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Abstract

Modular and Lexical Matchings in the Middle Levels Graph
By Kevin M. Wingfield

Classes of explicitly defined matchings in the middle levels bipartite graph
induced by the Boolean lattice are investigated. The original motivation for
an investigation into the Hamiltonicity of the middle levels bipartite graph
came from the conjecture of Havel. Here, we collect some known results
and present some new observations that indicate that, when disjoint, the
2-factors obtained from taking the union of pairs of these matchings always
contain short cycles.
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Chapter 1

Introduction

In the study of graphs, one widely investigated area is the search for

Hamiltonian cycles in graphs. A Hamiltonian cycle is a simple cycle that

contains each vertex of the graph. Beginning in the 1950’s, progress was

made on the problem of determining sufficient conditions for a graph to

possess a Hamiltonian cycle. To this end, Dirac [7] and Ore [19] have two

very well known results. These are archetypical density results, establishing

that if a graph has enough edges it will be Hamiltonian. Dirac and Ore both

ensure the existence of a sufficient number of edges by specifying a condition

on the minimum degree on vertices and a condition on pairs of nonadjacent

vertices, respectively.

The earliest investigations of Hamilton, the namesake of the Hamiltonian

cycle, into the presence of such cycles was based upon a game. Given the solid
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dodecahedron and considering each of its 20 vertices as a city of interest, the

objective was to find a route that visited each city exactly once and ended at

its starting point. A route with this property is an example of a Hamiltonian

cycle in the graph whose vertices are given by the cities and edges, by those

of the solid. Although this graph is quite sparse, it is highly symmetric, in

the sense that its automorphism group is transitive on the vertices.

In 1970, Lovasz [18] asked if every connected vertex-transitive graph has

a Hamiltonian path, noting that there are few examples of such graphs that

are not Hamiltonian. In this thesis, we are concerned with a specific family

of transitive graphs, defined as follows (see Section 1.1 for a more precise

definition). Given a positive integer k, Bk denotes the graph whose vertex

set is the collection of all k- and (k+1)-element subsets of a (2k+1)-element

set, with edges defined by containment. This is the bipartite graph of the

middle two levels of the Boolean lattice of all subsets of the (2k+ 1)-element

set, ordered by containment. The question, now attributed to Havel [12], is

whether Bk contains a Hamiltonian cycle for all k.

There has been progress on at least two fronts. First, computational

work has established that Bk is Hamiltonian for all k ≤ 17 [21]. Second,

after results established that there are cycles with length a positive fraction
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of the order of Bk, Johnson [14] has shown that there is a cycle of length

(1− o(1))|V (Bk)|.

Several researchers have approached the problem, with uniformly nega-

tive results, as follows. A Hamiltonian cycle in a graph is a special case

of a 2-factor, that is, a spanning subgraph with the property that all of its

vertices have degree 2. Since Bk is a graph with an even number of vertices,

each 2-factor in Bk is the union of a pair of edge disjoint perfect matchings.

Since any Hamiltonian cycle in Bk is the union of 2 perfect matchings, then

one strategy for finding a Hamiltonian cycle in Bk was to assemble a large

collection of explicitly defined perfect matchings and consider the union of

two disjoint matchings. Beginning with Duffus, Sands and Woodrow [10] in

1988, the question of whether we can explicitly describe interesting classes

of perfect matchings in Bk, decide when they are disjoint, and determine if a

Hamiltonian cycle could be built from the union of a pair of these was inves-

tigated. They began with the well-known class of lexicographic matchings

and characterized those pairs which are disjoint. For each such pair, they

showed that the 2-factor obtained from the union always contains “short”

cycles.

We shall see two classes of matchings in Bk, the modular matchings, con-
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sidered in Chapter 2, and the lexical matchings, studied in Chapter 3. In

each case, explicit descriptions are given and it is shown that, pairwise, the

modular matchings can not give a Hamiltonian cycle. This holds for certain

pairs of lexical matchings and we suspect all 2-factors include short cycles.

In Chapter 4, a set of open problems regarding these matchings and their

interactions are collected.

1.1 Definitions and notation

For this thesis, a graph is a finite, undirected, loopless graph without multiple

edges. We shall use [n] to denote the set {1, ..., n} and [i, j] to denote the set

{i, i + 1, i + 2, ..., j}. The latter is to be understood modulo n, that is, for

n = 5, i = 4, j = 2, [4, 2] = {4, 5, 1, 2}.

Let P(n) denote the set of all subsets of [n], the power set, partially

ordered by set containment. For j = 0, 1, . . . , n, let Lj denote the collection

of all j-element subsets of [n]. This collection of subsets makes up the jth

level of the lattice P(n). For n = 2k + 1, let Bk denote the bipartite graph

defined on the vertex set Lk∪Lk+1 with A adjacent to B if A ⊂ B or B ⊂ A.

We adopted this notation from [9]. Given A ⊆ [2k+ 1] with |A| = k, we take
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A = 〈a1, a2, ..., ak〉 to mean a1 < a2 < ... < ak and denote its complement in

[2k + 1] by Ā. We let Ā = 〈ā1, ā2, . . . , āk+1〉 mean ā1 > ā2 > ... > āk+1. Let∑
A denote the sum of the elements of A.

