larger number of daily observations.

For example, in our case study using a modeling grid of 12km spatial resolution over

the contiguous United States entails over 50,000 daily cells. While several studies have

used machine learning methods for AOD gap-filling to overcome the computational

costs, traditional spatial statistical methods like Kriging are not well-suited to handle

large datasets due to the need to invert the spatial covariance matrix. Over the course

of the last decade or so, several spatial statistical methods have been developed to

handle big data (Heaton et al., 2019; Bradley et al., 2016). Although considerable

attention has been given to using ensemble and hybrid approaches for estimating

PM2.5 (e.g., Shao et al. (2020); Xiao et al. (2018); Di et al. (2019); Murray et al.

(2019)), AOD gap-filling for large areas has received less focus, possibly due to the

greater computational cost.

To our knowledge, studies have not thus far considered ensemble methods for

combining large-scale spatial statistical methods with machine learning methods for

gap-filling AOD. In this study, we focus on a particular spatial statistical method,

lattice kriging (LK) (Nychka et al., 2015), together with RF for AOD gap-filling.

Our study considers both RF and LK models for gap-filling MODIS AOD, as well as

ensemble methods for combining these predictions following the super learner method-

ology (Van der Laan et al., 2007; Naimi and Balzer, 2018). Our case study focuses on

the contiguous United States using daily data for the month of July 2011. We focus

on a single month for computational reasons as the AOD models are fit daily. We as-

sess performance using spatially clustered holdouts for AOD gap-filling models that

may more accurately measure performance than more commonly used approaches.

Finally, we assess whether the imputed AOD product using ensemble methods im-

proves PM2.5 estimation in a random forest model. Broadly, we find that ensemble

methods can be effective for AOD gap-filling, but there is less evidence to suggest
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an ultimate benefit for PM2.5 estimation. In Section 2.2, we describe the motivating

data. In Section 2.3, we discuss briefly the lattice kriging and random forest methods,

as well as super learner methodology for combining multiple predictors. In Section

2.4, we assess the results from the daily AOD gap-filling experiments using spatially

clustered cross-validation folds. In Section 2.5, we assess whether imputing AOD

through the super learner method improves PM2.5 prediction on these days with a

random forest model. We conclude in Section 2.6.

2.2 Data

2.2.1 Study area

The study area of interest is the contiguous United States, consisting of 48 states and

Washington DC using daily data for the month of July 2011. Descriptions of the data

sources follow the work of Hu et al. (2017).

2.2.2 PM2.5 measurements

We obtain measurements of PM2.5 from the U.S. Environmental Protection Agency

(EPA) Air Quality System (AQS) (https://www.epa.gov/outdoor-air-quality-data).

We used 24-hour averaged concentrations collected from 1248 federal reference method

samplers.

2.2.3 MODIS AOD

For the purpose of this study, we utilize Collection 6 level 2 Aqua MODIS retrievals

at 550 nm wavelength using the MYD04 L2 product (Levy et al., 2013, 2015). High-

confidence AOD retrievals from the combined deep-blue/dark target parameter were

used (Belle and Liu, 2016). Following previous work (Hu et al., 2017), these retrievals

https://www.epa.gov/outdoor-air-quality-data
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Figure 2.1: MODIS AOD for July 1 and July 12, 2011. Full observed data for (a)
July 1 and (b) July 12, 2011; training data for (c) July 1 and (d) July 12, 2011.

July 1 has the least missingness, and July 12 has the most missingness in July 2011.
Grid cells with observed AOD values greater than 1 are excluded from display.

at a resolution of 10km are regridded to 12 km × 12 km Community Multi-Scare Air

Quality (CMAQ) grids. We consider daily MODIS AOD data from July 2011, for a

total of 53,807 daily cells in the contiguous United States. The proportion of cells

in which daily AOD is observed ranges from a minimum of 26.33% to 54.63%, with

an average of 41.08%. The top row of Figure 2.1 demonstrates two days with the

least and most missing observed AOD points. We used MODIS AOD rather than

a finer-scaled product (e.g., 1km2 products) as our goal was to explore large-scale

variation in the national map for AOD.
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2.2.4 GEOS-Chem AOD

GEOS-Chem is a “global 3-D model of atmospheric chemistry driven by assimi-

lated meteorological observations from the Goddard Earth Observing System (GEOS)

of the NASA Global Modeling Assimilation Office (GMAO)” (http://acmg.seas.

harvard.edu/geos/) (Bey et al., 2001). We utilize version 10.1 of the model us-

ing GEOS-5 meteorological data for 2011, with total column AOD calculated as the

sum of 6 AOD parameters (sulfate-nitrate-ammonium, black carbon, organic carbon,

accumulation-mode sea-salt, coarse-mode sea-salt, and total dust) over 37 vertical

layers (from the surface up to ≈ 20 km) (Hu et al., 2017; Li et al., 2013b).

2.2.5 Meteorological variables

We obtained meteorological data from the North American Land Data Assimila-

tion System phase 2 (NLDAS-2) (https://ldas.gsfc.nasa.gov/nldas/) (Cosgrove

et al., 2003; Mitchell et al., 2004). These data have a spatial resolution of approxi-

mately 13 km and are available hourly. For this analysis, we use pressure at surface

(pa), u- and v-direction wind speed (m/sec), temperature (K), relative humidity (%),

precipitation (kg/m2), fraction of total precipitation that is convective (no units),

convective available potential energy (J/kg), surface DW shortwave radiation flux

(W/m2), surface DW longwave radiation flux (W/m2), and potential evaporation

(kg/m2). Measurements are averaged from 10 a.m. to 4 p.m. local time to construct

daily daytime observations, roughly coinciding with the Aqua overpass time (about

1:30 pm).

2.2.6 Land use

We include include elevation obtained from the National Elevation Dataset at 30 m

spatial resolution (https://viewer.nationalmap.gov/basic/). We obtained total

http://acmg.seas.harvard.edu/geos/
http://acmg.seas.harvard.edu/geos/
https://ldas.gsfc.nasa.gov/nldas/
https://viewer.nationalmap.gov/basic/
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length of highways (m), total length of limited-access road (m), and total length of

local road (m) from ESRI StreetMap USA (Environmental Systems Research Insti-

tute, Redlands, California, USA). Forest cover (unitless) and impervious surface (%)

are derived from the National Land Cover Database (https://www.mrlc.gov/). In

addition, we include point emissions data for PM2.5 and PM10 combined (in tons)

from the EPA 2011 National Emissions Inventory report (https://www.epa.gov/

air-emissions-inventories). Population density is obtained from the 2010 Cen-

sus at the tract level (population/km2).

2.2.7 Data integration

Data were projected into a common coordinate system using the U.S. Lambert con-

formal conic projection. For each 12 km × 12 km grid cell, forest cover, impervious

surface, and elevation were averaged, while road length and point emission values

were summed. Meteorological variables and population density were assigned based

on nearest distance. Grid cells containing multiple PM2.5 monitors for a day were

averaged.

2.3 Statistical methods

We provide a brief description of lattice kriging (with additional details in the Sup-

plementary Materials), random forest, and super learner methods.

2.3.1 Lattice kriging

We follow the model description of lattice kriging (LatticeKrig or LK) laid out by

Nychka et al. (2015). LK has been effectively used for spatial prediction in a variety

of different applications, such as indoor gamma radiation dose-rates (Chernyavskiy

et al., 2016) and satellite-measured land surface temperatures (Heaton et al., 2019).

https://www.mrlc.gov/
https://www.epa.gov/air-emissions-inventories
https://www.epa.gov/air-emissions-inventories
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At a high-level, LK models the spatial process using several levels of two-dimensional

basis functions, which are laid out on a grid and approximately double with each

successive layer. These basis functions are compact, which means that for a partic-

ular point only a small number of basis function are used to make the prediction.

The coefficients associated with the basis functions are assumed to be correlated,

and this structure can flexibly model observed spatial covariance structures. Esti-

mation proceeds through a likelihood-based approach after specifying various tuning

parameters.

Following the notation of Nychka et al. (2015), we observe {yi} at locations {xi}

for i = 1, .., n. We assume {yi} follow an additive model consisting of a mean function

based on covariates, a spatial process, and a measurement error term:

yi = ZT
i d + g(xi) + εi, (2.1)

where d is a p × 1 vector of fixed coefficients associated with the covariates Zi, and

g(xi) denotes the spatial process. The mean-zero error terms εi are presumed to be

independent and identically distributed, i.e., ε ∼ N(0, σ2I), where ε = (ε1, ..., εn)T .

The overall spatial process g(xi) can be written as a sum of L independent spatial

processes gl(xi):

g(xi) =
L

∑
l=1

gl(xi) =
L

∑
l=1

m(l)

∑
j=1

cljφj,l(xi), (2.2)

where φj,l denotes the the lth level of resolution’s jth basis function, and clj denotes the

coefficient associated with this basis function. Although the basis functions and num-

ber of levels are fixed (i.e., chosen), the coefficients for each level l, cl = (cl1, ..., clm(l))T

are assumed to follow a multivariate normal with mean zero and covariance ρQ−1
l :

cl ∼ N(0, ρQ−1
l ). (2.3)
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Each level’s spatial process is independent with marginal variance ραl subject to the

constraint ∑Ll=1αl = 1, so that the marginal variance of the overall spatial process

g(xi) is ρ. We provide a more thorough description of the model in the Supplemental

Materials, and we also refer readers to the originating paper (Nychka et al., 2015),

the comparison paper by Heaton et al. (2019), and the documentation for the R

implementation (Nychka et al., 2016). We note that a disadvantage of LK is that it

is not currently implemented to handle spatio-temporal data.

Parameters

Several parameters can impact LK’s predictions and inference. We review them here

and discuss their impact on the implied spatial covariance, along with the associated

parameter name in the R package LatticeKrig (version 8.4) (Nychka et al., 2016)

implementing the method:

• Number of basis functions and levels : The number of basis functions follows

from: (1) specifying the number of levels of resolutions, denoted by nlevel in

the package, and (2) specifying the number of basis functions along the longest

dimension at the first (coarsest) level of resolution, parameterized by NC. Each

successive level of resolution has roughly double the basis functions, so this de-

termines the entire grid. Nychka et al. (2015) suggests choosing these so that

the coarsest level of resolution can capture the overall correlation range, and so

that the finest level of resolution can capture fine scale changes in the spatial

process. Holding all else constant (including the levels of resolution), increasing

the number of basis functions at the coarsest level decreases the implied covari-

ance for a given distance. A parameter for adding extra basis functions to the

edges to reduce artifacts in prediction is determined by NC.buffer, which is set

to 5 by default.

• Relative weight of each spatial level’s process : Recall that each level’s spatial
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process gl(xi) has a marginal variance of ραl where ∑Ll=1αl = 1. In the package

implementation,
√
αl multiplies the basis functions (after normalization), such

that

g(x) =
L

∑
l=1

√
αlgl(x) =

L

∑
l=1

m(l)

∑
j=1

clj(
√
αlφj,l(xi)).

Choosing α parameters (relative weights) can be simplified into a single tuning

parameter ν (nu in the R package), where αl ∝ 2−2lν . Small values of ν (e.g.,

0.1) weight each level of resolution more equally, while larger values of ν (e.g.,

1.25) result in more heavily weighting the coarsest level of resolution.

• Scale/range parameter : Briefly, the coefficient vector cl for level l follows a

Gaussian Markov random field, and in particular, a spatial autoregression (SAR).

In the LatticeKrig package, one specifies a = 4+κ4 (or a.wght). Holding other

parameters constant, large values of a suggest less effective correlation range,

i.e., for a given distance the implied correlation of the LK model will be lower as

a is increased. A small value of a, e.g. 4.01 (the default setting in LatticeKrig)

is similar to a thin-plate spline where there is a very large range and strong

spatial dependence. Some greater detail in the originating paper and package

documentation (Nychka et al., 2015, 2016).

2.3.2 Random forest

Random forest (RF) consists of constructing a large number of regression trees (Breiman,

2001). At a high level, regression trees search for the best (as determined by mean-

squared error) binary split among the covariates (also referred to as predictors or

features), and then split the data accordingly. This process continues until some con-

dition is met (e.g., there is only 1 observation left, so no further split can be made).

Two key components of RF are: (1) bagging, or bootstrap aggregation, wherein each

tree is fit to a random sample (with replacement) of the original sample; and (2) at
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each node, the algorithm considers only a random subset m of the original p predic-

tors for deciding on the best split. A single decision tree would likely overfit to the

data. Averaging many trees that implement these two components results in reducing

variance while maintaining low bias from the procedure.

Consider a the vector of p × 1 features zi = (z1
i , ..., z

p
i )T , and the response yi, as

in the preceding subsection for LK, with i = 1, .., n. In our application, the z vector

includes the spatial coordinates x of the observation, as well as land-use and mete-

orological covariates. We describe the algorithm largely following the descriptions of

Zhang et al. (2019) and Chapter 15 of Hastie et al. (2009):

1. Draw a random sample of size n with replacement, denoted as Db = (z∗i , y∗i )ni=1.

2. Fit a single tree to the bootstrapped data Db through the following steps:

(a) Start at the root node, N , which consists of all bootstrapped observations.

(b) Draw a random sample of m features (without replacement) from the orig-

inal set of p features.

(c) Find the best split among the m selected features that minimizes the mean-

squared error. The mean-squared error is based on using the average of the

response values for the two subnodes. More formally, let j = 1, ...,m index

the selected features, z(j). For each of the m features, consider all unique

values c which are candidates for splitting observations into two subnodes,

N1 and N2. For each particular quantitative variable z(j) and possible split

value c, observations are assigned to N1 if z(j) ≤ c, and otherwise they are

assigned to N2. We then select the best split c among the m variables that

minimizes the squared error,

2

∑
k=1

∑
i∈Nk

(ȳ∗k − y∗i )2,
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where ȳ∗k is the average of responses in subnode Nk (Zhang et al., 2019).

(d) Continue each new daughter node until they have no more than nsize ob-

servations, no variation in the response, or no variation in the predictors.

(e) Denote the resulting tree as Tb.

3. Repeat steps (1) and (2) for b = 1, ...,B total trees.

4. Produce predictions based on the average of the B trees, ŷ = B−1∑Bb=1 Tb(z).

Because a random sample with replacement is taken for each tree in RF, each tree can

generate out-of-sample predictions for those observations not selected. The overall

out-of-sample, or out-of-bag (OOB), prediction error can be used to approximate the

test data error and tune the parameters in many settings. However, in spatial data

settings, the training and test data may reflect very different spatial domains. Using

the OOB prediction to tune parameters may be deceiving in this case; we discuss this

in greater detail in the Supplemental Materials.

There are several options for RF in R such as randomForest (Liaw and Wiener,

2002). We utilize the ranger package (version 0.12.1) in R (Wright and Ziegler, 2017)

which is built to better handle large data. A benefit of RF is that it may easily be

parallelized, as the fitting of each tree is independent. The ranger implementation

automatically detects the number of CPU cores in an environment and parallelizes

accordingly. Random forest, unlike LK as currently implemented, could be fit to

spatio-temporal data using appropriate features to denote temporal aspects of the

data (e.g., see Just et al. (2018)). However, we take the approach of fitting separate

models for each day for the task of AOD gap-filling, treating each day as a separate

experiment.
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Parameters

The key parameters are the number of trees (B), the number of predictors to randomly

select for each split (m) from the original p, and the node size (nsize). In general,

we choose B to be large for predictions, while we consider different values for nsize

and m. In our experience, nsize is of secondary importance compared to m. In this

implementation, B is denoted by num.trees (500 by default), nsize is denoted by

min.node.size (5 by default in regression), and m by mtry (the integer floor of
√
p

by default). These are the same defaults as in randomForest, with the exception

of mtry, which is p/3 for regression problems. Several research articles discuss these

parameters in a variety of contexts; see Segal (2004), Biau and Scornet (2016), Probst

et al. (2019) and the references therein.

2.3.3 Super learner methods

Super learners (SL), related to stacked generalization and stacked regression methods

(Breiman, 1996), use a potentially large and diverse set of algorithms by weighting

their predictions optimally according to some risk measure such as squared error loss.

Although a large number of algorithms are recommended in practice, we use just RF

and LK as our algorithms in order to demonstrate the use of SL and to maintain

focus on the cross-validation approach. The process for super learners is as follows

(Van der Laan et al., 2007; Polley and Van der Laan, 2010; Naimi and Balzer, 2018):

1. Divide observed data into k folds.

2. For each fold k, let the kth fold be the validation data, and the remainder be

the training data. Fit each algorithm or model m to the training data and make

predictions on the kth fold.

