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Abstract 

Estimating and Predicting the Effect of Quarantine in the COVID-19 Pandemic:  

Using a Modified SEIR Model 

By Rui Yang 

Governmental policies are one of the determining factors in slowing down the spread of the 

COVID-19 pandemic. It has been shown that effective government regulations, such as the 

mandate to wear masks, can control the development of the pandemic. This study aims to 

estimate the effectiveness of quarantine policies in the process of slowing down the pandemic. 

For this study, we used the data from Wuhan, Italy, and South Korea after the cumulative 

confirmed cases in each region has exceeded 500 with a total period of 80 days. First, we 

replicated previous research on modeling the pandemic using a modified Susceptible-Infectious-

Recovered-Quarantined epidemiological model. However, since this model does not consider the 

transformation from the “Quarantined” state to other states, we found the predicted quarantined 

population is too large to be realistic. Given this, we proposed a new model that estimates the 

quarantine strength directly from data and uses an LSTM network to make predictions for future 

periods. Several limitations with our model are its error sensitivity, model generalizability, and 

interpretability.  

Through this study, we also realized that sometimes we might face the trade-off between the 

model interpretability and generalizability: a generic model like neural networks suffers from 

low interpretability, while a specific model may not apply to all situations. The best case is that 

we can recover the governing equations from the dataset directly. As an example to show this is 

possible, we used the Sparse Identification of Nonlinear Dynamics (SINDy) method to 

successfully recover the equations of the standard SIR model based on its trajectory. 
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Chapter 1

Introduction

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has become a global concern in the

first half of 2020. According to the World Health Organization, as of March 14, 2021, more than

119 million cases have been confirmed globally, resulting in more than 2.6 million deaths [1].

To prevent further loss of human lives, many countries have enacted various measures, including

quarantine, curfews, and closure of public places, which turned out to be effective in containing the

spread of the pandemic. For example, just 45 days after Wuhan, the city with the first confirmed

case in China, announced its lockdown on January 23, 2020, its daily confirmed cases have dropped

from over 2000 at the peak to less than 100.

In academia, a diverse variety of mathematical models have also been devised to fit and predict

the development of the pandemic on a regional scale. Viguerie et al., for example, presented a

spatial-temporal Susceptible-Exposed-Infectious-Recovered-Deceased (SEIRD) model and used

this model to give predictions on the number of infections in some Italian cities under different

reopening scenarios [12]. Yang et al. employed a modified SEIR model with migration to predict

the peak and the trend of the disease in China, while, at the same time, using a Long Short-term
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Memory (LSTM) network to confirm the same conclusions [13]. Likewise, as an alternative to

traditional SIR- or SEIR- based models, many studies have adopted machine learning models to

predict the COVID-19 outbreak. Pinter et al. proposed a hybrid machine learning model of two

algorithms, multi-layered perceptron-imperialist competitive algorithm (MLP-ICA) and adaptive

network-based fuzzy inference system (ANFIS). They found that this model has promising results

on data fromHungary [9]. Ardabili et al. continued their study by presenting a comparative analysis

of various machine learning models, including the hybrid model, and testing them in more regions

globally [2]. Their study suggests that machine learning is an effective tool to model the outbreak

[2].

1.1 Contributions and Outline

While many models have been put forward to predict the development of the outbreak, we found

very few researchers have considered the effects of quarantine within their model and tried to es-

timate and predict the quarantine strength over time. For example, Dandekar and Barbastathis

proposed a modified SIR model with a new quarantine state in their paper, where they applied an

artificial neural network as a non-linear function approximator to estimate the time-variant quar-

antine strength [6]. Given that various quarantine measures have played a non-negligible role in

governmental policies to fight against the pandemic, we believe that it is essential to find mod-

els that can estimate the effectiveness of those measures to help governments make more prudent

decisions regarding quarantine policies.

To fill this gap, this research introduces a preliminarymodel that recovers the quarantine strength

from data and uses the Long Short-term Memory network to make predictions on future periods,

based on Dandekar and Barbastathis’s works [6]. This research has three parts. The first part
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replicates Dandekar and Barbastathis’s research with some modifications in the data used and the

neural network specifications. More details can be found at the beginning of Chapter 2. Section

2.3 discusses some possible limitations of their study. Given these problems, in the second part,

we proposed our model in Chapter 3. Section 3.1 covers the derivations of our model, section

3.2 introduces how we used the dataset for prediction purpose, section 3.3 gives the mathematical

specifications of the Long Short-term Memory (LSTM) network we used for the prediction, and

section 3.4 lists the results after applying the network on an artificial dataset as well as the actual

dataset. In section 3.5, we conducted an error analysis on our model to investigate its numerical

stability in response to perturbations within data. Finally, in the last part Chapter 4, we provided

an example of how we can use the Sparse Identification of Nonlinear Dynamics (SINDy) method

to find the governing equations used to generate the specific dataset. Note the part is not directly

related to modeling the pandemic but serves as an example to show that it is possible to recover the

exact equations from data without knowing much about its actual dynamics.
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Chapter 2

