Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the requirements for an advanced degree from Emory University, I hereby grant to Emory University and its agents the non-exclusive license to archive, make accessible, and display my thesis or dissertation in whole or in part in all forms of media, now or hereafter known, including display on the world wide web. I understand that I may select some access restrictions as part of the online submission of this thesis or dissertation. I retain all ownership rights to the copyright of the thesis or dissertation. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation.

Signature:

Hasse Principle for Hermitian Spaces

By
Zhengyao Wu
Doctor of Philosophy
Mathematics

Venapally Suresh, Ph.D. Advisor
Raman Parimala, Ph.D. Committee Member
David Zureick-Brown, Ph.D.
Committee Member

Accepted:

Lisa A. Tedesco, Ph.D.
Dean of the James T. Laney School of Graduate Studies

Date

Hasse Principle for Hermitian Spaces

By

Zhengyao Wu Master of Science

Advisor: Venapally Suresh, Ph.D.

An abstract of
A dissertation submitted to the Faculty of the
James T. Laney School of Graduate Studies of Emory University in partial fulfillment of the requirements for the degree of Doctor of Philosophy
in Mathematics
2016

Abstract
Hasse Principle for Hermitian Spaces
By Zhengyao Wu

This dissertation proves new results on Hasse principle for Hermitian spaces. Let p be an odd prime. Let F be the function field of a curve over a p-adic field.

In a recent paper, Colliot-Thélène, Parimala and Suresh conjectured that a local-global principle holds for projective homogeneous spaces of connected linear algebraic groups over function fields of p-adic curves for $p \neq 2$. The first main result of this dissertation proves the following: Let A be a finite-dimensional simple F-algebra with an involution σ such that $F=Z(A)^{\sigma}$. Let $\varepsilon \in\{1,-1\}$ and $h: V \times V \rightarrow A$ an ε hermitian space over (A, σ). Let X be a projective homogeneous space under

$$
G= \begin{cases}\mathrm{SU}(A, \sigma, h) & \text { if } \sigma \text { is of the first kind; } \\ \mathrm{U}(A, \sigma, h) & \text { if } \sigma \text { is of the second kind. }\end{cases}
$$

Let Ω be the set of all rank one discrete valuations on F. For each $v \in \Omega$, let F_{v} be the completion of F at v. Then

$$
\prod_{v \in \Omega} X\left(F_{v}\right) \neq \emptyset \Longrightarrow X(F) \neq \emptyset
$$

The proof implements patching techniques of Harbater, Hartmann and Krashen. As an application, we obtain a Springer-type theorem for isotropy of hermitian forms over odd degree extensions of function fields of p-adic curves.

Parihar and Suresh provided upper bounds for the u-invariant of hermitian spaces over division algebras over function fields of p-adic curves for $p \neq 2$. It was an open problem what their exact values are. The second main result of this dissertation proves the following: Let D be a central division algebra over F.
(1) If D is quaternion, then $u^{+}(D)=6$ and $u^{-}(D)=2$.
(2) Let L / F be a quadratic extension. If D is quaternion and $D \otimes_{F} L$ is division, then $u^{0}\left(D \otimes_{F} L\right)=4$.
(3) If D is biquaternion, then $u^{+}(D)=5$ and $u^{-}(D)=3$.

The proof implements Larmour's theorem on Hermitian spaces over division algebras over complete discrete valued fields.

Hasse Principle for Hermitian Spaces

By

Zhengyao Wu Master of Science

Advisor: Venapally Suresh, Ph.D.

A dissertation submitted to the Faculty of the
James T. Laney School of Graduate Studies of Emory University in partial fulfillment of the requirements for the degree of Doctor of Philosophy
in Mathematics
2016

Acknowledgement

I thank my advisor Prof. Venapally Suresh for thorough detailed instructions and Prof. Raman Parimala for helpful instructions during these five years. I thank my other committee member Prof. David Zureick-Brown.

I thank my wife Huanhuan Yang and my other family members. I thank my colleagues Nivedita Bhaskhar, Reed Gordon-Sarney and Bastian Haase. I thank my teaching mentors Prof. Vojtěch Rödl, Prof. Dwight Duffus, Prof. Victoria Powers, Prof. Alessandro Veneziani, Prof. Ron Gould, Prof. Venapally Suresh, Dr. Steven La Fleur, Prof. Shanshuang Yang. I thank my teaching section leaders Dr. Steven La Fleur, Dr. Bree Ettinger and Dr. Shel Swenson. I thank my other course instructors Prof. Ken Ono and Prof. David Zureick-Brown. I thank my other seminar instructors Dr. Asher Auel and Dr. Fred Helenius. I also thank other faculty and staff members who helped me in many aspects Dr. Skip Garibaldi, Prof. Vaidy Sunderam, Prof. Ken Mandelberg, Prof. James Lu, Prof. David Borthwick, Terry Ingram, Erin Nagle, Edgar Leon and Alex Carstairs. I thank my officemates Alexis Aposporidis, Verena Kuhlemann, Umberto Villa, Pascal Philipp, Isabel Chen, Nivedita Bhaskhar, Larry Rolen, Michael Griffin, Huiqiang Shi, James Herring, Ariel Keller, Warren Shull, Jessica Robins, Noah Lebowitz-Lockard, Victor Aricheta, Samy Wu, Alessandro Barone, Sumit Chandra Mishra, Bradley Elliott. I thank my other fellow graduate students Jodi Black, Hernando Bermudez, Victor Larsen, Jackson Morrow, Mckenzie West, Anastassia Etropolski, Charles Morrissey, Robert Lemke Oliver, Marie Jameson, Robert Schneider, Jesse Thorner, Sarah Trebat-Leder, Olivia Beckwith, Amanda Clemm, T. John Retter, Megan Cream, Luca Bertagna, Vindya Bhat, Qing Chu, Wenfei Zou, William Kay, Boyi Yang, James Munch, Massimiliano Lupo Pasini, Sofia Guzzetti, Alexander Viguerie, Yunyi Hu and many other people.

Contents

Chapter 1. Generalities 1
1.1. Central simple algebras and Brauer groups 1
1.2. Hermitian spaces and Witt groups 3
1.3. Algebraic groups and Rationality 8
1.4. Galois cohomology and Principal homogeneous spaces 15
1.5. Projective homogeneous spaces 23
1.6. Morita invariance 28
Chapter 2. Hasse principle of projective homogeneous spaces 33
2.1. Maximal orders 35
2.2. Complete regular local ring of dimension 2 38
2.3. Patching and Hasse principle 48
Chapter 3. Springer's problem for odd degree extensions 57
3.1. Reduction to the residue field 58
3.2. Springer's theorem over local or global fields 59
3.3. Springer's theorem over function fields of p-adic curves 61
Chapter 4. Hermitian u-invariants 63
4.1. Hermitian u-invariants over complete discrete valued fields 64
4.2. Division algebras over $\mathscr{A}_{i}(2)$-fields 72
4.3. Division algebras over semi-global fields 75
4.4. Tensor product of quaternions over arbitrary fields 77
Bibliography 81

CHAPTER 1

Generalities

1.1. Central simple algebras and Brauer groups

We refer readers to [GS06; Bou ${ }_{\mathrm{A} 8}$; Gro68a; Gro68b; Gro68c] for details of central simple algebras and Brauer groups. Let K be a field. Let $K_{\text {alg }}$ be the algebraic closure of K. Let $K_{\text {sep }}$ be the separable closure of K in $K_{\text {alg }}$. The absolute Galois group of K is defined to be $\operatorname{Gal}\left(K_{\text {sep }} / K\right)=\operatorname{Aut}\left(K_{\text {alg }} / K\right)$.

Let A be a finite-dimensional associative unital algebra over K. Let $Z(A)$ be the center of A. We say that A is central if $Z(A)=K$. We say that A is simple if it has only 2 two-sided ideals $\{0\}$ and A. Every central division algebra D over K is a central simple algebra over K. Further, the matrix algebra $M_{n}(D)$ is a central simple algebra over K. By Wedderburn's theorem every central simple algebra A over K is of the form $A \simeq M_{n}(D)$ for a positive integer n and a central division K-algebra D. Here D is called the underlying division algebra of A. If $A \simeq M_{n}(K)$, we say that A splits over K.

Two central simple algebras are Brauer equivalent if they have isomorphic underlying division algebras. Let $[A]$ be the Brauer equivalence class of a central simple algebra A over K. The Brauer group $\operatorname{Br}(K)$ [GS06, Def. 2.4.9] is an abelian group with underlying set $\{[A] \mid A$ is a central simple algebra over $K\}$, the associative and commutative addition $[A]+[B]=\left[A \otimes_{K} B\right]$ for all pairs of central simple algebras A and B over K, the identity element $0=[K]=\left[M_{n}(K)\right]$ and the inverse $-[A]=\left[A^{\mathrm{op}}\right]$ for all central simple algebra A over K, where $A^{\text {op }}$ is the opposite algebra of A. We write ${ }_{n} \operatorname{Br}(K)$ for the n-torsion subgroup of $\operatorname{Br}(K)$.

Let A be a central simple algebra over a field K. The dimension of A is a square. The degree of A is defined to be $\operatorname{deg}(A)=\sqrt{\operatorname{dim}_{K} A}$. The index of A is defined to
be $\operatorname{ind}(A)=\operatorname{deg}(D)$, where D is the underlying division algebra of A over K. The period (or exponent) of A is defind to be the order of $[A]$ in $\operatorname{Br}(K)$ and is denoted by $\operatorname{per}(A)$. A theorem of Brauer [GS06, Prop. 4.5.13] says that $\operatorname{per}(A) \mid \operatorname{ind}(A)$ and they have the same prime factors.

Example 1.1.1. Let K be a field of characteristic not 2. Suppose $a, b \in K^{*}$. Let $(a, b)_{K}$ denote the quaternion algebra over F generated by $\{1, i, j, i j\}$ with relations $i^{2}=a, j^{2}=b, i j=-j i$. Every quaternion algebra is a central simple algebra of degree 2 , period 1 or 2 and index 1 or 2 .

Cyclic algebras and cross product algebras are other important examples of central simple algebras.

Example 1.1.2. A field K is quasi-finite if it is perfect and there exists $s \in$ $\operatorname{Gal}\left(K_{\text {sep }} / K\right)$ and an isomorphism $\widehat{\mathbb{Z}} \rightarrow \operatorname{Gal}\left(K_{\text {sep }} / K\right)$ given by $1 \mapsto s$. By [Ser79, XIII, $\S 2$, Prop. 5], if K is a quasi-finite field, then $\operatorname{Br}(K)$ is trivial. By [Ser79, XIII, $\S 2$, Prop. 3], if L is a fintie field extension of K, then L is a quasi-finite field and hence $\operatorname{Br}(L)$ is trivial.

For example, \mathbb{F}_{q} and $\mathbb{C}((t))$ are quasi-finite fields.

Let R be a commutative ring. Let A be an R-algebra. We say that A is an Azumaya algebra over R if $Z(A)=R$ and A is a projective left module over $A \otimes A^{\text {op }}$. By [AG60a, Th. 2.1], an algebra A over a field K is a central simple algebra if and only if A is an Azumaya algebra over K. Two Azumaya algebras A_{1} and A_{2} are Brauer equivalent if there exists finitely generated faithful projective modules P_{1} and P_{2} over R such that $A_{1} \otimes_{R} \operatorname{End}_{R}\left(P_{1}\right) \simeq A_{2} \otimes_{R} \operatorname{End}_{R}\left(P_{2}\right)$. Let $[A]$ be the Brauer equivalence class of an Azumaya A over R. The Brauer group $\operatorname{Br}(R)$ [AG60a, p. 368] is an abelian group with underlying set $\{[A] \mid A$ is an Azumaya algebra over $R\}$, the associative and commutative multiplication $[A]+[B]=\left[A \otimes_{R} B\right]$ for all pairs of Azumaya algebras A and B over K, the identity element $0=[R]=\left[\operatorname{End}_{R}(P)\right]$ where
P is a finitely generated faithful projective module over R, the inverse $-[A]=\left[A^{\mathrm{op}}\right]$ for all Azumaya algebra A over R, where A^{op} is the opposite algebra of A.

The following result will be used in the proof of our main result theorem 2.3.6.

Proposition 1.1.3. [AG60a, Cor. 6.2]. Let R be a complete local ring with residue field k. Then the canonical quotient map induces an isomorphism $\operatorname{Br}(R) \simeq \operatorname{Br}(k)$.

Let A be a ring. A map $\sigma: A \rightarrow A$ is called an involution if $\sigma(x+y)=\sigma(x)+\sigma(y)$, $\sigma(x y)=\sigma(y) \sigma(x)$ and $\sigma(\sigma(x))=x$ for all $x, y \in A$.

Let A be a central simple algebra over a field K. Let $K^{\sigma}=\{x \in K \mid \sigma(x)=x\}$. An involution σ on A is of the first kind if $\left[K: K^{\sigma}\right]=1$; it is of the second kind if $\left[K: K^{\sigma}\right]=2$. Let $A^{\sigma}=\{x \in A \mid \sigma(x)=x\}$ and let $d=\operatorname{deg}(A)$. An involution σ on A is orthogonal if it is of the first kind and $\operatorname{dim}_{K}\left(A^{\sigma}\right)=\frac{d(d+1)}{2}$; it is symplectic if it is of the first kind and $\operatorname{dim}_{K}\left(A^{\sigma}\right)=\frac{d(d-1)}{2}$; it is unitary if it is of the second kind (i.e. $\operatorname{dim}_{K}\left(A^{\sigma}\right)=d^{2}$).

Remark 1.1.4. If A is a central simple algebra over a field K with an involution σ of the first kind, then $\operatorname{per}(A)=2$ and hence $[A] \in{ }_{2} \operatorname{Br}(K)$. The reason is that σ defines an isomorphism $A \simeq A^{\text {op }}$.

Example 1.1.5. Let $A=(a, b)_{K}$ be a quaternion algebra as in example 1.1.1. Let σ be a K-linear map on A given by $\sigma(i)=-i$ and $\sigma(j)=-j$. Then σ is a symplectic involution and it is called the canonical involution on A. Let τ be a unitary involution on A. Suppose $k=K^{\tau}$ and $K=k(\sqrt{\lambda})$ for some $\lambda \in k^{*} \backslash k^{* 2}$. Let ι be the nontrivial automorphism of K over k such that $\iota(\sqrt{\lambda})=-\sqrt{\lambda}$. By a theorem of Albert [KMRT98, Prop. 2.22], $A \simeq A_{0} \otimes_{k} K$ for some quaternion algebra A_{0} over k and $\tau \simeq \sigma_{0} \otimes \iota$ where σ_{0} is the canonical involution on A_{0}.

1.2. Hermitian spaces and Witt groups

We refer readers to [Sch85; Knu91; Bou A_{9}] for details of Hermitian forms and Witt groups. Let K be a field of characteristic not 2 . Let A be a central simple
algebra over K. Let V be finitely generated right A-module. Suppose $A \simeq M_{m}(D)$ for a central division algebra D over K. Then $V \simeq\left(D^{m}\right)^{s}$ for an integer $s \geq 0$. Then $\operatorname{dim}_{K}(V)=s m \operatorname{dim}_{K}(D)=s \operatorname{deg}(A) \operatorname{ind}(A)$. The reduced dimension [KMRT98, Def. 1.9] of V over A is defined to be $\operatorname{rdim}_{A}(V)=\operatorname{dim}_{K}(V) / \operatorname{deg}(A)=s \operatorname{ind}(A)$.

Let σ be an involution on A such that $K^{\sigma}=k$ Suppose $\varepsilon \in\{1,-1\}$. A map $h: V \times V \rightarrow A$ is an ε-hermitian form over (A, σ) if $h\left(x_{1}+x_{2}, y\right)=h\left(x_{1}, y\right)+h\left(x_{2}, y\right)$, $h\left(x, y_{1}+y_{2}\right)=h\left(x, y_{1}\right)+h\left(x, y_{2}\right)$ for all $x, x_{1}, x_{2}, y, y_{1}, y_{2} \in V ; h(x a, y b)=\sigma(a) h(x, y) b$ for all $a, b \in A, x, y \in V ; h(y, x)=\varepsilon \sigma(h(x, y))$ for all $x, y \in V$. If $\varepsilon=1, h$ is called a hermitian form; if $\varepsilon=-1, h$ is called a skew-hermitian form.

Let $V^{*}=\operatorname{Hom}_{A}(V, A)$. Then V^{*} has a right A-module structrue given by

$$
(f * a)(x)=\sigma(a) f(x) \text { for all } f \in V^{*}, a \in A \text { and } x \in V
$$

Then h gives a right A-module homomorphism $\widetilde{h}: V \rightarrow V^{*}$ such that $\widetilde{h}(x)(y)=$ $h(x, y)$ for all $x, y \in V$. We say that h is an ε-hermitian space if \widetilde{h} is an isomorphism. Let $E=\operatorname{End}_{A}(V)$ and let $\tau=\operatorname{ad}_{h}$ be the adjoint involution of h, i.e. $h(x, f(y))=$ $h(\tau(f)(x), y)$ for all $f \in E$ and $x, y \in V$.

The rank of h is defined to be

$$
\operatorname{Rank}(h)=\frac{\operatorname{dim}_{K}(V)}{\operatorname{deg}(A) \operatorname{ind}(A)}=\frac{\operatorname{rim}_{A}(V)}{\operatorname{ind}(A)}=s .
$$

Let K be a field of characteristic not 2 . Let D is be a division algebra over K with an involution σ. Let V be a finite dimensional right vector space over D. Then $V \simeq D^{n}$. Let h be an ε-hermitian space over (D, σ). There exists $a_{1}, \ldots, a_{n} \in D^{*}$ such that $\sigma\left(a_{i}\right)=\varepsilon a_{i}$ and $h(x, y)=\sigma\left(x_{1}\right) a_{1} y_{1}+\cdots+\sigma\left(x_{n}\right) a_{n} y_{n}$ for all $x=\left(x_{1}, \ldots, x_{n}\right), y=$ $\left(y_{1}, \ldots, y_{n}\right) \in V$. We simply write $h \simeq\left\langle a_{1}, \ldots, a_{n}\right\rangle$ and hence $\operatorname{Rank}(h)=\operatorname{dim}_{D}(V)=$ n.

Suppose $\operatorname{rdim}(V)=2 r{\text { and } \operatorname{ad}_{h} \text { is orthogonal. The determinant of } h \text { is } \operatorname{det}(h)=}^{\sin }$. $\operatorname{Nrd}_{\operatorname{End}_{A}(V) / K}(f) \in K^{*} / K^{* 2}$ for $f \in \operatorname{End}_{A}(V)$ such that $\operatorname{ad}_{h}(f)=-f$. By [KMRT98, Prop. 7.1], the definition is independent of the choice of f. The discriminant of h is
defined to be $\operatorname{disc}(h)=(-1)^{r} \operatorname{det}(h)$. In particular, if $A=D$ is division, ad_{h} is orthogonal and $h \simeq\left\langle a_{1}, \ldots, a_{2 m}\right\rangle$, then $r=m \operatorname{deg}(D), \operatorname{det}(h)=\operatorname{Nrd}_{D / K}\left(a_{1} a_{2} \cdots a_{2 m}\right) \in$ $K^{*} / K^{* 2}$ and $\operatorname{disc}(h)=(-1)^{m \operatorname{deg}(D)} \operatorname{Nrd}_{D / K}\left(a_{1} a_{2} \cdots a_{2 m}\right) \in K^{*} / K^{* 2}$. The proof is similar to [KMRT98, Prop. 7.3(c)].

Example 1.2.1. If $A=K, \sigma=\operatorname{Id}_{K}$ and $\varepsilon=1$, then a hermitian form h is a symmertric bilinear form and $q_{h}(x)=h(x, x)$ for all $x \in V$ is a quadratic form, i.e. a homogeneous map $V \rightarrow K$ of degree 2 .

Conversely, let $q: V \rightarrow K$ be any quadratic form. Its has an associated symmetric bilinear form $b_{q}(x, y)=\frac{1}{2}(q(x+y)-q(x)-q(y))$ for all $x, y \in V$. Then b_{q} is a hermitian form over $\left(K, \mathrm{Id}_{K}\right)$.

An ε-hermitian space h over (A, σ) is called isotropic if there exists $x \neq 0, x \in V$ such that $h(x, x)=0$; otherwise h is called anisotropic. A right sub- F-module W of V is called a totally isotropic subspace if $h(x, y)=0$ for all $x \in W$. Let E be a central simple algebra over K with an involution τ. We say that τ is isotropic if there exists $f \neq 0, f \in E$ such that $\tau(f) f=0$; otherwise τ is called anisotropic. A right ideal I of E is called a totally isotropic ideal if $\tau(f) g=0$ for all $f, g \in E$. Let $E=\operatorname{End}_{D}(V)$ and let $\tau=\operatorname{ad}_{h}$ be the adjoint involution of h. Then h is isotropic if and only if ad ${ }_{h}$ is isotropic. When $A=D$ is division, W is a totally isotropic subspace of V if and only if $I=\operatorname{Hom}_{D}(V, W)$ is a totally isotropic ideal of E [see KMRT98, Prop. 6.2]. Here

$$
\operatorname{rim}_{D}(W)=\frac{\operatorname{dim}_{K}(W)}{\operatorname{deg}(D)}=\frac{\operatorname{dim}_{K}(W) \cdot \operatorname{dim}_{K}(V)}{\operatorname{deg}(D) \cdot \operatorname{dim}_{K}(V)}=\frac{\operatorname{dim}_{K}(I)}{\operatorname{deg}(E)}=\operatorname{rdim}_{E}(I)
$$

Example 1.2.2. [Knu91, Ch. 1, 3.5]. Let A be a central simple algebra over a field K. Let σ be an involution on A. Let V be a finitely generated right A-module. Let $\left(V \oplus V^{*}, \mathbb{H}\right)$ be an ε-hermitian space over (D, σ) defined by

$$
\mathbb{H}((x, f),(y, g))=f(y)+\varepsilon \sigma(g(y))
$$

for all $x, y \in V$ and $f, g \in V^{*}$. Then \mathbb{H} has totally isotropic subspaces $V \oplus 0$ and $0 \oplus V^{*}$. The space $\left(V \oplus V^{*}, \mathbb{H}\right)$ is called the hyperbolic plane of V.

Let $\operatorname{Herm}^{\varepsilon}(A, \sigma)$ denote the category of ε-hermitian spaces over (A, σ). The Hermitian u-invariant [Mah05, Def. 2.1] of (A, σ, ε) is defined to be:

$$
u(A, \sigma, \varepsilon)=\sup \left\{n \mid \text { there exists an anisotropic } h \in \operatorname{Herm}^{\varepsilon}(A, \sigma), \operatorname{Rank}(h)=n .\right\}
$$

Suppose that σ and τ are involutions on A. Mahmoudi has proved that [Mah05, Prop. 2.2] if σ and τ are of the same type, then $u(A, \sigma, \varepsilon)=u(A, \tau, \varepsilon)$; if σ is orthogonal and τ is symplectic, then $u(A, \sigma, \varepsilon)=u(A, \tau,-\varepsilon)$; if σ is unitary, then $u(A, \sigma, 1)=u(A, \sigma,-1)$. Thus we have only three types of Hermitian u-invariants [Mah05, Rem. 2.3], we denote:

$$
u(A, \sigma, \varepsilon)= \begin{cases}u^{+}(A), & \text { if } \varepsilon=1 \text { and } \sigma \text { is orthogonal, } \\ & \text { or, } \varepsilon=-1 \text { and } \sigma \text { is symplectic; } \\ u^{-}(A), & \text { if } \varepsilon=-1 \text { and } \sigma \text { is orthogonal, } \\ & \text { or, } \varepsilon=1 \text { and } \sigma \text { is symplectic; } \\ u^{0}(A), & \text { if } \sigma \text { is unitary }\end{cases}
$$

where u^{+}is called the orthogonal Hermitian u-invariant, u^{-}is called the symplectic Hermitian u-invariant and u^{0} is called the unitary Hermitian u-invariant.

Let A be a central simple algebra over a field K. Let σ be an involution on A. Let $\varepsilon \in\{1,-1\}$. Suppose $\left(V_{1}, h_{1}\right)$ and $\left(V_{2}, h_{2}\right)$ are two ε-hermitian spaces over (A, σ), their orthogonal sum $\left(V_{1} \oplus V_{2}, h_{1} \perp h_{2}\right)$ is defined to be

$$
\left(h_{1} \perp h_{2}\right)\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=h_{1}\left(x_{1}, y_{1}\right)+h_{2}\left(x_{2}, y_{2}\right)
$$

for all $x_{1}, x_{2}, y_{1}, y_{2} \in V$. Isomorphism classes of ε-hermitian spaces over (A, σ) with respect to \perp form an abelian monoid. The Grothendieck group $\operatorname{KU}^{\varepsilon}(A, \sigma)$ of this abelian monoid is an abelian group. Orthogonal sums of hyperbolic planes are called
hyperbolic spaces. Then Witt group $W^{\varepsilon}(A, \sigma)$ is the quotient of $\mathrm{KU}^{\varepsilon}(A, \sigma)$ by its subgroup of classes of hyperbolic spaces [see Knu91, Ch. 1, 10].

In particular, if $A=D$ is a central division algebra, by Witt's decomposition [Knu91, Ch. 1, 6.1.1], an ε-hermitian space h over (D, σ) can be written uniquely as

$$
h \simeq h_{\mathrm{an}} \perp h_{\mathrm{hyp}},
$$

where $h_{\text {an }}$ is anisotropic and $h_{\text {hyp }}$ is hyperbolic. Two ε-hermitian spaces h_{1} and h_{2} over (D, σ) are Witt equivalent if $\left(h_{1}\right)_{\mathrm{an}} \simeq\left(h_{2}\right)_{\mathrm{an}}$. Let $[h]$ denote the Witt equivalence class of h. The $W^{\varepsilon}(D, \sigma)$ is an abelian group with underlying set

$$
\{[h] \mid h \text { is an } \varepsilon \text { hermitian space over }(D, \sigma) .\}
$$

the associative and commutative addition $\left[h_{1}\right]+\left[h_{2}\right]=\left[h_{1} \perp h_{2}\right]$ for all ε-hermitian spaces h_{1} and h_{2} over (D, σ), the identity element $0=[\mathbb{H}]$, the inverse $-[h]=[-h]$ for all ε-hermitian space h over (D, σ).

Let (K, v) be a discrete valued field with valuation ring R_{v}, maximal ideal m_{v} and residue field $k(v)=R_{v} / m_{v}, \operatorname{char}(k(v)) \neq 2$. Let $\left(\widehat{R_{v}}, \widehat{m_{v}}\right)$ be the completion of $\left(R_{v}, m_{v}\right)$ and $K_{v}=\operatorname{Frac}\left(\widehat{R_{v}}\right)$. Let \widehat{v} be the extension of v to K_{v}. We have $k(\widehat{v})=\widehat{R_{v}} / \widehat{m_{v}}=k(v)$. Let D be a finite-dimensional division algebra over K with an involution σ such that $Z(D)^{\sigma}=K$. Suppose that $D \otimes_{K} K_{v}$ is a division algebra over K_{v}. By [CF67, ch. II, 10.1], \widehat{v} extends to a valuation v^{\prime} on $Z\left(D \otimes_{K} K_{v}\right)$ such that

$$
v^{\prime}(x)=\frac{1}{\left[Z\left(D \otimes_{K} K_{v}\right): K_{v}\right]} v\left(N_{Z\left(D \otimes_{K} K_{v}\right) / K_{v}}(x)\right)
$$

for all $x \in\left(D \otimes_{K} K_{v}\right)^{*}$. By [Wad86], v^{\prime} extends to a valuation w on $D \otimes_{K} K_{v}$ such that

$$
w(x)=\frac{1}{\operatorname{ind}\left(D \otimes_{K} K_{v}\right)} v^{\prime}\left(\operatorname{Nrd}_{D \otimes_{K} K_{v} / Z\left(D \otimes_{K} K_{v}\right)}(x)\right)
$$

for all $x \in\left(D \otimes_{K} K_{v}\right)^{*}$. The restriction of w to D is a valuation on D and $w(x)=$ $\frac{1}{\operatorname{ind}(D)} v\left(\operatorname{Nrd}_{D / K}(x)\right)$ for all $x \in D^{*}$. Since $\operatorname{Nrd}_{D / K}(x)=\operatorname{Nrd}_{D / K}(\sigma(x))$, we have
$w(\sigma(x))=w(x)$ for all $x \in D$. Since $\operatorname{Nrd}_{D / K}(x)=\operatorname{Nrd}_{D / K}(\sigma(x))$, we have $w(\sigma(x))=$ $w(x)$ for all $x \in D$. Let t_{D} be the parameter of (D, w) (see [Rei03, Th. 13.2]). We may choose $\pi_{D} \in D^{*}$ such that $w\left(\pi_{D}\right) \equiv w\left(t_{D}\right) \bmod 2 w\left(D^{*}\right)$ and $\sigma\left(\pi_{D}\right)= \pm \pi_{D}$ (see [Lar99, Prop. 2.7]). Let $R_{w}=\{x \in D \mid w(x) \geq 0\}$ and $\mathfrak{m}_{w}=\{x \in D \mid w(x)>0\}$. Let $D(w)=R_{w} / \mathfrak{m}_{w}$ be the residue division algebra (see [Rei03, Th. 13.2]) of (D, w) over $k(v)$ with involution σ_{w} such that $\sigma_{w}\left(q_{w}(x)\right)=q_{w}\left(\sigma_{w}(x)\right)$ for all $x \in R_{w}$, where $q_{w}(x)=x+\mathfrak{m}_{w}$.

Let (V, h) be an ε-hermitian space over (D, σ) for $\varepsilon \in\{1,-1\}$. Then there exists an orthogonal basis of V such that h has a diagonal form $\left\langle a_{1}, \ldots, a_{m}\right\rangle, a_{i} \in D, \sigma\left(a_{i}\right)=$ εa_{i}. If $w\left(a_{i}\right)=0$ for all i, then $q_{w}(h)=\left\langle q_{w}\left(a_{1}\right), \ldots, q_{w}\left(a_{m}\right)\right\rangle \in \operatorname{Herm}^{\varepsilon}\left(D(w), \sigma_{w}\right)$. Up to isometry, we may assume that any $h \in \operatorname{Herm}^{\varepsilon}(D, \sigma)$ has diagonal entries with w-value either 0 or $w\left(t_{D}\right)$ [Lar99, Prop. 2.20].

Proposition 1.2.3 ([Lar06, Th. 3.4, Th. 3.6], [Lar99, Th. 3.27, Th. 3.29]). Suppose $\sigma\left(\pi_{D}\right)=\varepsilon^{\prime} \pi_{D}$. There exists a unique decomposition $h_{K_{v}} \simeq h_{1} \perp h_{2} \pi_{D}$, where $h_{1} \in$ $\operatorname{Herm}^{\varepsilon}\left(D \otimes_{K} K_{v}, \sigma \otimes_{K} \operatorname{Id}_{K_{v}}\right), h_{2} \in \operatorname{Herm}^{\varepsilon \varepsilon^{\prime}}\left(D \otimes_{K} K_{v}, \operatorname{Int}\left(\pi_{D}\right) \circ\left(\sigma \otimes_{K} \operatorname{Id}_{K_{v}}\right)\right)$ and each diagonal entry of h_{1} and h_{2} has w-value 0 . Furthermore, the following are equivalent:
(a) h is isotropic;
(b) h_{1} or h_{2} is isotropic;
(c) $q_{w}\left(h_{1}\right)$ or $q_{w}\left(h_{2}\right)$ is isotropic.

We have specified w in every notation because we will consider more than one valuation in chapter 2 . In chapter 3 and chapter 4, we will use more friendly overlines for structures over residue fields.

1.3. Algebraic groups and Rationality

We refer readers to [Spr98; Bor91; Hum75] for details of algebraic groups over fields and $\left[\mathrm{SGA}_{3 . \mathrm{I}} ; \mathrm{SGA}_{3 . \mathrm{II}} ; \mathrm{SGA}_{3 . \mathrm{III}}\right]$ for details of group schemes. Let K be a field. Let $K_{\text {alg }}$ be the algebraic closure of K. Let $K_{\text {sep }}$ be the separable closure of K in $K_{\text {alg }}$. Let Algebras ${ }_{K}$ be the category of commutative associative unital algebras over K
and K-algebra homomorphisms. Let Sets be the category of sets and maps. In this dissertation, a variety over K means a geometrically reduced separated scheme of finite type over K (not necessarily irreducible). Let X be a variety over K. Let L be a commutative associative unital algebras over K (for example, L is a field extension of K). We denote $X_{L}=X \times_{\operatorname{Spec}(K)} \operatorname{Spec}(L)$ the scalar extension of X to L. We also denote $X_{\text {sep }}=X_{K_{\text {sep }}}$ and $X_{\text {alg }}=X_{K_{\text {alg }}}$. We denote $X(L)=\operatorname{Hom}_{\text {Spec }(K)}(\operatorname{Spec}(L), X)$ the set of L-points of X. By Yoneda's lemma [Yon54], a variety X over K is identified with its the functor of points $X:$ Algebras ${ }_{K}^{\mathrm{op}} \rightarrow$ Sets.

Example 1.3.1. Let \mathbb{P}^{n} be the projective space of dimension n over $K\left[E G A_{\text {II }}\right.$, Def. 4.1.1]. A projective scheme over K is a closed subscheme of some \mathbb{P}^{n}. By [EGA ${ }_{\text {II }}$, Th. 5.5.3], every projective scheme over K is a variety over K.

Let Groups be the category of groups and group homomorphisms. A variety G over K is called an algebraic group over K if its functor of points is from Algebras $_{K}^{\text {op }}$ to Groups. A morphism $f: G_{1} \rightarrow G_{2}$ of two algebraic groups over K is a natural transformation of their functor of points.

Example 1.3.2. The general linear group over K is GL_{n} : Algebras ${ }_{K}^{\mathrm{op}} \rightarrow$ Groups such that $\mathrm{GL}_{n}(L)=\{n \times n$ invertible matrices with entries in $L\}$.

Example 1.3.3. The multiplicative group over K is $\mathbb{G}_{m}:$ Algebras $_{K}^{\mathrm{op}} \rightarrow$ Groups such that $\mathbb{G}_{m}(L)=L^{*}$ for all $L \in$ Algebras $_{K}$.