3. Stack all predictions ŷm for each algorithm.
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4. Estimate the weights αm for algorithm m = 1, ...,M using the model formulation

yi =
M

∑
m=1

αmŷi,m + εi, (2.4)

where αm ≥ 0 and ∑Mm=1αm = 1. αm can be estimated by non-negative least-

squares methods and then normalizing the weights to sum to 1.

After these αm model weights are estimated through the cross-validation pro-

cess, each algorithm is fit to the full observed data, and test data predictions are

made by using these weights for combining predictions. Davies and Van Der Laan

(2016) provides a discussion of extending super learner theory to the case of spatial

data. Murray et al. (2019) uses a similar stacked regression approach for determining

weights in combining separate models for PM2.5 prediction.

For each day, we construct 10 cross-validation folds using the blockCV R package

(version 2.1.1) (Valavi et al., 2019). This constructs spatial blocks for the validation

dataset, so that performance more accurately mimics the task of gap-filling AOD. In

the Supplemental Materials, we provide a full set of the maps showing these spatial

block cross-validation folds. Sarafian et al. (2019), Murray et al. (2019) (for PM2.5

prediction) and Young et al. (2016) (for NO2) also consider spatially clustered cross-

validation approaches for assessing model performance. Based on the cross-validation

folds, we stack LK and RF validation predictions. We assess 4 different methods for

combining LK and RF, where we restrict the weights in (2.4) to be between 0.1 and

0.9:

1. Average. We construct a simple average of RF and LK predictions. Cross-

validation data is not used in this approach.

2. SL: overall. After stacking all of the cross-validation predictions for all days

together, we produce a single set of optimal weights with (2.4) for making

predictions.
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3. SL: daily. We stack cross-validation predictions for each day separately, and

we obtaining a daily set of optimal weights with (2.4).

4. SL: distance-based. For each cross-validation fold on each day, we deter-

mine the closest distance between each point in the cross-validation fold and

the training data. We then stack all of the cross-validation predictions across

days together with these nearest-neighbor distances. We then bin these stacked

predictions according to distances with bin widths of 25km from 0 to 300km

and higher. Using (2.4), we estimate the optimal weights for LK and RF for

each distance grouping. We then fit a simple loess model relating interval mid-

point distance and optimal weight, and we use these fitted optimal weights for

combining LK and RF for predictions. The motivation for this last technique

is that the farther the unobserved point is from the observed data, the more

different algorithms may be in predictions. If there is strong spatial correlation,

then LK may perform better; in contrast, if there is limited range in the spatial

correlation and the covariates are more important, then RF may produce better

fits based on the relationship between the covariates and response.

2.4 Application to AOD imputation

2.4.1 Experimental setting

From the observed AOD data, we consider a spatially clustered approach for creating

a testing dataset on which to evaluate the results. In the proposed method, ten

random AOD observations are selected from the observed AOD values for each day.

These observations and any other observations within a 250km radius are then held

out as the test dataset. Figure 2.1 demonstrates the observed and training data on

two particular days. This approach to creating testing data is an attempt to mimic
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the actual observed pattern of AOD data, where large contiguous areas are missing

and require imputation. In particular, for many missing observations, there are likely

no points nearby to aid in prediction. In our analysis, we consider each day separately

for model fitting and prediction. We primarily assess model performance on the basis

of root mean-squared error (RMSE) and the coefficient of determination (R2), as

well as the intercept and slope from a linear model relating the true left-out AOD

observations to the predicted values. Discussion of tuning random forest and lattice

kriging is provided in the Appendix.

2.4.2 Results

We highlight several results from our analysis. First, daily results show that any of

the average/super learner approaches match or exceed performance from either LK

or RF alone on a majority of days (Table 2.1, Figure B.2). While there are some

days where either LK or RF does particularly well, there are also days where they

perform worse than any of the other methods. The ensemble methods are the best

or close to the best in terms of RMSE and R2 on a majority of days. The distance-

based SL method performs best on more days (10 out of 31 days) than any of the

other approaches considered. Based on our described approach, the distance-based

SL prediction weights LK greater for testing points that are close to training data,

while for points farther away from the training data, it weights RF more, relying on

a combination of location, land use, and meteorological features (see Figure B.7 in

the Supplemental Materials).

Evaluating test predictions across all 31 days together, LK and RF have R2 values

of 0.644 and 0.619, respectively. The average and SL methods improve to R2 values in

the range of 0.657 to 0.659. Compared to LK alone, the RMSE is reduced 2.34% and

2.30% in the distance-based and overall SL models, respectively. A simple average

of the LK and RF predictions also provides most of these gains. The super learner



61

method based on the daily construction of weights performs well but is marginally

worse than the other ensemble methods.

Both LK and RF methods diverge substantially from using just the observed AOD

data in the July 2011 averages (Figure 2.2). LK and RF predictions are notably

different from each other in areas of high elevation in the Appalachian Mountains

and in parts of Colorado, where LK predicts higher values relative to RF (Figure

2.3). There are also apparent edge effects in some areas like Florida and Texas, where

LK predictions will tend to diverge more substantially from those of RF. These may

be partly due to issues with LK’s coefficient estimation in areas where there is little

data for a particular day (see Figures B.3-B.4 in the Supplemental Materials for plots

of daily AOD predictions and daily differences between LK and RF).

Method
# of days ranked

R2 RMSE (x100) Intercept Slope Best Worst
LatticeKrig 0.644 6.66 -0.01 0.94 7 12
Random Forest 0.619 6.90 -0.01 0.92 3 19
LK-RF Average 0.658 6.52 -0.01 0.97 4 0
SL: Overall 0.659 6.51 -0.01 0.97 4 0
SL: Daily 0.657 6.52 -0.01 0.96 3 0
SL: Distance-based 0.659 6.50 -0.01 0.96 10 0

Table 2.1: Summary statistics on combined test AOD predictions across all days of
July 2011.



62

Figure 2.2: July 2011 average of observed and predicted daily AOD: (a) Observed
AOD; (b) LK; (c) RF; (d) Average of LK and RF; (e) SL: Overall; (f) SL: Daily;
(g) SL: Distance-based. Grid cells with observed AOD values greater than 1 are

excluded from display.
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Figure 2.3: Difference between lattice kriging and random forest average AOD
predictions.
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2.5 Impact of imputed AOD on PM2.5 prediction

2.5.1 Experimental setting

Using the super learner distance-based method from the AOD gap-filling analysis,

we fit several random forest models for PM2.5 concentration estimation in order to

assess whether the inclusion of imputed AOD can improve performance. There are

five variations on the features available for random forest:

• M1: Include neither AOD nor GEOS-Chem.

• M2: Include GEOS-Chem.

• M3: Includes gap-filled AOD. This variable is defined to be observed AOD

where available, and otherwise the predicted AOD value based on the super-

learner distance-based method. GEOS-Chem is also included as a separate

feature.

• M4: Include AOD by replacing missing values of AOD with GEOS-Chem (as

in Hu et al. (2017)).

• M5: Includes observed AOD, and training solely on observations where AOD

is observed. For predictions, missing values of AOD are replaced with the gap-

filled AOD. GEOS-Chem is also included as a separate feature.

We consider three distinct 10-fold cross-validation approaches for assessing perfor-

mance:

• Random: Cross-validation folds are constructed by selecting observed PM2.5

monitors at random on a daily basis.

• Constant spatial clusters: Cross-validation folds are constructed by creating

spatially clustered areas that are constant across all days. A particular area of

the map will be assigned to the same cross-validation fold for every day.



65

• Varying spatial clusters: Cross-validation folds are constructed by creating

spatial clusters at random for each day.

Spatial clusters are constructed using the blockCV package (version 2.1.1) in R with

block widths of 150km. Figure B.8 in the Supplemental Materials displays the con-

stant spatial construction by color-coding monitor locations.

The other features included in the random forest models are the same as those in

the AOD analysis. All models except M5 additionally include an indicator variable

for whether AOD was observed at the location, and all models include a so-called

convolution layer of PM2.5. Several analyses (Hu et al., 2017; Di et al., 2019) have

demonstrated that a weighted-average of nearby PM2.5 observations can aid in model

prediction for PM2.5. Briefly, for each location, the convolution layer of PM2.5 is a

weighted average of all other training PM2.5 observations, not including the loca-

tion itself. The weights are inversely proportional to the squared distance between

locations (less distant observations in the training data are weighted more). The

procedure for creating the convolution PM2.5 layer must be repeated for each train-

ing/validation split for each day.

Models were fit both for each day separately as well as for all of the days in July

2011 together. In the latter spatio-temporal random forest model, day of the year

and day of the week are additionally included as integer predictor variables. Our

primary metrics of interest are RMSE, R2, and the full prediction maps, but we also

present the intercept/slope estimates from fitting a linear regression model with the

true PM2.5 values as the dependent variable and the random forest prediction as the

independent variable. For all models, we set the number of trees to 2000. We varied

m (mtry) between values of 4, 8, 12, and 16 and presented the best results for each

model and cross-validation fold type. The full maps and feature importance results

are based on m = 4. The Supplemental Materials include additional figures and tables

for m = 8.
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2.5.2 Results

We highlight a few notable results. First, the daily random forest models suggest

that RMSE is improved consistently but only marginally by including the imputed

AOD predictor vs. the four alternatives (Table 2.2, M3a). The outlier model is M5,

which trains solely on observations where AOD is observed and predicts using the

imputed AOD where AOD is missing. The results from model M5 are substantially

worse than the other models, with a relatively biased prediction map (Figure 2.5(d)).

For the remainder of the results, we omit discussion of this model. Generally the

gain in RMSE for M3 ranges from 0.01 to 0.03 µg m−3 against the other models.

The results for R2 are similar, with small gains of approximately 0.003. The gain

in performance is less in the random cross-validation case than in the two spatially

clustered cross-validation analyses. Second, the daily random forest models tended to

have better PM2.5 prediction in locations where AOD was not observed, regardless of

the features included. Third, cross-validated RMSE is substantially larger in spatial

cross-validation settings than in the case with folds consisting of randomly selected

locations.

The spatio-temporal random forest results in the second set of columns in Table

2.2 show somewhat different patterns. RMSE and R2 are generally improved over the

daily models for the random and varying spatially clustered cross-validation analyses,

but there is no longer a benefit to including imputed AOD. On the contrary, the model

predictions tend to do better when neither AOD nor GEOS-Chem are included on the

basis of R2 and RMSE. The exception to these results are in the constant spatially

clustered cross-validation setting – here there is some very marginal improvement from

including imputed AOD over the other models. We posit that in spatio-temporal

models, multiple days’ observations in the same area as where we intend to make

a prediction on a different day can largely diminish the predictive power of AOD.

However, when the same spatial area is consistently missing, the model can no longer
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rely on other days’ observations for the same area to improve prediction accuracy.

Notably, this setting mirrors qualities of producing full maps of PM2.5 observations.

Given that there is a fixed network of monitors (not all of which operate on every day),

PM2.5 prediction is primarily focused on areas where there is never a monitor present.

We emphasize that the improvement in RMSE from including the imputed AOD in

this constant spatially clustered cross-validation setting is small at 1.1%, 0.49%, and

0.57% compared to the models with no AOD or GEOS-Chem, just GEOS-Chem, or

the combined AOD/GEOS-Chem variable, respectively. Notably in this case, daily

models slightly outperform the performance of the spatio-temporal models. In the

other cross-validation settings, RMSE and R2 both improve substantially from fitting

a full spatio-temporal model over a series of daily models.

Results for RMSE and R2 by region (as defined by NOAA) and cross-validation

setting are also provided in Tables 2.3 and 2.4. RMSE results tend to be worst in

the West, Southwest, and Central regions across cross-validation settings. Notably,

although RMSE is quite low for the Northwest region, the R2 for this area is com-

paratively low. The spatio-temporal models improve the RMSE and R2 except for

the constant spatially clustered cross-validation, where there is no improvement and

perhaps a slight decrease in performance. Variable importance metrics for the m = 4

setting based on the spatio-temporal models are presented in Table B.1 using the

permutation-based method (Breiman, 2001). Briefly, this importance metric denotes

the increase in mean-squared error on the OOB sample for each tree after permuting

the values of the feature. On this basis, the convolution layer of PM2.5 is the most

important predictor for these models. When imputed AOD is included, the relative

importance of several other variables is slightly diminished. While imputed AOD is

not the most important feature, it appears substantively important on the basis of

mean decrease in accuracy. Additional feature importance tables are provided in the

Supplemental Materials for m = 8 (Table B.2). In general, for larger m, the convolu-
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Figure 2.4: Average July 2011 PM2.5 predicted map (µg m−3) using imputed AOD
spatio-temporal random forest model (M3).

tion layer of PM2.5 becomes more important – it is more likely to be selected as the

opitimal feature for splitting a node as m increases, and it is a particularly strong

predictor.

Figure 2.4 shows the July 2011 averaged values from M3 with the gap-filled AOD

as a feature in the spatio-temporal random forest model. When comparing model

M3 to models M1, M2, and M4, the average of monthly mean differences are close

to 0 µg m−3, but the monthly mean differences are apparently spatially correlated

(Figure 2.5). The model trained only on points where AOD is observed (M5) leads to

over-estimated average monthly values of PM2.5 relative to the model using gap-filled

AOD, with an average difference of 0.25 µg m−3. The standard deviation of daily

differences for all grid cells for July 2011 is 0.44 µg m−3 for M3 and M1, 0.32 µg m−3

for M3 and M2, and 0.38 µg m−3 for M3 and M4, suggesting small but meaningful

variability in the daily model predictions (Figure B.11).
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Figure 2.5: Difference between the imputed AOD RF model (M3) and other RF
models in average July 2011 PM2.5 predictions (µg m−3): (a) M1: model with no

AOD or GEOS-Chem; (b) M2: GEOS-Chem; (c) M4: Replacing missing values of
AOD with GEOS-Chem; (d) M5: Train on observed AOD, and predict by replacing

missing AOD values with imputed values.
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Daily Spatio-temporal
Setting AOD Status M1a M2a M3a M4a M5a M1b M2b M3b M4b M5b

RMSE (µg m−3)
Random All 3.30 3.29 3.28 3.30 3.68 2.96 2.98 2.99 2.98 3.20
Random Missing 3.30 3.28 3.27 3.29 3.84 2.99 3.00 3.02 3.01 3.29
Random Observed 3.31 3.30 3.29 3.31 3.41 2.92 2.94 2.95 2.94 3.04
Constant cluster All 3.66 3.64 3.62 3.64 3.99 3.68 3.66 3.63 3.66 3.75
Constant cluster Missing 3.61 3.58 3.56 3.59 4.09 3.63 3.60 3.57 3.61 3.74
Constant cluster Observed 3.74 3.73 3.72 3.73 3.82 3.76 3.75 3.72 3.73 3.76
Varying cluster All 3.66 3.65 3.63 3.65 4.00 3.33 3.34 3.35 3.35 3.56
Varying cluster Missing 3.61 3.58 3.57 3.60 4.11 3.34 3.33 3.34 3.34 3.61
Varying cluster Observed 3.75 3.74 3.72 3.74 3.83 3.33 3.35 3.35 3.35 3.47

R2 (x100)
Random All 75.3 75.5 75.7 75.4 69.7 80.4 80.2 79.8 80.0 77.1
Random Missing 75.9 76.2 76.3 76.1 68.1 80.5 80.4 79.9 80.1 76.5
Random Observed 73.8 73.9 74.1 73.8 72.3 79.9 79.7 79.3 79.5 78.0
Constant cluster All 69.9 70.1 70.4 70.1 64.1 69.6 69.9 70.3 69.9 68.6
Constant cluster Missing 71.5 71.8 72.2 71.7 63.6 71.2 71.6 72.1 71.5 69.8
Constant cluster Observed 66.8 66.9 67.2 66.9 65.2 66.4 66.7 67.1 66.8 66.6
Varying cluster All 69.7 70.0 70.3 70.0 63.9 75.6 75.6 75.4 75.5 72.1
Varying cluster Missing 71.4 71.8 72.1 71.7 63.2 76.3 76.4 76.2 76.3 72.2
Varying cluster Observed 66.5 66.6 67.1 66.7 65.1 74.1 73.9 73.9 73.7 71.8

Table 2.2: R2 and RMSE results from daily and spatio-temporal random forest
model for different 10-fold cross-validation settings.
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Daily Spatio-temporal
Setting AOD Status M1a M2a M3a M4a M5a M1b M2b M3b M4b M5b
Random Central 3.70 3.67 3.65 3.68 4.15 3.56 3.56 3.58 3.56 3.78

