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Abstract 
 

Identifying and Analyzing Nonlinear Concentration-Response Relationships  
in Tox21 Thyroid Receptor Assays  

 
By Seonhee Kong 

 
 
Background: Environmental thyroid disrupting chemicals (TDCs) can exhibit nonlinear 
including nonmonotonic dose response (NMDR) behaviors at low doses. NMDR presents a 
serious challenge because it could be difficult to accurately predict the risk of exposure to a 
particular chemical. New risk assessment methodologies produce toxicity testing results that 
are efficient and suitable for human application via in vitro assays. This study was aimed to 
analyze the concentration-response curves and identify nonlinearities including NMDR in the 
Tox21 high-throughput screening (HTS) data of thyroid receptor (TR) assays. 
 
Methods: The Tox21 quantitative HTS TR assay data from the National Center for Advancing 
Translational Sciences (NCATS) were used. For the TR assays conducted in the antagonist or 
agonist mode and the viability assay, 10,496 chemicals (10K) were screened each. Among 
averaged concentration-response curves, the curves which have either low variance levels or 
response levels bound in a certain range were screened out. Correlation-based algorithm was 
applied for clustering followed by supervised learning algorithm for curve classification into 
five shapes – U, Bell, monotonic increasing, monotonic decreasing, and flat. Additional 
filtering was done based on viability and interference assays. For those remaining monotonic 
increasing or decreasing curves, their Hill coefficients were assessed for degree of 
nonlinearities. 
 
Results: After all the screenings, 1,353 monotonic decreasing curves, 263 monotonic 
increasing curves, 577 U curves, 88 Bell curves were identified in antagonist mode assays. 16 
monotonic decreasing curves, 19 monotonic increasing curves, 1 U curve, 9 Bell curves were 
identified in agonist mode assays. In antagonist mode assays, among known TDCs, TBBPA, 
pentachlorophenol, triclosan, and BPA exhibit as monotonic decreasing shapes, some of which 
have Hill coefficients considerably greater than 1 representing high degree of nonlinearities. 
Methimazole, propylthiouracil were classified as U shape.  
 
Conclusions: The Tox21 TR assays contain many concentration-response curves that are either 
nonmonotonic or highly nonlinear even though they are monotonic, suggesting nonlinear dose 
response of endocrine disruptors can arise at the gene transcription level. Identifying nonlinear 
concentration-response relationship and underlying mechanisms will help provide a scientific 
basis for improving safety assessment of chemical products.   
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1. Introduction 

1.1. Thyroid system in general  

One of the most concerning public health issues is the interference with the normal metabolism 

and actions of endogenous hormones by environmental endocrine disrupting chemicals (EDCs). 

While the greatest focus has been on the potential interactions of chemicals with the sex steroid 

hormone system, there have been numerous lines of evidence that these EDCs affect the thyroid 

hormone (TH) system as well (Ghisari and Bonefeld-Jorgensen 2005).  

 

The concentrations of THs in the plasma and tissues are elaborately regulated by the 

control of a feedback system which consists of the hypothalamus, anterior pituitary, and thyroid 

gland (HPT axis) (Yen 2001). Each tissue/gland of the HPT system secretes specific hormones. 

In the hypothalamus, thyrotropin-releasing hormone (TRH) is synthesized in the 

paraventricular nuclei (PVN) (Zoeller, Tan et al. 2007, Fliers, Kalsbeek et al. 2014). TRH is 

transported to the anterior pituitary and binds to the TRH receptor (TRHR) to stimulate the 

synthesis and secretion of thyroid-stimulating hormone (TSH) (Zoeller, Tan et al. 2007). TSH 

binds to its G protein coupled receptors on the thyrocytes in the follicles of the thyroid gland. 

TSH then promotes iodine uptake and the synthesis and secretion of THs, including 

triiodothyronine (T3) and thyroxine (T4), to the systemic circulation (Zoeller, Tan et al. 2007). 

Thyroid specific genes, including Na+/I- symporter (NIS), thyroglobulin (TG), and thyroid 

peroxidase (TPO), are involved and regulated by TSH in these processes (Yen 2001).   

 

THs play a crucial role in growth, development and energy homeostasis (Silva 2001). 

THs influence a number of biological processes in the body and are essential for regulating 

metabolism, bone remodeling, cardiac function and mental status (Boas, Feldt-Rasmussen et 

al. 2012).  



