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Abstract

Statistical Methods for Incomplete Big Data

By

Yi Deng

Advances in technology have led to generation of enormous amounts of data, also
known as “big data”. Such explosion in turn brings daunting challenges for data analysis
and for generating meaningful findings using big data. One major challenge is the occur-
rence of missing data. Data insights may be impacted if missing values are inadequately
handled. In this dissertation, we develop and investigate methods for handling missing
data in the environment of big data.

In Chapter 1, we first review the terminology on missing data and existing methods
for handling incomplete data or big data. Furthermore, we present distributed analyses
of big data that are stored in multiple sources.

In Chapter 2, we develop two approaches of using regularized regressions to impute
missing values in the presence of high-dimensional big data. The approaches can accom-
modate mixed incomplete data and handle general missing data patterns. Our approaches
are compared to several existing imputation methods in simulation studies. The simu-
lation results demonstrate that the proposed multiple imputation approach based on an
indirect use of regularized regression outperforms any other imputation methods.

In addition to traditional types of data with missing values, this dissertation also
investigates handling distributed incomplete data, with the purpose of protecting the
privacy. For example, in the case of medical patients, institutions such as the Veteran’s
Health Administration have policies that restrict their data to internal facilities. Under
such circumstances, distributed analyses are necessary but challenging when data are
subject to missing values. In Chapter 3, we propose privacy-preserving methods to handle
missing data in distributed analyses for horizontally partitioned data. The methods,
in particular, target data that are missing at random and missing not at random. In
Chapter 4, we present privacy-preserving methods on vertically partitioned data with
missing values.
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Chapter 1

Introduction
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The world has been generating huge volumes of data from all aspects of our lives at

unprecedented high speed. Such large amounts of data (also known as “big data”) provide

a wealth of opportunities by deriving hidden insights for a better decision making. For

example, big data in healthcare, exploded by rapid digitization of prescriptions, medical

images, laboratory results, insurance information and etc., are a key to improve the quality

of healthcare delivery meanwhile reducing the costs (Raghupathi and Raghupathi, 2014).

Although “big” data is actually a relative term to some extent, it generally refers

to large and complex data that are difficult to manage and analyze with traditional

strategies. To address the challenge of the management of big data, people usually adopt

the distributed file system such as Hadoop that allows the data to store and read in

parallel across nodes in a cluster. The analytical challenge of big data arises as traditional

statistical analyses require the entire dataset to be loaded in memory before applying any

methods. The algorithms (e.g., functions written in R) assuming the pooled data can fit

in the RAM on a single computer are no longer applicable and thus can not be deployed

on a distributed system when the data are too large. Even if engineers invent a RAM that

is large enough for pooled big data, the process of integrating/pooling the data has severe

privacy issues, as we describe in Chapter 3 and 4. To address this, researchers propose

distributed algorithms for models such as linear regression and logistic regression, that

would work well in a distributed environment.

While the beauty of statistics is to reveal valuable and reliable latent information

from data in a wide variety of areas, this nature is deteriorated by the presence of miss-

ing data, a challenge that lies in data of any volumes. By definition, missing Data are

underlying observations that exist but are not stored for some reason, and are ubiquitous

in biomedical research. For example, in a clinical survey study, missing data often result

from subjects’ non-responses of all or some of the questions in the questionnaire. In a

longitudinal study where each observational unit is measured repeatedly over a period

of time, subjects may drop out or be unable to participate at all time points. In an
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analysis with missing data, a relatively few absent observations can dramatically shrink

the sample size, leading to inaccurate statistical inference, weaker statistical power and

perhaps biased estimates. Therefore, handling missing data is essential. This dissertation

studies methods for missing data with a focus on incomplete big data. In the remainder

of this chapter we first describe missing-data patterns and mechanisms, which need to

be examined properly before any techniques to be applied. We then consider a literature

review of conventional missing data methods and distributed analysis. Chapter 2 is con-

cerned with multiple imputation methods for high-dimensional data with general missing

data patterns. Chapter 3 and Chapter 4 study privacy-preserving methods for handling

missing data in a distributed environment where data are either horizontally or vertically

partitioned. For all of the methods that we propose, extensive simulation studies are

conducted to evaluate the performances and the data collected by the Georgia Coverdell

Acute Stroke Registry (GCASR) are used as a motivation and example. We conclude this

dissertation with a summary and future work in Chapter 5.

1.1 Missing-Data Patterns and Mechanisms

Missing-data patterns define the type of missingness depending on values observed and

missing in the data set. Missing-data mechanisms capture the relationship between the

missingness of values of certain variables and values of all variables in the data set. Let

Z = (zij) be an n × p data matrix with i-th row a p-vector observation of variables

(Z1, ..., Zp) for subject i. In the presence of missing data, we further let R = (rij) be

the matrix of binary missing-data indicators of the same dimension as the data set Z,

with rij = 1 if zij is observed and rij = 0 otherwise. If the missing values only occur

on one variable but a set of the rest variables is fully observed, we call it a univariate

missing-data pattern. Some methods are restricted to univariate missing-data patterns

since such patterns are simple and the methods are easy to illustrate. A data set has a



4

monotone missing-data pattern if its variables could be arranged so that if Zj is missing

for a subject, then Zj+1, ..., Zp are missing as well. The monotone missing-data pattern

often arises in longitudinal studies that suffer from subjects’ dropouts. A more common

missing-data pattern is the general pattern. A data set has a general missing-data pattern

when any set of variables may be missing for any subjects. Figure 1.1 illustrates the three

missing-data patterns.

Figure 1.1: Visual illustrations of three missing-data patterns with 4 variables. Missing
values are represented by unshaded areas

Besides the missing-data pattern, another key concept in missing data is the mech-

anism that leads to missing data. By introducing random missing-data indicators as

we defined above, Rubin (1976) first systematically formalizes the missing-data mecha-

nisms via probability distribution. The taxonomy of missing-data mechanisms according

to the aforementioned paper, which distinguishes between missing completely at random
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(MCAR), missing at random (MAR) and missing not at random (MNAR), is universally

used. According to the framework proposed by Rubin (1987); Little and Rubin (2002),

the missing-data mechanism is characterized by the conditional distribution of R given Z,

i.e., f(R|Z, φ), where φ represents unknown parameters. The strongest assumption made

for the data are MCAR, in which the distribution of R is independent of the values of the

data Z, that is, f(R|Z, φ) = f(R|φ) for all Z, φ, which implies f(Z|R, φ) = f(Z|φ). In

this situation, the observed data set can be considered as a random subset of the complete

data set. Let Zobs be the observed components of Z and Zmis the missing components.

A less restrictive assumption for data Z is that the probability of missing data on Z

depends only on Zobs but not on Zmis. In this case, we call the data are MAR. That

is, f(R|Z, φ) = f(R|Zobs, φ) for all Zmis, φ, which implies f(Z|Zobs, R, φ) = f(Z|Zobs, φ).

Unlike MCAR, when data are MAR, the observed data set is no longer a simple subset of

the complete data set. On the other hand, MAR mechanism “requires that the missing

values behave like a random sample of all values within subclasses defined by observed

data” (Schafer, 1997). When the distribution of R depends on the missing component

Zmis, we call the data are MNAR. It is an important area of research that is yet to be

thoroughly investigated.

Although we can determine the missing-data pattern by observed and missing val-

ues, there is no test that can definitively examine whether the missing-data mechanism

is MCAR, MAR or MNAR. Thus, methods for handling missing data depend on the

missing-data pattern and our assumption of the missing-data mechanism. Next, we dis-

cuss some commonly-used missing data methods with their corresponding assumptions of

the mechanisms.
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1.2 Commonly-Used Missing Data Methods

In this section, we briefly review some commonly-used methods for handling missing

data. We call a subject a respondent if it does not have any missing values and call it

non-respondent otherwise. To start with, we introduce general criteria for evaluating a

missing-data method, such criteria are illustrated in Millsap and Maydeu-Olivares (2009,

Chapter 5). Specifically, a superior method is expected to achieve the following qualities:

1. Minimized bias. Even though missing data may yield biased estimates, the good

method is expected to make the bias as small as possible; 2. Sufficient use of the available

information. The good method should not discard any pieces of data; 3. Good estimation

of uncertainty. Particularly, we desire the method could achieve accurate estimates of

standard errors, confidence intervals and p-values.

1.2.1 Complete-Case Analysis

Standard statistical methods for regression analysis have been widely developed to an-

alyze rectangular data sets, where values of all variables are measured for all subjects.

Therefore, in the presence of missing data, a natural solution is to discard those subjects

with any missing values and conduct the analysis based on the subset of complete cases.

The aforementioned method, called complete-case (CC) analysis or list-wise deletion, is a

default procedure for handling missing data in many statistical packages such as R and

SAS. There is a major advantage to CC analysis: it can be directly used for any kind of

statistical analysis (e.g., survival analysis, longitudinal analysis) without any computa-

tional methods for dealing with missing data (Allison, 2001). CC analysis obtains some

attractive statistical properties as well, relying on the missing-data mechanism. If the

data are MCAR, CC analysis would provide unbiased estimates since the reduced sample

of fully observed subjects is a random sub-sample of the original sample. However, the

standard errors from the CC analysis will usually be larger since a sub-sample is utilized,
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leading to a wider confidence interval. On the other hand, if the data are MAR or MNAR,

CC analysis will generally lead to biased results with few exceptions as have been dis-

cussed in detail by Rubin (1987); Little and Rubin (2002). For instance, the model of

generalized linear regression using CC when the missingness only depends on independent

variable, provides unbiased coefficients estimates. Another case that CC analysis is valid

is when we fit a logistic regression using incomplete data and the probability of missing

values on any variable depends only on the value of the dependent variable but not on any

of the independent variables. In that case, the CC analysis yields consistent estimates of

the regression coefficients and their standard errors (Vach, 2012).

Table 1.1 summarizes whether we expect biased estimates from a CC analysis in the

case of linear regression and logistic regression, assuming different missing-data mecha-

nisms. For both types of regression, Y is the outcome and (X, Z) are covariates, where

Z are fully observed. The table shows that the validity of CC analysis depends not on

which variable is missing but on the mechanism leading to missingness.

Table 1.1: Validity of complete-case analysis in linear regression and logistic regression.
Coef., coefficient estimates

Variable missing Mechanism depends on
Linear regression Logistic regression

Coef. of X Coef. of Z Coef. of X Coef. of Z

Y

Y (MNAR) Biased Biased Unbiased Unbiased
X, Z (MAR) Unbiased Unbiased Unbiased Unbiased
Y, X (MNAR) Biased Biased Biased Unbiased
Y, Z (MNAR) Biased Biased Unbiased Biased
Y, X, Z (MNAR) Biased Biased Biased Biased

X

Y (MAR) Biased Biased Unbiased Unbiased
X, Z (MNAR) Unbiased Unbiased Unbiased Unbiased
Y, X (MNAR) Biased Biased Biased Unbiased
Y, Z (MAR) Biased Biased Unbiased Biased
Y, X, Z (MNAR) Biased Biased Biased Biased

1.2.2 Single and Multiple Imputation

In order to retain the sample size of a data set for review in the presence of missing data,

a conventional strategy named single imputation is commonly implemented. Specifically,
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the strategy substitutes each missing value with a reasonable guess or estimate. One

simple but popular single-imputation approach is to fill in the missing value with the

unconditional mean for the cases that observe the variable. This well-known approach is

studied in Haitovsky (1968) and is shown to bias the estimates. Unlike the unconditional

mean substitution, regression imputation predicts the most likely value of missing data

using a regression model fitted by the observed values of a variable on other variables.

Another ad hoc single imputation method is called hot-deck imputation which replaces

each missing value with a random draw from the observed values. One comparatively

convenient hot-deck approach used in longitudinal studies is last observation carried for-

ward (LOCF). It sorts the data matrix based on any set of variables and then fills in the

missing value with the closest observed value ahead. LOCF is built upon the belief that,

for example in a longitudinal study with repeated measurements, the missing measure-

ment does not change from the last time it is measured/observed. Little and Rubin (2002)

and Allison (2001) show that single-imputation methods tend to underestimate standard

errors since the methods cannot distinguish real data from imputed data and are unable

to justify the uncertainty in the imputations.

By contrast, multiple imputation (MI) method replaces each missing value with a

set of M plausible values. The method is considered as an improvement upon single

imputation. Generally, MI procedure consists three steps: 1. imputation step, in which

the missing data are imputed and M complete data sets are generated; 2. analysis step,

in which a standard statistical technique is applied to analyze each complete data set; 3.

combining step, in which the results of the above analyses are combined to provide a final

result that accounts for the uncertainty in the data as well as that due to missing values.

Figure 1.2 is a pictorial representation of these three steps in a general MI method. We

further delve deeply into each step, with introductions of some additional terminologies

for MI in the meantime.

Incomplete data are considered to have ignorability if they meet the following two con-
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Figure 1.2: Pictorial representation of three steps in multiple imputation methods

ditions: 1. MAR; 2. parameters governing the missingness are distinct from parameters

to be estimated. To make it clear, let’s consider a Bayesian joint model for the complete

data and the missingness with underlying parameters that govern the data

f(Z,R, θ, φ) = f(Z|θ)f(R|Z, φ)f(θ, φ) (1.1)

where θ is the unknown parameters of the complete data that we want to estimate and

φ is from the conditional distribution of missing indicators R given the complete data Z.

Ignorability requires the data to be MAR and that the joint prior distribution for θ and

φ can factor into separate parts: f(θ, φ) = f(θ)f(φ). Under ignorability, we can show

that f(Zmis|Zobs, R) = f(Zmis|Zobs). Therefore, with the ignorability assumption, we do

not need to model the distribution of R in multiple imputations. In other words, in the

imputation step when we intend to generate M imputed data sets for Zmis, we can draw

from f(Zmis|Zobs) that drops out the modeling of Z.
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However, even drawing from f(Zmis|Zobs) can be difficult in some cases such as when

the data have general missing-data patterns, when the joint likelihood function is com-

plex, and when the predictive distribution is intractable. Data augmentation (Tanner

and Wong, 1987), a method built on Markov Chain Monte Carlo (MCMC), is a natural

solution to this issue and is widely used in MI. Bayesian statistics treats Zmis as additional

parameters to θ. The goal is to sample from the joint distribution for Zmis and θ given

Zobs. The iterative procedure begins with an initial value of Zmis, followed by drawing

θ from f(θ|Zobs, Zmis). At the t-th iteration, given the current value of the parameter

θ(t), we draw new values for Zmis, say Z
(t+1)
mis , from the conditional predictive distribu-

tion f(Zmis|Zobs, θ(t)). We then draw a new value for θ from the complete-data posterior

distribution f(θ|Zobs, Z(t+1)
mis ). As the iterative chain reaches a stationary state, Li (1988)

show that the distribution of θ(t) will approximate f(θ|Zobs) and the distribution of Z
(t)
mis

will approximate f(Zmis|Zobs). In addition to data augmentation strategy, there are some

other ways of implementing imputations and one of the frequently used approach is hot-

deck, as we introduce before. Most hot-deck procedures match the non-respondents with

similar responding subjects and replace the missing values of the former with the observed

values of the latter. However, hot-deck methods are not proper imputation methods as

defined in Rubin (1987). A proper imputation method should incorporate appropriate

variability among the M sets of complete data sets and yield consistent results.

When achieving M complete data sets, (Zobs,Z
(1)
mis),...,(Zobs, Z

(M)
mis ), the next step is to

analyze these data sets using common complete-data methods in order to get parameters

estimates and standard errors. Such an analysis is conducted using one complete data set

at a time, aiming to estimate the parameter of interest such as regression coefficients. Of

note, an analyst should be able to distinguish the parameter that the individual desires

to estimate and the parameter in Equation 1.1, as the former is from the analysis model

and the latter is from the imputation model. Meng (1994) argues that the imputation

model should be more general than the analysis model and be relatively “rich” in order to
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be congenial with lots of different analysis models of interest. Let Q be the parameter of

interest and under the setting of congeniality, Q should be some function of θ. We denote

the estimate of Q from the analysis using (Zobs, Z
(m)
mis) by Q̂(m), and the corresponding

variance estimates by V̂ (m), where m = 1, ...,M .

After we gather the results (i.e., estimates and standard errors) from the analysis

step, we can combine them and get a final result using Rubin’s rules (Rubin, 1987). The

combined estimate of Q is

Q̄ =
1

M

M∑
m=1

Q̂(m)

and its variance estimate is

T = (1 +
1

M
)B + V̄

, where the between-imputation variance B = 1
M−1

∑M
m=1(Q̂

(m) − Q̄)2 and the within-

imputation variance V̄ = 1
M

∑M
m=1 V̂

(m). When the missing-data mechanism is ignorable

and the imputation method is proper, MI will lead to consistent and asymptotically

efficient estimates. These advantages make MI one of the leading methods in handling

missing data.

1.2.3 Inverse Probability Weighting

Most standard complete-data analyses treat all subjects as equally important. However,

in some situations such as meta-analysis and survey sampling, it may be proper to vary

the weights given to different subjects. Horvitz and Thompson (1952) first bring the idea

of weighting into the missing data research and named it inverse probability weighting

(IPW). They argue that the bias of only using the complete cases can be corrected, in

some circumstances, when weighting each respondent by the inverse of the probability of

being a respondent. Consider a generalized linear model E(Y ) = g−1(X, θ) with missing

covariate X, IPW method tries to solve the weighted estimating equation UIPW (θ) =

1√
n

∑n
i=1RiwiUi(θ), where Ui(θ) is the first derivative of the log likelihood function with
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respect to θ, and Ri is a binary observe indicator and wi = 1/Pr(Ri = 1) is the weight

for subject i. Note that if wi = 1 for all i, IPW estimator becomes the estimator from

the CC analysis. Usually, the weights are unknown and we can use a parametric function

to model them, for example, logit( 1
wi

) = β0 + β1Y + β2Xobs, where β’s are unknown

parameters. We may obtain the estimated ŵi by plugging in the maximum likelihood

estimator of β. Wang et al. (1997) apply nonparametric method (kernel smoother) to

estimate the weights. They prove that the estimators using known weights, estimated

weights from the parametric model or the nonparametric model are all consistent, while

the one using known weights is less efficient than others. The asymptotic variances of IPW

estimators are provided in their paper, however, people usually use bootstrap methods to

approximate the variances for practical purposes.

Comparing to MI, IPW specifies a missingness model for the probability that a sub-

ject is a complete case. However, such model may lead to unstable weights and therefore

inefficiency of the estimators. One approach to fixing it is by weight stabilization. The

weight is stabilized by being replaced with a fraction with the numerator and denominator

corresponding to two estimated weights from different models. Another way to improve

efficiency of IPW is through augmented IPW (AIPW) (Robins et al., 1994; Scharfstein

et al., 1999). AIPW is a hybrid of IPW and imputation, that possesses the property of

doubly robust. In other words, AIPW is consistent either the weight model or imputation

model is correctly specified. Moreover, it is fully efficient if both models are correct. How-

ever, in the presence of general missing-data patterns and complex data, IPW methods

lose their power since modeling the weights is difficult. Seaman and White (2013) give a

nice review of IPW and compare it with MI.
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1.3 Existing Methods for Handling Incomplete Big

Data

Standard statistical methods for analyzing incomplete data, including the CC analysis,

MI and IPW, gain their popularity on low dimensional data. However, in the presence

of incomplete big data, their application is problematic especially when the data are

complex and high-dimensional. In practice, it is very common to have large number of

variables with missing values. In such cases, standard MI methods usually face severe chal-

lenges because the imputation models for missing values are complicated and the intensive

computing is most likely insurmountable. In the past two decades, with the increasing

collection of data, modern techniques for handling incomplete big data have drawn great

attention and both nonparametric and parametric methods have been developed.