SIR-based Models under Consideration of

Quarantine

Dandekar and Barbastathis tried to predict the spread of the pandemic using epidemiological mod-

els [6]. They proposed a modified Susceptible-Infectious-Recovered (SIR) model with a new com-

partment “Quarantined”, where the quarantine strength, which is the transformation rate between

the infectious and the quarantined, was estimated with a neural network. Comparing with the sim-

ulation results from the standard Susceptible-Exposed-Infectious-Recovered (SEIR) model, they

concluded that this SIRQ model could capture the approximate trend and the magnitude of the

infectious population in most countries examined.

This chapter mainly replicates their study with some differences in the dataset and the neural

network structure. More specifically, their paper used the number of accumulated confirmed cases

as input, while in our study, we used the number of active cases as input. The reason is that the

accumulated numberwill only increase over time, while active casesmay either increase or decrease

and is a better indicator of the effectiveness of quarantine. Besides, we used the Sigmoid function
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in the last layer to ensure the quarantine strength lies in [0, 1].

In section 2.1, we gave some background information on the basic SIR-based models. Then in

section 2.2, we replicated the same SIRQ model they proposed, using an artificial neural network

to estimate the quarantine strength. In section 2.3, we fitted the data with the standard SEIR model,

using grid search to find the optimal model parameters. Comparing the results from the twomodels,

we confirmed their conclusion that the SIRQ model they proposed has a much better predicting

ability than the SEIR model.

2.1 Introduction to Susceptible-Infectious-RecoveredEpidemi-

ological Models

In epidemiology, researchers usually employ a specific category of mathematical models, called

compartmental models, to investigate the development of an infectious disease within a population

over a certain period. The compartmental models assume the whole population can be divided into

different compartments, and people may progress between those compartments over time. More

information related to this topic can be found in the book [3].

The Susceptible-Infectious-Recovered (SIR) model is one of the simplest yet fundamental com-

partmental models. The standard SIR model assumes that the population is constant and consists

of three compartments - “Susceptible”, “Infectious”, and “Recovered”. The susceptible are the

healthy individuals that can be infected; the infectious are individuals capable of transmitting the

pathogen to others; the recovered are those no longer infectious or died from the pathogen. The

diagram below illustrates the transformation process among three compartments.
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Figure 2.1: The standard SIR model

In Figure 2.1, β is the expected number of effective contacts that an infectious individual can

make per unit of time. An effective contact refers to the one that infects a healthy person and

transforms him/her from the Susceptible state to the Infectious state. Besides, γ is the inverse of

the mean infection period, indicating the proportion of the infectious being transformed into the

recovered. This process can be explained by the ordinary differential equations (ODE) below

ν ≡ S(t) + I(t) +R(t) (2.1)

S ′(t) = −β
S(t)I(t)

ν
(2.2)

I ′(t) = β
S(t)I(t)

ν
− γI(t) (2.3)

R′(t) = γI(t), (2.4)

where ν is the constant population size, while S(t), I(t), andR(t) are the size for each compartment

with respect to time.

The equation (2.2) might not be evident at first sight. We know βI(t) is the number of effective

contacts that the whole infectious population can make. However, since not all these contacts are

with susceptible individuals, we have to multiply βI(t) with S(t)
ν
, the proportion of the susceptible

population within the whole population, to derive the size of the newly infected population.

The Susceptible-Exposed-Infectious-Recovered (SEIR) model is a variant of the SIR model

with a new compartment “Exposed”, which are those already been infected yet still not infectious.

The diagram below illustrates the new model.
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Figure 2.2: The standard SEIR model

The mathematical formulation of the standard SEIR model is slightly different from the SIR

model, as shown below

ν ≡ S(t) + E(t) + I(t) +R(t) (2.5)

S ′(t) = −β
S(t)I(t)

ν
(2.6)

E ′(t) = β
S(t)I(t)

ν
− σE(t) (2.7)

I ′(t) = σE(t)− γI(t) (2.8)

R′(t) = γI(t), (2.9)

where σ is the inverse of the mean incubation period, and other letters have the same meaning as

in the standard SIR model.

2.2 Modeling with the SIRQ Model

The Susceptible-Infectious-Recovered-Quarantined (SIRQ) model in Dandekar and Barbastathis’s

paper is also a variant of the SIR model. A significant difference between the two is that the SIR

model does not consider governments’ actions to prevent the spread of the disease. As introduced

in their paper, the effects of those actions can be quantified by introducing an additional time-

dependent variableQ representing the quarantine strength [6]. Their model comes in the following

form
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ν ≡ S(t) + E(t) + I(t) +R(t) (2.10)

S ′(t) = −β
S(t)I(t)

ν
(2.11)

I ′(t) = β
S(t)I(t)

ν
− (γ +Q(I(t), R(t), T (t))I(t) (2.12)

R′(t) = γI(t) (2.13)

T ′(t) = Q(I(t), R(t), T (t))I(t), (2.14)

where the new compartment T (t) represents the quarantined population, and the authors assumed

that once an infectious individual is quarantined, the individual becomes no longer infectious.

