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Abstract 
 

 
The Structure of the Prodrome of Psychosis 

 
 
 

By Meng Shi 
 
 
 

 
Psychotic disorder is a group of serious illness that affects the mind. The symptoms are severe 
and it affects over 5% of the population. Among illness that affect people aged in 15 to 44, 
schizophrenia is the 8th leading cause of the disability worldwide. The first aim of this analysis is 
to conduct a latent class analysis on the clinical characteristics of adolescents at high risk of 
psychosis using the software Latent Gold. The second aim is to model the time to onset of 
psychosis in high-risk youth based on latent classes of comprehensive clinical information 
and socio-demographic variables. In this analysis, we used the Latent Class Analysis (LCA) 
approach to analyze variables collected as the North American Prodrome Longitudinal Study 
(NAPLS). The results showed that the four-class model was preferred according to the model 
selection criteria, such as AIC, BIC, and ICL-BIC. Based on these four subgroups, a proportional 
hazards model was used to characterize the relationship. In comparing the proportional hazards 
regression models with and without covariate measurement error, we found that the standard 
errors of the coefficients in the model with measurement error are smaller than the ones 
without measurement error.  
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1. Introduction 

Psychotic disorders, such as schizophrenia and affective psychotic disorders, are a group of 

serious illnesses that affect the mind. They are associated with impairment in emotional, 

cognitive and social functioning, potentially leading to long-term disability. Two instruments 

were developed by the PRIME prodromal research team at Yale University to rate and track the 

phenomena cross-sectional and over time. These instruments are the Structured Interview for 

Prodromal Syndromes (SIPS) and the Scale of Prodromal Symptoms (SOPS). The SOPS consist 

of five positive symptom items, six negative symptom items, four disorganization symptom 

items, and four General symptom items. Each item has a severity scale rating from 0 (Never, 

Absent) to 6 (Severe/ Extreme – and Psychotic, for the positive items). The severity of the 

prodromal stage is judged according to the sum of the ratings from each of the SOPS items and 

ranges from 0 to 114. Thus, there are severity ratings from the overall scale, each domain of 

pathology, as well as individual items. The SIPS includes 29 major probes organized according 

to each positive symptom item in the SOPS. (Miller, McGlashan et al. 1999). In the SIPS, 

patients are also rated according to their Global Assessment of Functioning (GAF), a DSM IV 

Schizotypal Personality Disorder criterion checklist, and family history of mental illness. The 

SIPS is used to diagnose the prodromal syndromes and may be thought of as analogous to the 

Structured Clinical Interview for DSM-IV (SCID) or other structured diagnostic interviews 

(Miller, McGlashan et al. 2003). The SIPS includes the SOPS, the Schizotypal Personality 

Disorder Checklist, a family history questionnaire(Andreasen, Endicott et al. 1977), and a 

well-anchored version of the Global Assessment of Functioning scale (GAF) (Hall and Parks 

1995). 
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Accurate assessment of the individual risk for psychotic disorders has great value. The risk for 

psychosis is always defined primarily on the basis of attenuated positive symptoms; studies 

showed that early impaired social and role functioning appeared to be risk factors for psychosis 

(Cornblatt, Carrion et al. 2012). Meanwhile, family history, gender and age are suggested to be 

the examples of baseline risk factors for psychotic disorders (Heckers 2009).  

 

The symptoms of a psychotic disorder vary from person to person and may change over time. 

The major symptoms are hallucinations and delusions. When symptoms are severe, people with 

psychotic disorders have difficulty staying in touch with reality and often are unable to meet 

ordinary demands of daily life. Approximate 5% of the population is affected by psychotic 

disorders. They are some of the most distressing and costly diseases, and schizophrenia is the 8th 

leading cause of disability worldwide in 15 to 44 years of age (Schultze-Lutter，Frauke, 

Ruhrmann et al. 2008). In most cultures, these disorders are highly stigmatized which makes 

treatment and integration into the community difficult.  

 

Psychosis nearly always emerges in late adolescence or early adulthood, with a peak between 

ages 18 and 25, when the prefrontal cortex is still developing. The risk factors for schizophrenia 

in adolescents include a schizotypal personality, sub-threshold psychotic symptoms, functional 

decline and a family history of schizophrenia (Yung, Phillips et al. 2004, Owens and Johnstone 

2006). The identification and prevention of individuals prodromal for schizophrenia and other 

psychotic disorders are significant public health challenges.  
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The North American Prodrome Longitudinal Study (NAPLS) is a consortium of clinical research 

programs dedicated to the early detection and prevention of psychotic disorders and other forms 

of serious mental illness. It is a consortium of eight independent NIMH-funded prodromal 

studies located at Emory University, Harvard University, University of California (UCLA), 

University of California San Diego (UCSD), University of North Carolina Chapel Hill, 

University of Toronto, Yale University, and Zucker Hillside Hospital. The study combined 

previously collected prospective, longitudinal data into a common federated database. The 

NAPLS dataset constitutes the largest currently available longitudinal set of data on potentially 

prodromal patients and is currently being utilized to address a series of scientific questions about 

the nature of the currently defined prodromal syndromes (Cannon, Cadenhead et al. 2008). All 

the subjects in NAPLS database were evaluated using the SPIS; and they were assessed clinically 

every six months over a two years follow-up period, and tested yearly on laboratory procedures 

at baseline, 12 and 24 months. In addition, data were collected on demographic, academic/work, 

and diagnostic characteristics of all subjects (Addington, Cadenhead et al. 2007).  