1.3.1 Nonparametric Methods for Incomplete Big Data

Troyanskaya et al. (2001) propose a k-nearest neighbor single-imputation method (KN-

Nimpute) and utilize subjects in the neighborhood to impute missing values, by a weighted

average of observed values. The selection of neighbors is based on the Euclidean distance.

Liao et al. (2014) extend the KNNimpute to account for the information contained in

the nearest variables. Specifically, they proposed four variations of KNNimpute among

which, two approaches are shown to outperform a standard MI method in the simulation

study. However, an inevitable problem of incorporating standard k-nearest neighbor into

imputation methods is the specification of k as their performance highly depends on k.

Tutz and Ramzan (2015) propose a new method that can automatically select the relevant

neighbors, instead of depending on k. Such a method based on a distance which uses the

correlation among variables preforms well, especially when there are a large number of

variables.

Random forest, an ensemble method for classification and regression tasks, is widely
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used by researchers to cope with big data. As a nonparametric method, it allows com-

plex interactive and non-linear relations between variables of different types. Stekhoven

and Bühlmann (2012) propose a random-forest-based imputation method (missForest) in

which, for each variable with missing values, a random forest model is fitted using the

observed values of that variable as the response and the remaining variables as predictors.

By inheriting the power of random forest, missForest exhibits attractive computational

efficiency and performs particularly well, compared with other parametric methods in the

presence of mixed-type big data. Although the author argued that missForest intrinsically

constitutes multiple imputation since many unpruned decision trees are averaged in the

random forest procedure, it is not a proper imputation by the definition of Rubin (1987).

This is because missForest predicts each missing value using a exact value rather than the

random draw from a distribution. In a more recent paper, Shah et al. (2014) investigate

the improper issue of missForest and proposed a new method (MICE-RF) within the mul-

tiple imputation by chained equation framework, where multiple bootstrap samples of the

original data are used to generate multiple imputed data sets. The step of bootstrapping

accommodates the sampling variation and thus ensures proper imputations. Valdiviezo

and Van Aelst (2015) compare several strategies such as single and multiple imputations

to handle missing data when using tree-based prediction methods, with a focus on their

practical applications. Such prediction methods include the classification and regression

tree proposed by Breiman et al. (1984), the conditional inference forests proposed by

Hothorn et al. (2006), random forests, conditional inference forests developed by Hothorn

et al. (2006), and etc. The paper recommended that if the data have small amounts

of missing values, the CC analysis or the single imputation method is sufficient; in the

presence of large incomplete data, MI method using the conditional inference forests as

the prediction model is suggested.

Other novel nonparametric methods include a multiple imputation approach replying

on the combination of a multiplayer perceptron and k-nearest neighbors (Silva-Ramı́rez
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et al., 2015). However, this method can only deal with data of monotone missing-data

patterns.

1.3.2 Parametric Methods for Incomplete Big Data

Städler and Bühlmann (2012) propose a likelihood approach to solve the so-called matrix

completion problem, where the goal is to recover a matrix from an incomplete set of entries.

They assume a multivariate normal model with p-dimensional covariance matrix and

presented an EM algorithm that maximizes the l1-penalized observed log-likelihood. The

method (MissGLasso) is found to be always better than KNNimpute in their simulation

study. However, the E-step in the EM algorithm is rather complex and MissGLasso

strongly depends on the MAR assumption and cannot handle data that are MNAR. In

2014, the authors develop a more efficient algorithm called MissPALasso (Städler et al.,

2014), focusing on improving MissGLasso in two aspects: inefficiency of the EM algorithm

and non-sparseness of the regression coefficients.

Song and Belin (2004) provide a procedure for multiple imputation based on a common

factor model to reduce the dimension of the parameters in a multivariate normal model.

The assumed factor model has k underlying factors and can be described as Zi = α +

Wiβ+εi for i = 1, 2, ..., n, where α is a 1×p mean vector, Wi is a 1×k factor score vector,

β is a k×p factor loading matrix, and εi follows a multivariate normal distribution. With

the complete-data likelihood, the parameters and factor scores W , as well as missing

items can be simulated using a Gibbs sampler, which is viewed as an application of data

augmentation.

In the presence of mixed continuous and binary data, Audigier et al. (2016) propose

a new single imputation method based on a principal component method dedicated to

mixed data: the factorial analysis for mixed data (FAMD). FAMD can reduce the di-

mensionality of the data by providing a subspace that best represents the data, and

account for the influence of the continuous and the categorial variables in the analysis as
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well. However, as a single imputation method, the proposed method does not account for

the uncertainty brought by the imputation. Another parametric imputation method for

high-dimensional mixed data is presented by He and Belin (2014). It is a joint modeling

approach, where latent variables are used to model the binary variables. They use the

generalized parameter-expanded Metropolis-Hastings algorithm (Boscardin et al., 2008)

to sample the mixed covariance-correlation matrix for the joint distribution of continu-

ous and latent variables associated with binary variables. The simulation study indicates

that the multiple imputation method can adapt to different covariance structures when

the data are MAR.

1.4 Distributed Analysis of Big Data

To improve efficiency, it would be beneficial for different organizations with the same re-

search topic or sub-units within an organization to collaborate and share individual views

and further outcomes on the topic. Such a collaboration would contribute a larger sample

size and a more representative population. For instance, a healthcare system consists of

various public and private data collection systems such as health surveys, administrative

enrollment and billing records. These collection systems are usually conducted by different

entities, including hospitals, physicians, and insurance companies. Very few entities are

capable by themselves to gather all characteristics for the entire population of patients.

Thus, such a circumstance motivates the need of statisticians to develop essential tech-

niques to analyze data from multiple sources. One would argue that we can simply pool

the data from multiple sources and perform standard statistical analyses using the pooled

data, which is definitely the best way of using all the information from the data. However,

directly merging the data may not be allowed in practice due to the following concerns.

First, policies and regulations do not authorize data to be shared across organizations.

For example, Veteran’s Health Administration’s policy restricts their data to be only
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at internal facilities. Second, privacy of sharing sensitive data such as hospital medical

records and health insurance bill remains to be an essential issue because directly merged

data sets may result in the disclosure of susceptible information by malicious parties. As a

result, we introduce distributed analyses that achieve the desired statistical goal without

merging exact data from multiple sources, which preserves the confidentiality of the data

sets. The distributed analyses allow some computations to be conducted locally, which

largely improve the computation efficiency. In Chapter 3 and 4, our proposed methods

for handling distributed incomplete data depend on the distributed analyses illustrated

below. To begin with, distributed analyses are typically performed on two forms of data:

horizontally partitioned data and vertically partitioned data, as illustrated in Figure 1.3.

1.4.1 Distributed Analysis for Horizontally Partitioned Data

Horizontally partitioned data emerge when several institutions (sites) gather the same

collection of information on various entities. For example, the Behavioral Risk Factor

Surveillance System (BRFSS) operates state-wise telephone surveys to gather the same set

of information on health-related risk behaviors across the United States. Correspondingly,

the BRFSS data within each state are considered horizontally partitioned.

Assume the data consist response vector Y and design matrix X, such that:

Y =


Y site1

...

Y siteK

 , X =


Xsite1

...

XsiteK

 ,

where Y sitek and Xsitek (1 ≤ k ≤ K) are data from institution k.

We first consider distributed linear regression for horizontally partitioned data. Sup-
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(a) Pooled Data

(b) Horizontally Partitioned Data (c) Vertically Partitioned Data

Figure 1.3: Pooled data and two types of distributed data
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pose that Y follows a normal distribution:

Y = Xβ + ε,

where ε ∼ N(0, σ2) . The estimate of the parameter is

β̂ = (XTX)−1XTY (1.2)

In our distributed environment, the pooled data Y and X are not accessible due to certain

concerns. Nonetheless, two products XTX and XTY from Equation 1.2 can be obtained

from local sites as follows,

XTX =
K∑
k=1

(Xsitek)TXsitek , XTY =
K∑
k=1

(Xsitek)TY sitek

In this secure summation process, only the summary statistics ((Xsitek)TXsitek , (Xsitek)TY sitek)

are calculated in parallel locally and then transmitted to a mater site. Figure 1.4 shows

how the summary statistics transmit to the master site in a linear regression with 3 worker

sites.

We now turn to a distributed logistic regression for horizontally partitioned data.

Assume Y is a binary variable:

logit(Pr(Y = 1)) = Xβ.

Since the estimate of β cannot be found in a closed form, a commonly used way is called

Newton-Raphson that approximates β̂ iteratively in the following way:

β̂(t+1) = β̂(t) + (XTW (t)X)−1XT (Y − µ(t)), (1.3)

where W (t) = diag(π
(t)
i (1− π(t)

i )), µ(t) = (π
(t)
i ) and π

(t)
i is the probability of Y = 1 for the
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Figure 1.4: Distributed linear regression on data that are horizontally distributed across
K = 3 sites
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ith observation in iteration t. We can show that in the presence of horizontally partitioned

data, the update step 1.3 can be easily performed using local summary statistics:

XTW (t)X =
K∑
k=1

(Xsitek)TW (t)sitekXsitek (1.4)

XT (Y − µ(t)) =
K∑
k=1

(Xsitek)T (Y sitek − µ(t)sitek) (1.5)

where µ(t)sitek is the vector of probabilities of Y = 1 for subjects in institution k in iteration

t, and W (t)sitek is the diagonal matrix of π
(t)
i (1−π(t)

i ) for all subject i belongs to institution

k. Figure 1.5 illustrates the quantities transmission between master and local sites in a

distributed logistic regression assuming K = 3 sites participate in the collaboration. Of

note, the distributed linear regression only requires an one-time transmission of summary

statistics to the master site, while the distributed logistic regression involves the iterative

two-way transmission of quantities between master and local sites.

Wu et al. (2012) systematically investigate the above distributed logistic regression and

named it Grid Binary LOgistic REgression (GLORE). In addition to parameter estimates,

the GLORE model integrates decomposable partial elements or non-privacy sensitive pre-

diction values to obtain the variance covariance matrix, the goodness-of-fit test statistic,

and the area under the receiver operating characteristic (ROC) curve. Jiang, Li, Wang,

Wu, Xue, Ohno-Machado and Jiang (2013) implement the distributed logistic regression

using JAVA and provide the corresponding easy-to-use web service for researchers.

1.4.2 Distributed Analysis for Vertically Partitioned Data

When data are vertically partitioned, to simplify our problem, we assume the data are

from two sites/institutions. Suppose institution 1 has a data set A for n subjects and

institution 2 has another data set B for the same subjects, thus X = (A,B). We further

make an assumption that both institutions know the outcome variable Y . Considering a
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Figure 1.5: Distributed logistic regression on data that are horizontally distributed across
K = 3 sites
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linear regression on Y with X, the goal is to obtain β̂ of Equation 1.2 when the data are

vertically partitioned. Note that,

XTX =

ATA ATB

BTA BTB


, and

XTY =

ATY
BTY


Du et al. (2004) develop secure multi-party computation protocols for privacy-preserving

calculations of matrix product and matrix inverse. By using their secure technique, we

can obtain β̂ without passing A to institute 1 and passing B to institute 2.

An alternative approach of distributed linear regression is proposed by Sanil et al.

(2004). Details will be discussed in Chapter 4.

As for logistic regression, Slavkovic et al. (2007) propose an algorithm to aggregate

information among institutions through secure multi-party computation protocols. How-

ever, the algorithm induces very high computational cost and is not scalable as K is large.

Li et al. (2015) publish a distributed algorithm to solve the maximum likelihood problem

by dual optimization. Their method is shown to be more efficient from the simulation

study.

1.4.3 Missing Data in Distributed Analysis

The above-mentioned techniques of distributed analysis assume that the data are com-

plete. However, it is especially common that data from multiple sources are subject to

missing values. Based on our knowledge, Jagannathan and Wright (2008) is the first and

only paper that investigated missing data in a distributed analysis. In that paper, the

author propose a privacy-preserving single imputation algorithm based on decision trees.
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The method can deal with the missing data problem when the data are collected from

two sources and observed to have a univariate missing-data pattern.
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Chapter 2

Multiple Imputation for General

Missing Data Patterns in the

Presence of High-dimensional Data
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2.1 Introduction

Missing data are often encountered for various reasons in biomedical research and present

challenges for data analysis. It is well known that inadequate handling of missing data

may lead to biased estimation and inference. A number of statistical methods have been

developed for handling missing data. Largely due to its ease of use, multiple imputation

(MI)(Rubin, 1987; Little and Rubin, 2002) has been arguably the most popular method

for handling missing data in practice. The basic idea underlying MI is to replace each

missing data point with a set of values generated from its predictive distribution given

observed data and to generate multiply imputed datasets to account for uncertainty of

imputation. Each imputed data set is then analyzed separately using standard complete-

data analysis methods and the results are combined across all imputed data sets using

Rubin’s rules (Rubin, 1987; Little and Rubin, 2002). MI can be readily conducted using

available software packages van Buuren and Groothuis-Oudshoorn (2011); Raghunathan

et al. (2001); Su, Gelman, Hill and Yajima (2011) in a wide range of situations and has

been investigated extensively in many settings Harel and Zhou (2007); He et al. (2011);

Hsu et al. (2004); Little and An (2004); Long et al. (2012); Qi et al. (2010); Zhang and

Little (2008). Most of the existing MI methods rely on the assumption of missingness at

random (MAR) (Little and Rubin, 2002), i.e., missingness only depends on observed data;

our current work also focuses on MAR. In recent years, the amount of data has increased

considerably in many applications such as omic data and electronic health record data. In

particular, the high dimensions in omic data may cause serious problems to MI in terms of

applicability and accuracy. In what follows, we first describe some challenges of MI in the

presence of high-dimensional data and explain why regularized regressions are suitable in

this setting, and then review existing MI methods for general missing data patterns and

propose their extensions for high-dimensional data.

Advances in technologies have led to collection of high-dimensional data such as omics

data in many biomedical studies where the number of variables is very large and missing
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data are often present. Such high-dimensional data present unique challenges to MI. When

conducting MI, Meng (1994) suggests imputation models be as general as data allow them

to be, in order to accommodate a wide range of statistical analyses that may be conducted

using multiply imputed data sets. However, in the presence of high-dimensional data, it is

often infeasible to include all variables in an imputation model. As such, machine learning

and model trimming techniques have been used in building imputation models in these

settings. Stekhoven and Bühlmann (2012) propose a random forest-based algorithm for

missing data imputation called missForest. Random forest utilizes bootstrap aggregation

of multiple regression trees to reduce the risk of overfitting, and combines the predictions

from trees to improve accuracy of predictions (Breiman, 2001). Shah et al. (2014) suggest

a variant of missForest and compared it to parametric imputation methods. They showed

that their proposed random forest imputation method was more efficient and produced

narrower confidence intervals than standard MI methods. Liao et al. (2014) develop four

variations of K-nearest-neighbor (KNN) imputation methods. However, these methods

are improper in the sense of Rubin (1987) since they do not adequately account for the

uncertainty of estimating parameters in the imputation models. Improper imputation

may lead to biased parameter estimates and inference in subsequent analyses. In addi-

tion, KNN methods are known to suffer from the curse of dimensionality (Marimont and

Shapiro, 1979; Stone, 1980) and hence may not be suitable for high-dimensional data.

Apart from random forest and KNN, regularized regression, which allows for simulta-

neous parameter estimation and variable selection, presents another option for building

imputation models in the presence of high-dimensional data. The basic idea of regular-

ized regression is to minimize the loss function of a regression, subject to some penalties.

Different penalty specifications give rise to various regularized regression methods. Zhao

and Long (2013) investigate the use of regularized regression for MI including lasso (Tib-

shirani, 1996), elastic net (Zou and Hastie, 2005) (EN), and adaptive lasso (Zou, 2006)

(Alasso). They also develop MI using a Bayesian lasso approach. However, they focus
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on the setting where only one variable has missing values. There has been limited work

on MI methods for general missing data patterns where multiple variables have missing

values in the presence of high-dimensional data.

To handle general missing data patterns, there are two MI approaches, namely, MI

based on joint modeling (JM) (Schafer, 1997) and MI based on fully conditional spec-

ifications, also known as multiple imputation by chained equations (MICE), which has

been implemented independently by van Buuren et al. (1999) and Raghunathan and Sis-

covick (1996). While JM has strong theoretical justifications and works reasonably well

for low-dimensional data, its performance deteriorates as the data dimension increases

(Van Buuren, 2007) and it is difficult to extend to high-dimensional data. MICE involves

specifying a set of univariate imputation models. Since each imputation model is spec-

ified for one partially observed variable conditional on the other variables, it simplifies

the modeling process. While MICE lacks theoretical justifications except for some spe-

cial cases (Liu et al., 2013; Zhu and Raghunathan, 2014), it has been shown to achieve

satisfactory performance in extensive numerical studies and empirical examples. White

et al. (2011) provides a nice review and guidance for MICE. It is worth mentioning that

standard MICE methods cannot handle high-dimensional data. For example, the MICE

algorithms implemented by Buuren and Groothuis-Oudshoorn (2011); Su, Gelman, Hill,

Yajima et al. (2011) cannot handle the prostate cancer data used in our data analysis and

the high-dimensional data generated in our simulations, as shown in later sections. As

such, we focus on extending MICE to high-dimensional data settings for handling general

missing data patterns.

2.2 Methodology

Suppose that our data set Z has p variables, Z1, ..., Zp. Without loss of generality, we

assume that the first l (l ≤ p) variables contain missing values. Suppose the data con-
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sist of n observations and we have rj observed values in variable Zj. We denote the

observed components and missing components for variable j by Zj,obs and Zj,mis. Let

Z−j = (Z1, ..., Zj−1, Zj+1, ..., Zp) be the collection of the p − 1 variables in Z except Zj.

Let Z−j,obs and Z−j,mis denote the two components of Z−j corresponding to the comple-

ment data of Zj,obs and Zj,mis.

2.2.1 Multiple imputation by chained equations

Let the hypothetically complete data Z be a partially observed random draw from a

multivariate distribution f(Z|θ). We assume that the multivariate distribution of Z is

completely specified by the unknown parameters θ. The standard MICE algorithm obtains

a posterior distribution of θ by sampling iteratively from conditional distributions of the

form f(Z1|Z−1, θ1), ..., f(Zl|Z−l, θl). Note that the parameters θ1, ..., θl are specific to

the conditional densities, which might not determine the unique ’true’ joint distribution

f(Z|θ).

