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Abstract 
 

Mathieu Moonshine: Mock Modular Lifts 
By Morad Ihab Hassan 

 
Classical Moonshine describes the remarkable phenomenon that the coefficients of 

Hauptmoduln are graded traces for the action of the Monster group, the largest of the 26 sporadic 
groups, on a graded infinite-dimensional module. A similar phenomena has been shown to hold for 
other sporadic groups, particularly the Mathieu group M24 where instead of Hauptmoduln, the 
graded traces are shown to be coefficients of mock modular forms. In a recent paper, Ono, Rolen, 
and Trebat-Leder relate a monstrous moonshine function to one of the Mathieu moonshine 
functions by constructing products of rational functions of the monstrous Hauptmodul via 
generalized Borcherds lifts on mock modular forms. The lifting procedure is that introduced in a paper 
by Bruinier-Ono. We conjecture a generalization of this lift for all the mock modular forms 
of Mathieu moonshine. In particular, our generalization relates Mathieu moonshine mock modular 
forms to the modular forms of Conway moonshine by evaluating Heegner points corresponding 
to various congruence subgroups of the modular group. We present data that supports our 
conjecture. 
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1 Introduction

1.1 Monstrous Moonshine

Monstrous Moonshine refers to the surprising connection between the representation theory

of the largest sporadic simple group G, known as the monster group, and functions which are

invariant under the action of certain subgroups of SL2(R) known as modular functions. For

example, taking the upper half-plane H := {z ∈ C : =z > 0} and γ ∈ Γ0(N) := {
(
a b
c d

)
∈

SL2(Z) : N |c}, we define the action

(
a b
c d

)
τ :=

aτ + b

cτ + d

Then, a meromorphic function f : H 7→ C is a modular function for Γ0(N) if f(τ) = f(γτ)

where γ ∈ Γ0(N). We refer to N as the level of the modular subgroup.

This connection began between the irreducible representations of the monster G and the

normalized modular Klein j-function:

J(τ) := j(τ)−744 =
(1 + 240

∑∞
n=1

∑
d|n d

3qn)3

q
∏∞

n=1(1− qn)24
−744 =

1

q
+196884q+21493760q2 +. . . (1)

where John McKay saw the first coefficient of the Klein j-function’s Fourier expansion could

be written as a linear combination of the dimensions of the irreducible representations of the

G. Then Thompson noticed the same was true with other coefficients as well such as

1 + 196883 + 21296876 = 21493760.

In Thompson [1979a], Thompson conjectured the existence of a special infinite-dimensional

graded representation V \ of G for which the dimension of the grade n part was the n-th

Fourier coefficient of J(τ).
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This conjecture was further expanded by Thompson, Conway, and Norton in Conway

[1979/80], Thompson [1979b] who considered this connection for arbitrary g ∈ G and con-

jectured that there existed a representation V \ for whose McKay-Thompson series, written,

T̃g(τ) :=
∞∑

n=−1

tr(g|V \
n)qn, (2)

were principal moduli, or Hauptmoduln, for certain genus zero groups commensurable with

SL2(Z). Conway and Norton’s conjectures were proved in full by Richard Borcherds Borcherds

[1998] in 1992 through developing the theory of vertex operator algebras Borcherds [1986].

1.2 Mathieu Moonshine

A similar phenomena occurs between certain mock modular forms and the Mathieu group

M24. The observation made in Eguchi et al. [2011] was given the q-series

H(τ) = 2q
−1
8 (−1 + 45q + 231q2 + . . .) = q

−1
8

(
−2 +

∞∑
n=1

tnq
n

)
,

the first few coefficients 45, 231, 770, . . . are in fact the dimensions of irreducible representa-

tions of M24.

We say a holomorphic function h(τ) on H is a weakly holomorphic mock modular form of

weight w for a discrete subgroup Γ of SL2(Z) if it has at most exponential growth as τ → α

for any α ∈ Q, and if there exists a homolorphic modular form f(τ) of weight 2 − w on Γ

such that the completion ĥ(τ), given by

ĥ(τ) = h(τ) + (4i)w−1

∫ ∞
−τ

(z + τ)−wf(−z)dz, (3)

is a (non-holomorphic) modular form of weight w for Γ for some multiplier system ψ. In

2



Table 1: The cycle shapes and attached eta-functions of the 26 conjugacy classes of the sporadic
group M24. The naming of conjugacy classes follows the ATLAS convention Conway et al. [1985]

[g] cycle shape ηg(τ)

1A 124 η(τ)24

2A 1828 η(τ)8η(2τ)8

2B 212 η(2τ)12

3A 1636 η(τ)6η(3τ)6

3B 38 η(3τ)8

4A 2444 η(2τ)4η(4τ)4

4B 142244 η(τ)4η(2τ)2η(4τ)4

4C 46 η(4τ)6

5A 1454 η(τ)4η(5τ)4

6A 12223262 η(τ)2η(2τ)2η(3τ)2η(6τ)2

6B 64 η(6τ)4

7AB 1373 η(τ)3η(7τ)3

8A 12214182 η(τ)2η(2τ)η(4τ)η(8τ)2

10A 22102 η(2τ)2η(10τ)2

11A 12112 η(τ)2η(11τ)2

12A 214161121 η(2τ)η(2τ)η(7τ)η(14τ)
12B 122 η(12τ)2

14AB 112171141 η(τ)η(2τ)η(7τ)η(14τ)
15AB 113151151 η(τ)η(3τ)η(5τ)η(15τ)
21AB 31211 η(3τ)η(21τ)
23AB 11231 η(τ)η(23τ)

this case, the function f is called the shadow of the mock modular form h and ψ is called

the multiplier system of h. For more detail, see Cheng and Duncan [2012].