Let G be an algebraic group over K. A subvariety H of G over K is a subgroup of G if $H(L)$ is subgroup of $G(L)$ for all $L \in \operatorname{Algebras}_{K}$. By $\left[\mathrm{SGA}_{3 . \mathrm{I}}, \mathrm{VI}_{\mathrm{A}}, 0.5 .2\right]$, every subgroup H of G is closed. A subgroup N of G is a normal subgroup of G if $N(L)$ is a normal subgroup of $G(L)$ for all $L \in \operatorname{Algebras}_{K}$. By $\left[\mathrm{SGA}_{3 . \mathrm{I}}, \mathrm{VI}_{\mathrm{A}}, 3.3 .2(\mathrm{v})\right]$, there exists a quotient algebraic group G / N over K and a canonical morphism $G \rightarrow G / N$. Since varieties are assumed to be geometrically reduced, by $\left[\mathrm{SGA}_{3 . \mathrm{I}}, \mathrm{VI}_{\mathrm{A}}, 1.3 .1\right], G$ is smooth, i.e. all local rings of $G_{\text {sep }}$ are regular.

Suppose K is a perfect field. Then $K_{\text {sep }}=K_{\text {alg }}$ and the structure of G is described by the following tower of normal subgroups and quotients. By $\left[\mathrm{SGA}_{3 . \mathrm{I}}, \mathrm{VI}_{\mathrm{A}}, 2.6 .5\right]$, there exists a unique irreducible component G^{0} that contains the identity element of G. Further, G^{0} is a normal closed subgroup of G over K and also a connected component of G. By $\left[\mathrm{SGA}_{3 . \mathrm{I}}, \mathrm{VI}_{\mathrm{A}}, 5.5 .1\right], G / G^{0}$ is étale over K, i.e. its scalar extension to $K_{\text {alg }}$ is a finite product of copies of $\operatorname{Spec}\left(K_{\text {alg }}\right)$. By $\left[\mathrm{SGA}_{3 . \mathrm{I}}, \mathrm{VI}_{\mathrm{B}}, 11.11\right]$, G is affine if and only if G is a closed subgroup of the general linear group GL_{n} over K. An affine algebraic group G is also called a linear algebraic group. By [Che60], there exists a unique maximal linear connected normal closed subgroup G^{1} of G^{0} such that G^{0} / G^{1} is an abelian variety over K, i.e. it is a projective variety as well as an algebraic group. The commutator subgroup $[G, G]$ of G satisfies that $[G, G](L)$ is generated by $a b a^{-1} b^{-1}$ for all $a, b \in G(L)$ and for all L / K. We have $[G, G]$ is a normal subgroup of G. Let $H_{0}=G, H_{n+1}=\left[H_{n}, H_{n}\right]$ for all $n \geq 0$. The group G is called solvable if $H_{n}=\left\{e_{G}\right\}$ for some n, where e_{G} is the identity element of G. By [Che58, $\S 9.4$, prop. 2], there exists a unique maximal connected solvable normal subgroup $\operatorname{Rad}\left(G_{\text {sep }}^{1}\right)$ of $G_{\text {sep }}^{1}$. By [Spr98, Rem. 12.1.7], $\operatorname{Rad}\left(G_{\text {sep }}^{1}\right)$ is defined over K. Suppose $\operatorname{Rad}\left(G^{1}\right)$ is an algebraic group over K such that $\operatorname{Rad}\left(G^{1}\right)_{\text {sep }} \simeq \operatorname{Rad}\left(G_{\text {sep }}^{1}\right)$ and $\operatorname{Rad}\left(G^{1}\right)$ is called the radical of G^{1} over K. If $\operatorname{Rad}\left(G^{1}\right)=\left\{e_{G}\right\}$, then G^{1} is called semisimple. Let $G^{2}=\operatorname{Rad}\left(G^{1}\right)$ and $G^{\text {ss }}=G^{1} / G^{2}$. Then G^{2} is solvable and $G^{\text {ss }}$ is semisimple. Since G^{1} is a linear algebraic group over K, we have $G^{1} \hookrightarrow \mathrm{GL}_{n}$ for some integer $n>0$. By Jordan decomposition, $g=g_{s} g_{u}$ for all $g \in G^{1}$, where g_{s} is semisimple, i.e. g_{s} is represented by a diagonal matrix in $\mathrm{GL}_{n} ; g_{u}$ is unipotent, i.e. $\left(g_{u}-I_{n}\right)^{m}=0$ in GL_{n} for some integer $m>0$. A linear algebraic group is called unipotent if every element of it is unipotent. Let $\operatorname{Rad}_{u}\left(G_{\text {sep }}^{1}\right)=\left\{g \in \operatorname{Rad}\left(G_{\text {sep }}^{1}\right) \mid g=g_{u}\right\}$. By [Che58, $\S 12.3$, Th. 1], $\operatorname{Rad}\left(G_{\text {sep }}^{1}\right)$ is a normal closed subgroup of $G_{\text {sep }}^{2}$. By [Spr98, Rem. 12.1.7], $\operatorname{Rad}_{u}\left(G_{\text {sep }}^{1}\right)$ is defined over K. Suppose $\operatorname{Rad}_{u}\left(G^{1}\right)$ is an algebraic group over K such that $\operatorname{Rad}_{u}\left(G^{1}\right)_{\text {sep }} \simeq \operatorname{Rad}_{u}\left(G_{\text {sep }}^{1}\right)$ and $\operatorname{Rad}_{u}\left(G^{1}\right)$ is called the unipotent radical of G^{1} over K. If $\operatorname{Rad}_{u}\left(G^{1}\right)=\left\{e_{G}\right\}$, then G^{1} is called reductive. Let $G^{3}=\operatorname{Rad}_{u}\left(G^{1}\right)$. Then
G^{3} is unipotent and G^{2} / G^{3} is a torus, i.e. its scalar extension to $K_{\text {alg }}$ is a finite direct product of copies of \mathbb{G}_{m}. The following table summarizes main properties of normal subgroups and quotient groups.

Normal subgroups	G	G^{0}	G^{1}	G^{2}	G^{3}
Properties	algebraic	connected	linear	solvable	unipotent
Quotient groups	G / G^{0}	G^{0} / G^{1}	G^{1} / G^{2}	G^{2} / G^{3}	G^{1} / G^{3}
Properties	étale	projective	semisimple	torus	reductive

From now on, we focus on connected linear algebraic groups.
Suppose G is a connected linear algebraic group over a field K such that $G \hookrightarrow \mathrm{GL}_{n}$ for some integer $n>0$. Let $M_{n}(K)$ be the group of $n \times n$ matrices over K and I_{n} the identity matrix. The Lie algebra of G is defined to be

$$
\operatorname{Lie}(G)=\left\{M \in M_{n}(K) \left\lvert\, I_{n}+M t \in G\left(\frac{K[t]}{\left(t^{2}\right)}\right)\right.\right\} .
$$

with addition and scalar multiplication from $M_{n}(K)$ and Lie bracket $\left[M_{1}, M_{2}\right]=$ $M_{1} M_{2}-M_{2} M_{1}$ for all $M_{1}, M_{2} \in \operatorname{Lie}(G)$. Here t is an indeterminate and $\frac{K[t]}{\left(t^{2}\right)}$ is called the K-algebra of dual numbers. Let $f: G_{1} \rightarrow G_{2}$ be a morphism of connected linear algebraic groups over K such that $G_{1} \hookrightarrow \mathrm{GL}_{n}$ and $G_{2} \hookrightarrow \mathrm{GL}_{n}$ for some integer $n>0$. The differential df: $\operatorname{Lie}\left(G_{1}\right) \rightarrow \operatorname{Lie}\left(G_{2}\right)$ is defined by

$$
f\left(I_{n}+M T\right)=I_{n}+d f(M) t
$$

in $G_{2}\left(\frac{K[t]}{\left(t^{2}\right)}\right)$ for all $M \in \operatorname{Lie}\left(G_{1}\right)$. The adjoint representation of G is defined by

$$
\operatorname{Ad}: G \rightarrow \operatorname{Aut}(\operatorname{Lie}(G)), g \mapsto d(\operatorname{Int}(g))
$$

for all $g \in G$, where $\operatorname{Int}(g): G \rightarrow G$ is the interior automorphism of G given by $\operatorname{Int}(g)(x)=g x g^{-1}$ for all $x \in G$.

Let K be a perfect field. An algebraic group T over K is a torus if $T_{\text {alg }} \simeq\left(\mathbb{G}_{m}\right)_{\text {alg }}^{n}$ for some integer $n>0$. A torus T over K is split if $T \simeq \mathbb{G}_{m}^{n}$. If G contains a split
torus, then we say that G is split. If T is a subgroup of a connected linear algebraic group G over K and T is a torus, then T is called a subtorus of G. A subtorus T of G is called a maximal torus of G if for all subtori T^{\prime} of G such that $T \subseteq T^{\prime}$, we have $T^{\prime}=T$. Let $T_{\text {alg }}$ be a maximal torus of $G_{\text {alg }}$ and let Ad be the adjoint representation Ad: $G_{\text {alg }} \rightarrow \operatorname{Lie}\left(G_{\text {alg }}\right)$. Let $T_{\text {alg }}^{*}=\operatorname{Hom}\left(T_{\text {alg }},\left(\mathbb{G}_{m}\right)_{\text {alg }}\right)$ be the set of morphisms of algebraic groups over $K_{\text {alg }}$. Denote $\mathfrak{g}=\operatorname{Lie}\left(G_{\text {alg }}\right)$. For $\chi \in T_{\text {alg }}^{*}$ define

$$
\mathfrak{g}_{\chi}=\left\{M \in \mathfrak{g} \mid \operatorname{Ad}(g)(M)=\chi(g) M \text { for all } g \in G_{\text {alg }}\right\}
$$

If $\chi \neq 0$ and $\mathfrak{g}_{\chi} \neq 0$, then χ is called a root of $G_{\text {alg }}$ with respect to $T_{\text {alg }}$. Let $\Phi\left(G_{\text {alg }}\right)$ be the set of all roots of $G_{\text {alg }}$ with respect to $T_{\text {alg }}$. Then $\Phi\left(G_{\text {alg }}\right) \subset T_{\text {alg }}^{*} \otimes_{\mathbb{Z}} \mathbb{R}$. Since $T_{\text {alg }} \simeq\left(\mathbb{G}_{m}\right)_{\text {alg }}^{n}$, we have $T_{\text {alg }}^{*} \simeq \mathbb{Z}^{n}$ and hence $\Phi\left(G_{\text {alg }}\right)$ is identified with a subset of \mathbb{R}^{n}. For $\alpha \in \Phi$ and $\alpha \neq 0$, define the reflection $s_{\alpha}(x)=x-2 \frac{(x, \alpha)}{(\alpha, \alpha)} \alpha$ for all $x \in \mathbb{R}^{n}$, where (\cdot, \cdot) is the standard inner product of \mathbb{R}^{n}. A subset $\Phi \subset \mathbb{R}^{n}$ is called a root system $\left[B^{\text {Lou }}{ }_{\text {LIE } 4-6}, \mathrm{VI}, \S 1\right.$, no. 1, Def. 1] of \mathbb{R}^{n} if
(1) $0 \notin \Phi, \Phi$ is finite and Φ spans \mathbb{R}^{n};
(2) For all $\alpha \in \Phi$, the only multiples of α in Φ are $\pm \alpha$;
(3) For all $\alpha \in \Phi, s_{\alpha}(\Phi)=\Phi$;
(4) For all $\alpha, \beta \in \Phi$, there exists $n \in \mathbb{Z}$ such that $s_{\alpha}(\beta)-\beta=n \alpha$.

Then $\Phi\left(G_{\text {alg }}\right)$ is a root system [KMRT98, Th. 25.1].
Let Φ be a root system of \mathbb{R}^{n}. Let $\Phi^{+}=\{\alpha \in \Phi \mid(\alpha, x)>0\}$ for some $x \in \mathbb{R}^{n}$. There exists $\Delta \subset \Phi^{+}$such that Δ is a basis of \mathbb{R}^{n} and every element of Φ^{+}is a linear combination of elements of Δ with positive integeral coefficients; every element of $\Phi^{-}=\Phi \backslash \Phi^{+}$is a linear combination of elements of Δ with negative integeral coefficients. We draw the Dynkin diagram of $\operatorname{Dyn}(\Phi)$ be drawing $n=|\Delta|$ vertices, each vertex corresponds an element of Δ. For $\alpha, \beta \in \Delta$, define $\langle\alpha, \beta\rangle=2 \frac{(\beta, \alpha)}{(\alpha, \alpha)}$.

- If $\langle\alpha, \beta\rangle=\langle\beta, \alpha\rangle=0$, we draw nothing between the vertex of α and the vertex of β;
- If $\langle\alpha, \beta\rangle=\langle\beta, \alpha\rangle=-1$, we draw an undirected edge between the vertex of α and the vertex of β;
- If $\langle\alpha, \beta\rangle=-1$ and $\langle\beta, \alpha\rangle=-2$, we draw a directed edge from the vertex of α to the vertex of β with multiplicity 2 ;
- If $\langle\alpha, \beta\rangle=-1$ and $\langle\beta, \alpha\rangle=-3$, we draw a directed edge from the vertex of α to the vertex of β with multiplicity 3 .

A subset S of a root system is closed if any linear combination of roots of S with coefficients in \mathbb{Z} is still in S. A subset of a root system is irreducible if it cannot be written as the disjoint union of two nonempty closed subsets. By [Bou ${ }_{\text {LIE } 4-6}, \mathrm{VI}$, §4, no. 2, Th. 3], Φ is irreducible if and only if $\operatorname{Dyn}(\Phi)$ is connected; and every Dynkin diagrams of an irreducible root system is called one of the following $A_{n}(n \geq 1)$, $B_{n}(n \geq 2), C_{n}(n \geq 3), D_{n}(n \geq 4), E_{6}, E_{7}, E_{8}, F_{4}, G_{2}$. An algebraic group G over K is simple if its normal closed subgroups are only $\left\{e_{G}\right\}$ and G. A semisimple algebraic group G over K is almost simple if $G / Z(G)$ is simple. An almost simple algebraic group G over K is absolutely almost simple if $G_{\text {alg }}$ is almost simple. By [Che58, § 17, Prop. 1], G is absolutely almost simple if and only if $\Phi\left(G_{\text {alg }}\right)$ is irreducible. A sujective morphism $f: G^{\prime} \rightarrow G^{\prime \prime}$ of connected linear algebraic groups over K with finite kernel is called an isogeny. We say that G^{\prime} and $G^{\prime \prime}$ are strictly isogenous if there exists a third group H with central isogenies $H \rightarrow G^{\prime}$ and $H \rightarrow G^{\prime \prime}$. "Strictly isogenous" is an equivalence relation. If $\operatorname{ker}(f)$ is a subgroup of $Z\left(G^{\prime}\right)$, then f is called a central isogeny. When char $K=0$, all isogenies are central. If G is a semisimple connected linear algebraic group over K, by [BT65, 2.15(c)], there exists an isogeny over K from a finite product of absolutely almost simple groups to G. This fact is important to the classification of projective homogeneous spaces.

Definition 1.3.4. A connected linear algebraic group G over K is rational if its function field $K(G)$ is a purely transcendental extension of K.

Example 1.3.5. The general linear group GL_{n} over K is a rational connected linear algebraic group over K since it is open in $\mathbb{A}_{K}^{n^{2}}$. Similarly, the projective general linear group PGL_{n} over K is a rational connected linear algebraic group over K.

Let A be a central simple algebra over K. By the proof of [HHK09, Th. 5.1], $\mathrm{GL}_{n}(A)$ and $\mathrm{PGL}_{n}(A)$ are also rational connected linear algebraic group over K.

Suppose $\operatorname{deg}(A)=d$. By [KMRT98, Th. 25.9], $\operatorname{PGL}_{1}(A)$ has type A_{d-1}.
Example 1.3.6. Let K be a field of characteristic not 2. Let L be a quadratic field extension of K. Let A be a central division algebra over L. Let σ be an involution on A of the second kind such that $L^{\sigma}=K$. Let V be a finitely generated right A-module. Let $h: V \times V \rightarrow A$ be an ε-hermitian form for $\varepsilon \in\{1,-1\}$. The unitary group of is defined to be $\mathrm{U}(A, \sigma, h)=\left\{f \in \operatorname{End}_{A}(V)^{*} \mid h(f(x), f(y))=h(x, y)\right\}$. Let ad ${ }_{h}$ be the adjoint involution of h in $\operatorname{End}_{A}(V)$. Let $\mathrm{U}\left(\operatorname{End}_{A}(V), \operatorname{ad}_{h}\right)=\left\{f \in \operatorname{End}_{A}(V)^{*} \mid f \circ\right.$ $\left.\operatorname{ad}_{h}(f)=\operatorname{Id}_{V}\right\}$. Then $\mathrm{U}(A, \sigma, h) \simeq \mathrm{U}\left(\operatorname{End}_{A}(V), \operatorname{ad}_{h}\right)$. By [KMRT98, 23A], $\mathrm{U}(A, \sigma, h)$ is a connected linear algebraic group. Further, by Cayley-parametrization (see [CP98, Lem. 5] or [Mer96, p. 195, Lem. 1]), $\mathrm{U}(A, \sigma, h)$ is rational.

Suppose $\operatorname{rdim}(V)=r$, by [PR94, Prop. 2.15(3)], $\mathrm{U}(A, \sigma, h)$ has type A_{r-1}.
Example 1.3.7. Let K be a field of characteristic not 2 . Let A be a central simple algebra over K. Let σ be an involution on A of the first kind. Let V be a finitely generated right A-module. Let $h: V \times V \rightarrow A$ be an ε-hermitian form for $\varepsilon \in\{1,-1\}$. The special unitary group of is defined to be $\operatorname{SU}(A, \sigma, h)=\{f \in$ $\left.\operatorname{End}_{A}(V)^{*} \mid h(f(x), f(y))=h(x, y), \operatorname{det}(f)=1\right\}$. By [KMRT98, 23A], $\operatorname{SU}(A, \sigma, h)$ is a connected linear algebraic group and $\mathrm{SU}(A, \sigma, h)=\mathrm{U}(A, \sigma, h)^{0}$. Further, by Cayley-parametrization (see [CP98, Lem. 5] or [Mer96, p. 195, Lem. 1]), $\mathrm{SU}(A, \sigma, h)$ is rational.

If $A=K, \sigma=\operatorname{Id}_{K}, \varepsilon=1, h=q$ and $\operatorname{dim}_{K}(V)=2 n+1$, then, by [PR94, Prop. 2.15(2)], $\mathrm{SU}(A, \sigma, h)=\mathrm{SO}_{2 n+1}(q)$ has type B_{n}.

Suppose $\operatorname{rdim}_{A}(V)=2 n$. Let ad_{h} be the adjoint involution of h on $\operatorname{End}_{A}(V)$. If ad_{h} is symplectic (i.e. σ is orthogonal and $\varepsilon=-1$, or σ is symplectic and $\varepsilon=1$),
then, by [PR94, Prop. 2.15(1)], $\mathrm{SU}(A, \sigma, h)$ has type C_{n}. If ad_{h} is orthogonal (i.e. σ is orthogonal and $\varepsilon=1$, or σ is symplectic and $\varepsilon=-1$), then, by [PR94, Prop. 2.15(2)], $\mathrm{SU}(A, \sigma, h)$ has type D_{n}.

1.4. Galois cohomology and Principal homogeneous spaces

We refer readers to [GS06; Ser02] form details of Galois cohomology.
Let G be an algebraic group over a field K. Suppose the absolute Galois group $\operatorname{Gal}\left(K_{\text {sep }} / K\right)$ acts on $G\left(K_{\text {sep }}\right)$ by sending g to ${ }^{s} g$ such that ${ }^{\text {sot }}(g)={ }^{s} g \cdot{ }^{t} g$ for all $s, t \in \operatorname{Gal}\left(K_{\text {sep }} / K\right)$ and $g \in G\left(K_{\text {sep }}\right)$, where \cdot is the multiplication in $G\left(K_{\text {sep }}\right)$.

The zero-th Galois cohomology group is defined to be $H^{0}(K, G)=G_{\text {sep }}^{\mathrm{Gal}\left(K_{\text {sep }} / K\right)}$.
Next we define $H^{1}(K, G)$. A 1-cocycle is a map $a: \operatorname{Gal}\left(K_{\text {sep }} / K\right) \rightarrow G\left(K_{\text {sep }}\right)$ such that

$$
a(s t)=a(s) \cdot{ }^{s} a(t)
$$

for all $s, t \in \operatorname{Gal}\left(K_{\mathrm{sep}} / K\right)$. Two 1-cocyles a, b are cohomologous if there exists $g \in$ $G\left(K_{\text {sep }}\right)$ such that

$$
b(s)=g^{-1} \cdot a(s) \cdot{ }^{s} g
$$

Cohomologous is an equivalence relation in the set of 1-cocyles. The first nonabelian Galois cohomology set $H^{1}(K, G)$ is defined to be the set of equivalence classes of 1cocyles. The equivalence class of $e: \operatorname{Gal}\left(K_{\mathrm{sep}} / K\right) \rightarrow G\left(K_{\text {sep }}\right)$ such that $e(s)=1 \in$ $G\left(K_{\mathrm{sep}}\right)$ is called the neutral element of $H^{1}(K, G)$.

When $G\left(K_{\text {sep }}\right)$ is an abelian group, we define $H^{2}(K, G)$. A 2-cocycle is a map $a: \operatorname{Gal}\left(K_{\text {sep }} / K\right)^{2} \rightarrow G\left(K_{\text {sep }}\right)$ such that

$$
{ }^{s} a(t, u) \cdot a(s t, u)^{-1} \cdot a(s, t u) \cdot a(s, t)^{-1}=1
$$

for all $s, t, u \in \operatorname{Gal}\left(K_{\mathrm{sep}} / K\right)$. The set of 2-cocycles form an abelian group. A map $a: \operatorname{Gal}\left(K_{\text {sep }} / K\right)^{2} \rightarrow G_{\text {sep }}$ is 2-coboundary if there exists a map b: $\operatorname{Gal}\left(K_{\text {sep }} / K\right) \rightarrow$ $G\left(K_{\text {sep }}\right)$ such that

$$
a(s, t)={ }^{s} b(t) \cdot b(s t)^{-1} \cdot b(s)
$$

for all $s, t \in \operatorname{Gal}\left(K_{\text {sep }} / K\right)$. The set of 2-coboundaries form a subgroup of the group of 2-cocycles. The second Galois cohomology group $H^{2}(K, G)$ is defined to be the quotient group of 2-cocycles by 2-coboundaries.

Let $1 \rightarrow G_{1} \rightarrow G_{2} \rightarrow G_{3} \rightarrow 1$ be a short exact sequence of algebraic groups over K. By [Ser02, Prop. 36], there exists a long exact sequence

$$
1 \rightarrow H^{0}\left(K, G_{1}\right) \rightarrow H^{0}\left(K, G_{2}\right) \rightarrow H^{0}\left(K, G_{3}\right) \rightarrow H^{1}\left(K, G_{1}\right) \xrightarrow{\delta^{1}} H^{1}\left(K, G_{2}\right)
$$

where for all $x_{3} \in H^{0}\left(K, G_{3}\right)=G_{3}\left(K_{\text {sep }}\right)^{\operatorname{Gal}\left(K_{\text {sep }} / K\right)}$, if x is the image of $x_{2} \in G_{2}\left(K_{\text {sep }}\right)$, then $\delta^{1}\left(x_{3}\right)=[a]$ is the cohomology class of the following 1-cocycle

$$
a: \operatorname{Gal}\left(K_{\mathrm{sep}} / K\right) \rightarrow G_{1}\left(K_{\mathrm{sep}}\right), a(s)=x_{2}^{-1} \cdot{ }^{s} x_{2}
$$

for all $s \in \operatorname{Gal}\left(K_{\text {sep }} / K\right)$. By [Ser02, Prop. 38], if G_{1} is a normal subgroup of G_{2}, we can add one more term " $\rightarrow H^{1}\left(K, G_{3}\right)$ " at the end of the long exact sequence. Further, by [Ser02, Prop. 38], if G_{1} is a subgroup of $Z\left(G_{2}\right)$, we can add another term $\stackrel{\text { 百年 }}{\rightarrow} H^{2}\left(K, G_{1}\right)$ ". Suppose $y_{3}: \operatorname{Gal}\left(K_{\text {sep }} / K\right) \rightarrow G_{3}\left(K_{\text {sep }}\right)$ is a 1-cocycle and it is lifted to $y_{2}: \operatorname{Gal}\left(K_{\mathrm{sep}} / K\right) \rightarrow G_{2}\left(K_{\mathrm{sep}}\right)$. Then $\delta^{2}\left(\left[y_{3}\right]\right)=[b]$ is the cohomology class of the following 2-cocycle

$$
b: \operatorname{Gal}\left(K_{\mathrm{sep}} / K\right)^{2} \rightarrow G_{1}\left(K_{\mathrm{sep}}\right), b(s, t)={ }^{s} y_{2}(t) \cdot y_{2}(s t)^{-1} \cdot y_{2}(s)
$$

Suppose $\operatorname{char}(K) \neq 2$. Let μ_{2} be the group of second roots of unity in $K_{\text {sep }}$. By Kummer theory [GS06, Prop. 4.3.6], there exists an isomorphism

$$
H^{1}\left(K, \mu_{2}\right) \simeq K^{*} / K^{* 2}
$$

By [GS06, Cor. 4.4.9],

$$
H^{2}\left(K, \mu_{2}\right) \simeq{ }_{2} \operatorname{Br}(K)
$$

Let \mathscr{X} be a regular integral scheme with function field F. For every codimension one point x of \mathscr{X}, let $k(x)$ denote the residue field at $x, \operatorname{char}(k(x)) \neq 2$. Then there is a
residue homomorphism

$$
\partial_{x}:{ }_{2} \operatorname{Br}(F) \simeq H^{2}\left(F, \mu_{2}\right) \rightarrow H^{1}\left(k(x), \mu_{2}\right) \simeq k(x)^{*} / k(x)^{* 2} .
$$

Suppose A is a central simple algebra over F of period 2. By a special case [Mer81] of the Merkurjev-Suslin theorem [MS82], A is Brauer equivalent to $H_{1} \otimes \cdots \otimes H_{n}$ for some quaternion algebras H_{1}, \ldots, H_{n} over F. Let $(a, b)_{F}$ be a quaternion algebra over F for $a, b \in F^{*}$. Let v_{x} be the discrete valuation whose valuation ring is the local ring $\mathcal{O}_{\mathscr{X}, x}$. Then the image of Brauer class of the quaternion algebra is defined to be

$$
\partial_{x}\left(\left[(a, b)_{F}\right]\right)=(-1)^{v_{x}(a) v_{x}(b)} a^{v_{x}(b)} b^{-v_{x}(a)} \in k(x)^{*} / k(x)^{* 2} .
$$

Further, $\partial_{x}([A])=\prod_{i=1}^{n} \partial_{x}\left(\left[H_{i}\right]\right)$. We say that an element $\alpha \in{ }_{2} \operatorname{Br}(F)$ is ramified at x if $\partial_{x}(\alpha) \neq 0$; we say that α is unramified at x if $\partial_{x}(\alpha)=0$. The ramification divisor of α is defined as $\sum x$, where x runs over all codimension one points of \mathscr{X} with $\partial_{x}(\alpha) \neq 0$.

Let X be an algebraic varietie over K. Suppose $\operatorname{Gal}\left(K_{\text {sep }} / K\right)$ acts on $X_{\text {sep }}$ by ${ }^{s} x$ for all $s \in \operatorname{Gal}\left(K_{\text {sep }} / K\right)$ and $x \in X_{\text {sep }}$. An algebraic variety Y over K is called a K-form of X if there exists an isomorphism $f: Y_{\text {sep }} \rightarrow X_{\text {sep }}$. Let $a: \operatorname{Gal}\left(K_{\text {sep }} / K\right) \rightarrow \operatorname{Aut}\left(X_{\text {sep }}\right)$ be a 1-cocycle. A K-form of X twisted by a is denoted by ${ }_{a} X$, where the underlying algebraic variety of ${ }_{a} X$ is X and $\operatorname{Gal}\left(K_{\text {sep }} / K\right)$ acts on $\left({ }_{a} X\right)_{\text {sep }}$ by $s * x=a(s) \cdot{ }^{s} x$ for all $s \in \operatorname{Gal}\left(K_{\text {sep }} / K\right)$ and $x \in\left({ }_{a} X\right)_{\text {sep }}$. By [GS06, Th. 2.3.3], there exists a bijection between isomorphism classes of K-forms of X and $H^{1}(K, \operatorname{Aut}(X))$. Also Y is a K form of X if and only if there exists a 1-cocycle $a: \operatorname{Gal}\left(K_{\text {sep }} / K\right) \rightarrow \operatorname{Aut}\left(X_{\text {sep }}\right)$ such that $Y=\left(\left({ }_{a} X\right)_{\text {sep }}\right)^{\operatorname{Gal}\left(K_{\text {sep }} / K\right)} \simeq{ }_{a} X$ and hence we identify Y with ${ }_{a} X$.

Let G be a semisimple connected linear algebraic group over a field K. We say that G is simply connected if for all connected linear algebraic group H over K with a central isogeny $f: H \rightarrow G$, we have that f is an isomorphism. We say that G is adjoint if for all connected linear algebraic group H over K with a central isogeny $f: G \rightarrow H$, we have that f is an isomorphism. By [Tit66, §2.6.1, Prop. 2], there exists a simply connected group \widetilde{G} over K with an isogeny $\widetilde{\pi}: \widetilde{G} \rightarrow G$, an adjoint
group \bar{G} over K with an isogeny $\bar{\pi}: G \rightarrow \bar{G}$ and they are unique up to isomorphism.
Suppose $a: \operatorname{Gal}\left(K_{\text {sep }} / K\right) \rightarrow \operatorname{Aut}\left(G_{\text {sep }}\right)\left(K_{\text {sep }}\right)$ is a 1-cocycle. By [MPW96, Rem. 1.4], we have a short exact sequence

$$
1 \rightarrow Z(G) \rightarrow G \xrightarrow{\mathrm{Ad}} \bar{G} \rightarrow 1
$$

By [GS06, Th. 2.3.3], if $\operatorname{Im}(a) \subseteq \operatorname{Im}\left(\bar{G}\left(K_{\text {sep }}\right) \rightarrow \operatorname{Inn}\left(G_{\text {sep }}\right)\left(K_{\text {sep }}\right)\right)$, then ${ }_{a} G$ is called an inner form of G; otherwise ${ }_{a} G$ is called an outer form of G [see MPW96, Rem. 1.4(ii)].

Let G be an algebraic group over a field K. A Borel subgroup of G over K is a maximal solvable connected linear closed subgroup of G. A subgroup P of G is called a parabolic subgroup if it contains some Borel subgroup. An algebraic group over K is quasi-split if it is reductive and contains a Borel subgroup over K.

Suppose G is semisimple connected linear and K is perfect field. By [Che58, $\S 23.1$, Prop. 1], there exists a maximal torus $\widetilde{T_{\text {sep }}}$ of $\widetilde{G_{\text {sep }}}$ such that isogeny $\widetilde{\pi}: \widetilde{G_{\text {sep }}} \rightarrow G_{\text {sep }}$ satisfies $f\left(\widetilde{T_{\text {sep }}}\right)=T_{\text {alg }}$ and it provides a bijection between $\Phi\left(\widetilde{G_{\text {sep }}}\right)$ and $\Phi\left(G_{\text {sep }}\right)$. By [MPW96, Prop. 1.10], for all semisimple connected linear algebraic group G, there exists a unique quasi-split group $G^{\text {qs }}$ such that G is an inner form of $G^{\text {qs }}$ [see also BT87, §1.3]. Two isogenies $f_{1}, f_{2}: G^{\prime} \rightarrow G^{\prime \prime}$ are conjugate if there exists $g \in G^{\prime}$ such that $f_{2}=f_{1} \circ \operatorname{Int}(g)$, it is an equivalence relation. By the isomorphism theorem [Spr98, Th. 9.6.2], there exists a bijection between conjugacy classes of isomorphisms $G_{\text {sep }} \rightarrow$ $G_{\text {sep }}^{\mathrm{qs}}$ and automorphisms of $\Phi\left(G^{\mathrm{qs}}\right)$. Let Δ be the set of simple roots of $\Phi\left(G_{\text {sep }}\right)=$ $\Phi\left(G_{\mathrm{sep}}^{\mathrm{qs}}\right)$. By [Tit62, §4.3], $\operatorname{Gal}\left(K_{\mathrm{sep}} / K\right)$ acts on Δ and there exists a finite Galois extension K^{\prime} / K such that $G_{K^{\prime}}^{\mathrm{qs}}$ contains a split maximal torus and $\operatorname{Gal}\left(K_{\text {sep }} / K^{\prime}\right) \simeq$ $\operatorname{Aut}(\Delta)$. Let Z_{n} be the name of $\operatorname{Dyn}\left(\Phi\left(G_{\text {sep }}\right)\right)$, we write and call

$$
\left[\mathbf{K}^{\prime}: \mathbf{K}\right] \mathbf{Z}_{\mathbf{n}}
$$

the type of G. When $\left[K^{\prime}: K\right]=1$, we omit it if no confusion is caused. We call $A_{n}, B_{n}, C_{n},{ }^{1} D_{n},{ }^{2} D_{n}$ classical types and ${ }^{3} D_{4},{ }^{6} D_{4}, E_{6}, E_{7}, E_{8}, F_{4}, G_{2}$ exceptional
types. In this dissertation, we are mainly interested in rational absolutely almost simple groups of classical types.

Example 1.4.1. Under assumptions of example 1.3.5, we have $\mathrm{PGL}_{1}(A)$ has type ${ }^{1} A_{d-1}$, where $d=\operatorname{deg}(A)$. In fact, by $G^{\mathrm{qs}}=\mathrm{PGL}_{d}$ has maximal torus \mathbb{G}_{m}^{d-1} over K. Conversely, since $\widetilde{\mathrm{PGL}_{1}(A)}=\mathrm{SL}_{1}(A) \simeq \mathrm{SL}_{m}(D)$ for some integer m such that $d=m \operatorname{deg}(D)$, it follows from [Tit66, Th. 1] that all absolutely almost simple group of type ${ }^{1} A_{d-1}$ is strictly isogenous to some $\mathrm{PGL}_{1}(A)$ as this.

Example 1.4.2. Under assumptions of example 1.3.6, it follows from [Tit66, Table II] that $\mathrm{U}(A, \sigma, h)$ has type ${ }^{2} A_{r-1}$, where $r=\operatorname{rdim}(V)$. Conversely, by [Tit66, Th. 1], all absolutely almost simple group of type ${ }^{2} A_{r-1}$ is strictly isogenous to some $\mathrm{U}(A, \sigma, h)$ as this.

Example 1.4.3. Under assumptions of example 1.3.7, it follows from [Tit66, Table II] that $\mathrm{SO}_{2 n+1}(q)$ has type ${ }^{1} B_{n}$. Conversely, by [Tit66, Th. 1], all absolutely almost simple group of type B_{n} is strictly isogenous to some $\mathrm{SO}_{2 n+1}(q)$ as this.

