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Abstract  

Transition metal complexes play a fundamental role in biological processes and 

chemical catalysis; however, they remain difficult to study computationally. Computational 

challenges arise due to the presence of strong and weak electron correlation and the 

competition between states of different spin multiplicity. However, most computational 

techniques do not adequately capture both forms of electron correlation. Most multireference 

techniques accurately capture strong electron correlation while most single reference 

techniques efficiently describe weak electron correlation. The primary difficulty, in studying 3d 

transition metal compounds computationally is to capture both forms of electron correlation 

within the calculation. Presented here is the utilization of the multireference driven similarity 

renormalization group (MRDSRG) method to benchmark 3d transition metal hydrides. MRDSRG 

can account for strong electron correlation through multiple Slater determinants and weak 

electron correlation using a sliding parameter to control the extent the Hamiltonian is block-

diagonalized. This thesis presents the analysis of several 3d transition metal hydrides, and the 

first computation of the ionization energies of 3d transition metals with MRDSRG, with a 

comparison to other computational techniques.  
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Chapter 1 Introduction 

1.1) Introduction 

Transition metal complexes provide the building blocks for large transition metal 

complexes that play an essential role in several critical biological processes and chemical 

applications. In particular, transition metal complexes play a significant role in the development 

of catalysts for industrial processes,1 solar cells,2 and the delivery of pharmaceuticals in the 

body.3 Despite, the importance of transition metals in everyday life they remain difficult to 

understand computationally. 

Challenges in studying transition metal 

complexes computationally arises from the 

partially occupied d-shell. When partially occupied, 

the 5 atomic d orbitals lead to multiple possible 

electron configurations for a transition metal atom. 

For example, Figure 1 showcases two possible 

electron configurations with different spin 

multiplicities (ms) for a cobalt (Co) atom. The 

electron configurations are both open-shell, and 

thus, lead to several more possible electron 

configurations for each spin multiplicity than 

shown in Figure 1. For, ms=4 there are 10 possible 

electron configurations with 3 alpha electrons, as 

shown in Figure 2. The multiple electron 

configurations cause several energy states to be 

degenerate or near-degenerate. Energetic states 

close in energy can cause computational 

Figure 1. The 3d orbital for two electron 
configurations of a cobalt atom. The ms=4 
for configuration a and ms=2 for 
configuration b. 

Figure 2. The 3d orbital of 10 different 
electron configurations of a Co atom with 
ms=4, where the spin of electrons in singly 
occupied orbitals is neglected. 
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techniques to converge on the incorrect electronic configuration and the wrong identification of 

the ground state. Figure 2 reduces the simplicity of the chemical systems analyzed in this 

project. Accurate calculations cannot just consider a single spin state and thus, significantly 

increases the possible electron configurations for a singular Co atom. The complexity of the 

problem increases further when electron configurations with ms=2 are considered.  

Additionally, analyzing 3d transition metal hydrides adds further difficult due to the 

mixing of atomic orbitals to form of molecular orbitals between the 3d transition metal and the 

hydrogen atom. Therefore, you can see the scale of the systems studied here as more electron 

configurations must be considered then the Co atom described in Figures 1 and 2. The 

separation energy between states of different multiplicities must also be evaluated. For 

example, Kulik and coworkers studied the energy difference between MnH 5Σ+ and MnH 7Σ+ and 

found the septet state to be the lowest energy state.4 The expected lowest energy state would 

be the quintet state since, more electrons are not paired together, decreasing the repulsion 

energy between electrons. However, the interaction energy between the molecular orbitals is 

significantly less between the anti-bonding 4s orbital and the 3d orbitals than expected, and the 

anti-bonding 4s orbital has very little anti-bonding character. This leads to the repulsive energy 

between electrons having less of an energetically stabilizing effect than the interaction energy, 

and as a result the septet state to be the unexpected ground state. The MnH 7Σ+ ground state 

was also confirmed experimentally via laser spectroscopy.5 

The computational analysis of 3d transition metals and transition metal hydrides was 

performed using multireference driven similarity renormalization group with second order and 

third order perturbation theory (MRDSRG-PT2 and MRDSRG-PT3). The following sections will 

describe the computational methods utilized. In addition, the computational techniques that are 

compared to the acquired data and the corresponding studies are also evaluated. A complete 

set of spectroscopic constants for the following molecules - ScH 1Σ+, TiH 4Φ, MnH 5Σ+, MnH 7Σ+, 

and ZnH 2Σ+ were obtained and analyzed with MRDSRG-PT3. Ionization energies for all 3d 
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transition metals were evaluated with MRDSRG-PT2 and MRDSRG-PT3. An analysis of the 

energy splitting obtained with MRDSRG-PT3 between MnH 5Σ+ and MnH 7Σ+ was studied. 

Lastly, the equilibrium bond lengths for ScH 1Σ+, TiH 4Φ, CrH 4Σ+, CrH 6Σ+, MnH 5Σ+, MnH 7Σ+, 

FeH 4Δ, FeH 6Δ, CoH 3Φ, CuH 1Σ+, and ZnH 2Σ+ were obtained. 

1.2) The Schrödinger Equation 

The basis of quantum chemistry is to solve the full nonrelativistic time-independent 

Schrödinger equation and obtain the energy for a chemical system of interest. The Schrödinger 

equation is defined as, 

 𝐻"Ψ = 𝐸Ψ (1) 

 

where 𝐻" is the Hamiltonian operator, Ψ is the molecular wave function, and E is the energy. For 

a system with M nuclei and N electrons, the full Hamiltonian is,  

 𝐻" = −'
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with the indices A and B used to label nuclei and the indices i and j for the electrons. Derivatives 

with respect to the A-th nucleus and the i-th electron enters via the Laplacian operators, ∇&" and 

∇!" respectively; these two terms account for the kinetic energy. The ratio between the mass of 

the A-th nucleus and an electron, the distance between the i-th electron and the A-th nucleus, 

the atomic number of the A-th nucleus, the distance between the i-th electron, and the distance 

between A-th and B-th nucleus are defined as 𝑀&, 𝑟!&, 𝑍&, 𝑟!(, and 𝑅&* sequentially. The 

attraction of the negatively charged electrons and positively charge nuclei (Coulomb attractions) 

is accounted for in the third term of the Hamiltonian. The repulsion between negatively charged 

electrons is considered in the fourth term, while the fifth term represents the repulsion between 

the nuclei.  
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A challenge of solving the Schrödinger equation arises from the coupling of electrons 

and nuclei within the Hamiltonian.6 When analyzing chemical systems with 3d transition metals 

a minimum of 21 electrons for Scandium (Sc) must be considered in the Hamiltonian. To 

simplify the Hamiltonian the second and fifth term of Equation 2 is disregarded, since the mass 

of nuclei are significantly greater than the mass of electrons. Under this assumption, the nuclei 

move much slower than electrons, allowing to factorize the nuclei and the electron 

wavefunctions. Then the electrons satisfy a Schrödinger equation similar to Equation 1 with the 

Hamiltonian defined as, 

 𝐻" = −'
1
2
∇!" −

#

!$%

''
𝑍&
𝑟!&

'

&$%

#

!$%

+''
1
𝑟!(

#

()!

#

!$%

 (3) 

This simplification is referred to as the Born-Oppenheimer Approximation (BO Approximation). 

However, the errors due to the BO Approximation are largely negligible when completing 

calculations on the equilibrium properties of transition metals.  

