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Abstract 

A Bayesian Approach for Dynamic Brain Network 

 

By Jin Ming 

 

Functional magnetic resonance imaging (fMRI) has been widely used in brain network 
research. Functional connectivity (FC) measures how different brain regions contact with 
each other. Recently there has been an increased interest in understanding the dynamic 
manner in the functional connectivity. Although sliding window method is still the most 
widely used one, because of its limitations in window size pick and interpretation, many 
researchers are trying to create new method. Dynamic Connectivity Regression (DCR) is 
a data-driven method to detect temporal change points in different brain regions. However, 
DCR may fail to detect some change points and is hard to detect rapid change in functional 
connectivity. In this paper, we introduce our Bayesian approach which combines both 
change point detection and Bayesian method to detect the number and positions of change 
points in FC simultaneously. Our method is based on the change point in precision matrix 
instead of the mean value of time series. Screening method like screening and ranking 
algorithm (SaRa) is also included in our method to increase the computation speed. 
Different choices of change points combinations are also provided to get an accurate 
estimation. Two simulation show that our method can provide a good estimation of 
positions when the number of change points is given. In addition, we provide an experiment 
data which can be used to validate our method. 
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1. Introduction 

Functional magnetic resonance imaging (fMRI) is a prominent non-invasive technique for 

studying brain activity. It measures the bold oxygenation level dependent (BOLD) signal 

as a correlation of neural activity. fMRI has been widely used for brain activity study 

because of its high spatial resolution and temporal resolution compared with other 

methods(Hutchison et al., 2013). Traditional researches implicitly assumed that the 

functional connectivity (FC) of brain was temporal static(Friston, 2011). However, this 

assumption has been questioned recently(Friston, 2011; Hutchison et al., 2013; Thompsona 

et al., 2014). Dynamic functional connectivity has been proposed as an extension of 

traditional FC that the statistical interdependence of different brain regions or signals may 

not be stable over time(Calhoun, Miller, Pearlson, & Adali, 2014; Cribben, Haraldsdottir, 

Atlas, Wager, & Lindquist, 2012; Hutchison et al., 2013; Lindquist, Xu, Nebel, & Caffo, 

2014). The main problems of dynamic functional connectivity study using fMRI data are 

the high dimensional of data and its low signal-to-noise ratio(Allen et al., 2014). Normally 

there are over ten thousand of voxels and hundreds of time points for each single subject. 

And even after pre-processing, the noise may not be completely eliminated.(Hutchison et 

al., 2013; Lindquist et al., 2014)  

 

Recently there are some studies in this area and the most popular one is sliding window 

analysis(Allen et al., 2014). In sliding window analysis, a time window of fixed length is 

selected to calculate the FC metric of different voxels. The presence of reproducible or 
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transient patterns of region-to-region correlation can be detected in this method. Normally, 

the correlation coefficients of different region of interests are calculated as the metric of 

function connectivity. However, based on the complexity of fMRI data, there are some 

limitations and concerns of sliding window analysis(Hindriks et al., 2016; Hutchison et al., 

2013). First of all, it is difficult to interpret the existence of variability alone. Because of 

the low signal-to-noise ratio, the reliability of results is in query. The similar results through 

slicing window method can be replicated by a randomly generated white noise data. 

Secondly, the choice of window size, or length of time points, is hard to decide. Larger 

window size may permit robust estimation of FC and resolve the lowest frequencies of 

interest in signal. However, it may also ignore the potential interesting transients in 

functional connectivity. In contrast, smaller window size can capture possible transients 

but may fail to generate a good estimation of functional connectivity. Now most researches 

use 20-60 time points as potential window size.  

 

There are also some other innovative methods for the study of dynamic functional 

connectivity. As mentioned before, one key limitation of sliding-window analysis is the 

choice of window size. The time-frequency analysis is one way to solve this problem. It 

can be applied to estimate the coherence and time shift between two different time series 

as a function of both time and frequency(Chang, 2011). By using the wavelet transform 

(WTC), it can provide a rich picture of the coherence across multiple time scales. However, 

the vast amount of information produced by a WTC analysis presents changelings when 

multiple subjects and brain regions are involved. Single-volume co-activation patterns(Liu 
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& Duyn, 2013), repeating sequences of BOLD activity(Majeed et al., 2012), and ICA are 

also being used in this area(Calhoun et al., 2014).  