2 
 
1.2. Disruption of the thyroid system by environmental chemicals 

 Thyroid Disruptors and Mechanisms 

Recent epidemiological and toxicological studies have shown that numerous contaminants can 

reduce circulating TH levels and thus disrupt TH signaling in the body (Boas, Feldt-Rasmussen 

et al. 2006). According to the National Institutes of Health (NIH) definition, the thyroid-

disrupting chemicals (TDCs) refer to xenobiotics that interfere with TH signaling (Miller, 

Crofton et al. 2009). Given the diversity and complexity of the mechanisms involved in thyroid 

homeostasis, TDCs have vastly different actions at different levels of the thyroid system. These 

biological actions include the following; altering the structure or function of the thyroid gland 

itself (e.g., perchlorate and methimazole), altering binding of hormones to thyroid receptors 

(e.g., bisphenol A (BPA), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers 

(PBDEs), or altering regulatory enzymes involved in TH synthesis (e.g., propylthiouracil 

(PTU)) (Crofton and Zoeller 2005, Miller, Crofton et al. 2009). Aside from thyroidal 

mechanisms, a large number of extrathyroidal mechanisms affect circulating TH levels by 

altering binding to hormone transport proteins (e.g., hydroxyl-PCBs, EMD 49209 and 

pentachlorophenol), hepatic clearance (e.g., PCBs and triclosan), and inhibition of deiodination 

of T4 to T3 (e.g., FD&C red dye number 3, PTU, PCBs, octylmethoxycinnamate) (Miller, 

Crofton et al. 2009).  

 

  General Health Outcome of TDCs 

Although noticeable changes in hormone levels in animals and in the human body due to small 

amounts of TDCs existing in the environment are difficult to observe, it is clear that they 

adversely affect hormonal homeostasis (Boas, Feldt-Rasmussen et al. 2006). Exposure to PCBs, 

one of the well-known TDCs, had an inverse association with T3 in men (Meeker, Altshul et 

al. 2007). In addition, there is a growing concern that TDCs may increase cardiovascular risk 
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in humans by reducing serum T4 (Boas, Feldt-Rasmussen et al. 2012). Because THs regulate a 

number of genes involved in the developing brain, it's not difficult to infer that TH disruption 

can adversely affect the brain maturation process (Bernal 2005, Ghisari and Bonefeld-

Jorgensen 2009). Neurological deficits and irreversible mental retardation may occur due to 

altered TH levels caused by TDC exposure during the fetal and postnatal periods when the 

central nervous system is developing and maturing (Howdeshell 2002, Morreale de Escobar, 

Obregon et al. 2004). While not much has been established about the effects of THs on sexual 

development, it is known that hypothyroidism and hyperthyroidism affect sexual development 

in both males and females, especially during puberty (Cargnelutti, Di Nisio et al. 2020). TH 

imbalances, which originate from hypothyroidism and hyperthyroidism, disturb the metabolic 

pathways of the body and have a profound effect on metabolic diseases such as obesity and 

diabetes (Schug, Janesick et al. 2011, Medici, Visser et al. 2015). 

 

  Nonlinear Dose-Response of TDCs 

EDCs including TDCs can exhibit nonlinear, including nonmonotonic, dose response (NMDR) 

behaviors at low doses (Vandenberg, Colborn et al. 2012). The U.S. Environmental Protection 

Agency (EPA) defines NMDRs as measured biologic effects with dose response curves that 

contain a point of inflection where the slope of the curve changes sign at one or more points 

within the tested range. They are of particular concern in the context of chemical toxicity testing 

and risk assessments as they do not follow the generally expected linear or threshold dose 

response that would be monotonously increasing or decreasing in activity followed by 

increasing dose (Zoeller, Tan et al. 2007, Vandenberg, Colborn et al. 2012). 

 

NMDRs generally take the form of either a decrease in the response at low dose 

followed by an increase at high dose (called a U-shape in this study), or vice versa (a Bell-
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shape in this study). NMDR presents a serious challenge because it could be difficult to 

accurately predict the risk of exposure to a particular chemical by using the traditional concepts 

of LOAEL (lowest observed adverse effect level) or NOAEL (no observed adverse effect level) 

(Vandenberg, Colborn et al. 2012, Klimenko 2021). 

 

It is well known that exposure to high concentrations of EDCs affects the reproductive 

system, nervous system, metabolic system, and immune system through toxicity. However, it 

is worrisome when exposure to even low concentrations may have similar health effects 

through endocrine disturbance. The characteristics of these endocrine disruptors show 

unexpected reactivity at low concentrations that are considered to be below the safety standard, 

but do not show reactivity when the concentration increases. This suggests the possibility that 

low exposure to many chemicals that we currently believe are safe may not be safe. 

 

  Toxicity Testing of Thyroid Disruptors 

Currently, most risk assessment strategies rely on chemical toxicity data obtained from animal 

testing. This conventional animal testing is expensive, slow and inefficient, and may be 

inadequate to recapitulate results for human health outcomes. In addition, this approach to 

toxicity testing can pose animal right issues (Freitas, Miller et al. 2014). Due to the complex 

nature of EDCs, there is a skeptical view that it is difficult to properly evaluate the health effects 

of EDCs with the traditional testing techniques in use.  

 

Movements, which stems from the need for animal-alternative testing with more 

reliable results, including in vitro methods, are gradually gaining traction and expanding their 

scope. The U.S. EPA initiated NexGen project to devise the next generation of risk science 

(Cote, Anastas et al. 2012). "Toxicity Testing in the 21st Century (TT21C): A Vision and a 
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Strategy" (NRC 2007), a report also referred to as a major keystone of the NexGen framework, 

was published in 2007 by the Committee on Toxicity Testing and Assessment of 

Environmental Agents of the National Research Council (Krewski, Westphal et al. 2014). New 

risk assessment methodologies, including the new approach methodology (NAM), have a 

common foothold to produce toxicity testing results that are more efficient, low-cost, and more 

suitable for human application by using human cells or organoids via in vitro assays. 