1.3) Full-Configuration Interaction 

Additionally, solving the Schrödinger equation requires a wavefunction that describes the 

chemical system of interest. Capturing every possible electron configuration for the transition 

metal system of interest is the primary concern when building a wavefunction. This is 

accomplished by enumerating determinants for all electron configurations.  

Slater determinants are built from a basis of one-electron wavefunctions or spin orbitals, 

where each spin orbital describes a single electron. A wavefunction for a single electron is 

comprised of two components - a spatial orbital 𝜙!(𝑟) and a spin component α(ω) or β(ω) with 

spin variable 𝜔. The spatial orbital refers to the position of an electron i at �⃑�. Furthermore, when 

normalized spatial orbitals are used, the probability of finding the electron at position �⃑� within the 

volume of d𝑟 is given by |𝜙!(𝑟)|". Furthermore, the spatial orbitals are assumed to be 

orthonormal. 
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The other component of a spin orbital is the spin component that can either be spin-up (α(ω)) or 

spin-down (β(ω)). Therefore, a spin orbital for an electron i is defined as a product of the spin 

component and spatial orbital to form a function of variable 𝐱 ≡ (𝑟,ω) (Equation 4). 

 𝜓(𝐱) = >𝜙!
(𝑟)α(ω)

𝜙!(�⃑�)β(ω)
 (4) 

 

A basis of spin orbitals built from a finite set of 𝐌 spatial orbitals such that 	i	ϵ	1, 2, . . . , 𝐌  given a 

basis set of 2𝐌 orthonormal spin orbitals, is defined by 

 
𝜓"!+%(𝐱) 	= 𝜙!(𝑟)α(ω)
𝜓"!(𝐱) 	= 𝜙!(�⃑�)β(ω)

	 (5) 

A wavefunction of 𝐍 electrons (Equation 6) can be formed from a basis of 2𝐌 spin orbitals 

(Equation 5) as an antisymmetric product of single electron wavefunctions.  

 Φ(𝑥%, 𝑥", ⋯ , 𝑥𝐍) (6) 

As an example, we will consider a two-electron system for electron 𝑥% and 𝑥", then the 

wavefunction will be described by Equation 7. 

 Φ(𝑥%, 𝑥") (7) 

The wavefunction in Equation 7 can be expanded in the complete spin orbital basis to form 

Equation 8. 

 Φ(𝑥%, 𝑥") = 	'𝐶-.𝜓-(𝑥%)𝜓.(𝑥")
-.

 (8) 

Where, 𝜓- and 𝜓. represent spin orbitals the r-th and q-th molecular orbitals. However, for 

Equation 8 to correctly describe a two-electron system the Pauli Exclusion Principle must be 

satisfied. However, Equation 8 must satisfy the Pauli Exclusion Principle for fermions; since, 

electrons are fermions. 
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For fermions to meet the Pauli Exclusion principle, the total wavefunction must be anti-

symmetric with respect to the interchange (Equation 9):  

 Φ(𝑥%, 𝑥") = −Φ(𝑥", 𝑥%) (9) 

Thus, to meet this requirement we can examine two possibilities. For electron 𝑥% to occupy the 

𝜓- spin orbital while electron 𝑥" occupies the 𝜓. spin orbital (Equation 10). Additionally, electron 

𝑥% to occupy the 𝜓. spin orbital while electron 𝑥" occupies the 𝜓- spin orbital (Equation 11). 

 Φ(𝑥%, 𝑥") = 𝜓-(𝑥%)𝜓.(𝑥") (10) 

 Φ(𝑥", 𝑥%) = 𝜓-(𝑥")𝜓.(𝑥%) (11) 

To build a wavefunction that satisfies Pauli Principle (Equation 9) the wavefunction should be 

written as a linear combination of Equation 10 and 11 to obtain Equation 12. 

 Φ(𝑥%, 𝑥") =
1
√2!

J𝜓-(𝑥%)𝜓.(𝑥") − 𝜓-(𝑥")𝜓.(𝑥%)K (12) 

 In Equation 12 a normalization factor of is applied. Additionally, Equation 12 can be 

represented as a determinant (Equation 13). 

 
Φ(𝑥%, 𝑥") =

1
√2!

L
𝜓-(𝑥%) 𝜓-(𝑥")
𝜓.(𝑥%) 𝜓.(𝑥")

L (13) 

Equation 13 defines a Slater determinant for the two-electron system and this definition can be 

expanded to a system of 2𝐌 spin orbitals and 𝐍 electrons (Equation 14): 

 
Φ-,.,⋯'(𝑥%, 𝑥", ⋯ , 𝑥𝐍) =

1
√𝐍!

M
𝜓-(𝑥%) ⋯ 𝜓-(𝑥𝐍)
⋮ ⋱ ⋮

𝜓𝐌(𝑥%) ⋯ 𝜓𝐌(𝑥𝐍)
M (14) 

Slater determinants are abbreviated without electron labels as PΦ-,.,⋯𝐌Q = P𝜓-𝜓.⋯𝜓𝐌Q for 

convenience. Thus, the wavefunction for a transition metal system can be fully described by 

Equation 15. 

 
|Φ⟩ = ' 𝑐!!,!",⋯!𝐍P𝜓-𝜓.⋯𝜓𝐌Q

"𝐌

!!2!"2⋯2!𝐍

 (15) 
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Where, 𝑐!!,!",⋯!𝐍 are the resulting coefficients for each determinant. For example, if we were to 

examine Figure 2 and compose Slater determinants for the wavefunction of the Co atom. There 

will be at least 10 Slater determinants for each possible configuration and will have a likelihood 

for the Co atom to be in that electron configuration. The coefficients, 𝑐!!,!",⋯!𝐍 describe how 

much each Slater determinant will contribute to the wavefunction. 

 This method of describing the wavefunction is the Full-Configuration Interaction (FCI). 

When the full-nonrelativistic Schrödinger equation is applied to the FCI wavefunction, the exact 

energy is obtained. However, the significant issue in using FCI to study transition metal 

chemistry is one of scale. As more Slater determinants are needed to describe an atom or 

molecule computation cost increases exponentially with 2𝐌 spin orbitals and 𝐍 electrons.7 

1.4) Hartree-Fock Theory and other Single-Reference Techniques 

Hartree-Fock theory and other single-reference techniques assume wavefunctions 

comprised of a singular Slater determinant. The goal is to build a wavefunction of the most 

optimum spin orbitals (Equation 16). 

 |Φ3⟩ = 	 |𝜓%, 𝜓", 𝜓4, ⋯ , 𝜓#⟩ (16) 

Then using the Hamiltonian defined in Equation 3 and Equation 16 the energy can be obtained. 

Additional, single reference techniques use the HF wavefunction as a reference by replacing 

portions of Equation 16 to approximate the FCI wavefunction. These techniques include Couple 

Cluster theory with singles, doubles, and triples (CCSD(T)) and second order Møller-Plesset 

perturbation theory (MP2).  

These techniques have been utilized with some success to analyze transition metal 

chemistry. Specifically, the CCSD(T) method (or coupled-cluster theory with singles, doubles, 

and perturbative triple clusters) has been hailed as the “gold standard” of computational 

techniques and has even been utilized to challenge experimentally obtained data.8 

Unfortunately, CCSD(T) is not as accurate as some DFT functionals in determining the 
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dissociation energy of transition metal hydrides which was demonstrated by Moltved and Kepp.9 

Additionally, several studies have determined that CCSD(T) is not an effective singular 

benchmark when transition metals are involved.9–11 

1.5) Density Functional Theory 

Another technique utilized to study transition metal chemistry is Density Functional 

Theory (DFT). This technique uses the electron density 𝜌(𝑟) to describe an 𝐍 electron system 

𝜓(𝑥%, 𝑥", ⋯ , 𝑥𝐍) rather than an expansion in terms of Slater determinants. This reduces the 

computational scaling of solving for the energy to wavefunction methods. Generally, the energy 

can be obtained via functionals of the kinetic energy (𝑇), the nuclear-electron potential energy 

(𝑉56), and the electron-electron repulsion energy (𝑉55).  