The quarantine strength Q(I(t), R(t), T (t)) is approximated using an n-layer neural network

with weightsW1,W2, ...,Wn, activation function r, and the input vector U = (I(t), R(t), T (t))

Q(I(t), R(t), T (t)) ≡ NN(W,U) = r(Wnr(Wn−1...r(W1U))). (2.15)

As in the original paper, we implemented the artificial neural network with 3 densely connected

layers and 10 nodes in the hidden layer, shown in Figure 2.3a. We applied the ReLU function as

the activation function in the intermediate layer and the Sigmoid function in the output layer to

ensure Q(I(t), R(t), T (t)) is between 0 and 1. The model contains 53 trainable parameters (β, γ

and 51 weight parameters in the network). The optimal parameters are found to minimize the loss

function

L(β, σ, γ,W,U) = w1‖ log(I(t))− log(Idata(t))‖2 + w2‖ log(R(t))− log(Rdata(t))‖2, (2.16)
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where, for simplicity, we took equal importance for the infectious and recovered population (w1 =

w2). We carried out the optimization procedures following a similar approach listed in [10], using

the BFGS optimizer with a maximum of 300 iterations.

(a) (b)

Figure 2.3: Neural network and training loss

(a) Neural network architecture. (b) Training loss at each iteration.

We used the data fromWuhan in China, South Korea, and Italy with the initial condition S(t =

0) = 11 million, 52 million, and 60 million, respectively. The other initial conditions are I(t =

0) = 500, R(t = 0) = 10, and T (t = 0) = 10, which is the same for all countries. The data

were obtained from the Center for Systems Science and Engineering (CSSE) at Johns Hopkins

University. For each country, only dates after the accumulated infected number greater than 500

were selected. We chose 80 days for each country, where the first 40 days were used for training and

the remaining for testing. For Wuhan, data from January 24 to April 13 were used; for Italy, data

from February 27 toMay 17were used; and for South Korea, data from February 23 toMay 13were

used. The training loss per iteration for each region is shown in Figure 2.3b, while the simulated

results and its corresponding estimated quarantine strength are shown in Figure 2.4. Note that the
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black dash lines in the figures are used to indicate the split for training and test set.

Figure 2.4: Simulation with quarantine control

For Wuhan in Figure 2.4, the predicted infected curve has successfully forecast the overall

development of the infectious population, while the predicted recovered curve has significantly

overestimated the recovered population. The case is similar for South Korea in Figure 2.4, as the

model has correctly predicted the trend of the infectious population but at the same time remarkably

underestimated the recovered population. However, the prediction on Italy is much more accurate:

the predicted recovered population comes very close to the data, and the predicted infectious pop-

ulation has only slightly underestimated the actual population on the test set. After training, the

parameters and the range of the quarantine strength Q(I(t), R(t), T (t)) are listed in Table 2.1.
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Region β γ Range of Q(I(t), R(t), T(t))

Wuhan 0.86 0.024 0.50-0.77

Italy 1.0 0.036 0.51-0.78

South Korea 0.71 0.03 0.52-0.78

Table 2.1: Estimated β, γ, and the range of Q(I(t), R(t), T (t)) for each region

2.3 Discussion

As a comparison, we fitted the standard SEIR model (equations 2.5 to 2.9) to the same dataset from

Wuhan, South Korea, and Italy. The initial condition for the exposed population is E(t = 0) =

10000, while other states have the same initial condition as in section 2.2. We found the optimal

parameters β, σ, γ that minimize the same loss function in equation 2.16 with w1 = w2 by using

grid search with step size d = 0.01. After solving for the parameters, we then ran the ODE forward

to find the number of predicted cases for the time interval. The results are shown below in Figure

2.5.