 

One goal of the current study was to incorporate information concerning scores of Structured 

Interview for Prodromal Syndromes (SIPS), Role Functioning Scale, and Social Functioning 

Scale to arrive at empirically defined subgroups of the prodrome of psychosis. Another goal was 

to assess whether sociodemographic factors were covariates affect the relative frequency of the 

latent classes. This was accomplished by using latent class analysis (LCA), a statistical method 

to investigate empirically the structure of heterogeneous syndromes. LCA is a likelihood-based 

approach to elucidate the underlying structure or subgroups of the study population based on the 

set of observed feature variables (Hanfelt, Wuu et al. 2011). Typically, these latent classes 
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cannot be observed directly, but they are also meaningful. It is a powerful statistical tool in 

detecting subgroups or subcategories.  

 

In the current study, we used the LCA approach to analyze variables collected as the North 

American Prodrome Longitudinal Study (NAPLS). A total of 888 subjects enrolled in North 

American prodromal schizophrenia research projects between 1998 and 2005 were included in 

the baseline database. The specific variables we used in the LCA are the total SIPS positive score, 

the total SIPS negative score, the total SIPS disorganization score, the total SIPS general score, 

global social functioning scale score and global role functioning scale score. In our study, the 

total Positive Symptom score, the total Negative Score, total Disorganization Score, and the total 

General Score were obtained by adding up all the sub-symptoms scores in each category 

respectively. 

 

A second purpose of this study was to construct survival analysis by using proportional hazards 

model to characterize the relationship between time to psychosis and the prodromal subgroups as 

well as demographic factors. In a standard survival analysis model, true values of the covariates 

are required to implement the partial likelihood inference procedure. However, in our study, 

some of the covariates might be measured with error. In the presence of covariate measurement 

error, special methods are acquired to fit the proportional hazards model. In this study, we used 

the corrected score approach which can be further classified as parametric correction proposed 

by Nakamura (Nakamura 1992). Nakamura’s approach applies the corrected score function 

method to the proportional hazards model when measurement errors are additive. 
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The covariates in this study to be included in a proportional hazards model are a combination of 

covariates with and without measurement error. The prodromal subgroup covariates, which were 

obtained by latent class analysis, are measured with error, whereas the demographic covariates, 

such as gender and race, are measured without error. For the prodromal subgroup covariates, 

since the measurement made with a measuring device is approximate, so if same object was 

measured two different times, the two measurements may not be exactly the same. The 

difference between two measurements is called an “error” in the measurements. It represents the 

uncertainty in measurement. The error of measurement is a mathematical way to show the 

uncertainty in the measurement; it is the different between the result of the measurement and the 

true value.  
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2. Method 

2.1 Coding Psychosis 

To characterize the diversity of prodromal subgroups, we selected some relevant variables from 

the NAPLS baseline dataset. The Structured Interview for Prodromal Syndromes (SIPS), which 

was developed by the research team at Yale University, is a structured diagnostic interview used 

to diagnose the prodromal syndromes that was developed by Miller et al. and McGlashan et al 

(2001). The validity of the SIPS in the diagnosis of prodromal syndrome for psychosis has been 

confirmed by several reports (Miller and Cicchetti 2004). We assessed the SIPS positive, 

negative, disorganized and general symptoms for all the participants. In each symptom category, 

we used the sum of all the sub-symptoms scores to summarize the participants’ status. Larger 

score indicates more severe impairment.  

 

We also included the global social functioning scale and the global role functioning scale. The 

influence of social functioning and role functioning in individuals at clinical high risk for 

psychosis was examined in some studies (Carrion, Goldberg et al. 2011). Based on the original 

data, the larger social functioning score and role functioning score, the less severe condition. In 

order to be consistent, we change the sign of the scores to present the participants’ social and role 

functioning status.  

 

In addition to these variables, we considered the covariates of age, gender, race and parental 

education in our polytomous logistic regression model. In building the model, we treated the 

covariate race as a categorical variable with two categories, black and others. Meanwhile, we 

divided the years of parental education into 2 groups by the mean value.  
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Psychiatric diagnoses are categorized by the Diagnostic and Statistical Manual of Mental 

Disorder, 4th Edition. It is known as the DSM-IV, it includes all currently recognized mental 

health disorders. The code of DSM-IV are used to describe the features of a given mental 

disorders and indicate how the disorder can be distinguished from others. The DSM-IV code for 

psychosis for this study see Appendix 1.  

