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Abstract

Evaluating Speaker Diarization in Transcripts: A Text-based Approach with the
TDER Metric and the TranscribeView System

By Chen Gong

Speaker Diarization (SD), the task of attributing speaker labels to dialogue segments,
has traditionally been performed and evaluated at the audio level. The diarization
error rate (DER) metric for SD systems measures errors in time but does not account
for the impact of automatic speech recognition (ASR) systems on transcript-based
performance. Word error rate (WER), the evaluation metric for ASR, only considers
errors in word insertion, deletion, and substitution, disregarding SD quality. To
better evaluate SD performance at the text level, this paper proposes Text-based
Diarization Error Rate (TDER) and diarization F1-score, which jointly assess SD
and ASR performance.
To address inconsistencies in token counts between hypothesis and reference tran-
scripts, we introduce a multiple sequence alignment tool that accurately maps words
between reference and hypothesis transcripts. Our alignment method achieves 99%
accuracy on a simulated corpus generated based on common SD and ASR errors.
Comparisons with DER, WER, and WDER on 10 transcripts from the CallHome
dataset demonstrate that TDER and diarization F1-score provide a more reliable
evaluation of speaker diarization at the text level. To enable a comprehensive eval-
uation of transcript quality, we present TranscribeView, a web-based platform for
assessing and visualizing errors in speech recognition and speaker diarization. To the
best of our knowledge, TranscribeView is the first comprehensive platform that en-
ables researchers to align multi-sequence transcripts and assess and visualize speaker
diarization errors, contributing significantly to the advancement of data-driven con-
versational AI research.
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Chapter 1

Introduction

1.1 Background and motivation

In recent years, data-driven dialogue systems such as BlenderBot [17] and Chat-

GPT1, which utilize large seq-to-seq language models [3, 9, 15], have garnered signif-

icant interest from various communities. The applications of these dialogue systems

are seemingly endless, with numerous organizations processing years’ worth of audio

recordings from human-to-human dialogues to train their models. However, these

audio recordings were often collected without the intention of data-driven model de-

velopment, resulting in low-quality audio with considerable background noise that

makes automatic speech recognition (ASR) challenging. Moreover, these recordings

typically use a single channel for all speakers rather than assigning dedicated channels

to individual speakers, necessitating the use of speaker diarization (SD), an additional

challenging task.

SD is a speech processing task that identifies the speakers of audio segments ex-

tracted from a conversation involving two or more speakers [13]. Despite the excellent

performance of ASR models in translating audio into text without recognizing indi-

vidual speakers [2, 5, 14], unstable SD can have a detrimental effect on developing

1https://openai.com/blog/chatgpt

https://openai.com/blog/chatgpt
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robust dialogue models, as any model trained on such data would fail to learn unique

languages for distinct speakers. Therefore, analyzing the performance of ASR and SD

on specific audio streams is crucial for producing high-quality transcripts. However,

there has been a lack of comprehensive approaches to simultaneously evaluate both

types of errors.

I graduated from  Emory and moved to New York

I graduatedfrom   Emory  wait and moved to  New York  Are  you  from   Emory  University     

Wait   Oh  Are  you   from   Emory University 

SD result

Transcript

Raw audio

Automatic Speech Recognition

Speaker Diarization

Figure 1.1: Process of generating transcripts

1.2 Thesis Objectives and Contributions

This thesis presents a text-based approach for evaluating speaker diarization quality in

transcripts, focusing on the development of the Text Diarization Error Rate (TDER)

metric, the Multiple Sequence Alignemnt Algorithm and the TranscribeView system.

The main contributions of this work include:

1. The introduction and validation of the TDER metric for text-based speaker

diarization evaluation, comparing it with existing metrics such as DER, WDER,

and WER.
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2. Align4d2: The design and implementation of an efficient multi-sequence align-

ment algorithm based on the Needleman-Wunsch algorithm for token-to-token

mapping between generated and reference transcripts.

3. The development of TranscribeView3, a comprehensive evaluation platform for

transcript evaluation and diarization error visualization.

1.3 Thesis organization

The rest of the thesis is organized as follows: Chapter 2 provides a literature review on

speaker diarization evaluation metrics, transcript alignment methods, and visualiza-

tion techniques for transcript evaluation. Chapter 3 introduces the TDER metric and

its comparison with other metrics. Chapter 4 presents the multiple sequence align-

ment algorithm and its implementation. Chapter 5 presents the experiment on the

correctness of the multiple sequence alignment algorithm and the metrics comparison.

Finally, Chapter 6 describes the design and implementation of the TranscribeView

system, including its features and user interface.

2https://github.com/emorynlp/align4d
3https://github.com/emorynlp/TranscribeView

https://github.com/emorynlp/align4d
https://github.com/emorynlp/TranscribeView
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Chapter 2

Background

In this chapter, we introduce the background information necessary for understand-

ing the context and motivation behind this thesis. This chapter provides an overview

of various evaluation metrics and alignment algorithms relevant to the field of Au-

tomatic Speech Recognition (ASR) and Speaker Diarization (SD). Section 2.1 dis-

cusses different types of ASR evaluation metrics, offering insights into their strengths

and limitations. Section 2.2 introduces several SD metrics, such as Diarization Er-

ror Rate (DER), Jaccard Error Rate (JER), and Word-level Diarization Error Rate

(WDER), highlighting their unique characteristics and applications. Finally, Section

2.3 presents a brief overview of alignment algorithms, which are critical for evaluating

and comparing transcripts. The information in this chapter lays the foundation for

understanding the development and evaluation of the proposed TDER metric and

Multiple Sequence Alignment Algorithm.

