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Abstract

On the Design of Reflecting Systems with Virtual Sources
By Dylanger Pittman

We consider the problem of the determination of a system of reflecting sur-
faces jointly transforming a given radiance distribution from a point source into an
irradiance distribution appearing to an observer as produced by some virtual sources.
Our work continues the work by Kochengin et al. [13] which dealt with the case when
the required reflector is a single surface. Here, the reflector is allowed to consist of
several disjoint surfaces.



On the Design of Reflecting Systems with Virtual Sources

By

Dylanger Pittman
B.A., Williams College, 2017
M.S., Emory University, 2022

Advisor: Vladimir Oliker, Ph.D.

A dissertation submitted to the Faculty of the
James T. Laney School of Graduate Studies of Emory University

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

in Mathematics
2023



Acknowledgments

I would like to express my appreciation to my advisor, Prof. Vladimir Oliker,

for providing his support and expertise. Additionally, I would like to thank my

defense committee, Prof. James Nagy and Prof. Shanshaung Yang, whose questions

and feedback were invaluable to my progress. I also would like to thank Prof. David

Borthwick who provided much-needed help during the latter phase of my program.

I sincerely thank the faculty and staff of the Emory University Department of

Mathematics. I have received much valuable assistance through the years, and they

have played a critical role in my education. My undergraduate institution, Williams

College, provided me with the required foundation to even attend this program; so I

extend thanks to them as well. I would also like to thank my counselor Ethan Maurer,

who provided critical support during my high school years.

I would like to extend my gratitude to Dr. Alexander Clifton, who served as

my roommate and colleague during my time at Emory. I also appreciate the moral

support the rest of my cohort has given me: Dr. Wesely Jones, Kai Hess, Dr. Jaynth

Guhan, Juvaria Tariq, and Dr. Yuliang Ji. I would also like to thank Dr. Kelvin

Kan for his personal support as well. I also want to thank the rest my friends for

providing companionship.

Lastly, I would also like to thank my parents for their endless moral support.

Specifically, my mother, who has always been a key source of wisdom throughout my

educational journey.



i

Contents

1 Introduction 1

1.1 Virtual source Reflector Problem . . . . . . . . . . . . . . . . . . . . 5

1.2 Dissertation Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Notation and Terminology 9

3 Convex Weak Solutions to the Virtual Source Reflector Problem 11

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Hyperboloids of Revolution . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Convex Weak Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Uniqueness Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5 Weak Solutions in the Discrete Case . . . . . . . . . . . . . . . . . . 25

3.6 Weak Solutions in the General Case . . . . . . . . . . . . . . . . . . . 29



3.7 Rotationally Symmetric Convex Refractors on the Surface of a Right

Circular Cone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Generalized Weak Solutions to the Virtual Source Reflector Prob-

lem 40

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Generalized Weak Solutions Constructed from Hyperboloids . . . . . 41

4.3 Generalized Refractors . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4 The Rotationally Symmetric Case . . . . . . . . . . . . . . . . . . . . 53

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Appendix A Formulation of the PDE for the Virtual Source Reflector

Problem 61

Appendix B No Set of Points Satisfies Both Hypotheses H1 and H2 63

Appendix C Blaschke’s Selection Theorem 67

Appendix D Reidemeister’s Theorem About Singular Points on Con-

vex Sets 68

Appendix E A Constructive Proof of Lemma 4.3.2 70

E.1 Nonatomic Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 70



E.2 Generalization of Hall’s Matching Theorem . . . . . . . . . . . . . . . 71

E.3 Proof of Theorem E.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

References 79



iv

List of Figures

1.1 Reflector System with a Planar Reflector Illustration . . . . . . . . . 4

3.1 Virtual Source Reflector Illustration . . . . . . . . . . . . . . . . . . . 13



1

Chapter 1

Introduction

Let O be the origin of R3, and let S2 be the unit sphere centered at O. We

treat points on S2 as unit vectors with initial points at O. Let an aperture be a

connected open subset of S2. Physically, it makes sense to consider O as the location

of an anisotropic point source of light such that rays of light are emitted in a set of

directions defined by an aperture D ⊆ S2.

Definition 1.1. Assume that we are given an aperture D ⊆ S2, and a continuous

function ρ : D → (0,∞). Consider the set R = {mρ(m)|m ∈ D} ⊂ R3. If mρ(m) is

a regular point for almost all m ∈ D, then the set R = {mρ(m)|m ∈ D} ⊂ R3 is a

reflector.

If ρ is a function such that R = {mρ(m)|m ∈ D} ⊂ R3 is a regular surface

(see Definition 2.2.1 in [5]), then we can call R a smooth reflector.

Given an aperture D, assume that we have a continuous function ρ : D →

(0,∞) such that the corresponding set R = {mρ(m)|m ∈ D} is a reflector. Suppose

that a ray originating from O in the direction m ∈ D is incident on the reflector R

at the point mρ(m). If mρ(m) is regular, there is a unit vector, n(m), normal to the
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reflector R at mρ(m). Therefore, by the reflection law of geometric optics, a ray from

O of direction m reflects off of R at the point mρ(m) in the direction

y(m) = m− 2⟨m,n(m)⟩n(m) (1.1)

where ⟨m,n(m)⟩ is the standard Euclidean inner product in R3 and n(m) is oriented

such that ⟨m,n(m)⟩ > 0 [1].

The reflector R is designed such that the ray described by the pointmρ(m) ∈ R

and the direction y(m) corresponds to some element in a prespecified target set T .

What one means by a ‘target set’ changes depending on the context. Also, the

meaning of a ‘correspondence between y(m) and an element of T ,’ and the meaning

of ‘an element of the target set’ will also vary depending on the specific problem

being discussed. For example, if the target set T is a subset of S2, then a possible

correspondence can be y(m)
|y(m)| ∈ T ; see [3]. Physically, in this case, T can be considered

as a set of directions for rays of light. If T is a subset R3 \ {O}, then, as another

example, we can say that for every m ∈ D, there exists an a(m) > 0 such that

a(m)y(m)+mρ(m) ∈ T ; see [20] and [11]. Physically, in this case, T can be considered

as a region that one wants to illuminate.

In this dissertation, we study the virtual source reflector problem. A virtual

source is the collection of focus points made by extensions of diverging rays of light.

In other words, a virtual source is found by tracing reflected rays that emerge from

a reflector backward to the perceived origins of ray divergences. We study the case

where our target set T is a subset R3 \ {O} and for every m ∈ D, there exists an

a(m) > 0 such that −a(m)y(m) + mρ(m) ∈ T . Physically, T can be viewed as a

virtual source.

Assume that g is an integrable and nonnegative function over an aperture
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D, and f is an integrable and nonnegative function over a target set T . Physically

speaking, we say g(m) for m ∈ D is the radiance of the source at O in the directions

m ∈ D, or that g is a radiance distribution over D. We also say f(x) for x ∈ T is the

irradiance of the target set at x ∈ T , or that f is an irradiance distribution over T .

A reflector system consists of an apertureD, O, a reflector R, an integrable and

nonnegative function g over D, and a target set T with an integrable and nonnegative

function f over T . From a physical perspective: the light emitted from the source at

O in directions defined by the aperture D, of radiance g(m) for m ∈ D, is reflected

off R, creating the irradiance f(x) for x ∈ T . An example that can serve as an

illustration is shown in Figure 1.

A reflector problem is, in short, an inverse problem that seeks to complete a

reflector system by creating a reflector that fits the other information given. Specif-

ically, suppose that we are given O, an aperture D, an integrable and nonnegative

function g over D, and a target set T with an integrable and nonnegative function f

over T . The aim of a reflector problem is to find a continuous and positive function

ρ over D such that the corresponding set R = {mρ(m)|m ∈ D} is a reflector that

produces the specified in advance irradiance distribution f on T .

Reflector problems have been well studied due to their utility in physics and

engineering. Such problems have found numerous applications in the construction of

reflector antennas [21], mirror design [2], heat transfer [9], and beam shaping [7]. This

work deals with exploring variants of the virtual source reflector problems; descrip-

tions of which will be provided in their appropriate sections. All problems discussed in

this dissertation are being considered in the high-frequency approximation, where the

laws of geometric optics apply. Mathematical descriptions of these laws will be pre-

sented when appropriate. We now proceed with a general description and motivation

for the reflector problem that we study.
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O

The plane reflector R

The surface normal to R

Light rays going to some target set T

Figure 1.1: Here is the most basic example of a reflector system with a smooth
reflector. Here R is a plane. Every point on R has a normal. Light originates from
the point O with directions represented by points on the unit sphere S2 and travels
according to some target set that is neither shown nor specified.



5

1.1 Virtual source Reflector Problem

In this section, we give a general formulation of the virtual source reflector

problem. A more descriptive discussion and formulation for this problem are available

in Chapter 3. This part is not required reading, as the mathematics introduced below

will not be used again. However, this section can provide some good motivation for

the general problem.

In this part, when we say surface, we mean a regular surface; see Definition

2.2.1 in [5]. Suppose that we are given a reflector system consisting of

1. O,

2. an aperture D ⊂ S2,

3. a nonnegative g ∈ L1(D),

4. a bounded Borel set T ⊂ R3 \ {O} (typically a subset of a surface or a finite

set),

5. a nonnegative and integrable function f : T → [0,∞),

6. a smooth function ρ : D → (0,∞) such that the set R = {mρ(m)|m ∈ D} is a

smooth reflector.

Our reflector system can be described as follows. The light is emitted from the

source at O in directions defined by the aperture D. Each ray of direction m ∈

D has radiance g(m) and is reflected off R at the point mρ(m) in the direction

y(m) as described by (1.1). For every m ∈ D, there exists an a(m) > 0 such that

mρ(m) − a(m)y(m) ∈ T . This inspires a mapping from D → T . We can therefore

say that the elements of D that map to x ∈ T ‘create’ the irradiance f(x). With this

setup in mind, we proceed with a formulation of the virtual source reflector problem.
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Let u = (u1, u2) be smooth local coordinates on S2 such that D lies in one

coordinate patch. The position vector of a point m ∈ D is m = m(u). We choose the

coordinates u1, u2 so that ⟨m,m1×m2⟩ = 1 in D; here, ⟨, ⟩ denotes the scalar product

in R3 and mi =
∂m
∂ui , i = 1, 2. Observe that this implies that ⟨m,mi⟩ = 0, i = 1, 2. The

first fundamental form of S2 is given by e = eijdu
iduj where eij = ⟨mi,mj⟩.

Set r(m) = mρ(m), then r(m) defines a surface R = {r(m)|m ∈ D}. Let

g = gijdu
iduj be the first fundamental form of R where gij = ⟨ri, rj⟩ = ρiρj + ρ2eij,

ri =
∂r
∂ui

, and ρi =
∂ρ
∂ui

.

Let n(m) be the normal vector field on R such that ⟨n(m),m⟩ > 0 everywhere

on R. Then

n(m) = (ρ2 + |∇̃ρ|2)−1/2(r − ∇̃ρ) (1.2)

where |∇̃p|2 = ρiρje
ij. This combined with equation (1.1) determines the direction in

which a ray will go after reflecting off R [17].

The reflector R = {mρ(m)|m ∈ D} determines our reflector map x : D → T

which, in turn, is determined by tracking the path of each ray described by the

direction m ∈ D to a point x(m) ∈ T . A ray, originating at O in direction m, hits the

reflector R at a point mρ(m). By the reflection law of geometric optics, the direction

of reflection at mρ(m) can be described by the direction y(m) in (1.1). However, since

we are working on the virtual source reflector problem, we follow the ray of direction

−y(m) from mρ(m) until it reaches T at some point x(m). Thus, from a physical

perspective, an irradiance f(x(m)) is created by the rays reflected away from x(m).

This defines a mapping m → x(m) that we call the reflector map; for convenience,

we denote x(m) as the image of m under the reflector map.

If the reflector map is a diffeomorphism from D to T where T is a subset of

a surface, then one can introduce the first fundamental form of T as w = wijdu
iduj,
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where wij = ⟨xi, xj⟩, xi =
∂x
∂ui .

According to the differential form of the energy conservation law [1],

f(x(m))|J(x(m))| = g(m) (1.3)

where J is the Jacobian determinant of the map x. Note that

J(x(m)) = ±dν(x(m))

dσ(m)
= ±

√
det(wij)√
det(eij)

(1.4)

where dσ is the surface area element on S2, and dν is the surface area element on T .

We assign a ± sign to the Jacobian according to whether x preserves the orientation

or reverses it. Therefore, by integration of (1.3), for all Borel sets ω ⊆ T ,

∫
x−1[ω]

gdσ =

∫
ω

fdν (1.5)

where x−1[ω] = {m ∈ D|x(m) ∈ ω} and
∫
D
gdσ =

∫
T
fdν.

With this motivation, we can now state the virtual source reflector problem.

Assume that we are given O, an aperture D ⊂ S2 with a nonnegative function g ∈

L1(D), and a bounded Borel set T ⊂ R3\{O} with a nonnegative, integrable function

f : T → [0,∞). The goal is to find a positive smooth function ρ over D such that

the corresponding set R = {mρ(m)|m ∈ D} is a smooth reflector such that:

1. The ray originating from O in the direction m ∈ D reflects off the reflector

R = {mρ(m)|m ∈ D} in accordance with equation (1.1) such that the ray of

direction −y(m) from mρ(m) reaches the target set T .

2. g(m) on D is transformed by the reflector map into f on T ; i.e. for all Borel
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subsets ω ⊆ T , ∫
x−1[ω]

gdσ =

∫
ω

fdν (1.6)

where x : D → T the reflector map corresponding to the reflector R =

{mρ(m)|m ∈ D}, x−1[ω] = {m ∈ D|x(m) ∈ ω}, dσ is the surface area ele-

ment on S2, and dν is the area element on T (ν is typically some discrete or

Lebesgue measure).

3. The law of total energy conservation is obeyed:
∫
D
gdσ =

∫
T
fdν.

1.2 Dissertation Synopsis

For this dissertation, we work only on the virtual source reflector problem. In

Chapter 3, we continue the work in [13] and develop existence and uniqueness results.

For the existence results, we focus on the rotationally symmetric case and the case

where the points in the target set are sufficiently close together. In Chapter 4, we

develop an expansion of the weak solution in [13] and we develop existence results.

In this case, the reflector is allowed to consist of several disjoint surfaces.
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Chapter 2

Notation and Terminology

Here we summarize some notations and terminology used in the upcoming

chapters.

R3: The three-dimensional euclidean vector space.

O: The origin of R3.

S2: The unit sphere centered at O

of a Cartesian coordinate system in R3.

N: The set of all natural numbers.

[n] = {1, 2, . . . , n}: For some n ∈ N.

kx = x
|x| : For some x ∈ R3 \ {O}.

|Q|: The cardinality of Q.

2Q: The powerset of Q.

f [A] = {f(x)|x ∈ A}: Given a function f : X → Y , then for A ⊆ X,

f [A] is the image of A with respect to f .
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∂B: The boundary of B.

B: The closure of B.

Int(B): The interior of B.

σ(B): The standard measure of S2 of a set B ⊂ S2.

L1(S2): The set of functions g on S2 such that
∫
S2 |g(m)|dσ(m) < ∞.
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Chapter 3

Convex Weak Solutions to the

Virtual Source Reflector Problem

3.1 Introduction

We first recall the classical law of reflection that was previously introduced

in the introduction. Assume that we are given an aperture D. Also, assume that

we are given a continuous function ρ : D → (0,∞) such that the corresponding set

R = {mρ(m)|m ∈ D} is a reflector. Suppose that a ray originating from O in the

direction m ∈ D is incident on the reflector R at the point mρ(m). If mρ(m) is

regular, there is a unit vector, n(m), normal to the reflector R at mρ(m). Therefore,

by the reflection law of geometric optics, a ray from O of direction m reflects off R

at the point mρ(m) in the direction

y(m) = m− 2⟨m,n(m)⟩n(m) (3.1)
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where ⟨m,n(m)⟩ is the standard Euclidean inner product in R3 and n(m) is oriented

such that ⟨m,n(m)⟩ > 0 [1].