A Hamiltonian cycle is a simple cycle that contains every vertex of a graph.

A perfect matching or a 1-factor in Bk is a collection M of edges such that

each vertex of Bk is incident to exactly one edge of M . A 1-factorization of

Bk is a collection of k+1 disjoint perfect matchings of Bk. For our purposes,

it will be convenient to consider a perfect matching to be an injection

m : Lk → Lk+1 such that A is adjacent to m(A), for all A ∈ Lk. At times,

we will also regard the set M = {{A,m(A)} | A ∈ Lk} as the matching. An

r-factor in Bk is an r-regular spanning subgraph – thus, its edge set is the

union of r pairwise disjoint 1-factors.

Given a graph G and u, v ∈ V (G), dG(u, v) is the distance from u to v in

G, that is, the minimum number of edges in a path with endpoints u and v.

We call dG the distance function on G. For a subgraph H of G, dH is the

distance function restricted to the edges of H.
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1.2 Automorphisms in Bk

For each n, let Sn denote the symmetric group on [n]. Then each φ ∈ S2k+1

induces a bijection on Lk and on Lk+1 as follows. For any A ∈ P(2k + 1),

let φ̂(A) = {φ(a)|a ∈ A}. Note that for all A ∈ Lk, B ∈ Lk+1, A ⊂ B if and

only if φ̂(A) ⊂ φ̂(B). Thus φ̂ restricted to Lk ∪Lk+1 gives an automorphism

of the bipartite graph Bk. For each automorphism α of Bk, there is some

φ ∈ S2k+1 with α = φ̂. In [8], Duffus, Hanlon, and Roth provide a proof of

this fact.

Note that for all 1-factors M of Bk and for all φ̂ ∈ Aut(Bk) as defined

above, φ̂[M ] = {{φ̂(A), φ̂(B)}|{A,B} ∈M} is a 1-factor. Also, given disjoint

matchings M and M ′ of Bk, M ∪M ′ and φ̂[M ∪M ′] are 2-factors in Bk that

each have the same cycle structure. By cycle structure, we mean the sequence

(ct|t ∈ N) where ct is the number of cycles of length t.



7

Chapter 2

Modular Matchings

The first matchings we will consider are the modular matchings in Bk.

It is not clear when modular matchings were first defined. In [9], they are

tied to lattice path combinatorics, and [9] is the first paper in which modular

matchings are systematically studied in conjunction with the middle levels

conjecture. In the sections that follow, we discuss some noteworthy results

regarding modular matchings in Bk, including the result that the union of

any two modular matchings is not a Hamiltonian cycle.

2.1 Definitions and preliminaries

For i ∈ [k + 1], let mi : Lk → Lk+1 be defined as follows: for A =

〈a1, a2, ..., ak〉 ∈ Lk, let
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mi(A) = A ∪ {āy}, where y ≡ (i+
∑

A)(mod k + 1). (2.1)

Thus mi(A) is the set obtained by adding the yth largest element of Ā to

A, where 1 ≤ y ≤ k + 1. Let Mi be the set of edges of Bk of the form

{A,mi(A)}. The following lemma from [9] allows us to refer to mi or Mi as

the ith modular matching.

Lemma 2.1. [9] For i ∈ [k+1], Mi is a matching in Bk and {M1,M2, . . . ,Mk+1}

is a 1-factorization of Bk.

Proof. To see that mi is a matching, we find a rule bi : Lk+1 → Lk such that

bi ◦mi is the identity map on Lk. Define bi by bi(B) = B − {bx}, where

x ≡ (i+
∑

B)(mod k + 1). (2.2)

We see that bi removes the xth smallest element of B. Suppose that A ∈ Lk

with the notation that precedes (2.1). Then mi(A) = A ∪ {āy} and the

following sequence of statements holds:

there are (2k + 1)− āy elements of [2k + 1] larger than āy;

y − 1 of these elements are in Ā;

(2k + 1)− āy − (y − 1) are in A;
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k − ((2k + 2)− (āy + y)) elements of A are less than āy.

Computing modulo k + 1, the following holds:

k − ((2k + 2)− (āy + y)) ≡ k + āy + y (mod k + 1)

≡ k + āy + (i+
∑

A) (mod k + 1)

≡ −1 + i+
∑

(A ∪ {āy}) (mod k + 1).

But this means that āy is the i+
∑

(A∪ āy) (mod k+ 1) smallest element of

(A ∪ {āy}). It follows that bi(mi(A)) = bi(A ∪ {āy}) = A.

It is clear from (2.1) that for distinct indices i, j in [k + 1] and for all

A ∈ Lk, mi(A) 6= mj(A). Since Bk is a (k + 1)-regular graph, it follows that

{M1,M2, . . . ,Mk+1} is a 1-factorization of Bk.

For instance, with k = 7, i = 3 and A = {1, 2, 4, 5, 8, 9, 11}, mi(A) =

A∪ {13}. Since y ≡ (3 +
∑
A) ≡ 3 mod 8 and 13 is the 3rd largest element

of Ā, then mi adds 13 to the set A. And with B = A∪{13}, bi(B) = B−{13}.

Since x ≡ (3 +
∑
B) ≡ 8 mod 8 and 13 is the 8th smallest element of B,

then bi removes 13 from the set B.