 

In 2012, Dr. Martin Lindquist et al(Cribben et al., 2012; Cribben, Wager, & Lindquist, 

2013) generate one new method for dynamic functional connectivity study. This Dynamic 

Connectivity Regression (DCR) combined change point detection and graphical models 

into fMRI study. This DCR method can be used to detect temporal change points in 

functional connectivity and estimate the relationship between different regions of interests 

between two consecutive temporal change points. However, one problem of this method is 

that it can only detect the change in mean value of fMRI data. In fact, it is the functional 

connectivity of different voxels, or regions of interests, change over time instead of the 

mean value of each voxel. In addition, we think partial correlation, or precision matrix, is 

a better metric to show the functional connectivity of different ROIs than pairwise 

correlation matrix. Based on this understanding, we build our new dynamic change point 

method, which can be used to detect the number and position of change points in partial 

correlation matrix. And then our method can estimate the dynamic functional connectivity 

of each time bin through fMRI data.  

 

2. Methods 

 

The goal of our method is to detect temporal change point in functional connectivity of 

ROIs and then estimate a graph of different ROIs between consecutive temporal change 
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points. The method is based on multi subjects and we assume that they share same or 

similar dynamic functional connectivity and change points.  

 

2.1  Problem setup 

Assume there are N subjects. For each single subject, the dataset we are going to work with 

is a 𝑇	×	𝑉 matrix with 

𝑦& = 𝑦&(, 𝑦&*, … , 𝑦&, 								𝑡 = 1,2, … , 𝑇 

Here we assume that there are V voxels and overall T time points. In addition, we assume 

that the partial correlations of V voxels are changed in some fixed time points. Suppose 

there are 𝐾  change points and the partial correlations of voxels between any two 

consecutive change points are fixed. So there are K+1 bins and the partial correlation 

matrix between any two consecutive bins have some differences. The 𝐾 change points are: 

0 = 𝑡2∗ < 𝑡(∗ < ⋯ < 𝑡6∗ < 𝑇 

Under this setting, 𝑦& is a multivariate normal distribution with k change points: 

𝑦&~ 𝑁 𝜂&𝜇, Σ<

6

<=(

𝐼(𝑡<@(∗ < 𝑡 ≤ 𝑡<∗) 

Here I is the indicator function of 𝑡 value, which belongs to time points 𝑡<@(∗  (not included) 

to 𝑡<∗  (included), or equivalent, in k`s bin. 𝜂& is a scaling factor and is not affected by dataset. 

In addition, 𝜂& ∈ [0,1]. 𝜇 is the a 1	×	𝑉 vector corresponding to the common mean of these 

V voxels. In addition, Σ<, which is also the most important part, is the covariance matrix 

of V voxels in time bin k, which means in time period (𝑡<@(∗ , 𝑡<∗]. We assume that Σ< 

follows Inverse-Wishart distribution as following:  

Σ<~𝑊@( 𝑑	𝐼,, 𝑏 					𝑑~𝐺𝑎𝑚𝑚𝑎(𝑎L, 𝑏L) 
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𝑏, 𝑎L	𝑎𝑛𝑑	𝑏L are fixed parameters. The main reason to use Inverse-Wishart distribution is 

that we don’t need to make any assumption about the underlying dynamic functional 

connectivity, or graph(Kundu, n.d). We are going to use these N 𝑦& to estimate all K change 

points and K+1 covariance matrix and corresponding precision matrix, which shows the 

functional connectivity in each bin. Before introducing our method, I will briefly introduce 

some supporting theoretical foundation that are required for the development of our method. 

These include change point method and screening method. 