 

2.2 Latent Class Analysis 

In this analysis, we used the Latent Gold 4.0 software package (Statistical Innovations, Inc., 

Belmont, MA) to conduct the Latent Class Analysis. Latent Gold 4.0 Basic implements the most 

important types of latent class and finite mixture models in three modules called Cluster, 

DFactor, and Regression. The differences between these three modules arise from the fact that 

the application types of latent class analysis differ with respect to the required data organization 

and nature of the latent variables (Vermunt and Magidson 2005). This analysis constructed a 

Cluster Module. The Cluster Module can be used to estimate standard Latent Class models for 

categorical indicators, as well as mixture-based clustering models for continuous and mixed 

indicators. Here is a brief introduction of the basic concepts of Latent Class Cluster Module.  

 

2.2.1 Basic components of a Latent Class Cluster model 

We let 𝑦!! ,𝑦!! ,… ,𝑦!" denote a random sample of size n, T response variables or indicators, 

1 ≤ 𝑡 ≤ 𝑇. In the Latent Class Module, the exogenous variables that vary between cases and that 

may be used to predict class membership are called covariates, and are denoted as 𝑧!"!"# , 

1 ≤ 𝑟 ≤ 𝑅 , where R is the number of covariates. There are direct relationships between 
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indicators and /or direct effects of covariates on indicators. It is assumed that there is a single 

nominal latent variable x with G categories, 1 ≤ 𝑥 ≤ 𝐺. The categories of this nominal latent 

variable are called Clusters or Classes.  

 

We used the bold face for vectors, that is, the symbols 𝒀!   𝑎𝑛𝑑  𝒁!!"# refer to the entire set of 

responses and covariate values of case i. Also, symbol 𝒀!! denoted one of the H subsets of 𝑦!" 

variables, and 𝑇!∗ denoted the number of variables in subset h.  

 

2.2.2 Probability Structure  

The Latent Gold Cluster Module is based on the mixture model probability structure that defines 

the relationships between the covariates, latent, and response variables:  

 

𝑓(𝒀!   |  𝒁!!"#) = 𝑃 𝑥 𝒁!!"#
!

!!!

𝑓(𝒀!|𝑥,𝒁!!"#) = 𝑃 𝑥 𝒁!!"#
!

!!!

𝑓 𝑦!" 𝑥
!

!!!

      (1) 

 

In this equation, the covariates affect the latent variable but have no direct effects on the 

indicators, and indicators are assumed to be mutually independent given cluster membership. 

 

The most general probability structure used is the one that allows the inclusion of direct effects 

of covariates on indicators and association / correlation between indicators within clusters. In this 

probability structure, the T indicators have to be grouped into H sets, where the indicators 

belonging to the same set may be correlated within clusters. The most general probability 

structure is  
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𝑓(𝒀!   |  𝒁!!"#) = 𝑃 𝑥 𝒁!!"#
!

!!!

𝑓(𝒀!|𝑥,𝒁!!"#) = 𝑃 𝑥 𝒁!!"#
!

!!!

𝑓 𝒀!! 𝑥,𝒁!!"#
!

!!!

.          (2) 

 

As can be seen, 𝑓  (𝒀!   |  𝒁!!"#) is the probability density corresponding to a particular set of 𝒀! 

values given a particular set of 𝒁!!"#  values. The middle part of equation (2) shows the 

𝑃 𝑥 𝒁!!"#  is the mixing weights, which can be denoted by 𝜋!|𝒁!!"# , 1 ≤ 𝑥 ≤ 𝐺, that is the 

probability of belonging to certain latent class given an individual’s realized covariates values. 

And the 𝑓  (𝒀!|𝑥,𝒁!!"#) is the probability density of 𝒀! given x and 𝒁!!"# which denotes the 

mixture densities. Thus, the latent class variable x can be influenced by the covariates of z 

variables, and the latent class variable x and the covariate variables z may influence the response 

variable y.  

 

Noticed in the last part of equation (2) above, it implies that the unobserved variable x intervenes 

between the 𝒁!!"# and the 𝒀! variables:  

 

𝑓 𝒀! 𝑥,𝒁!!"# = 𝑓(𝒀!!|𝑥,𝒁!!"#)
!

!!!

. 

 

It is assumed that the y variables are mutually independent given the latent and covariates 

variables. Moreover, the y’s belonging to the same set h may be correlated within clusters.  

 

2.2.3 Conditional distributions 
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A particular distributional form is assumed for 𝒀!! based on the scale types of the variables in a 

set. A set may consist of one or more categorical variables, one or more continuous variables, or 

a single count variable. When the variables are categorical, a multinomial distribution is assumed 

for  𝒀!!. For continuous variables, normal distribution is often used. Counts can be modeled via 

Poisson or binomial. Here we only talk about the linear predictors and corresponding regression 

models for categorical and continuous response variables.  

 

For continuous and count indicators, we get the linear predictor 

 

𝜂!,𝒁!!"#
! = 𝛽!! + 𝛽!!! + 𝛽!! ∙ 𝑧!!"# ,

!