Let us see that the modular matchings are invariant under rotation or

shift. We let σ = (1 2 . . . 2k + 1) ∈ Sn and refer to σ as a rotation or shift

and say that σj is a rotation or shift by j, j = 1, 2, . . . , 2k + 1. Also, for any

τ ∈ S2n+1, and for any A ⊆ [2k + 1], let τ [A] = {τ(a) | a ∈ A}.
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Lemma 2.2. [9] For i = 1, 2, . . . , k + 1 and for all A ∈ Lk, mi(σ[A]) =

σ[mi(A)].

Proof. Let A = 〈a1, a2, . . . , ak〉, set y ≡ i +
∑
A (mod k + 1), so mi(A) =

A∪{āy}. First suppose that 2k+1 /∈ A. Then
∑
σ[A] ≡

∑
A−1 (mod k+1),

so mi adds the y − 1st largest element of σ[A]. Moreover, āy + 1 = σ(āy) is

the y − 1st largest element of σ[A]. Thus σ[mi(A)] = mi(σ[A]).

Now suppose that 2k + 1 ∈ A. Then
∑
σ[A] ≡

∑
A (mod k + 1). In

this case mi adds the yth largest element of their complements to both A

and σ[A], respectively. These are the elements āy and āy + 1 = σ(āy), thus,

σ[mi(A)] = mi(σ[A]).

Lemma 2.3. Let C be the cycle in the 2-factor mi ∪mj of Bk containing A

with |A| = k. Then dC(A, σ[A]) = dC(σt[A], σt+1[A]), where t ∈ [2k] and dC

denotes the distance on C.

The proof of Lemma 2.3 follows immediately from Lemma 2.2.

2.2 Pairwise unions of modular matchings

In [13], Horak et al. observed that the 2-factor in Bk defined as the union

of modular matchings Mi and Mi+1 must contain short cycles, and, so, can-
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not give a Hamilton cycle in Bk. Their approach is generalized to give the

following result.

Theorem 2.4. For k > 2, the union of any two modular matchings in Bk

is not a Hamiltonian cycle.

Before we proceed to the proof of the theorem, let us investigate the

relationship between bi, bj and mi, mj. For the remainder of this section,

we write u ≡ v to mean u ≡ v (mod k + 1). Suppose |B| = k + 1, B =

〈b1, b2, ..., bk+1〉 and bi(B) = B − {bx}. Then bx is the xth smallest element

of B, where x ≡ i +
∑
B. Suppose bj(B) = B − {bz}. Then bz is the zth

smallest element of B, where z ≡ j +
∑
B. Now the question of interest

becomes: what is the relationship between bx and bz? Notice z ≡ j+
∑
B ≡

(j− i) + i+
∑
B. Thus bz is (x+ (j− i))th smallest element of B. Therefore

bz = bx+j−i. Thus the difference between the element that bi removes from

B and the element that bj removes from B is a move of (j − i) positions to

the right in B with the possibility for a wraparound.

There is a similar relationship between the element that mi adds to A

and the element that mj adds to A. Suppose |A| = k, A = 〈a1, a2, ..., ak〉

and mi(A) = A ∪ {āy}. Then āy is the yth largest element of Ā, where

y ≡ i +
∑
B. Suppose mj(A) = A ∪ {āw}. Then āw is the wth largest
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element of A, where w ≡ j+
∑
A. Then w ≡ j+

∑
A ≡ ((j− i) + i) +

∑
A.

Thus āw is (y+ (j − i))th largest element of A. Therefore āw = āy+j−i. Thus

the difference between the element that mi adds to A and the element that

mj adds to A is a move of (j − i) positions to the right in Ā from āy to āw

with the possibility for a wraparound. We now proceed with the proof of

Theorem 3.4.

Proof. In order to prove the theorem, it suffices to show that the cycle in the

2-factor Mi ∪Mj containing a particular set A is never a Hamiltonian cycle.

Let Mi and Mj be any two distinct modular matchings in Bk. Assume k > 1.

Without loss of generality, suppose i < j. Let C be the cycle in the 2- factor

which contains A = [k]. Let d = j − i. Suppose that mi(A) = A ∪ {āy} and

consider the following two cases.

Case 1: Suppose āy > k + d. As defined in Section 1.1, let dC be the

distance function, restricted to the cycle C. We will show that the cycle

containing A is not Hamiltonian. Below we follow the path beginning with

A and following the edges of matching Mi then Mj.
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A = [k],

mi(A) = [k] ∪ {āy},

bj(B) = A1 = [1, d− 1] ∪ [d+ 1, k] ∪ {āy},

mi(A1) = B1 = [1, d− 1] ∪ [d+ 1, k] ∪ {k + d, āy},

bj(B1) = A2 = [1, d− 2] ∪ [d+ 1, k] ∪ {k + d, āy},

mi(A2) = B2 = [1, d− 2] ∪ [d+ 1, k] ∪ {k + d− 1, k + d, āy},

...

bj(Bd−2) = Ad−1 = {1} ∪ [d+ 1, k] ∪ [k + d− (d− 1) + 2, k + d] ∪ {āy},

mi(Ad−1) = Bd−1 = {1} ∪ [d+ 1, k] ∪ [k + 2, k + d] ∪ {āy},

bj(Bd−1) = Ad = [d+ 1, k] ∪ [k + 2, k + d] ∪ {āy},

mi(Ad) = Bd = [d+ 1, k + d] ∪ {āy},

bj(Bd) = Ad+1 = [d+ 1, k + d].