Suppose $\operatorname{rdim}(V)=2 n$, it also follows from [Tit66, Table II, Th. 1] that
If ad_{h} is symplectic, then $\mathrm{SU}(A, \sigma, h)$ has type ${ }^{1} C_{n}$ and all absolutely almost simple group of type ${ }^{1} C_{n}$ is strictly isogenous to some $\mathrm{SU}(A, \sigma, h)$ as this.

If ad_{h} is orthogonal and $\operatorname{disc}(h)=1$, then $\operatorname{SU}(A, \sigma, h)$ has type ${ }^{1} D_{n}$ and all absolutely almost simple group of type ${ }^{1} D_{n}$ is strictly isogenous to some $\operatorname{SU}(A, \sigma, h)$ as this.

If ad_{h} is orthogonal and $\operatorname{disc}(h) \neq 1$, then $\operatorname{SU}(A, \sigma, h)$ has type ${ }^{2} D_{n}$ and all semisimple groups of type ${ }^{2} D_{n}$ is strictly isogenous to some $\mathrm{SU}(A, \sigma, h)$ as this.

Let G be an algebraic group over K and X an algebraic variety over K. If G acts on X on the left, then $G(L)$ acts on $X(L)$ on the left for all $L \in \operatorname{Algebras}_{K}$ and the action is defined as follows:

$$
G(L) \times X(L) \rightarrow X(L),(g x)(l)=g(l) x(l)
$$

for all $l \in \operatorname{Spec}(L), g: \operatorname{Spec}(L) \rightarrow G, x: \operatorname{Spec}(L) \rightarrow X$.
For a K-algebra homomorphisms $\varphi: L_{1} \rightarrow L_{2}$, we have $\varphi^{-1}: \operatorname{Spec}\left(L_{2}\right) \rightarrow$ $\operatorname{Spec}\left(L_{1}\right)$ that sends a prime ideal l_{2} of L_{2} to its preimage $\varphi^{-1}\left(l_{2}\right)$ of L_{1}. Then it induces $G\left(L_{1}\right) \rightarrow G\left(L_{2}\right)$ and $X\left(L_{1}\right) \rightarrow X\left(L_{2}\right)$ defined by $-\circ \varphi^{-1}$. We have that the following diagram commutes

for all K-algebra homomorphisms $L_{1} \rightarrow L_{2}$.

Definition 1.4.4. Let G be an algebraic group over K and X an algebraic variety over K. We say that X is a homogeneous space under G if G acts on X on the left and $G(L)$ acts on $X(L)$ transitively for all $L \in \operatorname{Algebras}_{K}$, i.e.

$$
G(L) \times X(L) \rightarrow X(L) \times X(L), \quad(g, x) \mapsto(x, g x) \text { for all } g \in G(L), x \in X(L)
$$

is surjective for all $L \in$ Algebras $_{K}$.
We say that X is a principal homogeneous space (torsor) under G if the map above is bijective for all $L \in$ Algebras $_{K}$.

The trivial principal homogeneous space under G is G itself with left translation. By [Ser02, Prop. 33], there exists a bijection between the set of isomorphism classes of principal homogeneous spaces under G over K and $H^{1}(K, G)$, where the isomorphism class of the trivial principal homogeneous space under G corresponds the neutral element of $H^{1}(K, G)$. As a consequence:

Proposition 1.4.5. [Poo, Prop. 5.11.14]. Let G be a smooth algebraic group over a field K. Let X be a principal homogeneous space under G. Let $[X]$ be the cohomology class associated to X. Then $X(K) \neq \emptyset$ if and only if $[X]$ is the neutral element of $H^{1}(K, G)$.

Let F be a field. Let G be a connected linear algebraic group over F. Let X be a principal or projective homogeneous space under G. One is interested in knowing when does X have a F-rational point, i.e. $X(F) \neq \emptyset$. Then, for many examples of X, there are well known methods to verify whether X has a F-rational point or not. Let $\left\{F_{v}\right\}_{v \in \Omega}$ be a set of field extensions of F indexed by a set Ω. If $X(F) \neq \emptyset$, then clearly $X\left(F_{v}\right) \neq \emptyset$. We say that the Hasse-principle holds for X with respect to $\left\{F_{v}\right\}_{v \in \Omega}$ if

$$
\prod_{v \in \Omega} X\left(F_{v}\right) \neq \emptyset \Longrightarrow X(F) \neq \emptyset
$$

It is well-known that we can not expect the Hasse principle holds for F, Ω and $\left\{F_{v}\right\}_{v \in \Omega}$ in general. Next, we give a short survey on what is known about Hasse principle of principal homogeneous spaces.

Let F be a global field, i.e. a number field, or a function field of one variable over a finite field. A place of F is an equivalence class of absolute values of F. Let Ω be the set of all places of F, i.e. non-archimedean places which corresponds discrete valuations and archimedean places which are either real or complex. For $v \in \Omega$, let F_{v} be the completion of F at v. Let G be a semisimple, simply connected, linear algebraic group over F. Let X be a principal homogeneous space over G. By proposition 1.4.5, the Hasse principle for X is equivalent to the injectivity of

$$
H^{1}(F, G) \rightarrow \prod_{v \in \Omega} H^{1}\left(F_{v}, G\right)
$$

The Albert-Brauer-Hasse-Noether theorem [BNH32; AH32] states that if A is a central simple algebra over a global field F, then A splits iff $A_{F_{v}}$ splits for all places v of F. By [GS06, Th. 2.4.3], there exists a bijection between isomorphism classes of central simple algebras over K of degree n and $H^{1}\left(F, \mathrm{PGL}_{n}\right)$. Hence

$$
H^{1}\left(F, \mathrm{PGL}_{n}\right) \rightarrow \prod_{v \in \Omega} H^{1}\left(F_{v}, \mathrm{PGL}_{n}\right)
$$

is injective and hence the Hasse principle holds for principal homogeneous spaces under PGL_{n} over global fields.

The Hasse-Minkowski theorem [Has23; Has24b; Has24a; Min90] states that if q_{1} and q_{2} are quadratic forms over a global field F, then $q_{1} \simeq q_{2}$ if and only if $\left(q_{1}\right)_{F_{v}} \simeq\left(q_{2}\right)_{F_{v}}$ for all $v \in \Omega_{F}$. Let q be a quadratic space over F of rank n and let $\mathrm{O}_{n}(q)$ be the orthogonal group of q. By [KMRT98, Eq. 29.28], there exists a bijection between isomorphism classes of quadratic spaces of dimension n and $H^{1}\left(F, \mathrm{O}_{n}(q)\right)$. Hence

$$
H^{1}\left(F, \mathrm{O}_{n}(q)\right) \rightarrow \prod_{v \in \Omega} H^{1}\left(F_{v}, \mathrm{O}_{n}(q)\right)
$$

is injective and hence the Hasse principle holds for principal homogeneous spaces under $\mathrm{O}_{n}(q)$ over global fields.

Let Ω_{∞} be the set of real places of a global field F. Let A be a central simple algebra over F. From the exact sequence $1 \rightarrow \mathrm{SL}_{1}(A) \rightarrow \mathrm{GL}_{1}(A) \xrightarrow{\mathrm{Nrd}} \mathbb{G}_{m} \rightarrow 1$, we have an exact sequence $A^{*} \xrightarrow{\operatorname{Nrd}_{A / F}} F^{*} \rightarrow H^{1}\left(F, \mathrm{SL}_{1}(A)\right) \rightarrow H^{1}\left(F, \mathrm{GL}_{1}(A)\right)$. By Hilbert $90, H^{1}\left(F, \mathrm{GL}_{1}(A)\right)=1$ and hence $H^{1}\left(F, \mathrm{SL}_{1}(A)\right)=F^{*} / \operatorname{Nrd}_{A / F}\left(A^{*}\right)$. By a theorem of Hasse-Schilling-Maass [Rei03, Th. 33.15], $x \in \operatorname{Nrd}_{A / F}\left(A^{*}\right)$ if and only if $x_{v}>0$ for all $v \in \Omega_{\infty}$ such that A is ramified at v. Then

$$
H^{1}\left(F, \mathrm{SL}_{1}(A)\right) \rightarrow \prod_{v \in \Omega_{\infty}} H^{1}\left(F_{v}, \mathrm{SL}_{1}(A)\right)
$$

is injective.
If G is a semisimple, simply connected linear algebraic group over a global field F, then

$$
H^{1}(F, G) \rightarrow \prod_{v \in \Omega_{\infty}} H^{1}\left(F_{v}, G\right)
$$

is bijective. The case for G of classical types over a number field F is proved by Eichler, Kneser, Springer [Kne69, §5.1, Th. 1]; The case for G of non- E_{8} types over a number field F is proved by [Har65; Har66]; The case for G of E_{8} type over a number
field F is proved by [Che89]; The case for G of any type over a function field F of a curve over a finite field is proved by [Har75].

See also [BP98], [COP02, Th. 5.2], [CGP04, Th. 5.2(b)], [CPS12, Th. 4.8], [HHK14, Th. 3.3.6], [Pre13], [Hu14] for Hasse principles for principal homogeneous spaces under other choices of $F, \Omega,\left\{F_{v}\right\}_{v \in \Omega}$ and G.

1.5. Projective homogeneous spaces

We refer readers to [MPW96; MPW98] for details of projective homogeneous spaces.

Definition 1.5.1. Let G be an algebraic group over K and X an algebraic variety over K. We say that X is a projective homogeneous space under G if X is a homogeneous space under G and a projective variety over K.

Let G be an algebraic group over K and X an algebraic variety over K such that G acts on X. Then $G(L)$ acts on X_{L} for all $L \in \operatorname{Algebras}_{K}$ by

$$
G(L) \times X_{L} \rightarrow X_{L}, g(x, l)=(g(l) x, l)
$$

for all $g: \operatorname{Spec}(L) \rightarrow G, x \in X, l \in \operatorname{Spec}(L)$ such that $(x, l) \in X_{L}$. The action of $G(L)$ on X_{L} is well-defined.

Let G be a semisimple connected linear algebraic group over a field K and X an algebraic variety over K such that G acts on X. Then $G\left(K_{\text {sep }}\right)$ acts on $X_{\text {sep }}$ and it gives a group homomorphism $\varphi: G\left(K_{\text {sep }}\right) \rightarrow \operatorname{Aut}\left(X_{\text {sep }}\right)$. If $a: \operatorname{Gal}\left(K_{\text {sep }} / K\right) \rightarrow G\left(K_{\text {sep }}\right)$ is a 1-cocycle, then the composition $\varphi \circ a$ is also a 1 -cocycle. We write the K-form of X twisted by $\varphi \circ a$ as ${ }_{a} X={ }_{\varphi \circ a} X$.

Lemma 1.5.2. [BS68, Prop. 8.4], [Dem77], [After MPW96, Prop. 1.3]. Let Δ be the set of simple roots of $G_{\text {sep }}$ with respect to some maximal torus of $G_{\text {sep }}$ and a choice of positive roots. There exists a bijection between the set of conjugacy classes of parabolic subgroups of $G_{\text {sep }}$ and subsets of Δ. Further, for a fixed $\Theta \subseteq \Delta$, the set
of all parabolic subgroups of $G_{\text {sep }}$ from the cojugacy class corresponding to Φ form a variety defined over K. This variety over K is called the Borel variety of Θ and is denoted by $\mathscr{B}_{\Theta}(G)$.

Lemma 1.5.3. [HHK09, Rem. 3.9], [MPW96, Prop. 1.3, Prop. 1.5] Let G be a semisimple connected linear algebraic group over a field K and X an algebraic variety over K such that G acts on X. The following are equivalent:
(1) X is a projective homogeneous space under G;
(2) X is a projective variety and $G\left(K_{\text {alg }}\right)$ acts on $X\left(K_{\text {alg }}\right)$ transitively;
(3) X is a projective variety and $G\left(K_{\text {sep }}\right)$ acts on $X\left(K_{\text {sep }}\right)$ transitively;
(4) $X \simeq \mathscr{B}_{\Theta}(G)$ for some Θ as in lemma 1.5.2.
(5) there exists a quasi-split group $G^{\text {qs }}$ such that G is an inner form of $G^{\text {qs }}$ and a parabolic subgroup P of $G^{\text {qs }}$ such that $X \simeq{ }_{a}\left(G^{\text {qs }} / P\right)$, where $a: \operatorname{Gal}\left(K_{\text {sep }} / K\right) \rightarrow$ $G\left(K_{\text {sep }}\right)$ is a 1-cocycle.

Because of (5), a projective homogeneous space is also called a twisted flag variety.

Lemma 1.5.4. [BT72, 2.20, (i)]. Let G, G^{\prime} be two algebraic groups over a field K. Let $f: G \rightarrow G^{\prime}$ be a central surjective morphism of algebraic groups over K.
(i) If P is a parabolic subgroup of G, then $f(P)$ is a parabolic subgroup of G^{\prime}.
(ii) If P^{\prime} is a parabolic subgroup of G^{\prime}, then $f^{-1}\left(P^{\prime}\right)$ is a parabolic subgroup of G.

Corollary 1.5.5. Let G, G^{\prime} be two semisimple connected linear algebraic groups over a field K and let X be an algebraic variety over K. If there exists a central isogeny $f: G \rightarrow G^{\prime}$, then X is a projective homogeneous space under G if and only if X is a projective homogeneous space under G^{\prime}.

Proof. It follows directly from lemma 1.5.3(4) and lemma 1.5.4. [See also MPW96, Rem. 1.4(i)].

Let F be an arbitrary field, $\operatorname{char}(F) \neq 2$. Let A be a central simple algebra whose center $Z(A)$ is a field extension of F. Let σ be an involution on A such that
$Z(A)^{\sigma}=F$. Let V be a finitely generated right A-module and let $h: V \times V \rightarrow A$ be an ε-hermitan form over (A, σ) for $\varepsilon \in\{1,-1\}$. Suppose

$$
G=G(A, \sigma, h)= \begin{cases}\mathrm{SU}(A, \sigma, h) & \text { if } \sigma \text { is of the first kind } \\ \mathrm{U}(A, \sigma, h) & \text { if } \sigma \text { is of the second kind }\end{cases}
$$

By example 1.4.2 and example 1.4.3, G is a connected rational linear algebraic group of type ${ }^{2} A_{n}, B_{n}, C_{n},{ }^{1} D_{n}$ or ${ }^{2} D_{n}$, where $n=\operatorname{Rank}_{F}(G)$ such that

$$
\operatorname{rdim}(V)= \begin{cases}n+1, & \text { if } \sigma \text { is unitary; } \\ 2 n+1, & \text { if } A=F, \sigma=\operatorname{Id}_{F} \text { and } \operatorname{dim}_{F}(V) \text { is odd } \\ 2 n, & \text { otherwise }\end{cases}
$$

Let $0<n_{1}<\cdots<n_{r} \leq n$ be an increasing sequence of integers. For every field extension L / F, let

$$
X\left(n_{1}, \ldots, n_{r}\right)(L)=\left\{\left(W_{1}, \ldots, W_{r}\right) \mid 0 \subsetneq W_{1} \subsetneq \cdots \subsetneq W_{r}, W_{i}\right. \text { is a totally }
$$ isotropic subspace of $V \otimes_{F} L, \operatorname{rdim}_{A_{L}} W_{i}=n_{i}$ for all $\left.1 \leq i \leq r\right\}$.

Alternatively, by [KMRT98, p. 6.2] and [Kar00, p. 16.4],
$X\left(n_{1}, \ldots, n_{r}\right)(L)=\left\{\left(I_{1}, \ldots, I_{r}\right) \mid 0 \subsetneq I_{1} \subsetneq \cdots \subsetneq I_{r}, I_{j}\right.$ is a totally isotropic ideal of $\operatorname{End}_{A \otimes_{F} L}\left(V \otimes_{F} L\right), \operatorname{rdim}_{A_{L}} I_{j}=n_{j}$ for all $\left.1 \leq j \leq r\right\}$.

When $r=1$, we denote $X\left(n_{1}\right)$ by $X_{n_{1}}$.

Lemma 1.5.6 ([MPW96; MPW98, sec. 5 and sec. 9]). Let $0<n_{1}<\cdots<n_{r} \leq n$, $\varepsilon \in\{+,-\}$ and L / F a field extension. Then
(1) $X\left(n_{1}, \ldots, n_{r}\right)(L) \neq \emptyset$ if and only if $X_{n_{r}}(L) \neq \emptyset$ and $\operatorname{ind}\left(A_{L}\right) \mid \operatorname{gcd}\left\{n_{1}, \ldots, n_{r}\right\}$.
(2) $X^{\varepsilon}\left(n_{1}, \ldots, n_{r}\right)(L) \neq \emptyset$ if and only if $X_{n_{r}}^{\varepsilon}(L) \neq \emptyset$ and $\operatorname{ind}\left(A_{L}\right) \mid \operatorname{gcd}\left\{n_{1}, \ldots, n_{r}\right\}$.

Example 1.5.7 (Type ${ }^{1} A_{n}$). Let $\operatorname{PGL}_{1}(A)$ be as in example 1.3.6 and example 1.4.1. A generalized Severi-Brauer variety $\mathrm{SB}_{r}(A)$ of A over K [Bla91; VS94] satisfies

$$
\mathrm{SB}_{r}(A)(L)=\left\{I \mid I \text { is a right ideal of } A_{L}, \operatorname{rdim}_{A_{L}}(I)=r\right\}
$$

for all field extensions L / K. The action of $\operatorname{PGL}_{1}(A)$ on $\mathrm{SB}_{r}(A)$ is left multiplication, then $\mathrm{SB}_{r}(A)$ is a projective homogeneous space under $\mathrm{PGL}_{1}(A)$. The set of projective homogeneous spaces of $\operatorname{PGL}_{1}(A)$ is

$$
\left\{X\left(n_{1}, \ldots, n_{r}\right) \mid 0<n_{1}<\cdots<n_{r}<n\right\}
$$

where for all field extensions L / K,

$$
\begin{aligned}
& Y\left(n_{1}, \ldots, n_{r}\right)(L) \\
& =\left\{\left(I_{1}, \ldots, I_{r}\right) \in \mathrm{SB}_{n_{1}}(A)(L) \times \cdots \times \mathrm{SB}_{n_{r}}(A)(L) \mid 0 \subsetneq I_{1} \subsetneq \cdots \subsetneq I_{r}\right\}
\end{aligned}
$$

By [KMRT98, Prop. 1.17], $\operatorname{SB}_{r}(A)(L) \neq \emptyset$ if and only if $\operatorname{ind}\left(A_{L}\right) \mid r$. Then

$$
Y\left(n_{1}, \ldots, n_{r}\right)(L) \neq \emptyset \Longleftrightarrow \operatorname{ind}\left(A_{L}\right) \mid \operatorname{gcd}\left\{n_{1}, \ldots, n_{r}\right\} .
$$

In particular, $\mathrm{SB}_{1}(A)$ is called the Severi-Brauer variety associated to A. If $A=$ $(a, b)_{K}$ is a quaternion algebra, then $\mathrm{SB}_{1}(A)(L)$ is the projective plane conic

$$
\operatorname{Proj}\left(\frac{L\left[X_{0}, X_{1}, X_{2}\right]}{\left(a X_{0}^{2}+b X_{1}^{2}-a b X_{2}^{2}\right)}\right)
$$

Here A is split over L / K if and only if $a X_{0}^{2}+b X_{1}^{2}-a b X_{2}^{2}$ has a nontrivial solution over L.

Example 1.5.8 (Type ${ }^{2} A_{n}$). [MPW98, §9.I]. Let $\mathrm{U}(A, \sigma, h)$ be as in example 1.3.6 and example 1.4.2. The set of projective homogeneous spaces of $\mathrm{U}(A, \sigma, h)$ is

$$
\left\{X\left(n_{1}, \ldots, n_{r}\right) \mid 0 \leq n_{1}<\cdots<n_{r}<\lfloor n / 2\rfloor .\right\}
$$

Example 1.5.9 (Type B_{n}). [MPW96, $\left.\S 5 . \mathrm{II}\right]$. Let $\mathrm{SO}_{2 n+1}(q)$ be as in example 1.3.7 and example 1.4.3. Let $X_{q}=\operatorname{Proj}\left(\frac{\operatorname{Sym}\left(V^{*}\right)}{(q)}\right)$. Then for all $L / F, q_{L}$ is isotropic over L if and only if $X_{q}(L) \neq \emptyset$. The set of projective homogeneous spaces of $\mathrm{SO}_{2 n+1}(q)$ is

$$
\left\{X\left(n_{1}, \ldots, n_{r}\right) \mid 0 \leq n_{1}<\cdots<n_{r} \leq n .\right\}
$$

Here when $r=1$ and $n_{1}=1$, we have $X_{q}=X(1)$.

Example 1.5.10 (Type C_{n}). [MPW96, §5.III]. Let $\mathrm{SU}(A, \sigma, h)$ be as in example 1.3.7 and example 1.4.3. If ad_{h} is symplectic (i.e. σ is symplectic and h is hermitian, or σ is orthogonal and h is skew-hermitian), then $\operatorname{SU}(A, \sigma, h)$ has type C_{n}. The set of projective homogeneous spaces of $\operatorname{SU}(A, \sigma, h)$ is

$$
\left\{X\left(n_{1}, \ldots, n_{r}\right) \mid 0 \leq n_{1}<\cdots<n_{r} \leq n .\right\}
$$

Example 1.5.11 (Type $\left.{ }^{2} D_{n}\right)$. [MPW96, §5.IV]. Let $\operatorname{SU}(A, \sigma, h)$ be as in example 1.3.7 and example 1.4.3. If ad_{h} is orthogonal (i.e. σ is orthogonal and h is hermitian, or σ is symplectic and h is skew-hermitian) and $\operatorname{disc}(h) \neq 1$, then $\operatorname{SU}(A, \sigma, h)$ has type ${ }^{2} D_{n}$. The set of projective homogeneous spaces of $\operatorname{SU}(A, \sigma, h)$ is

$$
\left\{X\left(n_{1}, \ldots, n_{r}\right) \mid 0 \leq n_{1}<\cdots<n_{r}<n .\right\}
$$

Example 1.5.12 (Type $\left.{ }^{1} D_{n}\right)$. [MPW96, §5.IV]. Let $\operatorname{SU}(A, \sigma, h)$ be as in example 1.3.7 and example 1.4.3. If ad_{h} is orthogonal (i.e. σ is orthogonal and h is hermitian, or σ is symplectic and h is skew-hermitian) and $\operatorname{disc}(h)=1$, then $\operatorname{SU}(A, \sigma, h)$ has type ${ }^{1} D_{n}$. If ad_{h} is orthogonal, $\operatorname{disc}(h)=1, r=1$ and $n_{1}=n$, then X_{n} has two connected components X_{n}^{+}and X_{n}^{-}. In this case, for $\varepsilon \in\{+,-\}$, denote

$$
\begin{equation*}
X^{\varepsilon}\left(n_{1}, \ldots, n_{r}\right)(L)=\left\{\left(I_{1}, \ldots, I_{r}\right) \in X\left(n_{1}, \ldots, n_{r}\right)(L) \mid I_{r} \in X_{n}^{\varepsilon}(L)\right\} \tag{1.5.13}
\end{equation*}
$$

The set of projective homogeneous spaces of $\operatorname{SU}(A, \sigma, h)$ is

$$
\begin{gathered}
\left\{X\left(n_{1}, \ldots, n_{r}\right) \mid 0 \leq n_{1}<\cdots<n_{r}<n .\right\} \cup X_{n}^{+} \cup X_{n}^{-} \\
\cup\left\{X^{\varepsilon}\left(n_{1}, \ldots, n_{r}\right) \mid 0 \leq n_{1}<\cdots<n_{r-1}<n-1, n_{r}=n, r>1, \varepsilon \in\{+,-\} .\right\}
\end{gathered}
$$

In particular, let K be a field of characteristic not 2 , let $\mathbb{H}: K^{2} \rightarrow K$ be the hyperbolic plane such that $\mathbb{H}\left(x_{1}, x_{2}\right)=x_{1} x_{2}$ for all $x_{1}, x_{2} \in K$. Then

$$
\left.\begin{array}{rl}
& \mathrm{SO}_{2}(\mathbb{H}) \\
= & \left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{GL}_{2}(K) \left\lvert\, \mathbb{H}\left(\left(x_{1}, x_{2}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)=\mathbb{H}\left(x_{1}, x_{2}\right)\right., a d-b c=1\right\} \\
= & \left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{GL}_{2}(K) \right\rvert\,\left(a x_{1}+b x_{2}\right)\left(c x_{1}+d x_{2}\right)=x_{1} x_{2}, a d-b c=1\right\} \\
= & \left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{GL}_{2}(K) \right\rvert\, a c=b d=0, a d+b c=a d-b c=1\right\}
\end{array}\right\}
$$

Here $n=1, X_{1}=X_{\mathbb{H}}=\left\{\left(x_{1}: x_{2}\right) \in \mathbb{P}_{K}^{1} \mid x_{1} x_{2}=0\right\}$ has two elements. Each singleton $X_{1}^{+}=\left\{(1: 0) \in \mathbb{P}_{K}^{1}\right\}, X_{1}^{-}=\left\{(0: 1) \in \mathbb{P}_{K}^{1}\right\}$ is an orbit of the $\mathrm{SO}_{2}(\mathbb{H})$ action on X_{1}.

Summarizing example 1.5.7, example 1.5.8, example 1.5.9, example 1.5.10, example 1.5.12 and example 1.5.11, we have:

1.6. Morita invariance

Let K be a field. Let A be a central simple algebra over K with an involution σ. Let $k=K^{\sigma}$. Suppose char $k \neq 2$. Let V be a finitely generated right A-module and $\varepsilon \in\{1,-1\}$. Let $h: V \times V \rightarrow A$ be an ε-hermitian space over (A, σ).

Suppose $A=M_{m}(D)$ for a central division algebra D over F. By [KMRT98, Th. 3.1, Rem. 3.11, Rem. 3.20], D has an involution τ of same kind as σ. Fix an $\varepsilon_{0^{-}}$ hermitian space $\left(D^{m}, g\right)$ over (D, τ) for $\varepsilon_{0} \in\{1,-1\}$. By Morita equivalence [Knu91, ch. I, 9.3.5], there exists an $\varepsilon \varepsilon_{0}$-hermitian space $\left(V_{0}, h_{0}\right)$ over (D, τ) defined by

$$
V_{0}=V \otimes_{A} D^{m}, h_{0}(x \otimes a, y \otimes b)=g(a, h(x, y) b) .
$$

Lemma 1.6.1. $\operatorname{rdim}_{A}(V)=\operatorname{rdim}_{D}\left(V_{0}\right)$.

Proof. By the definition of the reduced dimension and $\operatorname{dim}_{K}(A)=m^{2} \operatorname{dim}_{K}(D)$, we have

$$
\begin{gathered}
\operatorname{rdim}_{D}\left(V_{0}\right)=\frac{\operatorname{dim}_{K}\left(V_{0}\right)}{\operatorname{deg}(D)}=\frac{\operatorname{dim}_{K}\left(V \otimes_{A} D^{m}\right)}{\operatorname{deg}(D)}=\frac{m \operatorname{dim}_{K}(V) \operatorname{dim}}{K}(D) \\
\operatorname{dim}_{K}(A) \operatorname{deg}(D) \\
=\frac{\left.\operatorname{dim}_{K}(V)\right)}{m \operatorname{deg}(D)}=\frac{\left.\operatorname{dim}_{K}(V)\right)}{\operatorname{deg}(A)}=\operatorname{rdim}_{A}(V)
\end{gathered}
$$

Lemma 1.6.2. $\operatorname{Rank}(h)=\operatorname{Rank}\left(h_{0}\right)$.

Proof. By the definition of the rank of an ε-hermitian space, we have

$$
\operatorname{Rank}(h)=\frac{\operatorname{rdim}(V)}{\operatorname{ind}(A)}=\frac{\operatorname{rdim}\left(V_{0}\right)}{\operatorname{ind}(D)}=\operatorname{Rank}\left(h_{0}\right) .
$$

Lemma 1.6.3. [Knu91, Ch. 1, 9.3.5].
(1) h is isotropic if and only if h_{0} is isotropic.
(2) h is hyperbolic if and only if h_{0} is hyperbolic.

For $0<n_{1}<\cdots<n_{r} \leq n$, let X be the projective homogeneous space under $G(A, \sigma, h)$ and X_{0} be the projective homogeneous space under $G\left(D, \tau, h_{0}\right)$.

Lemma 1.6.4. $[\operatorname{Kar} 00, \operatorname{Prop} .16 .10] . X\left(n_{1}, \ldots, n_{r}\right) \simeq X_{0}\left(n_{1}, \ldots, n_{r}\right)$.

In fact, we only need $X\left(n_{1}, \ldots, n_{r}\right)(L) \neq \emptyset \Longleftrightarrow X_{0}\left(n_{1}, \ldots, n_{r}\right)(L) \neq \emptyset$. This is true since Morita equivalence preserves isotropy [Knu91, ch. I, 9.3.5] and it preserves reduced dimension.

Lemma 1.6.5. Suppose $\operatorname{rdim}(V)=2 n, \operatorname{ad}_{h}$ is orthogonal, $\operatorname{disc}(h)=1, n_{r-1}<n-1$ (if $r>1$) and $n_{r}=n$. If $\operatorname{ind}\left(A_{L}\right) \mid \operatorname{gcd}\left\{n_{1}, \ldots, n_{r}\right\}$, then $X^{\varepsilon}\left(n_{1}, \ldots, n_{r}\right)(L) \neq \emptyset$ if and only if $X_{0}^{\varepsilon}\left(n_{1}, \ldots, n_{r}\right)(L) \neq \emptyset$, for $\varepsilon \in\{+,-\}$.

Proof. By lemma 1.5.6 and lemma 1.6.4, it suffices to show that for $\varepsilon \in\{+,-\}$,

$$
X_{n}^{\varepsilon}(L) \neq \emptyset \Longleftrightarrow\left(X_{0}\right)_{n}^{\varepsilon}(L) \neq \emptyset .
$$

This is true by the definition of X_{n}^{ε} (see the paragraph at [MPW96, p.577, 5.41, 5.42]).

Lemma 1.6.6. $\operatorname{Suppose} \operatorname{rdim}(V)=2 n, \operatorname{ad}_{h}$ is orthogonal, $\operatorname{disc}(h)=1, n_{r-1}<n-1$ (if $r>1$) and $n_{r}=n$. Let $X^{\varepsilon}=X^{\varepsilon}\left(n_{1}, \ldots, n_{r}\right)$ for $\varepsilon \in\{+,-\}$. Then $X^{+}(L) \neq \emptyset$ and $X^{-}(L) \neq \emptyset$ if and only if A_{L} is split and h_{L} is hyperbolic.

Proof. Suppose that A_{L} is split and h_{L} is hyperbolic. Then h_{L} is Morita equivalent to a hyperbolic quadratic form q over L. Let $X_{0}^{ \pm}$be corresponding projective homogeneous spaces under $\mathrm{SO}_{2 n}(q)$. Since the Witt index of q is n, we have $\left(X_{0}\right)_{n}^{+}(L) \neq$ \emptyset and $\left(X_{0}\right)_{n}^{-}(L) \neq \emptyset$. Since A_{L} is split, we have $\operatorname{ind}\left(A_{L}\right)=1 \mid \operatorname{gcd}\left\{n_{1}, \ldots, n_{r}\right\}$. By lemma 1.5.6(2), $X_{0}^{+}(L) \neq \emptyset$ and $X_{0}^{-}(L) \neq \emptyset . \quad$ By lemma 1.6.5, $X^{+}(L) \neq \emptyset$ and $X^{-}(L) \neq \emptyset$.

Conversely, suppose $X^{+}(L) \neq \emptyset$ and $X^{-}(L) \neq \emptyset$. Let $W^{+} \in X^{+}(L)$ and $W^{-} \in$ $X^{-}(L)$. Since there exists a totally isotropic subspace of reduced dimension n, which is equal to the Witt index of h_{L}, we have that h_{L} is hyperbolic. By Witt's extension theorem $\left[\mathrm{Bou}_{\mathrm{A} 9}, \S 4\right.$, no. 3, th. 1] there exists $\varphi \in \mathrm{U}(A, \sigma, h)$ such that $\varphi\left(W^{+}\right)=W^{-}$. Since $\operatorname{SU}(A, \sigma, h)$ sends $X^{+}(L)$ into $X^{+}(L)$ and $X^{-}(L)$ into $X^{-}(L)$, we obtain $\varphi \notin$ $\mathrm{SU}(A, \sigma, h)$. Thus, by [Kne69, 2.6, lem. 1. a)], A_{L} is split.

Lemma 1.6.7. Let K be a field. Let A be a central simple algebra over K with an involution σ. Let $k=K^{\sigma}$. Suppose char $k \neq 2$. Suppose $A \simeq M_{m}(D)$ for a central division algebra D over K. Suppose σ is an involution on A and $\varepsilon \in\{1,-1\}$. Then there exists an involution τ on D and $\varepsilon_{0} \in\{1,-1\}$ such that $u(A, \sigma, \varepsilon)=u\left(D, \tau, \varepsilon \varepsilon_{0}\right)$. Furthermore, $u^{+}(A)=u^{+}(D), u^{-}(A)=u^{-}(D)$ and $u^{0}(A)=u^{0}(D)$.

Proof. By [Knu91, ch. I, 9.3.5], there exists a fixed ε_{0}-hermitian space (D^{m}, g) over (D, τ) such that σ is the adjoint involution of g in $\operatorname{End}_{D}\left(D^{m}\right) \simeq A$. Any ε-hermitian form (V, h) over (A, σ) is Morita equivalent to an $\varepsilon \varepsilon_{0}$-hermitian form ($V \otimes_{A} D^{m}, h_{0}$) over (D, τ) such that h is isotropic if and only if h_{0} is isotropic.

By lemma 1.6.2, $\operatorname{Rank}(h)=\operatorname{Rank}\left(h_{0}\right)$ for all pairs $\left(h, h_{0}\right)$, we have $u(A, \sigma, \varepsilon)=$ $u\left(D, \tau, \varepsilon \varepsilon_{0}\right)$.

By [KMRT98, p. 4.2], σ is orthogonal if and only if τ is orthogonal and $\varepsilon_{0}=1$ or τ is symplectic and $\varepsilon_{0}=-1 ; \sigma$ is symplectic if and only if τ is orthogonal and $\varepsilon_{0}=-1$ or τ is symplectic and $\varepsilon_{0}=1 ; \sigma$ is unitary if and only if τ is unitary. Hence $u^{+}(A)=u^{+}(D), u^{-}(A)=u^{-}(D)$ and $u^{0}(A)=u^{0}(D)$.