East North Central 3.17 3.17 3.16 3.18 3.52 3.04 3.03 3.01 3.02 3.15
Northeast 3.31 3.27 3.26 3.29 3.74 2.97 2.96 3.00 2.97 3.23
Northwest 1.48 1.49 1.49 1.49 1.82 1.23 1.24 1.24 1.24 1.35
South 2.35 2.35 2.33 2.35 2.77 2.11 2.13 2.15 2.15 2.39
Southeast 3.55 3.54 3.53 3.56 4.22 3.39 3.41 3.40 3.43 3.72
Southwest 4.13 4.11 4.09 4.10 4.43 3.58 3.61 3.62 3.54 3.94
West 4.41 4.42 4.41 4.40 4.47 3.58 3.64 3.70 3.67 3.76
West North Central 2.91 2.92 2.92 2.92 3.08 2.34 2.37 2.35 2.35 2.50

Constant cluster Central 4.38 4.34 4.32 4.34 4.67 4.54 4.49 4.46 4.50 4.60
East North Central 3.36 3.36 3.34 3.36 3.67 3.46 3.41 3.38 3.43 3.48
Northeast 3.55 3.51 3.49 3.53 3.90 3.54 3.49 3.46 3.50 3.60
Northwest 1.48 1.48 1.50 1.49 1.84 1.46 1.46 1.46 1.46 1.53
South 2.47 2.47 2.46 2.47 2.90 2.49 2.47 2.47 2.48 2.64
Southeast 3.91 3.88 3.83 3.90 4.54 3.94 3.92 3.85 3.93 4.08
Southwest 4.29 4.27 4.26 4.27 4.60 4.34 4.34 4.35 4.32 4.47
West 5.20 5.21 5.21 5.19 5.28 5.10 5.11 5.08 5.08 5.08
West North Central 3.04 3.04 3.04 3.04 3.18 3.09 3.08 3.08 3.08 3.09

Varying cluster Central 4.39 4.34 4.32 4.34 4.70 4.29 4.26 4.26 4.27 4.50
East North Central 3.34 3.35 3.34 3.34 3.74 3.30 3.29 3.28 3.29 3.37
Northeast 3.53 3.49 3.49 3.51 3.94 3.26 3.23 3.27 3.25 3.49
Northwest 1.51 1.51 1.52 1.53 1.85 1.29 1.30 1.31 1.31 1.39
South 2.48 2.49 2.48 2.49 2.93 2.31 2.33 2.34 2.33 2.59
Southeast 3.92 3.89 3.84 3.92 4.54 3.76 3.74 3.70 3.75 4.03
Southwest 4.45 4.44 4.42 4.42 4.76 3.97 4.02 4.07 4.02 4.30
West 5.16 5.17 5.14 5.16 5.18 4.18 4.23 4.26 4.25 4.42
West North Central 2.97 2.97 2.97 2.97 3.11 2.40 2.43 2.45 2.45 2.57

Table 2.3: Regional RMSE results (µg m−3) for daily and spatio-temporal random
forest model for different 10-fold cross-validation settings.



72

Daily Spatio-temporal
Setting AOD Status M1a M2a M3a M4a M5a M1b M2b M3b M4b M5b
Random Central 61.1 61.7 62.1 61.5 51.1 64.7 64.7 63.8 64.1 59.3

East North Central 69.4 69.6 69.7 69.3 63.3 72.8 73.2 72.6 72.5 70.7
Northeast 77.0 77.6 77.8 77.4 70.8 81.9 82.0 81.3 81.6 78.4
Northwest 44.6 44.2 44.0 44.5 28.2 61.2 60.9 60.0 60.1 53.6
South 68.0 68.1 68.4 68.0 57.9 74.5 74.0 73.2 73.1 67.5
Southeast 70.4 70.6 70.8 70.2 59.5 73.2 73.1 72.8 72.3 68.3
Southwest 46.6 47.3 47.7 47.4 42.4 61.1 60.6 59.3 61.0 51.9
West 50.7 50.5 50.8 50.9 49.2 68.7 67.7 65.7 66.4 64.8
West North Central 39.2 39.1 38.9 38.8 33.3 61.5 60.4 60.6 60.7 55.3

Constant cluster Central 48.0 49.0 49.4 49.2 40.1 45.0 46.0 46.7 45.9 43.5
East North Central 66.0 66.1 66.6 66.2 60.8 64.4 65.6 66.3 65.1 65.1
Northeast 73.8 74.4 74.7 74.1 68.1 74.0 74.7 75.1 74.5 73.3
Northwest 45.4 45.0 44.3 45.0 29.1 45.6 45.6 45.3 45.5 43.7
South 64.5 64.6 64.9 64.5 53.5 64.3 64.9 65.0 64.6 61.5
Southeast 64.4 64.9 65.9 64.5 53.5 64.1 64.4 65.6 64.2 62.5
Southwest 41.9 42.5 42.8 42.6 35.1 40.5 40.4 40.3 40.9 37.5
West 34.6 34.6 34.5 35.1 32.0 36.6 36.6 37.3 37.2 37.5
West North Central 34.0 34.1 34.1 34.0 28.8 32.1 32.4 32.6 32.4 31.6

Varying cluster Central 47.3 48.5 48.9 48.6 39.0 50.8 51.4 51.5 51.5 45.4
East North Central 66.5 66.5 66.7 66.5 59.1 68.5 69.1 69.3 69.0 67.4
Northeast 74.3 74.8 74.9 74.6 67.6 79.0 79.3 78.7 79.1 75.3
Northwest 42.5 42.4 42.0 41.9 26.7 58.1 57.7 57.0 56.8 52.1
South 64.3 64.2 64.4 64.1 52.7 70.2 69.9 69.6 69.8 63.1
Southeast 64.3 64.8 65.8 64.2 53.2 68.0 68.3 69.0 68.1 63.5
Southwest 37.5 37.8 38.5 38.5 30.6 53.0 52.0 50.9 52.8 43.7
West 33.8 33.6 34.4 34.1 32.8 58.8 57.7 57.3 57.5 52.4
West North Central 36.6 36.7 36.8 36.6 31.4 59.8 58.8 58.1 58.4 53.4

Table 2.4: Regional R2 (x100) results for daily and spatio-temporal random forest
model for different 10-fold cross-validation settings.
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2.6 Discussion

We highlight the main findings of this study in three points. First, we emphasize the

importance of constructing testing and cross-validation data that mimic the missing

data patterns for both AOD and PM2.5 prediction. Previously reported metrics for

AOD gap-filling using RF may be over-stated if using out-of-bag (OOB) metrics (Bi

et al., 2019; Stafoggia et al., 2019), as using large contiguous areas for testing suggests

substantially lower R2. Different cross-validation settings for PM2.5 model evaluation

also suggest that performance varies considerably based on the manner of holdout,

echoing the findings of previous studies that “spatial” cross-validation performance

metrics are typically worse than random cross-validation metrics. In our study, our

spatial cross-validation procedures leave out spatially clustered sets of monitors as in

several recent studies (Murray et al., 2019; Young et al., 2016; Sarafian et al., 2019).

Our results show roughly similar performance metrics for PM2.5 estimation compared

to previous RF results when using the random cross-validation setting, with ≈ 0.80

(≈ 2.99) vs. 0.81 (2.78) R2 (RMSE) for summer 2011 in Hu et al. (2017). We fit data

for July 2011 only, and without additional variables such as convolutional layers for

land use terms.

Second, we demonstrate how super learner approaches combining a large-scale

spatial statistical method and machine learning predictions can improve upon the

performance of each constituent predictor, and how the super learner method can

be further modified for the particular task of AOD gap-filling. Future work should

examine extensions to more machine learning and spatial statistical methods. For ex-

ample, several recent studies have highlighted a number of spatial statistical methods

with promising predictive performance and low computational costs (Cressie et al.,

2010; Bradley et al., 2016; Heaton et al., 2019), and using these in an ensemble ap-

proach may provide further improvements. Spatial data present additional theoretical

challenges for super learner methods given that the training data and testing data
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will generally not be independent of each other (Davies and Van Der Laan, 2016). A

limitation of the current study is the limited time frame and the use of daily rather

than spatio-temporal AOD gap-filling models. We focused on July 2011 as there was

on average less missingness in AOD in the summer than in other months, and we

limited our analysis to a single month due to the high computational cost of fitting

daily models with 10-fold cross-validation for the super learner. Future studies may

consider expanding the timeframe of spatial prediction beyond a month and including

spatio-temporal models that may better utilize the available observed data. Through-

out our analysis, we assume that the missing data mechanism for AOD is missing at

random (MAR); that is, we assume that AOD’s missingness mechanism depends only

on the observed values of AOD and other covariates (Little and Rubin, 2019). How-

ever, there is some evidence to suggest AOD’s missingness is informed by its values,

which should be further studied in future work (Grantham et al., 2018).

Finally, we demonstrate that imputed AOD using our proposed ensemble method

can have a very small impact on particular RF models for estimating PM2.5 con-

centrations, depending on the cross-validation setting. With a convolution-layer of

PM2.5 and a rich set of other features, we generally find that AOD (imputed or not),

is not strictly needed for good prediction of PM2.5 in RF models as judged by R2

and RMSE. However, population-level metrics like R2 and RMSE may be misleading

in masking improved small-scale predictions, and we find subtle differences in the

monthly predicted values between models with and without gap-filled AOD as a pre-

dictor. Similarly, Huang et al. (2019) find meaningful differences in PM2.5 predictions

in models with and without AOD, particularly in areas with sparse monitors and on

high-pollution days. A limitation of the current study is the lack of certain variables

for AOD gap-filling and PM2.5 estimation; previous work has found that the inclusion

of cloud and snow fractions may improve AOD gap-filling and produce meaningful

visual improvements in PM2.5 estimation (Bi et al., 2019). Moreover, finer resolution
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AOD products such as multi-angle implementation of atmospheric correction (MA-

IAC) derived AOD may provide greater prediction power for PM2.5 (Goldberg et al.,

2019) at the expense of increasing the computational costs of gap-filling.
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Chapter 3

A framework for assessing

COVID-19 testing site spatial

access

3.1 Introduction

Readily accessible testing is critical to understanding and stopping the spread of

COVID-19, and has remained an important issue throughout the pandemic in the

United States. The spatial accessibility of testing sites reflects the availability and

the travel distance to local testing sites (Guagliardo, 2004). Areas with fewer testing

locations will likely deter more local residents from getting tested for COVID-19, cur-

tailing disease surveillance and the ability to identify emerging hotspots. Reporting

from earlier in the summer of 2020 suggests considerable geographic variability in

testing access for large cities in the United States (Kim et al., 2020; Bronner, 2020),

where predominantly black and Hispanic areas were likely to be near testing sites with

greater demand than predominantly white areas in a number of large U.S. cities.

In this study, we hope to add to the current understanding of testing site access
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in Atlanta, Georgia. We build on an approach from the environmental justice lit-

erature that previously examined population exposure to toxic release sites (Waller

et al., 1997, 1999). In this approach, the distribution of exposure is assessed within

each demographic subgroup and the distributions are then compared. Waller et al.

(1997) introduced the use of empirical CDFs (ECDFs) as a way to compare these

distributions among racial subpopulations for exposure to toxic release sites. Here,

we instead consider measures of access to testing sites rather than exposure to toxic

release sites. In this framework, the population in a given small area is assigned a

common access value. As a straight-forward example, this measure could include the

distance from the area centroid to the nearest COVID-19 testing site. For each small

area, we also have complete information (or estimates) of various demographic sub-

group population counts. For the encompassing geographic area of interest (e.g., the

metropolitan Atlanta area), we then construct ECDFs of access within each demo-

graphic subgroup in order to assess how the distributions of access compare. In our

analysis, we assess both the metropolitan Atlanta area as well as Fulton County, the

most populous county and home to the majority of the city of Atlanta. We consider

both public testing sites as well private testing sites such as drive-thru locations.

We build on the approach laid out by Waller et al. (1997, 1999) by considering a

more elaborate measure of spatial access in the COVID-19 testing context. In addition

to distance to nearest testing site, we consider a potential demand measure for nearby

testing sites that has recently been used in an analysis by FiveThirtyEight (Bronner,

2020). This potential demand measure accounts for situations more complex than a

simpler, naive distance-based measure, and it is related to two-stage catchment area

and gravity-based model measures that account for population demand (Guagliardo,

2004; Apparicio et al., 2017). For example, if there is a centrally-located testing site

in a population-rich area but no other testing sites nearby, distance to nearest testing

site would imply easy access, while the second measure we construct would adjust for
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the very large potential patient demand and dearth of other testing sites.

Next, we consider a Monte Carlo approach for assessing whether the observed

ECDFs for different demographic subgroup partitions are consistent with different

testing site sampling schemes. In practice, observed ECDFs may be a result of nu-

merous factors driving the placement of testing sites. In determining where to place

public testing sites, for example, county and city governments may work with under-

served community groups to ensure better access. Finally, we propose several ideas for

future extensions and research, including using additional measures of spatial access,

accounting for the underlying uncertainty in population estimates from the American

Community Survey, incorporating spatial equity measures into optimization proce-

dures for finding candidate locations for mobile testing site locations, extending data

collection across time and analyzing spatio-temporal placement of testing sites, and

incorporating various indicators of COVID-19 incidence. Given the importance of

research related to COVID-19, we emphasize that the data collection and analyses

presented here are on-going and intended to provide a foundation for future extensions

to assess spatial access.

3.2 Data

3.2.1 Testing sites

Our focus is on testing sites in the Atlanta area, and we collect information on testing

sites from Fulton County as well as the broader metropolitan Atlanta area. We divide

testing sites into four categories: (1) county or Georgia Department of Public Health

(DPH) free testing sites, sometimes in collaboration with the non-profit organization

Community Organized Relief Effort (CORE); (2) sites that have partnered with com-
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munities or governments to provide free testing1; (3) health centers as defined by the

Health Resources & Services Administration (HRSA) Health Center Program2 that

report COVID-19 testing; (4) other non-profit or charity sites; (5) private testing

sites, such as urgent care facilities or other sites like drive-thrus or curbside testing

sites.

Although there do exist publicly accessibly repositories with testing site location

data (see, e.g., URISA’s GISCorps, Coders Against COVID (findcovidtesting.com),

and Esri (2020), hereafter referred to as GISCorps data), due to the diverse collection

of companies and agencies providing testing and the changing set of locations over

time, we find occasional issues with these repositories, such as the inclusion of sites

that are no longer in operation. For our work, data on public testing sites were

manually obtained from county websites, CORE, public health district websites, and

the Georgia DPH website for the week of September 28 through October 3, 202034.

These testing sites were open for at least 1 day during this target week. Currently,

our analysis does not take into account the number of days each testing site was in

operation, nor do we collect data on testing site capacity, although future work may

include this information. The Appendix contains a list of websites that were used for

this process.

Data for health centers were obtained from the HRSA website5 on September 29,

2020 within 100 miles of midtown Atlanta if the sites confirmed providing COVID-19

1These sites include 4 Walmart partnerships with eTrueNorth and a CVS community partnership
site

2According to the HRSA “Find a Health Center” tool, “health centers provide services regardless
of patients’ ability to pay and charge for services on a sliding fee scale.”

3Fulton County’s website at https://www.fultoncountyga.gov/covid-19/

covid-testing-sites provides the most comprehensive listing of testing sites (including
CORE sites) for the upcoming week. Many of these sites are not listed in the Georgia DPH site –
furthermore some site dates and locations are revised as the week goes on. We initially collected
information on testing sites on September 28, 2020 and revised this on October 1, 2020.

4Currently (as of October 13, 2020), the Georgia DPH Testing website (https://dph.georgia.
gov/covidtesting) now embeds Castlight’s searchable map, which surfaces public and private
testing sites.

5https://findahealthcenter.hrsa.gov/tool

https://www.fultoncountyga.gov/covid-19/covid-testing-sites
https://www.fultoncountyga.gov/covid-19/covid-testing-sites
https://dph.georgia.gov/covidtesting
https://dph.georgia.gov/covidtesting
https://findahealthcenter.hrsa.gov/tool
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testing. When a health center operator reported multiple sites at the same address,

only one was kept. We note that being a HRSA health center does not guarantee free

COVID-19 testing6.