!!!

 

 

where 𝛽!! is the intercept, 𝛽!!!  the effect of the Clusters on 𝑦!", and 𝛽!! the direct effect of 

covariate r on the indicator concerned. 𝛽!!!  have to be imposed by effect or dummy coding 

constraints.  

 

2.2.4 Latent variable 

In equation (2), the mixing weights 𝑃 𝑥 𝒁!!"#  which can be denoted as 𝜋!|𝒁!!"#  are 

nonnegative quantities that sum to one, that is, 

 

0 ≤ 𝜋!|𝒁!!"# ≤ 1     𝑥 = 1,… ,𝐺  

and  
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𝜋!|𝒁!!"#
!

!!!

= 1.     

 

The values of the latent variables given the covariates values are assumed to come from a joint 

multinomial distribution. The multinomial probability 𝑃 𝑥 𝒁!!"#  is parameterized as follows:  

𝑃 𝑥 𝒁!!"# = 𝜋!|𝒁!!"# =
exp  (𝜂!|𝒁!!"#)
exp  (𝜂!!|𝒁!!"#)

!
!!!!

      .   

 

2.2.5 Local independence 

The local independence assumption is the basic assumption of the Latent Class model. Lack of 

fit of a Latent Class model is caused by violation of this assumption. Increasing the number of 

classes can help to get an acceptable fit model. An alternative way is to relax the local 

independence assumption by allowing for associations between indicators as well as direct 

effects of covariates on the indicators (Hagenaars 1988).  

 

Latent Gold calculates bivariate z-y and y-y residuals, which can be used to detect which pairs of 

observed variables are more strongly related than can be explained by the formulated model. 

Latent Gold starts by setting up a probability structure corresponding to a local independence 

model. When users include local dependencies using information on bivariate residuals, the 

program automatically sets up the correct and most parsimonious probability structure for the 

situation concerned.  

 

The most general Latent Class Cluster model is the model for mixed mode data. This model is 

used when one has y variables of different scale types. The structure that serves as the starting 
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point is again the local independence structure that we also used for categorical and continuous 

variables (see equation (1)). For each indicator, the user has to specify whether it is nominal, 

ordinal, continuous, or a count. It is possible to include covariates in LC Cluster models for 

mixed mode data. These covariates can also have direct effects on the various types of indicators.  

 

2.3 Proportional hazards model 

The Cox proportional hazards model, which was introduced by Cox in 1972, is a broadly 

applicable and the most widely used method of the survival analysis.  

 

For the data with sample size n, for 𝑗 = 1,… ,𝑛 let 𝑇! represents the time on study for the jth 

patient, ∆! is the event indicator for the jth patient, which ∆!= 1 means the event has occurred. 

𝒁! 𝑡 = 𝒁! = (𝑍!!, . . . ,𝑍!"  )! is the vector of covariates for the jth individual at time t.  

 

Let ℎ 𝑡 𝒁  be the hazard rate at time t for an individual with risk vector Z. The basic model due 

to Cox (1972) is:  

 

ℎ 𝑡 𝒁 = ℎ! 𝑡 exp  (𝜷!𝒁) = ℎ! 𝑡 exp 𝛽!𝑧!

!

!!!

 

 

where ℎ! 𝑡  is an unspecified baseline hazard at t, and 𝜷 = (𝛽!,… ,𝛽!)! is a parameter vector. 

This is a semiparametric model because a parametric form is assumed only for the covariate 

effect, and the baseline hazard rate is nonparametric.  
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The Cox model is often called a proportional hazards model because, if we look at two 

individuals with covariate values Z and 𝒁∗, the ratio of the hazard rate is: 

 

ℎ(𝑡|𝒁)
ℎ(𝑡|𝒁∗) =

ℎ! 𝑡 exp 𝛽!𝑍!
!
!!!

ℎ! 𝑡 exp 𝛽!𝑍!∗
!
!!!

= exp  [ 𝛽!(𝑍! −
!

!!!

𝑍!∗)] 

 

which is a constant. Thus, the hazard rates are proportional.  

 

We assume that censoring is noninformative such that, given 𝒁!, the event and censoring time 

for the jth patient are independent. Suppose there are no ties between the event times. Let 

𝑡! < 𝑡! < ⋯ < 𝑡! denote the ordered event times and 𝑍(!)! be the kth covariate associated with 

the individual whose failure time is 𝑡! . Define the risk set at time 𝑡! , and the set of all 

individuals who are still under study at a time just prior to 𝑡! is R(𝑡!). The probability that an 

individual dies at time 𝑡! with covariates 𝒁(!), given one of the individuals in R(𝑡!) dies at this 

time, is given by 

 

𝑃 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙  𝑑𝑖𝑒𝑠  𝑎𝑡  𝑡𝑖𝑚𝑒  𝑡! 𝑜𝑛𝑒  𝑑𝑒𝑎𝑡ℎ  𝑎𝑡  𝑡!   ]   

                                                      =
𝑃 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙  𝑑𝑖𝑒𝑠  𝑎𝑡  𝑡! 𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙  𝑡𝑜  𝑡!]
𝑃 𝑜𝑛𝑒  𝑑𝑒𝑎𝑡ℎ  𝑎𝑡  𝑡! 𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙  𝑡𝑜  𝑡!