 DFT techniques have been utilized to study transition metal complexes with varied 

success. However, this method neglects strong electron correlation present in the bonds of 

transition metal complexes. Specifically, conventional DFT does not obtain accurate electronic 

structure properties for small transition metal complexes (such as hydrides, and carbides) due 

to the strong electron correlation present in the transition metal-containing bonds. On the other 

hand, modified DFT has been created to address strongly correlated electrons. Modified DFT 

approaches include Kulik and Marzari that use a correction factor (U) to account for strong 

electron correlation, also called the Hubbard-model approach or DFT+U.4 Another approach, 

was developed by Johnson and Becke 12 that implemented the B13 functional to account for 

strong electron correlation in real space and determine spin-restricted dissociation limits of 

molecular bonds. These approaches can be successful; for example, the B13 functional was 

able to determine the dissociation energy of copper diatomic (Cu2) within <1 kcal/mol ( or 0.01 

eV) of the experimental value.12 However, Aoto and coworkers 10 completed a successful 

benchmark of several transition metal compounds and pinpoint the major disadvantage of all 

DFT approaches - correction factors and functionals can fail in unexpected cases, and DFT 

does not provide a good systematic hierarchy of approximations.10  
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1.6) Multireference Techniques 

Complete Active Space Self-Consistent Field Method 

Multireference techniques were employed in this report to study 3d transition metal hydrides 

and the ionization energies of 3d transition metal hydrides. An initial HF calculation was 

completed as an initial starting point for all calculations followed by a series of multireference 

techniques. The first multireference calculation performed used Complete Active Space Self-

Consistent Field Method (CASSCF). The procedure utilized follows Hohenstein et al.13 but 

accounts for non-redundant rotations using the approach of Chaban et al.14 and active-active 

rotations using a two-step optimization from Keplin et al.13 

 |𝛹7&8879⟩ ='𝐶:|Φ:⟩
:

  (17) 

 𝐸7&8879 = min
7$,{<%}

〈𝛹7&8879P𝐻"P𝛹7&8879〉 (18) 

The wavefunction is defined by Equation 17 for 

CASSCF and is formed from the FCI wavefunction 

described in Section 1.3. Therefore, Φ: will be the 

Slater determinants and 𝐶: will be the 

corresponding coefficients. Then the energies are 

obtained by solving the Hamiltonian in Equation 

18. 

 Unlike the FCI wavefunction, the CASSCF 

wavefunction uses a finite selection of spin orbitals 

in Equation 17. The spin orbitals are divided into 

three blocks – occupied, active, and virtual (Figure 

3). How the orbitals are represented within the 

wavefunction (Equation 2) are described by the 

Figure 3. Representation of the orbital division 
CASSCF method using Scandium Atom with a 
full-valence active space. The virtual, active, 
and core orbitals are encompassed by red, 
green and blue respectively. 
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following descriptions. The virtual orbitals are not included since they are high in energy, and do 

not alter the description of the chemical system. The occupied orbitals are the lowest in energy 

and will always remain doubly occupied within the CASSCF wavefunction. The active orbitals 

are the orbitals that play an active role and will have varying occupations. A benefit of the 

CASSCF method is that all possible electronic states within the active space can be accounted. 

However, the disadvantage is that the selection of the active space plays an important role in 

CASSCF calculations. 

Atomic Valence Active Space 

To generate the appropriate active space with consistent orbital ordering AVAS (atomic 

valence active space) was utilized. Sayfutyarova and coworkers developed AVAS to improve 

the consistency of multireference calculations.15 Using AVAS to generate consistent active 

spaces avoids the vulnerabilities associated with user-chosen active spaces which significantly 

increases the time required to determine a active space and can lead to a poor quality in results. 

In addition, the energy ordering of orbitals can be inconsistent at different bond distances in 

CASSCF calculations leading to inaccurate results due to a calculation to converging on an 

incorrect energy state. 

To complete AVAS, the user provides a specified set of atomic orbitals for the active space. 

For example, calculations completed here for 3d transition metal hydrides use the 4s, 4p, and 

3d atomic orbitals of the 3d transition metal and the 1s atomic orbital of hydrogen atom for the 

construction of the active space. While the active space for the 3d transition metal atoms 

includes the 4s, 4p, and 3d atomic orbitals. The first step for an AVAS calculation is to obtain 

the occupied and virtual molecular orbitals by completing a HF calculation. The occupied 

molecular orbitals are defined by indices 𝑖 and 𝑗, while virtual molecular orbitals by 𝑎 and 𝑏. 

Next, the user specified target atomic orbitals are defined via the MINAO16 basis set to form a 

matrix of the targeted atomic orbitals, 𝐀. Then the overlap matrices between the occupied 
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orbitals and span(𝐀) (Equation 19), as well as between the virtual orbitals and span(𝐀) 

(Equation 20) are formed. 

 𝑆!( = 〈𝑖P𝑃f>?P𝑗〉 (19) 

 �̅�@A = 〈𝑎P𝑃f>?P𝑏〉 (20) 

the projector matrix is defined as,  

 𝑃f>? ='⟨𝜇|𝑝⟩(𝐀+%)⟨𝑞|𝑣⟩
B.

  

The projector matrix within Equations 19 and 20 contains the user specified target atomic 

orbitals. Next, the overlap matrices (Equations 19 and 20) are diagonalized to yield to the 

molecular orbitals that are also within the user specified atomic orbitals. The eigenvectors 

ascertained from the diagonalization of Equations 19 and 20 represent the molecular orbitals to 

build the active space for the occupied and virtual spaces respectively. Thus, forming the active 

space with this technique ensures that the chosen orbitals for multireference methods are 

consistent in ordering and within the user specified target atomic orbitals. Furthermore, to 

ensure high quality active space selection, AVAS was performed prior to every CASSCF 

calculation completed in this report.  
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Perturbative Multireference Driven Similarity Renormalization Group  

 

The computational method of analysis in this study is multireference driven similarity 

renormalization group (or MRDSRG). MRDSRG is different than other multireference 

techniques since it encapsulates the weak electron correlation with a flow parameter (s) within 

the Hamiltonian and strong electron correlation using multiple Slater determinants. However, 

most multireference techniques only capture strong electron correlation making MRDSRG 

unique (the concept of electron correlation is further explored in Section 1.7.17 An aim of this 

study is to determine the efficacy of the MRDSRG technique in the analysis of 3d transition 

metal hydrides and ionization energies.  

