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Abstract

Detectability, Interpretability, and the Limits of Machine Learning in
High-Dimensional Physical Systems

By Arabind Swain

In recent years, large-dimensional datasets have become increasingly common in
physics, arising from simulations and experiments that capture complex systems
across space and time. These datasets offer new opportunities for discovery but
also pose significant challenges in separating meaningful physical structure from ir-
relevant correlations and statistical noise. This dissertation investigates the use of
machine learning (ML) methods to uncover underlying physical structure in high-
dimensional systems, focusing on two central challenges: interpreting ML predictions
in complex glassy systems, and developing a theoretical foundation for understanding
statistical significance of correlations between large datasets when conducting indi-
vidual marginal covariance, joint covariance and cross-covariance analysis. In the
context of glassy dynamics, where traditional approaches struggle due to the absence
of clear structural order, ML classifiers such as Support Vector Machines (SVMs)
have been shown to accurately predict local rearrangements of particles. However,
using simple toy models and simulations, this work demonstrates that commonly
used indicators—such as high classification accuracy, apparent Arrhenius scaling, or
distance to hyperplanes—are not sufficient to guarantee that the ML model has cap-
tured meaningful physical quantities which is the size of the energy barriers in this
case. This raises important questions about the inverse problem: under what condi-
tions can interpretable physics be extracted from statistical learning models? To
address broader issues of signal detection in high-dimensional data, the disserta-
tion extends the well-known Marchenko-Pastur (MP) distribution from covariance
to cross-covariance matrices. An exact analytical expression is derived for the dis-
tribution of singular values arising purely from noise-noise correlations, providing a
null model for detecting shared structure between two large datasets. Furthermore,
the work establishes a BBP-type (Baik–Ben Arous–Péché) detectability phase transi-
tion for cross-covariance and joint-covariance matrices, identifying critical thresholds
for when rank-1 signals become distinguishable from noise, and showing that joint
and cross-covariance methods can detect weaker signals—or do so with fewer sam-
ples—than individual marginal covariance based analysis. Altogether, this disserta-
tion provides both conceptual insight and analytical tools for understanding when
ML models truly learn the physics of the system, and how noise, dimensionality, and
sample size fundamentally constrain that process.
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Chapter 1

Introduction

The 2024 Nobel Prize awards were a recognition of the increasingly intertwined nature

of the hard sciences and artificial intelligence (AI). The Physics Prize acknowledged

the contribution of the laureates, drawing on their previous experience with physics

concepts from magnetic materials and Boltzmann distributions to understand and

improve AI [1]. The Chemistry Prize was partly awarded for AlphaFold, which is an

AI model capable of predicting complex 3D structures of proteins with high accuracy

from just amino acid sequences, solving a 50 year challenge [2]. The awards are a

good representation of two distinct types of topics that are of interest to physicists.

On the one hand, they involve leveraging our understanding of statistical physics

to try to explain the inner workings of AI and its dependence on the statistics of

data, the nature of algorithms used, etc. On the other hand, they involve trying

to take advantage of advances in AI, to find new ways to analyze increasingly large

and complex data sets, make generative models to simulate complex systems that

are too expensive to simulate using traditional methods, and sometimes guide the

discovery of new physics [3, 4]. In this dissertation, the two distinct topics discussed

are along similar lines: 1) Reliability of AI-based predictors of dynamics in glassy

systems; 2) the conditions for detecting shared correlations between two different
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large-dimensional data sets, where much of the correlation between them is purely

because of statistical sampling noise.