  =
ℎ[𝑡!|𝒁(!)]

ℎ[𝑡!|𝒁!]!∈!(!!)

=
ℎ! 𝑡! exp  (𝜷!𝒁(𝒊))

ℎ! 𝑡! exp  (𝜷!𝒁𝒋)!∈!(!!)
=

exp  (𝜷!𝒁(𝒊))
exp  (𝜷!𝒁𝒋)!∈!(!!)

. 

 

Multiplying these conditional probabilities over all deaths, then the partial likelihood function is:  
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𝐿 𝛽 =
exp  (𝜷!𝒁(𝒊))

exp  (𝜷!𝒁𝒋)!∈!(!!)

!

!!!

=
exp  ( 𝛽!𝑍(!)!

!
!!! )

exp  ( 𝛽!𝑍!"
!
!!! )!∈!(!!)

!

!!!

 

 

Note that the numerator of the likelihood depends only on information from the individual who 

experiences the event, meanwhile the denominator is about the information of all individual who 

have not yet experienced the event.  

 

Let 𝑙 𝜷 = ln  (𝐿(𝜷)), then  

 

𝑙 𝜷 = 𝛽!𝑍(!)!

!

!!!

!

!!!

− ln exp 𝛽!𝑍!"

!

!!!!∈! !!

!

!!!

. 

 

By taking parial derivatives of above equation with respect to the 𝛽’s, let 𝑈! 𝜷 = !" 𝜷
!!!

,𝑚 =

1,… ,𝑝. Then  

 

𝑈! 𝜷 = 𝑍 ! !

!

!!!

−
𝑍!" exp 𝛽!𝑍!"

!
!!!!∈! !!

exp 𝛽!𝑍!"
!
!!!!∈! !!

!

!!!

. 

 

The partial maximum likelihood estimates are found by solving the set of p nonlinear equations 

𝑈! 𝜷 = 0,𝑚 = 1,… ,𝑝.  

 

2.4 Measurement with error 
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If an observed value, say w, is used as the true value z in a regression model, it possibly 

underestimates the effect of z. Particularly, in this analysis, the observed value 𝑤!  is the 

estimated probabilities for the ith participant in the subgroups. The true value 𝑥! stand for the 

subgroup that the ith participant belongs to. For example, if there are 4 subgroups, the value of 

𝑤! could be (0.2, 0.1, 0.1, 0.6), an the value of 𝑥! is (0, 0, 0, 1). 

 

Suppose 𝑥! denotes p time-independent covariates with observed value 𝑤! = 𝑥! + 𝜀!, where 𝜀! 

is the error with the known variance matrix Σ. Meanwhile, we assume that (𝑇! ,𝐶! ,𝑋! , 𝜀!) are IID 

across i, and 𝜀! is independent of (𝑇! ,𝐶! ,𝑋!). If the covariates are not error contaminated, the 

corresponding error variance is 0.  

 

Let W denotes the set of w’s. Then  

 

𝑈 𝜷,𝑾,𝒀 = {𝒘 ! − 𝐸𝒊(𝑾|𝜷)} 

 

is called a native score function if w’s are used in equation (3) instead of z’s. If 𝜷! satisfies 

𝑈 𝜷,𝑾,𝒀 = 0, then 𝜷! is even asymptotically biased (Prentice 1982). A correction of this 

bias is proposed by using a function 𝑈∗ 𝜷,𝑾,𝒀  whose expectation 𝐸∗{𝑈∗ 𝜷,𝑾,𝒀 } with 

respect to the 𝜀’s given Y and Z coincides with 𝑈 𝜷,𝑾,𝒀 . This 𝑈∗ is called a corrected score 

function, and 𝛽∗ such that  

 

{𝑊! + Σβ−
𝑌!(!)𝑊!exp  (𝛽!𝑊!)!

!!!

𝑌!(!)exp  (𝛽!𝑊!)!
!!!

}
!

!

!

!!!

×𝑑𝑁! 𝑢 = 0 
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where 𝑁! 𝑢 = 𝐼(𝑉! ≤ 𝑢,∆!= 1) is the counting process and 𝑌! 𝑢 = 𝐼(𝑉! ≥ 𝑢) is the at risk 

process(Nakamura 1992). 
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3. Results 

The NAPLS participants’ demographic and clinical characteristics are given in Table 1.  

