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Abstract

E�cient Classification for Ultra High Dimensional Variable Selection

By Kexin Qu

Rapid advances in technologies have demonstrated great needs for ultra-high dimensional
data analysis in neuroimaging studies. Our work is motivated by the Autism Brain Imag-
ing Data Exchange ( ABIDE) study, where scientist are interested to identify important
biomarkers for early detection of the autism spectrum disorder ( ASD) using high resolution
brain images that include hundreds of thousands voxels. However, most existing methods
are not feasible to deal with such problems due to extensive computational cost coming as
well model complexity. In our work, we propose a new spatial variable selection screening
(SVSS) method which includes two components: 1) independent screening using each voxel
as a predicator and 2) search for other predicators among neighbors based on spatial depen-
dence. Our approach is computationally feasible and e�cient; and it takes full advantage of
using spatial configuration of the predicators without additional e↵ort on building complex
models. Applied to the resting state functional magnetic resonance imaging ( R-fMRI)
data in the ABIDE study, our methods identify voxel-level imaging biomarkers highly pre-
dictive of the ASD. Extensive simulations also show that our method achieve better perfor-
mance in predication as well as variable selection compared to the widely used SIS method.
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1 Introduction

Rapid advances in technologies have demonstrated great needs for high dimensional

data analysis in diverse fields, ranging from genomics, health sciences, to economics, and

machine learning. Particularly in neuro-imaging study, the emergence of a large amount

of high resolution imaging data with ultra high dimensionality requires e�cient statistical

methods to obtain accurate disease information.

In dealing with any statistical procedure, there are three major components: statistical

accuracy, model interpretability and computational complexity (Fan and Lv, 2010). None

of them need to be sacrificed if number of observations n is much larger than number of

variables p. However, in ultra-high dimension problems where dimensionality is much larger

than the number of observation size, significant challenges arise in terms of how to design a

computationally e�cient statistical procedure, build interpretable models, as well as obtain

accurate inference.

A number of methods have been proposed. Regularization methods (Tibshirani 1996,

Fan and Li 2001, Zou and Hastie 2005, Zou 2006, Yuan and Lin 2006) for variable selection

can deal with high-dimensional feature space problems with structural information being

incorporated. Bayesian methods such as Gibbs variable selection (Dellaportas et al. 2002)

and stochastic search variable selection are also commonly used for variable selection and

posterior simulation algorithms. The advantage of such methods is that, by specifying a

positive prior probability for each parameter being zero, the posterior probability of each pa-

rameter being included in the model can be computed and used to quantify the uncertainty

of variable selection. Based on the posterior inclusion probabilities, important variables

can be obtained by specifying a threshold value. Structural information can be incorpo-

rated by using Ising or binary Markov random filed priors (Li and Zhang 2010, Stingo et
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al. 2011, Smith et al. 2003, Smith and Fahrmeir 2007). Transdimensional sampling algo-

rithms (Lamnisos et al. 2009) and adaptive Monte Carlo methods (Nott and Kohn 2005)

are developed to improve e�ciency of posterior simulations. Despite good performance in

high dimensional space, the aforementioned methods are not feasible to handle problems

involving hundreds of thousands or even millions of predictors. Therefore variable selec-

tion in ultra-high dimension feature space calls for extended statistical methods and theory.

Sure independence screening (SIS), introduced by Fan and Lv (2008), is proposed to reduce

computation in ultra-high dimensional variable selection and at the same time can achieve

good theoretical properties ; however it can neither explicitly model the dependence among

variables nor quantify the uncertainty of variable selection. Bottolo and Richardson (2010)

proposed a sampling scheme in Bayesian modeling framework which allows 10,000 predi-

cators, but it is infeasible when predicators are in number of 200,000 as in our motivating

study. Johnson and Rossell (2012) proposed a Bayesian model selection method that can

produce high selection accuracy in ultra high-dimensional problems but it fails to incor-

porate any structural information and thus can’t be directly applied to the neruo-imaging

problem.