2.1 ASR Evaluation Metrics

Automatic Speech Recognition (ASR) is the task of converting spoken language into

written text using computational algorithms and models. ASR systems play a crucial

role in various applications, such as transcription services, voice assistants, real-time
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captioning, and more. These systems rely on a combination of acoustic models, which

capture the relationship between speech signals and phonemes, and language models,

which predict the likelihood of word sequences. The performance of these systems is

crucial for various applications, including transcription services, voice assistants, and

real-time captioning. To assess the quality and efficiency of ASR systems, researchers

and practitioners rely on several evaluation metrics. However, these metrics may have

limitations when it comes to evaluating speaker diarization quality.

One of the most widely used metrics for evaluating ASR systems is Word Error

Rate (WER). WER measures the similarity between a reference transcript (ground

truth) and a hypothesis transcript (ASR output) by calculating the minimum number

of edit operations (i.e., insertions, deletions, and substitutions) required to transform

the hypothesis transcript into the reference transcript, divided by the total number

of words in the reference transcript. The result is expressed as a percentage, with

lower WER values indicating better ASR performance.

WER =
Insertions+Deletions+ Substitutions

Total Reference Words
× 100 (2.1)

In addition to WER, other metrics such as Sentence Error Rate (SER) and Char-

acter Error Rate (CER) are also used to evaluate ASR systems. SER focuses on

sentence-level errors, while CER considers character-level differences between the

reference and hypothesis transcripts. Despite their differences, these metrics share

common limitations when it comes to speaker diarization quality assessment.

The primary limitation of WER, SER, and CER in evaluating speaker diarization

quality is that they do not take into account speaker information. They solely focus on

word, sentence, or character-level errors and fail to capture errors related to speaker

identification or segmentation. As a result, these metrics are insufficient for evaluating

speaker diarization quality, as they cannot provide insights into the performance of

systems in accurately identifying and segmenting speakers within a conversation.
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In conclusion, although WER, SER, and CER are commonly used metrics for eval-

uating ASR performance, their limitations in addressing speaker diarization quality

necessitate the development of specialized metrics tailored for assessing speaker di-

arization tasks.

2.2 Speaker Diarization Evaluation Metrics

Speaker Diarization is the task of identifying and segmenting speakers in an audio

recording containing multiple speakers. Evaluating the performance of speaker di-

arization systems is essential to ensure their effectiveness in various applications,

such as meeting transcription, broadcast news segmentation, and speaker-specific in-

dexing. Several evaluation metrics have been developed to assess speaker diarization

quality, including Diarization Error Rate (DER), Jaccard Error Rate (JER), and

Word Diarization Error Rate (WDER).

2.2.1 Diarization Error Rate (DER)

Diarization Error Rate (DER) is the most common metric for the Speaker Diarization

task [11, 1]. It measures the fraction of time that the audio segment is not mapped to

the correct speaker. To calculate DER score, a one-to-one mapping between speaker

IDs in reference and hypothesis is needed so that we can determine the correctness

of each labeled segment [1]. DER is computed as the following equation:

DER =

∑S
s=1 dur(s) · (max(Nref (s), Nhyp(s))−Ncorrect(s))∑S

s=1 dur(s)Nref (s)
(2.2)

where S is the total number of audio segments. dur(s) is the time duration of

a single segment s. Nr(s) and Nh(s) represent the number of speaker in segment s

from reference and hypothesis outputs. Ncorr(s) gives the number of correct speakers

given by the hypothesis output. The denominator
∑S

s=1 dur(s)Nref (s) gives the total
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scoring time.

Equation 2.2 can be decomposed into four parts that represent different aspects

of diarization errors:

• Speaker error: when speaker ID is incorrect in a segment

ESpkr =

∑S
s=1 dur(s) · (min(Nref (s), Nhyp(s))−Ncorrect(s))∑S

s=1 dur(s)Nref (s)
(2.3)

• False alarm speech: when assigned speaker ID is labeled to non-speech seg-

ments

EFA =

∑S
s=1 dur(s) · (Nhyp(s)−Nref (s))∑S

s=1 dur(s)Nref (s)
∀ (Nhyp(s)−Nref (s)) > 0 (2.4)

• Missed speech: when speech segments is not identified in hypothesis output

EMISS =

∑S
s=1 dur(s) · (Nref (s)−Nhyp(s))∑S

s=1 dur(s)Nref (s)
∀ (Nref (s)−Nhyp(s)) > 0

(2.5)

• Overlap speaker: percentage of scored time when multiple speakers appear

in a segment and some of them are not labeled in hypothesis output. This error

is often included in EMISS.

Therefore equation 2.2 can be written as:

DER = ESpkr + EFA + EMISS + EOverlap (2.6)

Note that many of the recent work has been ignoring the overlap error in their eval-

uation and only counting three types of errors.



8

2.2.2 Word-level Diarization Error Rate (WDER)

Recently, more research has been training the speaker diarization and ASR system

jointly, where traditional audio-based metrics are no longer applied [16]. Word-level

Diarization Error Rate (WDER) has been proposed to evaluate the SD result on

the joint SD and ASR system [13, 12]. WDER is a metric designed to evaluate the

quality of speaker diarization at the word level. Traditional diarization metrics, such

as Diarization Error Rate (DER), often focus on the time-based errors and do not take

into account the content of the conversation. WDER provides a more fine-grained

evaluation of speaker diarization performance by considering the alignment of words

and speaker labels in the transcripts.