Collecting information on a plausible set of non-profit and private testing sites

relied on several sources of information. Broadly, our goal was to include sites that

performed some form of “on-demand” testing. First, we collected information on

urgent care clinic providers that reported COVID-19 testing in the metropolitan At-

lanta area. Several of these operators reported drive-thru or curbside testing to ac-

commodate patients seeking tests. These sites included urgent care networks such as

Peachtree Immediate Care (31 sites), Piedmont Urgent Care by WellStreet (17 sites),

Wellstar Urgent Care (16 sites), Northside Family Medical & Urgent Care (6 sites),

the Northeast Georgia Physician’s Group Urgent Care (6 sites), and others. We ad-

ditionally included several drive-thru and pharmacy sites that reported COVID-19

testing, including CVS7 (146 sites in Georgia), Kroger Health’s The Little Clinic (18

sites), Walgreens (9 sites), and Walmart in collaboration with eTrueNorth or Quest

diagnostics (13 sites).

We also used additional sources of information on COVID-19 testing to add ad-

ditional testing sites. First, we used Google Maps and Castlight’s list of COVID-19

testing sites for various ZIP codes in the Atlanta area to identify other potential test-

ing sites that may have been missed, after verifying their validity. Second, we used

a list compiled by Gwinnett, Newton, and Rockdale counties8 for additional free and

private testing sites in the metro Atlanta area. Finally, we used a list of compiled

6As an example, MedLink is an HRSA health center, but their website notes that “COVID-19
oropharangyl or nasopharangyl test is $80.” This is a lower out-of-pocket cost than most urgent
care centers. See https://web.archive.org/web/20201113222444/http://www.medlinkga.org/

local.cfm?id=124
7CVS notes on their website that COVID-19 tests are free for eligible uninsured persons under

a Federal program, as a result of the CARES act. Future work may focus on re-categorizing such
nominally “private” testing sites in a larger set of free testing sites for analyses.

8See https://www.gnrhealth.com/wp-content/uploads/2020/09/COVID-Testing-09.08.

20-3.pdf

https://web.archive.org/web/20201113222444/http://www.medlinkga.org/local.cfm?id=124
https://web.archive.org/web/20201113222444/http://www.medlinkga.org/local.cfm?id=124
https://www.hrsa.gov/CovidUninsuredClaim
https://www.gnrhealth.com/wp-content/uploads/2020/09/COVID-Testing-09.08.20-3.pdf
https://www.gnrhealth.com/wp-content/uploads/2020/09/COVID-Testing-09.08.20-3.pdf
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testing sites from GISCorps after removing sites already contained in our database

and checking the remaining sites for validity.

Our compiled set of testing sites has its limits which may impact analyses. We

chose not to include testing sites that only tested certain populations such as employee

screening sites or VA clinics, nor did we include hospitals or medical centers, as they

are likely to only perform testing in the course of performing other forms of medical

care. Finally, we did not include a comprehensive list of doctor’s offices that provide

COVID-19 testing, although this may be an avenue many symptomatic or exposed

persons take9. The HRSA health centers include a variety of different kinds of facility

types, and we include all of these10. Outside of the HRSA health centers, several

primary care clinics and family medicine clinics reported doing COVID-19 testing, but

we choose not to include these testing sites in our analysis set11. For county/CORE

sites, where possible, we used the latitude/longitude provided by the Georgia DPH

testing map – otherwise these addresses were geocoded along with the other testing

sites12. We consider the process for constructing the set of testing sites as preliminary

and any conclusions based on these should bear these limitations in mind.

3.2.2 Population and geographic area

Population information is obtained from the American Community Survey (ACS)

5-year estimates for 2014-2018 at the Census block group level (Manson et al., 2020).

9The Georgia DPH website says, “You can seek a COVID-19 test at your doctor’s office.”
10Future work may choose to limit to certain kinds of HRSA health centers after a more compre-

hensive investigation.
11For example, Wellstar reports “Wellstar is conducting COVID-19 testing across all hospitals,

health parks, offices and urgent care locations. All Wellstar physicians can refer patients for screen-
ing and COVID-19 testing, and anyone experiencing symptoms should contact one of the above
locations.” However, we only include the Wellstar urgent care locations rather than all primary care
offices, as these are not likely to be straightforward avenues for persons to get quickly tested.

12Counties in the North Georgia Health District, which includes Chero-
kee, Fannin, Gilmer, Murray, Pickens, and Whitfield, do not have their
addresses published on the their website https://www.nghd.org/pr/34-/

1175-update-now-3-locations-for-free-covid-19-testing-in-north-ga.html. We use
the County Health Department addresses, but we acknowledge some potential error here.

https://web.archive.org/web/20201013224719/https://dph.georgia.gov/how-covid-19-testing-georgia-works
https://www.nghd.org/pr/34-/1175-update-now-3-locations-for-free-covid-19-testing-in-north-ga.html
https://www.nghd.org/pr/34-/1175-update-now-3-locations-for-free-covid-19-testing-in-north-ga.html
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Although race and Hispanic ethnicity are not mutually exclusive, we use estimates of

the total population and mutually exclusive groups of black non-Hispanic, white non-

Hispanic, and Hispanic persons. From the ACS, we also obtain block group estimates

of persons above the age of 19 with and without health insurance, and estimates of the

number of persons living below and above the poverty level. From IPUMS NHGIS,

we additionally obtain shapefiles for block groups, counties, and the Atlanta 2010

Census-defined urbanized area (UA). We consider testing site analyses focusing on

just the Atlanta UA area, as well as an analysis focused on the Fulton County area.

Census urban area classifications help limit our analysis to more densely populated

areas, where distance to a testing site can more plausibly serve as a proxy for spatial

access (Bronner, 2020). We use the 2010 Census centers of population for block group

locations.

3.3 Methodology for assessing testing site inequity

3.3.1 Group-specific ECDFs of spatial access

Following Waller et al. (1997, 1999), consider a spatial access measure, xi, for persons

in Census-defined area i. That is, we assume that the measure is the same for all

persons within an area, and we define the measure based on the center of population.

In the context of the current study, this may be some function of distance to testing

sites from the block group center. We return to possible definitions of the spatial

access measure shortly. In this formulation, we construct group-specific ECDFs of

access,

Gj(x) =
∑i∶xi≤x nij
∑i nij

(3.1)

for each demographic subgroup j, where nij denotes the number of persons in group j

in area i provided by the Census. In the subsequent analysis, we consider race/ethnicity
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groupings, i.e., j ∈ {B,W,H} for black non-Hispanic, white non-Hispanic, and His-

panic, respectively, as well as above or below the poverty level, and insured or unin-

sured. By constructing these group-specific ECDFs, we are able to consider differences

at particular access thresholds (e.g., GW (x′)−GB(x′) for some access measure x′), as

well as integrated differences between ECDFs, ∫
∞

0 (GW (x)−GH(x))dx. For example,

these group-specific ECDFs allow us to answer what proportion of the underlying

group population is within 2 km of a testing site.

3.3.2 Spatial access definitions

A large literature exists in the area of health services and health geography research

examining different forms of spatial access to healthcare, including distance to nearest

site, two-step floating catchment areas, and gravity-based model measurements (see

Guagliardo (2004); Apparicio et al. (2017); Luo and Qi (2009) for a non-exhaustive

review of these methods). There are many factors to consider in such spatial access

measures, such as the type of distance (Euclidean or travel distance), the spatial unit

of reference, and the measurement itself (Apparicio et al., 2017). In the framework

of Guagliardo (2004), our focus is on measures of potential spatial access. In this

framing, we consider the distance and availability of testing sites, but we do not

consider utilization measures.

For this analysis, we consider two measures of spatial access. First, we consider

a simple distance to nearest testing site measure. For area center i and testing site

k = 1, ...,K, denote the distance as dik. Then the spatial access measure is defined as

xi = min
k
dik. (3.2)

Despite being relatively easy to interpret, nearest distance measures have known

problems for measuring spatial access in urban areas, as they do not account for
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congestion or population demand for testing sites (Guagliardo, 2004).

We also consider a more elaborate spatial access measure that takes into account

potential demand at testing sites. As an example, a centrally-located testing site

may be relatively close to a large population, but if it is the sole testing site for those

persons, then there is likely to be congestion and community need for a greater number

of testing sites. This second measure is used in recent reporting by FiveThirtyEight

(Kim et al., 2020; Bronner, 2020), and we attempt to replicate the procedure in the

following steps, with some modification.

1. For each area i, we define the nearest 10 testing sites by the set Ri. The

assumption is that persons in area i will seek a test only at sites k ∈ Ri. We

additionally (and deviating slightly from the FiveThirtyEight analysis) assume

that persons will only seek testing sites within 40 kilometers (≈ 24.85 miles) of

their block group centroid. Thus, Ri may be a set consisting of 10 or fewer

testing sites.

2. We assign the population ni for an area to the sites in Ri in a manner inversely

proportional to distance. Thus, we can define weights wik ∝ 1
dik

or wik ∝ 1
d2
ik

,

such that ∑k∈Ri
wik = 1. For the remainder, we consider the latter form, where

the weights are inversely proportional to the squared distance13. The number of

persons allocated to each test site k from area i is then denoted as mik = wikni.

3. After assigning every area’s population to testing sites based on distance, we

calculate the number of persons allocated to each test site k as

mk =∑
i

wikni =∑
i

mik.

This measure for the testing site is called the potential patient demand.

13Work is on-going to assess sensitivity to using 1
dik

instead. In general, 1
d2
ik

will place greater

weight on closer testing sites than 1
dik

.
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4. The access measure derived from this at the area level is the potential com-

munity need, or the average potential demand for nearby testing sites (ci).

To calculate this value, a weighted average of the potential patient demand at

nearby testing sites is taken. The weights here are the same as before, wik,

which are inversely proportional to distance or squared distance. If we let wik

be equal to 0 for sites k ∉ Ri, then we have:

ci =∑
k

wikmk.

Thus, this value represents a weighted average of the potential patient demand

at nearby testing sites.

The proposed measure has much in common with other gravity model-based mea-

sures in the spatial access literature that attempt to account for population demand

(Guagliardo, 2004; Apparicio et al., 2017; Luo and Qi, 2009). In these methods, the

distance decay coefficient (determining the spatial weights wik) is sometimes informed

by data and may vary by location, although we consider only squared distance here.

A shortcoming of the measure considered here is that we do not account for variation

in testing site capacity or days of operation. We consider incorporating operating

schedule information and additional spatial access measures in future work.

3.3.3 Application to Atlanta-area data

At present time, we have constructed a set of testing sites for the metropolitan Atlanta

area consisting of both public testing sites (i.e., county/CORE), health centers that

provide COVID-19 testing, community partnerships, and private testing sites for the

week of September 28, 2020. We posit that the wealthier areas of Fulton and Cobb

counties may depend less on free public testing sites, and policymakers may in turn

determine the placement of free public testing sites in response to where there is a
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greater economic need and a lack of health insurance. To this end, we construct the

nearest-distance and potential demand measures for three progressively larger sets of

testing sites:

1. Public: County/CORE testing sites;

2. Public + HRSA: In addition to the above, we additionally include community

partnership sites and HRSA health centers;

3. Public + Private: In addition to the above, we additionally include the re-

maining private testing sites, as defined in Section 2.

As mentioned previously, a shortcoming of this study is that we largely lack testing

site capacity information, and we do not draw any distinction between sites that are

operating 5 or 6 days, for example, and pop-up sites that are operating on a single

day.

We consider two geographic areas as previously mentioned. First, we conduct an

analysis that is limited to areas with at least 50% of their block group area in the

2010 Census-defined Atlanta UA, which contains the majority of Fulton, DeKalb,

Cobb, and Gwinnett counties as well as parts of surrounding counties. Second, we

consider an area consisting of all block groups in Fulton County. Importantly, we

only make these area restrictions after the access values are estimated. For each of

the two spatial access measures and each of the two geographic area definitions, we

calculate the ECDFs among three distinct partitions of the underlying population:

1. Race/ethnicity by considering block group estimates of black non-Hispanic,

white non-Hispanic, and Hispanic persons;

2. Poverty status, by considering estimates of persons above and below the poverty

level;
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3. Health insurance status, by considering estimates of persons above the age of

19 with and without health insurance.

3.3.4 A Monte Carlo approach to assessing ECDF curves

We extend the ECDF comparison approach in the Atlanta area by adding an addi-

tional visual tool for assessing test site access. The observed testing site placements

are likely the result of targeting of particular communities as well as financial and

physical constraints by county and city governments. Thus, differences in the ob-

served ECDF curves for demographic subgroups may be consistent with some plausi-

ble pattern of testing site placement. To assess whether this is the case, we consider

different simulation-based approaches for selecting testing sites and re-calculating the

two spatial access measures and resulting ECDF curves repeatedly.

To focus this exercise, we limit our attention to an ECDF analysis of Fulton

County using the county/CORE public testing sites only. We assume that testing

sites outside of Fulton County are fixed, but that the 30 testing sites inside Fulton

County can be placed at the centroid of any of the constituent 544 block groups14.

We consider two separate sampling schemes:

1. Population-based: Sample block group centroids without replacement using

the population share of Fulton County as the probability of being selected.

2. Poverty-based: Sample block group centroids without replacement using the

block group’s share of persons living under the poverty level as the probability

of being selected.

We conduct this Monte Carlo exercise 200 times and we plot the resulting ECDF

curves for comparison with the observed ECDF curves.

14I consider making the testing site placement more flexible in the future
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3.4 Results

In the Atlanta UA, there were 2132 block groups, while in Fulton County, there were

544 block groups. Figure 3.1 shows the block groups and surrounding testing site

locations for these two study areas of interest. Fulton County has a large number of

public testing sites relative to other areas in the metropolitan Atlanta area. There

is a large cluster of testing sites in the south-central part Fulton County and part

of DeKalb county, while other areas have a sparser set of public and HRSA health

center sites, partially filled in with other types of testing sites.

The first spatial access measure under consideration, distance to nearest testing

site (Figure 3.2), shows that black non-Hispanic and Hispanic persons are actually

more likely to be in close proximity to public testing sites than white non-Hispanic

persons in the Atlanta UA. Limiting the geographic scope to Fulton County, the rel-

ative advantage for black non-Hispanics remained while Hispanics were more similar

to non-Hispanic Whites (Figure 3.2b). When expanding to the additional testing

sites such as HRSA health centers, these patterns are largely the same (Figures 3.2c

and 3.2d). For the full set of public and private testing sites, however, differences

between the different racial and ethnic groups appear to be substantially less. Based

on distance to nearest testing site, this analysis suggests that public testing sites are

specifically targeting under-served populations, while other forms of testing sites are

largely serving other communities.

When using the modified FiveThirtyEight measure in Figure 3.3, we find broadly

similar but more exaggerated patterns. In particular, for Fulton County, the non-

Hispanic Black population is considerably better situated for access to public testing

sites (Figure 3.3b). This pattern once again is substantially diminished when we ex-

pand to the full set of testing sites, suggesting some strategic placement of the public

testing sites towards more under-served areas. In the Appendix, we find broadly sim-

ilar patterns, with public testing sites favoring uninsured persons and persons under
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(a) Block group populations and testing sites in
Atlanta UA

(b) Block group populations and testing sites in
Fulton

Figure 3.1: Block groups and testing sites in two areas of interest: (1) Atlanta UA
and (2) Fulton County; population totals from 2014-2018 ACS.
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the poverty level (Figures C.1-C.4). When the FiveThirtyEight measure is applied

to a subset of the testing sites, as in Figures 3.3a-3.3d, there are some limitations

in interpretation of the measure. This potential demand measure is constructed by

assuming all persons are allocated to only the subset of testing sites considered; in

practice some persons will go to public testing sites, while others will seek tests at

drive-thrus or other pop-up testing sites. Even in Figures 3.3e-3.3f, the full set of

testing sites included in our analysis will exclude doctor’s offices, employee screening

sites, and hospitals, as mentioned in Section 2. We think it is plausible that if one

were to include all of these additional testing sites, there would likely be more parity

between the subgroup ECDFs in Figure 3.3f. Nonetheless, we highlight the change in

ECDF differences across different sets of testing sites, which suggest that public and

private testing sites are filling in gaps in patient demand with respect to each other.

The Monte Carlo analysis for the public set of testing sites in Fulton County

demonstrates that the pattern of testing sites is much better explained by the poverty-

based placement of testing sites. For the nearest distance access measure, Figure

3.4b shows that when placing testing sites proportional to block group counts of

persons under the poverty level, the observed ECDF lines for white non-Hispanics,

black non-Hispanics, and Hispanics are roughly in line with the ECDF lines based

on the Monte Carlo simulations. Similar patterns hold for the poverty level and

health insurance status (Figures 3.4c-3.4f). Similarly, the Monte Carlo analysis for

the FiveThirtyEight measure shows substantially more visual agreement when using

the poverty-based placement of test sites rather than the population-based approach.