 

There have been national efforts to develop screening methods using in vitro assays. 

The endocrine disruptor screening program (EDSP) was set up to screen environmental 

chemicals in a tiered testing system (Miller, McMullen et al. 2017). The Toxicity Forecaster 

(ToxCast) and Tox21 programs organize high-content cellular assays using high-throughput 

screening (HTS) technologies for rigorous toxicologic evaluation and a better understanding 

of the mechanisms of biomolecular action that have not yet been identified (Ghisari and 

Bonefeld-Jorgensen 2005, Zhang, Li et al. 2018). The ToxCast program tested hundreds of 

chemicals and prioritized the toxicity testing of environmental chemicals (Dix, Houck et al. 

2007, Miller, McMullen et al. 2017). A U.S. federal interagency collaboration, known as Tox21, 

involves the National Institute of Environmental Health Sciences (NIEHS)/National 

Toxicology Program (NTP), the EPA's National Center for Computational Toxicology, the U.S. 

Food and Drug Agency (FDA), and the National Center for Advancing Translational Sciences 

(NCATS). An outmost effort of the U.S. Tox21 program is profiling a 10K-compound library 

against a panel of stress-related and nuclear receptor signaling pathway assays using qHTS 

approach (Hsieh, Sedykh et al. 2015). The collaborative research has been testing the 10K 

chemical library in about 70 qHTS assays since Tox21's inception in 2008. 
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  Purpose of This Study 

This study was aimed to analyze the concentration-response curves in the Tox21 HTS data of 

thyroid receptor assays and identify nonlinearities including NMDR. 
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2. Methods  

2.1. Tox21 TR assays 

For the Tox21 TR assays, the GH3 (rat pituitary tumor) TRE.Luc reporter gene system was 

used. The GH3 cells stably hosts a TR, TRα (NR1A1) and TRβ (NR1A2), activity sensor 

consisting of  TH response elements (TRE), which drive the expression of a luciferase 

reporter gene (Grimaldi, Boulahtouf et al. 2015). Figure 1 illustrates the schematic of the TR-

dependent reporter gene expression: (1) THs or a xenobiotics, X, are up-taken into the cells. 

(2) X binds to the TR and then form a heterodimer with retinoid X receptor (RXR). 

Homodimers of TR have also been reported (Freitas 2012). (3) Coactivators are recruited to 

the dimer complex bound to TRE, followed by (4) the expression of the reporter gene 

(luciferase) which generates a detectable luminescent signal after the substrate is added. 

 

Figure 1. Illustration of mechanism of action of a thyroid hormone receptor-dependent reporter gene cell line. 

Adapted from Freitas (2012) 

 

We obtained the Tox21 qHTS TR assay data from the National Center for Advancing 

Translational Sciences (NCATS) Tox21 browser (https:// tripod.nih.gov/tox21/assays/). The 

relevant qHTS assays include: (1) qHTS assay to identify small molecule antagonists of the 
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thyroid receptor (TR) signaling pathway, (2) qHTS assay to identify small molecule antagonists 

of the thyroid receptor (TR) signaling pathway – cell viability counter screen, (3) qHTS assay 

to identify small molecule agonists of the thyroid receptor (TR) signaling pathway, and (4) 

qHTS assay to identify small molecule inhibitors of firefly luciferase. 

 

The Tox21 chemical library was screened in triplicate or higher number of replicates 

(up to 45 replicates in TR assays) for concentration-response, with concurrent cytotoxicity 

measurements. The distributions of replicates in the TR assays in the antagonist and agonist 

modes are presented in Figure 2. Each row in the downloaded dataset corresponds to one 

replicate for one chemical, and contains 15 data points representing the assay responses to 15 

concentrations of the screened chemicals. For the TR assays conducted in the antagonist or 

agonist mode and the viability assay, 10,496 chemicals (10K) were screened each. There are 

9,667 chemicals in the interference assay data, among which 7,037 overlap with the TR assay 

and viability data. 

Antagonist Agonist 

  
Figure 2. Distribution of replicates in TR antagonist and agonist assays.  
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2.2. Methods for clustering and classification of dose-response curves  

  Quality Control 

An average concentration-response curve over replicates (3 to 45) was obtained for each 

chemical in each assay. The curves which have either ⅰ) low variance or ⅱ) response levels 

bound in a certain range were regarded as no or low activities and were screened out. The 

thresholds used for variance and response screening were specified depending on the 

distributions of variances, maximal and minimal response values (Figures 3 and 4). If a curve 

in the antagonist or agonist assay has a response point at a concentration greater than 40 

compared to its two immediate neighboring concentrations, the curve was filtered out since it 

is likely to be outlier and will be examined separately.  
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Antagonist 
 

(ⅰ) Variance threshold: Log1040 

  

 
(ⅱ) Lower / Upper boundary: -15 / 18 

  