Definition 3.1.1. Assume that we are given an aperture D ⊆ S2. Let U be an open

subset of S2 such that D ⊆ U . Consider a continuous function ρ : U → (0,∞). If

mρ(m) is regular for almost all m ∈ D, then the set R = {mρ(m)|m ∈ U} ⊂ R3 is a

refractor.

Note that R = {mρ(m)|m ∈ D} can be considered as either a reflector or a

refractor. If R = {mρ(m)|m ∈ D} is considered as a refractor, the refracted direction

ŷ is determined by Snell’s law and is given as

ŷ(m) = cfm−
(√

1− c2f (1− ⟨m,n(m)⟩2)− cf⟨m,n(m)⟩
)
n(m) (3.2)

where cf denotes the refraction index.

We borrow the following motivation from [13]. Consider a two-sheeted hyper-

boloid of revolution with sheets B and H. Let O be the focus inside the convex body

bounded by the first sheet B and x be the focus inside the convex body bounded by

the sheet H. Suppose that a point source of light is positioned at O and the sheet

H is a reflector. H has very special and important reflecting properties. Specifically,

if a ray of direction m from O is incident on a point z ∈ H and is reflected in the

direction y(m) as defined by (3.1), then the ray from z of direction y(m) coincides

with a ray from x of direction y(m). This means that the focus x can be viewed, from

a physical perspective, as a virtual source of rays reflected off H. A two-dimensional

analog of this situation is illustrated in Figure 3.1.

This same situation can also be interpreted from a different point of view

allowing us to treat it geometrically as a refraction problem, rather than a reflection

problem. Now suppose a light ray of direction m from O strikes H and ‘refracts’ such
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S2 centered at the origin O

light rays

Target set consisting of a single point

The hyperboloid H

Figure 3.1: Here is an illustration of a virtual source reflector system where the target
set is a single point. Note that all the rays of light reflect off of the hyperboloid H
such that it appears that the light is originating from the target point.
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that the refracted direction is given by

ŷ = −y = −m+ 2⟨m,n(m)⟩n(m). (3.3)

Then since the refracted direction is the opposite of the reflected direction, every ray

of direction m that strikes the refractor H will cross the focus x. Equation (3.3) can

also be considered as the version equation of (3.2) where cf = −1. Under the law of

total energy conservation, the total energy ‘delivered’ by the refractor H to the point

x will be equal to the total energy produced by the source O. We will only discuss

this type of refraction, where cf = −1, for the rest of the dissertation.

This interpretation of the reflection with a virtual source as a particular case

of refraction is convenient from a geometric point of view and we use this terminology

throughout this chapter and the next. Physically, however, it is more natural to treat

the point x as a virtual source. This would also be consistent with the case of a

distributed virtual source; which we focus on.

To quote [13]: with this terminology, the problem studied in this chapter can

now be described as a problem of finding a convex refractor R which will refract a

given anisotropic bundle of rays from a source O in such a way that the refracted

rays are incident on a specified set in space and produce there, a given-in-advance

intensity distribution. More specifically, suppose that we have a system consisting

of an anisotropic point source at O, an aperture D, a nonnegative g(m) ∈ L1(S2), a

target set T ⊂ R3 \ {O}, and nonnegative integrable function f defined on T. The

problem consists of finding a refractor R which produces the specified in advance f

on T. Henceforth, we call this problem the refractor problem.

The only previous work available with respect to this problem can be found in

[13]. In the paper, they develop a definition of a weak solution to a PDE of Monge
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Ampère type; specifically, the PDE described by equation (4) in [13] (the formulation

of said PDE will be reproduced in Appendix A for the convenience of the reader).

They detail the construction of convex refractors and provide an existence theorem

for the case where the target set is discrete (Theorem 3.5.1). Due to the weak conver-

gence of Dirac measures to Lebesgue measures, one can create refractors that produce

discrete irradiance distributions that are arbitrarily close to a continuous distribution,

like pixels in a photo. However, this does not imply the existence of a refractor that

produces a continuous intensity distribution at the limit. This is expected for prob-

lems that can be described by a fully nonlinear PDE of Monge-Ampére type [18].

However, if the refractors are convex, due to the unique properties that convexity

provides(see [19], Appendix C, Appendix D), one can use the weak convergence of

Dirac measures to Lebesgue measures to obtain a refractor that produces a continuous

irradiance distribution; see [11],[3].

In this chapter, we work on the weak formulation developed in [13], where we

develop existence and uniqueness results. Due to a mistake in [13] (see Appendix

B), Theorem 9 in [13] (Theorem 3.5.1) is the only available existence theorem for the

refractor problem. Specifically, Theorem 9 in [13] gives sufficient conditions such that

there exists a weak solution; as [13] points out, these conditions are not easy to verify,

and it is desirable to provide more explicit, sufficient conditions. We aim to make

progress towards that goal in this chapter. We find that Theorem 9 in [13] can be

used to prove another existence theorem for the discrete case (Theorem 3.5.2) that,

in turn, can be extended to the continuous case (Theorem 3.6.1). We use this result

to then prove the existence of solutions for the rotationally symmetric case (Theorem

3.7.1). Additionally, we prove a uniqueness theorem for the case where the target set

is finite (Theorem 3.4.1) and for the general case (Theorem 3.4.2).



16

3.2 Hyperboloids of Revolution

We do all our work in R3. We denote S2 to be the unit sphere with the center

at O and kx = x/|x| for all x ∈ R3 \ {O}. We borrow much of this geometric setup

from [13]. Hyperboloids of revolution are of paramount importance when solving the

virtual source reflector problem due to their unique optical properties.

Consider the rotationally symmetric hyperboloid of two sheets in R3 such that

one focus is O and the other is x; let H(x) be the branch of the hyperboloid that has

x as a focus. From now on, when we use the term hyperboloid, we are only referring

to this branch.

With each hyperboloid H(x) we associate its radial projection by rays from

the origin onto an open spherical disk D(x) ⊂ S2 and its polar radius

h ϵ(m) =
|x|(1− ϵ2)

2ϵ(1− ϵ⟨m, kx⟩)
, m ∈ D(x) (3.4)

where ϵ is the eccentricity of the hyperboloid. Be aware that ϵ > 1 since we are

describing a hyperboloid.

Define Hϵ(x) to be the hyperboloid with eccentricity ϵ and focus x. We now

introduce a similar function h x,ϵ(m) which introduces x ∈ R3 \ {O} as a variable.

In this and the following chapters, we define hx,ϵ(m) = mh x,ϵ(m) for m ∈ D(x) and

x ∈ R3 \ {O}. Let Dϵ(x) ⊂ S2 be the preimage of Hϵ(x) under hx,ϵ, then Dϵ(x) =

{m ∈ S2|1
ϵ
< ⟨m, kx⟩}. Thus we can easily verify that Hϵ(x) = {hx,ϵ(m)|m ∈ Dϵ(x)}.

From a physical perspective, x being the focus means that all light from the

origin reflected off of the reflector H(x) appears to be originating from x, making x

a virtual source.
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From the above work, we see by taking the eccentricity ϵ to infinity that the

shape of the hyperboloid becomes a plane, which is the directrix of the hyperboloid,

and Dϵ(x) and goes to the hemisphere oriented towards x. The following two propo-

sitions summarize what I say precisely.

Proposition 3.2.1. As the eccentricity ϵ of Hϵ(x) goes to infinity, Dϵ(x) goes to

{m ∈ S2|⟨m, kx⟩ ≥ 0}.

Proposition 3.2.2. As the eccentricity ϵ of Hϵ(x) goes to infinity, the resultant set

is a plane represented by the equation ⟨x, y− x
2
⟩ = 0 where y ∈ R3, or equivalently by

the polar radius equation r(m) = |x|
2⟨m,kx⟩ where m ∈ {m ∈ S2|⟨m, kx⟩ > 0}.

Observe that as the eccentricity ϵ goes to 1, we obtain a ray originating at x

going in the direction described by the vector kx. We call this a degenerate hyperboloid.

An important property of hyperboloids can be described by the following

proposition.

Proposition 3.2.3. Let c > 0 and ϵ > 1 such that cϵ > 1. Then the hyperboloids

Hcϵ(x) and Hϵ(x) have the same foci: O and x.

The aforementioned property is important because a reflector Hϵ(x) will reflect

the light emitted from O so that the light appears to be emitted from x; thus, making

x a virtual source. Alternatively, a refractor Hϵ(x) will refract the light emitted from

O so that the light is delivered to x. These properties are true no matter how large

or small the eccentricity is; all that matters is the location of the foci.

Let Ax = {m ∈ S2|⟨m, kx⟩ ≥ 0} and Aδ
x = {m ∈ S2|⟨m, kx⟩ ≥ δ} for δ ∈ R.

Observe that Ax = A0
x, A

1
x = {kx}, Aδ

x = ∅ for δ > 1, and Aδ
x = A−1

x = S2 for

δ ≤ −1. It is also clear that if δ1 ≤ δ2, then Aδ1
x ⊆ Aδ2

x with a strict inclusion if

δ1 < δ2 and δ1, δ2 ∈ [−1, 1]. So while δ only has practical significance while taking
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values in [−1, 1], allowing it to take all values in R makes some of the upcoming proofs

easier.

By Propositions 3.2.1 and 3.2.2, we have the following statement.

Proposition 3.2.4. Let 0 < δ < 1 and B ⊆ Aδ
x. Then if ϵ > 1

δ
, then hx,ϵ[B] ⊂ Hϵ(x).

In particular:

1. 1
ϵ
< δ implies that Aδ

x ⊂ Dϵ(x),

2. 1
ϵ
> δ implies that Dϵ(x) ⊂ Aδ

x,

3. 1
ϵ
= δ implies that Int(Aδ

x) = Dϵ(x).

3.3 Convex Weak Solutions

We now have the background to construct and proceed with our discussion of

the weak solution. Keep in mind that this weak solution definition, apart from some

minor differences in notation, is identical to the weak solution defined in [13].

Let c = minx,y∈T ⟨kx, ky⟩, ℓ = minx∈T |x|, and L = maxx∈T |x|. Assume that

we are given a set T ⊆ R3. We say that T satisfies Hypothesis H1 if the following

condition is met.

Hypothesis H1 (Hypothesis H1 in [13]). T is a compact subset of R3 contained in

a half space of R3, ℓ > 0, and 2ℓc > L.

We also define a constant,

ϵ0 =
ℓ+

√
ℓ2 − 2Lℓc+ L2

2ℓc− L
, (3.5)
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that depends only on T .

We first assume we are given a target set T that satisfies Hypothesis H1.

Let H̃ϵ(x) be the convex body bounded by Hϵ(x). Consider the aperture D
δγ
T =

Int
(⋂

x∈T A
δγ
x

)
where δγ = 1

ϵ0+γ
for some γ > 0. We then define a simply connected

refractor over D
δγ
T as the boundary of the intersection of the convex bodies bounded

by hyperboloids. Specifically,

R = ∂h where h =
⋂
x∈T

H̃ϵx(x) (3.6)

where each ϵx ≥ ϵ′ ≥ ϵ0 + γ = 1
δγ
. Observe that

R =

{
m sup

x∈T
h x,ϵx(m)

∣∣∣∣∣m ∈ Int

(⋂
x∈T

A
1
ϵx
x

)}
. (3.7)

Observe that D
δγ
T ⊆ Int

(⋂
x∈T A

1
ϵx
x

)
and, by Theorem D.1 (see [19], Appendix D),

almost every point on R is regular; thus R may be considered a refactor per Definition

3.1.1. Let

Rϵ′

convex(T ) (3.8)

be the set of all such refractors. Please note that by Lemma 1 in [13], the set

Rϵ′
convex(T ) is nonempty.

Note the following definition.

Definition 3.3.1. A hyperboloid H(x) is said to be supporting to a set Q ⊂ R3 at a

point z ∈ ∂Q if the convex body H̃(x) bounded by H(x) contains Q and z ∈ H(x)∩∂Q.

For a subset ω ⊆ T and a refractor R ∈ Rϵ′
convex(T ) put

M(ω) = {z ∈ R| there exists x ∈ ω such that H(x) is supporting to R at z}. (3.9)
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The intersection of D
δγ
T with the image of the set M(ω) under radial projection on

S2 we call the visibility set of ω and denote it by Vconvex(ω). By Lemma 4 of [13], this

set Vconvex(ω) is measurable for all Borel sets ω ⊆ T.

For m ∈ D
δγ
T let r(m) be the set of points of intersection between the refractor

R and the ray of direction m originating at O. The possibly multivalued map αconvex :

D
δγ
T → T,

αconvex(m) = {x ∈ T | there exists H(x) supporting to R at r(m)} (3.10)

is called the refractor map.

Assume we are given a nonnegative g ∈ L1(S2). Let us define for measurable

X ⊆ S2

µg(X) =

∫
X

g(m)dσ(m) (3.11)

where σ denotes the standard measure on S2. Assume that g ≡ 0 outside of D
δγ
T .

In order to formulate and solve the refractor problem (in the framework of

weak solutions to be defined below), we need to define a measure representing the

energy generated by g and redistributed by a refractor R ∈ Rϵ′
convex(T ).

Define for any refractor R ∈ Rϵ′
convex(T ),

Gconvex(ω) = µg(Vconvex(ω)) (3.12)

which we will deem the energy function. It can be shown that G is a finite measure

on the Borel σ-algebra of T .

Let F be a nonnegative, finite, Borel measure on Borel subsets of T . We say

that a refractor R ∈ Rϵ′
convex(T ) is a convex weak solution to the refractor problem
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if the refractor map αconvex determined by R is such that αconvex(m) ⊆ T for all

m ∈ D
δγ
T , and

F (ω) = Gconvex(ω) for any Borel set ω ⊆ T. (3.13)

3.4 Uniqueness Theorems

We start with some uniqueness results. Note that Theorem 3.4.1 can be con-

sidered as a direct corollary to Theorem 3.4.2. However, we include both as separate

statements and proofs; as the discrete versions of uniqueness theorems proved to be of

special interest in related problems. For example, Theorem 12 in [11] is a uniqueness

theorem for the discrete case of the near-field reflector problem, and [12] demonstrates

a concrete algorithm to construct reflectors in the discrete case of the near-field re-

flector problem. We proceed with the following lemma, which is shown in the proof

of Lemma 2 in [13].

Lemma 3.4.1. Let T be a target set that satisfies Hypothesis H1. Suppose we are

given positive real numbers γ and ϵ′ such that ϵ′ ≥ ϵ0+ γ where ϵ0 is defined by (3.5).

Let R ∈ Rϵ′
convex(T ). Then Vconvex(ω) is closed for all closed ω ⊆ T .

We now introduce some notation. If we write Vconvex(R;ω) for some Borel set

ω ⊆ T and some refractor R ∈ Rϵ′
convex(T ), this is specifically the visibility set for

the refractor R evaluated on the set ω. Similarly, if we write Gconvex(R;ω) for some

Borel set ω ⊆ T and some refractor R ∈ Rϵ′
convex(T ), this is specifically the energy

function for the refractor R evaluated on the set ω. We will be using this when we

are talking about multiple refractors and we need to specify the energy function for

each refractor.