These results give additional evidence to Fulton County strategically placing testing

sites in under-served areas.

Figure 3.6 shows majority black, white, and Hispanic block groups, respectively,

in the Atlanta UA and Fulton County areas to help illustrate patterns in the ECDF

analyses for the potential demand measure. Predominantly white non-Hispanic block
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(a) Atlanta UA, county sites only (b) Fulton County, county sites only

(c) Atlanta UA, county and other publicly
funded sites

(d) Fulton County, county and other
publicly funded sites

(e) Atlanta UA, all testing sites (f) Fulton County, all testing sites

Figure 3.2: ECDF comparisons for distance to nearest testing site among white
non-Hispanic, black non-Hispanic, and Hispanic persons in the Atlanta UA (left

column) and Fulton County (right column), for public sites (top row), public sites
together with other community and HRSA health center sites (middle row), and all

public and private testing sites together (bottom row).
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(a) Atlanta UA, county sites only (b) Fulton County, county sites only

(c) Atlanta UA, county and other publicly
funded sites

(d) Fulton County, county and other
publicly funded sites

(e) Atlanta UA, all testing sites (f) Fulton County, all testing sites

Figure 3.3: ECDF comparisons for potential demand at nearby testing sites among
white non-Hispanic, black non-Hispanic, and Hispanic persons in the Atlanta UA
(left column) and Fulton County (right column), for public sites (top row), public
sites together with other community and HRSA health center sites (middle row),

and all public and private testing sites together (bottom row).
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(a) Population-based placement of testing
sites

(b) Poverty-based placement of testing
sites

(c) Population-based placement of testing
sites

(d) Poverty-based placement of testing
sites

(e) Population-based placement of testing
sites

(f) Poverty-based placement of testing
sites

Figure 3.4: Results of Monte Carlo sampling schemes on ECDF for distance to
nearest testing site, for sampling scheme using basing test site placement on

underlying population (left column) and underlying population of those under the
poverty level (right column). The gray, yellow, and sky blue lines denote the Monte

Carlo ECDF lines for black, red, and blue observed ECDF lines, respectively.
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(a) Population-based placement of testing
sites

(b) Poverty-based placement of testing
sites

(c) Population-based placement of testing
sites

(d) Poverty-based placement of testing
sites

(e) Population-based placement of testing
sites

(f) Poverty-based placement of testing
sites

Figure 3.5: Results of Monte Carlo sampling schemes on ECDF for potential
demand at nearby testing sites, for sampling scheme using basing test site placement

on underlying population (left column) and underlying population of those under
the poverty level (right column). The gray, yellow, and sky blue lines denote the

Monte Carlo ECDF lines for black, red, and blue observed ECDF lines, respectively.
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groups on the western part of Atlanta UA in Paulding County appare to have few

testing sites, while areas in Cobb and North Fulton are apparently well-served by a

collection of predominantly private testing sites. Black areas outside of the urban

core of Atlanta in southeast DeKalb and Rockdale Counties have very few testing

sites.

3.5 Discussion

While providing insight into patterns of placement of different types of testing cen-

ters, several limitations of the analysis remain and offer room for future improvement.

Several of these limitations are a result of the set of testing site data collected and

the measures used. First, although we made every effort to include a reasonable set

of public and private testing sites, we may have missed certain testing sites. Second,

we do not account for testing site capacity or days of operation of the testing sites in

question. This may, as a result, overstate the relative access of black non-Hispanics in

Fulton County, as many testing sites operate on one or two days in a week. Third, the

FiveThirtyEight measure may be inappropriate for application to subsets of testing

sites; implicit in the calculation is that everyone in the nearby block groups must

obtain COVID-19 tests at public testing sites, for example, which may skew these

measures. Future work may examine analyses that allocate portions of the block

group populations to different classes of testing sites in constructing measures, as

well as considering different distance-based weights for different areas depending on

population density, transit access and vehicle ownership. Fourth, we did not include

a number of testing sites, such as employee screening sites, VA clinics, and primary

care providers. Finally, we do not account for differences in disease burden in different

demographic subgroups in examining test site spatial access. Understanding dispro-

portionate disease burden in particular demographic subgroups may be important for
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(a) Majority white (b) Majority white

(c) Majority black (d) Majority black

(e) Majority Hispanic (f) Majority Hispanic

Figure 3.6: Potential patient demand for majority black, white, and Hispanic block
groups for Atlanta UA (left column) and Fulton (right column)
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understanding any inequity in observed testing site access. For example, differences

in disease burden in different race and ethnicity groups may partially explain differ-

ences in public testing site access if communities and governments are attempting to

place testing sites where there are the most new cases of COVID-19.

Additional approaches also exist for analyzing potential spatial access. In par-

ticular, Stamm et al. (2017) analyze spatial access to vaccines in response to the

H1N1a influenza virus in 2009, using detailed data on the availability of flu vaccine

supplies and service providers. They measure spatial access through an optimization

framework; this approach has the benefit of allowing the choice of one person (e.g.,

obtaining a vaccine at a particular location) to impact the rest of the system.

3.6 Future extensions

We highlight several areas for possible extensions to the above analysis.

3.6.1 Optimization methods for determining testing site place-

ment

Having assessed ECDF differences, we may also begin to inquire about the optimal

placement of new testing sites. Building upon Waller et al. (1997, 1999), we may

consider moving or adding an additional testing site in order to address both spatial

access and overall coverage. Define the optimization problem as:

max{
m

∑
j=1

ej − λ∣D(GW (xi),GB(xi))∣}. (3.3)

Let ej denote whether block group j is covered by a testing site or not, and λ denotes

a term weighting the importance of spatial equity. D(GW (x),GB(x)) denotes the

difference between the two race-specific CDFs and x is the access measure (nearest-
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distance to testing site, or potential demand at nearby testing sites). The difference

can be approximated as a discrete sum of rectangular areas:

D(GW (x),GB(x)) =
L

∑
l=1

{GW (xl) −GB(xl)}(xl − xl−1). (3.4)

3.6.2 Incorporating uncertainty about block group popula-

tion estimates

Constructing the ECDFs requires knowledge about Census block group population

characteristics. Previously, we assumed n were known (omitting subscripts for the

time being); now we suppose that we instead have estimates n̂. We assume a model

such that true values are drawn from a (possibly truncated) normal distribution:

n ∼ N(n̂, σ̂2).

We could imagine that this model could also incorporate spatial correlation. In

words, if we think a census block group under-counted blacks relative to the truth,

then neighboring block groups probably also under-counted, so that the errors are

correlated. We consider three basic error models, where we observe n̂ACS,ij for area

i from the ACS and subgroup j, along with the ACS margin of error, MOEij. We

assume that the true population count could have one of the following structures:

• Marginal model:

nij ∼ N(n̂ACS,ij, (
MOEij
1.645

)
2

) (3.5)

• Spatially correlated counts model:

nj ∼ N(n̂ACS,j,Σ0,j), (3.6)
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where diagonals of Σ0,j are (MOEij

1.645 )
2

and off-diagonals reflect correlation be-

tween counts in two areas. These correlations could be estimated using neigh-

bors or some distance function, possibly calibrated using the 2010 Census and

2008-2012 ACS, for example.

• CAR model:

nij = n̂ACS,ij + εij + vij, (3.7)

where εij ∼ N(0, (MOEij

1.645 )
2

) denotes an independent error term and vij denotes

the random effect with the CAR prior.

The analytical approach here is to use Monte Carlo methods for simulating es-

timates of population size for Census block groups, and re-calculating the ECDF

curves, as well as the integrated differences, for each sample draw. Thus, we can

propagate uncertainty about the population counts into the ECDF analyses.

3.6.3 Spatio-temporal extensions

With weekly data on public testing sites and tracking changes in private testing sites,

we would be able to access changes in testing site spatial access over time, as well

as contribute to crowdsourced projects that will improve access to data for other

researchers (in particular, see the GISCorps data). However, collecting the public

testing site data is labor intensive. Future work may include contacting the Georgia

DPH and county health departments to obtain testing site locations and schedules

directly.
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3.6.4 Incorporating disease case data into analyses and opti-

mization

An optimization framework for placing new testing sites would ideally incorporate

disease data as well as spatial access to testing sites. Sub-county data on COVID-

19 are somewhat limited, however. Fulton and DeKalb Counties provide the total

and new number of positive cases in each ZIP code area. Figure 3.7 shows the total

number of cases as of August 11 to 12, 2020 in ZCTAs in Fulton and DeKalb Counties.

There are several issues with these data. In particular, the epidemiological reports

from the counties do not appear to release the total number of tests, so we only

have access to the number of positive tests, with no small area data on the positivity

rate. Nonetheless, we may use increases in the counts of cases at the ZIP code level,

together with spatial access measures and the existing set of testing sites, to consider

where to place additional mobile testing sites. These approaches could lead to better

surveillance while ensuring fairness in testing site access.
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Figure 3.7: Total COVID-19 cases as of August 11-12, 2020. Based on data from
DeKalb and Fulton county epidemiological reports; data are preliminary and

subject to change.
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Appendix A

Supplemental Materials to

“Propensity score matching for

multi-level and spatial data”

A.1 Simulation Study

A.1.1 Data generation

Two scenarios were considered for patient assignment to facilities. Figure A.1 shows

the visual pairing of patients to facilities.

Figure A.2 demonstrates the different Matern patterns utilized for the generation

of the the unobserved spatial covariate U from an example dataset.
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(b) Random facility assignment

Figure A.1: Two background settings for facility assignment
Blue line segments (−) indicate assignment of patients (○) to facilities (◾).
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(A) v = 1.46, r = 1 (B) v = 1.46, r = 0.1

(C) v = 0.1, r = 1 (D) v = 0.1, r = 0.1

Figure A.2: Example datasets demonstrating different Matern parameters for
smoothness (s) and range (r), with darker colors indicating higher values and lighter

values indicating lower values.
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A.1.2 DAPSm method parameters and full results

Utilizing the DAPSm method requires several choices on the part of the user. First,

the weight must be chosen, with a value of 0 meaning that matching is based entirely

on the distance between treated and controls, and a value of 1 meaning that matching

is based entirely on the propensity score difference. Second, the researcher must

choose what caliper type and what caliper value to use based on the weighted DAPS.

The DAPSm package in R allows for a caliper to be based on either the DAPS itself

or on the propensity score.

In the simulations, we consider the following methods:

• Choosing the optimal weight (described below) for each simulation together with

a caliper of 0.2 standard deviations on the propensity score. This is presented

in the main results and is the preferred combination.

• Choosing the optimal weight for each simulation together with a caliper of 0.3

standard deviations on the DAPS.

• An approach that always uses a constant weight of 0.3 and a caliper of 0.3 on

the DAPS score.

• An approach that always uses a constant weight of 0.3 and a caliper of 0.2 on

the PS.

This applies both to the overall DAPSm method as well as in combination with

the within-cluster (WC) method, and with each of the specified propensity scores

(single-level, random effects, fixed effects). The optimal method proceeds by first

trying to find the smallest weight where the matched dataset results in covariates

being under a cutoff of 0.10 in absolute standardized difference between treated and

control units. If this cannot be met, or if the only weight that satisfies this criteria is

1 (giving no weight to distance and fully weighting the propensity score difference),
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the procedure is then to pick the smallest weight that meets a cutoff of 0.15, and then

finally 0.2, in absolute standardized difference for all covariates. This second step

trying 0.15 and 0.20 as cutoffs allows for a weight of 1 to be chosen. If this procedure

fails to find a weight for all 3 cutoff points, a weight of 1 is used. In finding the

smallest weight, weights are attempted between 0 to 1 in increments of 0.025. When

used in conjunction with the within-cluster methods, only the portion of the dataset

that is not matched in that first step is used for the purposes of calculating balance

on the covariates and making a decision about the weight.

In general, the 4 methods attempted were broadly similar across the 500 simula-

tions. For conciseness, in the main paper text, only the preferred optimal PS caliper-

based results are shown. Tables A.2 and A.3 show bias, relative mean-squared error,

and the proportion of treated subjects matched the 3 additional methods using the

DAPSm technique.
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(a) U : S2-A (Smoothness 1.46,
Range 1)
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(b) U : S2-D (Smoothness 0.1,
Range 0.1)
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(c) V : S2-A
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(d) V : S2-D
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Figure A.3: Standardized difference for U , V , and X4 in random facility assignment
setting (S2-A and S2-D)
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(a) U : S1-A (Smoothness 1.46, Range 1)
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(b) U : S1-D (Smoothness 0.1, Range 0.1)
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(c) V : S1-A
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Figure A.4: Standardized difference for U and V in distance-based setting (S1-A
and S1-D) for various DAPS-based methods. “OPT” refers to optimal method of
choosing weights described in text. “CW” refers to the constant-weight method

(0.3). “DAPS” refers to the DAPS-based caliper of 0.3. “PS” refers to the PS-based
caliper of 0.2.
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Figure A.5: Standardized difference for U and V in random facility assignment
setting (S2-A and S2-D) for various DAPS-based methods. “OPT” refers to optimal
method of choosing weights described in text. “CW” refers to the constant-weight
method (0.3). “DAPS” refers to the DAPS-based caliper of 0.3. “PS” refers to the

PS-based caliper of 0.2.
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A.2 Data Application

A.2.1 Sample construction

Sample exclusions from the 2017 USRDS (3,081,768 patients):

• 47,463 not included in the ADR

• 2,429,508 patients identified by USRDS as not starting dialysis between January

1, 2012 and December 31, 2016.

• 16,846 with a missing facility ID (from SAF.RXHIST ).

• 536,751 patients that did not begin dialysis at a facility in GA, NC, and SC.

• 4,167 patients with initial treatment modalities including uncertain dialysis or

other (from SAF.RXHIST60 ).

• 3,553 patients between 18 and 80 years old (inclusive).

• 739 patients removed with no matching medical evidence form.

• 131 patients whose facility did not correspond to any facility in SAF.FACILITY

in the incidence year/facility year

• 60 patients with no supervising physician signature date.

• 4,526 patients with a physician signature date more than 62 days after first

ESRD date.

• 33 patients with a signature date prior to first ESRD service date.

• 1,555 patients excluded because not in categories of “INFORMED” or “NOT

ASSESSED”

• 21,603 patients excluded because facility is not in GA (i.e. is in NC or SC)
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• 587 pre-emptive waitlists excluded

• 1,337 pre-emptive referrals excluded.

• 350 who do not report living in GA at time of first ESRD service date based on

reported ZIP code – matched to SAS’s ZIPCODE database to determine state

of residence.

• 7,579 excluded from 2014-2016 incidence; focus analysis only on 2012 and 2013

incidence years.

• 74 removed who were in transplant facilities, VA facilities, or had missing values

for BMI/GFR-EPI/Co-morbidities.

A.2.2 Covariates

The variables included in propensity score estimation models are: incidence year,

incidence age, race, Hispanic ethnicity, log-BMI, log GFR-EPI score, height, log

weight, dialysis type, access type, primary cause of ESRD (broad grouping), pre-

ESRD nephrology/EPO/dietary care, insurance variables, current employment sta-

tus, hemoglobin, albumin. These are taken from the 2728 form.

In addition, we include many binary co-morbidities from the 2728 form – diabetes

(insulin), diabetes (oral), diabetes (retinopathy), history of hypertension, Atheroscle-

rotic heart disease (ASHD), congestive heart failure (CHF), other cardiac disease, pe-

ripheral vascular disease, amputation, cerebrovascular disease (CVA, TIA), inability

to ambulate, inability to transfer, need assistance with daily activities, institutional-

ized, alcohol dependence, drug dependence, tobacco use, COPD, malignant neoplasm

(cancer), and toxic nephropathy.

Facility variables include number of patients at start and end of incidence year,

profit/non-profit status, hospital or free-standing, and various quantities related to
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the number of FTE social workers and registered nurses (see notes below). Other

covariates include county-level household poverty rate, county-level percent non-

Hispanic white, and the total population of the county. County-level variables are

ACS 5-year 2014 estimates. County-level variables are attached based on geocoding

of ZIP codes rather than the variable recorded in the USRDS – these differ for 169

patients out of 4,906. In various places, I re-code categorical variables to reduce spar-

sity in certain categories and to simplify the propensity score estimation. For some

continuous variables, I use a log-transformation or otherwise convert to a categorical

if there are large numbers of missing values.

• Race is re-coded as White, Black, or Other.