 
(ⅰ) + (ⅱ) Variance vs. Maximal (18), Minimal (-15) response 

  

Figure 3. Distributions of variances, all response values, maximal and minimal response values in the 

antagonist mode 
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Agonist 
 

(ⅰ) Variance threshold: Log1050 

  

 
(ⅱ) Lower / Upper boundary: -15 / 15 

  

 
(ⅰ) + (ⅱ) Variance vs. Maximal (15), Minimal (-15) response 

  

Figure 4. Distributions of variances, all response values, maximal and minimal response values in the agonist 

mode 
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  Unsupervised Learning Algorithm (Clustering)  

The following MATLAB correlation-based algorithm was applied for clustering according to 

Figure 5. The moving-average (MA) of each chemical’s average concentration-response curve  

was calculated to reduce the local effect of variation. Each cluster was created when the 

correlation coefficient between the curves is greater than 0.75. 

 

 

Figure 5. Unsupervised Learning Algorithm adapted from Shi, Xia et al. (2020)  
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  Supervised Learning Algorithm (Curve Classification) 

Based on the results from the unsupervised learning algorithm, the clusters were consolidated 

into five shapes - U, Bell, monotonic increasing, monotonic decreasing, and flat. To better 

allocate each curve into each of the five shapes, a supervised, classification algorithm was 

applied (Figure 6). At first, MA using five concentration points was applied to classify Bell, U, 

and other shapes by using specific magnitude values, and minimal/maximal response levels. 

The non NMDR curves (other shapes) then were further classified by applying moving average 

using two concentration points to detect for NMDR curves that were missed out by using 

MA=5. These were further classified into Bell, U, flat, monotonic increasing and decreasing 

shapes by using the same magnitude values, and minimal/maximal response levels as above.  

 

Figure 6. Supervised Learning Algorithm adapted from Shi, Xia et al. (2020) 
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  Additional Filtering Based on Viability and Interference Assays 

After the processes of clustering and classification, we tried to filter out those average 

concentration-response curves that are likely caused by cytotoxicity and interference due to 

inhibition of luciferase by the tested chemical. In the same manner as in the quality control step 

above, curve falling within the cut-offs corresponding to the criteria shown in Figure 7 in the 

viability and interference assays were regarded as no or low activities, and were discarded. 

-15 ≤ Viability Cut-off ≤ 15 -8 ≤ Interference Cut-off ≤ 8 

  

Figure 7. Distributions of averaged responses in viability and interference assays 

 

Afterward, for each of the remaining cytotoxicity curve, we first found the 

concentration point at which the viability decreases by > 12 from the previous lower 

concentration point. We then examined the next two lower concentrations. If the viabilities 

increased by > 5, then the lower concentration will be used as the starting concentration point 

of cytotoxicity. If the trends of the agonist or antagonist activity curve and the viability curve 

after the starting concentration point were highly correlated (evaluated by Pearson correlation 

coefficient > 0.5 and P value <0.2), it was judged that the activity was due to cytotoxicity and 

the response curve will be filtered out. The above filtering was applied to monotonic decreasing 

/ Bell shapes. The reason we set the cut-offs to be stringent is to filter out as many disqualified 

curves as possible to retain only true monotonic decreasing or Bell shaped curves. An 

increasing trend in viability was applied to monotonic increasing / U shapes. 
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We also conducted the interference screening in a similar logic as the above. 

Correlation between the two curves was examined only when the chemical was included in the 

interference assay (only 7,037 of the 10,496 chemicals had interference data). We first found 

the concentration point at which the luminescence signal decreases by > 8. We then examined 

the next two lower concentrations. If the signal increased by > 3, then the lower concentration 

will be used as the starting concentration point of luminescence interference. A similar 

correlation step was followed as for the viability assay. 

 

  Hill Function to Assess Nonlinearities in Monotonic Curves 

For those monotonic increasing or decreasing curves, their Hill coefficients were assessed for 

degree of nonlinearities. The fitted curve for the 15 concentration-response points were 

obtained using the MATLAB function, 'Fit option'. The initial values of 'AC50 (K)', 'Hill 

Coefficient (n)', 'Infinite-Activity (y_max)', and 'Zero-Activity (y_min)' were obtained by using 

the averaged values provided in the Tox21 dataset. The following boundary conditions were 

used: 6E-10<K<2E-4, -20<n<20, -25<y_max<250, -250<y_min<25. In addition, we compared 

the Hill coefficient value obtained through the fitted curve with the Hill coefficient value 

provided in the Tox21 dataset. 
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3. Results 

3.1. Antagonist Assay 

  Statistics of Concentration-Response Curves in Each Shape  

After the initial screening using the variance and boundary criteria above, 5,393 chemicals 

were filtered out, and 5,103 (48.62%) chemicals remained (Figure 8). Additional 162 chemicals 

were filtered through the second outlier peak screening criterion, and 4,941 (47.08%) chemicals 

remained.  

 

As a result of applying the unsupervised algorithm, when the correlation of the 

chemical dose-response curves is 0.75 or higher, a total of 80 different clusters were obtained. 