Here we consider the case of the refractor problem (3.13) where the set T
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is finite. We prescribe the measure F in (3.13) as a Dirac measure concentrated

at points in T. We now introduce notation for refractors in the discrete case. Let

T = {x1, x2, . . . , xk}. We set Hi = H(xi) and the eccentricity of Hi we denote by ϵi.

For the hyperboloids H1, . . . , Hk define the refractor

R = ∂

(
k⋂

i=1

H̃i

)
∈ Rϵ′

convex(T ). (3.14)

Since each hyperboloidHi is uniquely defined by its eccentricity ϵi, the refractor

R can be identified with the point with coordinates (ϵ1, ϵ2, . . . , ϵk) in the region

ϵ1 ≥ ϵ′, ϵ2 ≥ ϵ′, . . . , ϵk ≥ ϵ′ (3.15)

in k−dimensional euclidean space. Thus we can write a refractor R ∈ Rϵ′
convex(T ) as

(ϵ1, ϵ2, . . . , ϵk). We start with a uniqueness theorem for the discrete case.

Theorem 3.4.1. Let T = {x1, . . . , xk} be a collection of k distinct points that satisfy

Hypothesis H1. Suppose we are given positive real numbers γ and ϵ′ such that ϵ′ ≥

ϵ0 + γ where ϵ0 is defined by (3.5). Assume we are given a nonnegative g ∈ L1(S2)

such that g > 0 inside D
δγ
T and g ≡ 0 outside D

δγ
T where δγ = 1

ϵ0+γ
. Let f1, . . . , fk be

a collection of positive real numbers such that

k∑
i=1

fi = µg(D
δγ
T ). (3.16)

Let R = (ϵ1, . . . , ϵk) and R̃ = (ϵ̃1, . . . , ϵ̃k) be refractors in Rϵ′
convex(T ) such that

Gconvex(R̃;xi) = Gconvex(R;xi) = fi for all i ∈ [k].

Then the inequality ϵ̃j ≥ ϵj for some j implies that ϵ̃i ≥ ϵi for all i ∈ [k].

Furthermore, the equality ϵ̃j = ϵj for some j implies that ϵ̃i = ϵi for all i ∈ [k].
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Proof. Let J be a nonempty subset of [k] such that for any i ∈ J, ϵ̃i > ϵi, and for

any i ∈ [k] \ J , ϵ̃i ≤ ϵi. Note that m ∈ Vconvex(R̃; {xi|i ∈ J}) if and only if there

exists some i ∈ J such that h xi,ϵ̃i(m) ≥ h xℓ,ϵ̃ℓ(m) for all ℓ ∈ [k] \ J. For this m: since

h xi,ϵi(m) > h xi,ϵ̃i(m) for all i ∈ J and h xℓ,ϵℓ(m) ≤ h xℓ,ϵ̃ℓ(m) for all ℓ ∈ [k] \ J , then

there exists some i ∈ J such that h xi,ϵi(m) > h xℓ,ϵℓ(m) for all ℓ ∈ [k] \ J . Thus, any

m ∈ Vconvex(R̃; {xi|i ∈ J}) is an interior point of Vconvex(R; {xi|i ∈ J}); in other words,

Vconvex(R̃; {xi|i ∈ J}) ⊆ Int(Vconvex(R; {xi|i ∈ J})). Recall that, by Lemma 3.4.1,

Vconvex(R̃; {xi|i ∈ J}) is closed and, since f1, . . . , fk are positive, Vconvex(R; {xi|i ∈ J})

is nonempty. Then Int(Vconvex(R; {xi|i ∈ J})) \ Vconvex(R̃; {xi|i ∈ J}) is open and

nonempty. So µg(Vconvex(R; {xi|i ∈ J}) \ Vconvex(R̃; {xi|i ∈ J})) > 0. Therefore we

must have

∑
i∈J

fi = Gconvex(R̃; {xi|i ∈ J}) < Gconvex(R; {xi|i ∈ J}) =
∑
i∈J

fi (3.17)

which is a contradiction because Gconvex(R̃;xi) = Gconvex(R;xi) = fi for all i ∈ [k].

The theorem is proved.

Observe that for all refractors R ∈ Rϵ′
convex(T ), there exists a function K :

T → [ϵ′,∞) such that R = ∂(
⋂

x∈T H̃K(x)(x)). Since each hyperboloid H̃K(x)(x)

is uniquely determined by K, the refactor R can be identified with the function

K : T → [ϵ′,∞). Thus we can write a refractor R ∈ Rϵ′
convex(T ) as [K] where

K : T → [ϵ′,∞); note that [K] =

{
m supx∈T h x,K(x)(m)

∣∣∣∣m ∈ Int

(⋂
x∈T A

1
K(x)
x

)}
.

Given a refractor R ∈ Rϵ′
convex(T ), we call K : T → [ϵ′,∞) the maximal function

of R if R =

{
mmaxx∈T h x,K(x)(m)

∣∣∣∣m ∈ Int

(⋂
x∈T A

1
K(x)
x

)}
. We proceed with the

following lemma.

Lemma 3.4.2. Let R ∈ Rϵ′
convex(T ) be a refractor such that for all x ∈ T , Vconvex({x})

is nonempty. Then there exists a unique K : T → [ϵ′,∞) that is the maximal function
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of R.

Proof. By Lemma 2 in [13], T ⊂
⋂

x∈T H̃ϵx(x). Therefore, by Definition 3.3.1,

that m ∈ Vconvex({x}) if and only if there exists a corresponding ϵ′x ≥ ϵ′ such

that h x,ϵ′x(m) = supx∈T h x,ϵx(m). Define K(x) = ϵ′x for all x ∈ T. Then R ={
mmaxx∈T h x,K(x)(m)

∣∣∣∣m ∈ Int

(⋂
x∈T A

1
K(x)
x

)}
.

We now conclude with a uniqueness theorem for more general measures and

target sets.

Theorem 3.4.2. Let T be a target set that satisfies Hypothesis H1. Let F be a

nonnegative, finite, Borel measure on Borel subsets of T. Suppose we are given positive

real numbers γ and ϵ′ such that ϵ′ ≥ ϵ0 + γ where ϵ0 is defined by (3.5). Assume we

are given a nonnegative g ∈ L1(S2) such that g > 0 inside D
δγ
T and g ≡ 0 outside D

δγ
T

where δγ = 1
ϵ0+γ

such that

F (T ) = µg(D
δγ
T ). (3.18)

Let R and R̃ be refractors in Rϵ′
convex(T ) such that for all nonempty Borel ω ⊆ T :

F (ω) = Gconvex(R̃;ω) = Gconvex(R;ω), Vconvex(R̃;ω) ̸= ∅, and Vconvex(R;ω) ̸= ∅.

Assume that J is closed subset of T , then there exists unique functions K :

T → [ϵ′,∞) and K̃ : T → [ϵ′,∞) that are, respectively, maximal functions of R and

R̃ such that the inequality K̃(x) ≥ K(x) for all x ∈ J implies that K̃(y) ≥ K(y)

for all y ∈ T. Furthermore, the equality K̃(x) = K(x) for all x ∈ J implies that

K̃(y) = K(y) for all y ∈ T.

Proof. By Lemma 3.4.2, there exists unique functions K : T → [ϵ′,∞) and K̃ : T →

[ϵ′,∞) that are maximal functions of R and R̃ respectively. Note that R = [K] and

R̃ = [K̃].
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Let J be a nonempty closed subset of T such that for any x ∈ J, K̃(x) > K(x),

and for any x ∈ T \ J , K̃(x) ≤ K(x). Note that m ∈ Vconvex(R̃; J) if and only if

there exists some z ∈ J such that h z,K̃(z)(m) ≥ h z′,K̃(z′)(m) for all z′ ∈ T \ J. For

this m: since h z,K(z)(m) > h z,K̃(z)(m) for all z ∈ J and h z′,K(z′)(m) ≤ h z′,K̃(z′)(m)

for all z′ ∈ T \ J , then there exists some z ∈ J such that h z,K(z)(m) > h z′,K(z′)(m)

for all z′ ∈ T \ J . Thus, any m ∈ Vconvex(R̃; J) is an interior point of Vconvex(R; J);

in other words, Vconvex(R̃; J) ⊆ Int(Vconvex(R; J)). Recall that, by Lemma 3.4.1,

Vconvex(R̃; J) is closed. Then Int(Vconvex(R; J)) \ Vconvex(R̃; J) is open and nonempty.

So µg(Vconvex(R; J) \ Vconvex(R̃; J)) > 0. Therefore we must have

F (J) = Gconvex(R̃; J) < Gconvex(R; J) = F (J) (3.19)

which is a contradiction because F (ω) = Gconvex(R̃;ω) = Gconvex(R;ω) for all Borel

ω ⊆ T. The theorem is proved.

3.5 Weak Solutions in the Discrete Case

Here we consider the case of the refractor problem (3.13) where the set T is

finite. We prescribe the measure F in (3.13) as a Dirac measure concentrated at

points in T. Recall the notation for refractors in the discrete case that was introduced

in the previous section before Theorem 3.4.1. We now recall Theorem 9 from [13].

Theorem 3.5.1 (Theorem 9 in [13]). Let T = {x1, . . . , xk} be a collection of k distinct

points in R3 \ {O}, k > 2. Assume that T satisfies Hypothesis H1. Let γ, ϵM , ϵmin,

and ϵmax be positive real numbers such that ϵ0 + γ < ϵM ≤ ϵmin ≤ ϵmax < ∞, where

ϵ0 is defined by (3.5). Assume we are given a nonnegative g ∈ L1(S2) such that g ≡ 0

outside D
δγ
T where δγ = 1

ϵ0+γ
. Let f1, . . . , fk be nonnegative real numbers such that
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k∑
i=1

fi = µg(D
δγ
T ). (3.20)

Suppose that there also exists some ℓ ∈ [k] such that for all i ∈ [k], i ̸= ℓ,

Gconvex(Rℓ;xi) ≤ fi (3.21)

where Rℓ = (ϵ1 = ϵmax, ..., ϵℓ−1 = ϵmax, ϵℓ = ϵmin, ϵℓ+1 = ϵmax, ..., ϵk = ϵmax), and

Gconvex(Rℓi;xℓ) < fℓ (3.22)

where Rℓi = (ϵ1 = ϵmax, . . . , ϵi−1 = ϵmax, ϵi = ϵM , ϵi+1 = ϵmax, . . . , ϵℓ−1 = ϵmax, ϵℓ =

ϵmin, ϵℓ+1 = ϵmax, ..., ϵk = ϵmax). Then there exists a refractor R = (ϵ1, . . . , ϵk) ∈

RϵM
convex(T ) such that

Gconvex(R;xi) = fi for all i ∈ [k]. (3.23)

We will now use the above theorem to prove the following proposition.

Proposition 3.5.1. Let T = {x1, . . . , xk} be a collection of k distinct points in

R3 \ {O} such that T satisfies Hypothesis H1 and kx = ky for all x, y ∈ T. Suppose

that we are given γ > 0 such that ϵ0 + γ < limt→K+
1

t−1
for K = maxx∈T |x|

minx∈T |x| and ϵ0

is defined by (3.5). Assume we are given a nonnegative g ∈ L1(S2) such that g ≡ 0

outside D
δγ
T where δγ = 1

ϵ0+γ
. Let f1, . . . , fk be nonnegative real numbers such that

k∑
i=1

fi = µg(D
δγ
T ) (3.24)

and for the ℓ ∈ [k] where |xℓ| = maxy∈T |y|, fℓ > 0.
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Then there exists an ϵM ∈ (ϵ0 + γ, limt→K+
1

t−1
) such that we can construct a

convex, rotationally symmetric refractor R = (ϵ1, . . . , ϵk) ∈ RϵM
convex(T ) where

Gconvex(R;xi) = fi for all i ∈ [k]. (3.25)

Proof. Note that kx = ky for all x, y ∈ T, implies that ϵ0 = 1 as defined by (3.5). The

case where k = 1 is trivial; let k ≥ 2. Assume that |xi| ≥ |xi+1| for all i ∈ [k− 1] and

thus f1 > 0. Recall that for x ∈ T by Proposition 3.2.2, h ϵ,x(m) → |x|
2⟨m,kx⟩ as ϵ → ∞

for m ∈ D
δγ
T .

Observe that

|x1|
2⟨m, kx⟩

<
|xk|(1− ϵ2M)

2ϵM(1− ϵM⟨m, kx⟩)
for m ∈ D

δγ
T , (3.26)

if and only if

|x1|
2

<
|xk|(1− ϵ2M)

2ϵM(1− ϵM)
. (3.27)

Thus we have that ϵM < 1
K−1

where K = |x1|
|xk|

. Note that by Hypothesis H1 and

the fact that k ≥ 2, we have 1 < K < 2 and 1 < 1
K−1

< ∞. Thus we can have

that 1 = ϵ0 < ϵ0 + γ < ϵM < 1
K−1

. If k = 2, by the continuity implied by Lemma 8

in [13], there exists a refractor R = (ϵ1, ϵ2) ∈ RϵM
convex(T ) such that Gconvex(R;xi) =

fi for all i ∈ [k].

If k > 2, we borrow language and notation from Theorem 3.5.1. By continuity,

if ϵmin = ϵmax is sufficiently large such that 1
K−1

< ϵmin = ϵmax, then, assuming that

ϵM < 1
K−1

, Gconvex(R1;xi) = 0 and Gconvex(R1i;x1) = 0 for all i ∈ [k] such that i ̸= 1.

Therefore by Theorem 3.5.1, there exists a refractor R = (ϵ1, . . . , ϵk) ∈ RϵM
convex(T )

such that Gconvex(R;xi) = fi for all i ∈ [k].
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The above proposition motivates our main result. Consider the following def-

inition.

Definition 3.5.1. Assume that we are given some w,W ∈ (0,∞) where w > W
2
.

Given some m∗ ∈ S2, let

S(m∗, ξ) = {x ∈ R3|w ≤ |x| ≤ W, ⟨kx,m∗⟩ ≥ 1− ξ} (3.28)

where 1 − cos
(
1
2
arccos

(
W
2w

))
> ξ > 0; note that S(m∗, ξ) satisfies Hypothesis H1.

S(m∗, ξ) describes a conical cylinder of height W − w with a bottom circle radius of

w tan(arccos(1− ξ)) and a top circle radius of W tan(arccos(1− ξ)).

Theorem 3.5.2. Assume that we are given some w,W ∈ (0,∞) where w > W
2

and

some m∗ ∈ S2. Recall that δγ = 1
ϵ0+γ

where γ > 0 and ϵ0 is defined by (3.5).

Then there exists positive ξ and γ such that,

1. for any collection of k distinct points T = {x1, x2, · · · , xk} ⊂ S(m∗, ξ),

2. for any nonnegative g ∈ L1(S2) such that g ≡ 0 outside D
δγ
T ,

3. any collection f1, . . . , fk of nonnegative real numbers where
∑k

i=1 fi = µg(D
δγ
T )

and fℓ > 0 for the ℓ ∈ [k] where |xℓ| = maxy∈T |y|,

there exists an ϵM > ϵ0 + γ such that we can construct a refractor R = (ϵ1, . . . , ϵk) ∈

RϵM
convex(T ) where

Gconvex(R;xi) = fi for all i ∈ [k]. (3.29)

Proof. Note that kx = ky for all x, y ∈ T if and only if minx,y∈T ⟨kx, ky⟩ = 1. Observe

that ξ → 0 implies that minx,y∈T ⟨kx, ky⟩ → 1. Assume that |xℓ| = maxy∈T |y|. Let

h Tmax,ϵ(m) = maxx∈T h x,ϵ(m) and PTmax(m) = maxx∈T
|x|

2⟨m,kx⟩ where m ∈ D
δγ
T . Note

that h Tmax,ϵ(m) → h xℓ,ϵ(m) and PTmax(m) → |xℓ|
2⟨m,kxℓ ⟩

as miny∈T ⟨kxℓ
, ky⟩ → 1.
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We borrow language and notation from Theorem 3.5.1. Choose an ϵmin; then,

by continuity, there exists a ξ > 0 such that if minx,y∈T ⟨kx, ky⟩ ≥ 1− ξ, then we have

PTmax(m) < h xℓ,ϵmin
(m) for all m ∈ D

δγ
T . Therefore by continuity there exists an ϵmax

such that PTmax(m) < h Tmax,ϵmax(m) < h xℓ,ϵmin
(m) for all m ∈ D

δγ
T .