• Hispanic (based on 2728) is a binary variable.

• Dialysis type is re-coded as HEMO vs. CAPD/CCPD/Other

• Access Type is recoded such that N/A and Other are grouped together; the

other categories are AVF, Graft, and Cath

• Pre-ESRD nephrology, pre-ESRD EPO, and pre-ESRD dietary are coded as

3-category variables: Yes, No, and Unknown/Missing.

• Employment status (current) is recoded as (Unemployed, Med LOA, Other),

(Employed FT/PT, Student, or Homemaker) and (Ret-age/Ret-dis).

• Hemoglobin is put into 3 categories: < 10, >= 10, or NA (missing).

• Serum Albumin is coded into 3 categories: Low < 3.5g/dL, >= 3.5g/dL, or

NA/Missing.

• Log transformations are made for: BMI, GFR-EPI, weight and county total

population.
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• Facility variables include the number of patients being treated at the beginning

and end of the incidence year (survey period).

• Facility variable for non-profit status (3 categories): For-profit, non-profit, or

unknown (based on SAF.FACILITY).

• Facility variable for free-standing or hospital-based – with the exception of the

fixed effects models which do not include this variable due to convergence issues.

• Facility variables are also included for number of FTE social workers and FTE

registered nurses; I also use a ratio of FTE social workers to number of patients

at the end of the year, and a ratio of FTE registered nurses to number of patients

at the end of the year. A handful of patients are in facilities with 0 patients at

the end of a year – in these cases, I use the average of patients at the start of

the year and end of the year.

A.2.3 Balance

The standard deviation used to calculate the absolute standardized differences are

based on the standard deviation of the treated group in the full unmatched sample.

This is done based on recommendations from Stuart (2010). Figure 1.2 demonstrate

balance for various methods as compared to the unadjusted method using love plots.

Ideal balance is achieved when absolute standardized differences are below 0.1. We

additionally provide select tables comparing balance on some important covariates

before and after matching for pre-ESRD nephrology care, hemodialysis, and access

type.
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N Hemodialysis
Method Control Treated Controls Treated Std. difference
Unadjusted 4428 478 90.1 97.3 0.44
S 472 472 97.5 97.2 -0.01
RE 264 264 93.6 95.5 0.12
FE 295 295 94.9 95.6 0.04
WC 206 206 92.2 95.1 0.18
WC+S 471 471 95.5 97.2 0.10
WC+RE 283 283 94.0 95.4 0.09
WC+FE 310 310 93.5 95.8 0.14
DAPSm-S 460 460 95.7 97.2 0.09
DAPSm-RE 257 257 93.4 95.7 0.14
DAPSm-FE 256 256 95.3 96.1 0.05
WC+DAPSm-S 463 463 95.5 97.2 0.11
WC+DAPSm-RE 278 278 92.8 95.3 0.15
WC+DAPSm-FE 284 284 93.7 95.8 0.13

Table A.5: Hemodialysis (vs. CAPD/CCPD/Other) in unmatched and matched
samples for control and treated subjects, as well as the standardized difference.
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Pre-ESRD Nephrology Care
Yes No Unknown

Method C T SD C T SD C T SD
Unadjusted 59.8 43.9 -0.32 30.9 32.4 0.03 9.2 23.6 0.34
S 42.8 44.5 0.03 30.9 32.4 0.03 26.3 23.1 -0.07
RE 57.2 56.1 -0.02 29.9 31.1 0.02 12.9 12.9 0.00
FE 54.6 53.2 -0.03 30.5 32.2 0.04 14.9 14.6 -0.01
WC 57.3 56.3 -0.02 28.6 31.1 0.05 14.1 12.6 -0.03
WC+S 45.9 44.6 -0.03 30.4 32.1 0.04 23.8 23.4 -0.01
WC+RE 58.7 55.5 -0.06 26.9 31.1 0.09 14.5 13.4 -0.02
WC+FE 57.1 51.9 -0.10 29.4 34.5 0.11 13.5 13.5 0.00
DAPSm-S 48.5 45.2 -0.07 28.9 32.4 0.07 22.6 22.4 -0.01
DAPSm-RE 52.9 54.5 0.03 32.7 32.7 0.00 14.4 12.8 -0.04
DAPSm-FE 54.7 53.9 -0.02 31.2 33.2 0.04 14.1 12.9 -0.03
WC+DAPSm-S 46.4 45.1 -0.03 29.4 32.6 0.07 24.2 22.2 -0.05
WC+DAPSm-RE 56.8 54.7 -0.04 29.9 32.4 0.05 13.3 12.9 -0.01
WC+DAPSm-FE 58.1 53.9 -0.09 28.9 32.4 0.08 13.0 13.7 0.02

Table A.6: Pre-ESRD nephrology care in unmatched and matched samples for
control and treated subjects, as well as the standardized difference.
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A.2.4 Adjusting after matching

The recommendation by Ho et al. (2007) is to use matching as a pre-processing proce-

dure. After matching, one may utilize parametric methods that will be less sensitive

to the particular functional form. We use linear and logistic regression models after

matching to adjust for any lingering imbalance in the dataset. Figure A.6 compares

1-year referral estimates after matching with no adjustment, with adjustment in a

linear probability model, and with adjustment in a logistic regression model. Adjust-

ment is made for any covariates with an absolute standardized difference greater than

0.1 after matching.
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(a) Outcome: 1-year referral
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(b) Estimate from linear probability model adjustment
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(c) Adjusted odds ratios from logistic regression model adjustment

Figure A.6: Estimates of ATT for 1-year referral after matching with no
adjustment, with linear model adjustment, and with logistic regression adjustment
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A.2.5 Hazard ratio estimate

In addition to analyzing 1-year binary outcomes, we also estimate the hazard ratio

using the Cox proportional hazards model to account for competing risks. We esti-

mate cause-specific hazard ratios for referral and waitlisting, as well as hazard ratios

for death within the first year. For referral and waitlisting, all observations are right-

censored at 1-year if no event occurs, and persons are treated as censored if death

(competing risk) occurs at the time that death occurs, following Austin et al. (2016)

for constructing cause-specific hazard estimates.

Cause-Specific Hazard Ratio Estimate (95% CI)
Method Referral Waitlist Death
Unadjusted 0.99 (0.85, 1.16) 0.72 (0.47, 1.09) 0.88 (0.67, 1.15)
S 1.04 (0.84, 1.28) 1.02 (0.57, 1.82) 1.18 (0.80, 1.73)
RE 1.07 (0.81, 1.41) 0.78 (0.41, 1.47) 0.98 (0.58, 1.64)
FE 1.07 (0.82, 1.40) 0.82 (0.42, 1.58) 1.18 (0.73, 1.89)
WC 1.08 (0.79, 1.46) 0.78 (0.39, 1.56) 1.11 (0.60, 2.07)
WC+S 1.05 (0.85, 1.30) 0.89 (0.51, 1.57) 1.11 (0.76, 1.62)
WC+RE 1.06 (0.81, 1.38) 0.62 (0.33, 1.15) 1.24 (0.75, 2.06)
WC+FE 1.02 (0.79, 1.33) 0.56 (0.30, 1.02) 1.42 (0.88, 2.31)
DAPSm-S 0.95 (0.77, 1.17) 0.92 (0.51, 1.64) 0.92 (0.64, 1.33)
DAPSm-RE 1.11 (0.84, 1.47) 1.13 (0.54, 2.33) 1.60 (0.91, 2.81)
DAPSm-FE 1.13 (0.85, 1.50) 0.83 (0.40, 1.72) 1.18 (0.70, 1.99)
WC+DAPSm-S 0.97 (0.79, 1.20) 0.68 (0.40, 1.18) 0.99 (0.68, 1.43)
WC+DAPSm-RE 1.12 (0.85, 1.46) 0.70 (0.37, 1.33) 1.28 (0.77, 2.12)
WC+DAPSm-FE 1.07 (0.81, 1.39) 0.67 (0.36, 1.27) 1.33 (0.80, 2.22)

Table A.8: Estimates of cause-specific hazard ratios for treatment (not assessed)
from Cox proportional hazards models for 1-year of follow-up. For time-to-referral

and time-to-waitlist, death (competing risk) is coded as a censoring event. See
Austin et al. (2016).
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Figure A.7: Estimates of hazard ratio (1-year follow-up) for being not assessed vs.
informed
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A.2.6 DAPSm tuning parameters and sensitivity results

For the DAPSm methods presented in the main text, we utilized a propensity score

caliper of 0.2. By matching on the DAPS score within a propensity caliper, we are

ensured that the estimated propensity score difference between matched treated and

control patients will not be too large, regardless of the DAPS weight chosen. The

alternative approach, which we consider in the Appendix, is to use a caliper on the

DAPS score itself. The other choice that may impact results is the weight chosen to

estimate the DAPS score.

In the main text, we considered weights between 0 and 1 with increments of 0.05,

and we used the following criteria to determine a weight. For the DAPSm-S, DAPSm-

RE, and DAPSm-FE methods, we pick the smallest weight that balances all observed

covariates under a cutoff of 0.15 absolute standardized difference. This resulted in a

weight of 0.05 for all three methods. For the methods that use DAPSm in a second

stage following the within-cluster matching stage, we pick a weight of 0.5 as a natural

balance between distance and the propensity score differences in constructing the

DAPS score.

Given the potential importance of parameter choices, we present full results on

sensitivity of outcome estimates to the weight chosen in the DAPSm methods, as

well as also using the DAPS caliper in lieu of the PS caliper. In particular these

results show a much greater variability in effect estimates when using a DAPS caliper

instead of a PS caliper. Smaller weights (more heavily weighting distance between

treated and control patients in the DAPS calculation) lead to reduced estimates of the

impact of not being assessed, and in some cases negative (more in line with intuition).

Nonetheless, substantial uncertainty remains in the estimates regardless of the tuning

parameters, along with a substantial portion of the treated units that are unmatched

when taking into account the facility in the form of a fixed or random effect.

Figure A.8 shows the sensitivity of results to weight choice in the single-stage
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DAPSm-S, DAPSm-RE, and DAPSm-FE methods with a propensity score caliper of

0.2. Figure A.9 shows the same results but using a caliper of 0.3 on the distance-

adjusted propensity score for different weights. Figure A.10 and A.11 similarly show

the same results when the DAPSm method is taken for the second stage after a first

stage of within-cluster matching.
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Figure A.8: The x-axis in each figure refers to the weight used in the DAPS score.
The first column shows the balance across covariates for each weight. The second

column shows outcome estimates for each weight. The rows correspond to the
DAPSm-S, DAPSm-RE, and DAPSm-FE methods, respectively, using a caliper of

0.2 on the propensity score.
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Figure A.9: The x-axis in each figure refers to the weight used in the DAPS score.
The first column shows the balance across covariates for each weight. The second

column shows outcome estimates for each weight. The rows correspond to the
DAPSm-S, DAPSm-RE, and DAPSm-FE methods, respectively, using a caliper of

0.3 on the distance-adjusted propensity score rather than the propensity score as in
figure A.8.
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Figure A.10: The x-axis in each figure refers to the weight used in the DAPS score.
The first column shows the balance across covariates for each weight. The second

column shows outcome estimates for each weight. The rows correspond to the
WC+DAPSm-S, WC+DAPSm-RE, and WC+DAPSm-FE methods, respectively,

using a caliper of 0.2 on the propensity score.
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Figure A.11: The x-axis in each figure refers to the weight used in the DAPS score.
The first column shows the balance across covariates for each weight. The second

column shows outcome estimates for each weight. The rows correspond to the
WC+DAPSm-S, WC+DAPSm-RE, and WC+DAPSm-FE methods, respectively,

using a distance-adjusted propensity score caliper of 0.3 rather than a caliper on the
propensity score as in Figure A.10.
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Appendix B

Supplemental Materials to

“Imputing satellite-derived aerosol

optical depth using a

multi-resolution spatial model and

random forest for PM2.5

prediction”

Animations are best viewed in Acrobat Reader.

B.1 Additional AOD Figures and Tables
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Figure B.1: Daily split between training and testing data.
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Figure B.2: Root mean-squared error (RMSE) and R2 across days for LK, RF,
average of RF and LK (Ave), SL: Overall (SL1), SL: Daily (SL2), and SL:

Distance-based (SL3) methods.
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Figure B.3: Daily observed and predicted AOD values. Values outside of range are
truncated for display.
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Figure B.4: Daily differences between LatticeKrig and Random Forest
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Figure B.5: Difference in average predictions and observed daily values for July
2011: (a) LK; (b) RF; (c) Average of LK and RF; (d) SL: Overall; (e) SL: Daily;
(f) SL: Distance-based. Differences outside of range of (−0.3,0.3) are trimmed for

figure appearance.
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Figure B.6: Daily 10-fold spatially clustered CV. Each color represents a distinct
fold, generated by the R package blockCV.
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Figure B.7: Comparison of LatticeKrig and Random Forest at different distances
between test data and training data across all days.
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Figure B.8: Constant spatial clustering cross-validation map for PM2.5 analyses.

B.2 Additional PM2.5 Figures and Results
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Figure B.9: Average July 2011 PM2.5 predicted map using imputed AOD random
forest model for mtry = 8.
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Features M1 M2 M3 M4 M5
Convolution layer PM2.5 35.46 33.19 30.65 33.54 26.32
CMAQ-X Coordinate 18.77 13.52 13.12 15.88 12.18
GEOS-Chem 6.69 6.31 5.79
CMAQ-Y Coordinate 7.83 6.58 6.05 6.92 4.91
Convective available potential energy 8.71 6.64 5.66 7.20 4.60
Pressure at surface 6.24 5.95 5.30 6.40 4.76
Surface DW longwave radiation flux 7.46 6.35 5.14 6.62 5.61
Temperature 6.24 5.72 4.94 5.93 4.49
Imputed AOD 4.43
Elevation 5.95 4.81 4.40 5.02 4.69
AOD/GEOS-Chem combination 3.47
Observed AOD 2.99
Potential evaporation 3.42 3.11 3.07 3.18 2.86
Population density 3.47 3.05 2.81 3.03 2.79
Relative humidity 3.30 2.83 2.67 2.91 1.74
Day 2.52 2.49 2.24 2.31 1.46
Impervious surface (%) 2.48 2.01 1.89 2.07 1.88
Surface DW shortwave radiation flux 1.92 1.83 1.83 1.81 1.58
Percent forest cover 1.64 1.38 1.23 1.37 1.53
u-direction wind-speed 1.27 1.20 1.09 1.10 0.67
v-direction wind speed 1.28 1.13 0.98 1.10 1.18
Precipitation 0.85 0.59 0.68 0.72 0.15
Total length of local road 0.92 0.76 0.65 0.78 0.83
Faction of total precipitation that is convective 0.64 0.51 0.58 0.53 0.03
Day of the Week 0.50 0.50 0.43 0.46 0.37
AOD Missing Indicator 0.17 0.17 0.18 0.32
Total length of limited-access road 0.10 0.10 0.09 0.09 0.11
Total length of highway 0.13 0.11 0.08 0.10 0.11
EPA 2011 emission inventory 0.07 0.06 0.06 0.07 0.07

Table B.1: Feature importance (permutation-based, mean decrease in accuracy)
from spatio-temporal random forest model based on mtry = 4.
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Description Features M1 M2 M3 M4 M5
Convolution layer PM2.5 50.44 47.58 45.01 48.13 39.51
CMAQ-X Coordinate 19.59 13.80 12.02 17.62 10.36
GEOS-Chem 5.90 5.69 5.38
CMAQ-Y Coordinate 6.13 5.32 4.82 5.48 4.06
Pressure at surface 5.47 5.21 4.59 4.93 4.11
Surface DW longwave radiation flux 5.92 5.13 4.56 5.65 4.14
Convective available potential energy 6.13 5.15 3.99 5.59 2.82
Temperature 4.63 4.61 3.96 4.67 2.99
Imputed AOD 3.50
Elevation 4.17 3.71 3.33 3.77 3.68
AOD/GEOS-Chem combination 2.70
Observed AOD 2.30
Population density 3.15 2.84 2.67 2.84 2.52
Relative humidity 2.49 2.16 2.18 2.40 1.15
Potential evaporation 2.21 2.04 1.99 2.06 1.93
Impervious surface (%) 2.03 1.77 1.65 1.74 1.55
Day 1.27 1.27 1.33 1.17 0.78
Surface DW shortwave radiation flux 1.25 1.16 1.18 1.14 0.93
Percent forest cover 1.30 1.12 1.16 1.16 1.22
u-direction wind-speed 0.85 0.87 0.77 0.75 0.56
v-direction wind speed 0.84 0.78 0.67 0.79 0.96
Precipitation 0.63 0.53 0.51 0.61 0.17
Total length of local road 0.63 0.55 0.48 0.56 0.70
Faction of total precipitation that is convective 0.47 0.41 0.42 0.40 0.03
Day of the Week 0.22 0.25 0.22 0.23 0.17
AOD Missing Indicator 0.08 0.08 0.08 0.12
Total length of limited-access road 0.08 0.06 0.07 0.07 0.09
Total length of highway 0.09 0.08 0.07 0.08 0.08
EPA 2011 emission inventory 0.06 0.05 0.05 0.05 0.06

Table B.2: Feature importance (mean decrease in accuracy) from pooled random
forest model based on mtry = 8.
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Figure B.10: Difference between the imputed AOD RF model (M3) and other RF
models in average July 2011 PM2.5 predictions for mtry = 8: (a) M1: model with no
AOD or GEOS-Chem; (b) M2: GEOS-Chem; (c) M4: Replacing missing values of

AOD with GEOS-Chem; (d) M5: Train on observed AOD, and predict by replacing
missing AOD values with imputed values.