WDER =
Sis + Cis

S + C
(2.7)

Equation 2.7 shows the way to compute WDER, where S is the number of ASR

substitutions and C is the number of correct ASR words. Sis and Cis means the

corresponding tokens with incorrect speaker labels. To calculate WDER, a word-

level alignment between the reference and hypothesis transcripts is required (detail

in chapter 4).

Limitations: It is worth noting that WDER only counts the tokens that are

aligned between reference and hypothesis transcripts (substitutions and correct words).

Inserted words and deleted words are not considered in the metrics. However, as sec-

tion 2.2.1 mentioned, diarization errors can be categorized into four parts: speaker

error, false alarm speech, missed speech, and overlap speaker. Only speaker errors

will be captured in aligned words; other types of diarization errors are reflected in

the deleted and inserted tokens in ASR outputs.
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2.3 Transcript alignment methods

The token-to-token alignment has always been a difficulty with transcript evaluation.

Due to the inconsistency of length and spelling of reference and hypothesis transcripts,

a word mapping is required in order to measure each word in the transcript [6].

• Edit Distance (Levenshtein Distance): Edit Distance is often used in ASR

evaluation for computing WER score [8]. Edit distance is a measure of the sim-

ilarity between two strings, defined as the minimum number of single-character

edits (insertions, deletions, or substitutions) required to transform one string

into the other. For ASR evaluation, the reference and hypothesis tokens can be

treated as strings and aligned using an edit distance algorithm.

• Needleman-Wunsch Algorithm: The Needleman-Wunsch algorithm is a

global sequence alignment method used in bioinformatics to align protein or

nucleotide sequences [10]. It can be adapted for transcript evaluation by treat-

ing the reference and hypothesis tokens as sequences and finding the optimal

alignment with the highest similarity score.

• Smith-Waterman Algorithm: The Smith-Waterman algorithm is a local se-

quence alignment method that finds the most similar subsequences between two

sequences [18]. For transcript evaluation, it can be used to align the reference

and hypothesis tokens by identifying the regions with the highest similarity.
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Chapter 3

Text-based Diarization Error Rate

and F-1 score

Chapter 2 introduces some common metrics used in ASR and speaker diarization

evaluation and their limitations in evaluating speaker diarization quality using pure

transcripts. To overcome these issues, this chapter introduces our proposed metrics

Text-based Diarization Error Rate (TDER) and diarization F-1 score.

3.1 Text-based Diarization Error Rate (TDER)

TDER is an adapted version of the original DER introduced in section 2.2.1. DER

measures the fraction of time that the audio segment is not mapped to the correct

speaker. In terms of the text-based speaker diarization, the length of the audio can

be directly converted to the length of the text sequence in terms of the number of

tokens included. Such comparison is only meaningful when comparing within the

pair of tokens where a definite one-to-one mapping is established. In this way, the

false alarm and miss is the number of tokens that are aligned to a gap, and the

confusion is the number of tokens that are aligned to incorrect speakers. Based

on the aforementioned adaptation, we present the Text-based Diarization Error Rate
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(TDER) that can be described as in equation 3.2:

TDER =

∑U
u=1 len(u) · (max(Nref (u), Nhyp(u))−Ncorrect(u))∑U

u=1 len(u)Nref (u)
(3.1)

Where U = {u1, ..., ui} , U is the ground-truth transcript and ui represent each

utterance in the ground-truth transcript. len(u) returns the number of tokens in

utterance u. Nref (u) and Nhyp(u) represent the number of speaker in utterance u

from reference and hypothesis transcripts. Ncorrect(u) is the number of speakers that

are correctly matched in two transcripts. Since in the reference transcripts, each

utterance is only spoken by one speaker, Nref (u) is always equal to 1. Therefore, we

can rewrite TDER as follow:

TDER =

∑U
u=1 len(u) · (max(1, Nhyp(u))−Ncorrect(u))

N
(3.2)

N is the total number of tokens in the reference transcripts. This metric captures

different aspects of Speaker Diarization errors. WhenNhyp(u) = 0, the numerator part

captures the Missed Speech errors. When Nhyp(u) > 1, the hypothesis utterance

contains more than one speaker, which contains Speaker Confusion and Overlap

errors. When Nhyp(u) = 1 and Ncorrect(u) = 0, the hypothesis utterance’s speaker

id is labeled correctly. In this case, the numerator is 0 and therefore is not counted

toward the SD errors.

Compared to the previous metrics, TDER is based on text and alignment/gap-

aware, which is compatible with situations where the ground-truth text has a different

number of tokens than the hypothesis text.
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3.2 Diarization F-1 score

In addition to TDER, we also use F1-score to measure the diarization quality on the

text level determining the precision and recall as follows:

R =
align(Tref , Thyp)

length(Tref )
(3.3)

P =
align(Thyp, Tref )

length(Thyp)
(3.4)

Tref and Thyp represent the sequence of tokens in the reference transcript and

hypothesis transcript (i.e, Tref = {t1, ..., tn}). Each token ti contains a word and

a speaker id. align(T1, T2) aligns sequence T1 onto sequence T2 and returns the

number of correctly labeled tokens in T1(will introduce in 3.2). Therefore, R gives

the percentage of tokens from ground-truth transcripts that are correctly labeled in

the generated transcripts, while P gives the percentage of correctly labeled tokens in

the generated transcripts.
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Chapter 4

Multiple Sequence Alignment for

Transcript Mapping

In this chapter, we discuss the necessity of Multiple Sequence Alignment (MSA)

in the context of transcript evaluation and provide an in-depth explanation of our

implementation of the MSA algorithm. While the dynamic programming approach

for MSA has been previously proposed by Fiscus et al. [4], their work primarily

offers a high-level overview of extending the 2-dimensional dynamic programming to

higher dimensions. Our contribution in this chapter includes a more comprehensive

elucidation of the algorithm and the introduction of a publicly available MSA tool

called align4d1. The permutation method introduced in Chapter 4.4 and the final

tool align4d is implemented by Peilin Wu.