 

2.2 Change points method 

The problem of change points detection has been widely studied in various fields including 

statistics, biostatistics, engineering and economics(Eckley, Fearnhead, & Killick, 2011). 

Bhattcharya(Bhayyacharya, 1994) made an overview of this area. In his paper, there is a 

linear array of independent observations 𝑌(, 𝑌*, … , 𝑌O, whose distribution is going to change 

after 𝑌P  for some 1 < 𝜏 < 𝑛 . The target is to detect and estimate change point, 𝑌P . In 

2003,Elliott (Elliott & Shope, 2003) combined Bayesian method with change point 

detection method to estimate the effect of a Graduated Driver`s Licensing Program in 

Michigan, U.S. All these methods were set for change detection in mean value of 

observations. However, there were only few methods used for detection of change points 

in covariance or precision matrix(Barnett & Onnela, 2014; Galeano & Pena, 2007). In 

addition, in normal case, both the number and the position of change points need to be 

estimated. And theoretically all time points are potential candidate for a change point, 

which makes the problem high-dimensional and computationally complexity(Barnett & 

Onnela, 2014; Chen & Gupta, 1997; Elliott & Shope, 2003; Wied & Galeano, 2013).  
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2.3 Screening method 

As mentioned above, the huge number of potential candidate for a change point makes it 

hard in computation. In fMRI study, normally there are over 200 time points. Suppose there 

are 3 change points, for example, the number of possible combinations is over one million. 

So it is essential to shrink the sample pool of possible change points, which is the 

motivation of screening method. Screening is closely related to change point detection 

because the purpose of these two methods are similar in some cases(By Tracy Ke, Jiashun 

Jin, 2011). Niu and Zhang(Niu & Zhang, 2012) combined change points detection and 

screening method then created the screening and ranking algorithm (SaRa) for DNA copy 

number detection. Their assumption is that global screening is less efficient because time 

point 𝑌(22 may provide little information for the estimation of true value of 𝑌(2 if there is 

some change. A neighborhood around a change point can provide sufficient information 

for the detection.  

 

2.4 Dynamic Change point method 

In our method, we are going to estimate the number and the position of change points, and 

then estimate the dynamic functional connectivity in different time bins. There are K 𝑇	×	𝑉 

matrix 𝑦& given as input data. In addition, a minimal distance between two change points, 

𝑑, is needed for functional connectivity estimation. In our method we assume this minimal 

distance to be 10, which means that there are at least 10 time points between any two 

consecutive change points. However, this number can be changed under different situation 

and the impact of it is limited and will be showed in simulation part. The general steps of 

our method is as follows: 
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First of all, we use modified SaRa method to get a potential pooling for change points. As 

there are V voxels, we use modified SaRa for each voxel to get a potential pooling of time 

points and then make the union of them all. The purpose is to get all possible change points 

into our potential pool. We want to make sure that all true change points are in this final 

potential pool and some false positive is acceptable. For each voxel 𝑣	(𝑣 = 1,2, … , 𝑉) we 

calculate local measure 𝐷T& at each time point	𝑡 = 1,2, … , 𝑇 as: 

𝐷 𝑣𝑡 =
1
ℎ 𝑦VT

&WX@(

V=&

−
1
ℎ 𝑦VT	

&@(

V=&@X

,									ℎ ≤ 𝑑 

here, ℎ is a parameter of the length of neighborhood, or the number of time points being 

used for 𝐷. The first and last ℎ time points are assumed to have 0 𝐷 measure because they 

don’t have enough time points to calculate this measure.  

 

After getting all 𝐷(𝑣𝑡)	values, we rank them in all local neighborhood as stated in Niu and 

Zhang(2012)`s paper and pick up the local maximal 𝐷(𝑣𝑡).  

𝐷 𝑣𝑡 ≥ 𝐷 𝑣𝑡 				𝑓𝑜𝑟	𝑎𝑙𝑙	𝑡 ∈ [𝑡 − ℎ, 𝑡 + ℎ] 

Let 𝐿𝑀 be the set of all time of local maxims. We finally pickup a subset 𝑆 of 𝐿𝑀 through 

a thresholding rule. Then we get a pool of all possible values of change points,	𝑆. 