Observe that ϵ0 → 1 as minx,y∈T ⟨kx, ky⟩ → 1 and recall that a degenerate

hyperboloid has eccentricity 1. Then, for sufficiently small γ > 0, by continuity

we can choose ϵ0 + γ < ϵM < ϵmin < ϵmax, such that PTmax(m) < h xℓ,ϵmax(m) <

h Tmax,ϵmin
(m) < h xℓ,ϵM (m) for all m ∈ D

δγ
T .

Then Gconvex(Rℓ;xi) = 0 and Gconvex(Rℓi;xℓ) = 0 for all i ∈ [k] such that i ̸= ℓ.

Then by Theorem 3.5.1, there exists a refractor R = (ϵ1, . . . , ϵk) ∈ RϵM
convex(T ) such

that Gconvex(R;xi) = fi for all i ∈ [k].

3.6 Weak Solutions in the General Case

In this section, we extend the results of Theorems 3.5.2 and 3.4.1 to the case of

more general sets T and energy distributions F . We consider the case where prescribe

the measure F as a Lebesgue measure over T , specifically

F (ω) =

∫
ω

f(x)dλ(x) for any Borel set ω ⊆ T (3.30)

for some given nonnegative function f ∈ L1(T ); here λ is the Lebesgue measure on

T .

Theorem 3.6.1. Assume that we are given some w,W ∈ (0,∞) where w > W
2

and

some m∗ ∈ S2. Recall that δγ = 1
ϵ0+γ

where γ > 0 and ϵ0 is defined by (3.5).
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Then there exists positive ξ and γ such that,

1. for any closed subset T ⊆ S(m∗, ξ),

2. for any nonnegative g ∈ L1(S2) such that g ≡ 0 outside D
δγ
T ,

3. for any nonnegative f ∈ L1(T ) with a measure F defined by (3.30) where

F (T ) = µg(D
δγ
T ),

there exists an ϵM > ϵ0 + γ such that we can construct a convex refractor R ∈

RϵM
convex(T ) where R that is a convex weak solution to the refractor problem (3.13).

The following proof is similar to arguments made in [13], [3], and [11]. Specif-

ically, the argument below follows the proof of Theorem 13 in [13] very closely with

some adjustments to fit into this new context. Even though Theorem 13 in [13] is

incorrect (see Appendix B), the type of argument presented in its proof is broadly

applicable.

Proof. Recall that our definition of the energy function can also be considered as a

measure of T .

If µg(D
δγ
T ) = 0, then any refractor R ∈ RϵM

convex(T ) will do. Assume that

µg(D
δγ
T ) > 0.

Since T is bounded, for any δ > 0 there exists an N ∈ N such that for each

k ≥ N there exists a partition of T into k Borel sets ωk
1 , . . . , ω

k
k such that

diam(ωk
i ) ≤ δ for any k ≥ N, i ∈ [k]. (3.31)
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For each k ∈ N, we choose an xk
i ∈ ωk

i for i ∈ [k], and put

F k
i = F (ωk

i ). (3.32)

Define a measure F k on T by

F k(ω) =
∑
xk
i ∈ω

F k
i for any Borel set ω ⊆ T. (3.33)

Note that F k converges weakly to F as k → ∞. For each k, there exists a unique

nonempty Sk = {i ∈ [k]|F k
i > 0} ⊆ [k]. Since {xk

i }i∈Sk
and {F k

i }i∈Sk
satisfies the

assumptions of Theorem 3.5.2, there exists a convex refractor Rk ∈ RϵM
convex({xk

i |i ∈

Sk}) ⊆ RϵM
convex({xk

i |i ∈ [k]}) ⊆ RϵM
convex(T ) defined by hyperboloids with an eccentric-

ity greater than or equal to some ϵM > ϵ0 + γ such that

Gconvex(R
k;xk

i ) = F k
i for i ∈ [k]. (3.34)

Let Gk be the measure on T defined by

Gk(ω) =
∑
xk
i ∈ω

Gconvex(R
k;xk

i ) (3.35)

then obviously F k ≡ Gk for all k ∈ N and consequently, Gk → F . To finish the proof

we need to construct a refractor R whose energy function, G, would be the limit

of measures Gk. This refractor is constructed in the following manner as a limit of

refractors Rk.

First, we note that since g ≡ 0 outside D
δγ
T , we only need to consider the part

of the refractor Rk ∩ C where C is the cone created by the union of all rays from O
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that intersect D
δγ
T . Also for some ϵM > ϵ0+γ one can show that for any R ∈ RϵM (T )

(R ∩ C) ⊆ B(O, b) for some b > 0 (3.36)

where B(O, b) is the open ball centered at the origin O of radius b. Let us prove this

statement. We define

b = max
x∈T,m∈DT

δγ
h x,ϵM (m). (3.37)

Since h x,ϵM is a continuous function and DT
δγ

is compact, this definition is

correct and b < ∞. Thus for any ϵ > ϵM , h x,ϵ(m) ≤ b and (3.36) is proved.

For each of the refractors Rk we consider a bounded convex body

hk
b = hk ∩ CO,D

δγ
T ,∞ ∩ B(O, b) (3.38)

where for each k ∈ N the set hk is defined by (3.6). By Blaschke’s selection theorem

(see [19] or Appendix C), there exists a subsequence of {hk
b} which we again denote

by {hk
b}, which converges to some convex body hb.

We show now that for each point r ∈ [∂(hb) ∩ CO,D
δγ
T ,∞] \ ∂(B(O, b)) there

exists a hyperboloid Hr(x) which is supporting to hb at point r.

Let r ∈ [∂(hb)∩CO,D
δγ
T ,∞] \ ∂(B(O, b)). Then there exists a sequence {rk} that

converges to r where each rk ∈ Rk. Let H(xk) be a supporting hyperboloid to Rk at

rk. Since T is compact, {xk} contains a subsequence, which we will denote by {x∗
k},

converging to some x ∈ T . The convex body H̃(x∗
k) bounded by H(x∗

k) contains

the body hk
b . The corresponding sequence {H̃(x∗

k)} converges to the body H̃r(x)

containing hb and hk
b converges to hb. Therefore H̃

r(x) contains ∂(hb). It follows that

Hr(x) is supporting to hb at r.
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We now define the refractor R = ∂(
⋂

x∈T H̃r(x)) and show that the sequence of

measures Gk, that is equivalent to the energy functions corresponding to the refractors

Rk, converges weakly to the measure G, which is the energy function of the refractor

R.

Let αk
convex and αconvex be the refractor maps corresponding to Rk and R re-

spectively. By Theorem D.1 (see [19], Appendix D), the refractor maps αk
convex for

k ∈ N and αconvex are single-valued functions almost everywhere. Furthermore, for

almost all m ∈ D
δγ
T the hyperboloids Hk supporting to Rk at points rk(m) converge

to the hyperboloid H supporting to R at the point r(m). Thus, αk
convex(m) converges

to αconvex(m) almost everywhere.

If given a set of cardinality one, {z}, let Ele({z}) = z. Let Y k(m) = {x ∈

αk
convex(m)|x ∈ {xk

i }i∈[k]} and let Jk(m) ⊆ [k] be the set of indices such that {xk
i |i ∈

Jk(m)} = Y k(m). Let z ∈ T ,

Kk(m) = xk
min Jk(m), (3.39)

and

K(m) =


Ele(αconvex(m)) if |αconvex(m)| = 1

z if |αconvex(m)| > 1

. (3.40)

Then for any continuous function u on T we have

∫
T

udGk =

∫
D

δγ
T

u(Kk(m))dµg(m) −→
∫
D

δγ
T

u(K(m))dµg(m) =

∫
T

udG (3.41)

as k → ∞, that is, the measures {Gk} converge weakly to G.
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3.7 Rotationally Symmetric Convex Refractors on

the Surface of a Right Circular Cone

We now use the results we obtained earlier in this chapter to find concrete

results for the rotationally symmetric case. We focus on the case where the target set

is on the surface of a right circular cone. Both Theorems 3.6.1 and 3.5.1 imply this

next result.

Corollary 3.7.1. Let T be a closed set that satisfies Hypothesis H1 and kx = ky for

all x, y ∈ T . Assume that we are given γ > 0 such that ϵ0 + γ < limt→K+
1

t−1
for

K = maxx∈T |x|
minx∈T |x| and ϵ0 is defined by (3.5). Also, assume we are given a nonnegative

g ∈ L1(S2) such that g ≡ 0 outside D
δγ
T where δγ = 1

ϵ0+γ
. Suppose we are given a

nonnegative f ∈ L1(T ) and a measure F defined by (3.30) such that

F (T ) = µg(D
δγ
T ). (3.42)

Then there exists an ϵM ∈ (ϵ0 + γ, limt→K+
1

t−1
) such that we can construct

a convex rotationally symmetric refractor R ∈ RϵM
convex(T ) where R that is a convex

weak solution to the refractor problem (3.13).

We will use the above corollary to create rotationally symmetric refractors

with the target set on a right circular cone.

Definition 3.7.1. Let k ≥ 2, d > 0, 1 > ξ > 0, and m∗,m
′ ∈ S2 such that ⟨m∗,m

′⟩ =

0. We create a Cartesian coordinate system centered at O where m∗ is the direction

of our z-axis, m′ is the direction of our x-axis, and m∗ ×m′ is the direction of our

y-axis. Let (x, y, z)′ represent a point in this system.

Recall that, given a point (x, y, z)′ ∈ R3, there exists r ∈ [0,∞), ϕ ∈ [0, π],
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θ ∈ [0, 2π), such that

x = r cos θ sinϕ (3.43)

y = r sin θ sinϕ (3.44)

z = r cosϕ. (3.45)

Let Q be a closed subset of the interval (0,∞). Define the set of points

T ξ
k,Q(m∗,m

′) as

{(
d cos

(
2πj

k

)
sin (arccos(ξ)) , d sin

(
2πj

k

)
sin (arccos(ξ)) , dξ

)′

|j ∈ I, d ∈ Q

}
(3.46)

where I = {0, 1, . . . , k − 1}.

Define the set T ξ
∞,Q(m∗,m

′) as

{
(d cos (θ) sin (arccos(ξ)) , d sin (θ) sin (arccos(ξ)) , dξ)′ |θ ∈ [0, 2π), d ∈ Q

}
. (3.47)

Proposition 3.7.1. Let m∗,m
′ ∈ S2 such that ⟨m∗,m

′⟩ = 0. Let Q be a closed subset

of the interval (0,∞), k ≥ 2, and 1 > ξ > 0 such that T = T ξ
k,Q(m∗,m

′) satisfies

Hypothesis H1 such that ϵ0 < limt→K+
1

t−1
for K = maxx∈T |x|

minx∈T |x| where ϵ0 is defined by

(3.5). Assume that we are given γ > 0 such that ϵ0 + γ < limt→K+
1

t−1
. Also, assume

we are given a nonnegative g∗ ∈ L1(S2) that is rotationally symmetric about the axis

defined by the ray of direction m∗ originating at O. Let the function g ∈ L1(S2) be

defined as g ≡ g∗ inside D
δγ
T and g ≡ 0 outside D

δγ
T where δγ = 1

ϵ0+γ
.

Suppose we are given a nonnegative f ∈ L1(T ) such that for every d ∈ Q:

f

((
d cos

(
2πj

k

)
sin (arccos(ξ)) , d sin

(
2πj

k

)
sin (arccos(ξ)) , dξ

)′)
(3.48)
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is constant for all j ∈ {0, 1, . . . , k − 1}. Let F be the measure defined by (3.30) and

F (T ) = µg(D
δγ
T ). (3.49)

Then there exists an ϵM ∈ (ϵ0 + γ, limt→K+
1

t−1
) such that we can construct

a convex refractor R ∈ RϵM
convex(T ) where R that is a convex weak solution to the

refractor problem (3.13).

Proof. We create a Cartesian coordinate system centered at O where m∗ is the direc-

tion of our z-axis, m′ is the direction of our x-axis, and m∗ ×m′ is the direction of

our y-axis. Let (x, y, z)′ represent a point in this system.

Recall that, given a point (x, y, z)′ ∈ R3, there exists r ∈ [0,∞), ϕ ∈ [0, π],

θ ∈ [0, 2π), such that

x = r cos θ sinϕ (3.50)

y = r sin θ sinϕ (3.51)

z = r cosϕ. (3.52)

Let Tj =
{(

d cos
(
2πj
k

)
sin (arccos(ξ)) , d sin

(
2πj
k

)
sin (arccos(ξ)) , dξ

)′ |d ∈ Q
}
.

Note that T =
⋃

i∈{0,1,...,k−1} Ti.

Let m1,m2 ∈ S2 such that ⟨m1,m2⟩ > −1 and L (m1,m2) be the shortest arc

on S2 between the points m1 and m2. For all j ∈ {0, 1, . . . , k − 1}, let Bj ⊂ D
δγ
T

be the set {t ∈ L (m∗, y)|y ∈ ∂(D
δγ
T ) ∩ ∂(A

δγ
x )} where x ∈ Tj. For d ∈ Q, since

T ξ
k,{d}(m∗,m

′) defines the points of a regular k-gon centered at the axis defined by

the ray of direction m∗ originating at O, then µg(Bj) =
µg(D

δγ
T )

k
for all j. For all

j ∈ {0, 1, . . . , k − 1}, let gj be a function over S2 such that gj ≡ g inside Int(Bj) and
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gj ≡ 0 outside Int(Bj). Note that µg(Int(Bj)) = µgj(D
δγ
Tj
) for all j.

Let mj ∈ S2 be the unit vector such that a ray originating from O of direction

mj intersects every point in Tj. Also, let fj be the restriction of the function f to

the set Tj and Fj be the corresponding measure as defined by (3.30). By Proposition

3.7.1, for all j ∈ {0, 1, . . . , k− 1}, there exists a refractor Rj = ∂
(⋂

d∈Q H̃ϵd(dm
j)
)
∈

RϵM
convex(Tj), that is rotationally symmetric about the axis defined by the ray starting

at O with direction mj, such that Rj that is a convex weak solution to the refractor

problem (3.13) where Fj(ω) = µgj(V (Rj;ω)) for all Borel ω ⊆ T .

Since for x ∈ Rj, we have that |x| increases as ⟨kx,mj⟩ decreases for all

j ∈ {0, 1, . . . , k − 1}, then for j ∈ {0, 1, . . . , k − 1}, defining rj(m) as the point

of intersection between Rj and the ray originating from O in direction m, we have

|rj(m)| = maxi∈{0,1,...,k−1} |ri(m)| for all m ∈ Bj.

Thus

∂

 ⋂
j∈{0,...,k−1}

(⋂
d∈Q

H̃ϵd(dm
j)

) ∈ RϵM
convex(T ) (3.53)

is our refractor.

With an argument similar to that we use in the proof of Theorem 3.6.1, we

obtain the following result from Proposition 3.7.1.