 𝛺:𝛨 → 𝛨5CC = 𝛺+%𝛨𝛺 (21) 

 𝛺 = 𝑒&D(F) = 𝑒HD(F)+HD&(F) (22) 

 J𝛨5CCK# = 𝑅f(𝑠) (23) 

DSRG is built upon a similar foundation to unitary coupled-cluster techniques where a 

continuous similarity transformation of the bare Hamiltonian is completed.18 The transformation 

occurs via a wave operator (𝛺) and follows Equation 21. For DSRG, 𝛺 accounts for weak 

electron correlation and is described by Equation 22. The flow parameter (s) is chosen such that 

𝑠 ∈ [0,∞) and 𝛺 utilizes the unitary coupled-cluster operator 𝑇f(𝑠) − 𝑇fI(𝑠) which can be solved 

as a set of nonlinear equations using the source operator 𝑅"(𝑠) and includes the non-diagonal 

Figure 4. A visual representation of the gradual block diagonalization of the Hamiltonian controlled by the 
flow parameter s. 
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terms N (Equation 23). This approach succeeds where others fail due to the gradual block-

diagonalization of the Hamiltonian controlled by 𝑠.  

Figure 4 showcases how 𝑠 impacts the Hamiltonian. When 𝑠 = 0 the Hamiltonian is not 

diagonalized and has no electron correlation introduced. As 𝑠 is increased a “sweet spot” is 

reached and the Hamiltonian is in the form of a banded structure. At this “sweet spot” the 

interference of energy denominators between degenerate or near degenerate states commonly 

referred to as intruders are removed.17 The consideration of intruders is important since they 

lead to unintentional spikes in the potential energy curve and affect the quality of spectroscopic 

data. Further correlation is accounted for in a correlated wavefunction. As 𝑠 → ∞ the 

Hamiltonian becomes perfectly diagonalized. It could be assumed that picking a large 𝑠 value 

would be beneficial as a diagonalized Hamiltonian would have the energies as the eigenvalues. 

However, when the  𝑠 value is too large intruder states are re-introduced and convergence of 

the DSRG procedure is not possible.  

 
|𝛹3⟩ = ' 𝑐>|𝛷>⟩

J

>$%

 (24) 

 𝐸(𝑠) = x𝛹3P𝛨5CCP𝛹3Q (25) 

The reference wavefunction for MRDSRG is formed from the FCI wavefunction like the 

CASSCF procedure (Equation 24) and is similarly divided into the 3 orbital spaces in Figure 4. 

Then the MRSRG energy is calculated via Equation 25. The 3d transition metal atoms and 

hydrides require a large basis to perform accurate calculations.19 In addition, MRDSRG 

computational cost increases with basis size.17 Thus, MRDSRG with low-order perturbation 

theory (PT2 and PT3) was employed for all calculations to reduce computational costs. The 

process of determining the energy for MRDSRG-PT2 and MRDSRG-PT3 (Equation 26 and 27 
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respectively) is like MRDSRG except an order-order expansion of the wavefunction (Equation 

24), the source operator 𝑅"(𝑠)	(Equation 23), and the Hamiltonian (Equation 25).  

 𝐸(") = x𝛹3PJ𝐻(%) +𝐻y(%), 𝑇f (%)KP𝛹3Q (26) 

 where,  

 𝐻y(%) = 𝐻(%) + [𝐻"(3), 𝐴{(%)] = 𝐻(%) + J𝑅f(%)(𝑠)K#  

 𝐸(4) = x𝛹3PJ𝐻y(%), 𝑇f (")KP𝛹3Q + x𝛹3PJ𝐻y("), 𝑇f (%)KP𝛹3Q (27) 

 and 𝐻y(") is defined as,  

  𝐻y(") = [𝐻"(3), 𝐴{(")] + [𝐻"(%), 𝐴{(%)] +
1
2
}J𝑅f(%)(𝑠)K#	, 𝐴

{(%)~  

 

1.7) Electron Correlation 

The interactions between the electrons causes a significant challenge in studying 

transition metals atoms and molecules computationally. These interactions are called electron 

correlation and can be quantified by the electron correlation energy. A formal definition of the 

electron correlation energy is the difference between the FCI energy or the exact energy and 

the HF energy (Equation 28).  

 𝐸KLMM = 𝐸NOP − 𝐸QN (28) 

Where, 𝐸KLMM is the electron correlation energy, 𝐸NOP is the FCI energy, and the 𝐸QN is the HF 

energy. 

A significant challenge in studying transition 

metal chemistry computationally is the electron 

correlation present. This becomes apparent when 

considering the mean-field approximation cannot 

sufficiently describe transition metals, due to 

strong interactions amount the d-shell electrons. 

The d-shell leads to several low-lying energy 

Figure 5. Potential energy curves for ScH 
generated by Lodi et al. using MRCI. 
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states that are degenerate or near-degenerate, multiple multiplicities for the same molecule, and 

a generally open-shell electronic structure. These qualities lead to higher electron interaction 

and thus, a larger electron correlation energy. We can use scandium hydride (ScH) studied by 

Lodi and coworkers20 which used a multireference method, multi-reference configuration 

interaction (MRCI) to successfully plot potential energy curves for 6 states of ScH; resulting in, a 

total of six low-lying electronic states predicted computationally with 3 – triplet states and 3 – 

singlet states (Figure 5). We can further divide the electron correlation present here and in all 

systems into strong/nondynamical and weak/dynamical correlation.  

Strong/nondynamical correlation arises due to the interaction between energy states that 

are degenerate or near-degenerate and is generally observed when analyzing bond-breaking 

processes, open-shell systems and excited states. In the example of ScH, we can determine 

that the ground state X1Σ+ and the first excited state a3∆ are near-degenerate, reflecting the 

degeneracy of the d orbitals. In this case the ground state is closed-shell but due to the open d-

shell ScH has an open-shell state causing strong electron correlation.  

Nondynamical correlation is not captured in methods that are built on a single determinant 

(such as HF) and a multi-reference method built on multiple determinants (such as MRCI) is 

necessary. This can be shown using a simple two electron system such as dissociation of 

hydrogen gas (H2).7 Examining the bond breaking process of the H2 molecule we can determine 

there will be two possible states as H2 dissociates which are H↑⋯H↓ and H↓⋯H↑ where the 

alpha and beta electrons are flipped between hydrogens (Figure 6). The exact or the FCI energy 

is calculated using a linear combination of the two covalent determinants for the wavefunction. 

However, HF includes ionic contributions which causes the energy to be higher than the exact 

energy and the strong electron correlation to not be accounted for. HF assumes that each 

hydrogen atom has a probability of 50%, 25%, and 25% to have a charge of 0, +1, and -1 

respectively. Thus, the HF wavefunction would be weighted to include two covalent 

configurations (H⋯H) and two ionic contributions (H+⋯H-, H-⋯H+). The ionic contributions 
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should not be included in the HF wavefunction because they are unfavorable due to the 

Coulomb repulsion between the positively and negatively charged hydrogen atoms (Figure 7). 

This example demonstrates why the HF method along with other single reference methods to 

be unable to capture nondynamical correlation due to the inclusion of energetically unfavorable 

ionic contributions. 

 

On the other hand, weak/dynamical electron correlation is generally not captured by 

multireference techniques. Weak electron correlation is caused by short-range Coulomb 

interactions and long-range London dispersion forces. These forces are often seen at the end of 

a potential energy curve. Most multireference techniques do not account for weak electron since 

it generally occurs when there are small contributions of excited determinants in the 

wavefunction.7 Including these effects can be computationally expensive and thus many single-

reference methods such as coupled cluster theory with singles, doubles and triples (CCSD(T)) 

are able to capture weak-electron correlation in a cost-effective manner. With any computational 

technique, the primary difficulty with analyzing transition metals is capturing both forms of 

electron correlation in an effective manner. 