To see that bj removes d = j − i from B, observe that bi(B) = B − {āy},

where āy = bk+1. Move d elements to the right in B, wrapping around, to

select bk+1+d = d, which bj removes. To see that mi adds k+d to A1, observe
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that mj(Ai) = A1 ∪ {d}, where d = ā1. Now move d elements to the right

in Ā to select ā1+d = k + d, which mi adds. Now, the subsequent additions

and deletions follow the same pattern, producing the sequence of sets given

above.

Notice that Ad+1 = σd[A] and dC(A, σd[A]) = 2(d + 1). We know that

dC(σd[A], σ2d[A]) = dC(σkd[A], σ(k+1)d[A]) = 2(d + 1) by Lemma 2.3. If each

of the 2k + 1 shifts of A are on C, |C| = 2(2k + 1)(d + 1). Since it is

not necessarily the case that each of the 2k + 1 shifts of A are on C, then

|C| ≤ 2(2k + 1)(d+ 1).

Case 2: Suppose k+ 1 ≤ āy ≤ k+ d. Then the path beginning at A and

following the edges of Mi then Mj is given below. The sequence of insertions

and deletions of elements follow the same pattern as in Case 1.

A = [k],

mi(A) = B = [k] ∪ {āy},

bj(B) = A1 = [1, d− 1] ∪ [d+ 1, k] ∪ {āy},
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mi(A1) = B1 = [1, d− 1] ∪ [d+ 1, k] ∪ {āy, k + d+ 1},

bj(B1) = A2 = [1, d− 1] ∪ [d+ 2, k] ∪ {āy, k + d+ 1},

mi(A2) = B2 = [1, d− 1] ∪ [d+ 2, k] ∪ {āy, k + d+ 1, k + d+ 2},

...

bj(Bd−2) = Ak−d = [1, d− 1] ∪ {k} ∪ {āy} ∪ [k + d+ 1, 2k − 1],

mi(Ad−1) = Bk−d = [1, d− 1] ∪ {k} ∪ {āy} ∪ [k + d+ 1, 2k],

bj(Bd−1) = Ak−d+1 = [1, d− 1] ∪ {āy} ∪ [k + d+ 1, 2k]

mi(Ad) = Bk−d+1 = [1, d− 1] ∪ {āy} ∪ [k + d+ 1, 2k + 1],

bj(Bd) = Ak−d+2 = [1, d− 1] ∪ [k + d+ 1, 2k + 1],

Since Ak−d+2 = σk+d[A], dC(A, σk+d[A]) = 2(k − d + 2). Since all of the

2k+1 shifts of A could lie on C, |C| ≤ 2(2k+1)(k−d+2). In both cases, we

see that |C| ≤ 2(2k+1)(k+1) < 2
(
2k+1
k

)
. Therefore for all 1 ≤ i < j ≤ k+1,

Mi ∪Mj is not a Hamiltonian cycle in Bk.
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2.3 3-factors of modular matchings

In contrast to the fact that the 2-factorMi∪Mi+1 is disconnected and contains

short cycles, Horak et al. [13] showed that the union of three consecutive

modular matchings is connected.

Lemma 2.5. [13] For any A ∈ Lk with A 6= [k] and i ∈ [k+ 1], the spanning

subgraph of Bk formed by the edges in Mi ∪Mi+1 ∪Mi+2 contains a path P

that starts at A and ends in a set B ∈ Lk of smaller weight.

Proof. Let A = 〈a1, a2, ..., ak〉. Suppose mi+1(A) = B = A ∪ {āy} and

assume that there is some element of A that is larger than āy. Thus B =

〈a1, a2, . . . , āy, . . . , ak〉. Now relabel B = 〈x1, x2, . . . , xk+1〉. Notice that āy 6=

xk+1 = ak. Thus āy = xl for some l ∈ [k]. Then by definition bi+1(B) =

B − {āy} = B − {xl}. So, bi+1 removes the lth smallest element of B.

Since bi+1 removes the lth smallest element of B, then bi+2 must remove

the (l + 1)st smallest element of B. Now let C = bi+2(mi+1(A)). Then

C = bi+2(B) = B − {xl+1}. Then∑
C =

∑
B − {xl+1} <

∑
B − {xl}

=
∑

B − {āy}

=
∑

A.
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Thus the weight of C is less than that of A. Therefore the path that starts

at A and follows first the edge of Mi+1 and then the edge of Mi+2 has the

required property.

We may assume that āy is the largest element of B = A ∪ {āy}. Let s

and z be the first and the last element of the last interval of A preceding

āy. Clearly, s < āy. Furthermore, s > 1 since A 6= [k]. We proceed by

considering two cases based on the length of the last interval of A preceding

āy.

First suppose the length of the last interval is 1 (i.e., s = z and s+1 6∈ A).

Thus mi+1(A) = B = A ∪ {āy} = 〈a1, a2, ..., s, āy〉. Since mi+1 adds element

āy to A, then bi+1 must remove āy from B. So, bi+1 removes the k + 1st

smallest element of B. Therefore bi must remove the kth smallest element of

B, namely s. So, effectively bi ◦mi+1 trades s for āy.