 

Then we run Markov chain Monte Carlo (MCMC). We first estimate the number of change 

points. We assume that there may be at most 5 change points. Then we need to get the 

possibility of each number of change points. Based on the assumption that each 

combination of change points has same weight, we sample the number of change points. 



	 8	

Then we sample the location of change points. The posterior distribution of each 

combination of change points is as follows: 

e.g. suppose there are k possible change points 𝑡∗ = (𝑡(∗ … 𝑡<∗), and the number of points in 

each bin are (𝑛(, … , 𝑛<W( ) separately, where 𝑛V<W(
V=( = 𝑇 , then we get 𝑘 + 1 different 

matrix for each time bin, denoted as 𝐵(,… , 𝐵<W( , the dimensions of each bin are 

𝑛(×𝑉,… , 𝑛<W(×𝑉 correspondingly. We take average of the B matrix for all N subjects to 

become the new B matrix. After that we calculate the correlation matrix and corresponding 

determinant, denoted as 𝑢(, … , 𝑢<W(,of that correlation matrix of each time bin. Then the 

posterior distribution of this combination of change points is: 

𝑝 𝑌 𝑡∗ = {log Γ 0.5× 30 + 𝑛V + 0.5× 30 + 𝑛V ×
<W(

V=(

𝑢V} 

 

Over thousands of time of iteration in MCMC, we get thousands of estimations of number 

of change points and corresponding positions. Here we used two different methods to get 

the final estimation of both number and position of change points. In the first method, we 

try to make our decision of change points based on the frequency of different combinations. 

In this method, we pick up two combinations that showed up most times. The main reason 

for us to pick up two combinations is that we found in some cases the show up time of 

these two combinations are quite close. And we want to make sure that our method could 

correctly find out the true number of change points and corresponding positions. In the 

second method, we want to make our decision by combining all information through our 

MCMC process. We first calculate the show up number of different change points. Then 

for the most frequent one, we calculate the mean value of positions.   
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After we get the estimation of both number and positions of change points through the 

process described above, the dataset is separated into several different bins. Then we get 

the estimation of precision matrix, as well as partial correlation, in each time bin based on 

the corresponding voxel values in that time bin. As we set the minimal value of time length 

in each time bin, we have enough time points to get a reasonable precision and correlation 

matrix.  

 

2.5 Dynamic Connectivity Regression (DCR) method 

In this section, we are going to briefly introduce Dynamic Connectivity Regression (DCR) 

method, which is also the main competing method. DCR method works as following: First 

of all, they calculate covariance matrix of all ROIs using full time length. Then they use 

Bayesian Information Criteria (BIC) to get a sample precision matrix with minimal BIC. 

This minimal value of BIC is recorded. Afterwards, they split the full time length into two 

consecutive parts and calculated the combined BIC based on the previous two steps. If 

some split points have the minimal combined BIC over all possible combinations and this 

combined BIC is lower than the recorded full BIC, then this time point is chosen as the 

split time point and the full time length is successfully separated into two parts. This DCR 

procedure continues by using the same method above until each separate time length can 

not be split any further. Finally, the chosen split time and corresponding graph in each time 

bins are calculated. When testing for multiple subjects, like N subjects, and each of them 

have a 𝑇	×	𝑉 matrix of fMRI data. DCR will combine all these matrices by row to generate 

a big 𝑁𝑇	×	𝑉 and then use use the procedure described above.  
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3. Simulation 

 

3.1 simulation design 

To assess the performance of dynamic change point method, a series of simulations was 

performed. All simulations are based on multiple subjects, which is also the target dataset 

of our method. These two simulations are used to test the ability of our method to detect 

the real locations of change points when the number of change points are given. DCR 

method is also used in each simulation as a comparison method with our method. As this 

paper only gives a simplify version of the whole method, our simulations are based on 

fixed number of change points. More simulations will be provided in the future.  