Comparing Figure 2.4 with 2.5, we observe that the SEIR model has a much worse predictive

ability than the SIRQ model in Wuhan, as the predicted infectious and recovered population in

Figure 2.5 grow exponentially for the Wuhan city. Similarly, comparing two figures for Italy and

South Korea, we can conclude that, for all regions, the predicted curves based on the SIRQ model

fit the actual data much better than those from the SEIR model.
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Figure 2.5: Simulation without quarantine control

However, we also found some limitations concerning the SIRQ model in section 2.2. While

the model introduces a new state T(t), it does not have a transformation to other states. This is not

possible, as it is known that, in the end, the majority of those quarantined will recover from the

disease. For example, although the model makes minor errors with the infectious and recovered

population in Wuhan, looking at the quarantined population trend (see Figure 2.6), it can be easily

discovered that the size is too large to be reasonable. Adding a transformation from the quarantined

to the recovered with even the same rate as the model recovery rate γ will remarkably ruin the

results. The deviation suggests that there are other possible factors that are not yet reflected in

the model but implicitly slow down the development of the pandemic. This inspired us to extend

the definition of quarantine into a more broadly-defined situation. It does not directly decrease

the number of the infectious population, but serves to offset β, which is the expected number of
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effective contacts that an infectious individual can make per unit of time. Some examples of the

broadly-defined quarantine measure are wearing masks or social distancing. If, for example, the

government mandates people to do so, the number of healthy people being infected per unit of time

will undoubtedly drop.

Figure 2.6: The predicted quarantined population (Wuhan)

recovered (blue), infectious (red), and quarantined (black) population

Besides, some improvements can be made to the SIRQ model. For example, there is no need to

use the neural network, shown in Figure 2.3a, to estimate the function values ofQ(I(t), R(t), T (t)).

As the neural network itself represents a function f : R3 → R whose values are defined on [0, 1],

we can discretize the function domain into small cubes, calculate the function values at each vertex,

and approximate the entire function using methods such as trilinear interpolation.
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Chapter 3

SEIR-based Models for Quarantine

Strength Estimation and Prediction

In light of the problems described in the section 2.3, we proposed a new SEIR-based model where

we introduced a new time-dependent variable P (t), representing the effects of the broadly-defined

quarantine measures. Unlike the original model where the parameters are chosen first, and then

ODE equations are solved forward, our proposed method goes backward where the model param-

eters and the value of P (t) are solved directly from the data. Then we built a Long Short-term

Memory (LSTM) network to make future period predictions on P (t). For simplicity, from now on,

we will refer to the broadly-defined quarantine rate as “policy rate”.

In section 3.1, we give the mathematical derivation of the new model. Then in section 3.2,

we described how the data were used to train the neural network and make predictions for future

periods. Section 3.3 provides detailed explanations about the structure of the LSTM network, and

section 3.4 lists the training and prediction results on an artificial dataset and the actual dataset.

Section 3.5 conducts an error analysis on the model we proposed to investigate the model’s sensi-
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tivity in response to perturbations in data. Finally, in section 3.6, we discussed some limitations of

this study and pointed out several possible future directions that can further improve our model.

3.1 Model Setting

The new model takes the following form:

ν ≡ S(t) + E(t) + I(t) +R(t) (3.1)

S ′(t) = −(β − P (t))
S(t)I(t)

ν
(3.2)

E ′(t) = (β − P (t))
S(t)I(t)

ν
− σE(t) (3.3)

I ′(t) = σE(t)− Γ(t)I(t) (3.4)

R′(t) = Γ(t)I(t), (3.5)

where 0 ≤ t ≤ T and S(0) = S0, E(0) = E0, I(0) = I0, R(0) = R0.

To solve backward for P (t), in the ideal case, we are given I(t) and R(t) as continuous func-

tions. Then, I ′(t) and R′(t) can be obtained by differentiating I(t) and R(t) with respect to t. As

a result, P (t) can be solved as follows:

E(t) =
I ′(t) +R′(t)

σ
(3.6)

S ′(t) = −(E ′(t) + σE(t)) (3.7)

S(t) = S0 +

∫ t

0

S ′(x)dx (3.8)

P (t) = β − ν(E ′(t) + σE(t))

S(t)I(t)
. (3.9)
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However, in reality, we are only given discrete measurements I(tj) and R(tj), where 0 ≤ t1 ≤

t2 ≤ ... ≤ tN . In order to find an expression for Pj , we can first estimate the values of I ′(tj) and

R′(tj) using the finite difference approximation

I ′(tj) ≈ I ′j =
Ij+1 − Ij

hj

(3.10)

R′(tj) ≈ R′
j =

Rj+1 −Rj

hj

, (3.11)

where hj = tj+1 − tj = 1, as we are given daily measurements.

Then we are able to solve for Pj , the approximation of P (tj), in the following way:

Ej =
I ′j +R′

j

σ
(3.12)

E ′(tj) ≈ E ′
j = Ej+1 − Ej (3.13)

S ′(tj) ≈ S ′
j = −(E ′

j + σEj) (3.14)

Sj = S0 +

j−1∑
k=0

S ′
k (3.15)

Pj = β −
ν(E ′

j + σEj)

SjIj
. (3.16)

Like previous notations, here E ′
j and S ′

j are the estimates of E ′(t) and S ′(t) at time tj , while Ej

and Sj are the approximations of E(t) and S(t) at tj .
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3.2 Training Process

We used the same dataset as in Chapter 2. The daily policy rate Pj was calculated based on the

algorithm discussed in section 3.1. We only used the data from the day when 500 accumulated

infected cases are recorded, with a total period of 80 days. The data was then partitioned into three

parts, where the first part was used to train the model, the second part used for hyper-parameter

tuning, and the last part to measure the model performance. The training set consists of data from

the first 40 days, while the validation set has 14 days and the test set has the remaining 26-day data

in order. Here, we intended to conduct single-step forecasting using the sliding window algorithm:

the input is a window comprised of function values of 7 days, and the output is the function value

on the next day. Since the whole testing period is greater than each prediction’s length, we also

employed the “walk-forward” approach to complete the prediction. Using this approach, the model

will first make a prediction on the first day, and then the actual value for that day becomes available

for the model to make another prediction on the subsequent day.