Set D = bi(B) = B − {s} = 〈a1, a2, ..., ak−2, āy〉. Consider bi+2 ◦mi+1(D).

From above, we know that mi adds s to D. Therefore

mi+1(D) = D ∪ {s− 1} = 〈a1, a2, ..., s− 1, āy〉.

Since mi+1 adds s−1 to D, then bi+2 must remove āy. Let E = bi+2◦mi+1(D).

Thus, E differs from A in that it has s − 1 in place of s. Therefore
∑
E <∑

A. So, the path starting at A and following the edges of the matchings
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Mi+1, Mi, Mi+1, Mi+2 in order gives the desired path.

Now suppose that the length of the last interval before āy is more than 1.

Then A = 〈a1, a2, ..., s, ..., z〉 and the definition of the matchings give:

mi+1(A) = B = 〈a1, a2, ..., s, s+ 1, ..., z, āy〉,

D = bi(B) = 〈a1, a2, ..., s, s+ 1, ..., z − 1, āy〉,

mi+1(D) = 〈a1, a2, ..., s− 1, s, s+ 1, ..., z − 1, āy〉,

E = bi ◦mi+1(D) = 〈a1, a2, ..., s− 1, s+ 1, ..., z − 1, āy〉,

mi+1(E) = 〈a1, a2, ..., s− 1, s+ 1, ..., z − 1, z, āy〉,

F = bi+2 ◦mi+1(E) = 〈a1, a2, ..., s− 1, s+ 1, ..., z〉.

From the list of sets above, we see that F differs from A in that it has

s − 1 in place of s. Therefore
∑
F <

∑
A. So, the path starting at A and

following the edges of the matchings Mi+1, Mi, Mi+1, Mi+2, Mi+1, Mi+2 in

order gives the desired path.

The above lemma shows that every set other than [k] is connected to a

set of smaller weight. In other words, it shows that every set is connected to

[k] and so, the subgraph of Bk induced by Mi, Mi+1, and Mi+2 is connected.
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Theorem 2.6. [13] For i ∈ [k + 1], the union of the matchings Mi, Mi+1,

and Mi+2 is a connected spanning cubic subgraph of Bk.

In [13], it is shown that the union of three consecutive modular matchings

induces a 3-connected spanning cubic subgraph of Bk. In order to show

that the union of three consecutive modular matchings is 3-connected, they

proved by contradiction that there is no edge-cut of size 1 or 2. They offer

two consequences of the fact that the spanning subgraph of Bk with edge

set Mi ∪Mi+1 ∪Mi+2 is cubic and 3-connected. Firstly, if it turns out that

Bk is not Hamiltonian, this shows an example of a non-Hamiltonian, cubic,

3-connected graph. Secondly, Paulraja [20] proved that every 3-connected

cubic graph G has a Hamiltonian prism. For a graph G, the prism of G is

the graph consisting of two copies of G with a 1-factor joining corresponding

vertices. The property that G has a Hamiltonian prism is closely related to

traceability properties of G, described in [13].
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Chapter 3

Lexical Matchings

One of the most well-known combinatorial facts about the full Boolean

lattice P(n) of subsets of [n], ordered by containment, is that P(n) has a

symmetric chain decomposition. A lattice has a symmetric chain decompo-

sition if it can be partitioned into chains of subsets, consecutive with respect

to containment, such that each chain begins with a set of size r if and only

if it ends with one of size n − r. In the case n = 2k + 1, the set of “middle

edges” of these chains provides a matching in Bk. One particular symmetric

chain decomposition of the Boolean lattice has several different descriptions,

ranging from the original induction argument of DeBruijn, Tengbergen and

Kruyswijk [5] to the explicit bracketing rule provided by Greene and Kleit-

man [8]. We are interested in the matching in Bk given by the middle edges

of the symmetric chains. In the next section we give a brief outline of these
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symmetric chain decompositions and their relation to the lexical matchings

introduced by Kierstead and Trotter [17].

3.1 Definitions and background results

It was observed in [5] that a product of two chains C ×D has a symmetric

chain decomposition. Suppose we are given a product of symmetric chain

orders P ×Q. Then any product of chains consisting of one chain from the

symmetric chain decomposition of P and one chain from Q is a symmetric

interval in P ×Q. The set of all these symmetric intervals partitions P ×Q.

Induction gives a symmetric chain decomposition of a product of

C1 × C2 × . . . × Cn of chains [5]. Aigner [1] showed that this symmetric

chain partition on chain products has other descriptions in terms of a lexi-

cographic order and a bracketing scheme. Let’s specialize to the product of

2-element chains and regard P(n) as both the set of subsets of [n] ordered

by containment and as the product of n 2-element chains, that is, the set of

0, 1-sequences with the coordinate-wise order.