Theorem 3.7.1. Let m∗,m
′ ∈ S2 such that ⟨m∗,m

′⟩ = 0. Let 1 > ξ > 0 and Q be a

closed subset of the interval (0,∞) such that T = T ξ
∞,Q(m∗,m

′) satisfies Hypothesis

H1 where ϵ0 < limt→K+
1

t−1
for K = maxx∈T |x|

minx∈T |x| and ϵ0 is defined by (3.5). Assume that

we are given γ > 0 such that ϵ0 + γ < limt→K+
1

t−1
. Also, assume we are given a

nonnegative g ∈ L1(S2) that is rotationally symmetric about the axis defined by the

ray of direction m∗ originating at O such that g ≡ 0 outside D
δγ
T where δγ = 1

ϵ0+γ
.
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Assume that we have a nonnegative f ∈ L1(T ) such that for every d ∈ Q:

f
(
(d cos (θ) sin (arccos(ξ)) , d sin (θ) sin (arccos(ξ)) , dξ)′

)
(3.54)

is constant for all θ ∈ [0, 2π). Let F be the measure defined by (3.30) and

F (T ) = µg(D
δγ
T ). (3.55)

Then there exists an ϵM ∈ (ϵ0 + γ, limt→K+
1

t−1
) such that we can construct

a convex rotationally symmetric refractor R ∈ RϵM
convex(T ) where R is a convex weak

solution to the refractor problem (3.13).

3.8 Discussion

In this section, we make progress on the original formulation of the refractor

problem introduced in [13]. We proved an existence theorem for the case where the

points in the target set are sufficiently close to each other, Theorem 3.6.1. We also

proved a uniqueness theorem for the case when the target set is finite, Theorem 3.4.1,

and for the general case, Theorem 3.4.2. Also, we proved an existence theorem for

the rotationally symmetric case, Theorem 3.7.1. Rotationally symmetric cases are

not only practically useful because this case provides a model situation [16], but also

because rotationally symmetric solutions can be used to recover nonrotationally sym-

metric solutions from irradiance distributions without special symmetry assumptions

[15].

For Theorem 3.6.1, a possible avenue for further research would be to find

precise values for ξ and γ such that the theorem holds. Another potential avenue
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for research is to find an explicit algorithm to find the appropriate hyperboloids for

the discrete case. In addition, Theorems 3.6.1 and 3.7.1 provide motivation for the

following conjecture.

Conjecture 3.8.1. Let T be a target set that satisfies Hypothesis H1 and ϵ0 <

limt→K+
1

t−1
for K = maxx∈T |x|

minx∈T |x| when ϵ0 is defined by (3.5). Assume that we are

given a γ > 0 such that ϵ0 + γ < limt→K+
1

t−1
. Also, assume that we have a nonnega-

tive g ∈ L1(S2) where g ≡ 0 outside D
δγ
T where δγ = 1

ϵ0+γ
. Assume that we are given

a nonnegative f ∈ L1(T ) and F is the measure defined by (3.30) such that

F (T ) = µg(D
δγ
T ). (3.56)

Then there exists an ϵM ∈ (ϵ0+ γ, limt→K+
1

t−1
) such that there exists a convex

refractor R ∈ RϵM
convex(T ) where R is a convex weak solution to the refractor problem

(3.13).
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Chapter 4

Generalized Weak Solutions to the

Virtual Source Reflector Problem

4.1 Introduction

This chapter deals with the virtual source reflector problem introduced in the

previous chapter and the introduction. We reuse some definitions and terminology

from the previous chapter; specifically, we again make use of the ‘refractor’ terminol-

ogy. We also reference results that were found in the previous chapter. Thus it might

be prudent to review the previous chapter with special focus on Chapters 3.1-3.3. We

introduce the following concept.

Definition 4.1.1. Assume that we are given an aperture D ⊆ S2. Let U be an

open subset of S2 such that D ⊆ U . Consider a not necessarily continuous function

ρ : U → (0,∞). If mρ(m) is a regular point for almost all m ∈ D, then the set

R = {mρ(m)|m ∈ U} ⊂ R3 is a generalized refractor.

In this chapter, we develop a novel notion of a weak solution to the PDE



41

described by equation (4) in [13] (also see Appendix A), where we develop existence

results. We first prove the existence of a generalized refractor under general target

sets and measures (Theorem 4.3.1). We conclude with an existence result for the

rotationally symmetric case (Theorem 4.4.1).

4.2 Generalized Weak Solutions Constructed from

Hyperboloids

We use the same definitions and notation introduced in Chapter 3.2. Let

Dδ
ω = Int

(⋂
x∈ω A

δ
x

)
for ω ⊆ R3 \ {O}.

Let ω be a compact set in R3 \ O, K : ω → (1,∞), and

DK
ω = Int

(⋂
x∈ω

A
1

K(x)
x

)
;

note that Dδ
ω = DK

ω if K(x) = 1
δ
. Let H̃ϵ(x) be the convex body bounded by Hϵ(x).

Then consider

X(ω,K) = ∂h where h =
⋂
x∈ω

H̃K(x)(x). (4.1)

The polar radius of X(ω,K) relative to O can be represented as:

Pω,K(m) = sup
x∈ω

h x,K(x)(m), m ∈ DK
ω . (4.2)

We define Hω,K(m) = mPω,K(m). Given a compact set ω ⊂ R3 \O, let K (ω) be the

set of all functions ω → (1,∞). We define

Xω = {X(ω,K)|K ∈ K (ω)} . (4.3)
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Consider a compact set T ⊆ R3 \{O} and an aperture D ⊂ Int(
⋃

x∈T Ax) that

is an open set. Let Ω be a finite family of compact subsets of T such that
⋃

ω∈Ω ω = T .

Let A (T ) be the set of all such families.

Given a Ω ∈ A (T ). Let σ denote the standard measure on S2. Let B be a

finite family of open subsets of S2 such that

1. for all B ∈ B there exists an ω ∈ Ω such that B ⊆ Dδ
ω for some δ ∈ (0, 1),

2. σ(D \
⋃

B∈B B) = 0,

3. D ⊆
⋃

B∈B B,

4. σ(B ∩B′) = 0 for all distinct B,B′ ∈ B.

Let the set B(D,Ω) be the set of all such families.

Assume that we are given an Ω ∈ A (T ) and a B ∈ B(D,Ω). Let U Ω
B be the

set of all functions u : B → Ω such that for all B ∈ B we have B ⊆ Dδ
u(B) for some

δ ∈ (0, 1). Every element of Xω needs a well defined K ∈ K (ω). So, given a u ∈ U Ω
B ,

let V Ω
u,B be the set of all functions v : B →

⋃
B∈B K (u(B)) such that for all B ∈ B

we have v(B) ∈ K (u(B)) and B ⊆ Dv(B)
u(B) .

Thus we define a set

ET (D) =

{ ⋃
B∈B

Hu(B),v(B)[B]

∣∣∣∣∣Ω ∈ A (T ), B ∈ B(D,Ω), u ∈ U Ω
B , v ∈ V Ω

u,B

}
.

(4.4)

Given some Z ∈ ET (D), let y1Z(m) = Z ∩ {am|a ∈ [0,∞)} for m ∈ D be the

points of intersection Z with a ray of direction m originating from O, and

ρZ(m) = min
x∈y1Z(m)

|x|, m ∈ D. (4.5)
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Observe that the function ρZ is positive and not necessarily continuous. Let W (ρZ) =

{mρZ(m)|m ∈ D} and observe that mρZ(m) is a regular point for almost all m ∈ D.

Therefore W (ρZ) is a generalized refractor per Definition 4.1.1. We now describe a

set of generalized refractors

RD(T ) = {W (ρZ)|Z ∈ ET (D)} . (4.6)

We can also describe a set of refractors

Rcont
D (T ) = {W (ρZ)|Z ∈ ET (D) and ρZ is continuous} . (4.7)

Clearly, Rcont
D (T ) ⊆ RD(T ).

For every generalized refractor R ∈ RD(T ), there exists an ΩR ∈ A (T ) and a

corresponding BR ∈ B(D,ΩR) such that there exists a uR ∈ U ΩR

BR
and a vR ∈ V ΩR

uR,BR

such that R = W (ρZ) where Z =
⋃

B∈BR
HuR(B),vR(B)[B].

As before, we denote by g ∈ L1(S2) the energy density of the source O. Let

us define for all measurable X ⊆ S2

µg(X) =

∫
X

g(m)dσ(m) (4.8)

where σ denotes the standard measure on S2. Assume that g ∈ L1(S2) is a nonnegative

function where g ≡ 0 outside of D. In order to formulate and solve the generalized

refractor problem (in the framework of weak solutions to be defined below), we need

to define a measure representing the energy generated by g and redistributed by a

generalized refractor R ∈ RD(T ).

Assume that we are given
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1. an R ∈ RD(T ),

2. an ΩR ∈ A (T ) and a corresponding BR ∈ B(D,ΩR),

3. a uR ∈ U ΩR

BR
and a vR ∈ V ΩR

uR,BR
such that R = W (ρZ) where

Z =
⋃

B∈BR

HuR(B),vR(B)[B]. (4.9)

Recall Definition 3.3.1. Given a B ∈ BR, a subset S ⊆ uR(B), and a XB =

X(uR(B), vR(B)) put

QB(S) = {z ∈ XB| there exists x ∈ S such that H(x) is supporting to XB at z}.

(4.10)

The intersection of B with the image of the set QB(S) under radial projection on S2

we call JB(S). By Lemma 4 of [13], this set JB(S) is measurable for all Borel sets

S ⊆ uR(B).

Given a Borel set ω ⊆ T , we define the visibility set of ω as

V (ω) =
⋃

B∈BR

JB(uR(B) ∩ ω). (4.11)

Clearly, V (ω) is measurable as it is a finite union of measurable sets. We define energy

function as

G(ω) = µg(V (ω)). (4.12)

For m ∈ D, let r(m) be the set of the points of intersection between the

generalized refractor R ∈ RD(T ) and the ray of direction m originating at O. The
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potentially multi-valued map α : D → T,

α(m) = {x ∈ uR(B)|mρZ(m) = HuR(B),vR(B)(m),

and there exists H(x) supporting to XB at r(m)} (4.13)

is called the generalized refractor map.

Let F be a nonnegative, finite, Borel measure on Borel subsets of the set T .

We say that a generalized refractor R ∈ RD(T ) is a generalized weak solution of the

generalized refractor problem if there exists

1. an ΩR ∈ A (T ) and a corresponding BR ∈ B(D,ΩR),

2. a uR ∈ U ΩR

BR
and a corresponding vR ∈ V ΩR

uR,BR
such that R = W (ρZ) where

Z =
⋃

B∈BR

HuR(B),vR(B)[B]

such that

F (ω) = G(ω) for any Borel set ω ⊆ T (4.14)

and the refractor map α is such that α(m) ⊆ T for all m ∈ D.

Throughout this chapter, we concern ourselves with the case where F is a

discrete measure. We also consider the case where prescribe the measure F as a

Lebesgue measure over T , specifically

F (ω) =

∫
ω

f(x)dλ(x) for any Borel set ω ⊆ T (4.15)

for some given nonnegative function f ∈ L1(T ); here λ is the Lebesgue measure on

T .
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4.3 Generalized Refractors

In this section, we show that using generalized refractors allows us to prove

relatively broad existence theorems. We first proceed with the following lemma.

Lemma 4.3.1. Let T ⊂ R3 \ {O} and 0 < δ < 1 such that Dδ
T ̸= ∅. Assume we are

given a nonnegative g ∈ L1(S2) where g ≡ 0 outside Dδ
T . Suppose that we are given a

set S that is open in S2. Let f1, f2, . . . , fk be nonnegative real numbers such that

k∑
i=1

fi = µg(D
δ
T ∩ S). (4.16)

Then there exists disjoint open sets {Bi}ki=1 such that µg(Bi) = fi for all i, Bi ⊆

Dδ
T ∩ S, and

⋃k
i=1 Bi = Dδ

T ∩ S.

Specifically, there exists ξ0, ξ1, . . . , ξk where δ = ξ0 ≤ ξ1 ≤ · · · ≤ ξk = 1 such

that

fi = µg

(
[D

ξi−1

T \Dξi
T ] ∩ S

)
(4.17)

for all i ∈ [k]. So we have that

Bi = Int([D
ξi−1

T \Dξi
T ] ∩ S) (4.18)

for all i ∈ [k].

Proof. We will first construct disjoint open sets {Bi}ki=1 such that µg(Bi) = fi for all

i, Bi ⊆ Dδ
T ∩ S, and

⋃k
i=1Bi = Dδ

T ∩ S.

Let Fm =
∑m

i=1 fi for all m ∈ [k]. Consider the following equation with respect

to ξ:

Fm = µg

(
[Dδ

T \Dξ
T ] ∩ S

)
. (4.19)
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The set being measured in the above equation is the part of the border of the set Dδ
T

that intersects with S; the thickness of the border being determined by ξ. We now

show that the above equation has a solution using the intermediate value theorem.

Let Q(ξ) = [Dδ
T \ Dξ

T ] ∩ S. We can now rewrite the aforementioned equation

as Fm = µg(Q(ξ)). Observe that we can assume ξ ∈ R because Q(ξ) = ∅ when

ξ < δ and Q(ξ) = Dδ
T ∩S when δ ≥ 1. Consider limξ→ξ∗ |µg(Q(ξ))− µg(Q(ξ∗))| where

ξ∗ ∈ R.

Let Mg = ess sup{g(m)|m ∈ S2}. Then we can use the squeeze theorem

to evaluate the right-hand limit. It would be advantageous to observe that that

Q(ξ1) ⊆ Q(ξ2) when ξ1 ≤ ξ2. Recall that we denote σ as the standard measure on S2.

Observe that

0 ≤ lim
ξ→ξ+∗

|µg(Q(ξ))− µg(Q(ξ∗))| = lim
ξ→ξ+∗

µg (Q(ξ∗) \Q(ξ)) (4.20)

≤ Mg lim
ξ→ξ+∗

σ(Q(ξ∗) \Q(ξ)) = 0. (4.21)

Then, by the squeeze theorem, limξ→ξ+∗
|µg(Q(ξ))− µg(Q(ξ∗))| = 0.

The argument for the left-hand limit is very similar:

0 ≤ lim
ξ→ξ−∗

|µg(Q(ξ))− µg(Q(ξ∗))| = lim
ξ→ξ−∗

µg (Q(ξ) \Q(ξ∗)) (4.22)

≤ Mg lim
ξ→ξ−∗

σ(Q(ξ) \Q(ξ∗)) = 0. (4.23)

Then, by the squeeze theorem, limξ→ξ−∗
|µg(Q(ξ))− µg(Q(ξ∗))| = 0. We therefore

have limξ→ξ∗ |µg(Q(ξ))− µg(Q(ξ∗))| = 0 which implies that

limξ→ξ∗ µg(Q(ξ)) = µg(Q(ξ∗)). So the function µg(Q(ξ)) is continuous on R.

Since µg(Q(1)) = µg

(
Dδ

T ∩ S
)
and µg(Q(0)) = 0, then by the intermediate
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value theorem, for all n ∈ [k] there exists a 0 < ξn < 1 such that Fn = µg(Q(ξn)).

Since the function µg(Q(ξ)) is, by design, monotonically non-decreasing and Fi ≤

Fi+1, we have that ξi ≤ ξi+1. Since Fk = µg(D
δ
T ∩ S), we can set ξk = 1. Therefore, if

we set ξ0 = δ,

fi = Fi−1 − Fi (4.24)

= µg(Q(ξi−1) \Q(ξi)) (4.25)

= µg

(
[D

ξi−1

T \Dξi
T ] ∩ S

)
(4.26)

for all i ∈ [k]. So we have that

Bi = Int([D
ξi−1

T \Dξi
T ] ∩ S) (4.27)

for all i ∈ [k].