To be specific, MICE starts with a simple imputation, such as imputing the mean,

for every missing value in the data set. Initial values are denoted by Z
(0)
1 , ..., Z

(0)
l . Then

given values Z
(m−1)
1 , ..., Z

(m−1)
l at iteration m− 1, for variable j, new parameter estimates

θ̂
(m)
j of the next iteration are generated from

f(θj|Zj,obs, Z(m)
1 , ..., Z

(m)
j−1, Z

(m−1)
j+1 ..., Z

(m−1)
l , Zl+1, ..., Zp)

through a regression model. Then the missing values Zj,mis for Zj are replaced with

predicted values from the regression model with model parameter θ̂
(m)
j . Note that when

Zj is subsequently used as a predictor in the regression model for other variables that

have missing values, both the observed and predicted values are used. These steps are

repeated for each variable with missing values, that is, Z1 to Zl. We call the cycling

imputing through Z1 to Zl one iteration. At the end of each iteration, all missing values are
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replaced by the predictions from regression models that expose the relationships observed

in the data. We then repeat the procedures iteratively until convergence. The complete

algorithm can be described as follows:

θ̂
(m)
1 ∼ f(θ1|Z1,obs, Z

(m−1)
2 , ..., Z

(m−1)
l , Zl+1, ..., Zp)

Z
(m)
1,mis ∼ f(Z1,mis|Z(m−1)

2 , ..., Z
(m−1)
l , Zl+1, ..., Zp, θ̂

(m)
1 )

...

θ̂
(m)
j ∼ f(θj|Zj,obs, Z(m)

1 , ..., Z
(m)
j−1, Z

(m−1)
j+1 ..., Z

(m−1)
l , Zl+1, ..., Zp) (2.1a)

Z
(m)
j,mis ∼ f(Zj,mis|Z(m)

1 , ..., Z
(m)
j−1, Z

(m−1)
j+1 , ..., Z

(m−1)
l , Zl+1, ..., Zp, θ̂

(m)
j ) (2.1b)

...

Note that while the observed data Zobs do not change in the iterative updating proce-

dure, the missing data Zmis do change from one iteration to another. After convergence,

the last M imputed data sets after appropriate thinning are chosen for subsequent stan-

dard complete-data analysis.

In the case of high-dimensional data, where p > rj or p ≈ rj, it is not feasible to fit the

imputation model (2.1a) using traditional regressions. In the following two subsections,

we provide details of two approaches to apply regularized regression techniques in the

presence of high-dimensional data for general missing data patterns.

2.2.2 Direct use of regularized regression for multiple imputa-

tion

For variable Zj, our goal is to fit the imputation model (2.1a) using rj cases with observed

Zj. Assume q variables in Z−j,obs are associated with Zj,obs and we denote the set of them

by S, which we call the true active set. We define the subset of predictors that are se-

lected to impute Zj as the active set by Ŝ, and denote the corresponding design matrix as
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ZŜ,obs.We first consider an approach where a regularization method is used to conduct both

model trimming and parameter estimation and a bootstrap step is incorporated to simu-

late random draws from f(θ | Zj,obs, ZŜ,obs). This approach is referred to as MICE through

the direct use of regularized regression (MICE-DURR). The purpose of the boostrap is to

accommodate sampling variation in estimating population regression parameters, which is

part of ensuring that imputations are proper (Shah et al., 2014). In the m-th iteration and

for variable j,(j = 1, ..., l), define W
(m)
j = {Z(m)

1 , ..., Z
(m)
j−1, Z

(m−1)
j+1 , ..., Z

(m−1)
l , Zl+1, ..., Zp}.

Denote by W
(m)
j,mis the component of W

(m)
j corresponding to Zj,mis. The algorithm can be

described as follows:

(1) Generate a bootstrap data set {W∗(m)
j , Z∗j } of size n by randomly drawing n obser-

vations from {W(m)
j , Z

(m−1)
j } with replacement. Denote the observed values of Z∗j

by Z∗j,obs and the corresponding component of W
∗(m)
j by W

∗(m)
j,obs .

(2) Regarding Z∗j,obs as the outcome and W
∗(m)
j,obs as predictors, use a regularized regression

method to fit the model and obtain θ̂
(m)
j . Note that θ̂

(m)
j is considered a random

draw from f(θj|Zj,obs, Z−j,obs).

(3) Predict Zj,mis with Z
(m)
j,mis by drawing randomly from the predictive distribution

f(Zj,mis|W(m)
j,mis, θ̂

(m)
j ), noting that imputation is conducted on the original data set

W
(m)
j,mis, not the bootstrap data set W

∗(m)
j .

We conduct the above procedure for l variables that have missing values in one iteration

and repeat iteratively to obtain M imputed data sets. Subsequently, standard complete-

data analysis can be applied to each one of the M imputed data sets.

We make our approach clear by linking the above three steps to the MICE algorithm.

In the first step, we bootstrap the data from the last iteration to ensure that the following

imputations are proper. In the second step, we use regularized regressions to fit model

(2.1a) and obtain an estimate of θj. Then, we use this estimate to predict the missing
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values from the model (2.1b). Details of MICE-DURR for three types of data can be

found as Supplementary Method S1 online.

2.2.3 Indirect use of regularized regression for multiple impu-

tation

MICE-DURR uses regularized regression for both model trimming and parameter esti-

mation. An alternative approach to MICE-DURR is to use a regularization method for

model trimming only and then followed by a standard multiple imputation procedure us-

ing the estimated active set (Ŝ), say, through a maximum likelihood inference procedure.

We refer to this approach as MICE through the indirect use of regularized regression

(MICE-IURR). Suppose W
(m)
j is defined as above. Denote by W

(m)
j,obs the component of

W
(m)
j corresponding to Zj,obs. At the m-th iteration and for variable Zj, the algorithm of

the MICE-IURR approach is as follows:

(1) We use a regularized regression method to fit a multiple linear regression model

regarding Zj,obs as the outcome variable and W
(m)
j,obs as the predictor variable, and

identify the active set, Ŝ(m)
j . Let WŜ(m)

j
denote the subset of W

(m)
j that only contains

the active set. Correspondingly, denote two components of WŜ(m)
j

by WŜ(m)
j ,mis

and

WŜ(m)
j ,obs

.

(2) Approximate the distribution of f(θj | Zj,obs,WŜ(m)
j ,obs

) by using a standard infer-

ence procedure such as maximum likelihood.

(3) Predict Zj,mis: randomly draw θ̂j
(m)

from f(θj | Zj,obs,WŜ(m)
j ,obs

) and subsequently

predict Zj,mis with Z
(m)
mis,1 by drawing randomly from the predictive distribution

f(Zj,mis|WŜ(m)
j ,mis

, θ̂(m)).

These three steps are conducted iteratively until convergence. We obtain the last M

imputed data sets for the following analyses. In the third step, instead of fixing one θ̂j for
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all iterations, we randomly draw θ̂j
(m)

from the distribution and use it to predict Zj,mis

at each iteration. This strategy can guarantee that our imputations are proper (Nielsen,

2003). Details of MICE-IURR for three types of data can be found as Supplementary

Method S2 online.

2.3 Simulation Studies

Extensive simulations are conducted to evaluate the performance of the two proposed

methods MICE-DURR and MICE-IURR in comparison with the standard MICE and

several other existing methods under general missing data patterns. For MICE-DURR and

MICE-IURR, we consider three regularization methods, namely, lasso, EN and Alasso. We

summarize the simulation results over 200 Monte Carlo (MC) data sets. Following Shah

et al. (2014), when applying MI methods, we generate 10 imputed data sets for subsequent

analysis, which is our primary goal. To benchmark the bias and loss of efficiency in

parameter estimation, two additional approaches that do not involve imputations are also

included: a gold standard (GS) method that uses the underlying complete data before

missing data are generated, and a complete-case analysis (CC) method that uses only

complete-cases for which all the variables are observed(Little and Rubin, 2002).

The setup of the simulations is similar to what was used in Zhao and Long (2013).

Specifically, the sample size is fixed at n = 100 and each simulated data set includes

Y , the fully observed outcome variable, and Z = (Z1, . . . , Zp), the set of predictors and

auxiliary variables. We consider settings with p = 200 and p = 1000. We consider

Z1, Z2, and Z3 having missing values, which follow a general missing data pattern. We

first generate (Z4, . . . , Zp) from a multivariate normal distribution with mean (0, . . . , 0)p−4

and a first order autoregressive covariance matrix with autocorrelation ρ varying as 0, 0.1,

0.5, and 0.9. Given (Z4, . . . , Zp), variables Z1, Z2, and Z3 are generated independently

from a normal distribution N(1 + ZSα, 4), where S represents the true active set with a
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cardinality of q. We further consider settings where q = 4 and 20, and α = (1, . . . , 1)′4 for

q = 4; α = (0.2, . . . , 0.2)′20 for q = 20. For q = 4 and 20, the corresponding true active set

ZS = {Z4, Z5, Z50, Z51} and {Z4, . . . , Z13, Z50, . . . , Z59}. Given Z, the outcome variable Y

is generated from Y = β0 + β1Z1 + β2Z2 + β3Z3 + β4Z4 + β5Z5 + ε, where βi = 1, and

ε ∼ N(0, 6) is random noise and independent of Zi. Missing values are created in Z1, Z2,

and Z3 using the following logit models for the corresponding missing indicators, δ1, δ2,

and δ3, logit(Pr(δ1 = 1)) = −1−Z4+2Z5−Y , logit(Pr(δ2 = 1)) = −1−Z4+2Z51−Y , and

logit(Pr(δ3 = 1)) = −1−Z50 + 2Z51− Y , resulting in approximately 40% of observations

having missing values.

We compare our proposed MICE-DURR and MICE-IURR with a random forest impu-

tation method (MICE-RF)(Shah et al., 2014) and two KNN methods (Liao et al., 2014).

For the KNN methods, we use imputations by the nearest variables (KNN-V) and impu-

tations by the nearest subjects (KNN-S) proposed by Liao et al. (2014). When applying

MICE-RF, KNN-V, and KNN-S, the R packages returned errors when the incomplete

dataset contains large number of variables (i.e. p = 1000). As a result, these three

methods are only applied to the setting of p = 200. In all simulations, for multiple impu-

tations, 10 complete datasets are generated using each method of interest; then the linear

regression model is fitted for Y across each imputed data sets for (Y, Z1, Z2, Z3, Z4, Z5)

and Rubin’s rule is applied to obtain β̂. While for standard MI procedure that cannot

be directly used in the cases of p > n, we consider one alternative that was used in Zhao

and Long (2013): the true active set S plus Y are used to impute Z1, Z2, and Z3, denoted

by MI-true. In practice, MI-true is not accessible since we don’t know the true active set.

We use the R package mice to implement MI-true.

We calculate the following measures to summarize the simulation results for β̂1, β̂2,

and β̂3: mean bias, mean standard error (SE), Monte Carlo standard deviation (SD),

mean square error (MSE) and coverage rate of the 95% confidence interval (CR).

Table A.1, Table A.2, and Table A.3 summarize the results when ρ = 0.1, ρ = 0.5
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and ρ = 0.9, respectively. Within each table different methods are compared and the

effects of the cardinality of the true active set q and dimension p are evaluated with the

correlation ρ fixed. In all scenarios, the complete-case analysis leads to considerably large

bias. GS and MI-true that are not accessible in real world provide negligible bias and their

CR are close to the nominal level. However, existing machine learning based imputation

methods (i.e. MICE-RF, KNN-V and KNN-S) yield considerable biases. MICE-RF ,with

a large bias, tends to obtain a large coverage rate close to 1 and thus imprecisely estimate

the parameters. KNN-V and KNN-S, on the other hand, predict the missing values only

once and have a small CR, likely a result of improper imputation method. MICE-DURR

exhibits substantial bias and MSE, thus performing poorly in our settings. There are

some differences between our results and those in Zhao and Long (2013), possibly due

to the presence of general missing data patterns. For example, MICE-DURR has a poor

performance with considerable bias and MSE in our settings. Note that the direct use of

regularized regression method in their paper does improve the accuracy of the estimate in

their simulation settings where only one variable has missing values. However, our MICE-

IURR method indeed achieves a better performance compared with other imputation

methods. In all settings, MICE-IURR method using lasso or EN provides relatively small

bias and gives similar results compared with MI-true. When ρ = 0.1, the biases and MSEs

for MICE-RF, KNN-V, and MICE-DURR decrease as q increases, while the performance

of KNN-S deteriorates. Nevertheless, MICE-IURR with three regularized methods gives

stable results when q changes. When we fix ρ and q, the results of MICE-DURR and

MICE-IURR with p = 200 are very similar compared with the results with p = 1000.

Compared with Table A.1, Table A.2 and Table A.3 show similar patterns on com-

parisons among the imputation methods. While in Table A.1, among three MICE-IURR

algorithms, Alasso underperforms lasso and EN, this situation does not appear in Table

A.2 and Table A.3. When ρ = 0.5, the biases and MSEs for MICE-IURR using lasso

and EN decrease as q increases from 200 to 1000, while these values rise for MICE-IURR
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using Alasso.

2.4 Data Examples

We illustrate the proposed methods using two data examples.

2.4.1 Georgia stroke registry data

Stroke is the fifth leading cause of death in the United States and a major cause of severe

long-term disability. The Georgia Coverdell Acute Stroke Registry (GCASR) program is

funded by Centers for Disease Control Paul S. Coverdell National Acute Stroke Registry

cooperative agreement to improve the care of acute stroke patients in the pre-hospital and

hospital settings. In late 2005, 26 hospitals initially participated in GCASR program and

this number increased to 66 in 2013, which covered nearly 80% of acute stroke admissions

in Georgia. Intravenous (IV) tissue-plasminogen activator (tPA) improves the outcomes

of acute ischemic stroke patients, and brain imaging is a critical step in determining the

use of IV tPA. Time plays a significant role in determining patients’ eligibility for IV tPA

and their prognosis. The American Heart and American Stroke Association and CDC

set a goal that hospitals should complete imaging within 25 minutes of patients arrival

to a hospital. The objective of this study, thus, is to identify the factors that might

be associated with hospital arrival-to-imaging time. GCASR collected data on 86,322

clinically diagnosed acute stroke admissions between 2005 and 2013. The registry has

203 data elements of which 121 (60%) have missing values, attributed to lack of answers,

service not provided, poor documentation and data abstraction or ineligibility of a patient

to a specific care. The extent of missingness varies from 0.01% to 28.72%.

In this analysis, we consider arrival-to-CT time the outcome and the other 13 variables

the predictors. These 13 variables of interest can be classified into two categories: patient-

related variables such as age, gender, health insurance, and medical history; pre-hospital-
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related variables such as EMS notification. Only gender, age and race are fully observed

among 13 variables. A CC analysis is conducted which uses only 15% of the original

subjects after the removal of incomplete cases. In addition, MI methods are also used.

We first remove variables that have missing rate greater than 40% and the remaining

variables are used to impute the missing values of partially observed variables that are

of interest. After imputations, each imputed datasets of 86,322 subjects are used to fit

the regression models separately and results are combined by Robin’s rules. We use a

straightforward and popular strategy to handle skip pattern: first treat skipped item as

missing data and impute them along with other real missing values, then restore the

imputed values for skipped items back to skips in the imputed data sets to preserve skip

patterns. We apply five MI methods, namely, the MICE method proposed by Buuren

and Groothuis-Oudshoorn (2011) (mice), the MI method proposed by Su, Gelman, Hill,

Yajima et al. (2011)(mi), the random forest MICE method proposed by Shah et al. (2014)

(MICE-RF), and our MICE-DURR and MICE-IURR methods. When applying KNN-V

and KNN-S, the R software returned errors. Thus, KNN-V and KNN-S are not included

in this data example.

Table 2.1 provides the results from our data analyses. In the CC analysis, only NIH

stroke score and race are shown to be associated with the arrival-to-CT time. The results

from all five MI methods are similar in terms of the p-value and the direction of the

association. By comparison, while only 2 variables are shown to be statistically significant

in the CC analysis, this number increases to 11, 11, 10, 9 and 9 for mi, mice, MICE-RF,

MICE-DURR, and MICE-IURR, respectively. For example, after adjusting for other

variables, the mean arrival-to-CT time in patients that arrive during the day time (Day)

was 18.4 minutes shorter than that in patients arriving at night (p = 0.036) based on

MICE-IURR imputation. Health insurance and three variables about history of diseases

become statistically significant after we apply the MI methods. However, NIH stroke

score and race, which are shown to be statistically significant by CC analysis, turn out to
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be not significant by MICE-DURR and MICE-IURR.

2.4.2 Prostate cancer data

The second data set is from a prostate cancer study (GEO GDS3289). It contains 99

samples, including 34 benign epithelium samples and 65 non-benign samples, with 20,000

genomic biomarkers. Missing values are present for 17,893 biomarkers, nearly 89% of all

genomic biomarkers in this data set. In this analysis, we consider a binary outcome y,

defined as y = 1 if it is a benign sample and y = 0 if otherwise, and test whether some

genomic biomarkers are associated with the outcome. For the purpose of illustration, we

choose three biomarkers (FAM178A, IMAGE:813259 and UGP2), for which the missing

rates are 31.3%, 45.5% and 26.3%, respectively. We conduct a logistic regression of y

on the three biomarkers. In this analysis, mi and mice packages give error messages

and MICE-RF approach is computationally very expensive. Therefore, we only use our

two proposed MI methods (MICE-DURR and MICE-IURR) and the KNN-V and KNN-S

methods in addition to the complete-case analysis. All 2107 biomarkers that do not have

missing values are used to impute missing values in the three biomarkers.

Table 2.2 presents the results on logistic regression for the prostate cancer data. Based

on our results, all three biomarkers become statistically significant after using our multiple

imputation methods, except in one case that the p-value of UGP2 after MICE-DURR

method is slightly larger than 0.05. In addition, in most cases, the estimates and p-

values by MICE-DURR are consistent with those results by MICE-IURR. For example,

the regression coefficients of biomarker (IMAGE:813259) after using two different multiple

imputations (MICE-DURR and MICE-IURR) are 3.47 and 3.50, with p-values of 0.031

and 0.039, respectively.
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2.5 Discussion

We investigate two approaches for multiple imputation for general missing data patterns

in the presence of high-dimensional data. Our numerical results demonstrate that the

MICE-IURR approach performs better than the other imputation methods considered.

The MICE-DURR approach, on the other hand, exhibits large bias and MSE. Two data

examples further showcase limitations of the existing imputation methods considered.

As alluded to earlier, while MICE is a flexible approach for handling different data

types, its theoretical properties are not well-established. The specification of a set of con-

ditional regression models may not be compatible with a joint distribution of the variables

being imputed. Liu et al. (2013) established technical conditions for the convergence of

the sequential conditional regression approach if the stationary joint distribution exists,

which, however, may not happen in practice. Zhu and Raghunathan (2014) assessed the-

oretical properties of MI for both compatible and incompatible sequences of conditional

regression models. However, their results are established for the missing data pattern

where each subject may have missing values in at most one variable.
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Table 2.1: Regression coefficients estimates of the Georgia stroke registry data. KNN-V
and KNN-S are not included because of errors. NPO, nil per os, Latin for “nothing by
mouth”, a medical instruction to withhold oral intake of food and fluids from a patient.
P-value, (); 95% confidence interval, [ ]. The p-values in bold signify a variable that is
significant at α = 0.05.