Given the usual ordering on [n], we order the a level Lk as follows: we

say that Ai precedes Aj in the lexicographical ordering if and only if, Ai =
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{m1,m2, . . . ,mk}, with m1 < . . . < mk and Aj = {n1, n2, . . . , nk}, with

n1 < . . . < nk, we have that if t is the minimum subscript such that mt 6= nt

then mt < nt. Let A1, A2, . . ., An, n =
(
2k+1
k

)
, be the subsets in Lk,

ordered lexicographically. Let B1, B2, . . . Bn be the subsets in Lk+1, ordered

lexicographically. Now define M : Lk → Lk+1 inductively by: (i) M(A1) =

B1; (ii) M(A2) = B2, . . ., M(Al−1) = Bl−1 having been defined, M(Al) is

the smallest Bh in the lexicographic order on the B’s which contains Al and

which is not equal to any of M(A1), M(A2), . . ., M(Al−1). Then Aigner [1]

observed M is a bijection from Lk to Lk+1 and M agrees with the inductive

matching in [5]. M is called the lexicographic matching.

In [2], there is a starred exercise that outlines a proof that the lexicographic

matching M can be described in terms of a bracketing procedure. But before

we proceed to this bracketing version of the lexicographic matching, we need

an alternate view of a set S. Let S ⊂ [2k+1]. We can represent S with respect

to the usual ordering on [2k+ 1] as the binary (2k+ 1)-tuple (a1, . . . , a2k+1),

where

at =


1 if t ∈ S

0, otherwise.

We now describe the afore mentioned bracketing procedure which can be

found in [16]. Consider the binary representation of a set S. Now starting
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from the left, move right. When a zero is encountered, it becomes unmatched,

possibly only temporarily. When a one is encountered, it is matched to the

rightmost unmatched zero, and this zero is no matched as well. If there are

currently no unmatched zeros, then this one is unmatched. We continue in

this manner until we reach the end of the sequence. The left most unmatched

zero is the position of the element that the lexicographic matching will add to

the set S. Duffus, Hanlon, and Roth [8] provide a detailed proof of Aigner’s

result which makes it not too difficult to see that the bracketing procedure

corresponds to the 0-lexical matching of Kierstead and Trotter [17] that is

verified in Theorem 3.4.

There are at least two ways to generalize the lexicographic matching to

get a family of matchings. One such generalization is to consider the (2k+1)!

orderings of [2k + 1] and define the lexicographic matching associated with

each ordering, then study how these matchings interact with each other.

Work in this area was done by Duffus, Sands, and Woodrow in [10]. In [10],

they give necessary and sufficient conditions for two lexicographic matchings

to be disjoint. Also in [10], they show that for k > 1, the union of two

lexicographic matchings in Bk is never a Hamiltonian cycle.

Additionally, the lexicographic matching can be generalized to construct
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new matchings called lexical matchings. In order to discuss the lexical match-

ings, we import the notation used by Kierstead and Trotter in [17]. For sub-

sets R and S of [n], define the S-split of R, denoted by R/S, to be R/S =

|R∩S|−|R∩S̄|. For each x ∈ S̄, letDS(x) denote {y ∈ S̄−{x} : [y, x)/S < 0}

and dS(x) denote |DS(x)|. Think of DS(x) as the set of y ∈ S̄ for which [y, x)

is deficient in elements of S.

Lemma 3.1. [17] Let S ⊂ [2k + 1] with |S| = k. If x and w are distinct

elements of S̄ then DS(w) ⊂ DS(x) or DS(x) ⊂ DS(w).

Proof. Notice that

[w, x)/S + [x,w)/S = |[w, x) ∩ S| − |[w, x) ∩ S̄|+ |[x,w) ∩ S| − |[x,w) ∩ S̄|

= |[2k + 1] ∩ S| − |[2k + 1] ∩ S̄|

= [2k + 1]/S = −1.

Since [w, x)/S and [x,w)/S are integers, then exactly one of them is negative.

Without loss of generality suppose [w, x)/S is negative. We will show

that DS(w) ⊂ DS(x). Since [w, x)/S is negative, by the definition of DS(x)

w ∈ DS(x). But note that w, x 6∈ DS(w). Now suppose y ∈ DS(w). If y ∈

(x,w) then [y, x)/S = [y, w)/S+ [x,w)/S < 0 and so y ∈ DS(x). Otherwise,

y ∈ (w, x) and [y, x)/S = [y, w)/S − [x,w)/S < 0 and y ∈ DS(x).
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One immediate consequence of Lemma 3.1 is that if x and w are distinct

elements of S̄ then dS(x) and dS(w) are distinct integers.

Corollary 3.2. [17] Let S ⊂ [2k+1] with |S| = k. Then dS is a well-defined

bijection from S̄ to {0, k}.

Proof. By definition, dS is bounded between 0 and k, and by Lemma 3.1 the

values are distinct.

For each S ⊂ [2k + 1] with |S| = k, let eS be the inverse of dS. So,

dS(eS(i)) = i. We can think of eS(i) as the element of S̄ such that there are

i y’s in S̄ with [y, eS(i))/S < 0.

Now we consider another description of which element of [2k + 1] the i-

lexical matching adds to a set S that will be more convenient for our purposes

due to Duffus, Hanlon and Roth [8]. Let (a1, . . . , a2k+1) be a binary (2k+ 1)-

cycle containing k 1’s and (k + 1) 0’s. In order to locate the element x

that the i-lexical matching adds to S, we only need to find position x in the

(2k + 1)-cycle representation of S such that ax = 0 and there are exactly i

intervals of the form [y, x), y 6∈ S, for which the number of 0’s is greater than

the number of 1’s. The i-lexical matching, Mi, with respect to the standard

order on [2k+ 1], is defined by Mi(S) = S ∪{eS(i)}. In order to see that the
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i-lexical matching defines a matching in Bk, let us first consider the following

lemma due to Kierstead and Trotter [17].