3.3 Neural Network Structure

Long Short-term Memory (LSTM) is one type of recurrent neural networks (RNNs) that is widely

used for long-term sequence prediction. An introduction to the LSTM network can be found in its

original paper by Hochreiter and Schmidhuber [8]. An RNN is a neural network where the output

from one time-step is provided as an input for the subsequent time-step. This unique structure

allows the neural network to have direct memory of the previous output and make decisions based

on both the input of the current time step and output from the previous steps. Therefore, RNNs are

popular in time-series sequence predictionwhere future time steps are related to previous time steps.

For example, RNNs have been proven to be a powerful tool in missing value imputation [5] and
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predicting chaotic time series data [14]. However, sometimes it can be challenging to train a general

RNN to learn long-term temporal relationships, as the long-term information has to sequentially

pass through all previous cells to reach the current cell. For a deep RNN, repeatedly applying the

activation function in each cell easily results in the gradient vanishing problem, meaning that the

gradient of the loss function approaches zero exponentially in time in the back-propagation stage

[7].

LSTM networks overcome this by having a series of internal gates within each cell that control

when the memory is modified, outputted, and forgotten. In this way, the long-term information can

go through the cells without being modified. An in-depth explanation of the LSTM nodes and how

they have been designed to prevent gradient vanishing problems can also be found in its original

paper [8].

Mathematically speaking, the LSTM neural network can be considered as a series of operations

performed on an input matrix on dimensionRnt×nf , where nt, nf are the number of input time-steps

and the number of features. Remember we are using the values of P (t) from 7 days to predict its

value on the next day. Every sample pk is of size (7, 1)(nt = 7, nf = 1) and the output sequence

is of size (1, 1). More specifically, given a vector p consisting of all consecutive values of P (t),

we know the k-th (k ≥ 1) input vector is pk = p(k : k + 6) and the ground truth for prediction is

p(k+ 7). Also note here the parenthesis operation has the same meaning as in MATLAB to index

and slice a vector.

The LSTM layer has nl nodes, and so the output a
[1] is of dimensionRnl . Each LSTM node has

three gates, an input gate, a forget gate, an output gate, and two states, a cell state and a hidden state.

The hidden state is the result returned from the output gate, and changes when new data are passed

into the node. The forget gate and the input gate take the previous hidden state and the current

input data as the input. The forget gate decides which information in the input should be kept or
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discarded, while the input gate is used to discover which information should be used to update the

cell state. The outputs from the forget gate and the input gate are then put together to calculate

the new cell state. Finally, the updated cell state, the previous hidden state, and the current input

data are fed into the output gate, which returns the new hidden state. A detailed list of operations

performed within those gates can be found in its original paper [8]. In short,

a[1] = LSTM(pk,θ
[1], b[1]), (3.17)

where θ[1], b[1] are the weights and bias that need to be learned. When nf = 1, we know the weights

vector θ[1] has dimension R8nl+4n2
l based on the description from its original paper [8].

Finally, we have one dense layer of dimension nd, which serves to convert the shape of the

output vector

y = σ(a[1]θ[2] + b[2]). (3.18)

Here y ∈ Rnd is the output vector and the non-linear activation function σ : R → R is applied

component-wise with σ(x) = max{x, 0}. θ[2] and b[2] are the weights and bias vector in the fully-

connected layer with nl × nd and nd parameters, respectively.

The neural networkNN(·) consists of two layers, an LSTM layer followed by a fully-connected

dense layer, described above. The objective of the neural networkNN(·) is to find a set of parame-

tersΘ = [θ[1],θ[2]],B = [b[1], b[2]] such that the cost function over multiple examples is minimized

min
Θ,B

1

ns − 7

ns−7∑
k=1

‖NN(p(k : k + 6),Θ,B)− p(k + 7)‖22, (3.19)

where p is the vector consisting of all consecutive values of P (t) and ns is the length of p.
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To summarize, in the neural network we adopt, each input example pk is of size (7, 1). The

first layer is an LSTM layer with 30 nodes (nl = 30), and the next dense layer has only one node

(nd = 1). All layers use ReLU as the activation function. The output is a vector with a length

of 1. The model is built in Python using the Keras platform with TensorFlow as the back-end. A

diagram of the model is shown below.