4.1 Limitations for Pair-wise Alignment Algorithms

A hypothesis transcript cannot be evaluated unless its tokens are aligned with the

most probable ones in the reference transcript.

In Figure 4.1, the hypothesis (A’) has 3 errors against the reference (A, B), which

1https://github.com/emorynlp/align4d

https://github.com/emorynlp/align4d
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A : you're going to go to uh Amsterdam.                                     
B : indeed, indeed

A': you're gonna to go to indeed indeed Amsterdam                 

Friday, February 24, 2023 1:14 AM

Figure 4.1: Examples of transcript errors, where the reference consists of multiple
sequences.

make them difficult to be aligned:

1. A spelling and word recognition error; ‘going ’ is recognized as ‘gonna’ in the

hypothesis.

2. A missing word; ‘uh’ is not recognized.

3. Overlapped utterances; B’s utterance is spoken while A utters ‘Amsterdam’,

which are merged into one utterance for A’.

The first two types are ASR errors that can be handled by most pairwise alignment

methods such as the Needleman-Wunsch (NW) algorithm [10]. However, the third

type is an SD error involving multiple sequences which occur when utterances by

distinct speakers overlap in time. Figure 4.2 describes how the NW algorithm treats

them as the insertion and deletion errors and fails to align those tokens completely:

GT :     you're going  to  go  to  uh __  __  __   Amsterdam indeed, indeed

Output: you're gonna to go  to  indeed indeed Amsterdam        

Friday, February 24, 2023 1:14 AM

Figure 4.2: The result by the NW algorithm.

To overcome this challenge, a new multi-sequence alignment algorithm is designed by
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expanding the dimension of dynamic programming, which takes utterances from all

sequences in parallel (Fig. 4.3).

A : you're  going  to  go  to  _____  _____   uh  Amsterdam.                         
B :                                         indeed, indeed  

A': you're  gonna  to  go  to  indeed indeed  __ Amsterdam        

Friday, February 24, 2023 1:15 AM

Figure 4.3: The result by our multi-sequence alignment algorithm for the above ex-
ample.

4.2 Needleman-Wunsch algorithm

We choose the Needleman-Wunsch algorithm as our baseline method. This algorithm

is designed to align protein or nucleotide sequences [10]. It finds the best global

alignment over the entire input sequences. It allows a gap between tokens when a

mismatch happens, and by changing the match metric, we have certain tolerance

for misspellings. Similar to the dynamic programming solution to Longest Common

Subsequence solutions, this algorithm consists of two parts: computing a scoring

table, and backtrack to recover to alignment. Figure 4.4 gives an example of

the scoring table to align two sequences. In this example, the vertical sequence is the

reference and the horizontal sequence is the hypothesis.

Compute Score Table takes two sequences X = {x1...xm} and Y = {y1...yn} as

input. In our case, X, Y are two transcripts, and each xi, yi represents a token in

the transcript. d is a penalty score indicating that two tokens are not matched. To

find the global optimal alignment, a two-dimensional array (or matrix) F is allocated.

There is one row for each character in sequence X, and one column for each character

in sequence Y . The first two for-loops from line 5 to 10 initialize the first row and
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I are fish am you oh yea

0 -1 -2 -3 -4 -5 -6 -7

I -1 2 1 0 -1 -2 -3 -4

am -2 1 4 3 2 1 0 -1

fish -3 0 3 6 5 4 3 2

are -4 -1 2 5 8 7 6 5

you -5 -2 1 4 7 10 9 8

too -6 -3 0 3 6 9 12 11

Oh -7 -4 -1 2 5 8 11 11

yes -8 -5 -2 1 4 7 10 13

Figure 4.4: Example of score matrix of two sequences of tokens and backtracking
following the blue arrow.

Algorithm 1 Needleman-Wunsch Compute Score Table

1: Input: two sequences X, Y
Require: n ≥ 0
2: m← X.length
3: n← Y.length
4: d← Gap penalty score
5: F ← [0..m, 0..n]
6: for i = 1→ m do
7: F [i, 0]← d ∗ i
8: end for
9: for j = 1→ n do
10: F [0, j]← d ∗ j
11: end for
12: for i = 1→ m do
13: for j = 1→ n do
14: M ← F [i− 1, j − 1] + Score(Xi, Yj)
15: D ← F [i− 1, j] + d
16: I ← F [i, j − 1] + d
17: F [i, j]← max(M, I,D)
18: end for
19: end for
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the first column with d multiplied by the index. The third nested for-loop in line 11

updates every cell in the table following the rule:

Fi,j = max


Fi−1,j−1 + Score(Xi, Yj)

Fi−1,j + d

Fi,j−1 + d

(4.1)

Score(Xi, Yj) is a scoring system that evaluates the similarity between two tokens.

For word-level comparison, we choose Levenshtein Distance as our Score function to

measure the similarity between two words.