Lemma 3.3. [17] If S and T are distinct elements of Lk such that S∪{x} =

T ∪ {y} for some x, y ∈ [2k + 1], then DS(x) ⊂ DT (y) or DT (y) ⊂ DS(x).

Proof. Note that x ∈ T − S, y ∈ S − T , and R/S = R/T if x, y ∈ R̄.

Thus (x, y)/T + (y, x)/S = −1 and so exactly one of (x, y)/T and (y, x)/S

is negative. Say (y, x)/S is negative. We show that DT (y) ⊂ DS(x). First

choose z ∈ (y, x)∩ S̄ such that [z, x)/S = −1. Since x ∈ T −S, we have that

[z, x)/T = [z, x)/S + 1 + (x, y)/T ≥ 0

and z ∈ DS(x) − DT (y). Now suppose that w ∈ DT (y). Then w 6= x and

w 6= y. If w ∈ (x, y), then

[w, x)/S = [w, y)/T + 1 + (y, x)/S < 0

and so w ∈ DS(x). Otherwise w ∈ (y, x) and

[w, x)/S = [w, y)/T − 1− (x, y)/T < 0

and again w ∈ DS(x).
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Theorem 3.4. For i = 0, 1, . . . , k, Mi is a matching in Bk.

Proof. Clearly S ⊂ Mi(S). Thus it suffices to show that Mi is one-to-one.

The fact that Mi is indeed one-to-one follows immediately from Lemma 3.3.

In Chapter 2, we saw that the modular matchings are σ-invariant. We

will later make use of the fact that the lexical matchings are also σ-invariant.

Lemma 3.5. For i = 0, 1, . . . , k and for all S ∈ Lk, mi(σ[S]) = σ[mi(S)].

This result follows immediately from the fact that each S ⊂ [2k + 1] has a

(2k + 1)-cycle representation.

3.2 Partial results

In this section, we will use the method explored in Section 2.3 to show that

for certain choices of i and j, the union of the i-lexical and j-lexical matchings

yield a 2-factor which is not a Hamiltonian cycle.

Theorem 3.6. For k > 1. Let i ∈ {0, 1, . . . , k} and A = [k]. Then the

cycle containing A in the 2-factor obtained from the union of the i-lexical

and (k − i)-lexical matchings, Mi ∪Mk−i, is not a Hamiltonian cycle.
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Proof. Let i ∈ {0, 1, . . . , k} and A = [k]. Let C be the cycle of Mi ∪Mk−i

which contains A. Without loss of generality assume i < k − i.

In order to see that mi adds (k + i + 1) to A, consider the (2k + 1)-

cycle representation of A. So, A = (1, 1, . . . , 1, 0, 0, . . . , 0) where A has a

sequence of k 1’s followed by a sequence of (k + 1) 0’s. Now consider the

0 in position (k + i + 1). We want to show dA(k + i + 1) = i. In the

(2k + 1)-cycle representation of A, there is a sequence of i 0’s between the

kth and (k + i+ 1)st positions in the cycle. Thus, for each y ∈ [k + 1, k + i],

[y, k+i+1)/A < 0. Therefore each of the i 0’s here contribute to dA(k+i+1).

For each y ∈ [k+i+2, 2k+1], [y, k+i+1) contains all of the k 1’s in A. Since

there are only k 0’s not including the 0 in position (k + i + 1) in the cycle

representation of A, then for each y ∈ [k+ i+ 2, 2k+ 1], [y, k+ i+ 1)/A ≥ 0.

Therefore none of these y’s contribute to the number of intervals for which

the 0’s outnumber the 1’s. And indeed mi(A) = A ∪ {k + i+ 1}.

In order to see that mk−i removes (i+ 1) from B. We want to locate the

1 in the xth position of the (2k+ 1)-cycle representation of B such that there

are k − i intervals of the form [y, x), y 6∈ B, for which the number of 0’s

outnumber the number of 1’s. Consider the element (i + 1). By counting

the number of intervals of the form [y, i + 1) with y ∈ B̄ such that the 0’s
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outnumber the 1’s, we see that the (k − i)-lexical matching removes (i + 1)

from B.

A = [k],

mi(A) = B = [k] ∪ {k + i+ 1},

bk−i(B) = A1 = [i] ∪ [i+ 2, k] ∪ {k + i+ 1}.