 

 

Figure 6. Covalent contributions in the 
FCI/multi-reference wavefunction for H2 

H⋯H H⋯H 

Figure 7. Covalent and ionic contributions in the HF wavefunction for H2  
H⋯H H⋯H H+⋯H- H-⋯H+
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Chapter 2 Perturbative MRDSRG Calculations 

2.1) Introduction 

 Completed calculations for a selection of 3d transition metal hydrides and the ionization 

energy of every 3d transition metal are presented here. Chapter 1 includes the theory behind 

the multireference methods utilized. As described in the previous chapter the primary difficulty of 

studying transition metals computationally is the weak and strong electron correlation present. 

Furthermore, most computational methods only account for either weak or strong electron 

correlation. 

 Previous analysis for transition metals has utilized a myriad of methods for single 

reference techniques from CCSD(T) by Moltved and Kepp,9 to modified DFT approaches by 

Kulik and Marzari,4 and Johnson and Becke.21 Despite the success in modified DFT 

approaches, they can fail in unexpected cases due to how the approximations to account for 

strong electron correlation are implemented.10 Furthermore, preceding studies that analyzed the 

effectiveness of CCSD(T) in benchmarking transition metal compounds found it was not an 

adequate singular benchmark when transition metals are involved.9–11  

 The utilization of multireference techniques completed by Lodi et al.20 and Aoto et al.10 

were successful in analyzing transition metal complexes. Lodi and coworkers were able to 

successfully plot several potential energy curves for ScH using MRCI. Additionally, Aoto and 

colleagues were able to successfully benchmark 60 transition metal diatomics internally 

contracted multireference CCSD(T) (icMRCCSD(T)).10 Although these techniques have 

effectively been able to ascertain results for transition metal complexes, MRDSRG includes a 

refined consideration of intruders. Thus, the utilization of MRDSRG could provide new insight to 

the treatment of transition metal complexes. 

 However since MRDSRG was developed by our research group17 a systematic study of 

its efficacy in the analysis of transition metals has not been completed. The goal of this analysis 
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is to utilize MRDSRG to benchmark 3d transition metal hydrides and the first ionization 

energies. Presented here are results for the first ionization energy for all 10, 3d transition 

metals; in addition, an analysis of spectroscopic properties for ScH 1Σ+, TiH 4Φ, CrH 4Σ+, CrH 

6Σ+, MnH 5Σ+, MnH 7Σ+, FeH 4Δ, FeH 6Δ, CoH 3Φ, CuH 1Σ+, and ZnH 2Σ+. 

2.2) Computational Methods 

Calculations were completed using open-source quantum computational packages 

Psi422 and Forte. The package Forte was developed by our group and includes the software to 

complete perturbative MRDSRG calculations. Analysis of transition metal hydrides and atoms 

were completed using a nested approach with multiple computational techniques. Initially, 

experimental spectroscopic constants were obtained from databases compiled by Kulik et al.4 

and Aoto et al.10 Utilizing experimental data, the constant ao was calculated using a procedure 

developed by Dunham 23 that utilizes a rotating vibrator model to elucidate energy levels of 

diatomic molecules. The constant ao is derived from a power series expansion of the Morse 

potential around the equilibrium bond distance re (Equation 29). 

 𝑉 = ℎ	𝑐	𝑎!𝜉"(1 + 𝑎#𝜉 + 𝑎"𝜉" + 𝑎$𝜉$ +	⋯ ) (29) 

Where 𝜉 = -+-'
-'

 , h is Planck’s constant, and c is the speed of light. For our purposes, we utilize 

Equation 1 when r = re and 𝜉 = 0 . In addition, ao is the initial value of the power expansion and 

describes the width of the potential energy curve and was calculated via experimental data 

using the classical frequency, 𝜔e	and the constant B5 =
R

ST"U	-	'"	W
	 where m is the reduced mass; 

then, 𝑎X =
Y'"

Z*'
.  

 Using the constant ao, a potential energy curve was complete with points concentrated 

around the width of the potential energy curve as described by Aoto.10 Every calculation was 

completed with at least a triple-zeta basis and employed either an aug-cc-pVnZ or cc-pVnZ 

(where n= T or Q).19 The potential energy curve scan starts with a restricted or restricted open-
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shell Hartree-Fock (RHF or ROHF) calculation in Psi4, followed by a CASSCF calculation and 

then a MRDSRG-PT2 or MRDSRG-PT3 calculation in Forte at the experimental re using AVAS 

(Atomic Valence Active Space) orbitals. A user selected active space of the 4s, 4p, and 3d 

atomic orbitals of the 3d transition metal and the 1s atomic orbital of hydrogen was chosen for 

the construction of the active space. Using the wavefunction of the initial calculation, the 

potential energy curve starts at a value of r=1Å, and proceeds throughout the curve using the 

previous wavefunction of the previous r value. In the center of the potential energy curve, the 

points are spaced closely together and based on the obtained constant of ao.10 Once the 

potential energy curve is obtained spectroscopic constant are ascertained using closely spaced 

points based on ao using the anharmonicity driver within Psi4. The chosen points around ao for 

every analyzed transition metal hydride are described in Table 1. Anharmonicity driver fits the 

given points using a weighted least squares approach which gives points closest to re the 

greatest statistical significance and was published by Bender and coworkers.24 The calculation 

process is described in Figure 8.  

 

Figure 8. Flow chart of computational steps in the analysis of 3d transition metal atoms and hydrides. 
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After obtaining the spectroscopic constants using Psi4 the dissociation energy (De) was found 

by completing identical calculations for each 3d transition metal and an additional ROHF 

calculation for a hydrogen atom. Then ascertained results were applied to Equation 29 using the 

energy at the equilibrium bond distance of the transition metal hydride (𝐸(𝑟5)) obtained via the 

polynomial fit, the energy of the transition metal atom 𝐸(𝑇𝑀), and the energy of the hydrogen 

atom 𝐸(𝐻). 

 𝑇𝑀 −𝐻	 → 	𝑇𝑀	 + 	𝐻 (30) 

 [𝐸(𝑇𝑀) + 𝐸(𝐻)] − 𝐸(𝑟5) (31) 

   

The identical process was completed for 3d transition metal atoms to yield the first 

ionization energies with the chemical process described by Equation 32. In Equation 32, the 

variable 𝑋 and 𝑒 are defined as the transition metal atom of interest and the electron, 

respectively. 

 𝑋 → 𝑋[ + 𝑒 (32) 

A user selected active space of the 4s, 4p, and 3d atomic orbitals of the 3d transition metal were 

chosen for the construction of the active space for the cation and neutral atom. Ionization 

energy was ascertained by completing a calculation using the process dictated in Figure 8 for 

the energy of cation (𝐸(𝑋[)) and neutral atom (𝐸(𝑋)). Then Equation 33 was applied to obtain 

the first ionization energy (IE). 