We can now investigate the case where T is any finite collection of points.

Consider the following lemma that is proven in detail in Appendix E.

Lemma 4.3.2. Let (Ω, S, ν) be a finite nonatomic measure and A a measurable set

in S with ν(A) > 0 and subsets A1, A2, . . . , An and let m1,m2, . . . ,mn > 0. Then

there are disjoint subsets Bk ⊆ Ak with ν(Bk) = mk for all k ∈ [n] if and only if

ν

(⋃
i∈I

Ai

)
≥
∑
i∈I

mi (4.28)

for all I ⊆ [n].

For a set S ⊆ R3 \ {O} and a 1 > δ > 0, let Dδ,∪
S = Int

(⋃
x∈S A

δ
x

)
. We now

can prove the following theorem.

Proposition 4.3.1. Let T = {x1, x2, . . . , xk} ⊂ R3 \ {O} where k ∈ N and let
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0 < δ < 1. Assume we are given a nonnegative g ∈ L1(S2) where g ≡ 0 outside Dδ,∪
T .

Let f1, f2, . . . , fk be nonnegative real numbers such that

∑
i∈Q

fi ≤ µg

(
Dδ,∪

{xi∈T |i∈Q}

)
(4.29)

for all Q ⊊ [k] and
k∑

i=1

fi = µg

(
Dδ,∪

T

)
. (4.30)

Let F be a discrete measure over T such that F ({xi}) = fi.

Then there exists a generalized refractor R ∈ RDδ,∪
T
(T ) that is a generalized

weak solution to the generalized refractor problem (4.14).

Proof. The measure µg is clearly nonatomic; see Appendix E. By Lemma 4.3.2 there

exists k disjoint subsets {Bi} such that Bi ⊆ Int(Aδ
xi
) and µg(Bi) = fi. Let Sδ

Q =⋂
i∈Q Int(Aδ

xi
) \
⋃

i ̸∈Q Int(Aδ
xi
) for a nonempty Q ⊆ [k]. Then given some nonempty

Q ∈ [k], let fi,Q = µg(Bi ∩ Sδ
Q). It is clear that fi =

∑
Q∈{P∈2[k]|i∈P} fi,Q, Sδ

Q =⋃k
i=1Bi ∩ Sδ

Q, and Bi =
⋃

Q∈{P∈2[k]|i∈P}Bi ∩ Sδ
Q.

By Lemma 4.3.1, there exists disjoint open subsets Bi,Q ⊂ Int(Sδ
Q) such that

µg(Bi,Q) = fi,Q. Then we define B∗
i =

⋃
Q∈{P∈2[k]|i∈P}Bi,Q.

For ϵ > 1
δ
and

Z =
k⋃

i=1

hxi,ϵ[B
∗
i ],

the refractor W (ρZ) ∈ RDδ,∪
T
(T ) is a generalized weak solution to the generalized

refractor problem (4.14).

The following is a corollary of Theorem 3.6.1 and will be used in the proofs of

the main result.
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Corollary 4.3.1. Assume that we are given some w,W ∈ (0,∞) where w > W
2

and

some m∗ ∈ S2. Recall that δγ = 1
ϵ0+γ

where γ > 0 and ϵ0 is defined by (3.5).

Then there exists positive ξ and γ such that,

1. for any closed subset T ⊆ S(m∗, ξ),

2. for any nonnegative g ∈ L1(S2) such that g ≡ 0 outside D
δγ
T ,

3. for any nonnegative f ∈ L1(T ) with a measure F defined by (3.30) where

F (T ) = µg(D
δγ
T ),

there exists an ϵM > ϵ0+γ such that we can construct a convex refractor HT,K [D
δγ
T ] ∈

Rcont

D
δγ
T

(T ) that is a generalized weak solution to the generalized refractor problem (4.14)

such that K : T → [ϵM ,∞).

We will now use Proposition 4.3.1 to motivate the next result. First, we define

relevant terms.

Definition 4.3.1. Given some w,W ∈ (0,∞) where w > W
2
, some m∗ ∈ S2, and a

ξ ∈
(
0, 1− cos

[
1
2
arccos

(
W
2w

)])
, let

S(m∗, ξ, w,W ) = {x ∈ R3|w ≤ |x| ≤ W, ⟨kx,m∗⟩ ≥ 1− ξ}. (4.31)

Recall that, when given a target set T that satisfies Hypotheses H1, δγ = 1
ϵ0+γ

where γ > 0 and ϵ0 is defined by (3.5). Given a set ω ⊂ R3 \ {O} that satisfies

Hypothesis H1, we say that ω satisfies Corollary 4.3.1 if there exists w,W ∈ (0,∞),

and m∗ ∈ S2, such that there exists ξ ∈
(
0, 1− cos

[
1
2
arccos

(
W
2w

)])
and γ ∈ (0,∞)

where

1. ω ⊆ S(m∗, ξ, w,W ),
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2. for any closed T ⊆ S(m∗, ξ, w,W ), any nonnegative g ∈ L1(S2) where g ≡ 0

outside D
δγ
T , and for any positive f ∈ L1(T ) with a measure F defined by (4.15)

such that F (T ) = µg(D
δγ
T ), there exists ϵM > ϵ0 + γ such that we can construct

a convex refractor HT,K [D
δγ
T ] ∈ Rcont

D
δγ
T

(T ) that is a generalized weak solution to

the generalized refractor problem (4.14) such that K : T → [ϵM ,∞).

On a related note, given an ω that satisfies Corollary 4.3.1, we say that γ is

a value such that ω satisfies Corollary 4.3.1 if there exists w,W ∈ (0,∞), ξ ∈(
0, 1− cos

[
1
2
arccos

(
W
2w

)])
, and m∗ ∈ S2, where conditions 1. and 2. are satisfied.

Theorem 4.3.1. Let T be a compact target set in R3 \ {O}and let λ be the Lebesgue

measure of T . Let {ωi}ni=1 be a collection of closed subsets of T such that:

1. λ(ωi) > 0 for all i ∈ [n],

2.
⋃n

i=1 ωi = T ,

3. ωi satisfies Hypothesis H1 for all i ∈ [n],

4. ωi satisfies Corollary 4.3.1 for all i ∈ [n].

For every i ∈ [n], suppose γi is a value such that ωi satisfies Corollary 4.3.1.

Let δi =
1

ϵ0,i+γi
where ϵ0,i is defined by (3.5) with respect to the set ωi. Assume we are

given a nonnegative g ∈ L1(S2) such that g ≡ 0 outside
⋃n

i=1D
δi
ωi
. Assume we have a

nonnegative f ∈ L1(T ) and a measure F defined by (4.15) such that for all S ⊊ [n]

F

(⋃
i∈S

ωi

)
≤ µg

(⋃
i∈S

Dδi
ωi

)
(4.32)

and

F (T ) = µg

⋃
i∈[n]

Dδi
ωi

 . (4.33)
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Then we can construct a generalized refractor R ∈ R⋃n
i=1 D

δi
ωi

(T ) that is a gen-

eralized weak solution to the generalized refractor problem (4.14).

Proof. Let fi ∈ L1(T ) be a nonnegative function such that fi ≡ 0 outside ωi and

f =
∑n

i=1 fi. Also, let

Fi(S) =

∫
S

fi(x)dλ(x) for any Borel set S ⊆ T. (4.34)

Note that F (S) =
∑n

i=1 Fi(S) for any Borel set S ⊆ T . Let Di = Dδi
ωi
. Observe that

for all nonempty S ⊊ [n]

∑
i∈S

Fi

(⋃
i∈S

ωi

)
≤ F

⋃
i∈[n]

ωi

 ≤ µg

(⋃
i∈S

Di

)
(4.35)

and ∑
i∈[n]

Fi (T ) = F (T ) = µg

⋃
i∈[n]

Di

 . (4.36)

By Lemma 4.3.2 there exists k disjoint subsets {Bi} such that Bi ⊆ Int(Di)

and µg(Bi) = Fi(ωi). Let SQ =
⋂

i∈Q Int(Di) \
⋃

i ̸∈Q Int(Di) for a nonempty Q ⊆ [n].

Then given some nonempty Q ∈ [n], let fi,Q = µg(Bi ∩ SQ). It is clear that Fi(ωi) =∑
Q∈{P∈2[k]|i∈P} fi,Q, SQ =

⋃k
i=1Bi ∩ SQ, and Bi =

⋃
Q∈{P∈2[k]|i∈P}Bi ∩ SQ.

By Lemma 4.3.1, there exists disjoint open subsets Bi,Q ⊂ Int(SQ) such that

µg(Bi,Q) = fi,Q. Then we define B∗
i =

⋃
Q∈{P∈2[k]|i∈P}Bi,Q. Let

gi(m) =


g(m) m ∈ B∗

i

0 m ̸∈ B∗
i

. (4.37)
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Then, by Corollary 4.3.1, since

Fi(ωi) = µgi(Di), (4.38)

there exists ϵM,i > ϵM,i > ϵ0,i + γi such that we can construct a convex refractor

Hωi,Ki
[Di] ∈ Rcont

Di
(ωi) that is a generalized weak solution to the generalized refractor

problem (4.14) such that Ki : ωi → [ϵM,i,∞).

Therefore, the generalized refractor W (ρZ) ∈ R⋃
i∈[n] Di

(T ) where

Z =
⋃
i∈[n]

Hωi,Ki
[B∗

i ] (4.39)

is a generalized weak solution to the generalized refractor problem (4.14).

4.4 The Rotationally Symmetric Case

In Chapter 3.6, we addressed the case of rotationally symmetric refractors when

the target set is on a right circular cone. Here, we address the rotationally symmetric

case with target sets on a broader category of rotationally symmetric surfaces. We

begin with the discrete case on a ring. The following lemma can be proved identically

to Proposition 3.7.1. Recall Definition 3.7.1, as we make some use of the notation.

Lemma 4.4.1. Let m∗,m
′ ∈ S2 such that ⟨m∗,m

′⟩ = 0 and 1 > ξ > 0. Let T =

T ξ
k,{d}(m∗,m

′). Let 0 < δ < 1 and assume we are given a nonnegative g∗ ∈ L1(S2) that

is rotationally symmetric about the axis defined by the ray of direction m∗ originating

at O. Let the function g ∈ L1(S2) be defined as g ≡ g∗ inside Dδ
T and g ≡ 0 outside

Dδ
T . Let F be a discrete measure over T such that F ({x}) = µg(Dδ

T )

k
for all x ∈ T.

Then the convex refractor HT,K [D
δ
T ] ∈ Rcont

Dδ
T
(T ), where K : T → (1

δ
,∞) is a
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constant function, is a generalized weak solution to the generalized refractor problem

(4.14).

The following lemma is a consequence of applying the argument from the proof

of Theorem 3.6.1 to Lemma 4.4.1.

Lemma 4.4.2. Let T = T ξ
∞,{d}(m∗,m

′). Let 0 < δ < 1 and assume we are given a

nonnegative g ∈ L1(S2) that is rotationally symmetric about the axis defined by the

ray of direction m∗ originating at O such that g ≡ 0 outside Dδ
T .

Assume we have a positive f ∈ L1(T ) such that f(x) is constant for all x ∈ T .

Let F be the measure defined by (4.15) and

F (T ) = µg(D
δγ
T ). (4.40)

Then the convex refractor HT,K [D
δ
T ] ∈ Rcont

Dδ
T
(T ), where K : T → (1

δ
,∞) is a

constant function, is a generalized weak solution to the generalized refractor problem

(4.14).

We now prove the following result where the target set is a collection of rings.

For convenience, we define T 1
∞,d(m∗,m

′) = {dm∗}.

Theorem 4.4.1. Let T =
⋃q

j=1 T
αj

∞,dj
(m∗,m

′) where 0 < αj ≤ 1 for all j ∈ [q]. Let

0 < δ < 1 and assume we are given a nonnegative g ∈ L1(S2) that is rotationally

symmetric about the axis defined by the ray of direction m∗ originating at O such that

g ≡ 0 outside Dδ
T .

Let f ∈ L1(T ) be a nonnegative function such that f(x) = cj for a constant

cj ≥ 0 when x ∈ T
αj

∞,{dj}(m∗,m
′) for all j ∈ [q], and F the measure defined by (4.15).
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Assume that

F (T ) = µg(D
δ
T ). (4.41)

Let Pj(m) = max
x∈T

αj
∞,dj

(m∗,m′)
|x|

2⟨kx,m⟩ for all m ∈ Dδ
T . If Pj+1 ≤ Pj for all m ∈ Dδ

T ,

then there exists a rotationally symmetric refractor R ∈ Rcont
Dδ

T
(T ) that is a generalized

weak solution of the problem (4.14).

Proof. By Lemma 4.3.1, there exists disjoint open subsets of Dδ
T , {Bj}qj=1, defined by

Bj = Int(D
ξj−1

T \Dξj
T ) (4.42)

for all j ∈ [q] where ξj ≤ ξj+1, ξq = 1, and ξ0 = δ, such that

µg(Bj) = F (T
αj

∞,dj
(m∗,m

′))

and
⋃

j∈[q]Bj = Dδ
T . Let Tj = T

αj

∞,dj
(m∗,m

′) and consider the functions PTj ,Kj
(m)

and HTj ,Kj
(m) where m ∈ Dδ

T for all j ∈ [q] and Kj(x) = ϵj for all x ∈ Tj. Please note

that since the set T is rotationally symmetric, then the setDδ
T is an open disk centered

at m∗; thus for all ξj, there exists a βj such that D
ξj
T = {m ∈ S2|⟨m∗,m⟩ > βj}.

By Lemma 4.4.2, our problem is reduced to finding the set

Z =

q⋃
j=1

HTj ,Kj
[Bj] (4.43)

where Kj(x) = ϵj for all x ∈ Tj. As W (ρZ) ∈ Rcont
Dδ

T
(T ) will be our refractor. By

rotational symmetry, this can be done with clever choices of ϵj.

Let ϵ1 >
1
δ
. Given such an ϵ1, if there exists choices of ϵj such that

PTj ,Kj
(m)(m) = PTj+1,Kj+1

(m)
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for m ∈ {m ∈ S2|⟨m∗,m⟩ = βj} for all j ∈ [q − 1], then it is possible to construct a

refractor R that is simply connected and almost everywhere smooth.

Let a ∈ [q − 1]. If PTa,Ka(m) = P for m ∈ {m ∈ S2|⟨m∗,m⟩ = βa}, then we

will show it is possible to select an ϵa+1 such that PTa+1,Ka+1(m) = P for m ∈ {m ∈

S2|⟨m∗,m⟩ = βa}.

Observe that for m ∈ {m ∈ S2|⟨m∗,m⟩ = βa},

lim
ϵa→ 1

ξa

+
PTa,Ka(m)(m) = ∞ and lim

ϵa→∞
PTa,Ka(m) = Pa(m). (4.44)

Similarly,

lim
ϵa+1→ 1

ξa

+
PTa+1,Ka+1(m) = ∞ and lim

ϵa+1→∞
PTa+1,Ka+1(m) = Pa+1(m). (4.45)

By the ordering of T , we have that ∞ > P > Pa(m) ≥ Pa+1(m). So by the

intermediate value theorem, there exists an ϵa+1 such that PTa+1,Ka+1(m) = P on

{m ∈ S2|⟨m∗,m⟩ = βa}.