This essentially states that a mock modular form can be adjusted by its shadow and

multiplier system to obtain a modular form but loses its holomorphicity in the process.

It has been shown that the function H(τ) is a weakly holomorphic mock modular form

of weight 1/2 on SL2(Z) with shadow 24η(τ)3 Eguchi and Hikami [2009], Dabholkar et al.

[2012]. This is very much like the case of Monstrous Moonshine. This occurrence of informa-

tion being encoded in a function which expressed modular(-like) properties led to a similar

exploration of moonshine with the M24 group and conjectures for the existence of certain

infinite dimensional representations of M24 that will behave interestingly for all g ∈M24.
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The McKay-Thompson series for each g ∈ M24 were proposed and are listed in Section

4.1. We arrive to a conjecture similar to that of Conway and Norton: does there exist a

K = ⊕∞n=0Kn module of M24 such that the McKay-Thomspon series, given by

Hg(τ) = q
−1
8

(
−2 +

∞∑
n=1

tr(g|K8n−1)qn

)
, (4)

also display special mock modular properties? Terry Gannon confirms the existence of such

a module in Gannon [2016].

We conclude this subsection by recalling properties of M24 which are relevant for our

results. The group M24 may be characterized as the automorphism group of the unique

doubly even self-dual binary code of length 24 with no words of weight 4, also known as the

(extended) binary Golay Code (see Cheng and Duncan [2012] for more information). This

perspectives permitsM24 a natural permutation representation of degree 24 which we denote

R. Via R, we may assign cycle shapes to each of its elements. Any cycle shape arising from

an element of M24 is of the form il11 i
l2
2 · · · ilrr where

r∑
s=1

lsis = 24,

for some ls ∈ N and 1 ≤ i1 < . . . < ir ≤ 23 with r ≥ 1. To each of the elements g ∈M24, we

can attach an eta-product, to be denoted ηg, which is the function on the upper half-plane

given by

ηg(τ) :=
∏
s

η(isτ)ls (5)

where
∏

s i
ls
s is the cycle shape attached to g, and η(τ) is the Dedekind eta function defined

as η(τ) := q1/24
∏

n>0(1− qn) for q(τ) := e(τ) where e(x) := e2πix.

4



1.3 Conway Moonshine

We direct the reader’s attention to one more significant case of moonshine, Conway Moon-

shine. Similar to Mosntrous Moonshine, in Conway [1979/80] Conway and Norton also

describe an assignment of genus zero groups Γg < SL2(R), to elements g of the Conway

group, CO0 . In addition to this assignment, several important results display the qualities of

Conway moonshine that are analogues to Monstrous moonshine. The first is recalled from

Conway [1979/80], Queen [1981].

Theorem 1.1. For any g ∈ CO0, regarded as a subgroup of SO(α), the function

tg :=
ηg(τ)

ηg(2τ)
(6)

is a principal modulus for a genus zero group Γg < SL2(R) containing some Γ0(N).

Here each ηg is an attachment similar to one described earlier in Mathieu moonshine. In

fact, we will soon see that our choice to attach ηg products to M24 was partly inspired by

Conway moonshine. We note CO0 is not representable as a permutations on 24 elements, so

the choice of ηg(τ) is determined by what is referred to in Duncan and Mack-Crane [2015]

as the Frame shape of g.

Remark 1.2. It is a fact M24 is a subgroup of CO0 (which can be remembered by reading

the exposition in Duncan and Mack-Crane [2015]). Interestingly, our assignment ηg for some

element g ∈M24 is equal to the assignment of ηg to this very same g as an element of CO0 .

Let T sg be defined as

T sg := tg(τ/2) + Cg, (7)

where Cg is constant added to normalize the function, or remove the non-vanishing constant

term. Then, Duncan and Mack-Crane show in Duncan and Mack-Crane [2015] that a 1
2
Z-

graded infinite-dimensional CO0 module, V s\ =
⊕

n≥0 V
s\
n/2, can be constructed which obtains
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the coefficients of these T sg ’s through the module’s McKay-Thompson series. Furthermore,

each of these T sg ’s are special, in that T sg (2τ) is the unique normalized principal modulus

attached to the genus zero group Γg. As we will see, these T sg ’s will be directly involved in

our research.

2 Our Conjecture

We propose generalizations of the generalized Borcherds lifts introduced in Bruinier and

Ono [2010] and used in Ono et al. [2015] to construct meromorphic modular functions on

Γ0(Ng) from certain mock modular forms arising from umbral moonshine. We conjecture an

extension of this lift to the special case of Mathieu moonshine mock modulars, and in doing

so, we establish a connection between the Mathieu group’s mock-modular graded twists and

rational products of modular functions arising from Conway moonshine.