144

Figure B.11: Difference between the imputed AOD RF model (M3) and other RF
models in daily PM2.5 predictions for mtry = 4. M1: model with no AOD or
GEOS-Chem; M2: GEOS-Chem; M4: Replacing missing values of AOD with

GEOS-Chem; M5: Train on observed AOD, and predict by replacing missing AOD
values with imputed values. Green points denote cells with observed PM2.5

monitors. Values outside of range truncated for display.
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(a) Random (b) Constant spatial cluster

(c) Varying spatial cluster

Figure B.12: Scatter plots comparing observed PM2.5 values with cross-validation
predictions from spatio-temporal random forest models including imputed AOD

(M3) with mtry = 4 for (a) random cross-validation, (b) constant spatially
clustered cross-validation, and (c) varying spatially clustered cross-validation. Axes

limited to (0,70) for clarity of visual presentation. Red line is the y = x line.
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(a) Random (b) Constant spatial cluster

(c) Varying spatial cluster

Figure B.13: Scatter plots comparing observed PM2.5 values with cross-validation
predictions from spatio-temporal random forest models including imputed AOD

(M3) with mtry = 8 for (a) random cross-validation, (b) constant spatially
clustered cross-validation, and (c) varying spatially clustered cross-validation. Axes

limited to (0,70) for clarity of visual presentation. Red line is the y = x line.
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(a) Random (b) Constant spatial cluster

(c) Varying spatial cluster

Figure B.14: Scatter plots comparing observed PM2.5 values with cross-validation
predictions from daily random forest models including imputed AOD (M3) with

mtry = 8 for (a) random cross-validation, (b) constant spatially clustered
cross-validation, and (c) varying spatially clustered cross-validation. Axes limited

to (0,70) for clarity of visual presentation. Red line is the y = x line.
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Daily Spatio-temporal
Setting AOD Status M1a M2a M3a M4a M5a M1b M2b M3b M4b M5b

Intercept
Random All -0.19 -0.21 -0.23 -0.23 -0.37 -0.71 -0.73 -0.41 -0.39 -0.75
Random Missing -0.26 -0.29 -0.31 -0.27 -0.78 -0.76 -0.79 -0.44 -0.40 -1.01
Random Observed -0.09 -0.09 -0.14 -0.16 0.06 -0.64 -0.66 -0.37 -0.35 -0.47
Constant cluster All -0.32 -0.33 -0.35 -0.37 -0.51 -0.42 -0.44 -0.47 -0.47 -0.92
Constant cluster Missing -0.60 -0.64 -0.65 -0.61 -1.12 -0.73 -0.74 -0.78 -0.73 -1.48
Constant cluster Observed 0.03 0.05 0.02 -0.04 0.05 -0.02 -0.05 -0.10 -0.12 -0.33
Varying cluster All -0.40 -0.41 -0.44 -0.44 -0.53 -1.13 -1.15 -1.15 -1.17 -1.26
Varying cluster Missing -0.64 -0.67 -0.69 -0.64 -1.05 -1.33 -1.35 -1.33 -1.32 -1.66
Varying cluster Observed -0.07 -0.06 -0.12 -0.14 -0.02 -0.88 -0.90 -0.94 -0.95 -0.84

Slope
Random All 1.01 1.01 1.02 1.02 1.00 1.06 1.06 1.03 1.03 1.05
Random Missing 1.02 1.02 1.02 1.02 1.02 1.07 1.07 1.03 1.04 1.06
Random Observed 1.00 1.01 1.01 1.01 0.99 1.06 1.06 1.03 1.02 1.04
Constant cluster All 1.04 1.04 1.04 1.05 1.03 1.06 1.06 1.06 1.06 1.08
Constant cluster Missing 1.06 1.06 1.06 1.07 1.06 1.08 1.07 1.08 1.08 1.11
Constant cluster Observed 1.02 1.02 1.03 1.02 1.02 1.03 1.03 1.04 1.03 1.06
Varying cluster All 1.05 1.05 1.05 1.05 1.03 1.11 1.12 1.11 1.12 1.11
Varying cluster Missing 1.06 1.06 1.06 1.07 1.05 1.13 1.13 1.12 1.13 1.13
Varying cluster Observed 1.02 1.02 1.03 1.02 1.01 1.10 1.10 1.11 1.10 1.10

Table B.3: Intercept and slope estimates from daily and spatio-temporal random
forest model for different 10-fold cross-validation settings. Internet and slope

estimated from linear regression model Observed = β0 + β1Predicted.
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Daily Spatio-temporal
Setting AOD Status M1a M2a M3a M4a M5a M1b M2b M3b M4b M5b
Random Central 0.07 -0.04 -0.12 0.01 1.19 -1.73 -1.77 -0.83 -0.76 -0.92

East North Central -0.66 -0.67 -0.68 -0.65 -0.62 -1.82 -1.91 -1.17 -1.13 -1.49
Northeast -0.17 -0.24 -0.28 -0.23 0.24 -1.03 -0.98 -0.49 -0.47 -0.99
Northwest 0.32 0.35 0.34 0.33 0.70 -0.70 -0.71 -0.35 -0.35 -0.43
South 0.28 0.23 0.10 0.22 -0.32 -0.84 -0.88 -0.31 -0.17 -1.14
Southeast -0.38 -0.39 -0.35 -0.38 -1.61 -0.99 -1.04 -0.44 -0.43 -1.51
Southwest -0.00 -0.12 -0.18 -0.20 0.49 -1.47 -1.59 -0.99 -0.89 -1.05
West 0.10 0.14 0.03 -0.01 0.47 -1.49 -1.61 -1.02 -1.01 -1.21
West North Central 0.71 0.75 0.72 0.76 1.11 -0.90 -0.87 -0.68 -0.65 -0.74

Constant cluster Central -0.11 -0.31 -0.35 -0.43 1.17 -0.88 -0.97 -1.17 -1.09 -1.33
East North Central -0.94 -0.93 -0.95 -0.97 -1.04 -1.59 -1.72 -1.79 -1.72 -2.26
Northeast -0.35 -0.41 -0.45 -0.41 -0.08 -0.48 -0.57 -0.64 -0.55 -1.32
Northwest 0.06 0.08 0.09 0.09 0.42 -0.34 -0.31 -0.30 -0.33 -0.57
South -0.25 -0.36 -0.54 -0.37 -0.83 -0.83 -0.98 -1.08 -0.93 -2.36
Southeast -1.09 -1.15 -1.13 -1.08 -2.45 -1.35 -1.34 -1.35 -1.33 -2.60
Southwest -0.22 -0.33 -0.44 -0.45 0.15 0.10 0.02 -0.18 -0.19 -0.60
West 0.87 1.01 1.12 0.80 1.27 0.21 0.22 0.16 0.11 -0.13
West North Central 0.84 0.85 0.86 0.86 1.29 0.86 0.81 0.76 0.78 0.59

Varying cluster Central 0.41 0.20 0.12 0.08 1.75 -1.93 -2.03 -2.28 -2.12 -1.27
East North Central -1.11 -1.07 -1.07 -1.09 -0.98 -2.43 -2.55 -2.55 -2.54 -2.41
Northeast -0.62 -0.68 -0.69 -0.68 -0.25 -1.71 -1.64 -1.63 -1.69 -1.74
Northwest 0.22 0.22 0.24 0.24 0.59 -0.89 -0.87 -0.88 -0.89 -0.76
South -0.28 -0.38 -0.51 -0.36 -0.67 -1.83 -1.95 -2.01 -1.91 -2.43
Southeast -1.14 -1.18 -1.17 -1.11 -2.06 -2.00 -2.08 -1.96 -2.02 -2.70
Southwest -0.18 -0.21 -0.40 -0.41 0.33 -2.17 -2.26 -2.43 -2.66 -2.09
West 0.81 0.90 0.78 0.75 1.25 -2.05 -2.16 -2.27 -2.19 -1.56
West North Central 0.64 0.65 0.65 0.66 1.05 -1.29 -1.26 -1.32 -1.34 -1.25

Table B.4: Regional intercept estimates for daily and spatio-temporal random forest
model for different 10-fold cross-validation settings.



150

Daily Spatio-temporal
Setting AOD Status M1a M2a M3a M4a M5a M1b M2b M3b M4b M5b
Random Central 1.01 1.02 1.02 1.01 0.93 1.12 1.12 1.06 1.05 1.06

East North Central 1.02 1.02 1.02 1.02 0.99 1.13 1.13 1.07 1.07 1.08
Northeast 1.01 1.02 1.02 1.02 0.98 1.08 1.07 1.03 1.03 1.06
Northwest 0.87 0.86 0.86 0.86 0.71 1.15 1.16 1.07 1.07 1.05
South 0.96 0.96 0.98 0.96 0.97 1.07 1.07 1.02 1.00 1.07
Southeast 1.02 1.03 1.02 1.02 1.07 1.07 1.08 1.03 1.03 1.08
Southwest 0.95 0.96 0.97 0.97 0.82 1.19 1.20 1.12 1.11 1.07
West 1.01 1.01 1.02 1.02 0.96 1.15 1.17 1.10 1.10 1.11
West North Central 0.91 0.90 0.91 0.90 0.82 1.14 1.13 1.11 1.11 1.10

Constant cluster Central 1.07 1.08 1.08 1.09 0.98 1.13 1.13 1.14 1.14 1.15
East North Central 1.04 1.03 1.03 1.03 1.01 1.09 1.10 1.11 1.10 1.13
Northeast 1.04 1.04 1.05 1.04 1.01 1.04 1.05 1.05 1.05 1.09
Northwest 0.91 0.91 0.90 0.90 0.75 1.02 1.02 1.01 1.02 1.03
South 1.01 1.02 1.04 1.02 1.01 1.06 1.07 1.08 1.07 1.18
Southeast 1.08 1.08 1.08 1.08 1.13 1.10 1.10 1.10 1.10 1.17
Southwest 1.00 1.01 1.03 1.03 0.89 0.98 0.99 1.02 1.02 1.02
West 1.03 1.02 1.00 1.04 0.97 1.09 1.09 1.09 1.10 1.12
West North Central 0.90 0.90 0.90 0.90 0.80 0.92 0.92 0.93 0.93 0.94

Varying cluster Central 1.03 1.04 1.05 1.05 0.94 1.18 1.19 1.20 1.19 1.14
East North Central 1.05 1.04 1.04 1.05 1.01 1.17 1.17 1.17 1.17 1.15
Northeast 1.07 1.07 1.07 1.07 1.03 1.14 1.13 1.13 1.14 1.13
Northwest 0.88 0.88 0.88 0.87 0.72 1.18 1.17 1.17 1.17 1.10
South 1.01 1.01 1.03 1.01 1.00 1.15 1.16 1.17 1.16 1.19
Southeast 1.08 1.08 1.08 1.08 1.10 1.15 1.16 1.14 1.15 1.18
Southwest 1.00 1.00 1.03 1.03 0.87 1.30 1.31 1.33 1.37 1.22
West 1.00 0.99 1.00 1.00 0.93 1.26 1.27 1.29 1.28 1.20
West North Central 0.92 0.92 0.92 0.92 0.83 1.19 1.19 1.19 1.20 1.16

Table B.5: Regional slope estimates for daily and spatio-temporal random forest
model for different 10-fold cross-validation settings.
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B.3 Additional LatticeKrig modeling details

We follow the model description of lattice kriging (LatticeKrig or LK) laid out by

Nychka et al. (2015). At a high-level, LK models the spatial process using several

levels of two-dimensional basis functions, which are laid out on a grid and approxi-

mately double with each successive layer. These basis functions are compact, which

means that for a particular point only a small number of basis function are used to

make the prediction. The coefficients associated with the basis functions are assumed

to be correlated, and this structure can flexibly model observed spatial covariance

structures. Estimation proceeds through a likelihood-based approach after specifying

various tuning parameters.

Following the notation of Nychka et al. (2015), we observe {yi} at locations {xi}

for i = 1, .., n. We assume {yi} follow an additive model consisting of a mean function

based on covariates, a spatial process, and a measurement error term:

yi = ZT
i d + g(xi) + εi, (B.1)

where d is a p × 1 vector of fixed coefficients associated with the covariates Zi, and

g(xi) denotes the spatial process. The mean-zero error terms εi are presumed to be

independent and identically distributed, i.e., ε ∼ N(0, σ2I), where ε = (ε1, ..., εn)T .

The overall spatial process g(xi) can be written as a sum of L independent spatial

processes gl(xi):

g(xi) =
L

∑
l=1

gl(xi) =
L

∑
l=1

m(l)

∑
j=1

cljφj,l(xi), (B.2)

where φj,l denotes the the lth level of resolution’s jth basis function, and clj denotes the

coefficient associated with this basis function. Although the basis functions and num-

ber of levels are fixed (i.e., chosen), the coefficients for each level l, cl = (cl1, ..., clm(l))T
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are assumed to follow a multivariate normal with mean zero and covariance ρQ−1
l :

cl ∼ N(0, ρQ−1
l ). (B.3)

Each level’s spatial process is independent with marginal variance ραl subject to the

constraint ∑Ll=1αl = 1, so that the marginal variance of the overall spatial process

g(xi) is ρ.

Let m denote the total number of basis functions, and for simplicity consider a

single level L = 1, so that g(x) = ∑mj=1 cjφj(x). Then, for any two locations x and x′,

the covariance is given as:

Cov(g(x), g(x′)) = ρ
m

∑
j=1

m

∑
k=1

Q−1
j,kφj(x)φk(x′). (B.4)

Denote Φ as the n×mmatrix of basis functions evaluated at the observed locations.

The full marginal distribution y is then given as

y ∼ N(Zd, ρΦQ−1ΦT + σ2I). (B.5)

By setting λ = σ2/ρ (a noise to signal ratio), and Mλ = ΦQ−1ΦT +λI, this may be

further re-written as

y ∼ N(Zd, ρMλ). (B.6)

Nychka et al. (2015) provide further details on estimation of the key parame-

ters using the profile log-likelihood such that the likelihood only depends on λ and

parameters determining Q.

Nychka et al. (2015) propose using two-dimensional radial basis functions (RBF)

using the Wendland functions that have a compact support (Wendland, 1995). These
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basis functions take the following form for scaled distance 0 ≤ d ≤ 1:

φ(d) = (1 − d)6(35d2 + 18d + 3)/3. (B.7)

By default, the distance is scaled to be 2.5 times the grid spacing for each level of

resolution. For example, if basis functions are defined to be 100km apart, a particular

basis function will be defined as 0 for points outside of a 250km radius of where it is

placed. The basis functions are thus defined as:

φ∗j (x) = φ(∣∣x − µj ∣∣/θ), (B.8)

where µj is the location of the basis function, and θ is set to determine the amount

of overlap. Nychka et al. (2015) additionally recommend and implement basis nor-

malization by default as part of their estimation. Normalization re-scales the basis

functions in the case of a single level as

φt(x) =
φ∗t (x)√

∑mj=1∑mk=1Q
−1
j,kφ

∗
j (x)φ∗k(x)

, (B.9)

such that

Cov(g(x), g(x)) = ρ
∑mj=1∑mk=1Q

−1
j,kφ

∗
j (x)φ∗k(x)

∑mj=1∑mk=1Q
−1
j,kφ

∗
j (x)φ∗k(x)

= ρ. (B.10)

Thus the normalization process ensures a constant marginal variance. Nychka et al.