 

In the first part of the analysis, we fitted a series of model with one to four latent classes  

 

TABLE 1. Demographic and Clinical Characteristics  
of 888 High-Risk Teenagers From NAPLS  

 Mean ± SD or Frequency (%) 
Demographic 
   Age, years 
   Gender: male 
   Race: 

Black 
Others 

   Parental Education:  
Low 
High 

 
17.8 ± 4.4 
516 (58) 
 
118 (13) 
757 (85) 
 
348 (39) 
424 (48) 

Clinical Characteristics 
   Sum of SIPS Positive Score 
   Sum of SIPS Negative Score 
   Sum of SIPS Disorganization Score 
   Sum of SIPS General Score 
   Global Social Functioning Scale 
   Global Role Functioning Scale 

 
8.4 ± 5.9 
9.8 ± 7.4 
4.8 ± 4.0 
6.1 ± 4.8 
-6.5 ± 1.6 
-6.6 ± 1.8 

Notes: Number of subjects for whom data were unavailable: Race, N=13; Parental Education, 
N=116; SIPS positive, N=117; SIPS negative, N=138; SIPS disorganization, N=131; SIPS 
general, N=133; Social functioning, N=62; Role functioning, N=63.  
 

and 10 response variables. We found that the four-class model was preferred according to the 

following model selection criteria: AIC, BIC and ICL-BIC. The four-class model has the 

minimum values of all these three criteria (Table 2). 

 

The results indicated that the SIPS scales, the role functioning and social functioning all 

contributed to the classification of the subgroups, the p-value of the Wald tests yielded p<0.001 
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TABLE 2 Model Summary 
  Npar LL AIC BIC ICL-BIC 

Model 1 1-Cluster 12 -10772.4145 21568.8290 21624.4761 21624.4671 
Model 2 2-Cluster 28 -9339.2557 18734.5115 18864.3547 18951.41373 
Model 3 3-Cluster 43 -8808.9975 17703.9950 17903.3971 18029.50742 
Model 4 4-Cluster 61 -8421.2972 16964.5944 17247.4671 17533.34665 

*The 4-Cluster model has the smallest AIC, BIC and ICL-BIC. 
 

for each variable. The high-risk teenagers can be classified into following 4 subgroups (Table 3): 

1) the first subgroup has the relative frequency of 46% that is the largest relative frequency 

among these four subgroups. This subgroup is the most severely impaired, since it contains the 

largest mean values of the sum of SIPS positive score, the sum of SIPS disorganization score, the 

sum of SIPS general score and the role functioning score. 2) The second subgroup has the 

relative frequency of 23%, the mean values of the response variables in this category are all 

much smaller than the overall average values of the response variables. 3) The third subgroup 

has the relative frequency of 18%. The mean values of the SIPS negative score, the SIPS  

 

TABLE 3 Maximum Likelihood Estimates of Means 
From a Model with Four Latent Subgroups 

 Highly 
Impaired 

Medium 
Impaired 

Negative Symptoms 
and Impaired Social 

Function 

Mildly 
Impaired 

Frequency 46% 23% 18% 12% 
BLSumPos Mean 10.6 5.2 9.2 0.4 
BLSumNeg Mean 13.1 3.6 13.9 0 
BLSumDis Mean 6.4 1.5 6.4 0.1 
BLSumGen Mean 8.5 2.3 7.6 0.1 
BLSocNow Mean -6.2 -7.4 -5 -8.9 
BLRolNow Mean -5.8 -7.5 -6.1 -9 

* Larger Social Functioning Score and Role Functioning Score mean more severe condition. 
* The bootstrap p-value for order restricted 4-cluster model and non-order restricted 4-cluster 

model is 0.002. 
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disorganization score and the social functioning score in this subgroup are all the largest ones 

among 4 subgroups. 4) The fourth subgroup has the relative frequency of 12%. In this subgroup, 

the mean values of all the variables are the smallest among the 4 subgroups; meanwhile, they are 

much smaller than the overall average values. The fit of this four classes model was significantly 

better than the fit under an order-restricted four classes model that posited a unidimensional 

construct of severity (bootstrap p-value<0.05).  

 

The results showed the association between the covariates and the empirically derived subgroups 

(Table 4). Compared with participants in the fourth subgroup, participants in the other three 

subgroups were more likely to be younger and male.  

 

In the original 888 patients, based on the data records, there are only 198 teenagers completed 

the follow-up interview and had no missing values. We fitted the proportional hazards model for 

all the cluster of psychosis, with adjustment for covariate measurement error. The calculations of 

the covariance matrix of the latent subgroups are given in the Appendix 2. Table 5 shows the 

comparison of the estimate of the coefficients between the naive model and model with 

measurement error. The only covariate that is real significant is Parental Education. The SE of 

the model with measurement error is smaller than that of the native model. Since the 

measurement error is very small among different subgroups, the differences in results between 

these two models are tiny.  

 

Additionally, this model may be unreliable if the dataset contain few events, which may be the 

case if either the disease or the event of interest is rare. Compared to the sample size (N=198), 
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the number of event (n=8) is small in this case. That is main reason for the meaningless 

estimation of the naïve model, especially for the estimation of Cluster 3. Ambler et al. did some 

simulation studies suggesting that the Cox models fitted using maximum likelihood can perform 

poorly when there are few events, and that significant improvement are possible by taking a 

penalized modeling approach. Meanwhile, he suggested that the ridge method generally 

performs the best, although lasso is recommended if variables selection is required under this 

situation (Ambler, Seaman et al. 2012). These methods can be implemented in further analysis.  