These clusters were visually inspected and consolidated into 6 shape categories: flat, monotonic 

decreasing, monotonic increasing, U, Bell, and S curves. After applying the supervised 

algorithm, these curves were classified into 1,020 flat curves (9.72%), 2,749 monotonic 

decreasing curves (26.19%), 326 monotonic increasing curves (3.05%), 608 U curves (5.79%), 

220 Bell curves (2.10%), and 18 S curves (0.17%) (Figure 8).  

 

 Two additional screenings were conducted within the categories of monotonic shapes 

(decreasing and increasing) and non-monotonic shapes (U and Bell) based on the viability and 

interference data. In the first screening, those with low cytotoxicity (viability -15~15) and low 

luminescence interference (-8~8) were retained. As a result, 1,182 (11.26%) curves were 

retained from the previous decreasing shape, 211 (1.95%) from the previous increasing shape,  

386 (3.67%) from the previous U shape, and 79 (0.76%) from the previous Bell shape. 

 

In the second screening process, the exclusion criteria were set by the degree of 

correlation. Those with a correlation coefficient of greater than 0.5 and a p-value of 0.20 or 
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less between the viability and activity curves on the segment of significant cytotoxicity or 

interference as detailed in Methods were excluded. As a result, 1,396 were excluded from the 

previous decreasing shape, leaving 1,353 (12.89%), 63 excluded from the previous increasing 

shape, leaving 263 (2.45%), 31 excluded from the previous U shape, leaving 577 (5.49%), and 

132 excluded from the previous Bell shape, leaving 88 (0.85%). The whole process described 

above, screening standards and results, are schematically shown in Figure 8. 

 

 

Figure 8. Statistics of concentration-response curves in each shape category after screening (antagonist mode) 
 

 

 Scatter Plots for Lowest Response vs. Highest Response of Monotonically Shaped 

Curves 

Figure 9 is a scatter plot for the distribution of the highest response versus the lowest responses 

in monotonic decreasing curves showing both cytotoxicity- and interference-screened out and 

remaining curves. The highest responses are concentrated between -10 and 10, and the lowest 
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responses are mainly distributed between -140 and 0. Since the baseline responses in TR 

antagonist mode assay are normalized to zero, most chemicals in decreasing shape start from 

zero. Figure 9 indicates that a curve’s lowest response has nothing to do with where it started 

(the baseline). Among known TDCs, TBBPA, pentachlorophenol, triclosan, and BPA exhibit 

as decreasing shapes, however all of them were filtered out through the viability and 

interference correlation screening steps.  

 

Figure 9. Scatter plot for lowest response vs. highest response of monotonic decreasing curves in TR 
antagonist assays screened by cytotoxicity and interference assays.  
 
 

Figure 10 is a scatter plot for the distribution of the highest response versus the lowest 

responses in monotonic increasing curves for both screened out and remaining curves. This 

scatter plot shows two clusters. The reason for the existence of the cluster on the left (named 

cluster A) may be because some curves in that cluster show a sudden drop at a specific 

concentration point in the middle of the curve, as illustrated in Figure 10-1. All of the curves 
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in Figure 10-1 are the curves that remain after filtering. Also, there were no known TDCs in 

the antagonist increasing category.  

 

Figure 10. Scatter plot for lowest response vs. highest response of monotonic increasing curves in TR antagonist 
assays screened by cytotoxicity and interference assays. 
 

 

Figure 10-1. Characteristic response curves in cluster A in Figure 10 
 
 
 
 

 Scatter Plots for Inflection Point vs. Magnitude in NMDR Curves 

Figure 11 presents the log10 inflection-point concentration (M) against NMDR magnitude in 

the nonmonotonic shapes. It includes 608 U shape curves and 220 Bell shape curves. In both 

U and Bell categories, log10 inflection-point concentrations were distributed between -9 and -

4.5 and the magnitudes were concentrated around 20 regardless of the inflection points. Among 
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the known TDCs, Methimazole and Propylthiouracil were classified as U shape. There were 

no known TDCs in the Bell category. 

 

Figure 11. Scatter plots for log10 concentration of inflection point vs. magnitude in U and Bell-shaped curves in 

the TR antagonist mode assay. 

 

 

  Representative Concentration-Response Curves for Each Category 

Representative curves in each category are shown in Figures 12 and 13 where the response 

curve and the viability curve are presented together. Representative curves in monotonic 

decreasing shape are fulvestrant (SID 144204490), fluvastatin sodium (SID 144205779), and 

methysticin (SID 144208099). Representative curves in monotonic increasing shape are 

rifaximin (SID 144205082), roctopamine hydrochloride (SID 144205777), and decitabine (SID 

144205864). Representative curves in U shape are aclarubicin hydrochloride (SID 144206038) 

and docetaxel (SID 144206639). Representative curves in bell shape are isradipine (SID 

144204241) and frentizole (SID 144205517).  
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Figure 12. Representative concentration-response curves in monotonic decreasing and increasing shape 
categories in the TR antagonist mode assay. Blue: response, red: viability. 
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Figure 13. Representative concentration-response curves in nonmonotonic U and Bell shape categories in the TR   
antagonist mode assay. Blue: response, red: viability. 
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  Hill Coefficient for Monotonic Shapes 

The Hill coefficient (curve.n) of the fitted curves are mostly distributed between -5 and 0 except 

for some extreme cases (Figure 14). Representative fitted curves are shown in Figure 15, 

including topotecan hydrochloride (curve.n: -4.14), phanquinone (curve.n: -4.19), 

fenbendzaole (curve.n: -2.08), methylene bis (curve.n: -1.76), and plicamycin (curve.n: -1.73 

and -1.76). 