(2015) recommend this to reduce edge effects and for better approximating stationary

covariance functions. For multiple levels of resolution this process is carried out

separately for each level of resolution.
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B.3.1 Tuning

By default, package implementation of LK uses the profile log-likelihood to estimate

λ. We use a mean-squared error (MSE) approach with a validation portion of the

data to tune the other parameters of our LK model (e.g., see Supplemental Section

1.2 of Heaton et al. (2019)). The validation data was constructed from the training

data in a similar manner to the testing data.

For the fixed covariate portion of the LK model, we include a simple form using

just a few covariates. By default, the LatticeKrig package includes the spatial

coordinates as fixed predictors in Z. In addition, we include the interaction between

the coordinates, GEOS-Chem, the interaction between each coordinate and GEOS-

Chem, and elevation as the fixed predictors in the model. No variable selection was

performed – we instead focused on tuning the spatial aspect of the model. As a result,

some important variables may have been excluded from the mean model.

The tuning parameters for LK were chosen from values of a.wght = (4.1, 4.5, 6,

8, 10, 12) and values of nu (determining αl) = (0.1,0.25,0.5,0.75,1,1.25). These 36

combinations of parameters were tried with two possible combinations of nlevel and

NC for a total of 72 combinations; nlevel = 4 and NC = 30, or nlevel = 5 and NC = 15.

Each combination of nlevel/NC results in close to 50,000 basis functions, with the

finest level of resolution having basis functions roughly 20km apart. However, these

methods differ with respect to the distance between basis functions at the coarsest

level.

For LK, we find the best prediction MSE on the validation data is usually as-

sociated with high a.wght (10, 12) and small nu (0.1, 0.25), together with either

combination of nlevel/NC. We opt for nlevel = 5, NC = 15, a.wght = 12, and nu

= 0.1 as the final set of parameters for this reason.
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B.4 Random forest tuning for AOD prediction

We consider 22 possible variables: the projected centroid coordinates, elevation, 2011

emission inventory, forest cover, impervious surface, total lengths of highway, limited-

access road, and local road, population density, potential evaporation, surface DW

longwave radiation flux, surface DW shortwave radiation flux, convective available

potential energy, fraction of total precipitation that is convective, precipitation, rel-

ative humidity, temperature, u- and v-direction wind speed, pressure at surface, and

GEOS-Chem AOD. For random forest, we tried every value of m (mtry) between

1 and 22, where p = 22. Additionally, we varied the nsize (min.node.size) value

between 2, 5, and 8. The total combination of parameters tried is 66. For every

combination, we set B = 500 (num.trees). We used a validation data as with tuning

LK, constructed in a manner similar to the testing data.

In general the node size nsize does not substantially change the prediction MSE

for a given m, so we restrict the value to be 5 (the default), and instead focus on

selecting m. In validation experiments, we found the best m was around 7, close

to the default that would be suggested by the randomForest package. We set the

number of trees in the daily AOD prediction models to 2000.

We initially considered an additional predictor in the form of nearest-neighbor

AOD (nnAOD) for AOD prediction models. In this setting, nnAOD is determined

based on the distance between observations in the validation dataset to the training

dataset. However, in some preliminary explorations, we found that including nnAOD

did not help in the prediction performance on the basis of MSE, and in some settings,

the inclusion of this predictor may actually slightly decrease performance. We posit

that in the training dataset, there will almost always be near-by observed AOD values.

In contrast, the validation or test dataset in a spatial setting will consist of a large

number of points that are more distant from the training dataset locations. Thus, even

though this predictor was likely highly important for the training fits, random forest



156

then extrapolates when predicting to the test dataset and performance suffers. Some

results demonstrating this decrease in performance are included in following section.

These results echo concerns in Hengl et al. (2018) regarding the use of random forest

in spatial applications when extrapolating to unobserved areas.

B.5 Consideration of nearest-neighbor AOD and

OOB metrics in random forest

We considered two additional features for random forest in AOD prediction: (1) A

weighted average of nearest-neighbor AOD observations, and (2) a weighted average

of the distances of these nearest-neighbor points. A priori, we expected that these

predictors would produce very strong in-sample fit, but that they may not improve

(or may even diminish) performance when making predictions out of sample in the

setting we observe. This is because we are making spatial predictions in large areas

where there is no observed data, and the nearest neighbors may be quite distant and

unlike the training data. Furthermore, we posit that the out-of-bag (OOB) metrics

from random forest will be misleading in this spatial setting where the training and

testing data may be quite unlike each other.

To assess whether the inclusion of these two features can help in prediction, and

whether the OOB metric is misleading, we carry out a set of experiments. Based

on the training data considered in the main analysis, for each day, we consider 2

separate validation datasets (1) The validation set consists of 10 points and any other

point within a 100km radius, and (2) the validation set consists of 10 points and any

other point within a 250km radius. Moreover, we consider two particular choices for

the m (mtry) parameter for random forest in combination with the above validation

datasets: (A) m = 4 and (B) m = 12. For each day, we assess both the OOB mean-

squared error (MSE), as well as the validation MSE, for both the case where the two
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additional nearest-neighbor features were included and in the case where they were

not included.

Our results showed that for all cases, the OOB MSE prefers the inclusion of the

additional 2 features. However, the validation MSE tended to actually prefer fewer

predictors rather than more predictors on more days when m = 12. With m = 4,

the additional features are strongly predictive but are not selected for as many splits,

therefore less of an issue is posed, and the results are similar regardless of the inclusion

of the additional nearest-neighbor features. Generally, the OOB MSE is substantially

lower than the validation MSE as well, suggesting that OOB metrics are not well

suited for this particular kind of spatial prediction problem.

Median
Validation MSE

Median
OOB MSE

Number of days
where smaller p
has better MSE

mtry Radius Larger p Smaller p Larger p Smaller p Validation OOB
4 100 0.33 0.33 0.06 0.11 14 0
12 100 0.35 0.33 0.05 0.10 23 0
4 250 0.71 0.72 0.06 0.11 15 0
12 250 0.82 0.71 0.05 0.10 20 0

Table B.6: Comparison between including additional nearest-neighbor features
(larger p) vs. not (smaller p) across 2 m (mtry) values and 2 validation radius

values across 31 days in July 2011.
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Appendix C

Supplemental Materials to “A

framework for assessing COVID-19

testing site spatial access”

C.1 Additional figures
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(a) Atlanta UA, county sites only (b) Fulton County, county sites only

(c) Atlanta UA, county and other publicly
funded sites

(d) Fulton County, county and other
publicly funded sites

(e) Atlanta UA, all testing sites (f) Fulton County, all testing sites

Figure C.1: ECDF comparisons for distance to nearest testing site among persons
living below and above the poverty level in the Atlanta UA (left column) and Fulton

County (right column), for public sites (top row), public sites together with other
community and HRSA health center sites (middle row), and all public and private

testing sites together (bottom row).
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(a) Atlanta UA, county sites only (b) Fulton County, county sites only

(c) Atlanta UA, county and other publicly
funded sites

(d) Fulton County, county and other
publicly funded sites

(e) Atlanta UA, all testing sites (f) Fulton County, all testing sites

Figure C.2: ECDF comparisons for potential demand at nearby testing sites among
persons living below and above the poverty level in the Atlanta UA (left column)
and Fulton County (right column), for public sites (top row), public sites together
with other community and HRSA health center sites (middle row), and all public

and private testing sites together (bottom row).
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(a) Atlanta UA, county sites only (b) Fulton County, county sites only

(c) Atlanta UA, county and other publicly
funded sites

(d) Fulton County, county and other
publicly funded sites

(e) Atlanta UA, all testing sites (f) Fulton County, all testing sites

Figure C.3: ECDF comparisons for distance to nearest testing site among uninsured
and insured persons 19 and older in the Atlanta UA (left column) and Fulton

County (right column), for public sites (top row), public sites together with other
community and HRSA health center sites (middle row), and all public and private

testing sites together (bottom row).
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(a) Atlanta UA, county sites only (b) Fulton County, county sites only

(c) Atlanta UA, county and other publicly
funded sites

(d) Fulton County, county and other
publicly funded sites

(e) Atlanta UA, all testing sites (f) Fulton County, all testing sites

Figure C.4: ECDF comparisons for potential demand at nearby testing sites among
uninsured and insured persons 19 and older in the Atlanta UA (left column) and

Fulton County (right column), for public sites (top row), public sites together with
other community and HRSA health center sites (middle row), and all public and

private testing sites together (bottom row).
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C.2 Additional information about testing sites

Below we provide archived links for county testing sites. Our target area was primar-

ily the Atlanta urbanized area and Fulton County, but we cast a wide net around

this area to ensure an appropriate accounting of public testing sites. These links

were archived with the Internet Archive’s Wayback machine. For some counties,

we relied on the Georgia DPH testing map (https://covid19.dph.ga.gov/en-US/

test-location-map/) to identify the operational testing sites. In some cases the

location of county testing sites was ambiguous (e.g., Northwest Health District did

not explicitly print the addresses of testing sites on their schedule) so there may be

some error in testing site geocoding.

• Fulton County, including the CORE testing sites: Link 1 and Link 2

• Cobb/Douglas, including CORE testing sites

• DeKalb and CORE sites: Main Sites and CORE sites

• Gwinnett, Newton, and Rockdale: Main sites and CORE sites

• North Georgia Health District (1-2)

• Public Health District 2

• Northeast Health District

• Northwest Health District

• Public Health District 4

• North Central District

https://covid19.dph.ga.gov/en-US/test-location-map/
https://covid19.dph.ga.gov/en-US/test-location-map/
https://web.archive.org/web/20200928194722/https%3A%2F%2Fwww.fultoncountyga.gov%2Fcovid-19%2Fcovid-testing-sites
https://web.archive.org/web/20201001180617/https%3A%2F%2Fwww.fultoncountyga.gov%2Fcovid-19%2Fcovid-testing-sites
https://web.archive.org/web/20201001194806/http%3A%2F%2Fwww.cobbanddouglaspublichealth.com%2Fservices%2Fepidemiology-infectious-disease%2Fnovelcoronavirus%2F
https://web.archive.org/web/20200928201431/https%3A%2F%2Fwww.dekalbhealth.net%2F
https://web.archive.org/web/20200928210942/https://static1.squarespace.com/static/5c61c6ea01232c3fff66df40/t/5f7109978d2cb23bb1338b08/1601243543942/GWINNETT+SCHEDULE+0929-1003.pdf
https://web.archive.org/web/20201001194028/https%3A%2F%2Fwww.gnrhealth.com%2Fdrive-thru-testing%2F
https://web.archive.org/web/20200928210931/https://static1.squarespace.com/static/5c61c6ea01232c3fff66df40/t/5f6e05028fab9257dcf5d52f/1601045763913/CLARKSTON_IRC_SCHEDULE_Update.pdf
https://web.archive.org/web/20201001194344/https%3A%2F%2Fwww.nghd.org%2Fpr%2F34-%2F1175-update-now-3-locations-for-free-covid-19-testing-in-north-ga.html
https://web.archive.org/web/20201001181446/http://phdistrict2.org/
https://web.archive.org/web/20200929161030/https%3A%2F%2Fpublichealthathens.com%2Fwp%2Fprograms%2Finfectious-disease%2Fcoronavirus-covid-19-information%2Fcovid-19-nurse-screening-hotline%2Fschedule-covid-testing-appointment-online%2F
https://web.archive.org/web/20200929133817/https://nwgapublichealth.org/wp-content/uploads/2020/09/New-Regional-COVID-19-test-program-info-sheet-for-tracers-pdf.pdf
https://web.archive.org/web/20200928214444/https%3A%2F%2Fwww.district4health.org%2F
https://web.archive.org/web/20200929203738/https%3A%2F%2Fnorthcentralhealthdistrict.org%2Fcoronavirus%2F
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Roozbeh Valavi, Jane Elith, José J. Lahoz-Monfort, and Gurutzeta Guillera-Arroita.

blockcv: An R package for generating spatially or environmentally separated folds

for k-fold cross-validation of species distribution models. Methods in Ecology and

Evolution, 10(2):225–232, 2019.

Mark J Van der Laan, Eric C Polley, and Alan E Hubbard. Super learner. Statistical

applications in genetics and molecular biology, 6(1), 2007.

https://covid-19-giscorps.hub.arcgis.com/datasets/giscorps-covid-19-testing-locations-in-the-united-states-symbolized-
https://covid-19-giscorps.hub.arcgis.com/datasets/giscorps-covid-19-testing-locations-in-the-united-states-symbolized-
by-test-type/data


178

Natalya Verbitsky-Savitz and Stephen W Raudenbush. Causal inference under inter-

ference in spatial settings: A case study evaluating community policing program in

chicago. Epidemiologic Methods, 1(1):107–130, 2012.

Lance A Waller, Thomas A Louis, and Bradley P Carlin. Bayes methods for combining

disease and exposure data in assessing environmental justice. Environmental and

Ecological Statistics, 4(4):267–281, 1997.

Lance A Waller, Thomas A Louis, and Bradley P Carlin. Environmental justice and

statistical summaries of differences in exposure distributions. Journal of Exposure

Science & Environmental Epidemiology, 9(1):56–65, 1999.

Holger Wendland. Piecewise polynomial, positive definite and compactly supported

radial functions of minimal degree. Advances in computational Mathematics, 4(1):

389–396, 1995.

WHO. Ambient (outdoor) air pollution, 2018. URL https://web.archive.org/web/

20200824220508/https%3A%2F%2Fwww.who.int%2Fnews-room%2Ffact-sheets%

2Fdetail%2Fambient-%2528outdoor%2529-air-quality-and-health. Accessed

on 24 August 2020.

Marvin N Wright and Andreas Ziegler. ranger: A fast implementation of random

forests for high dimensional data in C++ and R. Journal of Statistical Software,

77(i01), 2017.

Qingyang Xiao, Yujie Wang, Howard H Chang, Xia Meng, Guannan Geng, Alexei

Lyapustin, and Yang Liu. Full-coverage high-resolution daily PM2.5 estimation

using MAIAC AOD in the Yangtze River Delta of China. Remote Sensing of

Environment, 199:437–446, 2017.

Qingyang Xiao, Howard H Chang, Guannan Geng, and Yang Liu. An ensemble

https://web.archive.org/web/20200824220508/https%3A%2F%2Fwww.who.int%2Fnews-room%2Ffact-sheets%2Fdetail%2Fambient-%2528outdoor%2529-air-quality-and-health
https://web.archive.org/web/20200824220508/https%3A%2F%2Fwww.who.int%2Fnews-room%2Ffact-sheets%2Fdetail%2Fambient-%2528outdoor%2529-air-quality-and-health
https://web.archive.org/web/20200824220508/https%3A%2F%2Fwww.who.int%2Fnews-room%2Ffact-sheets%2Fdetail%2Fambient-%2528outdoor%2529-air-quality-and-health


179

machine-learning model to predict historical PM2.5 concentrations in China from

satellite data. Environmental science & technology, 52(22):13260–13269, 2018.

Xin Xu, Sheng Nie, Hanying Ding, and Fan Fan Hou. Environmental pollution and

kidney diseases. Nature Reviews Nephrology, 2018.

Guofen Yan, Alfred K Cheung, Jennie Z Ma, J Yu Alison, Tom Greene, M Norman

Oliver, Wei Yu, and Keith C Norris. The associations between race and geographic

area and quality-of-care indicators in patients approaching ESRD. Clinical Journal

of the American Society of Nephrology, 8(4):610–618, 2013.

Michael T Young, Matthew J Bechle, Paul D Sampson, Adam A Szpiro, Julian D

Marshall, Lianne Sheppard, and Joel D Kaufman. Satellite-based NO2 and model

validation in a national prediction model based on universal kriging and land-use

regression. Environmental science & technology, 50(7):3686–3694, 2016.

Haozhe Zhang, Joshua Zimmerman, Dan Nettleton, and Daniel J Nordman. Random

forest prediction intervals. The American Statistician, pages 1–15, 2019.

Ruixin Zhang, Baofeng Di, Yuzhou Luo, Xunfei Deng, Michael L Grieneisen, Zhi-

gao Wang, Gang Yao, and Yu Zhan. A nonparametric approach to filling gaps

in satellite-retrieved aerosol optical depth for estimating ambient PM2.5 levels.

Environmental Pollution, 243:998–1007, 2018.

Corwin M Zigler, Francesca Dominici, and Yun Wang. Estimating causal effects of air

quality regulations using principal stratification for spatially correlated multivariate

intermediate outcomes. Biostatistics, 13(2):289–302, 2012.
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