Characteristics CC mi mice MICE-RF MICE-DURR MICE-IURR

NIH stroke score -1.95 (<0.001) -2.04 (0.010) -6.07 (<0.001) -5.01 (<0.001) -1.10 (0.236) -1.00 (0.176)
[-2.7,-1.2] [-3.48,-0.6] [-8.5,-3.64] [-6.38,-3.63] [-3.04,0.84] [-2.5,0.49]

EMS pre-notification -3.17 (0.590) -19.83 (0.043) -0.82 (0.957) -5.23 (0.604) -2.22 (0.819) -5.92 (0.658)
[-14.69,8.35] [-38.7,-0.96] [-34.04,32.4] [-25.35,14.9] [-21.59,17.14] [-34.44,22.59]

Serum total lipid -0.07 (0.201) -0.47 (<0.001) -0.52 (<0.001) -0.36 (<0.001) -0.26 (0.036) -0.26 (0.005)
[-0.18,0.04] [-0.62,-0.32] [-0.7,-0.33] [-0.53,-0.19] [-0.49,-0.02] [-0.43,-0.08]

Age 0.02 (0.936) -0.87 (0.022) -0.78 (0.042) -0.71 (0.061) -0.76 (0.045) -0.80 (0.037)
[-0.51,0.56] [-1.62,-0.12] [-1.53,-0.03] [-1.46,0.03] [-1.51,-0.02] [-1.54,-0.05]

Male(referent: female) 5.33 (0.372) 21.20 (0.013) 24.83 (0.004) 19.15 (0.025) 16.57 (0.053) 16.54 (0.053)
[-6.37,17.02] [4.41,37.98] [8,41.66] [2.41,35.89] [-0.24,33.38] [-0.19,33.27]

White(referent: African American) -16.64 (0.007) -14.44 (0.107) -20.07 (0.028) -17.64 (0.048) -14.11 (0.114) -13.85 (0.121)
[-28.82,-4.45] [-32.01,3.14] [-37.98,-2.15] [-35.16,-0.12] [-31.62,3.41] [-31.34,3.65]

Health insurance by medicare -4.07 (0.617) -24.95 (0.032) -24.89 (0.032) -24.35 (0.036) -24.36 (0.036) -24.05 (0.038)
[-20.04,11.9] [-47.72,-2.19] [-47.7,-2.08] [-47.13,-1.57] [-47.11,-1.6] [-46.8,-1.3]

Arrive in the daytime 4.94 (0.420) -23.10 (0.011) -24.64 (0.006) -10.27 (0.275) -18.97 (0.043) -18.41 (0.045)
[-7.07,16.96] [-40.89,-5.31] [-42.35,-6.94] [-28.74,8.2] [-37.38,-0.56] [-36.39,-0.42]

NPO 8.37 (0.393) 58.79 (0.001) 121.04 (<0.001) 81.03 (0.001) 39.98 (0.006) 43.31 (0.001)
[-10.84,27.58] [26.65,90.93] [76.21,165.88] [39.6,122.45] [11.87,68.08] [17.25,69.37]

History of stroke -2.57 (0.695) -36.55 (0.001) -34.10 (0.002) -28.99 (0.009) -31.96 (0.008) -33.24 (0.002)
[-15.43,10.29] [-57.15,-15.96] [-55.86,-12.35] [-50.72,-7.27] [-55.52,-8.41] [-54.47,-12]

History of TIA -16.30 (0.097) -64.53 (<0.001) -89.47 (<0.001) -64.94 (<0.001) -62.39 (<0.001) -60.34 (<0.001)
[-35.54,2.94] [-95.93,-33.13] [-123.95,-55] [-97.47,-32.41] [-96.59,-28.19] [-92.47,-28.2]

History of cardiac valve prosthesis -27.25 (0.349) 89.28 (0.016) 136.94 (<0.001) 126.22 (0.022) 103.18 (0.008) 104.15 (0.007)
[-84.27,29.78] [16.98,161.59] [79.4,194.48] [19.67,232.77] [27.19,179.16] [28.31,179.98]

Family history of stroke -17.33 (0.406) -85.07 (0.014) -51.10 (0.078) -82.91 (0.022) -79.79 (0.028) -76.82 (0.034)
[-58.18,23.51] [-153.23,-16.92] [-107.91,5.72] [-153.95,-11.87] [-150.94,-8.65] [-147.91,-5.74]

Table 2.2: Regression coefficients estimates of the prostate cancer data. MICE-RF is not
included because of errors. P-value, (); 95% confidence interval, [ ]. The p-values in bold
signify a variable that is significant at α = 0.05.

Biomarkers CC KNN-V KNN-S MICE-DURR MICE-IURR Missing-rate

FAM178A 5.80 (0.119) 5.62 (<0.001) 5.33 (<0.001) 4.43(0.003) 4.70(0.002) 31.3%
[-1.49,13.09] [2.62,8.62] [2.31,8.35] [1.61,7.25] [1.76,7.64]

IMAGE:813259 6.03 (0.151) 4.20 (0.009) 4.43 (0.016) 3.47 (0.031) 3.50 (0.039) 45.5%
[-2.2,14.26] [1.06,7.34] [0.82,8.04] [0.37,6.57] [0.23,6.77]

UGP2 -2.57 (0.386) -3.44 (0.021) -3.45 (0.021) -2.32 (0.067) -3.15 (0.025) 26.3%
[-8.37,3.23] [-6.36,-0.52] [-6.37,-0.53] [-4.77,0.13] [-5.85,-0.45]
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Chapter 3

Privacy-Preserving Methods for

Horizontally Partitioned Incomplete

Data
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3.1 Introduction

The last decade has seen tremendous advances in the amount of data we routinely collect

from multiple sources in almost every field. For instance, hospitals have been aggregat-

ing electronic health records (EHRs) into medical databases. In addition, the US fed-

eral government and other nonprofit organizations have been vastly acquiring health-care

knowledge, including data from clinical units and information on patients from insurance

companies. In parallel, a number of statistical and data mining methods have been de-

veloped to analyze health-care data from multiple sources, aiming to predict epidemics,

prevent disease and improve quality of life.

Distributed health data networks are systems that allow secure remote analysis of

separate data sets from multiple medical sources (Maro et al., 2009). The networks allow

the data to be physically controlled by the data owners, who have the best understanding

of the applications to their own data. Such networks also eliminate the need to cre-

ate and maintain central data repositories. While data cleaning and data analyses are

straightforward when the data are collected and stored in a centralized location, such cen-

tralization of the data may not be practical for a variety of reasons, including institutional

policies and privacy concerns. (Li et al., 2015). For example, Veteran’s Health Adminis-

tration policies require EHR data to remain only at VA’s facilities. In addition, improper

disclosure of individual-level data has serious implications, such as discriminations for

employment, insurance, or education (Naveed et al., 2014). A large body of research has

shown that given some background information of an individual, an adversary can learn

(from “de-identified” data) sensitive information about the victim (Jiang, Sarwate and

Ohno-Machado, 2013; Homer et al., 2008; Brakerski, 2012; Gymrek et al., 2013; Wang

et al., 2009). In this chapter, we investigate the situation in which the data are horizon-

tally partitioned. That is, different institutions (sites) have the same characteristics for

different individuals. For instance, several local hospitals may want to combine their pa-

tients’ data to improve the precision of analyses of the general patient population. Due to
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the aforementioned institutional policy and privacy concerns, institutions are not allowed

or willing to fully share their private observations with others, in spite of the fact that they

still want to benefit from the collaboration. Under such circumstances, sharing only ag-

gregated statistics among institutions are privacy-preserving and thus acceptable. These

existing privacy-preserving algorithms are mainly for the purpose of statistical analysis,

such as linear regression and logistic regression, assuming data are complete.

However, due to collection errors and systemic reasons, missing data are frequently

encountered in biomedical studies, particularly those requiring data from multiple institu-

tions. Missing data problem reduces the usable sample size and is shown to have significant

adverse impact on conclusions drawn from studies such as GWAS (Denny et al., 2013) and

computational phenotyping (Newton et al., 2013). Therefore, researchers have devoted a

lot of attentions to tackle the challenge of missing data. Before deciding on the best way

forward in handling missing data, the pattern and mechanism of missingness should be

considered (Penny and Atkinson, 2012). Missing data commonly follow a univariate pat-

tern where the missing values occur on a single variable only, or a general pattern where

more than one variables are partially observed. Three missing data mechanisms are in-

troduced by Little and Rubin (2014): missing completely at random (MCAR), missing at

random (MAR) and missing not at random (MNAR).

Two popular approaches to addressing the problem of missing data are inverse-probability

weighting (IPW) (Höfler et al., 2005) and multiple imputation (MI) (Little and Rubin,

2014). IPW is first formally introduced by Horvitz and Thompson (1952). The idea of

IPW is to correct the bias due to the unrepresentativeness of the subgroup of complete

cases. This process is realized by weighting each subject of the subgroup by the inverse

of the probability of observing a complete case. On the other hand, MI methods replace

each missing value multiple times by predicted values drawn from an imputation model.

The predictive imputation model is estimated from the observed data, which contain no

missing values. In this way, the extra uncertainty is reflected due to the fact that the
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regression parameters can be estimated, but not determined, from the observed data.

After obtaining multiple complete datasets, each dataset is analyzed and an estimate of

the analysis model parameters, θ, is calculated. Rubin (1987) proposes rules to combine

these estimates and further calculate the variance of the combined estimate. In the pres-

ence of general missing data patterns, multiple imputation by chained equations (MICE)

method is widely adopted and has been shown to achieve superior performance in practice

(Raghunathan and Siscovick, 1996; Buuren and Groothuis-Oudshoorn, 2011).

Under MAR, a näıve MI approach for horizontally partitioned incomplete data is

to conduct MI within each institution and then perform the distributed analysis. This

approach has two limitations. First, it will lead to large variability in imputation and

subsequent analysis. Second, when one variable is missing for all observations in a sin-

gle institution, this variable cannot be imputed in that institution using this näıve MI

approach. Jagannathan and Wright (2008) proposed a privacy-preserving lazy decision-

tree imputation algorithm for data that are horizontally partitioned between two sources.

Unfortunately, their complex decision trees may overfit the data and become unstable.

Moreover, their algorithm cannot be applied to general missing data patterns and the

multiple sources case.

In this chapter, we develop a framework for handling missing data under the dis-

tributed environment. That is, each institution keeps their own local data in local private

zone and calculates aggregated statistics (e.g., co-variance, kernel matrix, etc.) that are

necessary for handling missing data. These statistics are stored in the shared zone and

will be exchanged across all institutions to build a global missing data model. In other

words, during the collaboration among institutions, information exchange occurs only in

the shared zone of each institution and no individual-level data will be transmitted to

protect the privacy. Figure 3.1 presents the conceptual architecture of the framework for

privacy-preserving methods for missing data. The missing data models we propose in

this chapter include: 1) privacy-preserving IPW and MI for horizontally partitioned data
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assuming MAR, with univariate missing data patterns and 2) a privacy-preserving MICE

for horizontally partitioned data assuming MAR, with general missing data patterns. We

further investigate a re-weighting privacy-preserving MI for horizontally partitioned data

that are MNAR. To the best of our knowledge, this is the first work of investigating

privacy-preserving methods for horizontally partitioned incomplete data from multiple

sources, in distributed environments.

Figure 3.1: Conceptual architecture of the privacy-preserving framework for handling
missing data

3.2 Methodology

We consider a multiple linear model for the regression of outcome Y on p covariates

X1, ..., Xp. Let X = (1, X1, ..., Xp) and θ = (θ0, θ1, ..., θp) denote the model parameters of

interest such that

Y = θ0 + θ1X1 + ...+ θpXp + ε, (3.1)
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where ε ∼ N(0, σ2), Y = (y1, ..., yn)T , Xj = (x1,j, ..., xn,j)
T and n is the total number of

individuals. This model is referred to as the “analysis model” throughout this chapter.

The values for individual i (i = 1, ..., n) are xi,1, xi,2, ..., xi,p, and yi. In this section, we

discuss horizontally partitioned data with K institutions, which share the same covariates

(features) of exclusive individuals. We refer to Y and X, respectively, as the “pooled”

outcome vector and the “pooled” design matrix, such that

Y =


Y site1

...

Y siteK

 , X =


Xsite1

...

XsiteK

 ,

where Y sitek and Xsitek (1 ≤ k ≤ K) are data from institution k with nk subjects.

Note that each Xsitek is an nk × (p+ 1) matrix with the first column of 1’s and we let

n =
∑K

k=1 nk be the total number of individuals for the “pooled” data.

The privacy-preserving methods for horizontally partitioned data with missingness are

described in Section 3.2.1, Section 3.2.2 and Section 3.2.3. For the ease of exposition, we

let p = 2 and consider a univariate missing data pattern where only one variable, X1, has

missing values while other variables are fully observed. Let ri = 1 if xi,1 is observed, and

ri = 0 otherwise, for i = 1, ..., n. Let R = (r1, ..., rn)T and R = (Rsite1T , ..., RsiteKT )T ,

where RsiteK is the indicator vector that belongs to institution k (k = 1, ..., K).

3.2.1 Privacy-preserving inverse probability weighting for hori-

zontally partitioned data

If data are complete, θ is estimated as the value θ̂ that minimizes
∑n

i=1 Ui(θ), where

Ui(θ) = (yi − θ0 − θ1xi,1 − θpxi,2)2. In the presence of missing data, one common method

is to estimate θ using only complete cases. This is known as a complete case (CC)

analysis. The CC estimator is consistent under MCAR mechanism. However, it will
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generally not be consistent in many other situations (Seaman and White, 2013). When

the data are MAR, an alternative approach is to fit the model ignoring incomplete cases

as well, but more weight is given to some complete cases than others. The weight wi is

the inverse of the probability pi = Pr(ri = 1), which is the probability of the individual

i being a complete case. This inverse probability weighting (IPW) approach minimizes

a different objective function. That is, the IPW estimator is the value that minimizes∑n
i=1 riwiUi(θ).

A key step for IPW is to build a logistic regression model to predict pi based on Y

and the fully observed variable X2. Let Z = (1, Y,X2). The logistic regression becomes

logit(Pr(R = 1)) = Zβ. The maximum likelihood estimator (MLE) of the logistic regres-

sion can be obtained by utilizing Newton Raphson optimization: β̂MLE = arg maxβ l(β) =

arg maxβ
∑n

i=1 rilog(pi) + (1− ri)log(1−pi), where pi = 1/(1 + exp(−(1, yi, xi,2)×β). We

update the estimator iteratively until it convergences to a stationary point β̂MLE. The

updating step is as follows:

β̂new = β̂old − l′′(β̂old)−1l′(β̂old)

= β̂old + (ZTW oldZ)−1ZT (R− P old), (3.2)

where W old=


pold1 (1− pold1 ) · · · 0

...
. . .

...

0 · · · poldn (1− poldn )

, P old = (pold1 , ..., poldn )T ,

and poldi = 1/(1 + exp(−(1, yi, xi,2, ..., xi,p)× βold).

For horizontally partitioned data as we focus in this chapter, since we may not have

the “pooled” data (i.e. Z, W and R), we propose a privacy-preserving IPW (PPIPW-H)

method, in which a distributed Newton Raphson optimization (Wu et al., 2012) is applied

and only intermediate statistics from each institutions are exchanged across institutions.

Let Zsitek be the design matrix that belongs to institution k (k = 1, ..., K). W sitekold is the

diagonal matrix partitioning from W old, corresponding to the k-th institution. Likewise,
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P sitekold is the vector partitioning from P old, corresponding to the k-th institution. Since

ZTW oldZ = (Zsite1)TW site1oldZsite1 + · · ·+(ZsiteK )TW siteKoldZsiteK and ZT (R−P old) =

(Zsite1)T (Rsite1 − P site1old) + · · ·+ (ZsiteK )T (RsiteK − P siteKold). The updating step of the

distributed Newton Raphson algorithm becomes:

β̂new = β̂old + {(Zsite1)TW site1oldZsite1 + · · ·+ (ZsiteK )TW siteKoldZsiteK}−1·

{(Zsite1)T (Rsite1 − P site1old) + · · ·+ (ZsiteK )T (RsiteK − P siteKold)}, (3.3)

Instead of merging the data from multiple sources to calculate ZTW oldZ and ZT (R−

P old), PPIPW-H lets each institution calculate the aggregated statistics (i.e.

(Zsitek)TW sitekoldZsitek and (Zsitek)T (Rsitek − P sitekold)) first based on the local private

data, following by the summation step of these statistics. PPIPW-H only leverages locally

aggregated statistics and thus is privacy-preserving. More importantly, since Equation

3.2 and Equation 3.3 are essentially calculating the same β̂new, PPIPW-H using the dis-

tributed Newton Raphson algorithm will provide the same β̂MLE as if it were constructed

using the “pooled” data.

The estimated weight ŵi = 1/p̂i, where p̂i is the predicted probability built upon β̂MLE.

Let wk be the vector of weights of individuals from institution k (k = 1, ..., K). Then,

PPIPW-H solves θ̂IPW = arg minθ
∑n

i=1 riŵiUi(θ), from a weighted linear regression,

using only intermediate statistics shared by each institution and obtains

θ̂IPW = (
K∑
k=1

(Xsitek)TV sitekXsitek)−1(
K∑
k=1

(Xsitek)TV sitekY sitek), (3.4)

where V sitek = diag(Rsitek ◦ wsitek) and “◦” stands for the element-wise products of

two vectors. Using this distributed linear regression, Equation 3.4 demonstrates itself

to be an additional step of protecting privacy without sharing individual-level data. We

then resample the original data set repeatedly and apply the above procedure to get the
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estimate θ̂
(b)
IPW for the bootstrap sample. We use the sample standard variance of θ̂

(b)
IPW

to estimate the standard error of θ̂IPW .

3.2.2 Privacy-preserving multiple imputation for horizontally

partitioned data of univariate missing data patterns

Rather than only using complete cases, multiple imputation method replaces each missing

data point with a set of possibles values (M times) from its predictive distribution given

observed data. MI has been arguably the most popular method for handling missing

data in practice. MI accounts for the uncertainty of imputation by generating multiply

imputed datasets. Subsequently, each imputed dataset is analyzed separately using the

standard “analysis model”. The results across all imputed datasets are then combined

following Rubin’s rule.

To illustrate the standard and our proposed privacy-preserving method for MI, let’s

still consider the univariate missing data pattern with 2 covariates in the “analysis model”.

Suppose that the partially observed variable X1 is continuous. The standard MI method

first fits the imputation model X1 = α0 + α1Y + α2X2 + ζ, where ζ ∼ N(0, τ 2), using the

complete cases and obtains the parameter estimate α̂MLE and its variance V̂α. Let X1,obs

be the observed component of X1 and Z be the design matrix in the imputation model.