Figure 3.1: The LSTM network structure

3.4 Results

We used the model described in section 3.1 to derive the policy rate P (t) from Italy and South

Korea data. There is insufficient data for Wuhan city because the epidemic there ends quite shortly

due to the local government’s successful quarantine policies. As a result, we did not use theWuhan

dataset in this section. The Italy and South Korea datasets we used are the same as in Chapter 2,

with the same initial conditions for each region. There are three constants in equation 3.16: ν is

the constant population size, which is equal to S(0) for each region; σ is the inverse of the average

incubation period for an exposed individual with COVID-19 to become infectious; β is the constant

transmission rate. According to the research by Rǎdulescu et al., σ is between 0.05 − 0.1 and β

is between 0.1 − 0.3 for COVID-19 [11]. In this study, we set σ = 0.07, as [11] shows the mean

incubation period is 14 days, and β = 0.25 for each region. After recovering the daily policy rate,

we then trained the neural network in section 3.3 to make predictions for future periods. Figure 3.2

and Figure 3.3 are the training and testing results for each region.
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(a)

(b)

Figure 3.2: Prediction on policy rate (Italy)

(a) Prediction results. (b) Loss on the training and validation set.

(a)

(b)

Figure 3.3: Prediction on policy rate (South Korea)

(a) Prediction results. (b) Loss on the training and validation set.

It is interesting to observe that, except for the initial period, the recovered policy rate curves for
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both regions seem to converge to a specific value later on, which is 0.8 for Italy and 0.3 for South

Korea.

To see if our model can make effective predictions on future policy rates, we repeated the pro-

cedures mentioned above on an artificial data set. The artificial data set has a total time-span of 80

days, produced by solving the standard SEIR model forward with S0 = 100000, E0 = 1000, I0 =

50, R0 = 10 and σ = 0.14, β = 0.5, γ = 0.05. The split of the training, validation, and test data

sets on the artificial data set is the same as on the actual data set (i.e. training: 40 days, validation:

14 days, test: 26 days). The neural network was trained to learn from the training set, tune hyper-

parameters on the validation set, and make predictions on the test set. The prediction results were

then compared to the actual policy curve to check if the neural network can successfully learn the

patterns of the curve. The comparison is shown in the figures below. It can be observed that the

network can capture the patterns of the curve and therefore makes effective predictions on future

trends. In the figure, the blue curve is the actual policy rate curve used in the dataset generation pro-

cess; the black curve is the policy curve recovered from the dataset using the algorithm described

in section 3.2.1; the red curve is the results predicted by the neural network.
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(a)

(b)

Figure 3.4: Prediction on policy rate (the artificial dataset)

(a) Prediction results. (b) Loss on the training and validation set.

3.5 Error Analysis

Looking at the Figure 3.4a, we found a remarkable difference between the actual and recovered

curves, which implies that significant error exists within our model. To further investigate this

problem, we conducted the following error analysis to check our algorithm’s numerical stability.
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Given i, r ∈ Rn, a vectorized version of equation 3.10 - 3.16 is listed below

i′ = Dti, r
′ = Dtr (3.20)

e =
i′ + r′

σ
(3.21)

e′ = Dte (3.22)

s′ = −(e′ + σe) (3.23)

s = Dis
′ (3.24)

p = β − ν(e′ + σe)� (s� i) (3.25)

= β + νs′ � (s� i), (3.26)

where � is the component-wise product (Hadamard product), � is the component-wise division,

Dt is the differential operator, andDi is the integral operator.

Then, we are able to derive the Jacobian of p with respect to i

∂i′

∂i
= DT

t ,
∂r′

∂i
= 0 (3.27)

∂e

∂i
=

∂

∂i
(
i′ + r′

σ
) =

DT
t

σ
(3.28)

∂e′

∂i
=

∂

∂i
(Dte) =

(DT
t )

2

σ
(3.29)

∂s′

∂i
= − ∂

∂i
(e′ + σe) = −(

(DT
t )

2

σ
+DT

t ) (3.30)

∂s

∂i
=

∂

∂i
(Dis

′) = −(
(DT

t )
2DT

i

σ
+DT

t D
T
i ) (3.31)

∂(s� i)

∂i
=

∂s

∂i
diag(i) + diag(s)

∂i

∂i
=

∂s

∂i
diag(i) + diag(s) (3.32)

∂p

∂i
= ν{∂s

′

∂i
diag(1� (s� i)) + diag(s′)

∂

∂i
[1� (s� i)]} (3.33)

= ν[
∂s′

∂i
diag(1� (s� i))− ∂(s� i)

∂i
diag(1� (s� i))2diag(s′)]. (3.34)
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In a similar way, the Jacobian of p with respect to r is

∂p

∂r
= ν[

∂s′

∂r
diag(1� (s� i))− ∂(s� r)

∂r
diag(1� (s� i))2diag(s′)]. (3.35)

Taylor’s theorem can be used to check whether the calculated gradient g ∈ Rn is a gradient of

f : Rn → R at any x. For a random vector v and h → 0, comparing ‖f(x + hv) − f(x)‖ and

‖f(x + hv) − f(x) − hgTv‖, by the Taylor’s theorem, the former should converge linearly to

zero, while the latter converges in a quadratic way. In a log-log plot, the slope for the latter should

be nearly twice of the former. Below shows the results for ∂p
∂i

and ∂p
∂r
.