To precisely state our generalization, we set up the following notation. Let ∆ be a

negative fundamental discriminant and r2 = ∆ (mod 8). Let the order of g be denoted by

ord(g). Note that a fundamental discriminant ∆ is an integer such that ∆ = 1 (mod 4) and

is square-free or D = 4m, where m = 2 or 3 (mod 4) and m is square-free. Then Ψ∆,r is

a function which takes Hg and produces a modular form, referred to as the Lift of Hg and

defined in the following way,

Ψ∆,r(τ,Hg) :=
∞∏
n=0

P∆,r(q
n, g), (8)

for

P∆,r(x, g) :=
∏

b∈Z/|∆|Z

exp
(
`∆,r (e(b/∆)x, g)

(
∆
b

))
, (9)
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where

`∆,r(y, g) :=
∞∑
k=1

(−1)k
yk

k
cgk(|∆|n2, rn), (10)

and cg(|∆|n2, rn) is defined by

cg(|∆|n2, rn) :=


tr(g|K|∆|n2) if rn ≡ 1 mod 4,

−tr(g|K|∆|n2) if rn ≡ −1 mod 4,

0 otherwise.

(11)

This notation is lengthy, yet as we will see, is rather simple to follow in practice. Before

continuing, We provide an example calculation for Ψ∆,r for an arbitrary (∆, r).

Example 2.1. Let [g] = 1A, then we have ord(g) = 1. We have

`∆,r(y, e) :=
∞∑
k=1

(−1)k
yk

k
cgk(|∆|n2, rn) =

∞∑
k=1

(−1)k
yk

k
ce(|∆|n2, rn)

=ce(|∆|n2, rn) log(1− y),

and

P∆,r(x, e) :=
∏

b∈Z/|∆|Z

exp
(
`∆,r (e(b/∆)x, e)

(
∆
b

))

=
∏

b∈Z/|∆|Z

(1− e(b/∆)x)ce(|∆|n2,rn)(∆
b ).
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Thus,

Ψ∆,r(τ,He) :=
∞∏
n=0

P∆,r(q
n, e)

=
∞∏
n=0

∏
b∈Z/|∆|Z

(1− e(b/∆)qn)ce(|∆|n2,rn)(∆
b )

Now given a conjugacy class [g], we define Tg in the following way,

Tg :=
ηg(τ)

ηg(2τ)
+ χ(g), (12)

where χ(g) is a constant added to normalize the rational form which can be found in Table

5. By defining Tg in this way, it is a meromorphic modular form on some discrete subgroup

commensurable with SL2(Z) Duncan and Mack-Crane [2015]. We call a Heegner point

a complex number the form α = −b
2a
±
√
b2−4ac

2a
with (a, b, c) = 1, Ng|a for Γ0(Ng), and

∆ = b2−4ac where ∆ is a fundamental discriminant. Finally, we call a pair (∆, r) admissible

for g if ∆ is a negative fundamental discriminant and r2 = ∆ (mod 4Ng). Now, we can present

our conjecture:

Conjecture 2.2. Given an admissible pair (∆, r) for conjugacy class [g], then Ψ∆,r(τ,Hg)

satisfies the following:

Ψ∆,r(τ,Hg) =
m∏
i=1

(Tg(τ)− Tg(αi))γi

(Tg(τ)− Tg(αi))γi
, (13)

where each αi is a satisfactory Heegner Point.

As a result of the conjecture, we have the following corollary.

Corollary 2.3. The twisted graded trace satisfies the equality

1

ε∆

m∑
i=1

γi(Tg(αi)− Tg(αi)) = tr(g|K∆), (14)

8



with

ε∆ =
∑

b∈Z/|∆|Z

e(b/∆) ·
(

∆

b

)
(15)

where αi is the same Heegner point and γi is some integer.

Remark 2.4. This conjecture is inspired by an example calculation in Ono et al. [2015]

for [g] = 1A which utilizes the generalized Borcherds products formed in Bruinier and Ono

[2010] to lift a weak harmonic Maass form of weight 1/2 to a meromorphic modular functions.

We present an example calculation for [g] = 2A.

Example 2.5. Let [g] = 2A. Then the corresponding modular function is

Tg =
η(τ)8

η(4τ)8
+ 8.

Picking admissible pair (∆, r) = (−7, 1), then

Ψ−7,1(τ,Hg) =
(Tg(τ)− Tg(α))2

(Tg(τ)− Tg(α))2

=1 + 6
√
−7q + (126 + 45

√
−7)q2 + · · · ,

where α = 3+
√
−7

8
.

We check Corollary 2.3,

ε∆ =
∑

b∈Z/|−7|Z

e(−b/7)

(
−7

b

)
= −
√
−7

and
1

ε∆

∑
i

γiTg(αi) = 6 = cg (7, 1) = tr(g|K7/8).

We provide another example here with a different fundamental discriminant ∆ = −15.

9



The case when [g] = 1A and (∆, r) = (−15, 1) was already done in Ono et al. [2015], so

again we proceed to the next case where [g] = 2A.

Example 2.6. Let [g] = 2A and (∆, r) = (−15, 1). Then

Ψ−15,1(τ,Hg) =
(Tg(τ)− Tg(α1))2(Tg(τ)− Tg(α2))2

(Tg(τ)− Tg(α1))2(Tg(τ)− Tg(α2))2

=1 + 14
√
−15q + (−1470 + 231

√
−15)q2 + · · · ,

where α1 = −1+
√

15
8

and α2 = 7+
√
−15

16
.

We get

ε∆ =
√
−15,

and
1

ε∆

∑
i

γiTg(αi) = 14 = cg (15, 1) = tr(g|K1,15/8).