 𝐼𝐸	 = 	𝐸(𝑋[) − 𝐸(𝑋) (33) 
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ScH 1.7000, 1.7167, 1.7402, 1.7519, 1.7637, 1.7754, 1.7871, 1.7989, 1.8000, 
1.8106, 1.8341, 1.8634, 1.9000, 1.9221  

1Σ+ 

TiH 1.7000, 1.7180, 1.7416, 1.7534, 1.7652, 1.7770, 1.7888, 1.8000, 1.8006, 
1.8124, 1.8360, 1.8655, 1.9000, 1.924 

4Φ 

CrH 1.6000, 1.6003, 1.6223, 1.6334, 1.6444, 1.6554, 1.6664, 1.6774, 1.6885, 
1.7000, 1.7105, 1.7381, 1.7932 

4Σ+ 

CrH 1.5000, 1.6000, 1.6003, 1.6223, 1.6334, 1.6444, 1.6554, 1.6664, 1.6774, 
1.6885, 1.7105, 1.7381, 1.7932, 1.8000, 1.9000 

6Σ+ 

MnH 1.5000, 1.6000, 1.6003, 1.6223, 1.6334, 1.6444, 1.6554, 1.6664, 1.6774, 
1.6885, 1.7105, 1.7381, 1.7932 

5Σ+ 

MnH 1.6000, 1.6003, 1.6223, 1.6334, 1.6444, 1.6554, 1.6664, 1.6774, 1.6885, 
1.7000, 1.7105, 1.7381, 1.7932, 1.8000, 1.9000 

7Σ+ 

FeH 1.3000, 1.4000, 1.5000, 1.5425, 1.5679, 1.5806, 1.5933, 1.6000, 1.6060, 
1.6187, 1.6314, 1.6441, 1.6695, 1.7000, 1.7013, 1.7648, 1.8000, 1.9000 

4Δ 

FeH 1.5425, 1.5679, 1.5806, 1.5933, 1.6000, 1.6060, 1.6187, 1.6314, 1.6441, 
1.6695, 1.7000, 1.7013, 1.7648, 1.8000, 1.9000 

6Δ 

CoH 1.3000, 1.4000, 1.4688, 1.4943, 1.5000, 1.5071, 1.5199, 1.5327, 1.5455, 
1.5583, 1.5711, 1.5966, 1.6000, 1.6286, 1.6925, 1.7000 

3Φ 

CuH 1.3000, 1.4000, 1.4033, 1.4270, 1.4389, 1.4507, 1.4626, 1.4745, 1.4863, 
1.4982, 1.5000, 1.5219, 1.5515, 1.6000, 1.6107 

1Σ+ 

ZnH 1.5000, 1.5456, 1.5647, 1.5743, 1.5839, 1.5935, 1.6000, 1.6031, 1.6127, 
1.6223, 1.6415, 1.6656, 1.7000, 1.7136 

2Σ+ 

   

Table 1. The bond distances in Å used to determine the spectroscopic constants for the 3d transition 
metal hydrides. 
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2.3)  First Ionization Energies  

 The ionization energy of the 3d transition metals were calculated using MRDSRG-PT2 

and MRDSRG-PT3 (Table 2 and Figure 9). Calculations were completed with larger augmented 

basis sets to accurately account for the valence electron correlation.19 Thus, perturbative 

MRDSRG calculations were performed with an aug-cc-pVnZ basis set where n=T or Q.  A flow 

parameter (𝑠) of 0.5 Eh
-2 was utilized to compule all ionization energies. Perturbative MRDSRG 

calculations were compared to experimental values reported in the NIST Chemical Webbook,25 

and calculated CCSD and CCSD(T) results by Balabanov and coworker.26 

 

Figure 9 demonstrates the performance of MRDSRG-PT2 and MRDSRG-PT3 for 

determining first ionization energies. Overall, calculations performed at the MRDSRG-PT3/aug-

cc-pVQZ level of theory yielded results closer to experiment. Furthermore, calculated ionization 

energy for Zn with perturbative MRDSRG yielded results closest to the experimental value 

compared to other transition metals. The closed-shell nature of neutral Zn reduces the 

Figure 9. A visual representation of Table 2. The first ionization energies for calculations 
performed at the MRDSRG-PTx/aug-cc-pVnZ where x=2 or 3 and n=T or Q at s=0.5 Eh-2 are 
included. Additionally, CCSD and CCSD(T) calculations reported by Balabanov et al. and 
experimental results are presented. 
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possibility of inaccurate results for computational analysis. In addition, CCSD and CCSD(T) 

results completed by Balabanov and coworker26 were similar to results obtained by perturbative 

MRDSRG for Zn.  

 

 

MRDSRG-PT2 MRDSRG-PT3 CCSD/CBSa CCSD(T)/ CBSa 
Experimental 

Results b 
aug-cc-

pVTZ 

aug-cc-

pVQZ 

aug-cc-

pVTZ 

aug-cc-

pVQZ 

aug-cc-pVnZ-DK, 

n=T, Q, 5  

aug-cc-pVnZ-DK, 

n=T, Q, 5  

Sc 8.03 6.70 6.91 6.80 6.38 6.41 6.56144 

Ti 7.61 8.74 8.07 8.55 6.65 6.70 6.8282 

V 7.81 7.83 7.74 7.73 6.72 6.78 6.746 

Cr 8.73 8.81 7.62 7.69 6.57 6.61 6.76664 

Mn 8.12 7.93 8.35 8.35 7.28 7.36 7.43402 

Fe 7.30 7.13 5.47 5.66 7.74 7.85 7.9024 

Co 12.50 12.22 6.74 6.84 7.99 7.98 7.881 

Ni 12.08 12.14 7.38 7.47 7.71 7.68 7.6398 

Cu 9.72 10.03 6.68 6.88 7.55 7.71 7.72638 

Zn 8.67 9.45 9.38 9.35 9.25 9.39 9.39405 

a: reference 26  
b: reference 25 
 
 Perturbative MRDSRG calculations varied more from experimental as the atom exhibited 

less closed-shell behavior. For example, neutral Sc has only a single electron in the 3d orbital 

leading to fewer Slater determinants needed in the active space. Thus, perturbative MRDSRG 

obtains results close to experimental results, with MRDSRG-PT3 calculations being the closest 

to experiment for Sc.  

However, in the middle of the periodic table results from perturbative MRDSRG yields 

results farther from the experimental value. Significant discrepancies between the experimental 

Table 2. Compiled ionization energies in eV for 3d transition metals. Calculations were performed using an aug-
cc-pVnZ basis set where n=T or Q with MRDSRG-PT2 and MRDSRG-PT3 using s=0.5 Eh-2. Generated data is 
compared to CCSD and CCSD(T) in the complete basis set limit (CBS) and experimental results. 
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value and perturbative MRDSRG is observed for Fe. The most difficult 3d transition metals to 

study with theoretical techniques are Fe, Co, and Ni.4 The challenge of studying these transition 

metal atoms or complexes is due to the electron correlation present in Fe, Co and Ni. The 

number of possible electron configurations and thus Slater determinants in the wavefunction is 

greater for these atoms that exhibit a higher degree of open-shell character. When examining 

the 3d orbital of the Co atom in Figures 1 and 2 a total of 10 determinants where needed to 

describe a single spin-multiplicity of Co while neglecting spin. The sheer number of 

determinants and the significant open-shell behavior causes strong electron correlation to arise 

leading to inaccuracies in the computational method. Despite the significant amount of electron 

correlation predicted for Ni, MRDSRG-PT3 ascertained close results to experiment. Ni has 8 

electrons within the 3d orbital and therefore would have more electron configuration than a 

transition metal like Zn with a filled 3d orbital and 4s orbital, or Mn with a half-filled 3d orbital and 

filled 4s orbital. The results yielded by MRDSRG-PT3 for Sc, Ni and Zn demonstrate that this 

method can be utilized to obtain ionization energies of 3d transition metals. 

The quality of MRDSRG-PT3 calculations can be improved in several ways. The utilized 

s-value of 0.5 Eh
-2 could have been an inappropriate choice for the calculations performed. 