 

For each subject, we generate a dataset with 200 time points and 15 region of interests 

(ROIs). This is the representative of real data that we may face in fMRI study. We believe 

that it is unrealistic to assume a completely different functional connectivity of each time 

bin in the fMRI time series. It may be more reasonable to assume that there are some 

functional connectivity changes from one bin to the next. Based on this assumption, we 

generate our simulated data as the following: we first generate a completely random 

precision matrix (or functional connectivity) for the first bin. For the precision matrices in 

the following time bins, each time there are some edges changed from the previous 

precision matrix while all the others keep the same. After the generation of all precision 

matrices, a 200×15 matrix is generated by precision matrix as the time line we are going 

to test. In addition, as we are dealing with multiple subjects, in each simulation, we set 
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there are 25 subjects in total and all of them share the same number and position of change 

points.  

 

For two simulations, we assume that there are only two change points and we want to test 

whether our method could detect these two change points. As stated above, there are 15 

ROIs and 200 time points. In the first simulation, we set real change points to be 65 and 

160. It is a normal case and each bin have over 40 time points to estimate the functional 

connectivity. In the second simulation, the real change points are time 25 and time 95. The 

first time bin has only 25 time points and our minimal length of each bin is set to 20. We 

want to test the ability of detecting rapid change in time. 

 

3.2 Experimental data 

In this section, we are going to talk about one real data analysis. The data was taken from 

Jordan et al`s (2016) research in cognitive control of saccade task. Saccade tasks are 

frequently used in study of cognitive control. There are two kinds of saccade tasks, 

prosaccades (rapid eye movements towards a stimulus) and antisaccades (movements to 

the mirror image location of a stimulus). In this study, one task consisted of repeating 

blocks of prosaccades, antisaccades, and fixation is provided. There were 30 right-handed, 

health participants (mean age = 19.5 years, SD (standard deviation) = 3.7 years) and 10 of 

them are males. All participants had no experience of major psychiatric disorders or 

substance abuse and metal implants. The blocked task consisted of repeating 20 second 

blocks of fixation, 10 prosaccade trials and 10 antisaccade trials. The fixation within the 

saccade blocks lasted for 500 ms before each trial. In conclusion, this is a circulation of 
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10s of prosaccade trials and 10s of antisaccade trails with fixation before each trail. Based 

on previous studies, the blood oxygenation level dependent functional magnetic resonance 

imaging (BOLD fMRI) will be stronger in prosaccade trails than antisaccade trails. The 

main purpose of using this block design study is to validate our method by correctly 

detecting the change point.  

 

4. Results 

 

Figure 1A shows the result of first simulation. By choosing two combinations of change 

points showed up most times, our method could give an estimation close enough to real 

change point position. There are totally 342 possible change points combinations in our 

method and both of these two mood combinations show up over 20 times out of 5000 

iterations in MCMC. The estimation of mean value is also close to the real change point 

position. In contrast, for DCR method, as there are 25 subjects, there should be 75 change 

points for the enlarged 5000	×	15 matrix. However, it could only detect 43 change points. 

In addition, the mood estimation of DCR method does not works better than our method. 
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Real Change 

Point Position 

Estimation of Change Point Position 

by our method 

DCR (mood value of each 

change point) 

 Mood 1 Mood 2  Mean  

65 62  63 69 69 

160 164  161 156 164 

Figure 1A.  

Result of simulation 1. There are two change points (time 65 and 160) out of all 200-time 

length. We assume that we know there are only two change points. Mood 1 is the 

combination of change points that show up most times. Mood 2 is the combination of 

change points that show up second most times. Mean is the mean estimation of position 

over all MCMC procedure. DCR method provide the mood estimation of each change point. 

 

Figure 1B shows the result of the second simulation. Simulation 2 is used to test the ability 

of our method to detect the fast change, where there are only 25 time points in the first bin. 