Since both Pj and Bj are rotationally symmetric about the axis defined by

the ray originating from O with the direction m∗, the refractor R is also rotationally

symmetric.

The theorem above can create refractors with a variety of rotationally sym-

metric target sets and distributions. For example, take the following lemma.

Lemma 4.4.3. Let 0 < ξ ≤ 1, 0 < δ < 1, and

P ξ
∞,d(m;m∗,m

′) = max
x∈T ξ

∞,d(m∗,m′)

|x|
2⟨kx,m⟩

(4.46)
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for all

m ∈ Dδ

T ξ
∞,d(m∗,m′)

. (4.47)

Then d1 > d2 implies that

P ξ
∞,d1

(m;m∗,m
′) > P ξ

∞,d2
(m;m∗,m

′) (4.48)

for all

m ∈ Dδ

T ξ
∞,d1

(m∗,m′)∪T ξ
∞,d2

(m∗,m′)
(4.49)

and ξ1 > ξ2 implies that

P ξ2
∞,d(m;m∗,m

′) > P ξ1
∞,d(m;m∗,m

′) (4.50)

for all

m ∈ Dδ

T
ξ1
∞,d(m∗,m′)∪T ξ2

∞,d(m∗,m′)
. (4.51)

Proof. Firstly, let

m ∈ Dδ

T ξ
∞,d1

(m∗,m′)∪T ξ
∞,d2

(m∗,m′)
(4.52)

and d1 > d2, then

P ξ
∞,d1

(m;m∗,m
′) = max

x∈T ξ
∞,d1

(m∗,m′)

d1
2⟨kx,m⟩

(4.53)

> max
x∈T ξ

∞,d2
(m∗,m′)

d2
2⟨kx,m⟩

(4.54)

= P ξ
∞,d2

(m;m∗,m
′). (4.55)

Finally, let

m ∈ Dδ

T
ξ1
∞,d(m∗,m′)∪T ξ2

∞,d(m∗,m′)
(4.56)



58

and ξ1 > ξ2, then

P ξ2
∞,d(m;m∗,m

′) = max
x∈T ξ2

∞,d(m∗,m′)

d

2⟨kx,m⟩
(4.57)

> max
x∈T ξ1

∞,d(m∗,m′)

d

2⟨kx,m⟩
(4.58)

= P ξ1
∞,d(m;m∗,m

′). (4.59)

If the target distribution is on a rotationally symmetric surface whose polar

radius is nondecreasing with respect to the angular distance from the direction of the

axis of rotation, then both Theorem 4.4.1 and Lemma 4.4.3 imply the existence of a

refractor. Specifically, we have the following corollary.

Corollary 4.4.1. Consider a nonincreasing positive function w on (0, 1]. Let T =⋃q
j=1 T

αj

∞,w(αj)
(m∗,m

′) ∈ R3 \ {O} where 0 < αj ≤ 1 for all j ∈ [q]. Let 0 < δ < 1 and

assume we are given a nonnegative g ∈ L1(S2) that is rotationally symmetric about

the axis defined by the ray of direction m∗ originating at O such that g ≡ 0 outside

Dδ
T .

Let f ∈ L1(T ) be a nonnegative function such that f(x) = cj for a constant

cj ≥ 0 when x ∈ T
αj

∞,{w(αj)}(m∗,m
′) for all j ∈ [q], and F the measure defined by

(4.15). Assume that

F (T ) = µg(D
δ
T ). (4.60)

Then there exists a rotationally symmetric refractor R ∈ Rcont
Dδ

T
(T ) that is a

generalized weak solution of the problem (4.14).
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4.5 Discussion

In this chapter, we proved a relatively broad existence theorem for generalized

refractors. Generalized refractors might be hard to construct in a real-world setting

and may cause unintentional distortion in the intended irradiance distribution when

accounting for interference caused by light waves. Interference and distortions caused

by waves are, in general, not accounted for in the assumptions of geometric optics.

However, these issues are more likely to be avoided when dealing with refractors. So,

generalized refractors can have value when motivating the construction of refractors

or, at least, hinting at avenues for possible research; for example, Theorem 4.3.1

inspires this next conjecture.

Conjecture 4.5.1. Let T be a compact target set in R3\{O} and let λ be the Lebesgue

measure of T . Let {ωi}ni=1 be a collection of closed subsets of T such that:

1. λ(ωi) > 0 for all i ∈ [n],

2.
⋃n

i=1 ωi = T ,

3. ωi satisfies Hypothesis H1 for all i ∈ [n],

4. ωi satisfies Corollary 4.3.1 for all i ∈ [n].

For every i ∈ [n], suppose γi is a value such that ωi satisfies Corollary 4.3.1.

Let δi =
1

ϵ0,i+γi
where ϵ0,i is defined by (3.5) with respect to the set ωi. Assume that

we are given a nonnegative g ∈ L1(S2) such that g ≡ 0 outside
⋃n

i=1D
δi
ωi
. Assume

that we have a nonnegative f ∈ L1(T )and a measure F defined by (4.15) such that

for all S ⊊ [n]

F

(⋃
i∈S

ωi

)
≤ µg

(⋃
i∈S

Dδi
ωi

)
(4.61)
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and

F (T ) = µg

⋃
i∈[n]

Dδi
ωi

 . (4.62)

Then we can construct a refractor R ∈ Rcont⋃n
i=1 D

δi
ωi

(T ) that is a generalized weak

solution to the generalized refractor problem (4.14).

For the rotationally symmetric case, we observe that Theorem 4.4.1 proves

the existence of refractors with rotationally symmetric distributions on rotationally

symmetric surfaces with a target set made up of finitely many rings. A natural next

step, if possible, would be to proceed with a limit or smoothing argument on the

refractors described in Theorem 4.4.1 so that we can recover rotationally symmetric

solutions when the target set is not a collection of rings. Another approach that

would improve the work on the rotationally symmetric case would be to ‘stack’ more

complex rotationally symmetric reflectors. Corollary 4.4.1 motivates the following

conjecture.

Conjecture 4.5.2. Consider a nonincreasing positive function w : Q → (0,∞) where

Q is a closed subset of (0, 1]. Let T =
⋃

α∈Q Tα
∞,w(α)(m∗,m

′) where α ∈ Q. Let

0 < δ < 1 and assume we are given a nonnegative g ∈ L1(S2) that is rotationally

symmetric about the axis defined by the ray of direction m∗ originating at O such that

g ≡ 0 outside Dδ
T .

Let f ∈ L1(T ) be a nonnegative function such that, for all α ∈ Q, f(x) is

constant for all x ∈ Tα
∞,{w(α)}(m∗,m

′), and F the measure defined by (4.15). Assume

that

F (T ) = µg(D
δ
T ). (4.63)

Then there exists a rotationally symmetric refractor R ∈ Rcont
Dδ

T
(T ) that is a

generalized weak solution of the problem (4.14).
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Appendix A

Formulation of the PDE for the

Virtual Source Reflector Problem

Here we present, along with necessary background, equation (4) from [13]; the

following formulation is copied from [13]. The formulation of the PDE involves the

energy conservation law and the Jacobian of the refractor map m → x where m ∈ S2

and x ∈ T , associated with a particular refractor R. An explicit expression for the

Jacobian and the conservation law was derived in [14] in the case when R is a graph

over the input aperture D ⊂ S2. In this case, since R is a graph over the input

aperture D ⊂ S2, its position vector can be written as mρ(m) for m ∈ D, for some

positive function ρ. Put ∂i ≡ ∂
∂ui

, i = 1, 2, where u1, u2 are some local coordinates on

the unit sphere S2. Let eij = ⟨∂im, ∂jm⟩ be coefficients of the first fundamental form

of S2, gij = ∂iρ∂jρ+ρ2eij, Qij = gij−∂iρ∂jρ, Q
ij = (Qij)

−1, Hij = ⟨−∂iy(m), ∂j(mρ)⟩,

t(m) = |x(m)−mρ(m)|, si = ∂it− ∂iρ, l = ρ+ t, and li =
∂l
∂ui

.

With the introduced notation, the conservation law can be written as
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g(m)

√
det{[tHik +Qik]Qks[tHsj +Qsj] + lilj}

det eij
= f(x(m)) (A.1)

If one can find a function ρ such that the map x(m) = mρ(m) − t(m)y(m) :

D → T , where y is defined by (1.1) with the normal field n on the refractor described

by ρ and the equation (A.1) is satisfied at each interior point of D, then the refractor

given by mρ(m), m ∈ D, is the desired refractor.
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Appendix B

No Set of Points Satisfies Both

Hypotheses H1 and H2

The paper of Kochengin et al. [13] specifies two assumptions with regard

to the target set T that they call Hypothesis H1 and Hypothesis H2. Lemma 11,

Theorem 12, and Theorem 13 are proven with the assumption that both Hypotheses

H1 and H2 hold for T . In this section, we will prove that Hypotheses H1 and H2 are

contradictory. We start by restating some key definitions from [13] and proceed with

the proof.

Let kx = x
|x| . We are given a set of points T ⊂ R3 \ {O}, where c =

minx,y∈T ⟨kx, ky⟩, ℓ = minx∈T |x|, and L = maxx∈T |x|.

We also use the definition of ϵ0 provided in Lemma 2 of [13]:

ϵ0 =
ℓ+

√
ℓ2 − 2Lℓc+ L2

2ℓc− L
. (B.1)
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In [13] we have Hypothesis H1 which is as follows.

Hypothesis H1. T is a compact subset of R3 contained in a half space of R3, ℓ > 0,

and 2ℓc > L.

Assume that T satisfies Hypothesis H1. By definition L ≥ ℓ > 0, therefore we

can write L = ℓ(1 + δ) where δ ≥ 0. We can also observe that L > 0 implies that

2ℓc > 0. Thus c > 0. Observe that c is the cosine of the largest angle between two

points in T , then 1 ≥ c since cosine is bounded above by 1.

Copying directly from [13] we present Hypothesis H2 as follows.

Hypothesis H2. We say that T satisfies Hypothesis H2 if

1. inequalities (22)-(24) in [13] hold for T ,

2. for some number γ′ > 0 condition (28) in [13] is satisfied

As the title reveals, we prove that no set of points T satisfies both Hypotheses

H1 and H2. The inequalities I will focus on are (22) and (23) in [13], namely

2ℓ− Lϵ0 > 0 (22)

and

ϵ0 >
ℓϵ0 +

√
ℓ2ϵ20 − 2ℓLϵ0 + L2ϵ20
2ℓ− Lϵ0

. (23)

The central idea of our main proof is showing that these two inequalities con-

tradict each other when given Hypothesis H1.
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However, we first need to prove the following claim.

Claim B.1. Let a set of points T satisfy Hypothesis H1, then ϵ0 ≥ 1.

Proof. Assume to the contrary that there exists a ℓ, L and c such that ϵ0 < 1 and

Hyopthesis H1 is also satisfied. Recall that we can write L = ℓ(1 + δ) where δ ≥ 0.

Thus we can rewrite (B.1) as

ϵ0 =
ℓ+

√
ℓ2 − 2Lℓc+ L2

2ℓc− L
(B.2)

=
ℓ+

√
ℓ2 − 2ℓ2(1 + δ)c+ ℓ2(1 + δ)2

2ℓc− ℓ(1 + δ)
(B.3)

=
1 +

√
1− 2(1 + δ)c+ (1 + δ)2

2c− (1 + δ)
. (B.4)

Since ϵ0 < 1, we have

1 >
1 +

√
1− 2(1 + δ)c+ (1 + δ)2

2c− (1 + δ)
. (B.5)

Hypotheses H1 tells us that 2ℓc − L > 0, which implies that 2c − (1 + δ) is

positive. We now have that

2c− (1 + δ) > 1 +
√

1− 2(1 + δ)c+ (1 + δ)2 (B.6)

⇒ 2(c− 1)− δ >
√

2(1− c) + 2δ(1− c) + δ2. (B.7)

Since 1 ≥ c > 0, we have that 0 ≥ c− 1. Since δ ≥ 0, we have that the LHS of (B.7)

is non-positive and the RHS is non-negative. A contradiction since ϵ0 ≥ 1.

Now for the main result.

Theorem B.1. Let a set of points T satisfy Hypothesis H1, then T does not satisfy

Hypothesis H2.
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Proof. Let us rewrite L = ℓ(1 + δ) when δ ≥ 0. Thus we can rewrite (22) as

2− (1 + δ)ϵ0 > 0. (B.8)

and we can rewrite (23) as

ϵ0 >
ϵ0 +

√
ϵ20 − 2(1 + δ)ϵ0 + (1 + δ)2ϵ20

2− (1 + δ)ϵ0
. (B.9)

Assume to the contrary that there exists a set T such that H2 can be satisfied.

Then there exists an ϵ0 and a δ that satisfies both inequalities (22) and (23), or,

equivalently, (B.8) and (B.9). If T satisfies inequality (B.8), thus we can obtain the

following inequality from (B.9):

ϵ0(2− (1 + δ)ϵ0)− ϵ0 >
√

ϵ20 − 2(1 + δ)ϵ0 + (1 + δ)2ϵ20. (B.10)

With a little bit of algebra on each side, we obtain

−δϵ20 − (ϵ20 − ϵ0) >
√

(1 + 2δ)(ϵ20 − ϵ0) + ϵ20δ
2. (B.11)

By Claim B.1, ϵ0 ≥ 1; thus ϵ20 ≥ ϵ0. That combined with the fact that δ ≥ 0,

we have that the LHS of (B.11) is non-positive and the RHS is non-negative. This

would make inequality (B.11) incorrect. Thus when given H1, the inequality (B.9) is

not valid when given inequality (B.8). Therefore the inequalities (22)-(24) in [13] for

Hypothesis H2 are contradictory. So T cannot satisfy Hypothesis H2.



67

Appendix C

Blaschke’s Selection Theorem

Here we state Blaschke’s Selection theorem [19] and discuss its consequences

in relation to our proof of Theorem 3.6.1.

Theorem C.1. Every bounded sequence of convex bodies has a subsequence that con-

verges to a convex body.

Specifically, in the context of the proof of Theorem 3.6.1, since each hk
b is

convex and bounded by B(O, b), the sequence {hk
b} has a convergent subsequence.
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Appendix D

Reidemeister’s Theorem About

Singular Points on Convex Sets

Here we state a theorem of Reidemeister about singular points on convex sets

and discuss its consequences in relation to our proof of Theorem 3.6.1. We first start

with the following definitions from [19].

Definition D.1. Let A ⊂ Rn be a subset and H ⊂ Rn a hyperplane and let H+, H−

denote the two closed halfspaces bounded by H. We say that H supports A at x if

x ∈ A ∩H and either A ⊂ H+ or A ⊂ H−. Further, H is a support plane of A or

supports A if H supports A at some point x, which is necessarily a boundary point

of A.

Definition D.2. By Kn we denote the set of all convex bodies in Rn and by Kn
n the

subset of convex bodies with interior points (thus, the lower index n stands for the

dimension of the bodies).

Definition D.3. If the supporting hyperplane to K at x is unique, then x is called a

regular or smooth point of K. Otherwise, x is singular.
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We then state the theorem.

Theorem D.1. That the set of singular boundary points of a convex body K ∈ Kn
n is

of (n− 1)-dimensional Hausdorff measure zero.

In the context of the proof of Theorem 3.6.1, if a point x on a refractor R

is regular, then the supporting hyperplane to R at x is unique. Since our refractors

are constructed from hyperboloids: a unique supporting hyperplane of a refractor R

at some point x implies the existence of a unique supporting hyperboloid to R at

x. Then, by the Chapter 3.3 definition of the refractor map, αk
convex and αconvex are

single-valued almost everywhere.
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Appendix E

A Constructive Proof of Lemma

4.3.2

We seek to constructively prove the following theorem, which is the same as

Lemma 4.3.2.