Calculations were not performed at higher and lower flow parameters and thus, its impact on 

results could not be elucidated. To determine an appropriate s value, a systematic analysis of 

the impact of s on the ionization energy for each transition metal would be desirable. 

Additionally, CCSD and CCSD(T) data generated by Balabanov and colleague26 reported 

results for the complete basis set (CBS) limit. Overall, in the perturbative MRDSRG calculations 

the energy decreased between the TZ and QZ basis set; this decrease in energy generally 

corresponding to better agreement between experiment and theory. Thus, computing the CBS 

and choosing the appropriate s value could lead to higher quality MRDSRG-PT3 results. 

 

 



 25 

2.4)  Analysis of the Flow Parameter  

 In this section we examine how to choose the value of s in perturbative MRDSRG 

calculations. This can be determined by analyzing trends in obtained spectroscopic constants. 

The best choice of s would ensure that enough electron correlation is introduced, spectroscopic 

constants do not exhibit major fluctuations with small changes in s, intruder states are 

accounted for, and calculations converge. If the value of s is too large calculations cannot 

converge and intruder states are reintroduced. On the other hand, if the value of s is too small 

the amount of electron correlation introduced is too small to accurately encapsulate the behavior 

for the system of interest.   

 

 

To determine the best s value to be chosen for perturbative MRDSRG calculations for 3d 

transition metal hydrides an analysis of ScH 1Σ+ was performed for s ∈	[0, 9] Eh
-2. The following 

spectroscopic constants - dissociation energy (De), and equilibrium bond distance (re) were 

evaluated as a function of s at a MRDSRG-PTx/cc-pVnZ level of theory (where x=2 or 3, and 

n=T or Q).  The value s where the spectroscopic constants varied the least was utilized for 

s  
(Eh

-2) 
MRDSRG-PT2 MRDSRG-PT3 

cc-pVTZ cc-pVQZ cc-pVTZ cc-pVQZ 
0 2.05 2.06 2.06 2.06 

0.25 2.17 2.14 2.33 2.31 
0.5 2.15 2.13 2.33 2.31 
0.8 2.15 2.12 2.33 2.31 
1 2.14 2.11 2.32 2.31 

1.25 2.14 2.11 2.32 2.31 
1.5 2.13 2.11 2.31 2.31 
1.75 2.13 2.11 2.31 2.31 

2 2.14 2.10 2.31 2.30 
3 2.14 2.10 2.31 2.30 
5 2.15 2.12 2.31 2.30 
7 2.16 2.13 2.31 2.30 
9 2.17 2.14 2.32 2.30 

Figure 10. The dissociation energy in eV for plotted 
as a function of s using the MRDSRG-PT2 or 
MRDSRG-PT3 method with the cc-pVTZ or cc-
pVQZ basis set. The experimental value is from 
reference 4. 

Table 3. The dissociation energy in eV for different 
values of s using the MRDSRG-PT2 or MRDSRG-
PT3 method with the cc-pVTZ or cc-pVQZ basis set. 
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calculations of ScH 1Σ+, TiH 4Φ, CrH 4Σ+, CrH 6Σ+, MnH 5Σ+, MnH 7Σ+, FeH 4Δ, FeH 6Δ, CoH 3Φ, 

CuH 1Σ+, and ZnH 2Σ+. 

 

 

 

In Figure 10 the dissociation energy as a function of s is shown and the corresponding 

values are tabulated in Table 3. The dissociation energy varied the least for when s ∊ [1.5, 3.0] 

Eh
-2 and s ∊ [2.0, 3.5] Eh

-2 for MRDSRG-PT2 and MRDSRG-PT3 respectively. At s=0 the 

Hamiltonian is not block-diagonalized and no electron correlation is introduced, therefore the 

dissociation energy is equivalent to the CASSCF energy. As the value of s is increased, electron 

correlation is introduced. Initially, the dissociation energy increases, which is expected since low 

values of s do not fully capture the electron correlation present in the system. Then for MRDRG-

PT2 a very clear plateau is reached between s ∊ [1.5, 3.0] Eh
-2 for the cc-pVTZ and cc-pVQZ 

basis sets. Additionally, a less pronounced plateau is observed for MRDSRG-PT3 for s ∊ [2.0, 

3.5] Eh
-2. These plateaus are considered the range that the predicted “sweet spot” is since, the 

dissociation energy does not remarkably vary. Furthermore, the plateaus are followed by an 

s  
(Eh

-2) 
MRDSRG-PT2 MRDSRG-PT3 

cc-pVTZ cc-pVQZ cc-pVTZ cc-pVQZ 
0 1.802 1.803 1.802 1.803 

0.25 1.772 1.764 1.765 1.757 
0.5 1.774 1.766 1.766 1.758 
0.8 1.775 1.767 1.766 1.758 
1 1.776 1.768 1.766 1.758 

1.25 1.777 1.769 1.766 1.758 
1.5 1.778 1.769 1.766 1.758 
1.75 1.778 1.770 1.766 1.759 

2 1.778 1.770 1.766 1.759 
3 1.780 1.771 1.766 1.759 
5 1.782 1.771 1.767 1.759 
7 1.784 1.772 1.767 1.760 
9 1.785 1.772 1.768 1.760 

Table 4. The equilibrium bond distance in Å. for 
different values of s using the MRDSRG-PT2 or 
MRDSRG-PT3 method with the cc-pVTZ or cc-
pVQZ basis set. 
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Figure 11. The equilibrium bond distance in Å plotted 
as a function of s using the MRDSRG-PT2 or 
MRDSRG-PT3 method with the cc-pVTZ or cc-pVQZ 
basis set. The experimental value is from reference 4. 
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increase in dissociation energy. MRDSRG-PT2 showcased the most significant increase in 

dissociation energy after the plateau is reached. MRDSRG-PT3 demonstrated a small increase 

in dissociation energy that was more prevalent for the cc-pVTZ basis. The increase after the 

predicted “sweet spot” is reached suggests that intruder states are reintroduced as the value of 

s increases past the “sweet spot.” 

An analysis of the equilibrium bond distance and the s value was also conducted (Figure 

11 and Table 4). However, the observed relationship between the equilibrium bond distance and 

the s-value was less significant. The CASSCF equilibrium bond distance at s=0 Eh
-2 is 

significantly greater than the experimental value. Then, as electron correlation is introduced, the 

equilibrium bond distance significantly decreases and is closer to the experimental value for the 

MRDSRG-PT2 data. Overall, the equilibrium bond distance stays relatively constant between s 

∊ [0.25, 9.0] Eh
-2. This result suggests that the equilibrium bond distance is not as sensitive to s 

as the dissociation energy. 

Therefore, the “sweet spot” determined for the dissociation energy was considered for 

further transition metal hydride calculations. These preliminary calculations ascertained results 

closer to experiment for the MRDSRG-PT2 than MRDSRG-PT3. Nonetheless, the dissociation 

energy and the equilibrium bond distance varied the least as a function of s for the MRDSRG-

PT3 theory compared to the MRDSRG-PT2 theory. Additionally, calculations in this section 

were completed using a non-augmented basis set. Calculations completed in Section 2.3 

determined that MRDSRG-PT3 with an augmented basis set ascertained values for the first 

ionization energies of 3d transition metals closer to experiment than MRDSRG-PT2. Thus, the 

evaluation of spectroscopic constants for ScH 1Σ+, TiH 4Φ, CrH 4Σ+, CrH 6Σ+, MnH 5Σ+, MnH 7Σ+, 

FeH 4Δ, FeH 6Δ, CoH 3Φ, CuH 1Σ+, and ZnH 2Σ+ were completed at a value of s=2.5 Eh
-2 at the 

MRDSRG-PT3/aug-cc-pVnZ (n=T, Q) level of theory. 
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2.5) Analysis of 3d Transition Metal Hydrides 

 This section reports an analysis of 3d transition metal hydrides. Based on the results 

presented in Section 2.4, the calculations of 3d transition metal hydrides were completed 

utilizing MRDSRG-PT3 with an aug-cc-pVTZ or aug-cc-pVQZ basis set at a value of s=2.5 Eh
-2. 