Remark 2.7. Our ability to follow through with these computations relies on computing

satisfactory Heegner points. Thus, given [g], our conjecture only concerns pairs (∆, r) for

which Heegner points exist. For example, no Heegner points exist for 15A given the admis-

sible pair (−7, 1), yet they do exist for this conjugacy class when we set the admissible pair

to (−15, 1) (see Tables 3 and 4).

Remark 2.8. There does not seem to be any conjugacy class for which there does not exist

Heegner points for all admissible pairs. Given the data presented in Tables 3 and 4, the

most likely candidate for such a choice is 21A. But even that class will admit a quadratic

representative for the pair (−47, 1) and, as a result, admit some collection of Heegner points.

10



2.1 Calculating Heegner Points

Using Theorem 2.9 and given an admissible pair, we can calculate the quadratic forms which

contain Heegner points as its roots.

Consider integral binary quadratic forms [a, b, c](x, y) = ax2 + bxy + cy2. Then Γ0(N)

acts on such forms as follows:

[a, b, c] ◦
(
α β
γ δ

)
(x, y) = [a, b, c](αx+ βy, γx+ δy).

This action preserves the discriminant ∆ = b2−4ac and the greatest common divisor (a, b, c).

We denote Q∆ and Q0
∆ to be the set of all quadratic forms of discriminant ∆ and the subset

of primitive forms, respectively. When defining a classification with respect to the subgroup

Γ0(N), more invariants arise. Specifically, under the action by Γ0(N), the value of b modulo

2N which we shall denote as r remains unchanged and we always have gcd(a,N) = N . Then,

for an integer r modulo 2N such that ∆ = r2 (mod 4N), we set

QN,∆,r = {[a, b, c] ∈ Q∆ : N |a, b = r (mod 2N)}

Then the subset of primitive forms, Q0
N,∆,r is Γ0(N) invariant. We denote the quadratic

forms from here on as [aN, b, c].

We define m :=
(
N, r, r

2−∆
4N

)
. For [aN, b, c] ∈ Q0

N,∆,r, define m1 := (N, b, a), m2 :=

(N, b, c), which are coprime and have product m. Then, the following is true Gross et al.

[1987]:

Theorem 2.9. There is a 1:1 correspondence between Γ0(N) equivalence classes of the forms

[aN, b, c] ∈ Q0
N,∆,r satisfying (N, b, c) = m1, (N, a, b) = m2 and the SL2(Z) equivalence

classes of the forms in Q0
∆,r given by Q = [aN, b, c] 7→ Q′ = [aN1, b, cN2], where N1N2 is

any decomposition of N into coprime positive factors satisfying (m1, N2) = (m2, N1) = 1. In

11



[g]M24 Γg [g]CO0
Frame Shape

1A 2− 1A 124

2A 4− 2B 1828

2B 4|2− 2D 212

3A 6 + 3 3B 1636

3B 6|3 3D 38

4A 8|2− 4G 2444

4B 8− 4E 142244

4C 8|4− 4H 46

5A 10 + 5 5B 1454

6A 12 + 3 6K 12223262

6B 12|6− 6P 64

7AB 14 + 7 7B 1373

8A 16− 8G 12214182

10A 20|2 + 5 10J 22102

11A 22 + 11 11A 12112

12A 24|2 + 3 12P 214161121

12B 24|12− 12S 122

14AB 28 + 7 14C 112171141

15AB 30 + 5, 5, 15 15D 113151151

21AB 42|3 + 7 21C 31211

23AB 46 + 23 23AB 11231

Table 2: Shows the modular subgroups corresponding to each g ∈M24. Note that sinceM24 < CO0 ,
then we are able to look at Duncan and Mack-Crane [2015] to determine the appropriate modular
subgroup. The modular subgroups are meant to be read Γg(Ng) where the column below Γg lists
the level Ng. Definitions for each of the levels can be found in Duncan and Mack-Crane [2015].

particular, |Q0
N,∆,r/Γ0(N)| = 2v|Q0

N,∆,r/SL2(Z)|, where v is the number of prime factors of

m.

Note that 2v|Q0
N,∆,r/SL2(Z)| = 2h(∆) for ∆ < 0, where h(∆) is the class number of

Q(
√

∆) the factor 2 arises because Q0
∆ also contains negative semi-definite forms.

Thus, we obtain a simple method for constructing the quadratic forms that hold the

desired Heegner points. Given ∆, we solve for r satisfying the condition ∆ ≡4N r2. Then

we calculate b such that b ≡2N r, and all (Na · c) such that b2−∆
4

= aN · c. To reconstruct a

polynomial given [g],∆, we can look at the tables below. We can select any pair, but we’d

need select a, c such that the conditions defined above are satisfied.

Remark 2.10. By Duncan and Mack-Crane [2015], there is a Frame shape for each g ∈

CO0 which can be expressed in a fashion similar to the cycle shapes from the permutation

12



representation of elements in M24. For each frame shape, the same Tg function is defined

and attached to each g ∈ CO0 . Since M24 is a subgroup of CO0 , we can naturally associate

each frame shape to each g ∈M24 which in turn enables us to attach a Tg to each g ∈M24.

It is proven in Duncan and Mack-Crane [2015] that each of these Tg are principal modulus

for a genus zero group Γg < SL2(Z). For this reason, we can tell the level of each of these

subgroups by referring to Table 2.