Therefore there are needs to develop more e�cient computation algorithms that can

both utilize less complex models and incorporate structural information. We propose a new

spatial variable selection screening (SVSS) which includes two components: 1) independent

screening using each voxel as a predicator and 2) search for other predicators among neigh-

bors based on spatial dependence. These are motivated by Sure Independent Screening

(Fan and Lv, 2007) and EgoNet (Yang et al, 2014), respectively. Comparing to SIS which

utilizes marginal sample correlation with the response variables, the initial screening in our

method is guided by predication/classification accuracy coming from a simple generalized
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linear model (GLM). This not only ensures goodness of model fit but also greatly reduces

model complexity as well as computational cost. Due to the sparsity feature of ultra high

dimensional problems (i.e., only a small subset of voxels are the true important predicators),

only one voxel ( or several if in ultra-high dimension space) with the best predication per-

formance is selected and considered a starting point to search for other important variables;

the other important ones are then recruited based on spatial dependence with the selected

ones. Without introducing new parameters, we adopt in a similar fashion of the ego net-

work model from Yang’s study (2014): for each selected variable, the nearest 26 neighbors

directly connected to it are altogether added to the model. The underlying assumption of

our method is that if one voxel is selected, then its neighbors are likely to be included in the

model. We fit GLM to assess the association between the voxels and the disease status; less

significant voxels are indicated by lower coe�cient values and are removed from the model

to avoid overfitting.

Our work is primarily motivated by the Autism Brain Imaging Data Exchange (ABIDE)

study (Di Martino et al. 2013). ABIDE study aims to find the association of brain activity

with the autism spectrum disorder (ASD), a widely recognized disease due to its high

prevalence and heterogeneity in Children (Rice 2009). The ABIDE study aggregated 20

resting-state functional magnetic resonance imaging (R-fMRI) data sets from 17 di↵erent

sites including 539 ASDs and 573 age-matched typical controls. To characterize the local

spontaneous brain activity, we plan to focus on the fractional amplitude of low-frequency

fluctuations (fALFF)( Zou et al. 2008) based on the R-fMRI time series at each voxel for

each subject. The fALFF is defined as the ratio of the power spectrum of low frequency

( 0.01-0.08 Hz) to the entire frequency range and has been widely used as a voxel-wise

measure of the intrinsic functional brain architecture derived from the R-fMRI data ( Zou
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et al.2010). In our work, among 116 regions in the brain involving 185, 405 voxels, we

focus on one particular region with 5104 voxels. We apply SVSS method to analyze the

voxel-wise fALLF values and aim to identify imaging biomarkers in this particular region

for ASD detection.

The remainder of the paper is organized as follows. In section 2, we present the algorithm

for variable selection. In section 3, several simulation studies with di↵erent settings are

presented to demonstrate the superiority of our proposed method. In section 4, we apply

the proposed method to R-fMRI data in the ABIDE study to identify important voxel-

level fALFF biomarkers that are predictive of the ASD risk. Finally we conclude with a

discussion in Section 4.

2 Method

The underlying model adopted for linking disease status y, and predicators X1,...,Xp

, is

logistic regression. Suppose there are n subjects in the study. Response variable y
i

2 {0, 1},

is binary outcome indicating disease status of subject i ( disease=1, control=0). The whole

brain area contains a total number of V voxels. Let x

iv

denote the imaging biomarker

at voxel v for subject i. We consider a logistic regression model for variable selection

y

i

= I [p
i

� 0.5],

log(
p

i

1� p

i

) =
VX

v=1

c

v

�

v

x

i,v

+ ✏

i

✏

i

⇠ N(0, 1) (1)

where indicator function I(A) = 1 if event A happens and 0 if not, �
v

are coe�cients of

imaging biomarker x
i,v

, c
v

2 {0, 1} is the selection indicator for voxel v. Therefore, a value

of 0 indicates the corresponding voxel is not accosiated with the certain disease.
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2.1 Step1: Screening

In the first step, only one voxel v at a time is introduced into the model with the

corresponding data (x
iv

, y
i

),

y

i

= I [p
i

� 0.5] , log(
p

i

1� p

i

) = �

v

x

i,v

+ ✏

i

✏

i

⇠ N(0, 1) (2)

We conduct one round of cross-validation by splitting the entire data into training and

testing. By using each of the V fitted model obtained from the training data, we can

make predications on disease status for each subject in the testing set and thus obtain the

predication accuracy a

v

given by each voxel,

a

v

=

P
n

i=1 I(yi = cy
iv

)

n

(3)

where ŷ

iv

is the predicated disease status; I (y
i

= cy
iv

) is 1 if y
i

= cy
iv

, 0 otherwise. Based

on ranking of a
v

, select the voxel(s),v
max

which generates the highest predication accuracy

a

max

= max{a1, ..., av}. We consider voxel v
max

as the one bearing the most significant

feature for disease predication and therefore make it the starting point to search for other

important variables.

2.2 Step2: Variable Selection Incorporating Spatial Dependence

Denote the set of h selected voxel(s) as S
k

where k(k � 1) denotes the corresponding kth

model, M
k

, ( S1 = {v
max

}) . The neighborhood of each voxel is defined as the set of adjacent

voxels from six di↵erent directions ( top, bottom, front, back, left, and right)(Figure 1).