Algorithm 2 Backtrack Needleman-Wunsch Alignment

1: i← m
2: j ← n
3: alignedX ← empty list
4: alignedY ← empty list
5: while i > 0 or j > 0 do
6: if i > 0 and j > 0 and F [i, j] = F [i− 1, j − 1] + Score(Xi, Yj) then
7: insert Xi at the beginning of alignedX
8: insert Yj at the beginning of alignedY
9: i← i− 1
10: j ← j − 1
11: else if i > 0 and F [i, j] = F [i− 1, j] + d then
12: insert Xi at the beginning of alignedX
13: insert gap at the beginning of alignedY
14: i← i− 1
15: else
16: insert gap at the beginning of alignedX
17: insert Yj at the beginning of alignedY
18: j ← j − 1
19: end if
20: end while

The backtracking part of the Needleman-Wunsch algorithm aims to recover the

optimal alignment between two sequences using the score table computed in the pre-

vious step. Starting from the bottom-right corner of the scoring matrix, it iteratively

traces back the optimal path until it reaches the top-left corner. The backtracking
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procedure follows the scoring rules for matches, mismatches, and gaps to reconstruct

the aligned sequences of both input sequences X and Y. This process results in the

final global alignment, which is a pair of sequences with the same length containing

matched characters, mismatches, and gaps.

4.3 Adaptation to 3-dimension

The Needleman-Wunsch (NW) algorithm is capable of addressing the first three types

of errors listed in section 4.1, which include misspellings, missing words, and extra

words. To tackle errors arising from overlapping utterances, we initially attempt to

extend the NW algorithm to accommodate three dimensions. In the context of a

two-speaker conversation transcript, we separate the reference transcript into two

sequences based on speaker ID, and subsequently align these two sequences with the

hypothesis transcript concurrently.

Algorithm 3 demonstrates the computation of the 3D scoring matrix. The algo-

rithm takes three input sequences X = x1, ..., xn, Y = y1, ..., yn, and Z = z1, ..., zn,

where X represents the transcriber’s output transcript, Y consists of speaker A’s

utterances from the ground-truth transcript, and Z contains speaker B’s utterances

from the ground-truth transcript. Each element xi, yi, zi represents a token. The

algorithm aligns tokens from sequences Y and Z with those in sequence X. In this

manner, as depicted in Figure 4, we can accurately align overlapping utterances by

aligning each speaker’s utterances separately.

Instead of generating a 2D table, we need to compute a 3D matrix for three

sequences. Line 3 allocates a matrix Fm×n×d according to the lengths of the input

sequences. Lines 4-15 initialize the three surfaces xy, xz, and yz using the scoring

table from the Needleman-Wunsch algorithm. Subsequently, the nested for loop in

lines 16-22 updates each cell in matrix F following the rules specified in Equation 4.
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Algorithm 3 Compute 3D Scoring Matrix

1: Input: three sequences X, Y , Z
2: m,n, d← X.length, Y.length, Z.length
3: g ← Gap penalty score
4: F ← [0..m, 0..n, 0..d]
5: tablexy ← Pairwise-Align-table(X, Y )
6: tablexz ← Pairwise-Align-table(X,Z)
7: tableyz ← Pairwise-Align-table(Y, Z)
8: for i = 1→ m do
9: for j = 1→ n do
10: for k = 1→ d do
11: Fi,j,0 ← tablexy[i, j]
12: Fi,0,k ← tablexz[i, k]
13: F0,j,k ← tableyz[j, k]
14: end for
15: end for
16: end for
17: for i = 1→ m do
18: for j = 1→ n do
19: for k = i→ d do
20: updateFi,j,k

21: end for
22: end for
23: end for
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Fi,j,k = max



Fi−1,j,k + Score(Xi,−,−)

Fi,j−1,k + Score(−, Yj,−)

Fi,j,k−1 + Score(−,−, Zk)

Fi−1,j−1,k + Score(Xi, Yj,−)

Fi−1,j,k−1 + Score(Xi,−, Zk)

Fi,j−1,k−1 + Score(−, Yj, Zk)

Fi−1,j−1,k−1 + Score(Xi, Yj, Zk)

(4.2)

4.4 Multiple Sequence Alignment

In this section, I would like to acknowledge the valuable contributions of Peilin Wu,

whose work on the development of the multiple sequence alignment algorithm with

permutations has been instrumental in the success of this research.

Section 4.3 introduces an example of expanding the pairwise alignment to align

three sequences. However, real-world applications often involve scenarios with an

arbitrary number of sequences to be aligned. To accommodate this flexibility, we

need a method that can efficiently generate all possible combinations of sequence

positions and indices, regardless of the total number of input sequences.

Permutations play a crucial role in this context because they help us explore all

potential combinations of tokens from the hypothesis and reference sequences. By

systematically generating and evaluating these permutations, we can effectively align

multiple sequences without the need to explicitly define the number of sequences or

the number of loops required for the alignment process.

Algorithm 4 shows how we used permutations when computing the multi-dimensional

scoring table. Algorithm 4 is given a list of sequences S, where S0 is the hypothesis

sequence, and the remaining sequences are reference sequences separated by speaker.
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Algorithm 4 Multiple Sequence Alignment with Permutations

1: Input: A list of sequences S
2: n← length(S)
3: Initialize an empty scoring matrix F with dimensions (len(S0) + 1)× (len(S1) +

1)× · · · × (len(Sn) + 1)
4: seqCombinations← generate combinations(n)
5: for each seqComb in seqCombinations do
6: indexPermutations← generate index permutations(seqComb, S)
7: for each perm in indexPermutations do
8: Calculate the score score← scoringFunction(perm, S, F )
9: Update the scoring matrix F using perm and score
10: end for
11: end for

The length of the list is denoted as n. We first initialize an empty scoring matrix F

with dimensions based on the lengths of all the sequences in the list.