TABLE 4 Estimated Odds Ratios and 95% Confidence Intervals for the Associations 
Between Demographic Characteristics and Empirically Based Subclassifications 

  Highly 
Impaired 

Medium 
Impaired 

Negative Symptoms and 
Impaired Social Function 

Mildly 
Impaired 

Baseline 
Age 

 0.89 
(0.84, 0.93) 

0.82 
(0.76,0.89) 

0.86 
(0.80, 0.92) 

1 

Gender Female 0.46 
(0.28, 0.77) 

0.77 
(0.43, 1.39) 

0.33 
(0.18, 0.61) 

1 

Male 1 1 1 1 
Race Not 

Black 
0.79 

(0.31, 2.01) 
0.38 

(0.15, 1.01) 
0.67 

(0.24, 1.84) 
1 

Black 1 1 1 1 
ParentEd Low 1.45 

(0.86, 2.43) 
0.86 

(0.47, 1.56) 
1.07 

(0.59, 1.93) 
1 

High 1 1 1 1 
 

TABLE 5 Estimated Log Hazard Ratios for the Time of Onset of Psychosis 
 with and without Measurement Error 

 𝛽 

 Naive Analysis Analysis with Adjustment for 
Measurement Error 

 Estimate SE Estimate SE 
Race  0.463 1.080 0.506 0.796 
ParentEd -1.327 0.821 -1.261 0.734 
Gender 0.461 0.837 0.490 0.768 
Cluster1 -0.549 0.876 -0.115 0.843 
Cluster2 -1.297 1.481 -0.812 1.882 
Cluster3 -97.506 7184 -0.347 0.985 
Cluster4 -0.251 1.300 1.048 1.481 
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4. Discussion 

4.1 Discussion of Results 

This study aimed to detect the structure of the prodrome of psychosis and construct a 

proportional hazards model to characterize the relationship between time to psychosis and 

prodromal subgroups as well as demographic factors. In this study, the high-risk teenagers 

could be classified into 4 subgroups based on the prodrome of psychosis. Compared to the 

subgroup that contained mildly impaired teenagers, the younger and male teenagers tended to 

have severe psychosis prodrome. No statistically significant results could be concluded based 

on the proportional hazards model for the subgroups of psychosis with and without 

adjustment for covariate measurement error. The only covariate that approached statistical 

significance was Parental Education, but conclusions were limited owing to the small number of 

adolescents who were diagnosed with psychosis during the course of the study. 

 

4.2 Future work 

For studying the association between evolution of quantitative outcomes and a clinical event, two 

kinds of joint models are usually proposed: shared random-effect models and latent class 

analysis. A shared random-effect model (Henderson, Diggle et al. 2000) models the repeated 

quantitative outcome with a mixed model and includes the individual random coefficients as 

covariates in the model for the event. In contrast, a latent class model (Lin, Turnbull et al. 2002) 

assumes that the population is made of various subpopulations with different longitudinal 

evolutions modeled by a latent class variable. We chose the way of latent class model in this 

analysis since it had some advantages over shared random-effect models. Firstly, the 

assumptions of shared random-effect models that the random-effects come from a common 
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Gaussian distribution is quite unrealistic when the population consists of several subgroups. 

Moreover, latent class models are simpler to interpret compared with the shared random-effect 

models that estimate correlations between the event and the random-effects. In latent class 

analysis, the impacts of covariates on the probability of each profile are evaluated and the 

probability of the event in each latent class is estimated (Proust-Lima, Letenneur et al. 2007).   

 

Latent class models for joint analysis of a longitudinal outcome and an event have already been 

developed. Proust-Lima et al. (2006) proposed a nonlinear model with a latent process to analyze 

multivariate and non-Gaussian longitudinal data using flexible parameterized nonlinear 

transformations to model the relationship between the longitudinal outcomes and the latent 

process. However, in Proust-Lima et al.’s analysis, there were two basic assumptions in their 

analysis. Firstly, they assumed that the clinical outcome is binary. And, secondly, the 

conditionally independent between the clinical outcome and the manifest data used to elucidate 

the latent classes was assumed. Moreover, their approach required special software to fit the 

unknown parameters in the joint likelihood model (Proust-Lima, Letenneur et al. 2007). In 

contrast, the method in this analysis extended the first assumption by accommodating the time to 

the clinical outcome, and did not require the second assumption. Additionally, our method was 

implemented using existing, separate software programs for latent class analysis and 

proportional-hazards regression analysis with errors-in-covariates.  