Then α̂MLE = (ZTZ)−1ZTX1,obs. To protect the privacy, we propose a privacy-preserving

MI (PPMI-H) that can still obtain the same parameter estimate and the variance, without

using the pooled data (i.e. Z and X1,obs). PPMI-H is also built under the proposed

framework that only intermediate statistics are calculate and transmitted in the shared

zone. Let Zsitek and Xsitek
1,obs be the k-th partitions of Z and X1,obs, corresponding to

institution k. PPMI-H fits a distributed linear regression to estimate the parameters of the

imputation model and stores them in the shared zone to be accessible to all institutions.
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The MLE of PPMI-H is as follows,

α̂MLE = {(Zsite1)TZsite1+· · ·+(ZsiteK )TZsiteK}−1{(Zsite1)TXsite1
1,obs+· · ·+(ZsiteK )TXsiteK

1,obs }.

(3.5)

Of note, in Equation 3.5, each institution calculates the aggregated statistics (i.e. (Zsitek)TZsitek

and (Zsitek)TXsitek
1,obs ) using local data in private zones and then share them across insti-

tutions in order to obtain α̂MLE. Then we send α̂MLE back to local sites for the par-

allel computing of the residual sum of squares (RSS). That is, RSS =
∑K

k=1 RSSsitek =∑K
k=1 ||X

sitek
1,obs − Zsitekα̂MLE||2. Consequently, the master site can calculate the estimate

of the variance of α̂MLE, as ̂Var(α̂MLE) = RSS∑
ri−3{

∑
(Zsitek)TZsitek}−1. After the imputa-

tion model is built and parameter estimate as well as its variance are obtained, PPMI-H

draws α̂, M times from its distribution N(α̂MLE, ̂Var(α̂MLE)) and obtain α̂(1), · · · , α̂(M).

We also draws τ̂ from its posterior distribution M times and get τ̂ (1), · · · , τ̂ (M). For

PPMI-H using horizontally partitioned data, we store these M estimates in the shared

zone such that all institutions can take advantage of them in the subsequent step as fol-

lows: each institution replaces their missing values M times with predicted values drawn

from N(Zsitek
mis α̂

(m), τ̂ (m)2), where Zsitek
mis = (1, Y sitek

mis , Xsitek
1,mis). Equation 3.5 demonstrates

that PPMI-H leverages only aggregated statistics but resulting the same estimates of

the imputation model as if them were obtained using the “pooled” data. With M im-

puted data sets generated by the aforementioned steps, the standard MI would fit the

“analysis model” (i.e. Y = θ0 + θ1X1 + θ2X2 + ε)using each imputed dataset and then

combined the results by Rubin’s rules to get the final estimate. Similarly, our PPMI-H fits

the same “analysis model” using a single dataset but under our proposed framework. Let

Xsitek(m) be the design matrix of institution k with the missing values replaced by the m-th

imputation. PPMI-H estimates the parameters of the “analysis model” using a single im-

puted dataset by θ̂(m) = (Xsite1(m)TXsite1(m)+· · ·XsiteK(m)TXsiteK(m))−1(Xsite1(m)TY site1 +

· · ·XsiteK(m)TY siteK ). Specifically, Xsitek(m)TXsitek(m) and Xsitek(m)TY sitek are calculated
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in private zones while θ̂(m) is shared across institutions. Bootstrap method is applied to

obtain the estimate of the standard error of θ̂(m). After obtaining the results from the

master site, we apply Rubin’s rules to combine them and achieve the final result.

Adopting a similar strategy, we can extend the PPMI-H method for partially observed

variable with different types. For example, if X1 is a binary variable, Equation (3.5)

can be replaced with a distributed logistic regression with the similar idea of using the

distributed Newton Raphson optimization, as we show in Section 3.2.1.

3.2.3 Privacy-preserving multiple imputation for general miss-

ing data patterns

Section 3.2.1 and Section 3.2.2 focus on the univariate missing data patterns that only

one variable has missing values, i.e. X1 is partially observed. However, values of mul-

tiple variables can be missing for some reason and this situation is often encountered

in biomedical research. We call these general missing data patterns and we discuss the

distributed method of handling them.

Without loss of generality, we assume that the first l (l ≤ q) covariates, i.e. (X1, ..., Xl),

contain missing values. Let Xj,obs and Xj,mis denote the observed and missing components

for Xj (j = 1, ..., l). We denote the collection of the outcome and the p − 1 covariates

except Xj by X−j, i.e. X−j = (Y,X1, ..., Xj−1, Xj+1, ..., Xp). We assume the hypothet-

ically complete data (Y,X1, ..., Xp) are partially observed random draw from a multi-

variate distribution f(Y,X1, ..., Xp|α) that is specified by the unknown parameters α.

The standard MICE algorithm obtains the posterior distribution of α by sampling iter-

atively from the conditional distributions of partially observed variables with the form:

f(X1|X−1,α1), ..., f(Xl|X−l,αl).

We propose a privacy-preserving MICE (PPMICE) that starts with a simple imputa-

tion for every missing value. For example, each missing value can replaced by the mean of

that variable. For a distributed environment, the mean can be calculated as the average
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value of the “local” means weighted by the sample size of every institute. It is the same as

the from the “pooled” data. We denote (X
(0)
1 , ..., X

(0)
l ) the initial values of (X1, ..., Xl) with

missing values filled in. In order to obtainM imputed datasets at the end, we first replicate

the initial values M times and denote them by (X
(0,m)
1 , ..., X

(0,m)
l ), where m = 1, ...,M .

At iteration t (t ≥ 1), for the m-th imputation, given data X
(t−1,m)
1 , ..., X

(t−1,m)
l from the

previous iteration, the new parameter estimate α̂
(t,m)
j for variable j is generated from

f(αj|Xj,obs, Y,X
(t,m)
1 , ..., X

(t,m)
j−1 , X

(t−1,m)
j+1 , ..., X

(t−1,m)
l , Xl+1, ..., Xp), using PPMI-H. Subse-

quently, the missing values Xj,mis for Xj are replaced with predicted values from the

regression model with model parameter α̂
(t,m)
j . The iteration entails cycling through im-

puting X1 to Xl and the complete dataset at the end of the cycle is used as the initial

values for the next iteration.

3.2.4 Sensitivity Analysis under MNAR assumption

All above-mentioned methods are established assuming the missing data are MAR. How-

ever, MAR assumption is unlikely to be true in practice, since the probability of non-

response might depend on the unseen data themselves. Standard methods for data that

are MNAR are complicated as they need to include a model for the reason for dropout.

Carpenter et al. (2007) propose a simple approach for approximate analysis under the

MNAR assumption using multiple imputations created assuming MAR. The principle of

this approach is to re-weight the parameters estimated from the imputed data sets of

assuming MAR, so that the weighted parameter estimates represent the true underlying

distributions under a MNAR mechanism. They assume that the response variable Y is

subject to missing values and the covariances are fully observed, which are different from

our setting. In this section, we propose a privacy-preserving re-weighting multiple impu-

tation method and apply it to a more general data setting that has been used throughout

this dissertation: data with fully observed response but partially observed covariates.

For simplicity, suppose we have a response variable Y and covariates X1 and X2 for
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n subjects, where X1 has missing values. Note that the method can be directly applied

to other data settings of univariate missing-data patterns with more than two covariates.

The “analysis” model is

Y = θ0 + θ1X1 + θ2X2 + ε,

where ε follows a normal distribution. Now suppose the first n1 subjects are missing X1

and let the observed indicator Ri = 0 (i ≤ n1) for these n1 subjects and Ri = 1 for the

remaining subjects. Assume that the probability of non-response depends on Y , X1 and

X2 through the logistic model

logit(Pr(R = 1)) = h(Y,X2) + δX1 (3.6)

, where δ is the sensitivity parameter and needs to be pre-specified and h(· ) is an un-

specified function of Y and X2. The data subject to missing values through model (3.6)

are considered having a general MNAR mechanism. Let θ be a vector of parameter of

interest (i.e., θ = (θ0, θ1, θ2)
T ). Assuming MAR, suppose we have imputed X1,mis by

X
(1)
1,mis, ..., X

(M)
1,mis from f(X1|Y,X2, R = 1). Our goal is to put some weights (w1, ..., wM)

to X
(1)
1,mis, ..., X

(M)
1,mis so that they can be viewed as samples from f(X1|Y,X2, R = 0). Given

the M imputed data sets, θ can be estimated by combining θ̂1 = θ̂(Y,X1,obs, X
(1)
1,mis, X2), ..., θ̂M =

θ̂(Y,X1,obs, X
(M)
1,mis, X2) through those weights:

θ̂MNAR =
M∑
m=1

wmθ̂m (3.7)

Similarly, the estimate of variance is approximated by VMNAR ≈ ṼW +(1+1/M)ṼB, where

ṼW =
M∑
m=1

wmσ̂
2
m, ṼB =

M∑
m=1

wm(θ̂m − θ̂MNAR)2 (3.8)

We use importance sampling to calculate the weights. The weight for samples from
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f(X1|Y,X2, R = 0) to obtain f(X1|Y,X2, R = 1) is simply the ratio

f(X1|Y,X2, R = 0)

f(X1|Y,X2, R = 1)
=
f(Y,X2, R = 0|X1)f(Y,X2, R = 1)

f(Y,X2, R = 1|X1)f(Y,X2, R = 0)

=
f(R = 1|X1, X2, Y )

f(R = 0|X1, X2, Y )
× f(Y,X2, R = 1)

f(Y,X2, R = 0)

= e−(h(Y,X2)+δX1) × f(Y,X2, R = 1)

f(Y,X2, R = 0)

= e−δX1 × g(Y,X2, R)

(3.9)

Since the term g(Y,X2, R) is common to all weights and we have n1 missing values of X1

(x1,1, x1,2, ..., x1,n1) need to be imputed in the mth imputation, the normalized weight for

the mth imputation is proportional to e−δ
∑n1

i=1 x
(m)
1,i , that is

wm ∝ e−δ
∑n1

i=1 x
(m)
1,i , (3.10)

where x
(m)
1,i is the ith element of X

(m)
1,mis. Note that these weights are simple and can be eas-

ily calculated from local by adding up the summation of imputed values from each institu-

tions, without sharing each patient’ information. That is,
∑n1

i=1 x
(m)
1,i =

∑K
k=1

∑
{i∈sitek:i<n1} x

(m)
1,i .

We denote our privacy-preserving re-weighted MI method for data that are MNAR by

PPMI-RW.

3.3 Simulation Studies

3.3.1 Simulation Study when Data are MAR

In this section, we provide three simulation studies to demonstrate our privacy-preserving

methods in comparison with the standard methods of addressing missing data under

univariate and general missing data patterns. As in Section 3.2, we consider a linear

regression model (3.1) as the “analysis model”. The simulation results over 1000 Monte

Carlo(MC) data sets. Each simulation study has a different way to generate the MC data
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sets.

In the first study, we explore approaches for addressing continuous variable with miss-

ing values under univariate missing data patterns, i.e. only X1 has missing values. Data

X1, ..., Xp and Y are generated for n = 200 and n = 1000 individuals. We consider

a setting with p = 2 in this study. For each individual, X2 is first generated from a

uniform distribution U(−1, 1). Given X2, variable X1 is sampled from a normal dis-

tribution with variance σ2
X1

= 1 and mean µX1 = X2. Outcome Y is generated from

Y = θ0 + θ1X1 + θ2X2 + ε, where ε ∼ N(0, 1) and all θj = 1 (j = 0, 1, 2). Variable X1

is missing with probability {1 + exp(1.6 − Y − X2)}−1, resulting in approximately 42%

of individuals having missing values. In order to illustrate that our privacy-preserving

methods can be applied to binary variable with missing values, we make a little change

to the previous data-generating mechanism. Given X2, instead of sampling X1 from

a normal distribution, we generate X1 from a Bernoulli distribution with probability

{1 + exp(−1−X2)}−1. The rest procedures are the same.

The third study is to test the performances of methods under general missing data

patterns. In this data-generating mechanism, suppose p = 5, we assume that X1, X2,

and X3 have missing values among n = 200 or n = 1000 individuals. Fully observed

variables X4 and X5 are independent and identically distributed N(0, 1). Given X4, ..., Xp,

variables X1, X2, and X3 are generated independently from a normal distribution N(1 +

X4 +X5, 1). We use the same way to generate the outcome Y as we describe in the first

study. Missing values are created in X1, X2, and X3 using the following logit models

for the corresponding missing indicators, δ1, δ2, and δ3, logit(Pr(δ1 = 1)) = 3 − 0.8Y −

0.1X4 − 0.2X5, logit(Pr(δ2 = 1)) = 3 − 0.4Y − 0.2X4 − 0.4X5, and logit(Pr(δ3 = 1)) =

2− 0.3Y − 0.4X4 − 0.3X5, resulting in approximately 40% of individuals having missing

values.

After the data set is generated, we horizontally partition it to mimic a distributed

environment where data are stored across several institutes and they can not be pooled
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because of some privacy issue. We test the performance of our methods with the number

of institutes K = 5 and K = 20, where each institute has the same number of individuals,

in other words, n individuals are equally partitioned into K institutes.

For the first two simulation studies that are under the assumption of univariate missing

data patterns, we compare our proposed PPIPW-H and PPMI-H with the aforementioned

näıve MI (MI-näıve) that conducts MI within each institution and the MI method using

pooled data (MI-pooled). For the third study, we do not test PPIPW-H since it is not

applicable to the general missing patterns. Note that for MI-näıve, standard MI may not

be suitable in a institution that does not have any observed values for some variable. In

this case, we replace the missing values for that variable in the institution with the mean

based on the observed values of that variable from all the institutions. We generate 100

imputed datasets using each MI method; then a distributed analysis is conducted to fit

the “analysis model” in each imputed dataset and Rubin’s rule is applied to obtain θ̂

and their standard errors. We include two approaches that do not involve imputations

as benchmarks to evaluate bias and loss of efficiency in parameter estimation: a gold

standard (GS) method that utilizes the underlying complete data before missing data are

generated, and a complete-case (CC) method that uses only complete-cases for which all

variables are observed. We summarize the simulation results of θ̂0, θ̂1, and θ̂2 for the first

two studies and the simulation results of θ̂1, θ̂2, and θ̂3 for the third study.

Table 3.1 and Table 3.2 show the mean relative bias (RBias), mean standard error

(SE), MC standard deviation (SD), mean square error (MSE) and coverage rate of 95%

confidence interval (CR) for three parameters and eight analysis methods under univariate

missing data patterns. It can be seen that in all scenarios, CC analysis that ignoring

incomplete cases yields a strong bias and MSE, indicating the necessary of handling

missing data. PPIPW-H which again only includes complete cases in the analysis model,

but weights are adopted to rebalance the set of complete cases so that it is representative

of the whole sample (Seaman et al., 2012). From the results, PPIPW-H outperforms
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CC to some extent in terms of RBias and MSE, but has large SE compared with other

methods. This is because PPIPW-H accounts for the uncertainty of the estimated weights.

In practice, MI methods are ofter preferred to IPW methods (i.e. PPIPW-H), as it is

more efficient. However, MI-näıve method yields a non-ignorable RBias and MSE when

the sample size n is small and the number of institutions K is large. The reason is that

some institution may have few or no observed values to predict the missing values. For

example, when n = 200 and K = 20, each institution has 10 individuals. We may not

observed any values of X1 from that 10 individuals in a institution and MI-näıve does not

have any information to conduct the MI locally in this case. PPMI-H, which analyzes the

imputation model in a distributed environment, is proved to work well in this situation. It

still preserves the privacy by not sharing the information of each individual as illustrated

in Section 3.2.2. It can been seen from the tables that PPMI-H is approximately unbiased

by exhibiting small to negligible RBias and performs similarly to MI-pooled, as expected

from Section 3.2.2. Even though MI-pooled is more computational efficiency than other

imputation methods including PPMI-H, it is not accessible in a distributed environment

that we describe to preserve privacy. This is because MI-pooled requires the data to be

pooled before we address the missing data.

Table 3.3 summarizes the results for general missing data patterns that X1, X2, and

X3 have missing values. The conclusion matches those from Table 3.1 and Table 3.2.

First, MI-näıve performs poorly with substantial bias, and this situation deteriorates as

K increases. Second, PPMICE is efficient unbiased and has similar results to MI-pooled

in regardless of K.
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3.3.2 Simulation Study when Data are MNAR

Here we describe a simulation study to evaluate the PPMI-RW method for data that are

MNAR. We set n = 1000 and X1, X2, Y are generated from


X1

X2

ε

 ∼ N




0

0

0

,


0.2 0.1 0

0.1 0.1 0

0 0 1




Y = X1 +X2 + ε

Missing values are created in X1 using the logit model: logit(Pr(R = 0)) = 1 + Y +X1 +

0.1X2, resulting in approximately 37% of subjects having missing values. We perform 200

simulations to generate 200 MC data sets and averaged the resulting estimates of θ0, θ1, θ2

(true values: 0, 1, 1). We use M = 100 imputations as suggested in Carpenter et al. (2007)

and also not burdensome in our simulation setting. We compare PPMI-RW method with

GS, CC, MI-näıve, MI-pooled, and MI-pooled-RW. Note that MI-näıve and MI-pooled

assume the data are MAR and MI-pooled-RW method re-weight the imputations from

MI-pooled assuming the data can be pooled and do not have any privacy constrains.

Table 3.4 summarizes the results. MI-pooled-RW and PPMI-RW remove substantially

more of the bias than MI-pooled. Moreover, the MSE decreases dramatically after using

the re-weighting technique.

3.4 Data Example

The Georgia Coverdell Acute Stoke Registry (GCASR) data consists of 86,322 patients

with clinically diagnosed acute stroke between 2005 and 2013. Data were collected from

61 hospitals in Georgia. A total of 203 characteristics are included in the data, with

60% of which have missing values due to lack of answers, service not provided, poor
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documentation and data abstraction or ineligibility of a patient to a specific care.

Deng et al. (2016) investigate the effect of 13 characteristics on arrival-to-CT time.

These 13 characteristics are patient-related such as age, gender or pre-hospital-related

such as EMS notification. With in these features of interest, only gender, age and race

are fully observed. In their study, MI methods using the pooled data were performed

and 20 complete datasets were produced. In order to protect the privacy of the data,

we assume that patient-level data sharing is forbidden and only summary statistics can

be possibly exchanged between 61 hospitals. A CC analysis is conducted by removing

patients with missing values from each hospital. After the removal, it only consists 15%

of the original patients that can subsequently be used to a distributed linear regression.

We also consider MI-näıve that each hospital conducts MICE locally. Of note, some

hospitals have patients less than 10 which indicates the inefficiency of MI-näıve. This is

because no promising values can be predicted from the hospital with most of its patients’

information not observed. However, PPMICE can preserve the privacy and make full use

of each patient’s information as well. We also apply MI-pooled which is not applicable in

the distributed environment assumption, to benchmark our PPMICE.

Table 3.5 shows the estimates, p-values, and 95% confidence intervals of each charac-

teristic of interest for four methods. The results for CC and MI-näıve deviate away no-

ticeably from that for MI-pooled. As can be seen, the CC analysis shows only NIH stroke

(p<0.001) and race (p = 0.007) are associated with the arrival-to-CT time. For MI-näıve,

6 variables have p-values less than .05. However, if we break the privacy-preserving re-

striction by combining the data from 61 hospitals, the corresponding analysis (MI-pooled)

on the joint data shows that 10 variables are statistically significant. Even though 6 sta-

tistically significant variables detected by MI-näıve are also found to be associated with

the outcome using the joint data (MI-pooled), their estimates are different. This is not the

case for our PPMICE. It shows very little difference to the results of MI-pooled in terms

of both p-values and estimates. This data example illustrates that PPMICE performs as
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well as MI-pooled.