The seqCombinations variable is calculated using the generate combinations

function to store all possible sequence position combinations. For each combination

seqComb, we generate all possible permutations of indices using the

generate index permutations function with the input parameters seqComb and the

list of sequences S.

For each permutation perm in the generated indexPermutations, we calculate

the score using a scoring function that takes the permutation, the list of sequences,

and the scoring matrix as inputs. Finally, we update the scoring matrix F using

the calculated score and the current permutation. This process is repeated for all

combinations and permutations, resulting in the final scoring matrix for the multiple

sequence alignment with permutations.
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Chapter 5

Experiments and Results

Our experiment mainly contains two parts: multi-sequence alignment and Text-based

metric evaluation. Two public available transcribers, Amazon and Rev AI, are se-

lected for audio transcript generation. Chapter 5.2 gives the experiment of our align-

ment algorithm, including the experiment setup and data preparation. Chapter 5.1

shows the experiment and results of comparison between our purposed metrics and

other popular metrics.

5.1 Transcribers

For our experiments, we selected two widely-used transcription services: Amazon

Transcribe and RevAI.

Amazon Transcribe is an automatic speech recognition (ASR) service developed

by Amazon Web Services (AWS). It offers options to include speaker diarization

information in the result.

RevAI, developed by Rev.com, is another ASR service that offers transcription

capabilities. It employs state-of-the-art artificial intelligence techniques to provide

accurate transcriptions across different industries and use cases. RevAI also provides

speaker diarization in the output transcripts.
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Both Amazon Transcribe and RevAI are publicly available and offer a free tier

of usage, making them ideal choices for our experiments due to their accessibility,

cost-effectiveness and their ability to perform speaker diarization tasks.

5.2 CallHome Corpus

We use the CABank English CallHome Corpus for this experiment. This corpus is

a collection of telephone conversations in English, designed for research purposes.

It is part of the larger CallHome project, which includes telephone conversations in

various languages. The English CallHome Corpus contains 120 unscripted, informal

telephone conversations between native English speakers. Each conversation lasts

approximately 30 minutes and covers a range of topics, as participants were free

to discuss anything they wished. Most conversations contains 10 minutes manually

transcribed text.

The CallHome transcript format is based on the CHAT (Codes for the Human

Analysis of Transcripts) format, which is a widely-used standard for transcribing

spoken language in research. The format is designed to represent various aspects of

spoken language, such as speaker turns, pauses, overlapping speech, and non-verbal

cues. This is the reference transcript we used in later experiments. Here is an example

of the CallHome transcript:

@UTF8

@PID: 11312/t-00001007-1

@Begin

@Languages: eng

@Participants: A Subject, B Subject

@ID: eng|eng|A|||||Subject|||

@ID: eng|eng|B|||||Subject|||
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@Media: 4074, audio

*A: So, anyway, how are you doing these days? 145150_147510

*B: Things are going very well.

*B: I think I had mentioned before that, um, that uh, that uh, that

there’s a company now that I’m working with . 147700_154910

*B: um, uh, which is very much just, just myself and Guss. 155500_158710

@End

5.3 Evaluation of Multiple Sequence Alignment

5.3.1 Simulated Data

To evaluate the accuracy of our alignment algorithm, it is essential to establish a

ground-truth token mapping between reference and hypothesis transcripts. However,

manually creating this mapping is labor-intensive. As a result, we opt to simulate

hypothesis transcripts based on reference transcripts, allowing us to generate token

mappings more efficiently and effectively.

Error Distribution

As discussed in section 4.1, we classify auto-transcript errors into four types: Substi-

tutions, Missing tokens, Extra tokens, and Overlapped utterances. To better simulate

the hypothesis transcript, we manually labeled the errors from four hypothesis tran-

scripts generated by Amazon and RevAI.

Transcriber Missing Extra Substitution Overlapping

Amazon 6.8 1.5 2.8 0
RevAI 5.1 2.7 3.1 0.5

Table 5.1: Average percentage of four types of error over all tokens found in RevAI
and Amazon.
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Missing Token
52.4%

Extra token
16.4%

Overlapping
2.3%

Substitution
28.9%

Figure 5.1: Average Error distribution for Rev AI and Amazon transcribers.

Table 5.1 provides a summary of the error distribution for Amazon Transcribe

and RevAI. As shown, Amazon Transcribe has a higher rate of Missing token er-

rors, whereas RevAI exhibits a higher error rate in the other three error categories.

This suggests that Amazon Transcribe is more likely to omit tokens during the ASR

process, possibly skipping segments when the audio is unclear or difficult to recognize.

In contrast, RevAI tends to preserve most of the information during the ASR

process, as evidenced by its higher error rates in the other categories. This is also

reflected in the Overlapping errors, where Amazon Transcribe does not transcribe any

overlapping utterances, while RevAI transcribes these segments, leading to errors.

5.3.2 Result

For each algorithm, we first generate the correct mapping with the produced reference

and hypothesis text as the reference mapping result. Then we remove all gaps and let

the algorithm align the two texts giving out the generated mappings as the hypothesis

mapping result. We measure the accuracy of sequence alignment by calculating the

percentage of tokens in reference text that have the same mapping between the refer-

ence mapping result and hypothesis mapping result. The final accuracy is calculated

as the average among all 10 transcripts.
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Algorithm Avg. accuracy
Pairwise Character 0.92
Pairwise Token 0.93
Multi-sequence 0.99

Table 5.2: Average accuracy for alignment between three proposed alignment algo-
rithm on simulated transcript.