For each selected voxel in this model, recruit all of the 26 neighbors and fit into the logistic

regression model, M
k+1. If the corresponding predication accuracy a

k+1 decrease by more
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than 0.01 from a

k

, the search stops and we consider M

k

as the optimal model where the

set of voxels S
k

are identified as important features associated with the disease; otherwise

we continue to the next step to exclude variables with less significant association with the

disease:

from the fitted model M
k+1, remove from the current model the voxel,v

k+1,r ( r = 1, ..., h

), which has the least absolute value of the coe�cient beta since smaller values indicate

less association. Fit into the logistic regression model with the reduced set of variables,

S

k+1,r+1 = S

k+1,r � {v
k+1,r}. If the resulting accuracy v

k+1,r+1 decreases by more than

0.01 from v

k+1,r, then stop the remove step; if not, repeat until this criteria is satisfied

or predication accuracy reaches 1. The resulting set of variables and the corresponding

predication accuracy are the new S

k+1 and a

k+1, respectively; these voxels are thus used

as the root to recruit more neighbors in the next step. We choose ” decrease by more than

0.01” instead of simply ”decrease” to be signal indicating a less optimal model. As 0.01

being a small value, it won’t significantly a↵ect the model performance. One the other

hand, it can help to exclude less important variables as many as possible and thus avoid

overfitting and increase computation performance.

When there are multiple regions that contain true signals, some modifications are

needed. In such cases, the entire space is partitioned into several sub-regions with equal

number of voxels. Within each sub-region, the aforementioned screening step is imple-

mented. Voxel(s) with highest accuracies from each sub-region are combined to one set to

start the regular subsequent SVSS step.
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3 Simulation Studies

We conduct simulation studies to evaluate the variable selection performance of the

proposed method compared to SIS method.

To understand of the method performance at di↵erent scales of variable space, we focus

on three cases: 1) a 25*25*25 cubic region with 15,625 voxels in total, 2) a 37*37*37 cubic

region with 50,653 voxels, and 3) a 50*50*50 cubic region with 125,000 voxels. Sample

size is also varied in order to find an acceptable one. Imaging biomarkers {x
iv

}V
v=1 are

independently drawn from normal distribution N(0, 2). We further set 125 voxels within a

small cube region (Figure 2) to be true signals. The coe�cients of true signals are set to

be constant 1. Response variable is thus drawn from:

p(y
i

= 1) =
1

1 + e

��xiv
(4)

Table 1 presents the variable selection performance under di↵erent space dimension.

Compared to SIS, our method has shown a obviously better performance with higher pred-

ication accuracy, sensitivity as well as specifity. Remarkably, in most cases our method has

successfully covered all of 125 true voxels without including any of the non-important ones.

When sample size is small ( N = 2000), SIS has not given a good performance: predication

accuracy is 0.65(V = 15, 625) and 0.552(V = 50, 653), respectively. Out of 125 true voxels,

there are only 41(V = 15, 625) and 11(V = 15, 625) voxels successfully identified by SIS.

Therefore our method has demonstrated a superiority over SIS particularly when sample

size is small.

We further conduct a simulation study by setting two separate regions within the feature

space to be true signals (Figure 3). Sample sizeN is 5000 and there are 15,625 voxels (64 true



8/ 16

voxels in each true region) in the space. The entire space is partitioned into 8 subregions

involving 2000 voxels individually. The voxel with the highest predication accuracy in

each subregion is selected at the screening step. Thus 8 voxels are involved as roots to

recruit neighbors. SVSS has shown a predication accuracy as high as 0.984 (Table 2) and it

successfully identified 128 true voxels without including any of the non-important ones. In

comparison, SIS shows a predication accuracy of 0.799 and only 84 true voxels are covered

by the total 93 voxels.

4 Application

We analyze the motivating ABIDE study introduced in Section 1 using the SVSS pro-

cedure. Our goal is to identify important voxel-wise image biomarkers that are predictive

of ASD risk. Our analysis include 1071 subjects and for each subject fALFF values are

computed for each of 5104 voxels . fALFF values are first standardized in order for GLM

to work appropriately.

In the screening step, for each of 5104 voxels we implement GLM using the entire data as

training set, and then randomly select 500 samples as testing set to obtain the predication

accuracy. Top 10 voxels with the highest accuracies are candidates to incorporate spatial

dependence in the next step. We conduct 10 rounds of testing and thus can correspondingly

obtain 10 sets of best-performed voxels in total. By counting the number of occurrence

across these 10 sets, we find the voxel with the highest occurrence frequency (Figure 4)

which is selected in 5 rounds.