(a) (b)

Figure 3.5: The gradients of p

(a) The gradient of p with respect to i. (b) The gradient of p with respect to r.

To analyze the sensitivity of the algorithm to the perturbations of the data, we used the same

dataset as in section 3.2.4 and calculated the Jacobian of p with respect to i and r. We then com-

bined the two Jacobian matrices and did a singular vector decomposition (SVD) on the merged

Jacobian matrix. The singular values and the maximum/minimum left and right singular vectors

are plotted below.
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(a) (b) (c)

Figure 3.6: Singular value decomposition results (I)

(a) Singular values. (b) The maximum left singular vector. (c) The minimum left singular vector.

(d) (e)

Figure 3.6: Singular value decomposition results (II)

(d) The maximum right singular vector. (e) The minimum right singular vector.

We can see the singular values in Figure 3.6a decay gradually to zero with no noticeable gaps

in the spectrum, while the singular vectors in Figure 3.6 oscillate around zero more frequently as

the corresponding singular values decrease. Therefore, we conclude that this is a discrete ill-posed

problem, and the solutions to this problem, which is p, are very sensitive to the perturbations in the

data. This conclusion further corroborates our finding in Figure 3.4a that significant error exists
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between the actual curve and the recovered curve.

3.6 Discussion

Based on results from section 3.4, our proposed model can recover the approximate relationship

from data and make meaningful predictions on future periods. However, it also has many limi-

tations, including but not limited to error sensitivity, generalizability, and interpretability. As we

have discussed in section 3.5, the approach we took to recover P (t) from data is ill-posed, and thus

the solutions we found are sensitive to the errors within data. For real-world datasets, as the error

is inevitable during the data-collection process, the model solution may deviate significantly from

the actual solution. Various regularization techniques could help to remediate this problem. Reg-

ularization can be applied either when pre-processing the dataset to remove excessive fluctuations

within data (e.g. total variation regularization), or during the model training process by adding

a penalty term (e.g. L2-norm) to prevent overfitting in model solutions. For future studies, both

schemes can be tested to see which one works better for this problem.

Another problem with this model is the generalizability. The data for this study was collected

in June 2020, and the majority of work was done in July and August. Till then, all the regions we

examined have demonstrated a single peak in their distribution of the active confirmed cases. How-

ever, we also observed that beginning from October 2020, Italy and South Korea had experienced

the second wave of the pandemic, resulting in multiple and higher peaks in their daily confirmed

cases. As our model has not been tested on datasets with multiple peaks, we can say nothing about

its generalizability, and it is likely that our model does not generalize well to new situations. So for

future directions, when evaluating the model performance, we should further enlarge the datasets

to include the most recent pandemic situation.
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In addition, our model also suffers from the problem of low interpretability. We employed

a vanilla LSTM neural network when making the prediction for future periods. In each LSTM

node, there are multiple addition, multiplication, and concatenation operations involved with many

non-linear activation functions applied. As a result, a single prediction can involve thousands of

mathematical operations, and together the neural network becomes so complicated that no human

is able to follow precisely. It is like a black box: people feed data and get the output, but they have

no clue what is happening within the box. The complexity of neural networks shapes their ability to

approximate any function in the world, but at the same time also leads to their low interpretability.

As a result, researchers usually face the trade-off between model expressivity and model in-

terpretability and are forced to make a hard decision between a generic model and an expressive

model. For example, neural networks are a generic model that can simulate any complex relation-

ship as long as the network is deep enough. On the other hand, an SEIR model is an expressive

model that only explains a particular relationship. Adopting an expressive model has the advantage

of being simple, transparent, and interpretable, but may fit poorly if this model does not apply to

the specific problem that we are investigating.

Therefore, the most favorable situation is that we know the exact mathematical equations un-

derlying the problem. To this end, many methods have been proposed to discover the governing

equations directly from data, among which is the Sparse Identification of Nonlinear Dynamics

(SINDy) method. The following chapter gives a brief work-through of the SINDy method and

provides an example of using this method to recover the underlying equations from an artificially

generated dataset.