Table 5.2 presents the performance of our multiple sequence alignment algorithm

compared to the baseline character-level pairwise alignment and token-level pairwise

alignment. As shown, multi-sequence alignment gives a significant improvement com-

paring to pairwise alignment algorithms, due to the ability of aligning tokens in the

wrong orders. We therefore choose multi-sequence alignment to conduct compute

evaluation metrics in the next section.

5.4 Evaluation of Proposed Metrics

5.4.1 Data Preparation

We manually selected 10 conversations from the CallHome Corpus based on their

audio quality. Each conversation lasts around 30 minutes, but the reference transcript

only covers 10 minutes of the audio. Therefore, we cut each of the audio into a 10-

minute clip and transcribe it using Amazon and RevAI separately.

The transcription output from both RevAI and Amazon Transcribe is provided

in JSON format. For RevAI, the output consists of a list of monologues, with each

monologue containing speaker information and a list of elements representing indi-

vidual tokens, including text, punctuation, and timestamps. In contrast, Amazon’s

output is structured with separate lists for transcripts, speaker labels, and items. The

transcripts list contains the entire transcript as a single string, while the speaker labels

list stores diarization results as speaker segments. The items list contains individual

tokens with timestamps and confidence scores.
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5.4.2 Speaker Alignment

To evaluate TDER, we first need to perform speaker alignment between the refer-

ence and hypothesis transcripts. For this purpose, we use the Hungarian algorithm,

which is an efficient method to find the optimal assignment in a square cost matrix,

minimizing the total cost [7].

In our case, the cost matrix represents the errors of assigning reference speakers

to hypothesis speakers. For instance, if we have three reference speakers (R1, R2,

and R3) and two hypothesis speakers (H1 and H2), our cost matrix would be:

Hyp Speakers
Ref Speakers H1 H2

R1 C11 C12
R2 C21 C22
R3 C31 C32

Table 5.3: Example cost matrix for speaker alignment

With the cost matrix, the Hungarian algorithm determines the optimal assignment

by minimizing the total cost. In our implementation, we use the linear sum assignment

function from the SciPy library, which is based on the Hungarian algorithm, to per-

form the speaker alignment. Once the speaker alignment is completed, we can proceed

to evaluate speaker diarization quality using TDER and other chosen metrics.

5.4.3 Result

Table 5.4 shows the comparison of TDER and F1 scores with DER, WER, and WDER

on the selected 10 conversations. Each entry is the average of 10 conversations score.

Amazon performs better in terms of DER score, which indicates improved segmen-

tation of speaker utterances at the audio level. However, RevAI outperforms Amazon

in ASR tasks, as evidenced by a WER of 0.29, which is 0.05 lower than Amazon’s

WER.
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Transcriber DER TDER F1 P R WER WDER

AMZN 0.24 0.53 0.79 0.87 0.73 0.34 0.15
Rev 0.26 0.50 0.84 0.88 0.81 0.29 0.20

Table 5.4: DER and F1-score metric for ASR provided by Amazon and Rev AI.
TDER: Text-based DER. WDER: Word-level DER

Despite Amazon’s lower WDER score compared to RevAI, it is important to note

that WDER only counts aligned tokens, as mentioned in section 2.2.1. Section 5.3.1

highlights Amazon’s tendency to omit tokens during the ASR process. This omission

is further exemplified in table 5.1, which shows the manually labeled error distribution

for both Amazon and RevAI. Consequently, WDER primarily measures substitution

errors, while ignoring the most frequent error made by Amazon—missing tokens.

This propensity for Amazon to drop tokens not only skews the WDER results but

also leads to a lower recall score compared to RevAI. The reduced recall score, in

turn, contributes to a lower F1 score for Amazon.

When evaluating diarization performance in transcripts, measured by TDER, Re-

vAI demonstrates a slight advantage, aligning with the F1 score results. TDER, F1,

and WER collectively reveal a similar trend, with RevAI modestly outperforming

Amazon on this corpus. While Amazon exhibits better speaker diarization perfor-

mance, the ASR quality affects the results as they are reflected in the transcripts.

Therefore, TDER demonstrates the ability to reflect the transcript’s diarization qual-

ity.
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Chapter 6

TranscribeView: A System for

Transcript Evaluation and

Diarization Error Visualization

6.1 Interface

Figure 6.1: Screenshot of system interface
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As shown in Figure 6.1, the TranscribeView system interface comprises a left side-

bar and a visualization area, working together to deliver a comprehensive evaluation

of transcripts. The left sidebar allows users to upload transcripts in JSON format and

choose from various evaluation metrics. Upon uploading, the system presents statis-

tical information about the transcript, such as the number of speakers and tokens.

Additionally, users have the option to highlight diarization or ASR errors.

The visualization area, situated to the right of the sidebar, showcases the selected

metrics’ scores at the top. This area is partitioned into two columns: one for the

hypothesis transcript and the other for the reference transcript. Each column exhibits

its respective transcript, with each utterance accompanied by a colored vertical bar

that indicates the speaker ID and the speaker mapping between the two transcripts.

Furthermore, users can hover over tokens to view the corresponding aligned tokens

in the other transcript.

6.2 Implementation

TranscribeView’s implementation relies on the Streamlit framework in conjunction

with customized HTML elements. The interface structure and left sidebar section

are developed using Streamlit, while the visualization area is created with embedded

HTML elements. Streamlit offers an API for adding HTML strings as iFrame ele-

ments, enabling the incorporation of CSS and JavaScript elements into the HTML

string to enhance interactivity in the visualization area.