CHAPTER 2

Hasse principle of projective homogeneous spaces

This chapter and the next chapter are based on my preprint [Wu15a].
Let F be a field. Let G be a connected linear algebraic group over F. Let X be a principal or projective homogeneous space under G. Let $\left\{F_{v}\right\}_{v \in \Omega}$ be a set of field extensions of F indexed by a set Ω. If $X(F) \neq \emptyset$, then clearly $X\left(F_{v}\right) \neq \emptyset$. The Hasse-principle holds for X with respect to $\left\{F_{v}\right\}_{v \in \Omega}$ if

$$
\prod_{v \in \Omega} X\left(F_{v}\right) \neq \emptyset \Longrightarrow X(F) \neq \emptyset
$$

Next, we give a short survey on what is known about Hasse principle of projective homogeneous spaces.

Let q be a quadratic form over a global field F. Let X_{q} be projective quadric associated to q. Then $X_{q}(L) \neq \emptyset$ if and only if q_{L} is isotropic for L / F. Let Ω be the set of all places on F. The Hasse-Minkowski theorem [Has23; Has24b; Has24a; Min90] states that if $q: V \rightarrow F$ is a quadratic form over a global field F, then q is isotropic over F iff $q_{F_{v}}$ is isotropic over F_{v} for all $v \in \Omega_{F}$. Suppose $X_{q}\left(F_{v}\right) \neq \emptyset$ for all $v \in \Omega$. Then $q_{F_{v}}$ is isotropic for all $v \in \Omega$. By the Hasse-Minkowski theorem, q is isotropic over F and hence $X_{q}(F) \neq \emptyset$. The local-global principle holds for projective quadrics over global fields. This is also why local-global principles are called Hasse principles.

The Albert-Brauer-Hasse-Noether theorem [BNH32; AH32] states that if A is a central simple algebra over a global field F, then $\operatorname{ind}(A)=\operatorname{lcm}_{v \in \Omega}\left\{\operatorname{ind}\left(A_{F_{v}}\right)\right\}$. Suppose $\mathrm{SB}_{r}(A)\left(F_{v}\right) \neq \emptyset$ for all $v \in \Omega$. By [KMRT98, Prop. 1.17], $\mathrm{SB}_{r}(A)\left(F_{v}\right) \neq \emptyset$ if and only if ind $\left(A_{F_{v}}\right) \mid r$. Then $\operatorname{ind}\left(A_{F_{v}}\right) \mid r$ for all $v \in \Omega$. Then $\operatorname{ind}(A)=\operatorname{lcm}_{v \in \Omega}\left\{\operatorname{ind}\left(A_{F_{v}}\right)\right\} \mid r$.

By [KMRT98, Prop. 1.17] again, $\mathrm{SB}_{r}(A)(F) \neq \emptyset$. Hence the Hasse principle holds for generalized Severi-Brauer varieties over global fields.

Let D be a quaternion division algebra over a global field F. Let σ be the canonical involution on D. Let h be a skew-hermitian space over (D, σ) of rank ≥ 3. Kneser [Kne69, p. V.5.10] and Springer [Kne69, App.] have proved that if $h_{F_{v}}$ is isotropic for all $v \in \Omega$, then h is isotropic. Further, the Hasse principle holds for projective homogeneous spaces under $\operatorname{SU}(D, \sigma, h)$ over F.

Let D be a division algebra over a global field F. Let σ be an involution on D of the second kind. Let h be a ε-hermitian space over (D, σ). Landherr [Lan37] has proved that if $h_{F_{v}}$ is isotropic for all $v \in \Omega$, then h is isotropic. Further, the Hasse principle holds for projective homogeneous spaces under $\mathrm{U}(D, \sigma, h)$ over F.

Let G be a connected linear algebraic group over a number field F. Harder [Har68] has proved that the Hasse principle holds for all projective homogeneous space under G. Later, Borovoi [Bor93, Cor. 7.5] provides a new proof for the same result.

Let T be a complete discrete valuation ring with residue field k. Let K be the field of fractions of T. Let F be the function field of a smooth, projective, geometrically integral curve \mathscr{X}_{0} over K. Recently, such a field F has been called a semi-global field. Let Ω be the set of all rank one discrete valuations on F (or the set of all divisorial discrete valuations from all codimension one points of all regular projective models $\mathscr{X} \rightarrow \operatorname{Spec}(T)$ of the curve $\left.\mathscr{X}_{0}\right)$. For each $v \in \Omega$, let F_{v} be the completion of F at v. Let G be a connected linear algebraic group over F and let X be a projective homogeneous space under G over F. We fix the above hypotheses for the next three paragraphs.

Suppose the residue field of T is k and $\operatorname{char}(k) \neq 2$. Colliot-Thélène, Parimala and Suresh [CPS12, Th. 3.1] have proved the following: Let q be a quadratic form over F of rank ≥ 3. If $q_{F_{v}}$ is isotropic for all $v \in \Omega$, then q is isotropic. Hence the Hasse principle holds for all projective homogeneous spaces under $\operatorname{SO}(q)$ for such q. In the same paper, they made the following

Conjecture 2.0.1. [CPS12, conj. 1]. Let K be a p-adic field and F a function field of a curve over K. Let G be a connected linear algebraic group over F and let X be a projective homogeneous space under G over F. Then the Hasse principle holds for X.

Reddy and Suresh [RS13, Prop. 2.6] have proved the following: Let l be a prime such that $l \neq \operatorname{char}(k)$. Let A be a central simple F-algebra of index a power of l, Suppose K contains a primitive $\operatorname{ind}(A)$-th root of unity. Then $\operatorname{ind}(A)=\operatorname{ind}\left(A \otimes_{F} F_{v}\right)$ for some $v \in \Omega$. Their proof only needs the fact that K contains a primitive $\operatorname{per}(A)-$ th root of unity. Hence the Hasse principle holds for all projective homogeneous space under $\mathrm{PGL}_{1}(A)$ if roots of unity are there.

After [COP02, Th. 3.1] and [CGP04, Th. 5.7], Harbater, Hartmann and Krashen [HHK11, Th. 9.2] have proved that if k is algebraically closed and char $k=0$, then the Hasse principle holds for projective homogeneous spaces under connected rational groups.

In this chapter, we obtain partial answer to conjecture 2.0.1 in corollary 2.3.7 as a corollary of our main result theorem 2.3.6.

2.1. Maximal orders

In this section we recall a theorem of Larmour on Hermitian spaces over discretely valued fields and prove results concerning maximal orders.

Definition 2.1.1. Let R be a noetherian integral domain with field of fractions K. Let A be a finite dimensional algebra over K. A subring Λ of A is called an R-order in A if Λ is a finitely generated R-submodule of A and $K \Lambda=A$.

An R-order Λ in A is called maximal if for all R-order Λ^{\prime} in A such that $\Lambda^{\prime} \supseteq \Lambda$, we have $\Lambda^{\prime}=\Lambda$.

Let (K, v) be a discrete valued field with valuation $\operatorname{ring} R_{v}$ and residue field $k(v)$, $\operatorname{char}(k(v)) \neq 2$. Let K_{v} be the completion of K at v. Let D be a finite-dimensional
division algebra over K with an involution σ such that $Z(D)^{\sigma}=K$. If $D \otimes_{K} K_{v}$ is a division algebra over K_{v}, then v extends uniquely to a valuation w on D such that $w(\sigma(x))=w(x)$ for all $x \in D$. Let $R_{w}=\{x \in D \mid w(x) \geq 0\}$ be the valuation ring of (D, w).

Lemma 2.1.2. Suppose that $D \otimes_{K} K_{v}$ is a division algebra over K_{v}. There exists a unique maximal R_{v}-order Λ in D and the following four sets are identical.
(1) the maximal R_{v}-order Λ in D;
(2) the valuation ring $R_{w}=\{x \in D \mid w(x) \geq 0\}$;
(3) $N=\left\{x \in D \mid N_{D / K}(x) \in R_{v}\right\}$;
(4) the integral closure S of R_{v} in D.

Proof. Existence: By [Rei03, Cor. 10.4], there exists a maximal R_{v}-order Λ in D.

Uniqueness: If Λ and Λ^{\prime} are two maximal R_{v}-orders in D, by [Rei03, Th. 11.5] $\Lambda \otimes \widehat{R_{v}}$ and $\Lambda^{\prime} \otimes \widehat{R_{v}}$ are two maximal $\widehat{R_{v}}$-orders in $D \otimes K_{v}$. By [Rei03, Th. 12.8], the maximal $\widehat{R_{v}}$-order in $D \otimes K_{v}$ is unique. Then $\Lambda \otimes \widehat{R_{v}}=\Lambda^{\prime} \otimes \widehat{R_{v}}$. Then by [Rei03, Th. 5.2], $\Lambda=\left(\Lambda \otimes \widehat{R_{v}}\right) \cap D=\left(\Lambda^{\prime} \otimes \widehat{R_{v}}\right) \cap D=\Lambda^{\prime}$.

Equalities: Let Λ be the unique maximal R_{v}-order in D. By [Rei03, Eq. 12.7, Th. 12.8], the following sets are equal

- the maximal $\widehat{R_{v}}$-order $\widehat{\Lambda}=\Lambda \otimes \widehat{R_{v}}$ in $D \otimes K_{v}$;
- the valuation ring $\widehat{R_{w}}=\left\{x \in D \otimes K_{v} \mid w(x) \geq 0\right\}$;
- $\widehat{N}=\left\{x \in D \otimes K_{v} \mid N_{D \otimes K_{v} / K_{v}}(x) \in \widehat{R_{v}}\right\} ;$
- the integral closure \widehat{S} of $\widehat{R_{v}}$ in $D \otimes K_{v}$.

The proof of (1) equals (2): For $x \in D, w(x \otimes 1)=w(x)$, then $\widehat{R_{w}} \cap D=R_{w}$. Then $\Lambda=\widehat{\Lambda} \cap D=\widehat{R_{w}} \cap D=R_{w}$.

The proof of (1) equals (3): For $x \in D$, by $\left[\mathrm{Bou}_{\mathrm{AC} 8-9}, \S 17\right.$, no. 3, prop. 4, (30)], $\operatorname{Nrd}_{\left(D \otimes K_{v}\right) / K_{v}}(x \otimes 1)=\operatorname{Nrd}_{D / K}(x)$, then

$$
N_{\left(D \otimes K_{v}\right) / K_{v}}(x \otimes 1)=\operatorname{Nrd}_{\left(D \otimes K_{v}\right) / K_{v}}(x \otimes 1)^{\operatorname{deg}(D)}=\operatorname{Nrd}_{D / K}(x)^{\operatorname{deg}(D)}=N_{D / K}(x)
$$

and hence $\widehat{N} \cap D=N$. Then $\Lambda=\widehat{\Lambda} \cap D=\widehat{N} \cap D=N$.
The proof of (1) equals (4): By [Rei03, Th. 8.6], $\Lambda \subseteq S$. Also, $S \subseteq \widehat{S} \cap D=$ $\widehat{\Lambda} \cap D=\Lambda$. Therefore $\Lambda=S$.

The next lemma will be applied in lemma 2.2.7.

Lemma 2.1.3. Suppose $D=(a, b)$ is a quaternion division algebra given by $i^{2}=a$, $j^{2}=b, i j=-j i$, where $a, b \in K$. Suppose $D \otimes_{K} K_{v}$ is a division algebra over K_{v}. If $v(a)=0$ and $v(b) \in\{0,1\}$, then $\Lambda=R_{v}+R_{v} i+R_{v} j+R_{v} i j$ is the unique maximal R_{v}-order in D.

Proof. By lemma 2.1.2, Λ is the unique maximal order if and only if Λ is the integral closure of R_{v} in D. Since i and j are integral over R_{v}, every element of Λ is integral over R_{v}.

Let $x \in D$. Then

$$
x=y\left(x_{0}+x_{1} i+x_{2} j+x_{3} i j\right)
$$

for some $y \in K^{*}$ and $x_{0}, x_{1}, x_{2}, x_{3} \in R_{v}$ with $\min _{0 \leq l \leq 3}\left\{v\left(x_{l}\right)\right\}=0$ (i.e. $\left(\overline{x_{0}}, \overline{x_{1}}, \overline{x_{2}}, \overline{x_{3}}\right) \neq \overrightarrow{0}$ in $\left.k(v)^{4}\right)$.

Suppose that x is integral over R_{v}. We show that $y \in R_{v}$. By taking the reduced norm, we have

$$
\operatorname{Nrd}_{D / K}(x)=y^{2}\left(x_{0}^{2}-x_{1}^{2} a-x_{2}^{2} b+x_{3}^{2} a b\right)
$$

Since x is integral over $R_{v}, \operatorname{Nrd}_{D / K}(x) \in R_{v}$ and hence $v\left(\operatorname{Nrd}_{D / K}(x)\right) \geq 0$. Suppose that $y \notin R_{v}$. Then $v(y)<0$ and

$$
\begin{equation*}
v\left(x_{0}^{2}-x_{1}^{2} a-x_{2}^{2} b+x_{3}^{2} a b\right)=v\left(\operatorname{Nrd}_{D / K}(x) y^{-2}\right) \geq 2 . \tag{2.1.4}
\end{equation*}
$$

Case 1: D is unramified at v. Then $v(a)=v(b)=0$. By going modulo the maximal ideal of R_{v} and using eq. (2.1.4), we see that $\left(\overline{x_{0}}, \overline{x_{1}}, \overline{x_{2}}, \overline{x_{3}}\right) \in k(v)^{4}$ is an isotropic vector for $\langle\overline{1},-\bar{a},-\bar{b}, \bar{a} \bar{b}\rangle$. Since K_{v} is a complete discretely valued field, by a theorem
of Springer, $\langle 1,-a,-b, a b\rangle$ is isotropic over K_{v}, which contradicts the fact that $D \otimes_{K}$ K_{v} is division. Hence $y \in R_{v}$.
Case 2: D is ramified at v. Then $v(a)=0$ and $v(b)=1$. Since $\left(\overline{x_{0}}, \overline{x_{1}}, \overline{x_{2}}, \overline{x_{3}}\right) \neq \overrightarrow{0}$, we have $\left(\overline{x_{0}}, \overline{x_{1}}\right) \neq \overrightarrow{0}$ or $\left(\overline{x_{2}}, \overline{x_{3}}\right) \neq \overrightarrow{0}$ in $k(v)^{2}$.

Suppose $\left(\overline{x_{0}}, \overline{x_{1}}\right) \neq \overrightarrow{0}$. Going modulo the maximal ideal of R_{v} and using eq. (2.1.4), we see that $\left(\overline{x_{0}}, \overline{x_{1}}\right) \in k(v)^{2}$ is an isotropic vector for $\langle\overline{1},-\bar{a}\rangle$.

Suppose $\left(\overline{x_{0}}, \overline{x_{1}}\right)=\overrightarrow{0}$. Then $\left(\overline{x_{2}}, \overline{x_{3}}\right) \neq \overrightarrow{0}$. Since $v\left(x_{0}\right)=v\left(x_{1}\right) \geq 1, v\left(x_{0}^{2}-x_{1}^{2} a\right) \geq 2$. Then, by eq. (2.1.4), we have $v\left(x_{2}^{2} b-x_{3}^{2} a b\right) \geq 2$. Since $v(b)=1, v\left(x_{2}^{2}-x_{3}^{2} a\right) \geq 1$. Once again going modulo the maximal ideal of R_{v}, we see that $\left(\overline{x_{2}}, \overline{x_{3}}\right) \in k(v)^{2}$ is an isotropic vector of $\langle\overline{1},-\bar{a}\rangle$.

By a theorem of Springer, $\langle 1,-a\rangle$ is isotropic over K_{v}, which contradicts the fact that $D \otimes_{K} K_{v}$ is division. Hence $y \in R_{v}$.

In both cases, we have $y \in R_{v}$. Thus $x \in \Lambda$ and Λ is the unique maximal R_{v}-order in D.

2.2. Complete regular local ring of dimension 2

We fix the following notation and assumption throughout this section.

- R is a complete regular noetherian local ring of dimension 2 ,
- K is the field of fractions of R,
- $\mathfrak{m}=(\pi, \delta)$ is the maximal ideal of R,
- $k=R / \mathfrak{m}, \operatorname{char} k \neq 2$,
- $L=K(\sqrt{\lambda}), \lambda \in R$ with $\lambda=w, w \pi$ or $w \delta$ for a unit $w \in R$,
- S is the integral closure of R in L.

By the assumption on λ and [PS14, Prop. 3.1, Prop. 3.2], S is a regular local ring of dimension 2 with maximal ideal $\left(\pi^{\prime}, \delta^{\prime}\right)$, where

- if $\lambda=w$ is a unit in R, then $\pi^{\prime}=\pi$ and $\delta^{\prime}=\delta$;
- if $\lambda=w \pi$, then $\pi^{\prime}=\sqrt{w \pi}$ and $\delta^{\prime}=\delta$;
- if $\lambda=w \delta$, then $\pi^{\prime}=\pi$ and $\delta^{\prime}=\sqrt{w \delta}$.

Let D be a central division algebra over L which is unramified at all height one prime ideals of S except possibly at π^{\prime} and δ^{\prime}. Let \mathfrak{p} be a height one prime ideal of S. By [Mor89, Th. 2], the valuation $v_{\mathfrak{p}}$ extends to D if and only if $D \otimes_{L} L_{\mathfrak{p}}$ is a division algebra. Suppose $\operatorname{deg}(D)=d$ and K contains a primitive d-th root of unity, by [RS13, Prop. 2.4], $D \otimes_{L} L_{\left(\pi^{\prime}\right)}$ and $D \otimes_{L} L_{\left(\delta^{\prime}\right)}$ are division. Let $w_{\pi^{\prime}}$ and $w_{\delta^{\prime}}$ be the unique extensions of $v_{\left(\pi^{\prime}\right)}$ and $v_{\left(\delta^{\prime}\right)}$ to $D \otimes_{L} L_{\left(\pi^{\prime}\right)}$ and $D \otimes_{L} L_{\left(\delta^{\prime}\right)}$, respectively.

Lemma 2.2.1. Suppose that $\operatorname{deg}(D)=d, K$ contains a primitive d-th root of unity and D has an involution σ (of the first or the second kind) with $L^{\sigma}=K$. Suppose there exists a maximal S-order Λ in D with $\sigma(\Lambda)=\Lambda$ and $\pi_{D}, \delta_{D} \in \Lambda$ such that (1) $\operatorname{Nrd}_{D / L}\left(\pi_{D}\right)=u_{0} \pi^{\prime d / e_{0}}$, where $u_{0} \in R^{*}, e_{0}=\left[w_{\pi^{\prime}}\left(D^{*}\right): v_{\pi^{\prime}}\left(L^{*}\right)\right]$ and e_{0} is invertible in $k ; \operatorname{Nrd}_{D / L}\left(\delta_{D}\right)=u_{1} \delta^{d / e_{1}}$, where $u_{1} \in R^{*}, e_{1}=\left[w_{\delta^{\prime}}\left(D^{*}\right): v_{\delta^{\prime}}\left(L^{*}\right)\right]$ and e_{1} is invertible in k.
(2) $\sigma\left(\pi_{D}\right)=\varepsilon_{0} \pi_{D}, \sigma\left(\delta_{D}\right)=\varepsilon_{1} \delta_{D}$ and $\pi_{D} \delta_{D}=\varepsilon_{2} \delta_{D} \pi_{D}, \varepsilon_{0}, \varepsilon_{1}, \varepsilon_{2} \in\{1,-1\}$.

Let $c \in \Lambda$ such that $\sigma(c)= \pm c$ and $\operatorname{Nrd}_{D / L}(c)=u_{c} \pi^{\prime d m / e_{0}} \delta^{\prime d n / e_{1}}$ for $u_{c} \in S^{*}$, $m, n \in \mathbb{Z}$. Then

$$
\langle c\rangle \simeq\left\langle\theta \pi_{D}^{m^{\prime}} \delta_{D}^{n^{\prime}}\right\rangle
$$

for $\theta \in \Lambda^{*}$ and $m^{\prime}, n^{\prime} \in\{0,1\}$.

Proof. Since $\operatorname{Nrd}_{D / L}(c)=u_{c} \pi^{\prime d m / e_{0}} \delta^{\prime d n / e_{1}}$, it follows that $w_{\pi^{\prime}}(c)=m w_{\pi^{\prime}}\left(\pi_{D}^{\prime}\right)$ and $w_{\delta^{\prime}}(c)=n w_{\delta^{\prime}}\left(\delta_{D}^{\prime}\right)$. Write $m=2 r+m^{\prime}, n=2 s+n^{\prime}$ with $m^{\prime}, n^{\prime} \in\{0,1\}$. Let $x=\pi_{D}^{r} \delta_{D}^{s}$. Then $\sigma(x)=\varepsilon_{0}^{r} \varepsilon_{1}^{s}\left(\varepsilon_{2}\right)^{r s} x=\varepsilon_{c} x$, where $\varepsilon_{c}=\varepsilon_{0}^{r} \varepsilon_{1}^{s}\left(\varepsilon_{2}\right)^{r s} \in\{1,-1\}$. By the choice of π_{D} and δ_{D}, we have $\operatorname{Nrd}_{D / L}(x)=u_{0}^{r} u_{1}^{s} \pi^{\prime d r / e_{0}} \delta^{\prime d s / e_{1}}$.

Let $\theta=\varepsilon_{c} x^{-1} c x^{-1}\left(\pi_{D}^{m^{\prime}} \delta_{D}^{n^{\prime}}\right)^{-1}$. Then $c=\sigma(x)\left(\theta \pi_{D}^{m^{\prime}} \delta_{D}^{n^{\prime}}\right) x$. In particular we have

$$
\langle c\rangle \simeq\left\langle\theta \pi_{D}^{m^{\prime}} \delta_{D}^{n^{\prime}}\right\rangle
$$

Thus it is enough to show that $\theta \in \Lambda^{*}$.

Since $\Lambda=\bigcap_{\mathfrak{p}} \Lambda_{\mathfrak{p}}$, where \mathfrak{p} runs through all height one prime ideals of S, we have $\Lambda^{*}=\bigcap_{\mathfrak{p}} \Lambda_{\mathfrak{p}}^{*}$. It suffices to show that $\theta \in \Lambda_{\mathfrak{p}}^{*}$ for all height one prime ideals \mathfrak{p} of S. We have that $\operatorname{Nrd}_{D / L}(\theta)=\operatorname{Nrd}_{D / L}(x)^{-2} \operatorname{Nrd}_{D / L}(c) \operatorname{Nrd}_{D / L}\left(\pi_{D}^{m^{\prime}} \delta_{D}^{n^{\prime}}\right)^{-1}=u_{c}$ is a unit in S. Case 1: Suppose $\mathfrak{p} \neq\left(\pi^{\prime}\right),\left(\delta^{\prime}\right)$. Since $\pi_{D}, \delta_{D} \in \Lambda$ and $\operatorname{Nrd}_{D / L}\left(\pi_{D}\right), \operatorname{Nrd}_{D / L}\left(\delta_{D}\right)$ are units at \mathfrak{p}, by [Sal99, 4.3(c)], π_{D} and δ_{D} are units in $\Lambda_{\mathfrak{p}}$. Since $x \in \Lambda_{\mathfrak{p}}^{*}$ and $c \in \Lambda$, we have $\theta \in \Lambda_{\mathfrak{p}}$. Since $\operatorname{Nrd}_{\Lambda_{\mathfrak{p}} / S_{\mathfrak{p}}}(\theta)=\operatorname{Nrd}_{D / L}(\theta) \in S^{*}$, by [Sal99, 4.3(c)], $\theta \in \Lambda_{\mathfrak{p}}^{*}$.
Case 2: Suppose $\mathfrak{p}=\left(\pi^{\prime}\right)$. Since $w_{\pi^{\prime}}(\theta)=0$, by lemma 2.1.2, $\theta \in \Lambda_{\left(\pi^{\prime}\right)}^{*}$.
Case 3: Suppose $\mathfrak{p}=\left(\delta^{\prime}\right)$. The proof of $\theta \in \Lambda_{\left(\delta^{\prime}\right)}^{*}$ is similar to Case 2.

Corollary 2.2.2. Let $D, \sigma, \Lambda, \pi_{D}$ and δ_{D} be as in lemma 2.2.1. Let h be a nondegenerate ε-hermitian form over (D, σ). Suppose that $h=\left\langle a_{1}, \ldots, a_{n}\right\rangle$ with $a_{i} \in \Lambda$ and $\operatorname{Nrd}_{D / L}\left(a_{i}\right)$ is a unit of S times a power of π^{\prime} and a power of δ^{\prime} for all $1 \leq i \leq n$. Then

$$
h \simeq\left\langle u_{1}, \ldots, u_{n_{0}}\right\rangle \perp\left\langle v_{1}, \ldots, v_{n_{1}}\right\rangle \pi_{D} \perp\left\langle w_{1}, \ldots, w_{n_{2}}\right\rangle \delta_{D} \perp\left\langle\theta_{1}, \ldots, \theta_{n_{3}}\right\rangle \pi_{D} \delta_{D}
$$

with $u_{i}, v_{i}, \theta_{i} \in \Lambda^{*}$ and $n_{0}+n_{1}+n_{2}+n_{3}=n$.

Proof. Follows from lemma 2.2.1.

Corollary 2.2.3. Under all hypotheses of corollary 2.2.2, if $h \otimes_{K} 1_{K_{\pi}}$ is isotropic over $\left(D \otimes_{K} K_{\pi}, \sigma \otimes_{K} \operatorname{Id}_{K_{\pi}}\right)$ or $h \otimes_{K} 1_{K_{\delta}}$ is isotropic over $\left(D \otimes_{K} K_{\delta}, \sigma \otimes_{K} \operatorname{Id}_{K_{\delta}}\right)$, then h is isotropic over (D, σ).

Proof. By corollary 2.2.2, we have

$$
h \simeq h_{00} \perp h_{10} \delta_{D} \perp h_{01} \pi_{D} \perp h_{11} \delta_{D} \pi_{D}
$$

where diagonal entries of $h_{i j}$ are in Λ^{*}. Applying Larmour's result proposition 1.2.3 to $h_{K_{\pi^{\prime}}}$, we have $q_{\pi^{\prime}}\left(h_{00} \perp h_{10} \delta_{D}\right)$ or $q_{\pi^{\prime}}\left(h_{01} \perp h_{11} \delta_{D}\right)$ is isotropic over $D\left(\pi^{\prime}\right)$. Applying proposition 1.2.3 again, we obtain that one of $q_{\bar{\delta}^{\prime}}\left(q_{\pi^{\prime}}\left(h_{i j}\right)\right)$ is isotropic over $D\left(\pi^{\prime}\right)\left(\overline{\delta^{\prime}}\right)$. Since the diagonal entries of $h_{i j}$ are in $\Lambda^{*},\left(D, \operatorname{Int}\left(\delta_{D}^{i} \pi_{D}^{j}\right) \circ \sigma, h_{i j}\right)$ is defined over the
maximal R-order Λ in D. By [Knu91, ch. II, 4.6.1 and 4.6.2], one of $h_{i j}$ is isotropic over $\left(\Lambda,\left.\operatorname{Int}\left(\delta_{D}^{i} \pi_{D}^{j}\right) \circ \sigma\right|_{\Lambda}\right)$. Then one of $h_{i j} \delta_{D}^{i} \pi_{D}^{j}$ is isotropic over $\left(\Lambda,\left.\sigma\right|_{\Lambda}\right)$. Then h is isotropic over $\left(\Lambda,\left.\sigma\right|_{\Lambda}\right)$ and hence over (D, σ).

Corollary 2.2.4. Let R, K, S and L be as before and let ι be an automorphism of L such that $\left.\iota\right|_{K}=\operatorname{Id}_{K}$. Let $h=\left\langle a_{1}, \ldots, a_{n}\right\rangle$ be an ε-hermitian space over (L, ι) for $\varepsilon \in\{1,-1\}$. Suppose that each divisor of a_{i} is supported only along π^{\prime} and δ^{\prime}. If $h \otimes_{K} 1_{K_{\pi}}$ is isotropic over $\left(L \otimes_{K} K_{\pi}, \iota \otimes_{K} \operatorname{Id}_{K_{\pi}}\right)$ or $h \otimes_{K} 1_{K_{\delta}}$ is isotropic over $\left(L \otimes_{K} K_{\delta}, \iota \otimes_{K} \operatorname{Id}_{K_{\delta}}\right)$, then h is isotropic over $(L / K, \iota)$.

Proof. Let $D=L, \sigma=\iota, \Lambda=S, \pi_{D}=\pi^{\prime}$ and $\delta_{D}=\delta^{\prime}$ in corollary 2.2.3.
Suppose D is a quaternion algebra. The aim of the rest of the section is to show that there exists a maximal order Λ, π_{D} and δ_{D} as in lemma 2.2.1.

We begin with Saltman's classification.

Proposition 2.2.5. [Sal97; Sal98, Prop. 1.2], [Sal07, Prop. 2.1] Suppose $\alpha \in{ }_{2} \operatorname{Br}(K)$. If α is unramified at all height one prime ideals of R except possibly at (π) and (δ), then α is of the form $\alpha=\alpha^{\prime}+\alpha^{\prime \prime}$, where $\alpha^{\prime} \in \operatorname{Br}(R)$ and α is described as follows:
(i) If α is unramified at all height one prime ideals of R, then $\alpha=\alpha^{\prime}$;
(ii) If α is ramified only at (π), then $\alpha=\alpha^{\prime}+(u, \pi)$ for some $u \in R^{*} \backslash R^{* 2}$;
(iii) If α is ramified only at (π) and (δ), then there exists $u, v \in R^{*}$ such that
(a) $\alpha=\alpha^{\prime}+(u \pi, v \delta)$; or
(b) $\alpha=\alpha^{\prime}+(u, \pi)+(v, \delta)$, where u, v and $u v$ are not squares and u, v are in different square classes; or
(c) $\alpha=\alpha^{\prime}+(u, \pi \delta)$, where u is not a square.

Lemma 2.2.6. Let D be a quaternion division algebra over K which is unramified at all height one prime ideals of R except possibly at (π) and (δ). Then D is isomorphic to one of the following over K.
(1) $(u, v), u, v \in R^{*}$;
(2) $(u, v \pi), u \in R^{*}$ is not a square;
(3) $(u, v \delta), u \in R^{*}$ is not a square;
(4) $(u \pi, v \delta), u, v \in R^{*}$;
(5) $(u, v \pi \delta), u \in R^{*}$ is not a square and $v \in R^{*}$.

Proof. (1) Suppose D is unramified on R. By [AG60a, Th. 7.4], there exists an Azumaya algebra \mathcal{D} over R with $\mathcal{D} \otimes_{R} K \simeq D$. Since D is a quaternion algebra over $K, \mathcal{D} \otimes_{R} k$ is a quaternion algebra over k. Hence $\mathcal{D} \otimes_{R} k=(a, b)$ for $a, b \in k^{*}$. Let $u, v \in R^{*}$ be lifts of $a, b \in k$. Since R is complete, by [AG60a, Th. 6.5], $D \simeq(u, v)$.
(2) Let α be the class of D in ${ }_{2} \operatorname{Br}(K)$. Suppose that D is ramified on R only at (π). Then, by proposition 2.2.5, $\alpha=\alpha^{\prime}+(u, \pi)$ for $\alpha^{\prime} \in \operatorname{Br}(R)$ and $u \in R^{*}$. As in the proof of $\left[\operatorname{RS13}\right.$, Prop. 2.4], we have $\operatorname{ind}(D)=\operatorname{ind}\left(D \otimes K_{\pi}\right)=2\left(\operatorname{ind}\left(\alpha^{\prime} \otimes K(\sqrt{u})\right)\right)$. Since D is a quaternion algebra, $\alpha \otimes K(\sqrt{u})$ is split. Then $\alpha^{\prime}=(u, v)$ for some $v \in K^{*}$. Since α^{\prime} is unramified on R, we may assume that $v \in R^{*}$. Thus $\alpha=\alpha^{\prime} \otimes(u, \pi)=$ $(u, v) \otimes(u, \pi)=(u, v \pi)$ in $\operatorname{Br}(K)$. Then $D=(u, v \pi)$.
(3) Similarly, if D is ramified only at δ, then $D=(u, v \delta)$.
(4) and (5). Suppose that D only ramifies at π and δ. Then, by proposition 2.2.5, we have $\alpha=\alpha^{\prime}+\alpha^{\prime \prime}$ with $\alpha^{\prime} \in \operatorname{Br}(R)$ and $\alpha^{\prime \prime}=(u \pi, v \delta)$ or $(u, \pi)+(v, \delta)$ or $(u, \pi \delta)$ with $u, v \in R^{*}$.
(i) Suppose that $\alpha^{\prime \prime}=(u, \pi \delta)$. Then as above, it follows that $D=(u, v \pi \delta)$.
(ii) Suppose that $\alpha^{\prime \prime}=(u \pi, v \delta)$. Then, as above, we have that $\alpha^{\prime \prime} \otimes K(\sqrt{\delta})$ is trivial. Since α^{\prime} is unramified on R, as in the proof of [RS13, Prop. 2.4], α^{\prime} is trivial. Thus $\alpha=(u \pi, v \delta)$.
(iii) Suppose that $\alpha^{\prime \prime}=(u, \pi)+(v, \delta)$. As in the proof of [RS13, Prop. 2.4], we have $\operatorname{ind}(\alpha)=\operatorname{ind}\left(\alpha^{\prime} \otimes K(\sqrt{u}, \sqrt{v})\right) \cdot[K(\sqrt{u}, \sqrt{v}): K]$. Since $\operatorname{ind}(\alpha)=2$, we have $[K(\sqrt{u}, \sqrt{v}): K] \leq 2$. Since u and v are non-squares in K, u and v are in the same square class, a contradiction to proposition $2.2 .5(\mathrm{iii})(\mathrm{b})$. Thus this case does not happen.

Next, we consider maximal-orders of certain quaternion algebras.

Lemma 2.2.7. Let $D=(a, b)$ be a quaternion division algebra over K given by i, j such that $i^{2}=a, j^{2}=b$ and $i j=-j i$. Let Λ be the R-algebra generated by $\{1, i, j, i j\}$. If D has one of the forms of lemma 2.2.6, then Λ is a maximal R-order in D.

Proof. By definition, Λ is an order in D. By [AG60b, Th. 1.5], an order of a noetherian integrally closed domain is maximal if and only if it is reflexive and its localization at all height one prime ideals are maximal orders. Since R is a regular local ring, it is a noetherian integrally closed domain. Since Λ is a finitely generated free R-module, it is reflexive. We show that $\Lambda_{\mathfrak{p}}$ is a maximal $R_{\mathfrak{p}}$-order for all height one prime ideals \mathfrak{p} of R.

Case 1: Suppose $\mathfrak{p} \neq(\pi)$ and $\mathfrak{p} \neq(\delta)$. Then $a, b \in R_{\mathfrak{p}}^{*}$ and hence $\Lambda_{\mathfrak{p}}$ is an Azumaya algebra over $R_{\mathfrak{p}}$. In particular $\Lambda_{\mathfrak{p}}$ is a maximal $R_{\mathfrak{p}}$-order in D.