 

In this analysis, we used the standard parametric correction estimating equation to calculate the 

estimators. But this estimating equation is biased. In the presence of covariate measurement error 

with the proportional hazards model, several other functional modeling methods have been 
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proposed, such as the conditional score estimating equation (Tsiatis and Davidian 2001), the 

second-order parametric correction equation (Nakamura 1992), and the nonparametric correction 

estimator (Huang and Wang 2000). It is showed that the conditional score estimating equation is 

unbiased, which suggesting that the conditional score estimator might perform better in the case 

of finite samples compared to the standard parametric correction estimating equation (Song and 

Huang 2005). Nakamura (1992) also suggested that the second-order parametric correction 

equation performs better than the first-order correction under some specific situation.  

 

In addition, the measurement error model in this analysis is limited. Since we assumed that 

𝑤! = 𝑥! + 𝜀!, where 𝜀! is independent of (𝑇! ,𝐶! ,𝑋!). Then the range of 𝑤! should be strictly 

larger than the range of 𝑥!. But based on the assumptions in our analysis, the range of 𝑤! is the 

same with the range of 𝑥!. A better measurement error model needs to be explored in the future.  

 

The model as presented here includes only clinical information and social demographic variables. 

In the future study, it can be extended by adding neurophysiological and neurocognitive 

biomarkers information. Furthermore, we can consider conducting a joint model of the latent 

class subgroups and the covariates instead of using the combine model of latent class analysis 

and survival analysis.  
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6. Appendices 

Appendix 1 DSM-IV Code For Psychosis 

Schizophrenia and other psychotic disorders 

 Schizophrenia 

295.20 Catatonic type 

295.10 Disorganized type 

295.30 Paranoid type 

295.60 Residual type 

295.90 Undifferentiated type 

 295.40 Schizophreniform disorder 

 295.70 Schizoaffective disorder 

 297.1 Delusional disorder   

 298.8 Brief psychotic disorder 

 297.3 Shared psychotic disorder 

 Psychotic disorder due to 

 293.81 With delusions 

293.82 With hallucinations 

 298.9 Psychotic disorder NOS 

 

 

 

 

 



 29 

Appendix 2 

Consider a model with G latent classes. Let Y be the response variables, and let Z be the 

covariates affecting the relative frequencies of the class. In addition, let X be an unobserved 

vector indicating latent class membership. It follows that the posterior membership probabilities 

are given by  

 

τ y, z = E X y, z =   X+ ε，      E ε = 0,  

  

where   𝜀   can  be  regarded  as  the  measurement  error.     

  

Claim:   If   the   observed   data   𝑌! ,𝑍! , 𝑖 = 1,… ,𝑛   are   i.i.d.   then   a   consistent   estimator   of  

𝑉𝑎𝑟 𝜀 = Ω   (a  singular  matrix  of  rank  G-­‐1)  is  given  by   Ω   with  elements  

  

Ω!" =

1
𝑛

𝜏!"(1− 𝜏!")
!

!!!
    (𝑗 = 𝑘 ∈ {1,… ,𝐺})

−
1
𝑛

𝜏!"𝜏!"                       (𝑗 ≠ 𝑘 ∈ {1,… ,𝐺})
!

!!!

  

  

  

Proof:  For  notational   convenience,  we   implicitly  assume   that  X   is   fixed   in  all  probability  

calculations.  We  have:     
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                                              Ω = 𝑉𝑎𝑟 𝜏 𝑌 − 𝑋 = 𝑉𝑎𝑟 𝐸 𝑋 𝑌 − 𝑋

= 𝐸 𝑉𝑎𝑟 𝐸 𝑋 𝑌 − 𝑋 𝑌 + 𝑉𝑎𝑟 𝐸 𝐸 𝑋 𝑌 − 𝑋 𝑌

= 𝐸 𝑉𝑎𝑟 𝑋 𝑌 + 𝑉𝑎𝑟 𝐸 𝑋 𝑌 − 𝐸 𝑋 𝑌                                                                 

= 𝐸 𝑉𝑎𝑟 𝑋 𝑌                                                                                                                                                                                                     (1)  

  

Using   the   fact   that   𝑋|𝑌~𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚  (1;   𝜏! 𝑌 ,… , 𝜏! 𝑌 ),   it   follows   that   the   conditional  

variance-­‐covariance  matrix  of  X  has  elements  

  

𝑉𝑎𝑟(𝑋|𝑌)!" =
𝜏! 𝑌 1− 𝜏! 𝑌       (𝑗 = 𝑘 ∈ {1,… ,𝐺})
−𝜏! 𝑌 𝜏! 𝑌                       (𝑗 ≠ 𝑘 ∈ {1,… ,𝐺})  

  

  

By  (1)  and  the  Weak  Law  of  Large  Numbers,  a  consistent  estimator  of  Ω   takes  the  form     

  

Ω!" =

1
𝑛

𝜏!"(1− 𝜏!")
!

!!!
    (𝑗 = 𝑘 ∈ {1,… ,𝐺})

−
1
𝑛

𝜏!"𝜏!"                       (𝑗 ≠ 𝑘 ∈ {1,… ,𝐺})
!

!!!

  

  

which  completes  the  proof.     

 