TranscribeView’s evaluation is based on the alignment results from align4d. Scripts

are provided to preprocess the alignment results into JSON format, which is utilized

by the visualization area. In addition to the interface, metric APIs are available for

users to apply the evaluation metrics independently of the interface.
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(a) rev (b) amazon

Figure 6.2: Amazon and RevAI’s transcripts information after uploading alignment
algorithm

6.3 Case Study: Comparing Transcribers

We now demonstrate how we can use TranscribeView to compare the performance of

two transcriber systems (Amazon, RevAI) on the same audio data. The case study

also shows why TDER and diarization F1 give a more comprehensive evaluation of

transcript quality. The audio data and reference transcripts are from ICSI meeting

dataset. We randomly cut a 5-min meeting audio clip and input it separately into

Amazon and RevAI’s transcriber.

Transcript summarization: Upon uploading the alignment output JSON file,

the summarization of the transcript’s information is shown at the bottom of the

sidebar. As in figure 6.2, in the reference transcript, there are 840 tokens with four

speakers. RevAI’s output contains 815 tokens and Amazon’s output only contains
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(a) rev

(b) amazon

Figure 6.3: Screenshots for metrics area. Metrics from left to right are: WDER,
WER, TDER, diarization F1, Precision, and Recall

748 tokens. Both of the transcribers tend to output fewer tokens, but Amazon drops

11% of the reference tokens. This type of error will be reflected in the metric area.

For speaker diarization, both transcribers recognized five speakers although there are

only four speakers in the original audio. As a result, shown in the speaker alignment

area, one of the speakers in the hypothesis transcript is not aligned to any reference

speakers (speaker 3 for RevAI, speaker spk 1 for Amazon).

Metric Comparison: The top of the visualization area shows the selected eval-

uation metrics. Figure 6.3 shows the selected evaluation metrics for the two tran-

scribers. When looking at WDER and WER, the two transcribers show us a similar

performance for both SD and ASR. However, TDER and diarization F1 score indi-

cate there is a significant difference in speaker diarization quality. Having more tokens

dropped in Amazon’s output causes a significant difference in the Recall score. This

error is ignored in WDER as mentioned in section ?? that WDER only accounts for

the errors in mapped tokens, but errors of the missing token also bring diarization

errors to transcripts. Overall, as shown in metrics, RevAI’s transcript seems to have

higher quality, especially for the reflected speaker diarization result.

Exploring Visualization: Statistical summarization and metric sometimes may

not be intuitive to identify the transcript’s quality. Figure 6.4 shows the annotations

of hypothesis transcript and reference transcript side by side.

Each colored vertical bar shows the alignment between utterance speakers (spk 0
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Figure 6.4: Screenshot of visualization area aligning Amazon’s output with reference
transcript.

is aligned to C). Greyed out speaker label indicates unmapped speakers (spk 1 is

not mapped to any speakers in reference). Highlighted tokens are hovered by cursor.

The corresponding aligned token is also highlighted. Here red underline indicates

diarization errors.
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Chapter 7

Conclusion

In conclusion, this thesis presents a novel approach to evaluating speaker diarization

performance in text transcripts by introducing the Text-based Diarization Error Rate

(TDER) and diarization F1-score metrics. These metrics account for both automatic

speech recognition (ASR) and speaker diarization (SD) errors, providing a more com-

prehensive assessment of transcript quality. To overcome the inconsistency in the

number of tokens between hypothesis and reference transcripts, we also developed a

multi-sequence alignment tool that enables accurate word-to-word mapping between

reference and hypothesis transcripts, achieving a higher accuracy score than pairwise

alignment methods on a simulated corpus generated based on common SD and ASR

errors.

Our evaluation of TDER, F1-score, DER, WER, and WDER on 10 transcripts

from the CallHome dataset demonstrates that TDER and F1-score provide more re-

liable evaluations of speaker diarization performance at the text level compared to

existing metrics. Moreover, we introduced TranscribeView, a web-based platform for

evaluating and visualizing errors in speech recognition and speaker diarization. To

the best of our knowledge, TranscribeView is the first comprehensive platform that

allows researchers to align multi-sequence transcripts, assess, and visualize speaker
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diarization errors, which is essential for advancing data-driven conversational AI re-

search.

7.1 Limitations

Despite the contributions and advancements made in this study, it is important to

acknowledge certain limitations that may impact the interpretation of the results and

the applicability of our provided tool. When evaluating the correctness of our align-

ment tool, we used simulated data based on the statistical patterns observed in four

transcripts. Annotating more transcripts could lead to more accurate summariza-

tions. Additionally, incorporating a language model in the simulation might make

the simulated transcript more closely resemble real hypothesis transcripts.

Furthermore, while the improved alignment algorithm increases alignment accu-

racy and enables text-based speaker diarization, this improvement comes at the cost

of increased computational resources. The time and space complexity of the algo-

rithm is O(nk), where n represents the average number of tokens in one sequence,

and k represents the number of sequences, which is equal to the number of speak-

ers plus one. This increased complexity may limit the applicability of the tool in

some scenarios, particularly those involving large numbers of speakers or extensive

transcripts.

7.2 Future Work

In future work, we aim to find solutions to reduce the runtime of our multiple sequence

alignment algorithm. One possible approach is to pre-segment the input sequence

into shorter subsequences and align these smaller segments, which could potentially

improve computational efficiency. Additionally, we plan to work on enhancing the

robustness and design of the TranscribeView system, ensuring it provides an improved
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user experience and can handle a wider range of transcript evaluation scenarios.
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