Case 2: Suppose $\mathfrak{p}=(\pi)$. Then, by [RS13, Prop. 2.4], $D \otimes_{K} K_{\pi}$ is a quaternion division algebra over K_{π}. By lemma 2.1.3, $\Lambda_{(\pi)}$ is a maximal $R_{(\pi)}$-order in D.
Case 3: Suppose $\mathfrak{p}=(\delta)$. Similar to case 2, we can show that $\Lambda_{(\delta)}$ is a maximal $R_{(\delta)}$-order in D.

Next, we construct parameters for certain quaternions with involutions of the first kind.

Lemma 2.2.8. Let D be a quaternion division algebra over K having one of the forms of lemma 2.2.6 except (5) and let σ be the canonical involution on D. Let Λ be the maximal order as in lemma 2.2.7.

Then there exists $\pi_{D}, \delta_{D} \in \Lambda$ such that
(1) $\operatorname{Nrd}_{D / K}\left(\pi_{D}\right)=u_{0} \pi^{2 / e_{0}}$ and $\operatorname{Nrd}_{D / K}\left(\delta_{D}\right)=u_{1} \delta^{2 / e_{1}}$, where $u_{0}, u_{1} \in R^{*}, e_{0}=$ $\left[w_{\pi}\left(D^{*}\right): v_{\pi}\left(K^{*}\right)\right], e_{1}=\left[w_{\pi}\left(D^{*}\right): v_{\delta}\left(K^{*}\right)\right]$ and $e_{0}, e_{1} \in\{1,2\} ;$
(2) $\sigma\left(\pi_{D}\right)= \pm \pi_{D}, \sigma\left(\delta_{D}\right)= \pm \delta_{D}, \sigma\left(\pi_{D} \delta_{D}\right)= \pm \pi_{D} \delta_{D}$ and $\pi_{D} \delta_{D}= \pm \delta_{D} \pi_{D}$.

Proof. We discuss every case of lemma 2.2 .6 except (5). In the following, u, v are units and we assume them nonsquare if necessary (to make D a division algebra). We
assume that for a quaternion algebra $(a, b), i^{2}=a, j^{2}=b, i j=-j i$. If $D=(u, v)$, take $\pi_{D}=\pi$ and $\delta_{D}=\delta$; otherwise take π_{D} and δ_{D} as follows.

D	π_{D}	δ_{D}	$\operatorname{Nrd}\left(\pi_{D}\right)$	$\operatorname{Nrd}\left(\delta_{D}\right)$	$\sigma\left(\pi_{D}\right)$	$\sigma\left(\delta_{D}\right)$	$\sigma\left(\pi_{D} \delta_{D}\right)$
$(u, v \pi)$	j	δ	$-v \pi$	δ^{2}	$-\pi_{D}$	δ_{D}	$-\pi_{D} \delta_{D}$
$(u, v \delta)$	π	j	π^{2}	$-v \delta$	π_{D}	$-\delta_{D}$	$-\pi_{D} \delta_{D}$
$(u \pi, v \delta)$	i	j	$-u \pi$	$-v \delta$	$-\pi_{D}$	$-\delta_{D}$	$-\pi_{D} \delta_{D}$

Then π_{D} and δ_{D} have required properties.

Next, we construct parameters for certain quaternions with involutions of the second kind. Suppose that L / K is a degree 2 extension and D / L a quaternion algebra with an involution σ of second kind. Then, by a theorem of Albert (see [KMRT98, Th. 2.22]), there exists a quaternion algebra D_{0} over K such that $D \simeq D_{0} \otimes_{K} L$ and the involution σ maps to the involution $\sigma \otimes \iota$ where σ_{0} is the canonical involution of D_{0} and ι is the non-trivial automorphism of L / K.

Lemma 2.2.9. Let $L=K(\sqrt{\lambda}), S$ and $\left(\pi^{\prime}, \delta^{\prime}\right)$ as before. Let D_{0} be a quaternion division algebra over K which is unramified at all height one prime ideals of R except possibly at (π) and (δ). If $D_{0}=(u, v \pi \delta)$, we suppose that λ is not a unit in R. Let $D=D_{0} \otimes_{K} L$. Let σ_{0} the canonical involution of D_{0}, ι be the non-trivial automorphism of L / K and $\sigma=\sigma_{0} \otimes_{K} \iota$. If D is division, then there exist a maximal S-order Λ in D which is invariant under σ and $\pi_{D}, \delta_{D} \in \Lambda$ such that
(1) $\operatorname{Nrd}_{D / L}\left(\pi_{D}\right)=u_{0} \pi^{\prime 2 / e_{0}}$ and $\operatorname{Nrd}_{D / L}\left(\delta_{D}\right)=u_{1} \delta^{2 / e_{1}}$, where $u_{0}, u_{1} \in S^{*}, e_{0}=$ $\left[w_{\pi^{\prime}}\left(D^{*}\right): v_{\pi^{\prime}}\left(L^{*}\right)\right], e_{1}=\left[w_{\delta^{\prime}}\left(D^{*}\right): v_{\delta^{\prime}}\left(L^{*}\right)\right]$ and $e_{0}, e_{1} \in\{1,2\} ;$
(2) $\sigma\left(\pi_{D}\right)= \pm \pi_{D}, \sigma\left(\delta_{D}\right)= \pm \delta_{D}, \sigma\left(\pi_{D} \delta_{D}\right)= \pm \pi_{D} \delta_{D}$ and $\pi_{D} \delta_{D}= \pm \delta_{D} \pi_{D}$.

Proof. By lemma 2.2.6, $D_{0}=(u, v),(u, v \pi),(u, v \delta),(u \pi, v \delta)$ or $(u, v \pi \delta)$ for some $u, v \in R^{*}$. If $D_{0}=(a, b)$, then let $i_{0}, j_{0} \in D_{0}$ with $i_{0}^{2}=a, j_{0}^{2}=b$ and $i_{0} j_{0}=-j_{0} i_{0}$.

There are 3 possible shapes for λ, i.e. $w, w \pi$, $w \delta$ with w a unit. By the assumption that if $\lambda=w$, then D_{0} is not of the form $(u, v \pi \delta)$. Since there are 5 possible shapes
of D_{0}, we have $3 * 5-1=14$ possible combinations. In each of the cases, choose i and j as in the following two tables.

λ	w	w	w	w	$w \pi$	$w \pi$	$w \delta$	$w \delta$
D_{0}	(u, v)	$(u, v \pi)$	$(u, v \delta)$	$(u \pi, v \delta)$	(u, v)	$(u, v \delta)$	(u, v)	$(u, v \pi)$
D	(u, v)	$\left(u, v \pi^{\prime}\right)$	$\left(u, v \delta^{\prime}\right)$	$\left(u \pi^{\prime}, v \delta^{\prime}\right)$	(u, v)	$\left(u, v \delta^{\prime}\right)$	(u, v)	$\left(u, v \pi^{\prime}\right)$
i	$i_{0} \otimes 1$							
j	$j_{0} \otimes 1$							

λ	$w \pi$	$w \pi$	$w \pi$	$w \delta$	$w \delta$	$w \delta$
D_{0}	$(u, v \pi)$	$(u \pi, v \delta)$	$(u, v \pi \delta)$	$(u, v \delta)$	$(u \pi, v \delta)$	$(u, v \pi \delta)$
D	$(u, v w)$	$\left(u w, v \delta^{\prime}\right)$	$\left(u, v w \delta^{\prime}\right)$	$(u, v w)$	$\left(u \pi^{\prime}, v w\right)$	$\left(u, v w \pi^{\prime}\right)$
i	$i_{0} \otimes 1$	$\frac{1}{\pi}\left(i_{0} \otimes \sqrt{\lambda}\right)$	$i_{0} \otimes 1$	$i_{0} \otimes 1$	$i_{0} \otimes 1$	$i_{0} \otimes 1$
j	$\frac{1}{\pi}\left(j_{0} \otimes \sqrt{\lambda}\right)$	$j_{0} \otimes 1$	$\frac{1}{\pi}\left(j_{0} \otimes \sqrt{\lambda}\right)$	$\frac{1}{\delta}\left(j_{0} \otimes \sqrt{\lambda}\right)$	$\frac{1}{\delta}\left(j_{0} \otimes \sqrt{\lambda}\right)$	$\frac{1}{\delta}\left(j_{0} \otimes \sqrt{\lambda}\right)$

Then it can be checked that π^{\prime} and δ^{\prime} are the only primes in S which might divide $i^{2}, j^{2} \in L$. Let $\Lambda=S+S i+S j+S i j$. Then, by lemma 2.2.7, Λ is a maximal S-order of D. By the choice if i and j we have $\sigma(i)= \pm i$ and $\sigma(j)= \pm j$. Since $\sigma(S)=S$, $\sigma(\Lambda)=\Lambda$.

Let $\pi_{D}, \delta_{D} \in \Lambda$ be as in the proof of lemma 2.2.8. Then Λ, π_{D} and δ_{D} satisfy required properties (1) and (2).

Corollary 2.2.10. Let D be a quaternion division algebra over K with σ the canonical involution and h an ε-hermitian space over (D, σ). Suppose that D is unramified at all height one prime ideals of R except possibly at (π), (δ) and D is not of the shape of lemma 2.2.6(5). Let Λ be the maximal order as in lemma 2.2.8. Suppose h has a diagonal form $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ such that $a_{i} \in \Lambda$ and $\operatorname{Nrd}_{D / K}\left(a_{i}\right)$ is a unit of R times a power of π and a power of δ. If $h \otimes_{K} 1_{K_{\pi}}$ is isotropic over $\left(D \otimes_{K} K_{\pi}, \sigma \otimes_{K} \operatorname{Id}_{K_{\pi}}\right)$ or $h \otimes_{K} 1_{K_{\delta}}$ is isotropic over $\left(D \otimes_{K} K_{\delta}, \sigma \otimes_{K} \operatorname{Id}_{K_{\delta}}\right)$, then h is isotropic over (D, σ).

Proof. Follows from lemma 2.2.8 and corollary 2.2.3.
Corollary 2.2.11. Let $L=K(\sqrt{\lambda}), \lambda=w$, w or $w \delta$ for $w \in R^{*}$. Let S be the integral closure of R in L and the maximal ideal $m^{\prime}=\left(\pi^{\prime}, \delta^{\prime}\right)$ of S as above. Let D_{0} be a quaternion division algebra over K having one of the forms of lemma 2.2.6 and σ_{0} the canonical involution on D_{0}. When $D_{0}=(u, v \pi \delta)$, we suppose that λ is not a unit in R. Let ι be the non-trivial automorphism of L / K. Let $D=D_{0} \otimes_{K} L$ and $\sigma=\sigma_{0} \otimes_{K} \iota$. Suppose that D is division. Let Λ be the maximal order as in lemma 2.2.9. Let h be an ε-hermitian space over (D, σ). Suppose h has a diagonal form $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ such that $a_{i} \in \Lambda$ and $\operatorname{Nrd}_{D / L}\left(a_{i}\right)$ is a unit of S times a power of π^{\prime} and a power of δ^{\prime}. If $h \otimes_{K} 1_{K_{\pi}}$ is isotropic over K_{π} or $h \otimes_{K} 1_{K_{\delta}}$ is isotropic over K_{δ}, then h is isotropic over K.

Proof. Follows from lemma 2.2.9 and corollary 2.2.3.
The next corollary is for σ of the first kind.
Corollary 2.2.12. Under the hypotheses of corollary 2.2.10, let X be a projective homogeneous space under $G=\mathrm{SU}(D, \sigma, h)$ over K. If $X\left(K_{\pi}\right) \neq \emptyset$ or $X\left(K_{\delta}\right) \neq \emptyset$, then $X(K) \neq \emptyset$.

Proof. First we assume that X is of the shape of the 2nd, 3rd, 4th or first part of the 5 th case of eq. (1.5.14).

By [RS13, p. 2.4], $\operatorname{ind}(D)=\operatorname{ind}\left(D \otimes_{K} K_{\pi}\right)=\operatorname{ind}\left(D \otimes_{K} K_{\delta}\right)$. Then $\operatorname{ind}\left(D \otimes_{K}\right.$ $\left.K_{\pi}\right) \mid g$ iff $\operatorname{ind}\left(D \otimes_{K} K_{\delta}\right) \mid g$ iff $\operatorname{ind}(D) \mid g$, where $g=\operatorname{gcd}\left\{n_{1}, \ldots, n_{r}\right\}$. Let $t=n_{r}$. By lemma 1.5.6, it suffices to show that if $X_{t}\left(K_{\pi}\right) \neq \emptyset$ or $X_{t}\left(K_{\delta}\right) \neq \emptyset$, then $X_{t}(K) \neq \emptyset$. Suppose $X_{t}\left(K_{\pi}\right) \neq \emptyset$. Then $h_{K_{\pi}}$ has a totally isotropic subspace of reduced dimension t, where t is even. Then $h_{K_{\pi}}$ is isotropic over D. So, by corollary 2.2.10, $h: V \times V \rightarrow D$ is isotropic over D. Let $x \in V, x \neq 0$ be an isotropic vector of h. Let i_{W} denote the Witt index. Then $2 \leq \operatorname{rdim}_{D}(x D) \leq t \leq 2 i_{W}\left(h_{K_{\pi}}\right)$ and $\operatorname{rdim}_{D}(x D)$ is even.

We induct on t. If $t=2$, then $\operatorname{rdim}_{D}(x D)=2$, we have $x D \in X_{t}(K)$ and hence $X_{t}(K) \neq \emptyset$.

Now we suppose $t>2$. If $\operatorname{rdim}_{D}(x D)=t$, then $x D \in X_{t}(K)$ and hence $X_{t}(K) \neq$ \emptyset. If $\operatorname{rdim}_{D}(x D)<t$, by [Knu91, ch.1, 3.7.4], there exists a hyperbolic plane $\mathbb{H} \subseteq$ (V, h) such that $x \in \mathbb{H}$ and $h=h^{\prime} \perp \mathbb{H}$. Then by [KMRT98, p.73],

$$
2 i_{W}\left(h_{K_{\pi}}^{\prime}\right)=2 i_{W}\left(h_{K_{\pi}}\right)-2 \geq 2 i_{W}\left(h_{K_{\pi}}\right)-\operatorname{rdim}_{D}(x D) \geq t-\operatorname{rim}_{D}(x D)>0
$$

Write X_{t}^{\prime} for the corresponding projective homogeneous variety under $\mathrm{SU}\left(D, \sigma, h^{\prime}\right)$ over K. Then $X_{t-\operatorname{rdim}_{D}(x D)}^{\prime}\left(K_{\pi}\right) \neq \emptyset$. Since $t-\operatorname{rdim}_{D}(x D)<t$, by induction, we have $X_{t-\operatorname{rdim}_{D}(x D)}^{\prime}(K) \neq \emptyset$. Suppose $N \in X_{t-\operatorname{rdim}_{D}(x D)}^{\prime}(K)$. Then $N \oplus x D \in X_{t}(K)$. Hence $X_{t}(K) \neq \emptyset$.

Therefore $X_{t}\left(K_{\pi}\right) \neq \emptyset$ implies $X_{t}(K) \neq \emptyset$. Similarly, $X_{t}\left(K_{\delta}\right) \neq \emptyset$ implies $X_{t}(K) \neq$ \emptyset.

Next we assume that X is of the shape of the second part of the 5 th case of eq. (1.5.14), now $t=n=n_{r}$. We need to prove the following

Subcase $(+)$: If $X_{n}^{+}\left(K_{\pi}\right) \neq \emptyset$ or $X_{n}^{+}\left(K_{\delta}\right) \neq \emptyset$, then $X_{n}^{+}(K) \neq \emptyset$;
Subcase $(-)$: If $X_{n}^{-}\left(K_{\pi}\right) \neq \emptyset$ or $X_{n}^{-}\left(K_{\delta}\right) \neq \emptyset$, then $X_{n}^{-}(K) \neq \emptyset$.
Suppose $X_{n}^{+}\left(K_{\pi}\right) \neq \emptyset$. Then $h_{K_{\pi}}$ is hyperbolic. By corollary 2.2.10 with Witt decomposition, Witt cancellation and induction, h is hyperbolic. Then $X_{n}(K)=$ $X_{n}^{+}(K) \sqcup X_{n}^{-}(K) \neq \emptyset$. If $X_{n}^{+}(K) \neq \emptyset$ we are done. If $X_{n}^{-}(K) \neq \emptyset$, then $X_{n}^{-}\left(K_{\pi}\right) \neq \emptyset$. Then both $X_{n}^{+}\left(K_{\pi}\right) \neq \emptyset$ and $X_{n}^{-}\left(K_{\pi}\right) \neq \emptyset$. By lemma 1.6.6, we have $D_{K_{\pi}}$ is split. By [RS13, Prop. 2.4], D is split over K, a contradiction to our assumption that D is division. Hence, $X_{n}^{+}(K) \neq \emptyset$ and $X_{n}^{-}(K)=\emptyset$.

The proof for the subcase (-) is similar.

The next corollary is for σ of the second kind.

Corollary 2.2.13. Under the hypotheses of corollary 2.2.11, let X be a projective homogeneous space under $G=\mathrm{U}(D, \sigma, h)$ over K (see the first case of eq. (1.5.14)). If $X\left(K_{\pi}\right) \neq \emptyset$ or $X\left(K_{\delta}\right) \neq \emptyset$, then $X(K) \neq \emptyset$.

Proof. The proof is similar to the first half of corollary 2.2.12 (for the 2nd, 3rd, 4th and the first part of the 5 th cases of eq. (1.5.14)), using corollary 2.2.11.

Corollary 2.2.14. Under the hypotheses of corollary 2.2.4, let X be a projective homogeneous space under $G=\mathrm{U}(L, \iota, h)$ over K. If $X\left(K_{\pi}\right) \neq \emptyset$ or $X\left(K_{\delta}\right) \neq \emptyset$, then $X(K) \neq \emptyset$.

Proof. The proof is similar to the first half of corollary 2.2.12, using corollary 2.2.4.

2.3. Patching and Hasse principle

In this section, we prove theorem 2.3.6.
Let T be a complete discrete valuation ring with a parameter t. Suppose $\operatorname{char}(T / t T) \neq 2$. Let \mathscr{X} be a regular projective T-curve with function field F and special fiber \mathscr{X}_{1}.

For the patching data, we adopt notations as in [HHK09, Notation 3.3]. For every closed point P of \mathscr{X}_{1}, let $\widehat{R_{P}}$ be the completion of the local ring R_{P} of \mathscr{X} at P and $F_{P}=\operatorname{Frac}\left(\widehat{R_{P}}\right)$. Let \mathscr{X}_{η} be an irreducible component of \mathscr{X}_{1} and U be a non-empty open subset of \mathscr{X}_{η} containing only smooth points. Let R_{U} be the set of elements in F which are regular at every closed point of U. Let \widehat{R}_{U} be the (t)-adic completion of R_{U} and $F_{U}=\operatorname{Frac}\left(\widehat{R}_{U}\right)$.

Lemma 2.3.1. [HHK09, Th. 3.7] Let G be a rational connected linear algebraic group over F and let X be a projective homogeneous space under G. Let \mathcal{P} be a nonempty finite subset of \mathscr{X}_{1}. Let \mathcal{U} be the set of connected components of $\mathscr{X}_{1} \backslash \mathcal{P}$. Then

$$
\prod_{P \in \mathcal{P}} X\left(F_{P}\right) \times \prod_{U \in \mathcal{U}} X\left(F_{U}\right) \neq \emptyset \Longrightarrow X(K) \neq \emptyset
$$

The next lemma deals with the last case of lemma 2.2.6 to make it possible to apply lemma 2.2.8 in the proof of theorem 2.3.5.

Lemma 2.3.2. Let R be a regular local ring with field of fractions K, maximal ideal (π, δ) and residue field k with char $k \neq 2$. Suppose $\alpha=(u, v \pi \delta) \in{ }_{2} \operatorname{Br}(K)$. Let $\mathscr{X}=\operatorname{Proj}(R[x, y] /(\pi x-\delta y)) \rightarrow \operatorname{Spec}(R)$ be the blow-up of $\operatorname{Spec}(R)$ at its maximal ideal. For every closed point Q of \mathscr{X}, let \mathfrak{m}_{Q} be the maximal ideal of $\mathscr{O}_{\mathscr{X}, Q}$. Then $\alpha=(u, t)$ for $t \in \mathscr{O}_{\mathscr{X}, Q}$ such that t is either a unit or a regular parameter (i.e. $\left.t \notin \mathfrak{m}_{Q} \backslash \mathfrak{m}_{Q}^{2}\right)$.

Proof. Let Q_{1} be the closed point given by the homogeneous ideal (π, δ, x) and Q_{2} the closed point given by the homogeneous ideal (π, δ, y). Let $t=\frac{x}{y} \in K$. Then $\delta=t \pi$ in K. Hence at Q_{1}, t is a regular parameter and $\alpha=(u, v \pi \delta)=\left(u, v t \pi^{2}\right)=$ (u, t). Similarly, at $Q_{2}, 1 / t$ is a regular parameter and $\alpha=(u, 1 / t)$. Let Q be a closed point of \mathscr{X} that is neither Q_{1} nor Q_{2}. Then at Q, t is a unit and $\alpha=(u, t)$.

The next lemma deals with λ from lemma 2.2 .9 to make it possible to apply lemma 2.2.8 in the proof of theorem 2.3.5.

Lemma 2.3.3. Let R be a regular local ring of dimension 2 with field of fractions K and residue field k with char $k \neq 2$. Let $\lambda \in K$ and $\alpha \in{ }_{2} \operatorname{Br}(K)$. Then there exists a finite sequence of blow-ups $\mathscr{X} \rightarrow \operatorname{Spec}(R)$ such that for every closed point P of \mathscr{X}, the maximal ideal \mathfrak{m}_{P} of $\mathscr{O}_{\mathscr{X}, P}$ is given by $\mathfrak{m}_{P}=(\pi, \delta), \lambda=w, w \pi$ or $w \delta$, up to squares for $u \in \mathscr{O}_{\mathscr{X}, P}^{*}$ and $\alpha=\alpha^{\prime}+\alpha^{\prime \prime}$ with α^{\prime} and $\alpha^{\prime \prime}$ as in proposition 2.2.5. Furthermore, if $\alpha^{\prime \prime}=(u, v \pi \delta)$ for units $u, v \in R^{*}$, then $\lambda \notin \mathscr{O}_{\mathscr{X}, P}^{*}$, up to squares.

Proof. By choosing a finite sequence of blow-ups $\mathscr{X} \rightarrow \operatorname{Spec}(R)$, we may assume that for every closed point P of $\mathscr{X}, \mathfrak{m}_{P}=(\pi, \delta), \lambda=w, w \pi, w \delta$ or $w \pi \delta$, up to squares, for $w \in \mathscr{O}_{\mathscr{X}, P}^{*}$ and α is unramified at P except possibly at π and δ. In fact, let P be a closed point of \mathscr{X} such that $\mathfrak{m}_{P}=(\pi, \delta)$ and $\lambda=w \pi \delta$ for some unit w of $\mathscr{O}_{\mathscr{X}, P}$. Let \mathscr{X}^{\prime} be the blowup of \mathscr{X} at P and Q a closed point on the exceptional curve. By lemma 2.3.2, $\lambda=w t$ or w^{\prime}, up to squares, for units w and w^{\prime} and t is either a unit or regular parameter. Since there are only finitely many closed points on \mathscr{X} with $\lambda=w \pi \delta$, we have a finite sequence of blowups $\mathscr{X}^{\prime} \rightarrow \mathscr{X}$ such that for every
closed point P^{\prime} of $\mathscr{X}^{\prime}, \mathfrak{m}_{P^{\prime}}, \lambda$ and α has the desired property at P^{\prime}. In particular, $\alpha=\alpha^{\prime}+\alpha^{\prime \prime}$ with α^{\prime} and $\alpha^{\prime \prime}$ as in proposition 2.2.5.

Suppose there exists a closed point P of \mathscr{X}^{\prime} such that $\alpha^{\prime \prime}=(u, v \pi \delta)$ and $\lambda=w$, for $u, v, w \in \mathscr{O}_{\mathscr{X}^{\prime}, P}^{*}$. Let $\mathscr{X}^{\prime \prime} \rightarrow \mathscr{X}^{\prime}$ be the blow-up at P as in lemma 2.3.2. Then for every closed point Q of the exceptional curve of $\mathscr{X}^{\prime \prime}$, by lemma 2.3.2, we have $\alpha^{\prime \prime}=(u, v)$ or (u, t) for a regular parameter t at Q and $u, v \in \mathscr{O}_{\mathscr{X}^{\prime \prime}, Q}^{*}$. Since $\lambda=w \in \mathscr{O}_{\mathscr{X}}{ }^{\prime}, P$, it remains a unit in $\mathscr{O}_{\mathscr{C}^{\prime \prime}, Q}^{*}$. Since there are only finitely many closed points with $\alpha^{\prime \prime}=(u, v \pi \delta)$, we have the required sequence of blow-ups $\mathscr{X}^{\prime \prime} \rightarrow \operatorname{Spec}(R)$.

Lemma 2.3.4. Let R be a regular local ring of dimension 2 with field of fractions K and residue field k. Suppose char $k \neq 2$. Let \widehat{R} be the completion of R at its maximal ideal and \widehat{K} the field of fractions of \widehat{R}. Let $\mu \in \widehat{K}^{*}$. Then there is a finite sequence of blow-ups $\mathscr{X} \rightarrow \operatorname{Spec}(R)$ such that for every closed point Q of $\mathscr{X} \times_{\operatorname{Spec} R} \operatorname{Spec}(\widehat{R})$, the maximal ideal at Q is given by (π, δ) with the support of μ at Q is at most (π) and (δ). Also, either (π) or (δ) corresponds to an exceptional curve in \mathscr{X}.

Proof. Since \widehat{R} is a regular local ring of dimension 2 , there exists a finite sequence of blow-ups $\widehat{\mathscr{X}} \rightarrow \operatorname{Spec} \widehat{R}$ at the closed point of $\operatorname{Spec}(\widehat{R})$ and closed points on the exceptional curves such that the support of μ on $\widehat{\mathscr{X}}$ is a union of regular curves with normal crossings [Abh69] or [Lip75]. Since any exceptional curve is the projective line over a finite extension of k, there exists a finite sequence of blow-ups $\mathscr{X} \rightarrow \operatorname{Spec}(R)$ such that $\mathscr{X} \times_{\operatorname{Spec}(R)} \operatorname{Spec} \widehat{R}=\widehat{\mathscr{X}}$ (see [HHK15, prop. 3.6]).

Let Q be a closed point of $\widehat{\mathscr{X}}$. Then, by the choice of $\widehat{\mathscr{X}}$, the maximal ideal at Q is given by (π, δ) and the support of μ at Q is at most (π) and (δ). Suppose that neither (π) nor (δ) is an exceptional curve. Then blow-up Q. The resulting sequence of blow-ups has required properties.

Theorem 2.3.5. Let K be a complete discrete valued field with residue field k, char $k \neq 2$. Let F be the function field of a smooth, projective, geometrically integral curve over K. Let L / F be an extension of degree at most 2 and A a finite-dimensional
simple F-algebra with center L. Let σ be an involution on A such that $F=L^{\sigma}$. Let $h: V \times V \rightarrow A$ be an ε-hermitian space over (A, σ) for $\varepsilon \in\{1,-1\}$. Let

$$
G(A, \sigma, h)= \begin{cases}\mathrm{SU}(A, \sigma, h) & \text { if } \sigma \text { is of the first kind; } \\ \mathrm{U}(A, \sigma, h) & \text { if } \sigma \text { is of the second kind. }\end{cases}
$$

Suppose that for any regular proper model \mathscr{X} of F and for any closed point P of \mathscr{X} $\operatorname{ind}\left(A \otimes F_{P}\right) \leq 2$. Then the Hasse principle holds for any projective homogeneous space under $G(A, \sigma, h)$.

Proof. Let X be a projective homogeneous space under $G(A, \sigma, h)$. Suppose that $X\left(F_{v}\right) \neq \emptyset$ for all divisorial discrete valuations of F. We use [HHK09, Th. 3.7] to show that $X(F) \neq \emptyset$. Since σ is arbitrary, we assume that $\varepsilon=1$.

Write $L=F(\sqrt{\lambda})$ for $\lambda \in F^{*}$. Let \mathscr{X} be a regular proper model of F such that the union of the support of λ and the special fiber \mathscr{X}_{1} of \mathscr{X} is a union of regular curves with normal crossings. Let η be a codimension zero point of \mathscr{X}_{1}. Since $X\left(F_{\eta}\right) \neq \emptyset$, by [HHK11, Th. 5.8], there exists a non-empty open subset U_{η} of the closure of η such that $X\left(F_{U_{\eta}}\right) \neq \emptyset$ and U_{η} does not meet other regular curves in the special fiber \mathscr{X}_{1}.

Let \mathcal{P} be the finite set of closed points of \mathscr{X}_{1} which are not on U_{η} for any codimension zero point η of \mathscr{X}_{1}. For $P \in \mathcal{P}$, let D_{P} be the central division algebra over $L_{P}=L \otimes F_{P}$ which is Brauer equivalent to $A \otimes F_{P}$. By Morita equivalence [Knu91, ch. I, 9.3.5], there exists an involution σ_{P} on D_{P} and h corresponds to a hermitian form h_{P} over $\left(D_{P}, \sigma\right)$.

Since for any closed point P of $\mathscr{X}, \operatorname{deg}\left(D_{P}\right) \leq 2$, either $D_{P}=L_{P}$ or D_{P} is a quaternion division algebra. If $[L: F]=2$, since $L^{\sigma}=F, L_{P}^{\sigma_{P}}=F_{P}$ and by a theorem of Albert [KMRT98, Th. 2.22], there exists a central division algebra $\left(D_{P}\right)_{0}$ over F_{P} such that $\operatorname{deg}\left(\left(D_{P}\right)_{0}\right) \leq 2$ and $D_{P} \simeq\left(D_{P}\right)_{0} \otimes L_{P}$. If $\operatorname{deg}\left(\left(D_{P}\right)_{0}\right)=2$, then write $\left(D_{P}\right)_{0}=\left(a_{P}, b_{P}\right)$ for some $a_{P}, b_{P} \in F_{P}$.

By lemma 2.3.4, there exists a finite sequence of blow-ups $\phi: \mathscr{X}^{\prime} \rightarrow \mathscr{X}$ such that for each $P \in \mathcal{P}$ and $Q \in \phi^{-1}(P)$, the support of a_{P} and b_{P} at Q have normal crossings.

In particular the ramification divisor of $\left(D_{P}\right)_{0}$ at Q has normal crossings. Let η be an exceptional curve in \mathscr{X}^{\prime}. Since $X\left(F_{\eta}\right) \neq \emptyset$, as above there exists a non-empty open set U_{η} of the closure of η such that $X\left(F_{U_{\eta}}\right) \neq \emptyset$. Let $Q \in \mathscr{X}^{\prime}$ be in the closure of η. Suppose $D \otimes F_{Q}$ is non-split. Since $\phi(Q)=P$ and $D \otimes F_{Q}$ is Brauer equivalent to $D_{P} \otimes F_{Q}=\left(D_{P}\right)_{0} \otimes L \otimes F_{Q}$. In particular the support of the ramification divisor of $\left(D_{P}\right)_{0} \otimes F_{Q}$ has normal crossings. Thus, replacing \mathscr{X} by \mathscr{X}^{\prime}, we assume that if $P \in \mathscr{P}$, then $D_{P}=\left(D_{P}\right)_{0} \otimes L_{P}$ and the ramification divisor of $\left(D_{P}\right)_{0}$ has normal crossings at P. Further, replacing \mathscr{X} by a finite sequence of blow-ups at the points of \mathcal{P}, using lemma 2.3.3, we assume that for $P \in \mathcal{P}, D_{P}$ and λ are as in lemma 2.3.3.

Let $P \in \mathscr{P}$. If $D_{P}=L_{P}$, let Λ_{P} be the integral closure of $\widehat{R_{P}}$ in L_{P}. If $D_{P} \neq L_{P}$, then $D_{P}=\left(D_{P}\right)_{0} \otimes L_{P}$ with $\left(D_{P}\right)_{0}$ a quaternion algebra and $\left(D_{P}\right)_{0}, \lambda$ are as in lemma 2.3.3. Let Λ_{P} be the order as in lemma 2.2.8 or lemma 2.2.9. Since D_{P} is division, $h_{P}=\left\langle a_{1}^{P}, \ldots, a_{m}^{P}\right\rangle$ with $a_{i}^{P} \in \Lambda_{P}$ and $\sigma_{P}\left(a_{i}^{P}\right)=a_{i}^{P}$. Let $f_{i}^{P}=\operatorname{Nrd}_{D_{P}}\left(a_{i}^{P}\right) \in$ $F_{P} \subseteq L_{P}$. Since $\sigma_{P}\left(a_{i}^{P}\right)=a_{i}^{P}, f_{i}^{P} \in F_{P}$. Once again, using lemma 2.3.4, replacing \mathscr{X} by a finite sequence of blow-ups of \mathscr{X} at the points of \mathcal{P}, we assume that for every $P \in \mathcal{P}$, the maximal ideal at P is given by $\left(\pi_{P}, \delta_{P}\right)$, the support of f_{i}^{P} is at most π_{P} and δ_{P} and at least one of π_{P} and π_{P} is an exceptional curve.

Let X^{P} be the projective homogeneous space under $G\left(D_{P}, \sigma_{P}, h_{P}\right)$. The maximal ideal at P is given by $\left(\pi_{P}, \delta_{P}\right)$ and either π_{P} or δ_{P}, say π_{P}, gives an exceptional curve. Since the valuation given by an exceptional curve is a divisorial discrete valuation, $X\left(F_{\pi_{P}}\right) \neq \emptyset$. Thus, by lemma 1.6.4 or lemma 1.6.5, $X^{P}\left(\left(F_{P}\right)_{\pi_{P}}\right) \neq \emptyset$. If $D_{P}=L_{P}$, then, by [CPS12, Th. 3.1] or corollary 2.2.14, $X\left(F_{P}\right) \neq \emptyset$. If D_{P} is a quaternion algebra, then, by corollary 2.2 .12 or corollary $2.2 .13, X^{P}\left(F_{P}\right) \neq \emptyset$. By lemma 1.6.4 or lemma 1.6.5 again, $X\left(F_{P}\right) \neq \emptyset$ for all $P \in \mathcal{P}$.

Therefore, by [HHK09, Th. 3.7], $X(F) \neq \emptyset$.

Now we state and prove the main result of chapter 2 .