Example 2.11. Let [g] = 2A where ∆ = −7, we look to Table 3 below for viable rep-

resentations on Γ0(4): Q±1 = 4x2 ± 3x + 1, Q±2 = 8x2 ± 5x + 1, Q±3 = 4x2 ± 5x + 2.

There are, however, only 2 quadratic forms for [2A] up to equivalence since m = 1 and so

|Q0
4,−7,1/Γ0(4)| = 2. Extracting the roots with positive imaginary components from these

polynomials and inputting them into T2A(τ) determines the uniqueness of the polynomial.

That is, only inequivalent representatives will provide roots that produce distinctive outputs.

A quick calculation will show that Q±1 may serve as our polynomial representatives for [2A]

and provides us with Heegner points α± = ±3+
√
−7

8
which we used in our earlier example.

Remark 2.12. Not all conjugacy classes will necessarily have a quadratic representatives

given ∆ and N . If there is no such r, then QN,∆,r is empty. For example, when [g] = 3A

and (∆, r) = (−7, 1), there are no quadratic representatives.

Remark 2.13. We only calculate the Heegner points for conjugacy classes whose cycle

shapes fixed one point. That is, whenever the cycle shape contains a (1)l for some positive

integer l. We do this because the modular subgroups are considerably simpler as can be seen

above in Table 2.

Remark 2.14. To verify the choice of polynomial, it has always been fruitful to check

Corollary 3.3 with the provided Heegner points.
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Table 3: Quadratic representatives given ∆ = −7

[g]M24 [r−7] {(b, aN · c)−7}
1A [1, 3, 5, 7] {(1, 2), (3, 4)}
2A [3, 5, 11, 13] {(3, 4), (5, 8)}
2B
3A - -
3B - -
4A [5, 11, 21, 27] {(5, 8), (11, 32)}
4B
4C
5A - -
6A - -
6B - -
7AB [7, 21, 35, 49] {(7, 14), (21, 112)}
8A [11, 21, 43, 53] {(11, 32), (21, 112)}
10A - -
11A [9, 13, 31, 35, 53, 57, 75, 79] {(9, 22), (13, 44), (31, 242), (35, 308)}
12A - -
12B - -
14AB [21, 35, 77, 91] {(21, 112), (35, 308)}
15AB - -
21AB - -
23AB [19, 27, 65, 73, 111, 119, 157, 165] {(19, 92), (27, 184), (65, 1058), (73, 1334)}

Table 4: Quadratic representatives given ∆ = −15

[g]M24 [r−15] {(b, aN · c)}
1A [1, 3, 5, 7] {(1, 4), (3, 6)}
2A [1, 7, 9, 15] {(1, 4), (7, 16)}
2B
3A [3, 9, 15, 21] {(3, 6), (9, 24)}
3B
4A [7, 9, 23, 25] {(7, 16), (9, 24)}
4B
4C
5A [5, 15, 25, 35] {(5, 10), (15, 60)}
6A [9,15,33,39] {(9, 24), (15, 60)}
6B
7AB - -
8A [7, 25, 39, 57] {(7, 16), (25, 160)}
10A - -
11A - -
12A [9, 39, 57, 87] {(9, 24), (39, 384)}
12B
14AB - -
15AB [15, 45, 75, 105] {(15, 60), (45, 510)}
21AB - -
23AB [13, 33, 59, 79, 105, 125, 151, 171] {(13, 46), (33, 276), (59, 874), (79, 1564)}
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3 Generalized Borcherds Products

Borcherds Products or Borcherds Lifts is a method to construct meromorphic modular forms

on the special orthogonal group, SO+(2, n−) from weakly holomorphic modular forms on

SL2(Z). That is, given a weakly holomorphic modular form f , there is an associated Ψf

which is a convergent infinite product of complex valued functions which display modu-

lar properties and are holormorphic except for poles. A succinct, yet revealing account of

Borcherds Products can be found in Hill [2012].

The Generalized Borcherds Products are defined in terms of vector valued weak harmonic

Maass forms in Bruinier and Ono [2010] and are used to to prove a special case of our

conjecture for [g] = 1A in Ono et al. [2015]. Its purpose is to take a harmonic weak maass

forms of weight 1/2 and produce a meromorphic modular form. Following the examples

of the papers previously mentioned, we will also provide the background on vector-valued

modular forms and follow closely the results presented in Ono et al. [2015], Bruinier and Ono

[2010], but in less generality as to only satisfy the lift for He. See Bruinier and Ono [2010]

for more general levels and functional equations.

3.1 A Lattice Related to Γ0(2)

We define a lattice L and a dual lattice L′ related to Γ0(2) such that the components of

our vector-valued modular forms will be labeled by the elements of L′/L Ono et al. [2015],

Bruinier and Ono [2010]. This lattice L should be even. We consider the quadratic space

V := {X ∈Mat2(Q) : tr(X) = 0}
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with the quadratic form P (X) := 2det(X). The, the corresponding bilinear form is (X, Y ) :=

−2tr(XY ). Let L be the lattice

L :=
{(
b −a/2
c −b

)
: a, b, c ∈ Z

}
.

The dual lattice is then given by

L :=

{(
b/4 −a/2
c −b/4

)
: a, b, c ∈ Z

}
.