The dissociation energy (De), equilibrium bond distance (re), and equilibrium frequency (𝜔e) were 

computed for ScH 1Σ+, TiH 4Φ, MnH 5Σ+, MnH 7Σ+, and ZnH 2Σ+. The equilibrium bond lengths 

for ScH 1Σ+, TiH 4Φ, CrH 4Σ+, CrH 6Σ+, MnH 5Σ+, MnH 7Σ+, FeH 4Δ, FeH 6Δ, CoH 3Φ, CuH 1Σ+, 

and ZnH 2Σ+ and the energy splitting observed between MnH 5Σ+ and MnH 7Σ+ were also 

determine. 

 Table 5 shows the obtained spectroscopic properties for ScH 1Σ+, TiH 4Φ, MnH 5Σ+, MnH 

7Σ+, and ZnH 2Σ+. The larger aug-cc-pVQZ basis set yielded results closer to experimental 

values than the aug-cc-pVTZ, basis set yielding similar results to Balabanov and coworker’s 

basis set analysis of 3d transition metals.19 Furthermore, MRDSRG-PT3 yields results close to 

experiment for equilibrium bond distances, in accordance with other techniques reported in 

Table 5. Compared to icMRCCSD(T) calculation performed by Aoto et al.,10 dissociation 

energies and equilibrium bond distances are comparable to this higher level of theory. For MnH 

7Σ+ the dissociation energy is overestimated for MRDSRG-PT3/aug-cc-pVQZ (1.72 eV), GGA 

(1.75 eV),4 CCSD(T) (1.65 eV)10 and icMRCCSD(T) (1.71 eV)10 compared to the experiment 

(1.35 eV). MnH 5Σ+ and MnH 7Σ+ are extensively prone to sensitivities in electron correlation due 

to the significant number of possible electron configurations. The DFT calculations by Kulik and 

colleagues4 completed with the GGA  functional that does not account for strong electron 

correlation and significantly overestimates the dissociation energy compared to GGA+U (1.38 

eV). However, the overestimation of the multireference techniques (including MRDSRG-PT3 

and excluding MRCI) indicates that the weak electron correlation is not completely accounted 

for by these techniques for MnH 7Σ+. Additionally, complete potential energy curves were 

obtained for ScH 1Σ+, TiH 4Φ, and ZnH 2Σ+ indicating that intruder states were not introduced in 
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the performed MRDSRG-PT3 calculations (Figure 12, Figure 13 and Figure 14). Potential 

energy curves also suggest that the selection of active space via AVAS was successful. Overall, 

MRDSRG-PT3 was able to yield data close to experiment for the dissociation energies and the 

equilibrium bond distances for the analyzed transition metal hydrides. 
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a: reference 4 
b: reference 10  
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Additional analysis of equilibrium bond distances for an extended list of transition metal 

hydrides was completed for ScH 1Σ+, TiH 4Φ, CrH 4Σ+, CrH 6Σ+, MnH 5Σ+, MnH 7Σ+, FeH 4Δ, FeH 

6Δ, CoH 3Φ, CuH 1Σ+, and ZnH 2Σ+ (Table 6). In general, MRDSRG-PT3 predicts equilibrium 

bond distances close to experimental values and the additional computation techniques 

evaluated in Table 6. The mid-row transition metal hydrides or CrH, MnH, and FeH are 

considered the most challenging to study with theory.4 They are also the transition metal 

hydrides for which the equilibrium bond distance was calculated for two states. Experimentally, 

CrH 6Σ+, MnH 7Σ+, and FeH 4Δ are the predicted ground states. Thus, for MRDSRG-PT3 to 

match experiment the obtained equilibrium bond distances for the predicted ground states 

should be less than the equilibrium bond distance for the excited states. In Table 6, the 

equilibrium bond length for FeH 4Δ is approximately 0.2 Å less than FeH 6Δ for the MRDSGR-

PT3/aug-cc-pVQZ level of theory which is consistent with experiment. For CrH, MRDSRG-

PT3/aug-cc-pVQZ overestimates the equilibrium bond distance for the sextet state, however, 

obtained results with the aug-cc-pVTZ basis set were consistent with experimental predictions. 

The most interesting case of energy splitting for the 3d transition metal hydrides is MnH. 

Although, the experimental equilibrium bond length is longer for the septet state compared to 

the quintet; experimental results predict MnH 7Σ+ to be the ground state. In Table 6, ascertained 

Figure 12. ScH 1Σ+ potential 
energy curve generated via 
MRDSRG-PT3. 

Figure 13. TiH 4Φ potential energy 
curve generated via MRDSRG-
PT3. 

Figure 14. ZnH 2Σ+potential energy 
curve generated via MRDSRG-
PT3. 
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data for MnH for MRDSRG-PT3 provides good agreement with experimental data thus, the 

energy splitting was further examined. 

 
a: reference 4 
b: reference 10 
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Lastly, we examine the energy splitting between the MnH 5Σ+ and MnH 7Σ+ states via 

MRDSRG-PT3 (Table 7). For both augmented basis sets the energy splitting yielded good 

agreement with experiment (0.21 eV). Furthermore, MRDSRG-PT3 performed similarly to the 

GGA+U and more closely matched experiment for MRCI calculation performed by Kulik et al.4 In 

addition, potential energy curves were obtained for MnH 5Σ+ and MnH 7Σ+ using MRDSRG-PT3 

with a aug-cc-pVQZ basis set (Figure15). Figure 15 shows that MnH 7Σ+ is the lowest energy 

state across the entire potential energy curve. 

 

 

 

 

 

 

 

 
a: reference 4 

 

Figure 15. Potential energy curves for MnH 7Σ+ and MnH 
5Σ+ at the MRDSRG-PT3/aug-cc-pVQZ level of theory. 
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Chapter 3 Conclusion 

 The study of transition metal chemistry has broad-ranging societal chemical relevance 

including biological processes such as oxygen-transport by iron-complexes, providing catalysts 

for industrial reactions, and materials for advancing solar cell development. However, 

computational methods currently presented in the literature have shortcomings in describing 

transition metal complexes. This analysis utilized perturbative MRDSRG to analyze 3d transition 

metal hydrides and calculate the ionization energies for 3d transition metals. Data presented in 

this report demonstrate that MRDSRG-PT3 can be utilized as an effective tool to understand 3d 

transition metal chemistry. The MRDSRG-PT3/aug-cc-pVQZ level of theory was able to predict 

equilibrium bond distances that agree with experimental values for a range of 3d transition metal 

hydrides, correctly predict the ground state for the complicated case of MnH 5Σ+ and MnH 7Σ+, 

generate potential energy curves for ScH 1Σ+, TiH 4Φ, and ZnH 2Σ+, and obtain first ionization 

energies for 3d Sc, Ni, and Zn. This report presents an initial starting point that can be utilized 

study the chemistry of 3d transition metals with the MRDSRG-PT3 method.  
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