Theorem 2.3.6. Let K be a complete discrete valued field with residue field k, char $k \neq 2$. Let F be the function field of a smooth, projective, geometrically integral curve over K. Let Ω be the set of all rank one discrete valuations on F. For each $v \in \Omega$, let F_{v} be the completion of F at v. Let A be a finite-dimensional simple F-algebra with an involution σ such that $F=Z(A)^{\sigma}$. Suppose that at least one of the following is satisfied.
(1) $\operatorname{ind}(A) \leq 2$;
(2) $\operatorname{per}(A)=2,\left|l^{*} / l^{* 2}\right| \leq 2$ and ${ }_{2} \operatorname{Br}(l)=0$ for all finite extensions l / k.

Let $\varepsilon \in\{1,-1\}$ and $h: V \times V \rightarrow A$ an ε-hermitian space over (A, σ). Let X be a projective homogeneous space under

$$
G= \begin{cases}\mathrm{SU}(A, \sigma, h) & \text { if } \sigma \text { is of the first kind; } \\ \mathrm{U}(A, \sigma, h) & \text { if } \sigma \text { is of the second kind. }\end{cases}
$$

If $X\left(F_{v}\right) \neq \emptyset$ for all $v \in \Omega$, then $X(F) \neq \emptyset$.

Remark. In case (1), the underlying division algebra of A is F, or a quadratic field extension of F, or a quaternion division algebra with center F, or a quaternion division algebra whose center is a quadratic extension of F.

In case (2), if σ is of the first kind, then $\operatorname{per}(A)=2$ since $A \simeq A^{\text {op }}$; if σ is of the second kind, in general we do not have $\operatorname{per}(A)=2$. By [Ser79, XIII, §2], examples of such k in (2) are finite fields or fields of Laurent series with coefficients in an algebraically closed field of characteristic 0 , for example $\mathbb{C}((t))$.

Proof. Let $L=Z(A)$. Let \mathscr{X} be a regular proper model of L with ramification locus of A a union of regular curves with normal crossings and P a closed point of \mathscr{X}. Let k_{P} be the residue field of $\widehat{R_{P}}$ and $L_{P}=L \otimes F_{P}$.
(1) If $\operatorname{ind}(A) \leq 2$, we have $\operatorname{ind}\left(A \otimes L_{P}\right) \leq 2$ for all closed points P of \mathscr{X}.
(2) Suppose $\operatorname{per}(A)=2,\left|l^{*} / l^{* 2}\right| \leq 2$ and ${ }_{2} \operatorname{Br}(l)=0$ for all finite extensions l / k. Then k_{P}^{*} has at most two square classes and ${ }_{2} \operatorname{Br}\left(k_{P}\right)=0$. Then by [AG60a, p. 6.2], ${ }_{2} \operatorname{Br}\left(\widehat{R_{P}}\right)=0$. Then, by proposition $2.2 .5, \operatorname{ind}\left(A \otimes L_{P}\right) \leq 2$.

Hence the Hasse principle is a consequence of theorem 2.3.5.

Next, we prove corollary 2.3.7, which partially answers conjecture 2.0.1.

Corollary 2.3.7. Let p be an odd prime. Let K be a p-adic field. Let F a function field in one variable over K. Let Ω be the set of all discrete valuations on F. Let G be a connected linear algebraic group such that there exists an isogeny from a product of almost simple groups of one of the following types to the semisimple group $G / \operatorname{Rad}(G)$.

$$
{ }^{1} A_{n}, \quad{ }^{2} A_{n}^{*}, \quad B_{n}, \quad C_{n}, \quad{ }^{1} D_{n}, \quad{ }^{2} D_{n},
$$

where ${ }^{2} A_{n}^{*}$ means that the almost simple factor is isogenous to a unitary group $\mathrm{U}(A, \sigma, h)$ such that σ is of the second kind and $\operatorname{per}(A)=2$. Let X be a projective homogeneous space under G. Then

$$
\prod_{v \in \Omega} X\left(F_{v}\right) \neq \emptyset \Longrightarrow X(F) \neq \emptyset
$$

Proof. Let $G^{s s}$ be the semisimple group $G / \operatorname{Rad}(G)$. By [CGP04, Cor. 5.7], X is a projective homogeneous space under $G^{s s}$. By [Bor91, 14.10(2)], there exists an isogeny $G_{1} \times \cdots \times G_{r} \rightarrow G^{s s}$ where G_{i} are almost simple groups. Since char $F=0$, all isogenies of algebraic groups over F are central. By [BT72, 2.20, (i)], central sujective morphisms of algebraic groups give isomorphisms of their projective homogeneous spaces. Then X is a projective homogeneous space under $G_{1} \times \cdots \times G_{r}$. By [MPW98, 6.10(e)], $X \simeq X_{1} \times \cdots \times X_{r}$ where X_{i} is a projective homogeneous space under G_{i} for each $1 \leq i \leq r$. Then $X(F) \neq \emptyset$ if and only if $X_{i}(F) \neq \emptyset$ for all $1 \leq i \leq r$. By assumption, G_{i} has one of the types ${ }^{1} A_{n},{ }^{2} A_{n}^{*}, B_{n}, C_{n},{ }^{1} D_{n},{ }^{2} D_{n}$. The type ${ }^{1} A_{n}$ case has been proved by Reddy and Suresh [RS13, Th. 2.6]. The type B_{n} case has been proved by Colliot-Thélène, Parimala and Suresh [CPS12, Th. 3.1]. By [Tit66, Table 1], if G_{i} has type ${ }^{2} A_{n}^{*}$, then G_{i} is isogenous to $\mathrm{U}(A, \sigma, h)$; if G_{i} has type B_{n}, C_{n} or D_{n}, then G_{i} is isogenous to $\mathrm{SU}(A, \sigma, h)$. By [BT72, 2.20, (i)] again, we may assume
that G_{i} is the unitary group or the special unitary group as above and hence X is as in eq. (1.5.14). The rest follow from theorem 2.3.6.

CHAPTER 3

Springer's problem for odd degree extensions

Let F be a field of characteristic not 2 . Let q be a quadratic form over F. Let M be an odd degree extension of F. Springer [Spr52] has proved that if q_{M} is isotropic, then q is isotropic.

We could ask a similar question about Hermitian forms. Let A be a central simple algebra over F with an involution σ. Let $h: V \times V \rightarrow A$ be an ε-hermitian form over (A, σ) for $\varepsilon \in\{1,-1\}$. Let M be an odd degree extension of F. It is natural to ask whether the isotropy of h_{M} implies the isotropy of h. This question has been studied by many mathematicians and they have obtained partial answers.

Bayer-Fluckiger and Lenstra [BL90] have proved that if h_{M} is hyperbolic, then h is hyperbolic.

Suppose h_{1} and h_{2} are two ε-hermitian spaces over (A, σ). Lewis [Lew00] has proved that when σ is of the first kind, if $\left(h_{1}\right)_{M} \simeq\left(h_{2}\right)_{M}$, then $h_{1} \simeq h_{2}$. BarquéroSalavert [Bar06] has proved that when σ is of the second kind, if $\left(h_{1}\right)_{M} \simeq\left(h_{2}\right)_{M}$, then $h_{1} \simeq h_{2}$.

Parimala, Sridharan and Suresh [PSS01] have proved that if A is a quaternion algebra and σ is of the first kind, if h_{M} is hyperbolic, then h is hyperbolic. They have also provided an example to show that this is not true in general if $\operatorname{ind}(A)$ is odd and σ of the second kind.

Let $E=\operatorname{End}_{A}(V)$ and let τ be the adjoint involution of h. Black and QuéguinerMathieu [BQ14] proved that when $\operatorname{deg} E=12$ and τ is orthogonal, if τ_{M} is hyperbolic, then τ is hyperbolic. They have also proved that when $\operatorname{deg} E=6$, per $E=2$ and τ is unitary, if τ_{M} is hyperbolic, then τ is hyperbolic.

3.1. Reduction to the residue field

We begin with the following.
Lemma 3.1.1. Let (L, v) be a complete discrete valued field and k_{L} the residue field of L with char $k_{L} \neq 2$. Let M be an odd degree extension of L, with residue field k_{M}. We make the following assumption on residue fields:

Let E be a central division algebra E over k_{L} with an involution τ. Let $\varepsilon^{\prime} \in$ $\{1,-1\}$. Let φ be an ε^{\prime}-hermitian form over (E, τ). If $\varphi_{k_{M}}$ is isotropic, then φ is isotropic, for all tuples $\left(E, \tau, \varepsilon^{\prime}\right)$.

Let D be a central division algebra over L and $\operatorname{per}(D)=2$. Let σ be an involution on D. Let $\varepsilon \in\{1,-1\}$. Let h be an ε-hermitian form over (D, σ). If h_{M} is isotropic, then h is isotropic.

Proof. Since L is complete, the valuation v on L extends to a discrete valuation v^{\prime} on M. Let t be a uniformizer of L, t^{\prime} a uniformizer of M such that $\left(t^{\prime}\right)^{e}=t$ where $e=e(M / L)$. By [GS06, Prop. 4.5.11, 2.], $D^{\prime}=D \otimes_{L} M$ is a division algebra. Let w be the extension of v to D and w^{\prime} the extension of v^{\prime} to D^{\prime}. Let π be a uniformizer of D and π^{\prime} a uniformizer of D^{\prime}. By [Lar99, Prop. 2.7], there exists $x \in D$ such that

$$
\begin{equation*}
w(x) \equiv w(\pi) \quad \bmod 2 w\left(D^{*}\right), \quad \sigma(x)=\varepsilon x, \varepsilon \in\{1,-1\} \tag{3.1.2}
\end{equation*}
$$

By the second to the last paragraph of [Wad02, p. 393], $e\left(D^{\prime} / D\right)$ is a factor of $[M: L]$. Since $[M: L]$ is odd, $e\left(D^{\prime} / D\right)$ is odd. Then $w^{\prime}\left(\pi \otimes_{L} 1_{M}\right) \equiv w^{\prime}\left(\pi^{\prime}\right) \bmod 2 w^{\prime}\left(D^{\prime *}\right)$. Let $x^{\prime}=x \otimes 1 \in D^{\prime}$ and $\sigma\left(x^{\prime}\right)=\varepsilon x^{\prime}$. By Larmour's theorem, proposition 1.2.3,

$$
\begin{equation*}
h \simeq h_{1} \perp h_{2} x \tag{3.1.3}
\end{equation*}
$$

where all diagonal entries of h_{1} and h_{2} have valuation 0 in D. Thus

$$
\begin{equation*}
h_{M} \simeq\left(h_{1}\right)_{M} \perp\left(h_{2}\right)_{M}\left(x \otimes_{L} 1_{M}\right)=\left(h_{1}\right)_{M} \perp\left(h_{2}\right)_{M} x^{\prime} \tag{3.1.4}
\end{equation*}
$$

In the following, an overline means "over the residue field". We have
h_{M} is isotropic,
\Longleftrightarrow one of $\overline{\left(h_{i}\right)_{M}}$ is isotropic over $\left(\overline{D \otimes_{L} M}, \overline{\sigma \otimes_{L} \operatorname{Id}_{M}}\right)$,
by applying proposition 1.2 .3 to eq. (3.1.4).
$\Longleftrightarrow \quad$ one of $\left(\overline{h_{i}}\right)_{k_{M}}$ is isotropic over $\left(\bar{D} \otimes_{k_{L}} k_{M}, \bar{\sigma} \otimes_{k_{L}} \operatorname{Id}_{k_{M}}\right)$.
\Longleftrightarrow one of $\overline{h_{i}}$ is isotropic over $(\bar{D}, \bar{\sigma})$, by the given condition on k_{M} / k_{L}.
$\Longleftrightarrow \quad h$ is isotropic over (D, σ), by applying proposition 1.2.3 to eq. (3.1.3).
where $i \in\{1,2\}$.

3.2. Springer's theorem over local or global fields

3.2.1. Let L be an arbitrary field of characteristic not 2 . Let M be an odd degree extension of L. For each discrete valuation v of L with valuation ring R_{v} and maximal ideal \mathfrak{p}_{v}, let $\widehat{R_{v}}$ be its completion and $L_{v}=\operatorname{Frac}\left(\widehat{R_{v}}\right)$. Let S be the integral closure of R_{v} in M and $\mathfrak{P}_{i}, 1 \leq i \leq n$ be prime ideals of S lying over \mathfrak{p}_{v}. Let \widehat{S}_{i} be the completion of S at \mathfrak{P}_{i} and $M_{i}=\operatorname{Frac}\left(\widehat{S}_{i}\right)$. By [CF67, p. 15, (2)],

$$
M \otimes_{L} L_{v} \simeq \prod_{i=1}^{n} M_{i}
$$

Since $[M: L]=\left[M \otimes_{L} L_{v}: L_{v}\right]=\sum_{i=1}^{n}\left[M_{i}: L_{v}\right]$ is odd, there exists some $j, 1 \leq j \leq n$ such that $\left[M_{j}: L_{v}\right]$ is odd.

Lemma 3.2.2. Let L be a non-archimedean local field of characteristic not 2. Let M be an odd degree extension of L. Let D be a division algebra over L such that $D \neq L$. Let σ be an involution of D. Let h be an ε-hermitian form over (D, σ). If h_{M} is isotropic, then h is isotropic.

Proof. Let σ be of the first kind. By [Sch85, ch. 10, 2.2(i)], D is the unique quaternion division algebra over L, and it suffices to apply [PSS01, Th. 3.5].

Let σ be of the second kind. If $\varepsilon=-1$, by Hilbert $90\left[\mathrm{Bou}_{\mathrm{A} 4-7}\right.$, ch. V, $\S 11$, no. 6, th. 3, a)], there exists $\mu \in Z(D) \backslash L$ such that $\sigma(\mu)=-\mu$. By scaling [Knu91, ch. I, 5.8], h is isotropic over (D, σ) if and only if $\mu^{-1} h$ is isotropic over (D, σ), where
$\operatorname{Int}(\mu) \circ \sigma=\sigma$ and $\mu^{-1} h$ is a hermitian form. Hence we may assume that $\varepsilon=1$. By [Sch85, ch. 10, 2.2(ii)], D / L is a quadratic field extension. Also D_{M} / M is a quadratic field extension. Let h be a hermitian form over $(D, \sigma), q$ is the quadratic form over L associated to $h(x, x)$. By definition, q_{M} is the quadratic form over L associated to $h_{M}(x, x)$. Then

$$
\begin{aligned}
& h_{M} \text { is isotropic over } D_{M}, \\
\Longleftrightarrow & q_{M} \text { is isotropic over } M, \quad \text { by }[\text { Sch85, ch. 10, 1.1(i)]; } \\
\Longleftrightarrow & q \text { is isotropic over } L, \quad \text { by Springer's theorem [Spr52]; } \\
\Longleftrightarrow & h \text { is isotropic over } D, \quad \text { by [Sch85, ch. 10, 1.1(i)]. }
\end{aligned}
$$

Lemma 3.2.3. Let L be a global field of characteristic not 2 . Let M be an odd degree extension of L. Let D be a division L-algebra with an involution σ such that $D \neq L$ and $\operatorname{per}(D)=2$. Let h be an ε-hermitian form over (D, σ). If h_{M} is isotropic, then h is isotropic.

Proof. If σ is of the first kind, by [Sch85, ch. 10, 2.3(vi)], D is a quaternion division algebra and the result follows from [PSS01, Th. 3.5].

Now suppose σ is of the second kind. Suppose $Z(D)=L(\sqrt{\lambda})$. Let Ω_{L} be all the places of L and Ω_{M} all the places of M. If $v \in \Omega_{L}$ such that λ is a square in L_{v}, by [Sch85, ch. 10, 6.3] $h_{L_{v}}$ is hyperbolic over $\left(D \otimes_{L} L_{v}, \sigma \otimes_{L} \operatorname{Id}_{L_{v}}\right)$.

Suppose $v \in \Omega_{L}$ is such that λ is not a square in L_{v}. by 3.2.1 we have an odd degree extension M_{j} / L_{v}.

Case 1: v is non-archimedean and $D \otimes_{L} L_{v}$ is not split. Since h_{M} is isotropic, $h_{M_{j}}$ is isotropic. By lemma 3.2.2, $h_{L_{v}}$ is isotropic.

Case 2: v is non-archimedean and $D \otimes_{L} L_{v}$ is split. Then $D \otimes M_{j}$ is split. Since h_{M} is isotropic, $h_{M_{j}}$ is isotropic. Suppose $h_{L_{v}}$ is Morita equivalent to a quadratic form q over L_{v}. Then $h_{M_{j}}$ is Morita equivalent to the quadratic form $q_{M_{j}}$. Then $q_{M_{j}}$ is isotropic. By [Spr52], q is isotropic over L_{v}. By Morita equivalence again, $h_{L_{v}}$ is isotropic.

Case 3: v is archimedean. Any place $w \in \Omega_{M}$ that lies over v is still archimedean. Since $\left[M_{j}: L_{v}\right]$ is odd, $M_{j}=L_{v} \simeq \mathbb{R}$ or \mathbb{C}. Since h_{M} is isotropic, $h_{M_{w}}=h_{L_{v}}$ is isotropic.

By three cases above, $h_{L_{v}}$ is isotropic for all $v \in \Omega_{L}$. Finally, by Landherr's local-global principle over L (see [Lan37] or [Sch85, ch. 10, 6.2]), h is isotropic.

3.3. Springer's theorem over function fields of p-adic curves

The next theorem is our main theorem of chapter 3 .

Theorem 3.3.1. Let p be an odd prime. Let K be a p-adic field. Let F be the function field of a smooth, projective, geometrically integral curve over K. Let Ω be the set of all rank one discrete valuations on F. Let A be a finite-dimensional central simple F-algebra with an involution σ of the first kind. Let $h: V \times V \rightarrow A$ be an ε-hermitian space over (A, σ) for $\varepsilon \in\{1,-1\}$.

Let M be an odd degree extension of F. If h_{M} is isotropic, then h is isotropic.

Proof. In fact, by Morita equivalence [Knu91, ch. I, 9.3.5], we assume that $A=D$ is a central division F-algebra. Suppose that h_{M} is isotropic. Let $\operatorname{deg} D=d$, $\operatorname{dim}_{D}(V)=m$ and $i_{W}\left(h_{M}\right)$ the Witt index of h_{M}. Then $1 \leq i_{W}\left(h_{M}\right) \leq \frac{m}{2}$ and $X_{d}(M) \neq \emptyset$, where X_{d} is as in eq. (1.5.14).

Suppose $i_{W}\left(h_{M}\right)=\frac{m}{2}$. Then h_{M} is hyperbolic. By [BL90], h is hyperbolic.
Suppose that $i_{W}\left(h_{M}\right)<\frac{m}{2}$. Let $v \in \Omega$. By 3.2.1, we have an extension M_{j} / F_{v} such that $\left[M_{j}: F_{v}\right]$ is odd. Let k_{j} be the residue field of M_{j} and $k(v)$ the residue field of F_{v}. Since $e\left(M_{j} / F_{v}\right) f\left(M_{j} / F_{v}\right)=\left[M_{j}: F_{v}\right]$ is odd, $\left[k_{j}: k(v)\right]=f\left(M_{j} / F_{v}\right)$ is odd. Since $X_{d}(M) \neq \emptyset$, we have $X_{d}\left(M \otimes F_{v}\right) \neq \emptyset$. In particular, $X_{d}\left(M_{j}\right) \neq \emptyset$. Since the residue fields are either local or global (see [Par14, §8.1]), $\left[k_{j}: k(v)\right]$ is odd and $\operatorname{per}\left(D \otimes_{F} F_{v}\right) \mid 2$, by lemma 3.2.2 and lemma 3.2.3, the conditions in lemma 3.1.1 are
satisfied. By Morita equivalence and lemma 3.1.1, $X_{d}\left(F_{v}\right) \neq \emptyset$ for all v. Finally by the Hasse principle theorem 2.3.6, $X_{d}(F) \neq \emptyset$, so h is isotropic.

CHAPTER 4

Hermitian u-invariants

This chapter is based on my preprint [Wu15b].
Let p be an odd prime number. Let F be the function field of a smooth projective geometrically integral curve over a p-adic field. Let D be a central division F-algebra with an involution σ of the first kind. We are interested in finding $u^{+}(D)$ and $u^{-}(D)$.

If $D=F$, then $u^{+}(D)=u(F)$ and $u^{-}(D)=0$. Here $u(F)$ is the u-invariant for quadratic forms over F. Merkurjev has shown that $u(F) \leq 26$. Hoffman and Van Geel [HV98] have shown that $u(F) \leq 22$. Parimala and Suresh [PS98] have shown that $u(F) \leq 10$. Recently, Parimala and Suresh [PS10] have shown that $u(F)=8$ for $\operatorname{char}(F) \neq 2$. Leep [Lee13] has shown that $u(F)=8$ including $\operatorname{char}(F)=2$ using a result of [Hea10]. Harbater, Hartmann and Krashen re-proved $u(F)=8$ for $\operatorname{char}(F) \neq 2$ using patching in [HHK09, Cor. 4.15].

Since the case $D=F$ is settled, for the rest of the chapter, we suppose $D \neq F$. Mahmoudi [Mah05, Prop. 3.6] has proved an inequality of Hermitian u-invariants:

$$
u(D, \sigma, \varepsilon) \leq \frac{r(r+1)}{2 \operatorname{dim}_{F}(D)} u(F)
$$

where $r=\operatorname{dim}_{F}\{x \in D \mid \sigma(x)=\varepsilon x\}$ and r is increasing with respect to $\operatorname{deg}(D)$. By [Sal97, Th. 3.4], $\operatorname{deg}(D) \in\{2,4\}$. Suppose $d=4$. If σ is orthogonal and $\varepsilon=1$ or σ is symplectic and $\varepsilon=-1$, we have $r=\frac{4(4+1)}{2}=10$, then

$$
u^{+}(D) \leq \frac{10 * 11}{2 * 4^{2}} * 8=\frac{55}{2}
$$

If σ is orthogonal and $\varepsilon=-1$ or σ is symplectic and $\varepsilon=1$, we have $r=\frac{4(4-1)}{2}=6$, then

$$
u^{-}(D) \leq \frac{6 * 7}{2 * 4^{2}} * 8=\frac{21}{2}
$$

Since u-invariants are integers, we have

$$
u^{+}(D) \leq 27, \text { and } u^{-}(D) \leq 10
$$

Parihar and Suresh [PS13, Cor. 4.8] have obtained sharper bounds

$$
u^{+}(D) \leq 14 \text { and } u^{-}(D) \leq 8
$$

using their inequality from exact sequence of Witt groups [PS13, Cor. 3.3].
In this chapter, we obtain exact values of Hermitian u-invariants in theorem 4.3.2.
Let A be a central simple algebra over a field k. Suppose char $k \neq 2$ and $\operatorname{per}(A)=$ 2. Then, by a special case [Mer81] of the Merkurjev-Suslin theorem [MS82], A is Brauer equivalent to $H_{1} \otimes \cdots \otimes H_{n}$ for some quaternion algebras H_{1}, \ldots, H_{n} over k. Let K / k be a quadratic extension. In [PS13, Cor. 4.11], upper bounds for $u^{+}(A)$, $u^{-}(A), u^{0}(A \otimes K)$ are given and they depend only on $u(k)$ and n. We obtain sharper upper bounds for these Hermitian u-invariants in theorem 4.4.2.

4.1. Hermitian u-invariants over complete discrete valued fields

Since Hermitian u-invariants are preserved by Morita invariance lemma 1.6.7, we mostly focus on central division algebras.

Lemma 4.1.1. Let D be a central division algebra over a field K with an involution σ. Let $k=K^{\sigma}$, char $k \neq 2$. Suppose k is a non-archimedean local field.
(1) If σ is of the first kind and $D \neq k$, then $u^{+}(D)=3, u^{-}(D)=1$.
(2) If σ is of the second kind, then $u^{0}(D)=2$.

Proof. (1) Suppose σ is of the first kind. By [Sch85, ch. 10, Th. 2.2] and that $D \neq k, D$ is a quaternion algebra. Suppose σ is the canonical symplectic involution and $\varepsilon=-1$. By [Tsu61, Th. 1], every skew-hermitian space of rank >3 over (D, σ) is isotropic. By [Tsu61, Th. 3], every skew-hermitian space of rank $=3$ and discriminant 1 over (D, σ) is anisotropic. Hence $u^{+}(D)=3$.

By [Sch85, ch. 10,1.7], $h(x, x)$ is identified with a quadratic space q_{h} over K such that h is isotropic if and only if q_{h} is isotropic and $\operatorname{Rank}\left(q_{h}\right)=4 \operatorname{Rank}(h)$. Since $u(k)=4$, we have $u^{-}(D) \leq 1$ and hence $u^{-}(D)=1$.
(2) Suppose σ is of the second kind, by [Sch85, ch. 10, 2.2], $D=K$. Then $u^{0}(D) \leq \frac{1}{2} u(k)=2$. Suppose $K=k(\sqrt{\lambda})$, where $\lambda \in k^{*} \backslash k^{* 2}$ and $\sigma(\sqrt{\lambda})=-\sqrt{\lambda}$. Assume that k has a discrete valuation v and a parameter π. Up to a square, we may assume that $v(\lambda) \in\{0,1\}$.

If $v(\lambda)=0$, then, since λ is not a square in k, by a theorem of Springer, $\langle 1,-\lambda, \pi,-\lambda \pi\rangle$ is anisotropic over k. Then the Hermitian form $\langle 1, \pi\rangle$ is anisotropic over (K, σ) and hence $u^{0}(D)=u(K, \sigma, 1) \geq 2$.

Since the residue field of k is a finite field with two square classes, by Hensel's lemma, there exists $u \notin k^{* 2}$ such that $v(u)=0$. If $v(\lambda)=1$, then $\langle 1,-\lambda,-u, \lambda u\rangle$ is anisotropic over k, by a theorem of Springer, $\langle 1,-u\rangle$ is anisotropic over (K, σ) and hence $u^{0}(D)=u(K, \sigma, 1) \geq 2$.

We have shown that $u^{0}(D) \geq 2$ and hence $u^{0}(D)=2$.

We fix the following notation for the rest of this section. Let (k, v) be a complete discrete valued field with residue field $\bar{k}, \operatorname{char} \bar{k} \neq 2$. Let D be a finite-dimensional division k-algebra with center K with an involution σ such that $K^{\sigma}=k$. By [CF67, ch. II, 10.1], v extends to a valuation v^{\prime} on K and by [Wad86], v^{\prime} extends to a valuation w on D such that

$$
w(x)=\frac{1}{\operatorname{ind}(D)} v\left(\operatorname{Nrd}_{D / K}(x)\right)
$$

for all $x \in D^{*}$. Since $\operatorname{Nrd}_{D / K}(x)=\operatorname{Nrd}_{D / K}(\sigma(x))$, we have $w(\sigma(x))=w(x)$ for all $x \in D$. Let $R_{w}=\{x \in D \mid w(x) \geq 0\}$ and $\mathfrak{m}_{w}=\{x \in D \mid w(x)>0\}$. Let $\bar{D}=R_{w} / \mathfrak{m}_{w}$ be the residue division algebra (see [Rei03, Th. 13.2]) of (D, w) over \bar{k} with involution $\bar{\sigma}$ such that $\bar{\sigma}(\bar{x})=\overline{\sigma(x)}$ for all $x \in R_{w}$, where $\bar{x}=x+\mathfrak{m}_{w}$. Let h be a nondegenerate ε-hermitian form over (D, σ). Then $h=\left\langle a_{1}, \ldots, a_{n}\right\rangle$, for some $a_{i} \in D$ with $\sigma\left(a_{i}\right)=\varepsilon a_{i}$. If $w\left(a_{i}\right)=0$ for all $1 \leq i \leq n$, then $\bar{h}=\left\langle\bar{a}_{1}, \ldots, \bar{a}_{n}\right\rangle \in \operatorname{Herm}^{\varepsilon}(\bar{D}, \bar{\sigma})$.

Let t_{D} be a parameter of (D, w). By [Lar99, Prop. 2.7], there exists $\pi_{D} \in D$ such that $w\left(\pi_{D}\right) \equiv w\left(t_{D}\right) \bmod 2 w\left(D^{*}\right)$ and $\sigma\left(\pi_{D}\right)=\varepsilon^{\prime} \pi_{D}$ for some $\varepsilon^{\prime} \in\{1,-1\}$. Larmour's hermitian analogue (proposition 1.2.3) of a theorem of Springer can be rephrased as follows: there exist $h_{1} \in \operatorname{Herm}^{\varepsilon}(D, \sigma), h_{2} \in \operatorname{Herm}^{\varepsilon \varepsilon^{\prime}}\left(D, \operatorname{Int}\left(\pi_{D}\right) \circ \sigma\right)$, with $h \simeq h_{1} \perp h_{2} \pi_{D}$, with each diagonal entries of h_{1} and h_{2} have w-value 0 . Further, h is isotropic if and only if h_{1} or h_{2} is isotropic, if and only if \bar{h}_{1} or \bar{h}_{2} is isotropic.

Corollary 4.1.2. $u(D, \sigma, \varepsilon)=u(\bar{D}, \bar{\sigma}, \varepsilon)+u\left(\bar{D}, \overline{\operatorname{Int}\left(\pi_{D}\right) \circ \sigma}, \varepsilon \varepsilon^{\prime}\right)$.

Proof. Suppose $h \in \operatorname{Herm}^{\varepsilon}(D, \sigma)$ and $h \simeq h_{1} \perp h_{2} \pi_{D}$ as in proposition 1.2.3. Since $\operatorname{Rank}(h)=\operatorname{Rank}\left(h_{1}\right)+\operatorname{Rank}\left(h_{2}\right)=\operatorname{Rank}\left(\overline{h_{1}}\right)+\operatorname{Rank}\left(\overline{h_{2}}\right)$, if $\operatorname{Rank}(h)>$ $u(\bar{D}, \bar{\sigma}, \varepsilon)+u\left(\bar{D}, \overline{\operatorname{Int}\left(\pi_{D}\right) \circ \sigma}, \varepsilon \varepsilon^{\prime}\right)$, then

$$
\operatorname{Rank}\left(\overline{h_{1}}\right)>u(\bar{D}, \bar{\sigma}, \varepsilon) \text { or } \operatorname{Rank}\left(\overline{h_{2}}\right)>u\left(\bar{D}, \overline{\operatorname{Int}\left(\pi_{D}\right) \circ \sigma}, \varepsilon \varepsilon^{\prime}\right) .
$$

Then \bar{h}_{1} or \bar{h}_{2} is isotropic. By proposition 1.2.3, h is isotropic. Hence $u(D, \sigma, \varepsilon) \leq$ $u(\bar{D}, \bar{\sigma}, \varepsilon)+u\left(\bar{D}, \overline{\operatorname{Int}\left(\pi_{D}\right) \circ \sigma}, \varepsilon \varepsilon^{\prime}\right)$.

Conversely, suppose $g_{1}=\left\langle a_{1}, \ldots, a_{m}\right\rangle \in \operatorname{Herm}^{\varepsilon}(\bar{D}, \bar{\sigma})$ such that $\bar{\sigma}\left(a_{i}\right)=\varepsilon a_{i}$, $m=u(\bar{D}, \bar{\sigma}, \varepsilon)$ and g_{1} is anisotropic. Since $a_{i} \neq 0$, there exists $b_{i} \in R_{w}, w\left(b_{i}\right)=0$ such that $\overline{b_{i}}=a_{i}$. Let $c_{i}=\frac{1}{2}\left(b_{i}+\varepsilon \sigma\left(b_{i}\right)\right)$. Then $\sigma\left(c_{i}\right)=\varepsilon c_{i}$ and $\overline{c_{i}}=a_{i}$. Let $h_{1}=\left\langle c_{1}, \ldots, c_{m}\right\rangle \in \operatorname{Herm}^{\varepsilon}(D, \sigma)$. Then $\overline{h_{1}}=g_{1}$ and by [Lar06, Prop. 2.3], h_{1} is anisotropic.

Suppose $g_{2}=\left\langle a_{m+1}, \ldots, a_{m+n}\right\rangle \in \operatorname{Herm}^{\varepsilon \varepsilon^{\prime}}\left(\bar{D}, \overline{\operatorname{Int}\left(\pi_{D}\right) \circ \sigma}\right)$ is anisotropic. Similar to the previous paragraph, there exists $h_{2} \in \operatorname{Herm}^{\varepsilon \varepsilon^{\prime}}\left(D, \operatorname{Int}\left(\pi_{D}\right) \circ \sigma\right)$ such that $\overline{h_{2}}=g_{2}$ and h_{2} is anisotropic.

By proposition 1.2.3, $h=h_{1} \perp h_{2} \pi_{D}$ is anisotropic and $\operatorname{Rank}(h)=m+n$. Therefore $u(D, \sigma, \varepsilon) \geq u(\bar{D}, \bar{\sigma}, \varepsilon)+u\left(\bar{D}, \overline{\operatorname{Int}\left(\pi_{D}\right) \circ \sigma}, \varepsilon \varepsilon^{\prime}\right)$.

Lemma 4.1.3. Suppose D is ramified at the discrete valuation v of k. Then there exist an involution σ on D of first kind and elements $\alpha, \pi_{d} \in D$ such that
(a) $\bar{\sigma}$ is an involution of the second kind;
(b) $\alpha^{2} \in k, v\left(\alpha^{2}\right)=0$ and $Z(\bar{D})=\bar{k}(\bar{\alpha})$;
(c) $\pi_{D} \in D$ a parameter such that $\sigma\left(\pi_{D}\right)= \pm \pi_{D}$ and $\overline{\operatorname{Int}\left(\pi_{D}\right) \circ \sigma}$ is of the first kind.

Proof. Suppose D is ramified at v and $Z(D)=k$. Then D is Brauer equivalent to $D_{0} \otimes(u, \pi)$ where D_{0} is a central division algebra over k unramified at $v, \pi \in k^{*}$ is a parameter of v and $u \in k^{*} \backslash k^{* 2}, v(u)=0$. Furthermore, by [TW15, Th. 8.77], \bar{D} is Brauer equivalent to $\overline{D_{0}} \otimes \bar{k}(\overline{\sqrt{u}})$ and $Z(\bar{D}) \simeq \bar{k}(\overline{\sqrt{u}})$.
(a) By $[$ Cha +95 , Prop. 4], the nontrivial automorphism of $Z(\bar{D}) / \bar{k}$ extends to an involution on \bar{D} of the second kind and it can be lifted to an involution σ on D of the first kind.
(b) Since k is complete, by [Cha+95, p. 53, Lem. 1], there exists $\alpha \in D$ such that $\alpha^{2} \in Z(D), \bar{\alpha} \in Z(\bar{D})$ corresponds $\overline{\sqrt{u}}$ in the isomorphism $Z(\bar{D}) \simeq \bar{k}(\overline{\sqrt{u}})$ and $\sigma(\alpha)=-\alpha$.
(c) By [JW90, Prop. 1.7], there exists a parameter $t_{D} \in D$ such that $\overline{\operatorname{Int}\left(t_{D}\right)}$ is the non-trivial $Z(\bar{D}) / \bar{k}$-automorphism, i.e.

$$
\overline{t_{D} \alpha t_{D}^{-1}}=-\bar{\alpha} .
$$

Since $\bar{\sigma}$ is of the second kind and $\overline{\operatorname{Int}\left(t_{D}\right)}$ induces the non-trivial automorphims of $Z(\bar{D})$, we have $\overline{\operatorname{Int}\left(t_{D}\right) \circ \sigma}$ is of the first kind. Since σ is an involution, $w\left(t_{D}\right)=$ $w\left(\sigma\left(t_{D}\right)\right)$ and hence $\overline{\sigma\left(t_{D}\right) t_{D}^{-1}} \neq 0 \in \bar{D}$.