 

Figure 14. Hill coefficient distribution plot for monotonic decreasing curves in the TR antagonist assay. 
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Figure 15. Representative fitted monotonic decreasing curves in the TR antagonist assay. 
 

The Hill coefficients of the monotonic increasing shapes were also obtained, and most 

of the Hill coefficients values except for few extreme cases were found to be distributed 

between 0 and 20 (figure 16). Representative fitted curves were shown in Figure 17 including 

naproxol (curve.n: 3.21), rifaximin (curve.n: 1.65), decitabine (curve.n: 1.92), and sodium 2-

mercaptobenzothiolate (curve.n: 3.57). 
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Figure 16. Hill coefficient distribution plot for monotonic increasing curves in the TR antagonist assay.  
 
 

 

Figure 17. Representative fitted monotonic increasing curves in the TR antagonist assay.  
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3.2. Agonist Assay Results 

  Statistics of Concentration-Response Curves in Each Shape  

Screening was conducted twice on response data in TR agonist mode assay (Figure 18). 

Through the first screening criteria, 10,418 of all chemicals were filtered, leaving 78 (0.74%) 

of chemicals. No chemicals were excluded through the second screening criterion, before 

applying the unsupervised and supervised learning algorithm.  

 

As a result of applying the unsupervised algorithm, where the correlation of the 

chemical dose-response curves is 0.75 or higher, a total of 8 clusters were formed. These 

clusters were visually inspected and were consolidated into 5 categories: flat, monotonic 

decreasing, monotonic increasing, U, and Bell curves. After applying the supervised algorithm, 

the curves were classified into 33 flat curves (0.31%), 16 decreasing curves (0.15%), 19 

increasing curves (0.18%), 1 U curve (0.01%), and 9 Bell curves (0.09%).  

 

 

Figure 18. Statistics of curves in each shape in the TR agonist mode assay 
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  Scatter Plots for Lowest Response vs. Highest Response in Each Monotonic 

Shape 

Figure 19 is a scatter plot for the distribution of the highest response versus the lowest responses 

in decreasing shape curves in agonist mode assay. The starting points (the highest responses) 

of chemicals classified as agonist decreasing shape were distributed from 10 up to over 100. 

The highest response and the lowest response appear to have a positive correlation. There were 

no known TDCs in the agonist decreasing category. 

 

Figure 19. Scatter plot for lowest response vs. highest response of monotonic decreasing curves in TR agonist 
assays. 
 
 
 

Figure 20 is a scatter plot for the distribution of the highest response versus the lowest 

responses in increasing shape curves in agonist mode assay. The concentration-response curves 

mostly start at 0 and have different highest responses at around 20-100. As in the antagonist 

decreasing assay, the low starting point and the highest response value were not correlated with 

each other. There were no known TDCs in the agonist increasing category. 
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Figure 20. Scatter plot for lowest response vs. highest response of monotonic increasing curves in TR agonist 
assays. 
 
 

  Scatter Plots for Inflection Point vs. Magnitude in NMDR curves 

Figure 21 presents log10 inflection-point concentration (M) against NMDR magnitude in 

agonist nonmonotonic shapes, including all of the nonmonotonic curves (1 U shape curve, 9 

Bell shape curves, respectively). In both U and Bell categories, log10 inflection-point 

concentrations were distributed between -7 and -5, and the magnitudes were around 20, which 

was similar to the findings in antagonist mode scatter plot (Figure 11). There were no known 

TDCs in nonmonotonic categories. 

 

Figure 21. Scatter plots for log10 concentration of inflection point vs. magnitude in U and Bell shaped curves in 
TR agonist mode assays. 



29 
 

  Representative Curves for Each Category 

Representative curves in each category are shown in Figures 22 and 23 where the response 

curve and the viability curve are presented together. Representative curves in decreasing shape 

are methylcarbamycholine chloride (SID 144204809), (7S)-hydroprene (SID 144205353), and 

epsilon-decalactone (SID 144212779). Representative curves in increasing shape are 

levothyroxine (SID 144205654), 2'.3'-dideoxyinosine (SID 144209531), and equilin (SID 

144212958). Representative curve in U shape is cresol (SID 144206791). Representative 

curves in bell shape are all-trans-retinoic acid (SID 144210625) and bexarotene (SID 

144212724). 