3.5 Discussion

In this chapter, we consider a distributed environment that data are from multiple sources

in the presence of missing data. Due to institutional policies or concerns about privacy,

data are not allowed to be combined. It can also be shown from our simulation studies

that instead of using our privacy-preserving methods with distributed analysis techniques,

the standard MI method (MI-näıve) has a poor performance in terms of bias and MSE.

Our numerical studies demonstrate that PPMI-H for the univariate missing data patterns

and PPMICE for the general missing data patterns perform as well as the method using

the pooled data. As we illustrate in Section 3.2.3, PPMICE algorithm is an iterative

procedure and the update of individual variables depends on other variables through the

imputation models. Therefor, it presents computational challenges since it requires a lot

of communication. Moreover, the computation is hard to parallelize and is not ideal for

distributed computing.
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Table 3.1: Simulation results for estimating θ0 = θ1 = θ2 = 1 where a continuous variable
has missing values. RBias, mean relative bias; SE, mean standard error; SD, Monte
Carlo standard deviation; MSE, mean square error; CR, coverage rate of 95% confidence
interval; GS, gold standard; CC, complete-case; PPIPW-H, privacy-preserving IPW; MI-
näıve, locally applying MI; MI-pooled, MI using pooled data; PPMI-H, privacy-preserving
MI.

θ̂0 θ̂1 θ̂2

n Method RBias (%) SE SD MSE CR (%) RBias (%) SE SD MSE CR (%) RBias (%) SE SD MSE CR (%)

GS 0.147 0.071 0.070 0.005 95.2 0.109 0.071 0.072 0.005 95.4 -0.759 0.142 0.143 0.020 94.7
CC -33.942 0.104 0.101 0.125 9.9 -9.962 0.094 0.094 0.019 80.9 -24.950 0.186 0.187 0.097 73.0
IPW-pooled -3.341 0.133 0.146 0.022 89.7 -2.091 0.124 0.149 0.022 90.2 -5.188 0.243 0.293 0.089 89.9
PPIPW-H (K=5) -3.341 0.133 0.146 0.022 89.0 -2.091 0.124 0.149 0.022 89.3 -5.188 0.243 0.293 0.089 89.5

200 PPIPW-H (K=20) -3.341 0.133 0.146 0.022 89.0 -2.091 0.124 0.149 0.022 89.3 -5.188 0.243 0.293 0.089 89.5
MI-näıve (K=5) 0.137 0.099 0.095 0.009 95.9 -11.053 0.103 0.087 0.020 85.5 10.435 0.197 0.187 0.046 93.4
MI-näıve (K=20) -0.323 0.105 0.094 0.009 96.5 -80.156 0.131 0.105 0.654 0.1 79.235 0.225 0.196 0.666 6.6
MI-pooled 0.318 0.095 0.096 0.009 95.3 -0.294 0.085 0.082 0.007 95.3 -0.018 0.181 0.182 0.033 94.8
PPMI-H (K=5) 0.303 0.096 0.096 0.009 96.2 -0.483 0.086 0.082 0.007 95.6 0.146 0.178 0.182 0.033 94.1
PPMI-H (K=20) 0.328 0.096 0.096 0.009 95.4 -0.449 0.086 0.082 0.007 95.5 0.171 0.178 0.182 0.033 94.1

GS 0.010 0.032 0.031 0.001 96.3 -0.014 0.032 0.031 0.001 96.4 -0.186 0.063 0.061 0.004 96.2
CC -34.084 0.046 0.045 0.118 0.0 -10.198 0.041 0.043 0.012 31.3 -24.564 0.083 0.081 0.067 14.4
IPW-pooled -1.172 0.071 0.081 0.007 90.8 -1.382 0.067 0.088 0.008 87.0 -1.424 0.133 0.162 0.026 89.5
PPIPW-H (K=5) -1.172 0.071 0.081 0.007 91.0 -1.382 0.068 0.088 0.008 86.5 -1.424 0.133 0.162 0.026 89.1

1000 PPIPW-H (K=20) -1.172 0.071 0.081 0.007 91.0 -1.382 0.068 0.088 0.008 86.5 -1.424 0.133 0.162 0.026 89.1
MI-näıve (K=5) 0.065 0.043 0.042 0.002 95.2 -2.044 0.039 0.038 0.002 92.5 1.904 0.082 0.081 0.007 94.4
MI-näıve (K=20) 0.105 0.044 0.042 0.002 97.1 -10.163 0.045 0.040 0.012 36.9 10.104 0.088 0.083 0.017 80.8
MI-pooled 0.081 0.042 0.042 0.002 95.1 -0.127 0.037 0.037 0.001 94.6 -0.003 0.080 0.080 0.006 95.3
PPMI-H (K=5) 0.065 0.043 0.042 0.002 95.8 -0.160 0.037 0.037 0.001 95.3 0.010 0.078 0.080 0.006 94.5
PPMI-H (K=20) 0.070 0.043 0.042 0.002 95.4 -0.163 0.037 0.037 0.001 95.2 0.023 0.078 0.080 0.006 94.6

Table 3.2: Simulation results for estimating θ0 = θ1 = θ2 = 1 where a binary variable
has missing values. RBias, mean relative bias; SE, mean standard error; SD, Monte
Carlo standard deviation; MSE, mean square error; CR, coverage rate of 95% confidence
interval; GS, gold standard; CC, complete-case; PPIPW-H, privacy-preserving IPW; MI-
näıve, locally applying MI; MI-pooled, MI using pooled data; PPMI-H, privacy-preserving
MI.

θ̂0 θ̂1 θ̂2

n Method RBias (%) SE SD MSE CR (%) RBias (%) SE SD MSE CR (%) RBias (%) SE SD MSE CR (%)

GS 0.205 0.102 0.103 0.011 95.4 -0.346 0.147 0.149 0.022 95.0 0.417 0.128 0.131 0.017 94.2
CC -33.361 0.130 0.133 0.129 27.1 -15.095 0.195 0.194 0.060 87.7 -28.896 0.183 0.188 0.119 62.6
IPW-pooled -2.541 0.165 0.184 0.035 90.4 -2.708 0.268 0.311 0.097 92.1 -6.506 0.236 0.295 0.091 85.4
PPIPW-H (K=5) -2.541 0.166 0.184 0.035 90.8 -2.708 0.267 0.311 0.097 92.3 -6.506 0.237 0.295 0.091 86.1

200 PPIPW-H (K=20) -2.589 0.165 0.187 0.035 90.1 -3.124 0.264 0.306 0.094 92.3 -6.713 0.234 0.295 0.091 85.9
MI-näıve (K=5) 7.368 0.138 0.129 0.022 92.5 -12.330 0.210 0.191 0.052 93.1 5.125 0.147 0.145 0.024 94.0
MI-näıve (K=20) 24.325 0.116 0.132 0.077 45.0 -40.232 0.191 0.209 0.205 46.9 14.990 0.138 0.140 0.042 80.1
MI-pooled 0.479 0.140 0.142 0.020 95.1 -1.366 0.204 0.208 0.043 94.1 0.902 0.148 0.153 0.024 94.1
PPMI-H (K=5) 0.475 0.140 0.141 0.020 95.1 -1.350 0.204 0.206 0.043 95.5 0.891 0.148 0.153 0.024 94.0
PPMI-H (K=20) 0.488 0.139 0.143 0.021 93.8 -1.469 0.203 0.209 0.044 94.5 0.831 0.148 0.154 0.024 93.8

GS -0.273 0.046 0.046 0.002 95.1 0.226 0.066 0.066 0.004 93.9 0.035 0.057 0.058 0.003 94.5
CC -33.828 0.057 0.057 0.118 0.0 -14.363 0.087 0.084 0.028 62.8 -29.626 0.081 0.082 0.094 5.1
IPW-pooled -1.325 0.082 0.086 0.008 92.4 -0.165 0.139 0.150 0.022 93.4 -2.575 0.127 0.146 0.022 88.6
PPIPW-H (K=5) -1.325 0.082 0.086 0.008 92.1 -0.165 0.139 0.150 0.022 92.7 -2.575 0.127 0.146 0.022 88.5

1000 PPIPW-H (K=20) -1.325 0.082 0.086 0.008 92.1 -0.165 0.139 0.150 0.022 92.7 -2.575 0.127 0.146 0.022 88.5
MI-näıve (K=5) 1.407 0.063 0.062 0.004 94.9 -2.608 0.092 0.087 0.008 95.9 1.181 0.067 0.066 0.004 94.0
MI-näive (K=20) 6.267 0.062 0.058 0.007 83.6 -10.415 0.093 0.083 0.018 83.5 4.395 0.066 0.064 0.006 90.0
MI-pooled -0.433 0.063 0.063 0.004 94.9 0.289 0.090 0.088 0.008 95.2 -0.079 0.066 0.067 0.004 94.5
PPMI-H (K=5) -0.398 0.063 0.063 0.004 94.3 0.236 0.090 0.088 0.008 95.7 -0.051 0.066 0.067 0.004 94.4
PPMI-H (K=20) -0.419 0.063 0.063 0.004 95.0 0.262 0.089 0.088 0.008 95.5 -0.071 0.066 0.067 0.004 95.0
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Table 3.3: Simulation results for estimating θ1 = θ2 = θ3 = 1 where three continuous
variables have missing values. RBias, mean relative bias; SE, mean standard error; SD,
Monte Carlo standard deviation; MSE, mean square error; CR, coverage rate of 95%
confidence interval; GS, gold standard; CC, complete-case; MI-näıve, locally applying
MI; MI-pooled, MI using pooled data; PPMICE, privacy-preserving MICE.

θ̂1 θ̂2 θ̂3

n Method RBias (%) SE SD MSE CR (%) RBias (%) SE SD MSE CR (%) RBias (%) SE SD MSE CR (%)

GS -0.231 0.072 0.073 0.005 94.1 -0.166 0.072 0.071 0.005 96.0 -0.016 0.072 0.073 0.005 95.0
CC -13.441 0.234 0.252 0.082 87.9 -13.101 0.235 0.248 0.079 89.2 -11.031 0.237 0.250 0.075 90.0
MI-näıve (K=5) -39.782 0.159 0.116 0.172 25.3 -18.199 0.145 0.118 0.047 80.9 -21.536 0.148 0.115 0.059 74.1

200 MI-näıve (K=20) -90.937 0.103 0.051 0.830 0.0 -85.916 0.132 0.074 0.744 0.0 -88.401 0.120 0.064 0.786 0.1
MI-pooled -3.791 0.137 0.129 0.018 95.1 -2.306 0.130 0.126 0.016 95.5 -1.962 0.132 0.127 0.017 96.0
PPMICE (K=5) -1.968 0.133 0.136 0.019 93.8 -1.604 0.128 0.131 0.017 94.5 -0.498 0.129 0.132 0.018 94.8
PPMICE (K=20) -1.968 0.133 0.136 0.019 93.8 -1.604 0.128 0.131 0.017 94.5 -0.498 0.129 0.132 0.018 94.8

GS -0.052 0.032 0.032 0.001 94.3 -0.014 0.032 0.030 0.001 95.5 -0.002 0.032 0.032 0.001 94.4
CC -11.786 0.095 0.096 0.023 75.8 -12.074 0.095 0.096 0.024 74.4 -11.868 0.095 0.098 0.024 75.6
MI-näıve (K=5) -10.507 0.064 0.053 0.014 64.9 -4.513 0.058 0.053 0.005 90.1 -5.868 0.059 0.053 0.006 86.8

1000 MI-näıve (K=20) -38.264 0.073 0.052 0.149 0.0 -16.655 0.063 0.051 0.030 20.7 -20.140 0.065 0.051 0.043 8.4
MI-pooled -2.386 0.059 0.053 0.003 95.7 -1.181 0.056 0.054 0.003 95.2 -2.018 0.058 0.055 0.003 93.8
PPMICE (K=5) -0.097 0.056 0.056 0.003 95.3 -0.295 0.055 0.056 0.003 95.1 -0.145 0.056 0.057 0.003 93.9
PPMICE (K=20) -0.097 0.056 0.056 0.003 95.3 -0.295 0.055 0.056 0.003 95.1 -0.145 0.056 0.057 0.003 93.9

Table 3.4: Simulation results for estimating θ0 = 0, θ1 = 1, θ2 = 1 when the data are
MNAR. RBias, mean relative bias; SE, mean standard error; SD, Monte Carlo standard
deviation; MSE, mean square error; CR, coverage rate of 95% confidence interval; GS, gold
standard; CC, complete-case; MI-näıve, locally applying MI assuming MAR; MI-pooled,
MI assuming MAR using pooled data; MI-pooled-RW, re-weighting the imputations from
MI-pooled; PPMI-RW, privacy-preserving re-weighting the imputations from PPMI-H.

θ̂0 θ̂1 θ̂2

RBias(%) SE SD MSE CR (%) RBias(%) SE SD MSE CR (%) RBias(%) SE SD MSE CR (%)

GS 0.504 0.035 0.035 0.001 93.0 0.982 0.116 0.115 0.013 96.0 0.026 0.164 0.166 0.028 96.0
CC 32.835 0.041 0.041 0.109 0.0 -28.037 0.135 0.120 0.093 43.5 -15.051 0.187 0.180 0.055 86.5
MI-näıve -1.593 0.036 0.036 0.002 92.5 -14.809 0.155 0.144 0.042 88.0 18.603 0.195 0.199 0.074 83.5
MI-pooled -1.608 0.036 0.036 0.002 92.5 -14.487 0.156 0.145 0.042 88.5 18.338 0.195 0.201 0.074 84.5
MI-pooled-RW -0.094 0.035 0.037 0.001 93.0 1.543 0.121 0.149 0.022 87.0 -0.852 0.168 0.208 0.043 88.5
PPMI-RW -0.072 0.035 0.037 0.001 94.5 1.766 0.122 0.155 0.024 86.0 -1.139 0.169 0.210 0.044 88.0
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Table 3.5: Regression coefficients estimates of the Georgia stroke registry data. NPO, nil
per os, Latin for “nothing by mouth”, a medical instruction to withhold oral intake of
food and fluids from a patient. P-value, (); 95% confidence interval, [ ].

Characteristics CC MI-näıve MI-pooled PPMICE

NIH stroke score
-1.95 (<0.001) -0.02 (0.951) -5.60 (<0.001) -5.67 (<0.001)

[-2.70, -1.20] [-0.69, 0.65] [-8.16, -3.04] [-8.34, -3.00]

EMS pre-notification
-3.17 (0.590) 13.78 (0.302) -11.72 (0.439) -6.02 (0.697)
[-14.69, 8.35] [-12.69, 40.24] [-42.02, 18.57] [-37.05, 25.00]

Serum total lipid
-0.07 (0.201) -0.16 (0.205) -0.54 (<0.001) -0.53 (<0.001)
[-0.18, 0.04] [-0.41, 0.09] [-0.75, -0.33] [-0.74, -0.32]

Age
0.02 (0.936) -0.92 (0.018) -0.79 (0.042) -0.79 (0.040)
[-0.51, 0.56] [-1.67, -0.16] [-1.54, -0.03] [-1.55, -0.04]

Male (referent: female)
5.33 (0.372) 14.40 (0.099) 24.87 (0.004) 24.65 (0.004)
[-6.37, 17.02] [-2.70, 31.50] [7.95, 41.80] [7.73, 41.56]

White (referent: African American)
-16.64 (0.007) -10.12 (0.263) -18.87 (0.038) -19.48 (0.034)
[-28.82, -4.45] [-27.85, 7.61] [-36.69, -1.04] [-37.51, -1.46]

Health insurance by medicare
-4.07 (0.617) -24.01 (0.041) -25.48 (0.029) -25.05 (0.031)

[-20.04, 11.90] [-47.05, -0.97] [-48.29, -2.68] [-47.88, -2.22]

Arrive in the daytime
4.94 (0.420) -12.67 (0.185) -25.87 (0.005) -24.25 (0.010)
[-7.07, 16.96] [-31.42, 6.09] [-44.03, -7.72] [-42.71, -5.79]

NPO
8.37 (0.393) 62.45 (<0.001) 110.31 (<0.001) 112.61 (<0.001)

[-10.84, 27.58] [32.16, 92.74] [64.20, 156.41] [65.97, 159.24]

History of stroke
-2.57 (0.695) -29.98 (0.007) -33.13 (0.003) -32.42 (0.003)

[-15.43, 10.29] [-51.82, -8.14] [-54.76, -11.50] [-53.44, -11.40]

History of TIA
-16.30 (0.097) -62.56 (0.001) -87.63 (<0.001) -85.57 (<0.001)
[-35.54, 2.94] [-100.16, -24.96] [-120.66, -54.59] [-122.33, -48.81]

History of cardiac valve prosthesis
-27.25 (0.349) 118.13 (<0.001) 140.91 (<0.001) 143.65 (<0.001)
[-84.27, 29.78] [58.77, 177.49] [68.26, 213.56] [71.78, 215.51]

Family history of stroke
-17.33 (0.406) -54.02 (0.075) -68.93 (0.065) -79.59 (0.059)
[-58.18, 23.51] [-113.58, 5.54] [-142.22, 4.36] [-162.30, 3.12]
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Chapter 4

Privacy-Preserving Methods for
Vertically Partitioned Incomplete
Data
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4.1 Introduction

Given the advantages of distributed data networks as described in Chapter 4, there is

an ever-increasing need to develop statistical methods for analyzing data within such

networks. The process of integrating data poses real privacy issues: data that are of

restricted sensitivity may become highly sensitive after being integrated (pooled). For

example, linking clinical diagnosis data with patients’ demographic records leads to high

sensitive data, and releasing them across networks (institutions) may suffer from high

risk of disclosure. Research is rapidly progressing to propose novel privacy-preserving

approaches that can overcome such privacy issues. Vaidya and Clifton (2004) adopt a

conceptually simple definition of “privacy”: a collaborating institution should learn noth-

ing from any other institution’s data. To protect privacy and reduce disclosure risk, it is

common for institutions to manipulate (e.g. perturb or coarsen) the data prior to inte-

grate (Willenborg and de Waal, 2012). However, low risk of disclosure caused by altering

data, especially synthesizing data, brings reduced utilities and imprecise conclusions as

well (Holan et al., 2010). An alternative approach for protecting against exposure of sen-

sitive data is to compute and release only the summary statistics. Within the statistics

literature, most attention has been drawn into the case of horizontally partitioned data.

In Chapter 3, we investigate how to analyze incomplete horizontally partitioned data. In

this chapter, we investigete a more common case that data are vertically partitioned.