It will be helpful to view elements of L′ as both matrices and as quadratic forms, with

the matrix

X =

(
b/4 −a/2
c −b/4

)
corresponding to the integral binary quadratic form

Q = [2c, b, a] = 2cx2 + bxy + ay2.

Note that P (X) = −Disc(Q)/8 = −(b2 − 8ac)/8. We refer to the finite abelian group L′/L

as a discriminant group and as the discriminant form of the lattice L when L′/L has a

Q/Z-valued quadratic form induced by P . We can identify L′/L with 1
4
Z/Z by defining the

isomorphism φ : L′/L 7→ 1
4
Z/Z where

φ

((
b/4 −a/2
c −b/4

)
+ L

)
= b/4 + Z.

The quadratic form P with the quadratic form h
4
→ −h2

8
on Q/Z. We will also occasionally

identify h
4
∈ Q/Z with h ∈ Z/4Z. For a fundamental discriminant D and r/4 ∈ L′/L with

16



r2 = D (mod 8), let

QD,r := {Q = [2c, b, a] : a, b, c ∈ Z, Disc(Q) = D, b = r (mod 4)}.

The action of Γ0(2) on this set is given by the usual action of congruence subgroups on binary

quadratic forms: Write integral binary quadratic forms [a, b, c](x, y) := ax2 +bxy+cy2. Then

Γ0(N) acts on such forms as follows

[a, b, c] ◦
(
α β
γ δ

)
(x, y) = [a, b, c](αx+ βy, γx+ δy).

3.2 Weil Representation

We write Mp2(R) for the metaplectic two-fold cover of SL2(R). The elements of this group

are pairs (M,φ(τ)), where M =
(
a b
c d

)
∈ SL2(R) and φ : H 7→ C is a holomorphic function

such that φ(τ)2 = cτ + d. The multiplication is defined by

(M,φ(τ))(M ′, φ′(τ)) = (MM ′, φ(M ′τ)φ′(τ)).

We denote the integral metaplectic group, the inverse image of Γ : SL2(Z) under the

covering map, by Γ̃ := Mp2(Z).

The generators of Γ̃ are T := ((1 1
0 1), 1) and S := ((0 −1

1 0 ),
√
τ). Here,

√
τ =

√
|τ |earg(τ)i for

−π < arg(τ) < π where | · | is the complex modulus.

The Weil Representation associated with a discriminant form L′/L is a representation of

Γ̃ on the group algebra C[L′/L]. We denote the standard basis elements of C[L′/L] by νh,

h ∈ L′/L, and write 〈·, ·〉 for the standard scalar product such that 〈νh, νh′〉 = δh,h′ . The Weil

representation ρL associated with the discriminant form L′/L is the unitary representation

of Γ̃ on C[L′/L] defined by

17



ρL(T )(νh) := e(h2/2)νh

and

ρL(S)(νh) :=
e((b− − b+)/8)√

|L′/L|

∑
h′∈L′/L

e(−(h, h′))νh′ ,

where (b+, b−) is the signature of the vector space V defined earlier. That is, b+ is the

dimension of a maximal positive definite subspace of V and b− is the dimension of a maximal

negative definite subspace Here e(x) := e2πix.

3.3 Vector Valued Modular Forms

If f : H 7→ C[L′/L] is a function, then we can write f =
∑

h∈L′/L fhνh for its decomposition

into components with respect to the standard basis of C[L′/L]. Let k ∈ 1
2
Z, and let M !

k,ρL

denote the space of C[L′/L]-valued weakly holomorphic modular forms. Modular forms are

denoted byMk,ρL and cusp forms are denoted by Sk,ρL . Cusp forms are modular forms which

vanish at cusps.

Assumek ≤ 1, and a twice continuously differentiable function f : H 7→ C[L′/L] is called a

harmonic weak Maass form (of weight k with respect to Γ̃ and ρL) if it satisfies:

• f(γτ) = φ(τ)2kρL(γ, φ)f(τ) for all (γ, φ) ∈ Γ̃,

• there is a C > 0 such that f(τ) = O(eCw) as w 7→ ∞,

• ∆kf = 0,

where

∆k := −v2

(
∂2

∂u2
+

∂2

∂v2

)
+ ikv

(
∂

∂u
+ i

∂

∂u

)
is the weight k hyperbolic Laplace operator.
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We denote the vector space of these harmonic weak Maass forms by Hk,ρL . Moreover, for

f ∈ Hk,ρL we have the associated Fourier expansion

f(τ) = Pf (τ) =
∑

h∈L′/L

∑
n∈Z+Q(h)
−∞�n≤0

c+(n, h)e(nτ)νh

and some ε > 0. Here, Pf is uniquely determined by f and is called the principal part of f .

The Fourier expansion of any f ∈ Hk,ρL gives a unique decomposition f = f+ + f−, where

f+(τ) =
∑

h∈L′/L

∑
n∈Q

n�−∞

c+(n, h)e(nτ)νh,

f−(τ) =
∑

h∈L′/L

∑
n∈Q
n<0

c−(n, h)W (2πnw)(e(nτ)νh,

and W (x) = Wk(x) :=
∫∞
−2x

e−tt−kdt = Γ(1− k, 2|x|) for x < 0.