Case 1: Suppose that $\overline{\sigma\left(t_{D}\right) t_{D}^{-1}}=1$. Let $\pi_{D}=t_{D}+\sigma\left(t_{D}\right)$. Then $\sigma\left(\pi_{D}\right)=\pi_{D}$. Since $\pi_{D} t_{D}^{-1}=1+\sigma\left(t_{D}\right) t_{D}^{-1}$ and $\operatorname{char}(\bar{k}) \neq 2$, we have

$$
\overline{\pi_{D} t_{D}^{-1}}=1+\overline{\sigma\left(t_{D}\right) t_{D}^{-1}}=1+1=2 \neq 0
$$

Hence $w\left(\pi_{D}\right)=w\left(t_{D}\right)$. Since $\overline{\pi_{D} t_{D}^{-1}}=2 \in \bar{k}^{*}, \overline{\operatorname{Int}\left(\pi_{D}\right) \circ \sigma}=\overline{\operatorname{Int}\left(t_{D}\right) \circ \sigma}$ and hence $\overline{\operatorname{Int}\left(\pi_{D}\right) \circ \sigma}$ is of the first kind. Thus π_{D} satisfies condition (c).

Case 2: Suppose that $\overline{\sigma\left(t_{D}\right) t_{D}^{-1}} \neq 1$. Let $\pi_{D}=\alpha t_{D}-\sigma\left(\alpha t_{D}\right)$. Then $\sigma\left(\pi_{D}\right)=-\pi_{D}$. We have $\pi_{D} t_{D}^{-1}=\alpha-\sigma\left(t_{D}\right) \sigma(\alpha) t_{D}^{-1}$. Since $\overline{\sigma(\alpha)}=-\bar{\alpha}$ and $\overline{t_{D} \alpha t_{D}^{-1}}=-\bar{\alpha}$, we have

$$
\begin{aligned}
\overline{\pi_{D} t_{D}^{-1}} & =\bar{\alpha}-\overline{\sigma\left(t_{D}\right) \sigma(\alpha) t_{D}^{-1}} \\
& =\bar{\alpha}-\overline{\sigma\left(t_{D}\right) t_{D}^{-1}} \cdot \overline{t_{D} \sigma(\alpha) t_{D}^{-1}} \\
& =\bar{\alpha}-\overline{\sigma\left(t_{D}\right) t_{D}^{-1}} \cdot \overline{\left(-t_{D} \alpha t_{D}^{-1}\right)} \\
& =\bar{\alpha}-\overline{\sigma\left(t_{D}\right) t_{D}^{-1}} \cdot \bar{\alpha} \\
& =\left(1-\overline{\sigma\left(t_{D}\right) t_{D}^{-1}}\right) \bar{\alpha} \\
& \neq 0 .
\end{aligned}
$$

Hence $w\left(\pi_{D}\right)=w\left(t_{D}\right)$. Since $\overline{\sigma(\alpha)}=-\bar{\alpha}, \alpha^{2} \in k$ and $\overline{t_{D} \alpha t_{D}^{-1}}=-\bar{\alpha}$, we have $\overline{\sigma\left(t_{D}\right) \alpha \sigma\left(t_{D}\right)^{-1}}=-\bar{\alpha}$ and

$$
\begin{aligned}
& \overline{\left(\pi_{D} \alpha \pi_{D}^{-1}+\alpha\right) \pi_{D} t_{D}^{-1}} \\
= & \overline{\pi_{D} \alpha t_{D}^{-1}}+\overline{\alpha \pi_{D} t_{D}^{-1}} \\
= & \overline{\left(\alpha t_{D}-\sigma\left(t_{D}\right) \sigma(\alpha)\right) \alpha t_{D}^{-1}}+\overline{\alpha\left(\alpha t_{D}-\sigma\left(t_{D}\right) \sigma(\alpha)\right) t_{D}^{-1}} \\
= & \overline{\alpha t_{D} \alpha t_{D}^{-1}}-\overline{\sigma\left(t_{D}\right) \sigma(\alpha) \alpha t_{D}^{-1}}+\overline{\alpha^{2}}+\overline{\alpha \sigma\left(t_{D}\right) \alpha t_{D}^{-1}} \\
= & -\overline{\alpha^{2}}+\overline{\sigma\left(t_{D}\right) \alpha^{2} t_{D}^{-1}}+\overline{\alpha^{2}}+\overline{\alpha\left(\sigma\left(t_{D}\right) \alpha \sigma\left(t_{D}\right)^{-1}\right) \sigma\left(t_{D}\right) t_{D}^{-1}} \\
= & -\overline{\alpha^{2}}+\overline{\alpha^{2} \sigma\left(t_{D}\right) t_{D}^{-1}}+\overline{\alpha^{2}}-\overline{\alpha^{2} \sigma\left(t_{D}\right) t_{D}^{-1}} \\
= & 0 .
\end{aligned}
$$

Since $\overline{\pi_{D} t_{D}^{-1}} \neq 0, \overline{\pi_{D} \alpha \pi_{D}^{-1}+\alpha}=0$ and hence $\overline{\left(\operatorname{Int}\left(\pi_{D}\right) \circ \sigma\right)}(\bar{\alpha})=\bar{\alpha}$. Thus π_{D} satisfies (c).

In conclusion, σ, α and π_{D} satisfy required properties (a), (b) and (c).

Corollary 4.1.4. Suppose σ is of the first kind, i.e. $K=k$.
(1) If D is unramified at the discrete valuation of k, then

$$
u^{+}(D)=2 u^{+}(\bar{D}) \text { and } u^{-}(D)=2 u^{-}(\bar{D})
$$

(2) If D is ramified at the discrete valuation of k, then

$$
u^{+}(D)=u^{0}(\bar{D})+u^{+}(\bar{D}) \text { and } u^{-}(D)=u^{0}(\bar{D})+u^{-}(\bar{D})
$$

Proof. Suppose D is unramified. Then we can take $\pi_{D}=\pi$, where π is a parameter of k. Since $\sigma(\pi)=\pi$, we have $\varepsilon^{\prime}=1$ and $\operatorname{Int}\left(\pi_{D}\right) \circ \sigma=\sigma$. Hence, by corollary 4.1.2, we have

$$
u(D, \sigma, \varepsilon)=u(\bar{D}, \bar{\sigma}, \varepsilon)+u\left(\bar{D}, \overline{\operatorname{Int}\left(\pi_{D}\right) \circ \sigma}, \varepsilon \varepsilon^{\prime}\right)=2 u(\bar{D}, \bar{\sigma}, \varepsilon)
$$

Then $u^{+}(D)=2 u^{+}(\bar{D})$ and $u^{-}(D)=2 u^{-}(\bar{D})$.
Suppose D is ramified. Then choose σ and π_{D} as in lemma 4.1.3. Then $\bar{\sigma}$ is of the second kind and $\overline{\operatorname{Int}\left(\pi_{D}\right) \circ \sigma}$ is of the first kind. By [Cha+95, Prop. 3], $\overline{\operatorname{Int}\left(\pi_{D}\right) \circ \sigma}$ and $\operatorname{Int}\left(\pi_{D}\right) \circ \sigma$ are of the same type. Then, by corollary 4.1.2, we have

$$
u(D, \sigma, \varepsilon)=u(\bar{D}, \bar{\sigma}, \varepsilon)+u\left(\bar{D}, \overline{\operatorname{Int}\left(\pi_{D}\right) \circ \sigma}, \varepsilon \varepsilon^{\prime}\right)
$$

Further, by [KMRT98, Prop. 2.7] if $\varepsilon^{\prime}=1$, then $\operatorname{Int}\left(\pi_{D}\right) \circ \sigma$ and σ are of the same type; if $\varepsilon^{\prime}=-1$, then $\operatorname{Int}\left(\pi_{D}\right) \circ \sigma$ and σ are of different types. Then $u^{+}(D)=u^{0}(\bar{D})+u^{+}(\bar{D})$ and $u^{-}(D)=u^{0}(\bar{D})+u^{-}(\bar{D})$.

Let K / k be a quadratic extension and \bar{K} the residue field of K. Let D be a central division algebra over k with an involution σ of the first kind. Then $\sigma \otimes \iota$ is an involution on $D \otimes_{k} K$ of the second kind with ι being the non-trivial automorphism of K / k.

Suppose $D \otimes K$ is division and ramified at the discrete valuation of K. Then D is ramified at the discrete valuation of k and $Z(\overline{D \otimes K})=Z(\bar{D}) \otimes \bar{K}$.

Suppose K / k is unramified. Then \bar{K} / \bar{k} is a quadratic extension. We have $\bar{K}=$ $\bar{k}(\overline{\sqrt{\lambda}})$ and $Z(\bar{D})=\bar{k}(\overline{\sqrt{u}})$ for some $u, \lambda \in k$ units at the discrete valuation of k. Let π be a parameter of (k, v). Then $D \otimes_{k} K \simeq D_{0} \otimes(u, \pi) \otimes_{k} K$ is a division algebra implies that $u k^{* 2} \neq \lambda k^{* 2}$. In particular, $Z(\overline{D \otimes K})=\bar{k}(\overline{\sqrt{u}}, \overline{\sqrt{\lambda}})$ is a degree

4 extension of \bar{k}. Since $\overline{D \otimes K}=\bar{D} \otimes \bar{K}=\bar{D} \otimes \bar{k}(\overline{\sqrt{u}}, \overline{\sqrt{\lambda}})$ and \bar{D} has an involution of the first kind, $\overline{D \otimes K}$ has three possible types of involutions of second kind with fixed fields $\overline{k_{1}}=\bar{k}(\overline{\sqrt{u}}), \overline{k_{2}}=\bar{k}(\overline{\sqrt{\lambda}})$ and $\overline{k_{3}}=\bar{k}(\overline{\sqrt{u \lambda}})$ respectively. The corresponding $u^{0}(\overline{D \otimes K})$ are defined by $u^{0}\left(\overline{D \otimes K} / \bar{k}_{1}\right), u^{0}\left(\overline{D \otimes K} / \bar{k}_{2}\right)$ and $u^{0}\left(\overline{D \otimes K} / \bar{k}_{3}\right)$.

Corollary 4.1.5. Let K / k be a quadratic extension and let ι be the non-trivial automorphism of K / k. Let D be a central division algebra over k with an involution σ of first kind such that $D \otimes_{k} K$ is division.
(1) If $D \otimes K$ is unramified at the discrete valuation of K and K / k is unramified, then

$$
u^{0}(D \otimes K)=2 u^{0}(\bar{D} \otimes \bar{K}) .
$$

(2) If $D \otimes K$ is ramified at the discrete valuation of K and K / k is unramified, then

$$
u^{0}(D \otimes K)=u^{0}\left(\bar{D} \otimes \bar{K} / \bar{k}_{2}\right)+u^{0}\left(\bar{D} \otimes \bar{K} / \bar{k}_{3}\right) .
$$

(3) If K / k is ramified, then

$$
u^{0}(D \otimes K)=u^{+}\left(\overline{D_{0}}\right)+u^{-}\left(\overline{D_{0}}\right)
$$

for some central division algebra D_{0} unramified over k with $\operatorname{deg}(D)=\operatorname{deg}\left(D_{0}\right)$.

Proof. (1) Suppose D is unramified and K / k is unramified. Then $\overline{D \otimes K}=$ $\bar{D} \otimes \bar{K}$ and \bar{K} / \bar{k} is a quadratic extension. Let π be a parameter of k. Take $\pi_{D}=\pi$. Then $\sigma\left(\pi_{D}\right)=\pi_{D}$ and $\overline{\operatorname{Int}\left(\pi_{D}\right) \circ(\sigma \otimes \iota)}=\overline{\sigma \otimes \iota}$. By corollary 4.1.2,

$$
u^{0}(D \otimes K)=2 u^{0}(\bar{D} \otimes \bar{K}) .
$$

(2) Suppose D is ramified and K / k is unramified. Suppose $\sigma, \alpha=\sqrt{u}$ and π_{D} are as in lemma 4.1.3. Then $Z(\overline{D \otimes K})=\bar{k}(\overline{\sqrt{u}}, \overline{\sqrt{\lambda}})$ and the fixed field of $\overline{\sigma \otimes \iota}$ is $\bar{k}_{3}=\bar{k}(\overline{\sqrt{u \lambda}})$ and the fixed field of $\overline{\operatorname{Int}\left(\pi_{D}\right) \circ(\sigma \otimes \iota)}$ is $\bar{k}_{2}=\bar{k}(\overline{\sqrt{\lambda}})$. Thus, by
corollary 4.1.2, we have

$$
u^{0}(D \otimes K)=u^{0}\left(\bar{D} \otimes \bar{K} / \bar{k}_{2}\right)+u^{0}\left(\bar{D} \otimes \bar{K} / \bar{k}_{3}\right) .
$$

(3) Suppose K / k is ramified. Then $K=k(\sqrt{\pi})$ for some parameter $\pi \in k$ and $\bar{K}=\bar{k}$. We have $D=D_{0} \otimes(u, \pi)$ for some D_{0} unramified on k and $u \in k$ a unit at the valuation of k [TW15, Th. 8.77]. Thus $D \otimes K=D_{0} \otimes K$. Since $D \otimes K$ is division, $D \otimes K \simeq D_{0} \otimes K$ and $\operatorname{deg}(D)=\operatorname{deg}\left(D_{0}\right)$. Let σ_{0} be an involution of the first kind on D_{0} and $\sigma \simeq \sigma_{0} \otimes \gamma$, where γ is the canonical involution of (u, π). Since D_{0} is unramified and K / k is ramified, we have $\overline{D \otimes K}=\overline{D_{0}}$ and $\overline{\sigma \otimes \iota}=\overline{\sigma_{0}}$. Let $\pi_{D}=\sqrt{\pi} \in K \subset D \otimes K$. Then $\overline{\operatorname{Int}\left(\pi_{D}\right) \circ(\sigma \otimes \iota)}=\overline{\sigma_{0}}$. Thus, by corollary 4.1.2,

$$
u(D \otimes K, \sigma, \varepsilon)=u\left(\overline{D \otimes K}, \overline{\sigma_{0}}, \varepsilon\right)+u\left(\overline{D \otimes K}, \overline{\sigma_{0}},-\varepsilon\right) .
$$

Hence $u^{0}(D \otimes K)=u^{+}\left(\overline{D_{0}}\right)+u^{-}\left(\overline{D_{0}}\right)$.

We end this section with the following well known

Lemma 4.1.6. Let k be a discrete valued field with residue field \bar{k} and completion \widehat{k}. Suppose $\operatorname{char}(\bar{k}) \neq 2$. Let D be a division algebra over k with center K. Let σ be an involution on D such that $K^{\sigma}=k$. If $D \otimes \widehat{k}$ is division, then

$$
u(D, \sigma, \varepsilon) \geq u(D \otimes \widehat{k}, \sigma \otimes \operatorname{Id}, \varepsilon)
$$

Proof. Let v be the discrete valuation on k and $\pi \in k$ be a parameter. Since $D \otimes \widehat{k}$ is division, v extends to a valuation w on D. Let $\varepsilon= \pm 1$ and $\operatorname{Sym}^{\varepsilon}(D, \sigma)=\{x \in$ $D \mid \sigma(x)=\varepsilon x\}$. Let e_{1}, \ldots, e_{r} be a k-basis of $\operatorname{Sym}^{\varepsilon}(D, \sigma)$. Let $a \in \operatorname{Sym}^{\varepsilon}(D, \sigma) \otimes \widehat{k}$ and write $a=a_{1} e_{1}+\cdots+a_{r} e_{r}$ with $a_{i} \in \widehat{k}$. Let $b_{i} \in k$ be such that $a_{i} \equiv b_{i}$ modulo $\pi^{e w(a)+1}$ and $b=b_{1} e_{1}+\cdots+b_{r} e_{r} \in \operatorname{Sym}^{\varepsilon}(D, \sigma)$, where e is the ramification index $\left[w\left(D^{*}\right): v\left(k^{*}\right)\right]$. Then $w(a)=w(b)$ and $\overline{a b^{-1}}=1 \in \overline{D \otimes \widehat{k}}$. In particular, by proposition 1.2.3, $\langle a\rangle \simeq\langle b\rangle \otimes \widehat{k}$ as ε-hermitian forms over $D \otimes \widehat{k}$.

Let h be an ε-hermitian forms over $(D \otimes \widehat{k}, \sigma)$. Since $D \otimes \widehat{k}$ is division, $h=$ $\left\langle\alpha_{1}, \ldots, \alpha_{n}\right\rangle$ for some $\alpha_{i} \in \operatorname{Sym}^{\varepsilon}(D, \sigma) \otimes \widehat{k}$. For each α_{i}, let $\beta_{i} \in \operatorname{Sym}^{\varepsilon}(D, \sigma)$ be such that $\left\langle\alpha_{i}\right\rangle \simeq\left\langle\beta_{i}\right\rangle \otimes \widehat{k}$ and $h_{0}=\left\langle\beta_{1}, \ldots, \beta_{n}\right\rangle$. Then h_{0} is an ε-hermitian form over (D, σ) and $h_{0} \otimes \widehat{k} \simeq h$. If h is anisotropic over \widehat{k}, then, by proposition 1.2.3 again, h_{0} is anisotropic. In particular, $u(D, \sigma, \varepsilon) \geq u(D \otimes \widehat{k}, \sigma \otimes \mathrm{Id}, \varepsilon)$.

4.2. Division algebras over $\mathscr{A}_{i}(2)$-fields

Suppose i and m are two positive integers. A field k is called an $\mathscr{A}_{i}(m)$-field [Lee13, Def. 2.1] if every system of r homogeneous forms of degree m in more than $r m^{i}$ variables over k has a nontrivial simutaneous zero over a field extension L / k such that $\operatorname{gcd}(m,[L: k])=1$ for all integers $r>0$.

Let A be a central simple algebra over a field k. We say that A satisfies the Springer's property if for any involution σ on A of the first kind, $\varepsilon \in\{1,-1\}$ and for any odd degree extension L / k, if h is an anisotropic ε-hermitian space over (A, σ), then $h \otimes L$ is anisotropic.

Theorem 4.2.1. Let k be an $\mathscr{A}_{i}(2)$-field. Let D be a central division algebra over k with an involution of the first kind. If D satisfies the Springer's property, then

$$
u^{+}(D) \leq\left(1+\frac{1}{d}\right) 2^{i-1} \text { and } u^{-}(D) \leq\left(1-\frac{1}{d}\right) 2^{i-1}
$$

where $d=\operatorname{deg}(D)$.

Proof. Let σ be an orthogonal involution on D. Let

$$
\operatorname{Sym}^{\varepsilon}(D, \sigma)=\{x \in D \mid \sigma(x)=\varepsilon x\}
$$

and $r=\operatorname{dim}_{k}\left(\operatorname{Sym}^{\varepsilon}(D, \sigma)\right)$. Then $r=d(d+\varepsilon) / 2\left[K M R T 98\right.$, Prop. 2.6]. Let e_{1}, \ldots, e_{r} be a k-basis of $\operatorname{Sym}^{\varepsilon}(D, \sigma)$. Let h be an ε-hermitian form over (D, σ) of rank $n>$ $\left(1+\frac{\varepsilon}{d}\right) 2^{i-1}$. Then for $x \in D^{n}$, we have

$$
h(x, x)=q_{1}(x, x) e_{1}+\cdots+q_{r}(x, x) e_{r}
$$

with each q_{i} a quadratic form over k in $d^{2} n$ variables [Mah05, proof of prop. 3.6].
Since k is an $\mathscr{A}_{i}(2)$-field and $d^{2} n>d(d+\varepsilon) 2^{i-1}=r 2^{i}$, there exists an odd degree extension L / k such that $\left\{q_{1}, \ldots, q_{r}\right\}$ have a simultaneous nontrivial zero over L. Then h_{L} is isotropic over D_{L}. By Springer's property, h is isotropic over D. Hence $u(D, \sigma, \varepsilon) \leq\left(1+\frac{\varepsilon}{d}\right) 2^{i-1}$.

Similarly, if σ is a symplectic involution on D, then $r=d(d-\varepsilon) / 2$ and hence $u(D, \sigma, \varepsilon) \leq\left(1-\frac{\varepsilon}{d}\right) 2^{i-1}$.

Theorem 4.2.2. Let k be an $\mathscr{A}_{i}(2)$-field. Let K / k be a quadratic extension. Let D be a central division algebra over K with an involution σ of the second kind with $\left.\sigma\right|_{k}=$ Id. Suppose that D satisfies the Springer's property. Then $u^{0}(D) \leq 2^{i-1}$.

Proof. Let σ be an involution on D of the second kind. Let $\operatorname{Sym}(D)=\{x \in$ $D \mid \sigma(x)=x\}$. Then $\operatorname{Sym}(D)$ is vector space over k and $\operatorname{dim}_{k} \operatorname{Sym}(D)=d^{2}$, where $d^{2}=\operatorname{dim}_{K}(D)$. Let $e_{1}, \ldots, e_{d^{2}}$ be a k-basis of $\operatorname{Sym}(D)$. Let h be a hermitian form over (D, σ) of rank $n>2^{i-1}$. Then, for $x \in D^{n}, h(x, x) \in \operatorname{Sym}(D)$ and we have

$$
h(x, x)=q_{1}(x, x) e_{1}+\cdots+q_{d^{2}}(x, x) e_{d^{2}},
$$

with each q_{i} a quadratic form over k in $2 d^{2} n$ variables.
Since k is an $\mathscr{A}_{i}(2)$-field and $2 d^{2} n>2 d^{2} 2^{i-1}=d^{2} 2^{i}$, there exists an odd degree extension L / k such that $\left\{q_{1}, \ldots, q_{d^{2}}\right\}$ have a simultaneous nontrivial zero over L. In particular, h_{L} is isotropic over D_{L}. By Springer's property, h is isotropic over D. Hence $u^{0}(D) \leq 2^{i-1}$.

Corollary 4.2.3. If D is a quaternion division algebra over an $\mathscr{A}_{i}(2)$-field k and σ is of the first kind, then $u^{+}(D) \leq 3 \cdot 2^{i-2}$ and $u^{-}(D) \leq 2^{i-2}$;

Proof. Since D is a quaternion algebra, by [PSS01, Th. 3.5], (D, σ, ε) satisfies Springer's property. By theorem 4.2.1,

$$
u^{+}(D) \leq\left(1+\frac{1}{2}\right) 2^{i-1}=3 \cdot 2^{i-2}
$$

$$
u^{-}(D) \leq\left(1-\frac{1}{2}\right) 2^{i-1}=2^{i-2}
$$

Corollary 4.2.4. If D is a quaternion division algebra over a global function field k, then $u^{+}(D)=3, u^{-}(D)=1$, and $u^{0}(D)=2$.

Proof. By Chevalley-Warning theorem [Che35; War35], every finite field is a C_{1-} field. By Tsen-Lang theorem [Lan52], every global function field is a C_{2}-field. Since every C_{2}-field is an \mathscr{A}_{2} (2)-field [Lee13, between 2.1 and 2.2], by corollary 4.2.3,

$$
u^{+}(D) \leq 3 \text { and } u^{-}(D) \leq 1
$$

By theorem 4.2.2, $u^{0}(D) \leq 2$. The equality follows from lemma 4.1.6 and lemma 4.1.1.

Corollary 4.2.5. Let F the function field of an integral variety X over a p-adic field with $p \neq 2$. Let D be a quaternion algebra over F. If $\operatorname{dim}(X)=n$, then

$$
u^{+}(D) \leq 3 \cdot 2^{n} \text { and } u^{-}(D) \leq 2^{n}
$$

Proof. Since D is a quaternion algebra, by [PSS01, Th. 3.5], D satisfies the Springer's property. Since $\operatorname{dim}(X)=n$, by [Hea10] and [Lee13], F is a $\mathscr{A}_{n+2}(2)$-field. Hence the corollary follows from corollary 4.2.3.

Corollary 4.2.6. Let F be a the function field of a p-adic curve. Let D be a division algebra over F with an involution of the first kind.
(1) If D is a quaternion division algebra, then $u^{+}(D) \leq 6$ and $u^{-}(D) \leq 2$.
(2) If D is a biquaternion division algebra, then $u^{+}(D) \leq 5$ and $u^{-}(D) \leq 3$.

Proof. (1) By [Sal97; Sal98, Th. 3.4], $\operatorname{deg}(D)=d=2$ or 4. If $d=2$, then D is a quaternion algebra and by corollary 4.2.5, we have

$$
u^{+}(D) \leq 3 \cdot 2^{3-2}=6 \text { and } u^{-}(D) \leq 2^{3-2}=2
$$

(2) Suppose $d=4$. By theorem 3.3.1, D satisfies Springer's property. Since F is a $\mathscr{A}_{3}(2)$-field, by theorem 4.2.1, we have

$$
u^{+}(D) \leq\left(1+\frac{1}{4}\right) \cdot 2^{3-1}=5 \text { and } u^{-}(D) \leq\left(1-\frac{1}{4}\right) \cdot 2^{3-1}=3 .
$$

Corollary 4.2.7. Let F the function field of a p-adic curve. Let L / F be a quadratic extension. Let D a division algebra over F with an involution of the first kind. Then $u^{0}\left(D \otimes_{F} L\right) \leq 4$.

Proof. By theorem 3.3.1, D satisfies Springer's property. Since F is a $\mathscr{A}_{3}(2)$ field, by theorem 4.2.2, we have $u^{0}\left(D \otimes_{F} L\right) \leq 2^{3-1}=4$.

4.3. Division algebras over semi-global fields

Let p be an odd prime number. Let F be the function field of a curve over a p-adic field. Let D is a division algebra over F with an involution σ. In this section, we show that the bounds in corollary 4.2 .6 for u-invariants of hermitian of forms over central simple algebras over F are in fact exact values. We also compute $u^{0}(D)$ if D is a quaternion division algebra with an involution of the second kind over F.

Lemma 4.3.1. Let k be a complete discrete valued field with residue field \bar{k}. Suppose \bar{k} is a non-archimedean local field or a global function field with $\operatorname{char}(\bar{k}) \neq 2$. Let D be a division algebra over k with an involution of the first kind and K / k a quadratic extension.
(1) If D is a quaternion division algebra, then $u^{+}(D)=6$ and $u^{-}(D)=2$.
(2) If D is a biquaternion algebra, then $u^{+}(D)=5$ and $u^{-}(D)=3$.
(3) If $D \otimes_{k} K$ is a division algebra, then $u^{0}\left(D \otimes_{k} K\right)=4$.

Proof. (1) Suppose D is an unramified quaternion algebra. Then \bar{D} is a quaternion algebra. Since \bar{k} is either a local field or a global function field, by lemma 4.1.1
and corollary 4.2.4, we have $u^{+}(\bar{D})=3, u^{-}(\bar{D})=1$ and $u^{-}(\bar{D})=2$. Thus, by corollary 4.1.4(1), $u^{+}(D)=2 * 3=6$ and $u^{-}(D)=2 * 1=2$.

Suppose D is a ramified quaternion algebra. Then \bar{D} is a quadratic extension of \bar{k} and by lemma 4.1.1 and corollary 4.1.4(2) $u^{+}(D)=2+4=6$ and $u^{-}(D)=2+0=2$.
(2) Suppose D is a biquaternion algebra. Since k is a complete discrete valued field with \bar{k} is a global field or local field, D is ramified by a theorem of Albert [Lam05, Ch. III, 4.8] and a theorem of Springer [Lam05, Ch. VI, 1.9]. Thus \bar{D} is a quaternion algebra and hence by lemma 4.1.1 and corollary 4.1.4(2), $u^{+}(D)=2+3=5$ and $u^{-}(D)=2+1=3$.

Suppose $D \otimes_{k} K \simeq D_{0} \otimes(u, \pi) \otimes_{k} K$ is a division algebra. Recall that $\overline{k_{1}}=$ $\bar{k}(\overline{\sqrt{u}}), \overline{k_{2}}=\bar{k}(\overline{\sqrt{\lambda}})$ and $\overline{k_{3}}=\bar{k}(\overline{\sqrt{u \lambda}})$. By corollary 4.1.5, we have either $u^{0}(D \otimes$ $K)=2 u^{0}(\overline{D \otimes K})$ or $u^{0}(D \otimes K)=u^{0}\left(\bar{D} \otimes \bar{K} / \bar{k}_{2}\right)+u^{0}\left(\bar{D} \otimes \bar{K} / \bar{k}_{3}\right)$ or $u^{0}(D \otimes K)=$ $u^{+}\left(\overline{D_{0}}\right)+u^{-}\left(\overline{D_{0}}\right)$ for some central division algebra D_{0} unramified over k with $\operatorname{deg}(D)=$ $\operatorname{deg}\left(D_{0}\right)$. By corollary 4.2.4, we have $u^{+}(\bar{D})=3, u^{-}(\bar{D})=1$ and $u^{0}(\bar{D})=2$.

In the case of corollary 4.1.5(1), $u^{0}(D \otimes K)=2 u^{0}(\overline{D \otimes K})=2 * 2=4$;
In the case of corollary 4.1.5(2), $u^{0}(D \otimes K)=u^{0}\left(\bar{D} \otimes \bar{K} / \bar{k}_{2}\right)+u^{0}\left(\bar{D} \otimes \bar{K} / \bar{k}_{3}\right)$. Since \bar{k} is a p-adic field or a global field, so are $\overline{k_{2}}$ and $\overline{k_{3}}$. We have $u\left(\overline{k_{2}}\right)=u\left(\overline{k_{2}}\right)=4$. Since $\bar{D} \otimes \bar{K}$ is a quadratic extension of $\overline{k_{2}}$ and $\overline{k_{3}}, u^{0}\left(\bar{D} \otimes \bar{K} / \overline{k_{2}}\right)=\frac{1}{2} u\left(\overline{k_{2}}\right)=2$, $u^{0}\left(\bar{D} \otimes \bar{K} / \overline{k_{3}}\right)=\frac{1}{2} u\left(\overline{k_{3}}\right)=2$. Thus, we also have $u^{0}(D \otimes K)=4$.

In the case of corollary 4.1.5(3), $u^{0}(D \otimes K)=u^{+}\left(\overline{D_{0}}\right)+u^{-}\left(\overline{D_{0}}\right)=3+1=4$.

The next theorem is our main result of chapter 4.

Theorem 4.3.2. Let F be the function field of a p-adic curve with $p \neq 2$ and D a division algebra over F with an involution of the first kind. Let L / F be a quadratic extension.
(1) If D is quaternion, then

$$
u^{+}(D)=6 \text { and } u^{-}(D)=2
$$

(2) If D is quaternion and $D \otimes_{F} L$ is division, then

$$
u^{0}\left(D \otimes_{F} L\right)=4
$$

(3) If D is biquaternion, then

$$
u^{+}(D)=5 \text { and } u^{-}(D)=3 .
$$

Proof. Since D is a division algebra. By [RS13, Th. 2.6], there exists a divisorial discrete valuation v of F such that $D \otimes F_{v}$ is division. Since v is a divisorial discrete valuation, the residue field at v is either a p-adic field or a global function field.
(1) and (3) follow from corollary 4.2.6, lemma 4.3.1(1)(2) and lemma 4.1.6.
(2) By [RS13, Th. 2.6], there exists a divisorial discrete valuation v of F such that $D \otimes L \otimes F_{v}$ is division. Thus, the result follows from corollary 4.2.7, lemma 4.3.1(3) and lemma 4.1.6.

4.4. Tensor product of quaternions over arbitrary fields

In this section, we prove theorem 4.4.2. We begin with the following

Lemma 4.4.1. For $n \geq 1$, let $a_{n}=\frac{4}{5}+\frac{1}{5}\left(\frac{9}{4}\right)^{n}, b_{n}=-\frac{1}{5}+\frac{1}{5}\left(\frac{9}{4}\right)^{n}$ and $c_{n}=$ $\frac{1}{5}+\frac{3}{10}\left(\frac{9}{4}\right)^{n}$. Then

$$
a_{n+1}=\frac{3}{4} a_{n}+c_{n}, b_{n+1}=\frac{3}{2} b_{n}+\frac{1}{2} c_{n}, c_{n}=\frac{1}{2} a_{n}+b_{n}, \frac{3}{2} a_{n} \geq c_{n} \geq \frac{3}{2} b_{n}
$$

for all $n \geq 1$.

Proof.

$$
\begin{aligned}
& \frac{3}{4} a_{n}+c_{n}=\frac{3}{4}\left(\frac{4}{5}+\frac{1}{5}\left(\frac{9}{4}\right)^{n}\right)+\frac{1}{5}+\frac{3}{10}\left(\frac{9}{4}\right)^{n} \\
& =\frac{3}{5}+\frac{3}{20}\left(\frac{9}{4}\right)^{n}+\frac{1}{5}+\frac{3}{10}\left(\frac{9}{4}\right)^{n} \\
& =\left(\frac{3}{5}+\frac{1}{5}\right)+\left(\frac{3}{20}+\frac{3}{10}\right)\left(\frac{9}{4}\right)^{n} \\
& =\frac{4}{5}+\frac{9}{20}\left(\frac{9}{4}\right)^{n} \\
& =\frac{4}{5}+\frac{1}{5}\left(\frac{9}{4}\right)^{n+1}=a_{n+1} \text {. } \\
& \frac{3}{2} b_{n}+\frac{1}{2} c_{n}=\frac{3}{2}\left(-\frac{1}{5}+\frac{1}{5}\left(\frac{9}{4}\right)_{n}^{n}\right)+\frac{1}{2}\left(\frac{1}{5}+\frac{3}{10}\left(\frac{9}{4}\right)^{n}\right) \\
& =-\frac{3}{10}+\frac{3}{10}\left(\frac{9}{4}\right)^{n}+\frac{1}{10}+\frac{3}{20}\left(\frac{9}{4}\right)^{n} \\
& =\left(-\frac{3}{10}+\frac{1}{10}\right)+\left(\frac{3}{10}+\frac{3}{20}\right)\left(\frac{9}{4}\right)^{n} \\
& =-\frac{1}{5}+\frac{9}{20}\left(\frac{9}{4}\right)^{n} \\
& =-\frac{1}{5}+\frac{1}{5}\left(\frac{9}{4}\right)^{n+1}=b_{n+1} \text {. } \\
& \frac{1}{2} a_{n}+b_{n}=\frac{1}{2}\left(\frac{4}{5}+\frac{1}{5}\left(\frac{9}{4}\right)^{n}\right)-\frac{1}{5}+\frac{1}{5}\left(\frac{9}{4}\right)^{n} \\
& =\frac{2}{5}+\frac{1}{10}\left(\frac{9}{4}\right)^{n}-\frac{1}{5}+\frac{1}{5}\left(\frac{9}{4}\right)^{n} \\
& =\left(\frac{2}{5}-\frac{1}{5}\right)+\left(\frac{1}{10}+\frac{1}{5}\right)\left(\frac{9}{4}\right)^{n} \\
& =\frac{1}{5}+\frac{3}{10}\left(\frac{9}{4}\right)^{n}=c_{n} .
\end{aligned}
$$

Finally, since $\frac{3}{2} a_{n}=\frac{6}{5}+\frac{3}{10}\left(\frac{9}{4}\right)^{n}, \frac{3}{2} b_{n}=-\frac{3}{10}+\frac{3}{10}\left(\frac{9}{4}\right)^{n}$ and $\frac{6}{5} \geq \frac{1}{5} \geq-\frac{3}{10}$, we have $\frac{3}{2} a_{n} \geq c_{n} \geq \frac{3}{2} b_{n}$.