 

Figure 12. Representative curves in monotonic decreasing and increasing shape categories in the TR agonist assay. 
Blue: response, red: viability. 
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Figure 23. Representative curves in nonmonotonic U and Bell shape categories in the TR agonist assay. Blue: 
response, red: viability.  
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  Hill Coefficient for Monotonic Shapes 

The hill coefficient (curve.n) of the fitted curves are mostly distributed between -2 and 0 

(Figure 24). Representatively fitted curves (Figure 25) were triphenyltin hydroxide (curve.n: -

1.69) and triphenyltin acetate (curve.n: -1.75). 

 

 

Figure 24. Hill coefficient distribution plot for monotonic decreasing curves in the TR agonist assay. 
 

 

Figure 25. Representative fitted monotonic decreasing curves in the TR agonist assay. 
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The Hill coefficients of the increasing shapes were also obtained and most of the Hill 

coefficients values excluding few outliers were found to be distributed around 1-2 (Figure 26). 

Representatively fitted curves (Figure 27) were, 3,3'5'-triiodo-L-thyronine (curve.n: 1.02), 

2',3'-dideoxyinosine (curve.n: 1.09), levothyroxine (curve.n: 1.74), and equilin (curve.n: 2.08).  

 

Figure 26. Hill coefficient distribution plot for monotonic increasing curves in the TR agonist assay. 
 

 

Figure 27. Representative fitted monotonic increasing curves in the TR agonist assay. 
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3.3. Comparison between Agonist and Antagonist Assay Results 

Figure 28 shows the maximum/minimum response comparison between antagonist 

analysis and agonist analysis for 10K chemicals, divided into 4 combinations. Figure 28B 

shows that minimal responses in both assays appear to have positive correlation, which means 

the smaller the minimum value of agonist in one chemical, the stronger the response of the 

antagonist response occurs. Figure 28D shows that there are much fewer positive responses for 

the agonist assay than for antagonist assay. Chemicals that have positive responses in both 

assays are highlighted in the shaded zone in Figure 28D, and less than 10 are observed. These 

include 3,5,3'-Triiodothyronine, ecopipam, 3,3',5'-triiodo-L-thyronine, equilin, tetrac, and 

tiratricol. Figure 28-1 shows simultaneously the antagonist, agonist, viability, and interference 

concentration-response curves of these chemicals. 

(A) 

 

(B) 

 

(C) 

 

(D) 

 

Figure 28. Maximum/minimum response comparisons between TR antagonist and agonist assays 

-20 0 20 40 60 80 100 120 140

Maximal response in Agonist

-80

-60

-40

-20

0

20

40

60

80

100

120

M
ax

im
al

 re
sp

on
se

 in
 A

nt
ag

on
ist

-20 0 20 40 60 80 100

Minimal response in Agonist

-250

-200

-150

-100

-50

0

50

M
in

im
al

 re
sp

on
se

 in
 A

nt
ag

on
is

t

-20 0 20 40 60 80 100

Minimal response in Agonist

-80

-60

-40

-20

0

20

40

60

80

100

120

M
ax

im
al

 re
sp

on
se

 in
 A

nt
ag

on
ist

-20 0 20 40 60 80 100 120 140

Maximal response in Agonist

-250

-200

-150

-100

-50

0

50

M
in

im
al

 re
sp

on
se

 in
 A

nt
ag

on
ist



34 
 
 

 
Figure 28-1. Concentration-response curves with both positive response to antagonist and agonist 
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4. Discussion 

4.1. Linking to the Literatures 

This study identified and analyzed TR NMDR and other nonlinear relationships in publicly 

available Tox21 TR assays based on a custom-developed learning algorithm. After initial 

screening to exclude those chemicals that exhibit no activity in agonist or antagonist mode, the 

respective concentration-response curves were divided into five to six shapes. False-positive 

results were further filtered by utilizing two types of assays, viability, and interference 

(luciferase) assays. The chemicals belonging to the U and Bell shapes were identified as 

NMDR pattern. For the monotonic shapes, the Hill function was applied to assess their 

nonlinearities. 

 

Among the various chemicals mentioned as known TDCs in Miller, Crofton et al. 

(2009), methimazole, benzophenone-2, and PTU in antagonist mode assay showed NMDR 

relationships. Other chemicals referred to as TDCs in Miller, Crofton et al. (2009) were 

triclosan, BPA, TBBPA, acetochlor, and pentachlorophenol, most of which were classified as 

monotonic decreasing curves, i.e., they function as an antagonist. Although the above 

chemicals were classified as monotonic curves, the Hill coefficients ranged from -14.28 to -

1.63 (except for TBBPAs ranged from -1.33 to -0.98), which represent considerably high 

nonlinearities given that most of the Hill coefficients in the monotonic decreasing curves were 

distributed between -5 and 0. These chemicals, classified either as nonmonotonic or monotonic, 

but with relatively high nonlinearities, are in line with the characteristics of EDCs in that their 

concentration-response relationships can be complex. For the agonist mode assay, none of the 

known TDC chemicals were identified in any categories of the response curves. It is interesting 

to note that there are so fewer positive responses for agonist assay than for antagonist assay. 