Vertically partitioned data refer to the data from different institutions that have mu-

tually exclusive characteristics for the same population. This is commonly present in real

collaborations among different types of data providers. For instance, local and federal

agencies, hospitals and private corporations with different information about the same

population can work together to develop comprehensive quantitative models to produce

meaningful results. A variety of privacy-preserving methods have been proposed to ad-

dress statistical tasks including linear regression (Karr et al., 2009; Sanil et al., 2004)

and logistic regression (Li et al., 2016). Other work on mining vertically partitioned data
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include linear discriminant analysis (Du et al., 2004), association rule mining (Vaidya and

Clifton, 2002), support vector machine (Yu et al., 2006), näıve Bayes (Vaidya and Clifton,

2004) and k-means (Vaidya and Clifton, 2003). From a statistical perspective, some of

these techniques proposed by computer scientists are incomplete in a way that, for exam-

ple, coefficient estimates are provided, while standard errors and other essential statistics

for inferences are ignored. Those neglect statistics are of decisive importance in some

biomedical research, especially association studies. Karr et al. (2009) propose a protocol

for model diagnostics via secure matrix multiplications. However, their method requires

large communication costs and heavy computation when the number of institutions is

large, and is thus not scalable.

Although the developments of privacy-preserving alternatives of the standard statis-

tical learning techniques are extensive, research on how to deal with missing values for

such vertically partitioned data is absent. In addition, with the prevalence of distributed

networks and an increasing number of institutions participating, investigators experi-

ence missing values more frequently. These two factors motivate us to propose privacy-

preserving methods for incomplete vertically partitioned data. Specifically, assuming the

data follow a univariate missing data pattern, we propose two privacy-preserving ap-

proaches that couple distributed models (linear regression and logistic regression) with an

inverse probability weighting (IPW) technique and a multiple imputations (MI) technique,

respectively. Our privacy-preserving IPW for vertically partitioned data (PPIPW-V) first

builds a distributed logistic regression model on the probability of observing a complete

case, without disclosing individual-level data. Then we calculate the weights as the in-

verse of the estimated probabilities, and fit a weighted distributed linear regression model

assuming our original analysis model of interest is a multiple linear regression. PPIPW-

V can be easily extended to the case of logistic regression of a binary outcome variable

on independent variables which are collected by different institutions. As introduced in

Chapter 1, MI methods for handling missing data are popular and are shown to perform
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well in both literature and practice. We propose a privacy-preserving MI approach for

vertically partitioned data (PPMI-V) assuming response variable is fully observed while

one independent variable may be missing partially on a subset of records. Utilizing the

technique of multiple imputation by chained equations (MICE), we can extend PPMI-

V to be applicable to data that have general missing data patterns. We offer guidance

and suggestions to calculate standard errors for both PPIPW-V and PPMI-V through

bootstrap resampling.

The remainder of this chapter is organized as follows. In the beginning of Section

4.2, we formulate and describe settings and notation of missing data that are vertically

partitioned. In Section 4.2.1 and 4.2.2, we formally develop PPIPW-V and PPMI-V. In

Section 4.3 we show that the proposed methods for vertically partitioned data perform as

well as using pooled data. We also provide some practical recommendations for applica-

tions. In Section 4.4, we generate synthetic incomplete data from the Georgia Coverdell

Acute Stoke Registry (GCASR) data to mimic the case that data are vertically parti-

tioned. PPIPW-V and PPMI-V as well as other methods are applied on the synthetic

data for comparisons. This empirical study demonstrates the effectiveness of our proposed

methods on real large samples. Section 4.5 concludes this chapter with discussions.

4.2 Methodology

The methods introduced in the previous chapter work only on horizontally partitioned

data. In this section, we investigate another type of distributed data (i.e., vertically

partitioned data) and propose privacy-preserving approaches that can address such data.

In the same way as the previous “analysis model” setting, we consider the regression model

Y = Xθ+ ε. The objective of the regression analysis is to estimate regression coefficients

θ, when the covariate X is subject to missing values. For vertically partitioned data

from a distributed environment with K institutions (refer as sites in the formula), we

let X = (Xsite1 , ...,XsiteK ), where Xsitek is a set of covariates collected from the k-th
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institution. Such scenario assumes that single institution has exclusive variables of the

same population. We assume that the outcome variable Y is accessible to all institutions.

Unlike the assumption of p = 2 in Section 3.2, we investigate any p and denote the number

of covariates in the k-th institution by pk and
∑K

k=1 pk = p. Without loss of generality,

we assume Xsite1 has a vector of all 1’s to include an “intercept” term in the regression

model, i.e., Xsite1 = (1, X1, ..., Xp1). We consider a univariate missing data pattern where

X1 (from Xsite1) has missing values.

4.2.1 Privacy-preserving inverse probability weighting for ver-
tically partitioned data

To apply IPW on vertically partitioned data, we need to develop a distributed logistic

regression model for the weights and a distributed linear regression model for the weighted

subjects.

Denote the predictors of the probability of observing X1 by Z = (1, Y,X2, ..., Xp). For

notational convenience, let Z = (Zsite1 , ...,ZsiteK ), where Zsite1 = (1, Y,X2, ..., Xp1) and

Zsitek ≡Xsitek , for k ≥ 2.

The distributed Newton Raphson algorithm for logistic regression given in (3.3) does

not apply here because ZTW oldZ 6=
∑K

k=1(Z
sitek)TW oldZsitek . Jaakkola and Haussler

(1999) introduce an alternative approach to optimize the logistic regression model by

dual optimization. The original maximization of the log-likelihood of a primal problem is

replaced with the minimization of the dual form log-likelihood, which guarantees the same

optimum. The linear decomposition becomes feasible for the dual optimization. In the

following, we use a new response indicator si, taking value 1 if individual i is fully observed

and -1 otherwise, to better represent the primal form of the log-likelihood function.

The logistic regression model for the response indicator becomes Pr(si = ±1|z) =

1/(1 + exp(−sizTi β)), where β ∈ R(p+1)×1 is a vector of nuisance parameters to be esti-

mated and zi is the i-th row of Z. The primal problem is to maximize the log-likelihood

l(β) = −
∑n

i=1 log(1 + exp(−sizTi β)) − λβTβ/2. The penalty λβTβ/2 is introduced to
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give a superior generalization performance, especially when p is large. Instead of solving

the primal problem, we solve the dual problem which is represented by dual parameter

ψ ∈ Rn×1 as:

min
ψ
J(ψ) =

1

2λ

n∑
i=1

n∑
i′=1

ψiψi′sisi′z
T
i zi′ −

n∑
i=1

H(ψi), (4.1)

where H(ψi) = −ψ logψ− (1−ψ) log(1−ψ). It is easy to see that the linear kernel zTi zi′

in Equation (4.1) can be linearly decomposed by institutions as zTi zi′ =
∑

k(z
sitek
i )Tzsiteki′ .

Such decomposition builds the foundation of a privacy-preserving distributed logistic re-

gression model over vertically partitioned data. That is, each institution computes the dot

products (zsiteki )Tzsiteki′ and shares them to calculate zTi zi′ of each pair of individuals. Since

the dot product is a scalar, the exposure of it does not lead to the disclosure of zi. Newton-

Raphson algorithm is applied to optimize ψ via iterative procedures until convergence:

ψ̂new = ψ̂old−J ′′(ψ̂old)−1J ′(ψ̂old). With the estimated dual parameters ψ̂ = (ψ̂1, ..., ψ̂n)T ,

we can get the estimated primal parameters β̂ = ((β̂site1)T , ..., (β̂siteK )T )T by sending ψ̂

to each institution: β̂sitek = λ−1
∑n

i=1 ψ̂isiz
sitek
i . Then, we can obtain the weight for

individual i by ŵi = 1/p̂i = 1 + exp(−
∑K

k=1(z
sitek
i )T β̂sitek). Note that the dot product

(zsiteki )T β̂sitek is calculated locally by each institution and then shared to others.

We then establish a weighted distributed linear regression model in this vertically

partitioned setting. The objective function can be written in the matrix form: F (θ) =

(Y −Xθ)TV (Y −Xθ), where V is the diagonal matrix of weights. In the case of IPW,

V = diag({riŵi}ni=1). The quadratic programming problem of minimizing F (θ) can be

solved by the following derivative-free modified Powell’s algorithm proposed by Sanil et al.

(2004):

• Initialization: Select an arbitrary orthogonal basis for R(p+1): d(1), ...,d(p+1). Pick

an arbitrary starting point θ̃ ∈ R(p+1)

• Iteration: Repeat the following steps p+ 1 times.

– Set θ = θ̃
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– For j = 1, 2, ..., p, p+ 1:

∗ Let δ = arg minδ F (θ + δd(j))

∗ Set θ = θ + δd(j)

– For j = 1, 2, ..., p: Set d(j) = d(j+1)

– Set d(p+1) = θ − θ̃

∗ Let δ = arg minδ F (θ + δd(p+1))

∗ Set θ̃ = θ + δd(p+1)

Of note, for the objective function of sums of weighted errors, given any direction d,

δ = arg min
δ

F (θ + δd) =
(Y −Xθ)TV (Xd)

(Xd)TV (Xd)
=
γTV η

ηTV η
,

where γ = Y −Xθ and η = Xd. Similar to the data are vertically partitioned (i.e.,

X = (Xsite1 , ...,XsiteK )), we partition the direction d and the vector of parameters θ

as d = ((dsite1)T , ..., (dsiteK )T )T and θ = ((θsite1)T , ..., (θsiteK )T )T accordingly. Therefore,

γ = Y −
∑K

k=1X
sitekθsitek and η =

∑K
k=1X

sitekdsitek . Such linear decompositions allow

us to obtain δ by only sharing the locally calculated summary statistics (i.e., Xsitekθsitek ,

Xsitekdsitek). Powell (1964) showed that if F (θ) is a quadratic function, the above algo-

rithm would yield the exact minimizer θ̂ = arg minθ F (θ). The asymptotic distribution

of the weighted parametric estimate of θ is derived by Wang et al. (1997). Their rigorous

estimated covariance matrix is sophisticated and difficult to calculate in the distributed

environments. We use bootstrap to approximate the standard error of θ̂, for practical

considerations. Generating bootstrap data (Y,X)b repeatedly using vertically distributed

data is intuitive, we sample the indices (1, ..., n) with replacement and share them to all

institutions, which prepare (arrange) the dataset accordingly.
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4.2.2 Privacy-preserving multiple imputations for vertically par-
titioned data

Similar to Section 3.2.2, we propose a distributed multiple imputation method for ver-

tically partitioned data assuming MAR. Suppose the missing variable X1 is continuous

and follows a normal distribution given Y and other covariates. That is, X1 = Zα + ε,

where ε ∼iid N(0, σ2). We can use complete cases to estimate parameter α. The ob-

jective function (sum of squared residuals) is F (α) = (X1 − Zα)TV (X1 − Zα), with

V = diag({ri}ni=1). Since F (α) is in a quadratic form, derivative-free modified Powell’s

algorithm can be directly applied to get the least square estimator α̂ = arg minα F (α).

As we illustrate in Section 4.2.1, the intermediate value δ can calculate using summary

statistics from each institution, leading to obtaining α̂ with confidentiality. We can then

take advantage of the bootstrap technique to estimate the variance of α̂, denoted by

V̂α. The multiple imputation method first draws a value (α̂(m), σ̂(m)2) from the pos-

terior distribution of (α, σ2), where α̂(m) is drawn from a multivariate normal distri-

bution with mean α̂ and variance matrix V̂α, and σ̂(m)2 is drawn from
∑n

i=1 ri(x1,i −∑K
k=1(z

sitek
i )T α̂(m)sitek)2/χ2

(
∑
ri−p−1). For individuals i missing X1, given observed zi, X1,i

is then drawn from a N(zTi α̂
(m), σ̂(m)2), where zTi α̂

(m) =
∑K

k=1(z
sitek
i )T α̂(m)sitek is linearly

decomposable. We repeat the above procedure M times and create M multiply imputed

datasets. Each dataset is then processed by the aforementioned Modified Powell’s al-

gorithm, resulting in M estimates {θ̂(m)}Mm=1 of the parameters of interest θ. The final

estimate can be obtained by combining {θ̂(m)}Mm=1 using Rubin’s rules.

4.3 Simulation Studies

We examine in this section the performance of the proposed methods. Suppose our

vertically partitioned dataX consist p = 6 independent variables from K = 3 institutions.

We assume each institution possesses two independent variables and has access to the
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outcome variable Y . We are interested in a multiple linear regression:

Y = Xθ + ε

= (

site1︷ ︸︸ ︷
1, X1, X2,

site2︷ ︸︸ ︷
X3, X4,

site3︷ ︸︸ ︷
X5, X6)× (θ0, θ1, θ2, θ3, θ4, θ5, θ6)

T + ε,

when X1 has missing values.

We generate X2, ..., X6 independently from the uniform distribution on (-1, 1). We

then generate X1 from a normal distribution with mean
∑5

j=2Xj/
√

5 and variance 1.

The continuous variable Y is generated from N (Xθ, σ2), where θ = (1, 1, 0, 1, 0, 1, 0)T

and σ2 = 1. We consider two scenarios for the selection probabilities as follows:

Scenario 1. Pr(R = 1|Y,X) = {1 + exp(−1.6 + Y +X3 +X5)}−1

Scenario 2. Pr(R = 1|Y,X) = {1 + exp(3 + 2Y + 2X3 + 2X5)}−1.

Since the missingness of X1 does not depend on itself, the data are missing at random.

Figure 4.1 presents examples of the frequency plots of the probabilities in the two scenarios

using n = 1000 subjects. While both scenarios lead to about the same 42% of subjects

missing X1, Scenario 1 provides relatively stable weights compared to Scenario 2, where

weights are defined as the inverse of the probabilities.

We compare analyses based on standard approaches, inverse probability weighting

methods and multiple imputation. Specifically, we consider the following seven methods:

• Gold standard (GS): the analysis on n subjects with underlying true values for

missing data

• Complete-cases (CC): the analysis on fully observed subjects using a distributed

linear regression

• IPW-pooled: the standard IPW approach on pooled data throughout the whole

process of estimating weights and fitting weighted linear regression
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Figure 4.1: Histograms of the probabilities of observing a complete case in (a) Scenario 1
and (b) Scenario 2. using 1000 subjects

• PPIPW-V: the proposed privacy-preserving IPW for vertically partitioned data; see

Section 4.2.1

• MI-naive: each institution imputes the missing data using their own data, following

by applying a distributed linear regression for the analysis model

• MI-pooled: the standard MI approach on pooled data throughout the whole process

of predicting missing values (M=100 times) and fitting a standard linear regression.

• PPMI-V: the proposed privacy-preserving MI with M=100 imputed datasets for

vertically partitioned incomplete data; see Section 4.2.2

Table 4.1 shows the results of Scenario 1. The data are missing at random and the

missingness mechanism depends on the outcome variable Y . We first illustrate the per-

formances of standard IPW and MI using pooled data (i.e., IPW-pooled and MI-pooled).

IPW-pooled generates unbiased estimators while CC provides a large bias. This finding is
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more clear when n = 1000, that the relative bias of IPW-pooled is negligible. This means

that by applying the weights, IPW-pooled can, as expected, reduce the bias compared

to CC which also uses the complete cases only. However, the results show that the esti-

mators of IPW-pooled, even though unbiased, are still under covered by 95% confidence

intervals. Of note, IPW-pooled also possesses a much larger SE than others. MI-pooled

method, on the contrary, yields an unbiased estimator with a relatively small SE. It also

has good coverages that are all close to the 95% level. In terms of vertically partitioned

incomplete data, a näıve way of handling missing values is to replace them with predicted

ones using other covariates from the same institution. We denote this method by MI-

näıve. The imputation models in MI-näıve are improper since the missing variable may

actually depend on covariates of other institutions. Thus, ignoring those covariates will

generally lead to biased estimators. As shown in Table 4.1, MI-näıve has large biases and

serious low coverage rates, which correspond to the fact the it is inconsistent.

PPIPW-V and PPMI-V inherit the property of standard IPW and MI using pooled

data, respectively. They perform in the similar way to their corresponding versions of

non distributed methods. In other words, PPIPW-V gives unbiased results but large SEs,

as IPW-pool; PPMI-V provides unbiased estimators with small SEs, as MI-pooled. This

interesting finding confirms that our proposed privacy-preserving methods on vertically

partitioned data work as well as the methods used on pooled data. They offer solutions to

the missing data problem in distributed data networks, by providing meaningful results

without individual-level data.

Table 4.2 displays the results of Scenario 2, which has unstable weights. A consider-

able number of probabilities of observing a complete case are very close to 0, leading to

extremely large weights. It is possible that in practice, the logistic model of missingness

yields very large weights for some individuals with moderate weights, due to lack of fit.

On one hand, the results show that both IPW-pooled and PPIPW-V have biased esti-

mators that give rise to large MSE. MI-pooled and PPMI-V, on the other hand, do not
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require the specification of missingness model and perform well in this scenario.