Note that there is an antilinear differential operator defined by

ξk : Hk,ρL 7→ S2−k,ρL , f(τ) 7→ ξk(f)(τ) := 2iyk
∂

∂τ
,

where ρL is the complex conjugate representation. This will be important in the following

subsection. The Fourier expansion of ξk(f) is given by

ξk(f) = −
∑

h∈L′/L

∑
n∈Q
n>0

(4πn)1−kc−(−n, h)e(nτ)νh

The kernel of ξk is equal to M !
k,ρL

, and we have the following sequence:

0 7→M !
k,ρL
7→ Hk,ρL 7→ S2−k,ρL 7→ 0.

19



We call ξk(f) the shadow of f . Note that ξk(f) uniquely determines f−, but f+ is only

determined up to addition of a weakly holomorphic modular form.

3.4 Lifting He

Here, we use all the earlier definitions and results to display the proof presented in Ono et al.

[2015] which shows that He’s generalized Borcherds Lift is a meromorphic modular form of

the type stated earlier in the conjecture. We define a mock modular form of weight k to be

the holomorphic part of some harmonic weak Maass form of weight k. The following will

involve Jacobi forms and the reader may read 4.2 for review on Jacobi forms and definitions

of ϕ1(τ, z), µ1,0(τ, z), θr(τ, z), and R(u, τ). We define the Jacobi form

ψ(τ, z) := 2ϕ1(τ, z)µg1,0(τ, z).

We can break up ψ into a finite part ψF and a polar part ψP . The polar part is given by

ψP (τ, z) = 24µ2,0(τ, z).

Then the mock modular form He is defined by He := He,1 where

ψF (τ, z) = ψ(τ, z)− ψP (τ, z) =
∑

h∈Z/4Z

He,h(τ)θ2,h(τ, z),

where

θ2,h(τ, z) :=
∑

n=h (mod 4)

qn
2/8yk.

Note that ψ satisfies an optimal growth condition,

q1/8He,h(τ) = O(1)
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as τ → i∞ for all h ∈ Z/4Z.

We also define the shadow Se(τ), the non-holomorphic part Fe,h(τ), and the harmonic

weak Maass form Ĥe(τ) corresponding to the mock modular form He via their components:

Se,h(τ) :=
∑

n=h (mod 4)

nqn
2/8,

Fe,h(τ) :=

∫ i∞

−τ

Sh(z)√
−i(z + τ)

dz

=− 4q−(h−2)2/8R

(
h− 2

4
(4τ) +

1

2
, 4τ

)
, and

Ĥe,h(τ) :=He,h(τ) + Fe,h(τ).

Note that by definition, Se,h(τ) = Se,−h(τ). Therefore, Se,0 = Se,2 = 0. The same is true

of He,h. We can write this in terms of Shimura’s theta functions as Se,h(τ) = θ(τ ;h, 4, 4, x)

by Shimura [1973]. Then using the transformation laws for his θ-functions, we get that Se,h

transforms as follows:

Se,h(τ)(τ + 1) =e(h2/8)Se,h(τ), and

Se,h(−1/τ) =τ 3/2 e(−1/8)√
4

∑
k(mod 4)

e(kh/4)Se,k(τ).

Thus, we have

Se(τ + 1) =ρL(T )Se(τ), and

Se(−1/τ) =τ 3/2ρL(S)Se(τ).
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From these transformations, we see that Se(τ) : H 7→ C[L′/L] is a weight 3/2 vector-

valued modular form transforming under the Weil representation ρL, i.e an element of the

space M3/2,ρL . From Cheng et al. [2014], we know that He is a mock modular form with

shadow Se. This gives the following theorem:

Theorem 3.1. We have that Ĥe(τ) : H 7→ C[L′/L] is a weight 1/2 vector valued harmonic

weak Maass form transforming under the restriction of the Weil representation ρL to the

preimage of Γ0(2) in Γ̃. Moreover, it has shadow Se(τ), non-holomorphic part Fe, and

principal part PĤ(τ) = −2q−1/8(ν1 − ν3).

3.5 Generalized Borcherds Products

Now that we are able to rewrite the mock modular form He as a harmonic weak Maass form,

we can introduce the application of the generalized Borcherds Lifts defined in Bruinier and

Ono [2010] to obtain a meromorphic modular form. Recalling the result from Ono et al.

[2015], we call a pair (∆, r) admissible if ∆ is a negative fundamental discriminant and

r2 = ∆ (mod 8). We also let e(a) := e2πia.

Theorem 3.2. Let c(n, r) be the n-th Fourier coefficient of the r-th component of He or

tr(e|Kn,r). Let (∆, r) be an admissible pair. Then the twisted generalized Borcherds product

is

Ψ∆,r(τ,He) :=
∞∏
n=1

P∆(qn)ce(∆n2,rn)

where

P∆(x) :=
∏

b∈Z/|∆|Z

[1− e (b/∆)x](
∆
b )

is a rational function in Te(τ) with a discriminant ∆ Heegner divisor.
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Corollary 3.3. By the preceding theorem,

Ψ∆,r(τ,He) :=
∏
i

(Te(τ)− Te(αi))γi

for some discriminant ∆ and Heegner points αi. Thus, we have

ce
(
∆n2, rn

)
=

1

ε∆

∑
i

γiTe(αi)

where

ε∆ =
∑

b∈Z/|∆|Z

e(b/∆)

(
∆

b

)
Remark 3.4. Generalized Borcherds Products are the prime result used in this paper. In

that, we propose a generalization of the Borcherds Lift applied here to the case of other Hg

mock modular functions dependent on the conjugacy class of g.