Continuing with this kind of analysis, we see that the path beginning with

A and following the edges of matching Mi then Mk−i is given below.

mi(A1) = B1 = [i] ∪ [i+ 2, k] ∪ {k + i, k + i+ 1},

bk−i(B1) = A2 = [i− 1] ∪ [i+ 2, k] ∪ {k + i, k + i+ 1},

mi(A2) = B2 = [i− 1] ∪ [i+ 2, k] ∪ {k + i− 1, k + i, k + i+ 1}

...

bk−i(Bi−1) = Ai = {1, 2} ∪ [i+ 2, k] ∪ [k + 3, , k + i+ 1],
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mi(Ai−1) = Bi−1 = {1, 2} ∪ [i+ 2, k] ∪ [k + 2, k + i+ 1],

bk−i(Bi−1) = Ai = {1} ∪ [i+ 2, k] ∪ [k + 2, k + i+ 1],

mi(Ai) = Bi = {1} ∪ [i+ 2, k + i+ 1],

bk−i(Bi) = Ai+1 = [i+ 2, k + i+ 1],

From the above sequence of sets, we see that the i-lexical matching fills in

the set [k + 1, k + i + 1] and the (k − i)-lexical matching removes elements

from [i + 1]. Thus, the i-lexical matching must add (i + 1) elements before

merging the last two intervals and the (k − i)-lexical matching must remove

(i+ 1) elements before removing the entire interval [i+ 1].

Since Ai+1 = σi+1[A], dC(A, σi+1[A]) = 2(i + 1). Since there are 2k + 1

shifts of A and at most all of them lie on C, |C| ≤ 2(2k+1)(i+1) < 2
(
2k+1
k

)
.

Therefore for i ∈ {0, 1, . . . , k}, Mi ∪ Mk−i is not a Hamiltonian cycle in

Bk.

Suppose now that M and M ′ are disjoint matchings in Bk and that M∪M ′

is a 2-factor with ct cycles of length t (t ∈ N). Then for all φ ∈ S2k+1, let φ̂

be the induced automorphism of Bk. As noted in Section 1.2, φ̂[M ∪M ′] =
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φ̂[M ]∪φ̂[M ′] is a 2-factor in Bk with ct cycles of length t. In particular M∪M ′

is a Hamiltonian cycle in Bk if and only if φ̂[M ] ∪ φ̂[M ′] is a Hamiltonian

cycle. Let us use this easy observation with lexical matchings to obtain an

easy proof of a result in [17].

Lemma 3.7. Let ρ = (1 2k + 1)(2 2k) . . . (k k + 2)(k + 1) ∈ S2k+1. Then

ρ̂(Mi) = Mk−i for i = 0, 1, . . . , k.

Proof. We must show that if mi(A) = A ∪ {x} then mk−i(ρ̂(A)) = ρ̂(A) ∪

{ρ(x)}. Suppose mi(A) = A∪ {x}. Then dA(x) = i. Thus, there are exactly

i intervals in the (2k + 1)- cycle representation of A such that [y, x)/A < 0

with y 6∈ A. That is, there are exactly i y’s such that on the interval [y, x) the

number of 0’s is greater than the number of 1’s in A. Since there are a total

of k y’s in A and i of them have the property that the interval [y, x) has more

0’s than 1’s, then there must be k− i y’s in the cycle representation of A such

that [y, x)/A > 0. For each of these k − i y’s with [y, x)/A > 0, the interval

[y, x) contains more 1’s than 0’s. For each of these k−i y’s, the interval (x, y]

contains more 0’s than 1’s in the cycle representation of A. Notice, that ρ

is a reflection across the (k + 1) position. So, ρ̂((x, y]) = [ρ(y), ρ(x)). Since

ρ does not add or remove elements, the number of 0’s in [ρ(y), ρ(x)) is still

greater than the number of 1’s. Thus for each y 6∈ A such that (x, y]/A < 0,
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[ρ(y), ρ(x))/ρ̂(A) < 0. By definition mk−i(ρ̂(A)) = ρ̂(A) ∪ {ρ(x)}.
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Chapter 4

Future Work

The search for a Hamiltonian cycle in Bk has proven to be a challenge

even for small values of k. The size of Bk is exponential in k, so calculations

for quite small values of k require a considerable amount of computing (see

[21]. Although it is true that a Hamiltonian cycle in Bk must be the union of

two disjoint 1-factors, determining when two perfect matchings are disjoint

is not always easy and it is certainly not easy to determine the length of the

cycles obtained from their union. In this thesis, we saw that the union of two

disjoint modular matchings always yields a short cycle and that the union

of the i- and (k − i)-lexical matchings always contains a short cycle. Below

we give a list of other avenues yet to be fully explored in the quest to make

progress on the middle levels problem.

1. For k sufficiently large, show that the union of the i- and j-lexical
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matchings always contain a short cycle.

2. Investigate the cubic graphs, the 3-factors, obtained from the edge set

of 3 distinct lexical matchings.

3. In [17], Kierstead and Trotter created the i-lexicalMi family by acting

on the i-lexical matching with the automorphism group of Bk. They

showed that the families ofMi andMj matchings do not intersect for

0 ≤ i < j ≤ k
2

and that the size of the family of i-lexical matchings is

(2k)!, with the only permutations that map an i-lex to an i-lex being

one of the (2k+ 1) shifts. They pose the following problem: show that

no two i-lex matchings can form a Hamiltonian cycle.

4. Regarding modular matchings, investigate the 3-factor obtained from

Mi∪Mj ∪Mr for any i, j, r. Also concerning modular matchings, in [9]

the action of S2k+1 on the modular matchings is analyzed. They show

that the shift invariance of modular matchings and that ρ(Mi) = Mj

where i + j ≡ 1(mod k + 1). This is analogous to Lemma 3.7. They

ask if it is always true that for any matchings M in any 1-factorization

of Bk into shift-invariant matchings, is ρ̂[M ] also in the factorization?
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