Theorem E.1. Let (Ω, S, ν) be a finite nonatomic measure and A a measurable set

in S with ν(A) > 0 and subsets A1, A2, . . . , An and let m1,m2, . . . ,mn > 0.

Then there are disjoint subsets Bk ⊆ Ak with ν(Bk) = mk for all k ∈ [n] if

and only if

ν

(⋃
i∈I

Ai

)
≥
∑
i∈I

mi (E.1)

for all I ⊆ [n].

E.1 Nonatomic Measures

The following definition is taken from [10].
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Definition E.1.1. A measure ν on (Ω, S) is said to be nonatomic if ν({x}) = 0 for

every x ∈ Ω.

An equivalent and potentially helpful definition from [6] can be seen below.

Definition E.1.2. Let (Ω, S, ν) be a σ-finite measure. Then an atom of ν is a

set A ∈ S with ν(A) > 0 such that for all C ∈ S with C ⊂ A, either ν(C) = 0 or

ν(C) = ν(A). By σ-finiteness, we have ν(A) < ∞. (Ω, S, ν) or ν is called nonatomic

if it has no atoms.

Equivalently, (Ω, S, ν) or ν is called nonatomic if for any measurable set A

with ν(A) > 0 there exists a measurable subset B of A such that ν(A) > ν(B) > 0.

The following corollary is a consequence of Proposition A.1 in [6].

Corollary E.1.1. Let (Ω, S, ν) be a finite nonatomic measure with ν(Ω) > 0. Then

if A is a measurable set in S with ν(A) > 0, then for any real number c with ν(A) ≥

c ≥ 0 there exists a measurable subset B of A such that ν(B) = c.

We also have another corollary following from Proposition A.2 in [6].

Corollary E.1.2. Let (Ω, S, ν) be a finite nonatomic measure and A be a measurable

set in S with ν(A) > 0. Let ri for i ∈ [n] be numbers with ri > 0 and
∑n

i=1 ri = ν(A).

Then A can be decomposed as a union of disjoint sets Ri ∈ S with ν(Ri) = ri for

i ∈ [n].

E.2 Generalization of Hall’s Matching Theorem

In addition to Corollaries E.1.1 and E.1.2, we also need to use Hall’s matching

theorem; see ([8], Theorem 2.1.2 in [4]). Hall’s theorem itself will not be covered in
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this write-up, as there is a lot of literature already in existence. It would also require

me to write a few pages of elementary graph theory to cover the requisite background

to make the statement of the theorem understandable.

The following corollary can be considered as a generalization of Hall’s matching

theorem. In fact, it is Exercise 2.9 in [4] and is proven with a clever application of

Hall’s matching theorem.

Corollary E.2.1. Let A be a finite set with subsets A1, . . . , An, and let d1, . . . , dn ∈ N.

Then there are disjoint subsets Dk ⊆ Ak, with |Dk| = dk for all k ∈ [n], if and only if

∣∣∣∣∣⋃
i∈I

Ai

∣∣∣∣∣ ≥∑
i∈I

di (E.2)

for all I ⊆ [n].

The above claim is a generalization of Hall’s matching theorem because if we

set di = 1 for all i ∈ [n], then it would be an equivalent statement. If we consider the

case where each point has a weight of ξ > 0, then we obtain the following corollary.

Corollary E.2.2. Let A be a finite set with subsets A1, . . . , An and let d1, . . . , dn ∈ N.

Given a real ξ > 0, let (A, 2A, η) be a discrete measure defined as η(X) = ξ|X| for all

X ∈ 2A.

Then there are disjoint subsets Dk ⊆ Ak, with η(Dk) = ξdk for all k ∈ [n], if

and only if

η

(⋃
i∈I

Ai

)
= ξ

∣∣∣∣∣⋃
i∈I

Ai

∣∣∣∣∣ ≥ ξ
∑
i∈I

di (E.3)

for all I ⊆ [n].

If ξ = 1, then we will obtain Corollary E.2.1. Therefore, Corollary E.2.2 is a

generalization of Corollary E.2.1.
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If we replace discrete weighted points with disjoint subsets with the same

measure and apply that to Corollary E.2.2, we obtain the next corollary.

Corollary E.2.3. Given a real ξ > 0, let (Ω, S, ν) be a finite measure and A =

{A1, A2, . . . , Aℓ} be a finite collection of disjoint measurable sets in S where ν(Ai) = ξ.

Also, let d1, . . . , dn ∈ N and α1, . . . , αn ⊆ A.

Then there are disjoint subsets Dk ⊆ αk, with ν
(⋃

D∈Dk
D
)
= ξdk for all

k ∈ [n], if and only if

ν

(⋃
i∈I

( ⋃
B∈αi

B

))
= ξ

∣∣∣∣∣⋃
i∈I

αi

∣∣∣∣∣ ≥ ξ
∑
i∈I

di (E.4)

for all I ⊆ [n].

Proof. Let (A, 2A, η) be a discrete measure defined as η(X) = ξ|X| for all X ∈ 2A.

Then by Corollary E.2.2, there are disjoint subsets Dk ⊆ αk, with η(Dk) = ξdk for

all k ∈ [n], if and only if

η

(⋃
i∈I

αi

)
= ξ

∣∣∣∣∣⋃
i∈I

αi

∣∣∣∣∣ ≥ ξ
∑
i∈I

di (E.5)

for all I ⊆ [n].

Since
⋃

i∈I αi is a finite collection of disjoint measurable sets, then

η

(⋃
i∈I

αi

)
= η

 ⋃
B∈

⋃
i∈I αi

{B}

 (E.6)

=
∑

B∈
⋃

i∈I αi

η({B}) (E.7)

=
∑

B∈
⋃

i∈I αi

ν(B) (E.8)
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= ν

 ⋃
B∈

⋃
i∈I αi

B

 (E.9)

= ν

(⋃
i∈I

( ⋃
B∈αi

B

))
. (E.10)

Observe that Corollary E.2.3 is a generalization of Corollary E.2.2. As Corol-

lary E.2.2 can be considered as a special case of Corollary E.2.3 where each set is a

single point.

E.3 Proof of Theorem E.1

Now, we prove Theorem E.1.

Proof. If such Bk’s exist, then for all I, ν
(⋃

i∈I Ai

)
≥
∑

i∈I mi.

Conversely, letting Q be a nonempty subset of [n], then we can define

SQ =

(⋂
i∈Q

Ai

)
\

(⋃
i ̸∈Q

Ai

)
. (E.11)

Note that if P is also a nonempty subset of [n] and Q ̸= P , then SQ∩SP = ∅.

It would also be helpful to note that

Ak =
⋃

Q∈{P∈2[n]|k∈P}

SQ (E.12)
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and ⋃
i∈[n]

Ai =
⋃

Q∈2[n]\{∅}

SQ. (E.13)

Assume ξ > 0. Then by Corollary E.1.1, for each nonempty Q ⊆ [n] there

exists a subset of SQ of measure ξ
⌊
ν(SQ)

ξ

⌋
; let this subset be denoted as EQ,ξ. Then

by Corollary E.1.2, EQ,ξ can be partitioned into
⌊
ν(SQ)

ξ

⌋
subsets of measure ξ. We

can now define a set

Ak,ξ =
⋃

Q∈{P∈2[n]|k∈P}

EQ,ξ. (E.14)

Recall the number mk from the theorem statement. Now consider the number⌊
mk

ξ

⌋
, which by Corollaries E.1.1 and E.1.2 is the maximum number of disjoint subsets

of measure ξ for a set of measure mk, and define dk,ξ =
⌊
mk

ξ

⌋
− 2n+1. We want dk,ξ

to be positive integers: so note that if 0 < ξ ≤ mk

2n+1+1
, then dk,ξ > 0.

Observe that given a nonempty Q ⊆ [n] we have that

∣∣∣∣∣ν
(⋃

i∈Q

Ai

)
− ν

(⋃
i∈Q

Ai,ξ

)∣∣∣∣∣ =
∣∣∣∣∣∣ν
 ⋃

P∈{T∈2[n]|T∩Q̸=∅}

SP

 (E.15)

−ν

 ⋃
P∈{T∈2[n]|T∩Q ̸=∅}

EP,ξ

∣∣∣∣∣∣ (E.16)

=

∣∣∣∣∣∣
∑

P∈{T∈2[n]|T∩Q̸=∅}

ν(SP )−
∑

P∈{T∈2[n]|T∩Q̸=∅}

ν (EP,ξ)

∣∣∣∣∣∣
(E.17)

=

∣∣∣∣∣∣
∑

P∈{T∈2[n]|T∩Q̸=∅}

[ν(SP )− ν (EP,ξ)]

∣∣∣∣∣∣ (E.18)

<

∣∣∣∣∣∣
∑

P∈{T∈2[n]|T∩Q̸=∅}

ξ

∣∣∣∣∣∣ = ξ(2n − 2n−|Q|). (E.19)
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Thus, as ξ → 0, we have ν
(⋃

i∈Q Ai,ξ

)
→ ν

(⋃
i∈QAi

)
.

Also, note that

ν

(⋃
i∈Q

Ai

)
≥ ν

(⋃
i∈Q

Ai,ξ

)
. (E.20)

We use dk,ξ because if we are given a nonempty Q ⊆ [n] then, by the work we did

previously, ν
(⋃

i∈QAi,ξ

)
> ν

(⋃
i∈Q Ai

)
− ξ(2n − 2n−|Q|).

Since the theorem hypothesis states that ν
(⋃

i∈Q Ai

)
≥
∑

i∈Q mi, then

ν

(⋃
i∈Q

Ai

)
− ξ(2n − 2n−|Q|) ≥

(∑
i∈Q

mi

)
− ξ(2n − 2n−|Q|) (E.21)

≥ ξ

(∑
i∈Q

⌊
mi

ξ

⌋)
− ξ(2n − 2n−|Q|) (E.22)

≥ ξ

(∑
i∈Q

⌊
mi

ξ

⌋)
− 2n+1ξ (E.23)

≥ ξ
∑
i∈Q

(⌊
mi

ξ

⌋
− 2n+1

)
= ξ

∑
i∈Q

di,ξ. (E.24)

In summary, for sufficiently small ξ,

ν

(⋃
i∈Q

Ai,ξ

)
> ν

(⋃
i∈Q

Ai

)
− ξ(2n − 2n−|Q|) ≥ ξ

∑
i∈Q

di,ξ > 0. (E.25)

Therefore, for nonempty all I ⊆ [n] and a sufficiently small ξ, we have

ν

(⋃
i∈I

Ai,ξ

)
> ξ

∑
i∈I

di,ξ > 0. (E.26)

Thus, by Corollary E.2.3, for sufficiently small ξ there are disjoint subsets Bk,ξ ⊆ Ak,ξ

such that ν(Bk,ξ) = ξdk,ξ for all k ∈ [n].

Given a nonempty Q ⊆ [n] we have that
∑

i∈Q mi ≥ ξ
∑

i∈Q di,ξ. Therefore,
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∣∣∣∣∣∑
i∈Q

mi − ξ
∑
i∈Q

di,ξ

∣∣∣∣∣ =
∣∣∣∣∣∑
i∈Q

(mi − ξdi,ξ)

∣∣∣∣∣ (E.27)

=

∣∣∣∣∣∑
i∈Q

(
mi − ξ

⌊
mi

ξ

⌋
+ ξ2n+1

)∣∣∣∣∣ (E.28)

= 2n+1ξ|Q|+

∣∣∣∣∣∑
i∈Q

(
mi − ξ

⌊
mi

ξ

⌋)∣∣∣∣∣ . (E.29)

Keep in mind that limξ→0mi − |ξ| ≤ limξ→0 ξ
⌊
mi

ξ

⌋
≤ limξ→0mi + |ξ|. Therefore

limξ→0 ξ
⌊
mi

ξ

⌋
= mi. Thus as ξ → 0 we have ν(Bk,ξ) = ξdk,ξ → mk for all k ∈ [n] and

ν

(⋃
i∈I

Ai,ξ

)
> ξ

∑
i∈I

di,ξ −→
∑
i∈I

mi ≤ ν

(⋃
i∈I

Ai

)
(E.30)

for all nonempty I ⊆ [n].

Given a sufficiently small ξ > 0, let us define ξi =
ξ
2i

for i ∈ N ∪ {0}. So for

each k ∈ [n] we can now construct a sequence {ν(Bk,ξi)}∞i=0. Unless there exists an

N > 0 such that ν(Bk,ξN ) = mi, the sequence {ν(Bk,ξi)}∞i=0 has no greatest term.

Therefore, there exists a monotonically nondecreasing subsequence {ν(Bk,ξf(i))}∞i=0

where f : N ∪ {0} → N ∪ {0} and f(i+ 1) ≥ f(i).

Recall that by construction Ak,ξf(i) ⊆ Ak,ξf(i+1)
. Similarly, we can always con-

struct the sets Bk,ξf(i) and Bk,ξf(i+1)
from the preexisting partitions that we used

to construct Ak,ξf(i) and Ak,ξf(i+1)
such that Bk,ξf(i) ⊆ Bk,ξf(i+1)

. Thus, since the

{ν(Bk,ξf(i))}∞i=0 sequence is increasing monotonically and by Corollary E.1.1, for ev-

ery k ∈ [n] there exists a sequence of sets

Bk,ξf(0) ⊆ Bk,ξf(1) ⊆ Bk,ξf(2) ⊆ · · · (E.31)
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such that for every i ∈ N ∪ {0}: Bk,ξf(i) ⊆ Ak, ν(Bk,ξf(i)) = ξidk,ξf(i) , and Bk,ξf(i) ∩

Bk′,ξf(i) = ∅ when k ̸= k′. Let us define

Bk,0 =
∞⋃
i=0

Bk,ξf(i) . (E.32)

By our previous work, we know that mk = ν (Bk,0) . We now need to prove two more

things:

1. there exists a set Bk ⊆ Bk,0 such that Bk ⊆ Ak and ν(Bk) = ν(Bk,0)

2. there exists sets Bk1 ⊆ Bk1,0 and Bk2 ⊆ Bk2,0 where Bk1 ∩ Bk2 = ∅, ν(Bk1) =

ν(Bk1,0) and ν(Bk2) = ν(Bk2,0) when k1 ̸= k2.

If Bk,0 is not a subset of Ak, then Bk,0∩Ac
k ̸= ∅. If ν(Bk,0∩Ac

k) > 0, then there

is an α ∈ N ∪ {0} such that ν(Bk,ξf(α)
∩ Ac

k) > 0, which contradicts Bk,ξf(α)
⊆ Ak.

Therefore ν(Bk,0 ∩ Ac
k) = 0. Thus, there exists a set of measure zero Nk such that

ν(Bk,0 \Nk) = mk and Bk,0 \Nk ⊆ Ak.

Similarly, if we are given distinct k1, k2 ∈ [n] and Bk1,0 ∩ Bk2,0 ̸= ∅, then if

ν(Bk1,0∩Bk2,0) > 0, then there exists an α ∈ N∪{0} such that ν(Bk1,ξf(α)
∩Bk2,ξf(α)

) >

0. This contradicts Bk1,ξf(α)
∩Bk2,ξf(α)

= ∅, thus ν(Bk1,0∩Bk2,0) = 0. Thus there exists

sets of measure zero Ek1 and Ek2 such that (Bk,0 \Ek1)∩ (Bk′,0 \Ek2) = ∅ if k1 ̸= k2.

Therefore, there are disjoint sets Bk ⊆ Ak such that ν(Bk) = mk for all k ∈ [n].

Our proof is complete.
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