Theorem 4.4.2. Let A be a central simple algebra over a field k. Suppose char $k \neq 2$ and $\operatorname{per}(A)=2$. Suppose A is Brauer equivalent to $H_{1} \otimes \cdots \otimes H_{n}$ for some quaternion algebras H_{1}, \ldots, H_{n} over k. Then
(1) $u^{+}(A) \leq\left(\frac{4}{5}+\frac{1}{5}\left(\frac{9}{4}\right)^{n}\right) u(k)$;
(2) $u^{-}(A) \leq\left(-\frac{1}{5}+\frac{1}{5}\left(\frac{9}{4}\right)^{n}\right) u(k)$;
(3) $u^{0}\left(A \otimes_{k} K\right) \leq\left(\frac{1}{5}+\frac{3}{10}\left(\frac{9}{4}\right)^{n}\right) u(k)$ for all quadratic extension K / k.

Proof. By lemma 1.6.7, we may assume that $A=H_{1} \otimes \cdots \otimes H_{n}$. Let $\sigma=$ $\tau_{1} \otimes \cdots \otimes \tau_{n}$, where τ_{i} is the canonical involutions of H_{i} for $1 \leq i \leq n$. For $n \geq 1$, let $a_{n}=\frac{4}{5}+\frac{1}{5}\left(\frac{9}{4}\right)^{n}, b_{n}=-\frac{1}{5}+\frac{1}{5}\left(\frac{9}{4}\right)^{n}$ and $c_{n}=\frac{1}{5}+\frac{3}{10}\left(\frac{9}{4}\right)^{n}$.

We proceed by induction. For $n=1$, by [Mah05, Prop. 3.4] and [Lee84, Prop. 2.10] we have $u^{+}\left(H_{1}\right) \leq a_{1} u(k)$, by [Sch85, Ch. 10, 1.7], we have $u^{-}\left(H_{1}\right) \leq b_{1} u(k)$ and by [PS13, Prop. 4.4], we have $u^{0}\left(H_{1}\right) \leq c_{1} u(k)$.

Suppose $u^{+}\left(H_{1} \otimes_{k} \cdots \otimes_{k} H_{n}\right) \leq a_{n} u(k), u^{-}\left(H_{1} \otimes_{k} \cdots \otimes_{k} H_{n}\right) \leq b_{n} u(k)$ and $u^{0}\left(H_{1} \otimes_{k} \cdots \otimes_{k} H_{n}\right) \leq c_{n} u(k)$.

Let H_{1}, \ldots, H_{n+1} be quaternion algebas over k, τ_{i} the canonical involution of H_{i} and $\sigma=\tau_{1} \otimes \cdots \otimes \tau_{n+1}$ on $A=H_{1} \otimes \cdots \otimes H_{n+1}$. Since H_{n+1} is a quaternion algebra and τ_{n+1} is the canonical involution, there exist $\lambda_{n+1}, \mu_{n+1} \in H_{n+1}^{*}$ such that $\tau_{n+1}\left(\lambda_{n+1}\right)=-\lambda_{n+1}, \tau_{n+1}\left(\mu_{n+1}\right)=-\mu_{n+1}, \lambda_{n+1} \mu_{n+1}=-\mu_{n+1} \lambda_{n+1}$ and $k\left(\lambda_{n+1}\right) / k$ is a quadratic extension. Let $\lambda=1 \otimes \cdots \otimes 1 \otimes \lambda_{n+1} \in A, \mu=1 \otimes \cdots \otimes 1 \otimes \mu_{n+1} \in A$ and \tilde{A} be the centralizer of $k(\lambda)$ in A. Then $\tilde{A}=H_{1} \otimes \cdots \otimes H_{n} \otimes k(\lambda)$. Let $\sigma_{1}=\left.\sigma\right|_{\tilde{A}}$ and $\sigma_{2}=\operatorname{Int}\left(\mu^{-1}\right) \circ \sigma_{1}$. By [Mah05, Prop. 3.1, Prop. 3.2], we have σ_{1} is unitary, σ_{2} and σ are of the same type and

$$
\begin{aligned}
u(A, \sigma, \varepsilon) \leq & \min \left\{u\left(\tilde{A}, \sigma_{1}, \varepsilon\right)+\frac{1}{2} u\left(\tilde{A} \otimes k(\lambda), \sigma_{2},-\varepsilon\right)\right. \\
& \left.\frac{1}{2} u\left(\tilde{A} \otimes k(\lambda), \sigma_{1}, \varepsilon\right)+u\left(\tilde{A} \otimes k(\lambda), \sigma_{2},-\varepsilon\right)\right\}
\end{aligned}
$$

Since σ_{1} is unitary and $\tilde{A}=H_{1} \otimes_{k} \cdots \otimes_{k} H_{n} \otimes k(\lambda)$, by the induction hypothesis, we have $u\left(\tilde{A}, \sigma_{1}, \varepsilon\right) \leq c_{n} u(k)$. By [PS13, Prop. 4.2], $u\left(\tilde{A}, \sigma_{2},-\varepsilon\right)=u\left(H_{1} \otimes_{k} \cdots \otimes_{k}\right.$ $\left.H_{n} \otimes k(\lambda), \sigma_{2},-\varepsilon\right) \leq \frac{3}{2} u\left(H_{1} \otimes_{k} \cdots \otimes_{k} H_{n}, \tau_{1} \otimes \cdots \otimes \tau_{n},-\varepsilon\right)$.

Since both σ and $\tau_{1} \otimes \cdots \otimes \tau_{n}$ are of the first kind and of different types, we have $u^{+}\left(H_{1} \otimes_{k} \cdots \otimes_{k} H_{n+1}\right) \leq \min \left\{\frac{1}{2}\left(\frac{3}{2} a_{n}\right)+c_{n}, \frac{3}{2} a_{n}+\frac{1}{2} c_{n}\right\} u(k)=\frac{3}{4} a_{n}+c_{n}=a_{n+1} u(k)$, $u^{-}\left(H_{1} \otimes_{k} \cdots \otimes_{k} H_{n+1}\right) \leq \min \left\{\frac{1}{2}\left(\frac{3}{2} b_{n}\right)+c_{n}, \frac{3}{2} b_{n}+\frac{1}{2} c_{n}\right\} u(k)=\frac{3}{2} b_{n}+\frac{1}{2} c_{n}=b_{n+1} u(k)$.

Finally by [PS13, Prop. 4.3],

$$
\begin{gathered}
u^{0}\left(H_{1} \otimes_{k} \cdots \otimes_{k} H_{n+1} \otimes_{k} K\right) \leq \min \left\{\frac{1}{2} a_{n+1}+b_{n+1}, a_{n+1}+\frac{1}{2} b_{n+1}\right\} u(k) \\
=\frac{1}{2} a_{n+1}+b_{n+1}=c_{n+1} u(k)
\end{gathered}
$$

Here lemma 4.4.1 was used in all three calculations.
Remark. When $n=2, a_{2}=\frac{29}{16}$ is the same as that of [PS13, Cor. 4.5], $b_{2}=\frac{13}{16}$ is smaller than the bound $\frac{17}{16}$ of [PS13, Cor. 4.6, Cor. 4.7]. When k is a semi-global field, $u^{-}(D) \leq\left\lfloor\frac{13}{2}\right\rfloor=6$ is smaller than the bound 8 of [PS13, Cor. 4.8].

When $n \geq 3, a_{n}$ is smaller than the bound $\frac{3^{2 n-6}}{4^{n}} \cdot 213$ of [PS13, Cor. 4.10, Cor. 4.11].

Bibliography

[Abh69] Shreeram Shankar Abhyankar. "Resolution of singularities of algebraic surfaces". In: Algebraic Geometry (Internat. Colloq., Tata Inst. Fund. Res., Bombay, 1968). Oxford Univ. Press, London, 1969, pp. 1-11 (cit. on p. 50).
[AG60a] M. Auslander and O. Goldman. "The Brauer group of a commutative ring". In: Trans. Amer. Math. Soc. 97 (1960), pp. 367-409 (cit. on pp. 2, $3,42,53)$.
[AG60b] Maurice Auslander and Oscar Goldman. "Maximal orders". In: Trans. Amer. Math. Soc. 97 (1960), pp. 1-24 (cit. on p. 43).
[AH32] A. Adrian Albert and Helmut Hasse. "A determination of all normal division algebras over an algebraic number field". In: Trans. Amer. Math. Soc. 34.3 (1932), pp. 722-726 (cit. on pp. 21, 33).
[Bar06] P. B. Barquero-Salavert. "Similitudes of algebras with involution under odd-degree extensions". In: Comm. Algebra 34.2 (2006), pp. 625-632 (cit. on p. 57).
[BL90] E. Bayer-Fluckiger and Jr. Lenstra H. W. "Forms in Odd Degree Extensions and Self-Dual Normal Bases". English. In: American Journal of Mathematics 112.3 (1990), (cit. on pp. 57, 61).
[Bla91] Altha Blanchet. "Function fields of generalized Brauer-Severi varieties". In: Comm. Algebra 19.1 (1991), pp. 97-118 (cit. on p. 25).
[BNH32] R. Brauer, E. Noether, and H. Hasse. "Beweis eines Hauptsatzes in der Theorie der Algebren". In: J. Reine Angew. Math. 167 (1932), pp. 399404 (cit. on pp. 21, 33).
[Bor91] Armand Borel. Linear algebraic groups. Second. Vol. 126. Graduate Texts in Mathematics. Springer-Verlag, New York, 1991, pp. xii+288 (cit. on pp. 8, 54).
[Bor93] Mikhail V. Borovoi. "Abelianization of the second nonabelian Galois cohomology". In: Duke Math. J. 72.1 (1993), pp. 217-239 (cit. on p. 34).
[$\mathrm{Bou}_{\mathrm{A} 4-7}$] Nicolas Bourbaki. Algebra II. Chapters 4-7. Elements of Mathematics (Berlin). Translated from the 1981 French edition by P. M. Cohn and J. Howie, Reprint of the 1990 English edition [Springer, Berlin; MR1080964 (91h:00003)]. Springer-Verlag, Berlin, 2003, pp. viii+461 (cit. on p. 59).
$\left[\mathrm{Bou}_{\mathrm{A} 8}\right] \quad$ N. Bourbaki. Éléments de mathématique. Algèbre. Chapitre 8. Modules et anneaux semi-simples. Second revised edition of the 1958 edition [MR0098114]. Springer, Berlin, 2012, pp. x+489 (cit. on p. 1).
[Bou ${ }_{\mathrm{A} 9}$] N. Bourbaki. Éléments de mathématique. Algèbre. Chapitre 9. Reprint of the 1959 original. Springer-Verlag, Berlin, 2007, p. 211 (cit. on pp. 3, 30).
$\left[\mathrm{Bou}_{\mathrm{AC} 8-9}\right]$ N. Bourbaki. Éléments de mathématique. Algèbre commutative. Chapitres 8 et 9. Reprint of the 1983 original. Springer, Berlin, 2006, pp. ii +200 (cit. on p. 36).
[Bou LIE4-6] Nicolas Bourbaki. Lie groups and Lie algebras. Chapters 4-6. Elements of Mathematics (Berlin). Translated from the 1968 French original by Andrew Pressley. Springer-Verlag, Berlin, 2002, pp. xii+300 (cit. on pp. 12, 13).
[BP98] E. Bayer-Fluckiger and R. Parimala. "Classical groups and the Hasse principle". In: Ann. of Math. (2) 147.3 (1998), pp. 651-693 (cit. on p. 23).
[BQ14] Jodi Black and Anne Quéguiner-Mathieu. "Involutions, odd degree extensions and generic splitting". In: Enseign. Math. 60.3-4 (2014), pp. 377395 (cit. on p. 57).
[BS68] A. Borel and T. A. Springer. "Rationality properties of linear algebraic groups. II". In: Tôhoku Math. J. (2) 20 (1968), pp. 443-497 (cit. on p. 23).
[BT65] Armand Borel and Jacques Tits. "Groupes réductifs". In: Inst. Hautes Études Sci. Publ. Math. 27 (1965), pp. 55-150 (cit. on p. 13).
[BT72] Armand Borel and Jacques Tits. "Compléments à l'article: "Groupes réductifs"". In: Inst. Hautes Études Sci. Publ. Math. 41 (1972), pp. 253276 (cit. on pp. 24, 54).
[BT87] F. Bruhat and J. Tits. "Groupes algébriques sur un corps local. Chapitre III. Compléments et applications à la cohomologie galoisienne". In: J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34.3 (1987), pp. 671-698 (cit. on p. 18).
[CF67] J. W. S. Cassels and A. Fröhlich, eds. Algebraic number theory. Proceedings of an instructional conference organized by the London Mathematical Society (a NATO Advanced Study Institute) with the support of the International Mathematical Union. Academic Press, London; Thompson Book Co., Inc., Washington, D.C., 1967, pp. xviii+366 (cit. on pp. 7, 59, 65).
[CGP04] J.-L. Colliot-Thélène, P. Gille, and R. Parimala. "Arithmetic of linear algebraic groups over 2-dimensional geometric fields". In: Duke Math. J. 121.2 (2004), pp. 285-341 (cit. on pp. 23, 35, 54).
[Chat95] M. Chacron, H. Dherte, J.-P. Tignol, A. R. Wadsworth, and V. I. Yanchevskiĭ. "Discriminants of involutions on Henselian division algebras". In: Pacific J. Math. 167.1 (1995), pp. 49-79 (cit. on pp. 67, 69).
[Che35] Claude Chevalley. "Démonstration d'une hypothèse de M. Artin." French. In: Abh. Math. Semin. Univ. Hamb. 11 (1935), pp. 73-75 (cit. on p. 74).
[Che58] Séminaire C. Chevalley, 1956-1958. Classification des groupes de Lie algébriques. 2 vols. Secrétariat mathématique, 11 rue Pierre Curie, Paris, 1958, ii $+166+\mathrm{ii}+122$ pp. (mimerographed) (cit. on pp. 10, 13, 18).
[Che60] C. Chevalley. "Une démonstration d'un théorème sur les groupes algébriques". In: J. Math. Pures Appl. (9) 39 (1960), pp. 307-317 (cit. on p. 10).
[Che89] V. I. Chernousov. "The Hasse principle for groups of type E_{8} ". In: Dokl. Akad. Nauk SSSR 306.5 (1989), pp. 1059-1063 (cit. on p. 23).
[COP02] J.-L. Colliot-Thélène, M. Ojanguren, and R. Parimala. "Quadratic forms over fraction fields of two-dimensional Henselian rings and Brauer groups of related schemes". In: Algebra, arithmetic and geometry, Part I, II (Mumbai, 2000). Vol. 16. Tata Inst. Fund. Res. Stud. Math. Tata Inst. Fund. Res., Bombay, 2002, pp. 185-217 (cit. on pp. 23, 35).
[CP98] V. I. Chernousov and V. P. Platonov. "The rationality problem for semisimple group varieties". In: J. Reine Angew. Math. 504 (1998), pp. 128 (cit. on p. 14).
[CPS12] J.-L. Colliot-Thélène, R. Parimala, and V. Suresh. "Patching and localglobal principles for homogeneous spaces over function fields of p-adic curves". In: Comment. Math. Helv. 87.4 (2012), pp. 1011-1033 (cit. on pp. $23,34,35,52,54)$.
[Dem77] M. Demazure. "Automorphismes et déformations des variétés de Borel". In: Invent. Math. 39.2 (1977), pp. 179-186 (cit. on p. 23).
$\left[\mathrm{EGA}_{\mathrm{II}}\right]$ A. Grothendieck. "Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes". In: Inst. Hautes Études Sci. Publ. Math. 8 (1961), p. 222 (cit. on p. 9).
[Gro68a] Alexander Grothendieck. "Le groupe de Brauer. I. Algèbres d'Azumaya et interprétations diverses". In: Dix exposés sur la cohomologie des
schémas. Vol. 3. Adv. Stud. Pure Math. North-Holland, Amsterdam, 1968, pp. 46-66 (cit. on p. 1).
[Gro68b] Alexander Grothendieck. "Le groupe de Brauer. II. Théorie cohomologique". In: Dix exposés sur la cohomologie des schémas. Vol. 3. Adv. Stud. Pure Math. North-Holland, Amsterdam, 1968, pp. 67-87 (cit. on p. 1).
[Gro68c] Alexander Grothendieck. "Le groupe de Brauer. III. Exemples et compléments". In: Dix exposés sur la cohomologie des schémas. Vol. 3. Adv. Stud. Pure Math. North-Holland, Amsterdam, 1968, pp. 88-188 (cit. on p. 1).
[GS06] Philippe Gille and Tamás Szamuely. Central simple algebras and Galois cohomology. Vol. 101. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2006, pp. xii+343 (cit. on pp. 1, $2,15-18,21,58)$.
[Har65] Günter Harder. "Über die Galoiskohomologie halbeinfacher Matrizengruppen. I". In: Math. Z. 90 (1965), pp. 404-428 (cit. on p. 22).
[Har66] Günter Harder. "Über die Galoiskohomologie halbeinfacher Matrizengruppen. II". In: Math. Z. 92 (1966), pp. 396-415 (cit. on p. 22).
[Har68] Günter Harder. "Bericht über neuere Resultate der Galoiskohomologie halbeinfacher Gruppen". In: Jber. Deutsch. Math.-Verein. 70.Heft 4, Abt. 1 (1967/1968), pp. 182-216 (cit. on p. 34).
[Har75] G. Harder. "Über die Galoiskohomologie halbeinfacher algebraischer Gruppen. III". In: J. Reine Angew. Math. 274/275 (1975). Collection of articles dedicated to Helmut Hasse on his seventy-fifth birthday, III, pp. 125-138 (cit. on p. 23).
[Has23] Helmut Hasse. "Über die Darstellbarkeit von Zahlen durch quadratische Formen im Körper der rationalen Zahlen". In: J. Reine Angew. Math. 152 (1923), pp. 129-148 (cit. on pp. 22, 33).
[Has24a] Helmut Hasse. "Äquivalenz quadratischer Formen in einem beliebigen algebraischen Zahlkörper". In: J. Reine Angew. Math. 153 (1924), pp. 158162 (cit. on pp. 22, 33).
[Has24b] Helmut Hasse. "Darstellbarkeit von Zahlen durch quadratische Formen in einem beliebigen algebraischen Zahlkörper". In: J. Reine Angew. Math. 153 (1924), pp. 113-130 (cit. on pp. 22, 33).
[Hea10] D. R. Heath-Brown. "Zeros of systems of p-adic quadratic forms". In: Compos. Math. 146.2 (2010), pp. 271-287 (cit. on pp. 63, 74).
[HHK09] D. Harbater, J. Hartmann, and D. Krashen. "Applications of patching to quadratic forms and central simple algebras". In: Invent. Math. 178.2 (2009), pp. 231-263 (cit. on pp. 14, 24, 48, 51, 52, 63).
[HHK11] D. Harbater, J. Hartmann, and D. Krashen. "Local-global principles for torsors over arithmetic curves". arXiv:1108.3323v4. Aug. 2011 (cit. on pp. 35,51).
[HHK14] D. Harbater, J. Hartmann, and D. Krashen. "Local-global principles for Galois cohomology". In: Comment. Math. Helv. 89.1 (2014), pp. 215-253 (cit. on p. 23).
[HHK15] David Harbater, Julia Hartmann, and Daniel Krashen. "Refinements to Patching and Applications to Field Invariants". In: International Mathematics Research Notices (2015). eprint: http://imrn.oxfordjournals. org/content/early/2015/01/18/imrn.rnu278.full.pdf+html (cit. on p. 50).
[Hu14] Yong Hu. "Hasse principle for simply connected groups over function fields of surfaces". In: J. Ramanujan Math. Soc. 29.2 (2014), pp. 155199 (cit. on p. 23).
[Hum75] James E. Humphreys. Linear algebraic groups. Graduate Texts in Mathematics, No. 21. Springer-Verlag, New York-Heidelberg, 1975, pp. xiv+247 (cit. on p. 8).
[HV98] Detlev W. Hoffmann and Jan Van Geel. "Zeros and norm groups of quadratic forms over function fields in one variable over a local nondyadic field". In: J. Ramanujan Math. Soc. 13.2 (1998), pp. 85-110 (cit. on p. 63).
[JW90] B. Jacob and A. Wadsworth. "Division algebras over Henselian fields". In: J. Algebra 128.1 (1990), pp. 126-179 (cit. on p. 67).
[Kar00] N. A. Karpenko. "Cohomology of relative cellular spaces and of isotropic flag varieties". In: Algebra i Analiz 12.1 (2000), pp. 3-69 (cit. on pp. 25, 29).
[KMRT98] M.-A. Knus, A. Merkurjev, M. Rost, and J.-P. Tignol. The book of involutions. Vol. 44. American Mathematical Society Colloquium Publications. With a preface in French by J. Tits. American Mathematical Society, Providence, RI, 1998, pp. xxii+593 (cit. on pp. 3-5, 12, 14, 22, $25,26,29,31,33,34,44,47,51,69,72)$.
[Kne69] M. Kneser. Lectures on Galois cohomology of classical groups. With an appendix by T. A. Springer, Notes by P. Jothilingam, Tata Institute of Fundamental Research Lectures on Mathematics, No. 47. Tata Institute of Fundamental Research, Bombay, 1969, pp. ii +158 (cit. on pp. 22, 30, 34).
[Knu91] M.-A. Knus. Quadratic and Hermitian forms over rings. Vol. 294. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. With a foreword by I. Bertuccioni. Springer-Verlag, Berlin, 1991, pp. xii+524 (cit. on pp. 3, 5, 7, 29-31, $41,47,51,59,61)$.
[Lam05] T. Y. Lam. Introduction to quadratic forms over fields. Vol. 67. Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2005, pp. xxii +550 (cit. on p. 76).
[Lan37] W. Landherr. "Liesche ringe vom typus a über einem algebraischen zahlkörper (die lineare gruppe) und hermitesche formen über einem schiefkörper". In: Abh. Math. Sem. Univ. Hamburg 12.1 (1937), pp. 200241 (cit. on pp. 34, 61).
[Lan52] Serge Lang. "On quasi algebraic closure". In: Ann. of Math. (2) 55 (1952), pp. 373-390 (cit. on p. 74).
[Lar06] D. W. Larmour. "A Springer theorem for Hermitian forms". In: Math. Z. 252.3 (2006), pp. 459-472 (cit. on pp. 8, 66).
[Lar99] D. W. Larmour. A Springer theorem for Hermitian forms and involutions. Thesis (Ph.D.)-New Mexico State University. ProQuest LLC, Ann Arbor, MI, 1999, p. 79 (cit. on pp. 8, 58, 66).
[Lee13] David B. Leep. "The u-invariant of p-adic function fields". In: J. Reine Angew. Math. 679 (2013), pp. 65-73 (cit. on pp. 63, 72, 74).
[Lee84] David B. Leep. "Systems of quadratic forms". In: J. Reine Angew. Math. 350 (1984), pp. 109-116 (cit. on p. 79).
[Lew00] D. W. Lewis. "The Witt semigroup of central simple algebras with involution". In: Semigroup Forum 60.1 (2000), pp. 80-92 (cit. on p. 57).
[Lip75] J. Lipman. "Introduction to resolution of singularities". In: Algebraic geometry (Proc. Sympos. Pure Math., Vol. 29, Humboldt State Univ., Arcata, Calif., 1974). Amer. Math. Soc., Providence, R.I., 1975, pp. 187230 (cit. on p. 50).
[Mah05] M. G. Mahmoudi. "Hermitian forms and the u-invariant". In: Manuscripta Math. 116.4 (2005), pp. 493-516 (cit. on pp. 6, 63, 73, 79).
[Mer81] A. S. Merkurjev. "On the norm residue symbol of degree 2". In: Dokl. Akad. Nauk SSSR 261.3 (1981), pp. 542-547 (cit. on pp. 17, 64).
[Mer96] A. S. Merkurjev. " R-equivalence and rationality problem for semisimple adjoint classical algebraic groups". In: Inst. Hautes Études Sci. Publ. Math. 84 (1996), 189-213 (1997) (cit. on p. 14).
[Min90] H. Minkowski. "Ueber die Bedingungen, unter welchen zwei quadratische Formen mit rationalen Coefficienten in einander rational transformirt werden können". In: J. Reine Angew. Math. 106 (1890), pp. 5-26 (cit. on pp. 22, 33).
[Mor89] P. Morandi. "The Henselization of a valued division algebra". In: J. Algebra 122.1 (1989), pp. 232-243 (cit. on p. 39).
[MPW96] A. S. Merkurjev, I. A. Panin, and A. R. Wadsworth. "Index reduction formulas for twisted flag varieties. I". In: K-Theory 10.6 (1996), pp. 517596 (cit. on pp. 18, 23-27, 30).
[MPW98] A. S. Merkurjev, I. A. Panin, and A. R. Wadsworth. "Index reduction formulas for twisted flag varieties. II". In: K-Theory 14.2 (1998), pp. 101196 (cit. on pp. 23, 25, 26, 54).
[MS82] A. S. Merkurjev and A. A. Suslin. "K-cohomology of Severi-Brauer varieties and the norm residue homomorphism". In: Izv. Akad. Nauk SSSR Ser. Mat. 46.5 (1982), pp. 1011-1046, 1135-1136 (cit. on pp. 17, 64).
[Par14] R. Parimala. "A Hasse principle for quadratic forms over function fields". In: Bull. Amer. Math. Soc. (N.S.) 51.3 (2014), pp. 447-461 (cit. on p. 61).
[Poo] Bjorn Poonen. "Rational points on varieties". http://wwwmath.mit.edu/ poonen/papers/Qpoints.pdf (cit. on p. 20).
[PR94] Vladimir Platonov and Andrei Rapinchuk. Algebraic groups and number theory. Vol. 139. Pure and Applied Mathematics. Translated from the 1991 Russian original by Rachel Rowen. Academic Press, Inc., Boston, MA, 1994, pp. xii+614 (cit. on pp. 14, 15).
[Pre13] R. Preeti. "Classification theorems for Hermitian forms, the Rost kernel and Hasse principle over fields with $c d_{2}(k) \leq 3$ ". In: J. Algebra 385 (2013), pp. 294-313 (cit. on p. 23).
[PS10] R. Parimala and V. Suresh. "The u-invariant of the function fields of p adic curves". In: Ann. of Math. (2) 172.2 (2010), pp. 1391-1405 (cit. on p. 63).
[PS13] Sudeep S. Parihar and V. Suresh. "On the u-invariant of Hermitian forms". In: Proc. Indian Acad. Sci. Math. Sci. 123.3 (2013), pp. 303313 (cit. on pp. 64, 79, 80).
[PS14] R. Parimala and V. Suresh. "Period-index and u-invariant questions for function fields over complete discretely valued fields". In: Invent. Math. 197.1 (2014), pp. 215-235 (cit. on p. 38).
[PS98] R. Parimala and V. Suresh. "Isotropy of quadratic forms over function fields of p-adic curves". In: Inst. Hautes Études Sci. Publ. Math. 88 (1998), 129-150 (1999) (cit. on p. 63).
[PSS01] R. Parimala, R. Sridharan, and V. Suresh. "Hermitian analogue of a theorem of Springer". In: J. Algebra 243.2 (2001), pp. 780-789 (cit. on pp. 57, 59, 60, 73, 74).
[Rei03] I. Reiner. Maximal orders. Vol. 28. London Mathematical Society Monographs. New Series. Corrected reprint of the 1975 original, With a foreword by M. J. Taylor. The Clarendon Press, Oxford University Press, Oxford, 2003, pp. xiv +395 (cit. on pp. 8, 22, 36, 37, 65).
[RS13] B. S. Reddy and V. Suresh. "Admissibility of groups over function fields of p-adic curves". In: Adv. Math. 237 (2013), pp. 316-330 (cit. on pp. 35, $39,42,43,46,47,54,77)$.
[Sal07] D. J. Saltman. "Cyclic algebras over p-adic curves". In: J. Algebra 314.2 (2007), pp. 817-843 (cit. on p. 41).
[Sal97] D. J. Saltman. "Division algebras over p-adic curves". In: J. Ramanujan Math. Soc. 12.1 (1997), pp. 25-47 (cit. on pp. 41, 63, 74).
[Sal98] D. J. Saltman. "Correction to: "Division algebras over p-adic curves" [J. Ramanujan Math. Soc. 12 (1997), no. 1, 25-47; MR1462850
(98d:16032)]". In: J. Ramanujan Math. Soc. 13.2 (1998), pp. 125-129 (cit. on pp. 41, 74).
[Sal99] D. J. Saltman. Lectures on division algebras. Vol. 94. CBMS Regional Conference Series in Mathematics. Published by American Mathematical Society, Providence, RI; on behalf of Conference Board of the Mathematical Sciences, Washington, DC, 1999, pp. viii +120 (cit. on p. 40).
[Sch85] W. Scharlau. Quadratic and Hermitian forms. Vol. 270. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1985, pp. x+421 (cit. on pp. 3, 59-61, 64, 65, 79).
[Ser02] Jean-Pierre Serre. Galois cohomology. English. Springer Monographs in Mathematics. Translated from the French by Patrick Ion and revised by the author. Springer-Verlag, Berlin, 2002, pp. x+210 (cit. on pp. 15, 16, 20).
[Ser79] J.-P. Serre. Local fields. Vol. 67. Graduate Texts in Mathematics. Translated from the French by Marvin Jay Greenberg. Springer-Verlag, New York-Berlin, 1979, pp. viii+241 (cit. on pp. 2, 53).
[$\left.\mathrm{SGA}_{3 . \mathrm{I}}\right]$ Schémas en groupes. I: Propriétés générales des schémas en groupes. Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3). Dirigé par M. Demazure et A. Grothendieck. Lecture Notes in Mathematics, Vol. 151. Springer-Verlag, Berlin-New York, 1970, pp. xv +564 (cit. on pp. 8-10).
$\left[\mathrm{SGA}_{3 . \mathrm{II}}\right]$ Schémas en groupes. II: Groupes de type multiplicatif, et structure des schémas en groupes généraux. Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3). Dirigé par M. Demazure et A. Grothendieck. Lecture Notes in Mathematics, Vol. 152. Springer-Verlag, Berlin-New York, 1970, pp. ix +654 (cit. on p. 8).
[SGA 3.III $]$ Schémas en groupes. III: Structure des schémas en groupes réductifs. Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3). Dirigé par M. Demazure et A. Grothendieck. Lecture Notes in Mathematics, Vol. 153. Springer-Verlag, Berlin-New York, 1970, pp. viii+529 (cit. on p. 8).
[Spr52] Tonny Albert Springer. "Sur les formes quadratiques d'indice zéro". In: C. R. Acad. Sci. Paris 234 (1952), pp. 1517-1519 (cit. on pp. 57, 60, 61).
[Spr98] T. A. Springer. Linear algebraic groups. Second. Vol. 9. Progress in Mathematics. Birkhäuser Boston, Inc., Boston, MA, 1998, pp. xiv+334 (cit. on pp. 8, 10, 18).
[Tit62] J. Tits. "Groupes algébriques semi-simples et géométries associées". In: Algebraical and topological Foundations of Geometry (Proc. Colloq., Utrecht, 1959). Pergamon, Oxford, 1962, pp. 175-192 (cit. on p. 18).
[Tit66] J. Tits. "Classification of algebraic semisimple groups". In: Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965). Amer. Math. Soc., Providence, R.I., 1966, 1966, pp. 3362 (cit. on pp. 17, 19, 54).
[Tsu61] Takashi Tsukamoto. "On the local theory of quaternionic anti-hermitian forms". In: J. Math. Soc. Japan 13 (1961), pp. 387-400 (cit. on p. 64).
[TW15] Jean-Pierre Tignol and Adrian R. Wadsworth. Value functions on simple algebras, and associated graded rings. Springer Monographs in Mathematics. Springer, Cham, 2015, pp. xvi+643 (cit. on pp. 67, 71).
[VS94] Michel Van den Bergh and Aidan Schofield. "Division algebra coproducts of index $n "$. In: Trans. Amer. Math. Soc. 341.2 (1994), pp. 505-517 (cit. on p. 25).
[Wad02] A. R. Wadsworth. "Valuation theory on finite dimensional division algebras". In: Valuation theory and its applications, Vol. I (Saskatoon, SK,
1999). Vol. 32. Fields Inst. Commun. Amer. Math. Soc., Providence, RI, 2002, pp. 385-449 (cit. on p. 58).
[Wad86] Adrian R. Wadsworth. "Extending valuations to finite-dimensional division algebras". In: Proc. Amer. Math. Soc. 98.1 (1986), pp. 20-22 (cit. on pp. 7, 65).
[War35] Ewald Warning. "Bemerkung zur vorstehenden Arbeit von Herrn Chevalley." German. In: Abh. Math. Semin. Univ. Hamb. 11 (1935), pp. 76-83 (cit. on p. 74).
[Wu15a] Zhengyao Wu. "Hasse principle for Hermitian spaces over semi-global fields". arXiv:1510.04640. 2015 (cit. on p. 33).
[Wu15b] Zhengyao Wu. "Hermitian u-invariants over function fields of p-adic curves". arXiv:1512.06921. 2015 (cit. on p. 63).
[Yon54] Nobuo Yoneda. "On the homology theory of modules". In: J. Fac. Sci. Univ. Tokyo. Sect. I. 7 (1954), pp. 193-227 (cit. on p. 9).