The selection results from SVSS procedure is presented in Table 3. Using a testing

set with 500 randomly selected samples, SVSS achieves a considerably high predication

accuracy (1), sensitivity (1) as well specificity(1), indicating a strong predictive power of
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our method. 530 voxels, located at the upper right of the entire region, are selected in the

final mode (Figure 5).

5 Discussion

In this work, we present a novel algorithm for variable selection in an ultra-high dimen-

sional feature space. Our approach is computationally feasible and e�cient; and it takes

full advantage of using spatial configuration of the predicators without additional e↵ort on

building complex models; the variable selection is guided by the prediction/classification

accuracy, which ensures goodness of model fit, reduces the model complexity and avoids the

model overfitting. Furthermore, our method builds up a general framework for ultra-high

dimensional variable selection; it can be readily extended to incorporate other existing sta-

tistical models/machine learning algorithms beyond the generalized linear model (GLM),

such as the support vector machine (SVM), random forest and neural network.

The key components in our method are the set of selected voxels obtained from the

screening step, which serve as the roots to find other adjacent voxels. It is extremely

important to have the initially selected voxels be one of the true voxels; otherwise it will

be time-consuming and computationally infeasible to find the true voxels. Since we only

rely on spatial dependence and don’t incorporate other parameters, the algorithm may fail

to solve the problem if the initial voxel is far from the true region. This may happen

when true signals are sparse relative to the voxel size or when there are multiple regions of

interest. One solution, when sparsity occurs in ultra-high dimensional variable space, is to

increase the number of initial candidates as to cover as least one of the true signals. In our

simulation studies, when variable number is relatively lower ( V = 15625, 50653), the first

selected variable is always one of the true signals; when the variable number is in hundreds
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of thousands (V = 125, 000), however, it’s essential to include more than one voxel ( in our

case, we selected 5 best-performed voxels obtained in the screening). It’s a challenge to

decide how many voxels are to be selected initially: on one hand a larger number indicates

high possibility of covering at least one of the true signals while on the other hand a model

involving too many voxels is not computationally feasible and induces overfitting. Another

solution might be to partition the large space into subregions so that variable dimension

is reduced. For example, in the last simulation study we partitioned the 15625 voxels into

8 subregions where each one contains approximately 2000 voxels. This method works well

especially when there are multiple true regions in the entire space.
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Appendices

Tables

V N Method Pedication Accuracy Sensitivity Specifity NO
voxel

( NO
true

)
SVSS 0.942 0.935 0.950 123(123)

15,625 2000
SIS 0.65 0.616 0.685 54(41)
SVSS 0.982 0.978 0.986 125(125)

15,625 5000
SIS 0.862 0.863 0.857 120(108)
SVSS 0.891 0.873 0.904 176(124)

50,653 2000
SIS 0.552 0.593 0.514 36(11)
SVSS 0.973 0.931 0.949 125(125)

50,653 3000
SIS 0.710 0.689 0.723 77(54)
SVSS 0.981 0.974 0.988 125(125)

50,653 5000
SIS 0.856 0.855 0.857 120(110)
SVSS 0.99 0.986 0.994 125(125)

125,000 5000
SIS 0.844 0.855 0.833 120(101)

Table 1: Variable selection performance focusing on one region. NO
voxel

is the total number
of selected voxels. NO

true

is the number of true voxels covered by the selected ones in total.
Sensitivity and specifity are obtained by using 80% of entire samples for training and the
rest for testing.

V N Method Pedication Accuracy Sensitivity Specifity NO
voxel

( NO
true

)
SVSS 0.984 0.983 0.984 128(128)

15625 5000
SIS 0.799 0.799 0.798 93(84)

Table 2: Variable selection performance focusing on two regions. NO
voxel

is the total number
of selected voxels. NO

true

is the number of true voxels covered by the selected ones in total.
Sensitivity and specifity are obtained by using randomly selected 4000 samples for traning
and 1000 for testing.

V N Method Pedication Accuracy Sensitivity Specifity NO
voxel

5104 1071 SVSS 1 1 1 530

Table 3: Selction results and predication accuracy for the ASD risk.NO
voxel

is the total
number of selected voxels. Sensitivity and specifity are obtained from 500 radomly selected
voxles.
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Figures

Figure 1: 26 adjacent neighbors around one voxel.

Figure 2: 125 true voxels (red) within
one region are located in a general var-
iale space

Figure 3: 128 true voxels are located
within two separate regions in a general
variable space
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Figure 4: The selected voxel(red) is located on the right of the 5104 voxels (black).
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Figure 5: The selected 530 voxels (red) is located on the upper right of the 5104 voxels
(black).