Mood 1 provides a quite good estimation of both position, although mood 2 and mean 

estimation has a higher value for the first position of change point. For DCR method, there 

should be 25 changes at first change position (time 25). However, it could only detect 4 

times of this change position and the value is much higher than the real value. It shows that 

there maybe some problem for DCR method to detect fast changes or short time periods in 

some time bins.  
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Real Change 

Point Position 

Estimation of Change Point Position 

by our method 

DCR (mood value of each 

change point) 

 Mood 1 Mood 2  Mean  

65  22 32 36 29 

160 96 94 96 94 

Figure 1B.  

Result of simulation 2. There are two change points (time 25 and 95) out of all 200-time 

length. We assume that we know there are only two change points. Mood 1 is the 

combination of change points that show up most times. Mood 2 is the combination of 

change points that show up second most times. Mean is the mean estimation of position 

over all MCMC procedure. DCR method provide the mood estimation of each change point. 

 

Another goal of our method is to provide an estimation of dynamic functional connectivity, 

Figure 1C is the receiver operating characteristic (ROC) curve of simulation 1 and 

simulation 2. ROC curve is generated based on comparing true precision matrix with our 

estimated precision matrix based on mood1 estimation of change points. The value under 

ROC are 0.9192 and 0.7318 respectably. Thus our method can give an accurate estimation 

of the dynamic functional connectivity.  
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Figure 1C. 

ROC curve based on simulation 1 and simulation 2.  
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5. Discussion  

 

In this thesis, we introduce a new Bayesian method to detect both number and positions of 

change points in dynamic fMRI data, and then to estimate the dynamic functional 

connectivity. Compared with other methods to detect dynamic functional connectivity, our 

method is based on the change in precision matrix, or functional connectivity, of fMRI data. 

Most dynamic functional connectivity methods now assume that there is change in the 

mean value of dataset and they are trying to capture this change in mean. There was no 

method dealing with change in functional connectivity, or precision matrix directly. In 

addition, it assumed that all subject share same location of change points and the functional 

connectivity share some similarity between any two consecutive time bins. Although many 

other methods assumed mostly different functional connectivity for any two time bins.  

 

Based on the simulation, our method can successfully detect the position of change point 

when the number of change points is given. Although the positions of change points are 

not the same with real position, in most cases the difference is less than 3 time points. In 

addition, compared with DCR method, which is another change point detection method 

used for dynamic functional connectivity. Our method works much better to detect all 

change points and can better handle short time bins situation. In addition, in terms of 

estimating dynamic functional connectivity. Our method works quite well and can detect 

correct edge.  
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However, there are also some limitations for our method. First of all, we provide two 

different methods to choose final change points. The mood method works better than mean 

one. However, just as mentioned above, the final choice of combination of change points 

are in a close neighborhood of real value. It would be better if we could choose the true 

value of combination. Secondly, in the simulation of our work, we have only tried the cases 

where we know the number of change points. When the number of change points is 

unknown, the performance of our method still need to be check. Thirdly, although our 

method works better than DCR in detecting the true value of change points. It takes longer 

time than DCR method. For simulation 1, DCR method takes about 1 minute and our 

method takes about 10 minutes. This only consider the two change point case. If more 

change points are being considered, the computation time will even increase more. The 

effectiveness of computation still need to be improved. Finally, our method based on the 

assumption that all patients share the same dynamic functional connectivity and change 

points. This is also a normal assumption for most paper in the area of dynamic functional 

connectivity. However, whether this assumption is correct still needs to be verified. 

 

This works is just a simplified version of our method to detect change points based 

precision matrix. In the future, we are going to do more real data analysis and extend our 

method for more possible numbers of change points. And we will try to estimate the 

number and position of change points simultaneous. In addition, to data, we have tried at 

most 20 ROIs. In terms of dealing with more complicated data, the number of ROIs need 

to be increased. Besides, the assumption of same change points among all subjects will be 

tested also.  
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In sum, our method of Bayesian approach to detect dynamic brain networks is capable to 

detect position of change points when the number of change points is given. Compared 

with most other dynamic functional connectivity methods, it can directly work with 

precision matrix instead of mean value of each voxel. In addition, the limit assumption of 

data makes this method suitable in other areas including economy, finance, and engineering. 
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