When comparing the maximum responses as an agonist, and the minimum responses as an 
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antagonist, the maximum response was very small compared to the minimal response (Figure 

28). This result suggests that among the 10K library of chemicals tested, many chemicals can 

compete with T3 for TR, however, their binding with TR does not initiate the classical TR-

mediated signaling through TREs. Rather, they may just function as either passive or active 

repressors antagonizing the action of T3.  

 

Numerous theories have been hypothesized about the biological mechanisms of NMDR 

behaviors, which include i) opposing biological actions via two nuclear receptor isoforms, ii) 

nuclear receptor homodimerization, iii) formation of mixed-ligand receptor heterodimers, iv) 

weak coactivator recruitment by EDC-liganded spare receptors on promotors, v) incoherent 

feedforward through membrane and nuclear receptors, vi) ligand-induced receptor 

desensitization or degradation, vii) opposing effects of parent compound and its metabolite, 

viii) coactivator squelching, ix) induction of repressor, and x) negative feedback (Kohn and 

Portier 1993, Kohn and Melnick 2002, Conolly and Lutz 2004, Li, Andersen et al. 2007, 

Vandenberg, Colborn et al. 2012, Cookman and Belcher 2014, Lagarde, Beausoleil et al. 2015, 

Xu, Liu et al. 2017). While most of the mechanisms listed above remain to be validated, several 

computational models have been studied to investigate NMDR mechanisms within the classical 

nuclear receptor-mediated endocrine signaling framework (Kohn and Portier 1993, Kohn and 

Melnick 2002, Conolly and Lutz 2004, Li, Andersen et al. 2007). It is likely that the NMDR 

observed in the Tox21 TR assays may result from some of these mechanisms, which require 

further experiments to confirm. 

 

4.2. Pros. and Cons. of the Study 

The methodology of our study has the following limitations. Firstly, only the luciferase 

inhibition assay was used in the interference screening process. Autofluorescence assay was 
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not included to screen for positive results in the viability assays that may be due to 

autofluorescence. Secondly, the NMDR relationships discovered in vitro do not necessarily 

occur in vivo. Thirdly, beyond NMDR identification using the machine learning algorithms, 

modeling these responses to give a deeper understanding of the in-depth molecular mechanisms 

will need to be conducted in the future.  

 

Although there are limitations as described above, our study has the following 

strengths. Firstly, through the use of learning algorithms, it is able to analyze 10K chemicals 

and identify hundreds of chemicals with NMDR patterns in TR antagonist and agonist assays. 

Secondly, for the same chemical, the unique concentration-response data profiles in both 

agonist and antagonist mode provide a cornerstone for understanding the NMDR mechanism 

in TR assays. Thirdly, the custom-developed learning algorithms for TR NMDR identification 

are well suited for exploring other nuclear receptor high-throughput Tox21 assays as well. 

 

4.3. In relationship to other TH related assay results 

In our study, we looked at the TR signaling pathway as one of the factors that can be altered 

by TH levels in circulation. In order to better understand the impact on human health due to 

changes in TH levels, it is also necessary to evaluate whether EDCs can disrupt thyroid function 

at the thyroid stimulating hormone receptor (TSHR) and thyrotropin-releasing hormone 

receptor (TRHR) levels.  

 

 Shobair, Nelms et al. (2019) conducted a study to identify antagonists and agonists 

that can disrupt the TSHR signaling pathway. Of the 7,872 tested chemicals in this study, 441 

agonists (6%), 287 antagonists (4%), and 49 (0.6%) agonists and simultaneously antagonists 

were identified. Because receptor binding is specific and selective, they hypothesized in the 
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study that a large number of chemical results would be false positives. Accordingly, after 

conducting assays on autofluorescence and cytotoxicity, the result was that cytotoxicity had a 

significant effect on the antagonist priority rank as 68% of antagonists were found to be due to 

cytotoxicity. They suggested that phenols, organochlorine insecticides, and retinoids belong to 

agonist clusters. Shobair (2020) attempted integrating data in silico and in vitro to identify 

TRHR ligands. They identified 71 agonists (1%), 160 antagonists (2.1%), and 157 (2%) as both 

agonists and antagonists out of 7,872 tested chemicals, however, false negatives and positives 

cannot be ruled out without additional screening assays. Therefore, the main area going forward 

should be focused on how false positives and false negatives can be better screened out in 

studies related to TH assays. 
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5. Conclusion 

It should be admitted that our current understanding of how exposure at various concentrations 

of numerous endocrine disruptors, including TDCs, will ultimately affect the human body is 

extremely fragmented and limited. Nevertheless, beyond the traditional research techniques 

currently used in most exposure risk assessment fields, mathematical modeling techniques in 

systems biology and new research techniques including machine learning have been expanding 

their territories to evaluate the health effects of endocrine disruptors (Soto and Sonnenschein 

2010). The customized MATLAB algorithms we used here help us to better understand 

nonlinear relationships of environmental exposures. The nonlinearity in the response of a 

chemical has important implications in accurately predicting the risk of exposure to the 

chemical. Therefore, identifying nonlinear concentration-response relationship will help 

provide a scientific basis for improving safety assessment of chemical products that humans 

are exposed to in daily life. 
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