Table 4.1: Simulation results for estimating θ1 = θ3 = θ5 = 1 based on 1000 Monte Carlo
replications for Scenario 1 with sample size n = 200 or 1000. RBias, mean relative bias;
SE, mean standard error; SD, Monte Carlo standard deviation; MSE, mean square error;
CR, coverage rate of 95% confidence interval

θ̂1 θ̂3 θ̂5

n Method RBias (%) SE SD MSE CR (%) RBias (%) SE SD MSE CR (%) RBias (%) SE SD MSE CR (%)

GS 0.058 0.065 0.066 0.004 95.1 0.259 0.127 0.131 0.017 93.2 -0.260 0.127 0.127 0.016 96.1
CC -9.427 0.088 0.087 0.016 80.5 -19.702 0.169 0.174 0.069 77.9 -20.409 0.170 0.163 0.068 76.9
IPW-pooled -2.964 0.113 0.139 0.020 88.3 -3.832 0.220 0.264 0.071 88.6 -6.445 0.220 0.265 0.074 88.1

200 PPIPW-V -3.293 0.108 0.129 0.018 89.0 -6.454 0.209 0.247 0.065 88.5 -8.787 0.210 0.243 0.067 87.1
MI-naive -3.227 0.083 0.080 0.007 94.3 -9.313 0.158 0.139 0.028 93.2 -9.740 0.158 0.140 0.029 93.7
MI-pooled -1.897 0.079 0.078 0.006 95.0 0.847 0.161 0.156 0.024 95.8 0.583 0.161 0.159 0.025 95.5
PPMI-V -1.620 0.074 0.079 0.006 92.9 1.410 0.167 0.158 0.025 96.0 1.265 0.166 0.160 0.026 95.5

GS -0.096 0.029 0.028 0.001 95.0 0.128 0.056 0.056 0.003 94.8 -0.117 0.056 0.056 0.003 94.9
CC -9.451 0.039 0.039 0.010 31.1 -19.975 0.075 0.074 0.045 23.9 -20.052 0.075 0.076 0.046 25.0
IPW-pooled -0.447 0.065 0.078 0.006 89.6 -1.318 0.122 0.142 0.020 89.6 -1.740 0.122 0.142 0.021 89.8

1000 PPIPW-V -0.467 0.064 0.077 0.006 89.6 -1.867 0.121 0.140 0.020 88.0 -2.252 0.121 0.141 0.020 89.0
MI-naive -2.419 0.035 0.034 0.002 90.9 -9.900 0.069 0.061 0.013 72.2 -9.994 0.069 0.063 0.014 71.4
MI-pooled -0.257 0.034 0.033 0.001 95.4 0.392 0.070 0.069 0.005 95.4 0.135 0.071 0.071 0.005 94.5
PPMI-V -0.209 0.032 0.033 0.001 93.8 0.126 0.072 0.069 0.005 96.1 -0.086 0.072 0.070 0.005 95.7

Table 4.2: Simulation results for estimating θ1 = θ3 = θ5 = 1 based on 1000 Monte Carlo
replications for Scenario 2 with sample size n = 200 or 1000. RBias, mean relative bias;
SE, mean standard error; SD, Monte Carlo standard deviation; MSE, mean square error;
CR, coverage rate of 95% confidence interval

θ̂1 θ̂3 θ̂5

n Method RBias (%) SE SD MSE CR (%) RBias (%) SE SD MSE CR (%) RBias (%) SE SD MSE CR (%)

GS -0.633 0.065 0.065 0.004 95.5 -1.422 0.126 0.137 0.019 90.5 -0.340 0.126 0.117 0.014 98.5
CC -15.239 0.087 0.082 0.030 57.5 -31.332 0.169 0.175 0.128 55.5 -30.333 0.168 0.166 0.120 55.0
IPW-pooled -9.441 0.110 0.122 0.024 81.5 -16.927 0.227 0.312 0.125 76.0 -15.376 0.224 0.273 0.098 78.0

200 PPIPW-V -10.797 0.098 0.096 0.021 76.5 -24.179 0.198 0.236 0.114 71.0 -22.149 0.197 0.203 0.090 73.0
MI-naive -4.405 0.081 0.075 0.007 93.5 -12.129 0.161 0.142 0.035 90.5 -11.445 0.161 0.149 0.035 88.0
MI-pooled -3.013 0.079 0.076 0.007 94.5 -0.078 0.167 0.168 0.028 93.5 1.295 0.165 0.168 0.028 95.5
PPMI-V -2.657 0.074 0.076 0.006 94.5 0.633 0.170 0.167 0.028 93.5 1.986 0.168 0.168 0.029 96.5

GS 0.098 0.029 0.028 0.001 94.2 0.553 0.056 0.058 0.003 93.2 -0.907 0.057 0.053 0.003 95.3
CC -14.640 0.039 0.041 0.023 4.2 -31.422 0.075 0.076 0.104 1.1 -33.005 0.075 0.075 0.114 0.0
IPW-pooled -5.019 0.070 0.096 0.012 76.3 -7.326 0.150 0.254 0.070 71.6 -11.577 0.151 0.210 0.057 72.6

1000 PPIPW-V -5.998 0.062 0.081 0.010 70.5 -11.713 0.132 0.210 0.058 64.2 -15.428 0.131 0.172 0.053 61.1
MI-naive -2.446 0.035 0.035 0.002 88.9 -11.166 0.071 0.063 0.016 66.3 -12.346 0.071 0.062 0.019 61.6
MI-pooled -0.307 0.034 0.034 0.001 95.8 1.365 0.072 0.074 0.006 93.7 -0.189 0.073 0.073 0.005 95.3
PPMI-V -0.170 0.033 0.034 0.001 93.7 1.216 0.074 0.074 0.006 95.8 -0.322 0.074 0.074 0.005 95.8

4.4 Data Example

In this section, we conduct an empirical study using real data to evaluate the effectiveness

of our approaches. The data are collected and pooled by the Georgia Coverdell Acute

Stoke Registry (GCASR). To simplify the regression setting, we are only interested in the
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effect of four characteristics (i.e., Gender, Race, NIH stroke score, History of stroke) on

arrival-to-CT time. We assume that the pooled data are actually from two institutions,

where the first institution has patients’ demographic information (e.g., gender and race)

and the second institution has clinical information (e.g., NIH stroke score and history of

stroke). The outcome variable arrival-to-CT time is accessible to both institutions. We

first select 31,918 patients with observations on all four independent variables and the

dependent variable. The analysis on this dataset is considered as gold standard (GS).

Next, we generate the missing data by artificially assigning some patients to be missing

NIH stroke score through the model

Pr(X3 is missing) = {1 + exp(5− Y −X1 −X2 −X4)}−1,

where Y = log(arrival-to-CT time), X1 = 1 if male and 0 otherwise, X2 = 1 if White and

0 otherwise, X3 = NIH stroke score, X4 = 1 if the patient has a history of stroke and 0

otherwise. About 45% of patients are missing NIH stroke score according to the above

criterion.

Table 4.3 presents estimates, SEs and p-values of the analyses of applying seven meth-

ods noted in Section 4.3. We consider M = 20 and M = 100 imputations for MI methods

(MI-pooled and PPMI-V). The results are quite close so we only present those of M = 20.

Once again, the facts that PPIPW-V behaves in the same way as IPW-pooled and PPMI-

V performs as well as MI-pooled, are confirmed by Table 4.3. Based on our analysis, it

appears that there is a significant negative association between arrival-to-CT time and

NIH stroke score by any of the estimates. The same finding is observed between arrival-

to-CT time and race. The result from the CC analysis shows a negative effect of gender

on arrival-to-CT time, while this conclusion does not hold by other methods. History

of stroke is not shown to be statistically significant by IPW-pooled and PPIPW-V. In

terms of the values of the estimates, MI-pooled and PPMI-V are closest to GS in general.

MI-pooled and PPMI-V also provide relatively smaller SEs than other methods. The
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estimate of NIH stroke score using MI-näıve is only half of that using GS.

Table 4.3: Regression coefficients estimates of the Georgia stroke registry data.

Characteristics Methods Estimate SE P-value

Male (referent: female) GS 0.073 0.014 <0.001
CC -0.155 0.018 <0.001
IPW-pooled 0.106 0.031 <0.001
PPIPW-V 0.106 0.031 <0.001
MI-nave 0.050 0.014 <0.001
MI-pooled 0.069 0.014 <0.001
PPMI-V 0.068 0.014 <0.001

White (referent: African American) GS -0.159 0.014 <0.001
CC -0.353 0.018 <0.001
IPW-pooled -0.213 0.031 <0.001
PPIPW-V -0.213 0.031 <0.001
MI-nave -0.138 0.014 <0.001
MI-pooled -0.155 0.014 <0.001
PPMI-V -0.154 0.014 <0.001

NIH stroke score GS -0.032 0.001 <0.001
CC -0.024 0.001 <0.001
IPW-pooled -0.034 0.002 <0.001
PPIPW-V -0.034 0.002 <0.001
MI-nave -0.014 0.001 <0.001
MI-pooled -0.028 0.001 <0.001
PPMI-V -0.027 0.002 <0.001

History of stroke GS -0.041 0.016 0.012
CC -0.227 0.019 <0.001
IPW-pooled -0.033 0.028 0.122
PPIPW-V -0.033 0.028 0.122
MI-nave -0.052 0.017 0.001
MI-pooled -0.037 0.016 0.024
PPMI-V -0.037 0.016 0.024

4.5 Discussion

The privacy-preserving approaches that we present provide promising results for handling

vertically partitioned incomplete data. In specific, PPIPW-V models the weights through

a logistic regression and solves it’s corresponding dual problem that utilizes summary

statistics only. Then, we weight complete cases based on the estimated weights and solve

an objective function of quadratic form by a derivative-free modified Powell’s algorithm.
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The calculations within the algorithm can be linearly partitioned among institutions. The

final least-squares estimate is proved to minimize the objective function. Our numeric

studies shows that PPIPW-V performs in the same way as IPW-pooled. Based on the

issue proposed in many IPW research, we should pay more attentions on unstable weights,

which would deteriorate the utilizations of IPW. PPIPW-V also tends to produce larger

standard errors than other methods on missing data. Another privacy-preserving method

that we propose is PPMI-V, which has the same superior performance as MI-pooled.

PPMI-V is flexible and can be extended to general missing data patterns and the case

that a binary variable is subject to missing values. In addition, for both PPIPW-V

and PPMI-V, we provide a privacy-preserving way to calculate standard errors through

bootstrap resampling.
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Chapter 5

Summary and Future Work
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5.1 Summary

This dissertation develops and investigates methods on incomplete big data. One major

challenge of such large volume datasets is how to handle their high dimensions. The

first project seeks to develop multiple imputation (MI) methods for general missing data

patterns in the presence of high-dimensional data. The proposed methods couple MI with

regularized regression, which is widely used for model trimming. Following the framework

of “multivariate imputation by chained equations” (MICE), the methods can handle the

case that more than one variable is subject to missing values.

The second and third projects develop statistical methods for handling missing data

in distributed data networks where data are horizontally or vertically partitioned. The

challenge here is how to address missing data problem without pooling the data. In Chap-

ter 3, we propose privacy-preserving IPW (PPIPW-H) and MI (PPMI-H) for horizontally

partitioned data assuming MAR. PPIPW-H utilizes a distributed logistic regression along

with a distributed weighted linear regression. We further propose sensitivity analysis un-

der MNAR and present a modified privacy-preserving MI by re-weighting (PPMI-RW).

The effectiveness of our approaches is demonstrated through extensive simulation stud-

ies. In Chapter 4, we develop two privacy-preserving methods that address vertically

partitioned incomplete data that are MAR.

5.2 Future Work

In addition to the aforementioned work that we have done, we expect future works focusing

on the following directions.

First, we are interested in the robustness of inferences of multiple imputations when

the missing data are MNAR. As we know, multiple imputation method is widely used

in practice, but with untestable assumption that data are MAR. All three of my top-

ics utilize and implement MI. The first topic uses MICE whose joint distribution may
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not be consistent with univariate imputation models. Such situation may become even

worse for data that are MNAR. The second topic studies sensitivity analysis for MNAR

assumption through re-weighting MI. The analysis, instead, has a strong assumption for

the response model, with a sensitivity parameter that needs to be pre-specified. The third

topic proposes a privacy-preserving MI for vertically partitioned data. The method still

assumes that data are MAR. Therefore, sensitivity analysis should be conducted for the

MI methods on each topic.

Second, the doubly robust methods for inverse probability weighting on partitioned

data can be investigated. Standard IPW provides consistent estimators when the weights

are correctly estimated. However, it is inefficient because most of the information from

the incomplete cases is not used. Robins et al. (1994) propose augmented IPW (AIPW)

method which achieves double robustness, meaning that the estimators are consistent as

long as either the missingness model or the regression model is correctly specified. It is

of interest to bring AIPW method into distributed environments and propose privacy-

preserving AIPW.

Third, more research can be conducted on complex partitioned data. In Chapter 3 and

4, we investigate data that are either horizontally partitioned or vertically partitioned.

It is also common to encounter complex partitions of data in distributed data networks.

Figure 5.1 shows an example of such type of partitioned data. There is no existing work

on analyzing such complex partitions of data with or without missing values.

Figure 5.1: An example of complex partitions of data from 3 sites
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Appendix A

Appendix for Chapter 2

A.1 Details of MICE-DURR for three types of data

We start the iterative procedure with some initial values. For example, all the elements

in Zmis,j are filled in with the average of the observed values of Zj (j = 1, 2, ..., l). Define

the corresponding initial completed dataset as Z(0).

In the m-th iteration:

(i) If Zj follows a Gaussian distribution, the model is

Z∗j,obs = θ0,j1r∗j + W
∗(m)
j,obsθj + εj, (A.1)

where r∗j is the number of cases with observed Z∗j and εj ∼ N(0, σ2
j Ir∗j ).

A regularized regression method is used to fit model (A.1). The parameter estimates

can be obtained as follows:

(θ̂
(m)
0,j , θ̂

(m)
j ) = argmin

(θ0,j ,θj)

[−`(θ0,j,θj;Z∗j,obs,W
∗(m)
j,obs ) + Pλ(θj)]

Where Pλ(θj) is a regularization function. We consider the mean of squared resid-

uals as an estimate of σ2
j , denoted by σ̂

2(m)
j .

Zj,mis is predicted with Z
(m)
j,mis by drawing randomly from the predictive distribution

N(θ̂
(m)
0,j 1n−rj + W

(m)
j,misθ̂

(m)
j , σ̂

2(m)
j In−rj). Let Z

(m)
j = (Z

(m)
j,mis, Zj,obs).



83

(ii) If Zj follows a Bernoulli distribution, the model is

logit(Z∗j,obs = 1|W∗(m)
j,obs ) = θ0,j1r∗j + W

∗(m)
j,obsθj, (A.2)

A regularized regression method is used to fit model (A.2). The parameter estimates

can be obtained as follows:

(θ̂
(m)
0,j , θ̂

(m)
j ) = argmin

(θ0,j ,θj)

[−`(θ0,j,θj;Z∗j,obs,W
∗(m)
j,obs ) + Pλ(θj)]

Where Pλ(θj) is a regularization function.

Zj,mis is predicted with Z
(m)
j,mis by drawing randomly from the predictive distribution

Bernoulli(
exp(θ̂

(m)
0,j 1n−rj+W

(m)
j,misθ̂

(m)
j )

1+exp(θ̂
(m)
0,j 1n−rj+W

(m)
j,misθ̂

(m)
j )

). Let Z
(m)
j = (Z

(m)
j,mis, Zj,obs).

(iii) If Zj follows a Poisson distribution, the model is

log(E[Z∗j,obs|W
∗(m)
j,obs ]) = θ0,j1r∗j + W

∗(m)
j,obsθj, (A.3)

A regularized regression method is used to fit model (A.3). The parameter estimates

can be obtained as follows:

(θ̂
(m)
0,j , θ̂

(m)
j ) = argmin

(θ0,j ,θj)

[−`(θ0,j,θj;Z∗j,obs,W
∗(m)
j,obs ) + Pλ(θj)]

Where Pλ(θj) is a regularization function.

Zj,mis is predicted with Z
(m)
j,mis by drawing randomly from the predictive distribution

Poisson(exp(θ̂
(m)
0,j 1n−rj + W

(m)
j,misθ̂

(m)
j )). Let Z

(m)
j = (Z

(m)
j,mis, Zj,obs).

We denote the updated data set after the m-th interation by Z(m) and repeat the pro-

cedures iteratively. After the algorithm converges, the last M imputed data sets after

appropriate thinning are chosen for subsequent standard complete-data analysis.
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A.2 Details of MICE-IURR for three types of data

We start the iterative procedure with some initial values. For example, all the elements

in Zmis,j are filled in with the average of the observed values of Zj (j = 1, 2, ..., l). Define

the corresponding initial completed dataset as Z(0).

In the m-th iteration:

(i) If Zj follows a Gaussian distribution, we use a regularized regression method to

fit a multiple linear regression model regarding Zj,obs as the outcome variable and

W
(m)
j,obs as the predictor variable, and identify the active set, Ŝ(m)

j . Let WŜ(m)
j

denote

the subset of W
(m)
j that only contains the active set. Correspondingly, denote two

components of WŜ(m)
j

by WŜ(m)
j ,mis

and WŜ(m)
j ,obs

. Then the model is

Zj,obs = θ0,j1rj + WŜ(m)
j ,obs

θj + εj, (A.4)

where εj ∼ N(0, σ2
j Irj) and 1rj is a vector of length rj with all entries one.

Approximate the distribution of (θ0,j,θj, σ
2
j ) by using a standard inference procedure

such as maximum likelihood.

(θ0,j,θj, σ
2
j )
′ ∼ N(θ̂

(m)
MLE, Σ̂

(m)
MLE)

Where θ̂
(m)
MLE is the MLE of parameters in model (A.4) and Σ̂

(m)
MLE is the variance-

covariance matrix of the estimated parameters.

Generate a prediction for Zj,mis: randomly draw (θ̂
(m)
0,j , θ̂

(m)
j , σ̂

2(m)
j ) fromN(θ̂

(m)
MLE, Σ̂

(m)
MLE),

and predict Zj,mis with Z
(m)
j,mis by drawing randomly from the predictive distribution

N(θ̂
(m)
0,j 1n−rj + WŜ(m)

j ,mis
θ̂
(m)
j , σ̂

2(m)
j In−rj). Let Z

(m)
j = (Z

(m)
j,mis, Zj,obs).

(ii) If Zj follows a Bernoulli distribution, we use a regularized regression method to

fit a multiple linear regression model regarding Zj,obs as the outcome variable and

W
(m)
j,obs as the predictor variable, and identify the active set, Ŝ(m)

j . Let WŜ(m)
j

denote

the subset of W
(m)
j that only contains the active set. Correspondingly, denote two
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components of WŜ(m)
j

by WŜ(m)
j ,mis

and WŜ(m)
j ,obs

. Then the model is

logit(Pr(Zj,obs = 1|WŜ(m)
j ,obs

)) = θ0,j1rj + WŜ(m)
j ,obs

θj, (A.5)

Approximate the distribution of (θ0,j,θj) by using a standard inference procedure

such as maximum likelihood.

(θ0,j,θj)
′ ∼ N(θ̂

(m)
MLE, Σ̂

(m)
MLE)

Where θ̂
(m)
MLE is the MLE of parameters in model (A.5) and Σ̂

(m)
MLE is the variance-

covariance matrix of the estimated parameters.

Generate a prediction for Zj,mis: randomly draw (θ̂
(m)
0,j , θ̂

(m)
j ) from N(θ̂

(m)
MLE, Σ̂

(m)
MLE),

and predict Zj,mis with Z
(m)
j,mis by drawing randomly from the predictive distribution

Bernoulli(
exp(θ̂

(m)
0,j 1n−rj+W

Ŝ(m)
j

,mis
θ̂
(m)
j )

1+exp(θ̂
(m)
0,j 1n−rj+W

Ŝ(m)
j

,mis
θ̂
(m)
j )

). Let Z
(m)
j = (Z

(m)
j,mis, Zj,obs).

(iii) If Zj follows a Poisson distribution, we use a regularized regression method to fit a

multiple linear regression model regarding Zj,obs as the outcome variable and W
(m)
j,obs

as the predictor variable, and identify the active set, Ŝ(m)
j . Let WŜ(m)

j
denote the

subset of W
(m)
j that only contains the active set. Correspondingly, denote two

components of WŜ(m)
j

by WŜ(m)
j ,mis

and WŜ(m)
j ,obs

. Then the model is

log(E[Zj,obs|WŜ(m)
j ,obs

]) = θ0,j1rj + WŜ(m)
j ,obs

θj, (A.6)

Approximate the distribution of (θ0,j,θj) by using a standard inference procedure

such as maximum likelihood.

(θ0,j,θj)
′ ∼ N(θ̂

(m)
MLE, Σ̂

(m)
MLE)

Where θ̂
(m)
MLE is the MLE of parameters in model (A.6) and Σ̂

(m)
MLE is the variance-

covariance matrix of the estimated parameters.

Generate a prediction for Zj,mis: randomly draw (θ̂
(m)
0,j , θ̂

(m)
j ) from N(θ̂

(m)
MLE, Σ̂

(m)
MLE),
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and predict Zj,mis with Z
(m)
j,mis by drawing randomly from the predictive distribution

Poisson(exp(θ̂
(m)
0,j 1n−rj + WŜ(m)

j ,mis
θ̂
(m)
j )). Let Z

(m)
j = (Z

(m)
j,mis, Zj,obs).

We denote the updated data set after the m-th interation by Z(m) and repeat the

procedures iteratively. After the algorithm converges, the last M imputed data sets after

appropriate thinning are chosen for subsequent standard complete-data analysis.
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