4 Definitions Modular Forms, Jacobi Forms, Theta Func-

tions, etc.

We conclude this paper with an appendix of the relevant functions involved in our computa-

tions. First beginning with the mock-modular McKay-Thompson series corresponding with

Mathieu Moonshine. We define the following:

ΛM(τ) := Mq
d

dq

(
log

η(Mτ)

η(τ)

)
=
M(M − 1)

24
+M

∑
k>0

∑
d|k

d
(
qk −MqMk

)
(16)

which is a modular form of weight two for Γ0(N) if M |N .
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[g] χ(g) T̃g(τ)
1A 24 0
2A 8 16Λ2
2B 0 −24Λ2 + 8Λ4 = 2η(τ)8/η(2τ)4

3A 6 6Λ3
3B 0 2η(τ)6/η(3τ)2

4A 0 4Λ2 − 6Λ4 + 2Λ8 = 2η(2τ)8/η(4τ)4

4B 4 4(−Λ2 + Λ4)
4C 0 2η(τ)4η(2τ)2/η(4τ)2

5A 4 2Λ5
6A 2 2(−Λ2 − Λ3 + Λ6)
6B 0 2η(τ)2η(2τ)2η(3τ)2/η(6τ)2

7AB 3 Λ7
8A 2 −Λ4 + Λ8
10A 0 2η(τ)3η(2τ)η(5τ)/η(10τ)
11A 2 2(Λ11 − 11η(τ)2η(11τ)2)/5
12A 0 2η(τ)3η(4τ)2η(6τ)3/η(2τ)η(12τ)
12B 0 2η(τ)4η(4τ)2η(6τ)3/η(2τ)η(3τ)η(12τ)2

14AB 1 (−Λ2 − Λ7 + Λ14 − 14η(η)η(2τ)η(7τ)η(14τ))/3
15AB 1 (−Λ3 − Λ5 + Λ15 − 15η(τ)η(3τ)η(5τ)η(15τ))/4
21AB 0 (7η(τ)3η(7τ)3/η(3τ)η(21τ)− η(τ)6/η(3τ)2)/3
23AB 1 (Λ23 − 23f23,1 + 23f23,3)/11

Table 5: In this table, we list the relevant functions utilized in defining the various weight 1/2
mock modular forms of Hg described in Preposition 4.1. Here f23,1 and f23,3 are defined in Duncan
et al. [2015]

4.1 Mathieu (Mock) Modular Functions

For M24, we have the following candidates introduced mostly in Cheng [2010], Gaberdiel

et al. [2010a,b], Eguchi and Hikami [2011] for the associated McKay-Thompson series Hg.

From them, we have the following result:

Proposition 4.1. Let H : H 7→ C given by

H(τ) =
−2E2(τ) + 48F2(τ)

η(τ)3
= 2q−

1
8 (−1 + 45q + 231q2 + . . .) (17)

where

F2(τ) =
∑
r>s>0

r−s=1 mod 2

(−1)rsqrs/2 = q + q2 − q3 + q4 + . . . . (18)
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and

E2 = 1− 24
∑
n>0

∑
k|n

qn (19)

Then for all g ∈M24, the function

Hg(τ) =
χ(g)

24
H(τ)− T̃g(τ)

η(τ)3
(20)

is a mock modular form for Γ0(Ng) of weight 1/2 with shadow χ(g)η(τ)3. Moreover, we

have

Ĥg(τ) = ψ(γ)jac(γ, τ)1/4Ĥg(γτ),

for γ ∈ Γ0(ng) where

Ĥg(τ) = Hg(τ) + χ(g)(4i)−1/2

∫ ∞
−τ

(z + τ)−1/2η(−z)dz,

and the multiplier system is given by ψ(γ) = ε(γ)−3ρng |hg(γ). Here

jac(γ, τ) = (cτ + d)−2.

and

ρng |hg(γ) = e(−cd/nghg).

4.2 Theta Functions

We define the Jacobi theta functions θi(τ, z) as follows for q := e(τ) and y := e(z) for τ ∈ H

and z ∈ C as in Ono et al. [2015]

θ2(τ, z) :=q1/8y1/2

∞∏
n=1

(1− qn)(1 + yqn)(1 + y−1qn−1)
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θ3(τ, z) :=
∞∏
n=1

(1− qn)(1 + yqn−1/2(1 + y−1qn−1/2

θ4(τ, z) :=
∞∏
n=1

(1− qn)(1− yqn−1/2(1− y−1qn−1/2

We use them to define weight zero index 1 Jacobi form ϕ1.

ϕ := 4(f 2
2 + f 2

3 + f 2
4 ),

where fi(τ, z) := θi(τ, z)/θi(τ, 0) for i = 2, 3, 4.

We define the Appell-Lerch sum as in Cheng et al. [2014] given by

µm,0(τ, z) := −
∑
k∈Z

qmk
2

y2mk 1 + yqk

1− yqk
.

It is the holomorphic part of a weight 1 index 2 real-analytic Jacobi form.

Finally,

R(τ, z) :=
∑

ν∈1/2+Z

{
sgn(ν)− E(ν + a)

√
2t
}

(−1)ν−1/2q−ν
2/2y−ν ,

where t := =(τ), a := =(u)
=(τ)

, and E(z) := 2
∫ z

0
e−πu

2
du.
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