29

Chapter 4

Recovering the Governing Equations Using

Sparse Identification of Nonlinear

Dynamics (SINDy) Method

The Sparse Identification of Nonlinear Dynamics (SINDy) method has been recently proposed by

Brunton et al. to recover the governing equations from data [4]. The model takes the assumption

that most systems has only a few terms in their governing equations and thus they are sparse in

a high-dimensional function space. Instead of performing a brute-force search to find them, the

recent advance in machine learning makes it possible to discover the governing equations in much

less time. More specifically, given a trajectory of the state x(t), we can construct a data matrix

X = [ xT (t1) xT (t2) ... xT (tn) ]
T
and a time derivative matrix Ẋ = [ ẋT (t1) ẋT (t2) ... ẋT (tn) ]

T
by either

measuring or numerically approximating each derivative of x(t) from X.

Then we can construct another matrix Θ(X) which consists of all candidate functions of the

columns of Ẋ. An example of Θ(X) is shown below. Note here I only give an example where all
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candidate functions are polynomials of the data matrix X, and it can certainly contain other basis,

such as sine and cosine functions.

Θ(X) =


| | | . . .

1 X X2 . . .

| | | . . .


A sparse regression problem can then be set up to determine Ξ, the coefficients of the candidate

functions, such that

Ẋ = Θ(X)Ξ, (4.1)

where Ξ = [ξ1 ξ2 ... ξn] determines which candidate functions are active. Specifically, Ξ can be

found by solving the optimization problem

Ξ = min ‖Ẋ−Θ(X)Ξ‖2 + λ‖Ξ‖1, (4.2)

whereλ is the strength of regularization. We can thus determine the governing equations underlying

the data matrix X based on the candidate functions matrix Θ(X) and coefficient matrix Ξ.

Below we gave an example that the parameters of Susceptible-Infectious-Recovered (SIR)

models are recoverable using the SINDy method. This process is done in Julia with “DataDriven-

Diffeq” package. The data matrix X and the derivative matrix Ẋ are constructed by solving the

standard SIR model, shown in section 2.1, forward with parameters β = 0.2 and γ = 0.1 and

the initial condition S(0) = 100, I(0) = 10, R(0) = 10. The candidate functions consist of all

monomials of S, I, R up to the third degree.

Usually, with a large regularization parameter λ, we have fewer terms in the recovered equa-

tions (high bias), but with a smaller regularization parameter, the recovered equations may contain
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redundant terms (high variance). To find the optimal regularization parameter λ, we begin with a

large value and gradually decrease it by a factor of 0.8. Figure 4.1 was created to help us choose the

trade-off between the bias and the variance in the recovered equations. The x-axis is ‖Ẋ−Θ(X)Ξ‖2,

which is the L2-error between the recovered results and the derivative matrix, while the y-axis is

‖Ξ‖1, which is the L1-norm of the coefficient matrix Ξ.

Figure 4.1: The bias-variance trade-off with vari-

ous λs
Figure 4.2: Actual vs. recovered data trajectory

We noticed that when λ = 2.5, which is near the elbow position in the plot, we could recover the

original ODE model with the same variable combinations and the parameters with very low error:

L2-error = 8.4e−14. Moreover, in Figure 4.2, we verified that the data matrix generated using the

recovered equations overlap the actual data matrix X with no noticeable difference. This means

we have successfully discovered the governing equations from the data matrix for this problem.

However, SINDy is not panacea for all problems. In our experiments, we also found that after

adding some noise (e.g White Noise) to the data matrix, the regularization parameter has to be

much larger to recover the governing equations. Also, when noise is introduced, it becomes much

more likely that the recovered equations contain redundant terms, and the recovered trajectory

deviates significantly from the actual trajectory.
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Chapter 5

Conclusion and Outlook

In this research, we analyzed several SEIR-based epidemiological models’ performance on the

development of the COVID-19 pandemic. In addition, we proposed an approach that recovers

the strength of quarantine from the infectious and the recovered population data, and, with that ap-

proach, we applied a Long Short-termMemory (LSTM) network to make predictions on quarantine

strength for future periods. Finally, we presented an example of using the Sparse Identification of

Nonlinear Dynamics (SINDy) method to discover the governing equations directly from data to

achieve maximal model interpretability without affecting its generalizability. But when the data

contains noise, the ability of SINDy to recover the governing equations becomes much more lim-

ited.

For future research, in addition to those discussed in section 3.6, an interesting direction would

be to investigate the interplay among model parameters. As an example, in equations 2.10-2.14,

there are two model parameters (β, γ) and 51 neural network parameters and those parameters

interact in a very subtle way. We found that even a tiny change in the first two constants’ initial

condition, such as decreasing γ from 0.05 to 0.049, will result in a completely different neural
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network parameter set. On the other hand, assigning a different initial parameter set to the neural

network will only result in a minimal difference in the first two constants after training. Thus it

can be inferred that those parameters weigh very differently in the optimization process, and it is

worth conducting an in-depth analysis of the interplay between the model constants and the neural

network parameters.
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