Machine Learning (ML) is a subset of AI, where we try to enable computers

to learn from data rather than explicitly programming an algorithm to complete a

task. ML algorithms have shown great advances in the area of image recognition

and classification in recent years. Using these advancements in the context of physics

has led to some promising results. For example, classification algorithms, applied to

the problem of phase transitions [5, 6, 7, 8, 9, 10, 11, 12] and prediction of particle

rearrangement in structural glasses [13, 14, 15, 16, 17, 18, 19, 20, 21] have shown

promising success in identifying the different states of matter from snapshots of the

systems. When trying to learn the phases of a 2D Ising model using a classification

algorithm (Support Vector Machine in this case), it was observed that the SVMs ker-

nels that satisfied the Z2 symmetry of the Ising model were able to learn the phases

with a limited amount of data and were correctly able to predict the transition tem-

perature [11] because the Ising model phase transition breaks the Z2 symmetry. The

Ising model shows an ordered to disordered phase transition as the temperature goes

above a critical temperature. In the disordered state, the system has zero magnetiza-

tion as the spins are randomly oriented. Thus flipping all the spins does not change

the magnetization and the system maintains its full Z2 symmetry. However, in the

ordered state the system acquires a spontaneous magnetization and spins prefer to

align mostly in one direction. Thus, the system chooses either spin-up or spin-down

global magnetization state. If we flip all the spins it takes us from the global spin

up to global spin down magnetization state, hence breaking the Z2 symmetry. The

spontaneous breaking of Z2 symmetry for the ordered low-temperature state is what

describes the Ising phase transition. Thus, infusing our algorithms with structures

that respect the physical properties of the underlying problem helps us to achieve

high prediction accuracy with limited data, as it introduces an inductive bias in our
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model. Adding right constraints for the problem can be thought of as choosing the

correct network architecture or the correct kernel that helps us solving the problem.

As another example, consider that objects in images typically remain recognizable

even if their position is shifted. Thus Convolutional Neural Networks (CNNs) [22],

which are inherently designed to capture the translational symmetry [23], perform

well on image recognition tasks, .

There is another approach of looking at phase transitions using ML. Instead of

trying to predict the phases accurately using an interpretable SVM satisfying the

correct set of symmetries of the problem using a very small amount of data, one can

also train large networks without any inherent inductive bias with a very large amount

of data. Training a fully connected feedforward neural network with 1 hidden layer

on a large amount of data from the 2D Ising model allowed the network to learn the

phases along with the magnetization as well [5]. The ML algorithm was trained to

classify the phases but it ended up learning the order parameter—the magnetization—

for the phase transition without being explicitly trained to learn it.

In summary, ML can

• Learn the correct order parameter of a phase transition in some cases (though

we do not understand the conditions when this is possible), allowing us to

develop intuition about what drives phase transitions in systems where we lack

the intuition to identify the symmetries and conserved quantities.

• Learn the phases of the system with a limited amount of data, if the correct

symmetries and conserved quantities are introduced into the structure of the

learning machine.

Unlike in the case of images, where we know that we need to capture translational

symmetry, for most real-life systems of interest, we lack a deeper intuition about the

system. The hope is that we can use ML-based methods to get this intuition. A
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ML model which has captured the statistical correlations of the problem may have

captured the correct physics of the problem as well. There have been instances where

a ML model with high prediction accuracy for phase transition did end up learning the

correct order parameters [5, 12], showing the model had learned the correct physics of

the problem. But evaluating if the correct physics has been learned for a model about

which we lack intuition by looking at just the prediction accuracy is difficult. Thus,

studies that shed more light on the inverse problem in ML, where we are using the

prediction accuracy or some other quantity extracted from a ML model to get deeper

insights about the symmetries, conserved quantities, quality of our data, quality of

embeddings, etc. are important. They make the application of ML-based methods

more reliable and accessible to real-world problems where we are trying to use these

methods to develop deeper insights or intuition for the problem.

One of the areas where ML-based methods have helped our understanding of

the underlying phenomenon is in glassy dynamics. Glassy liquids have heterogeneous

rearrangement dynamics: in some regions particles rearrange quickly, while others are

slow. The degree of heterogeneity, i.e., the range of dynamical correlations, grows as

the temperature is lowered [24]. Despite this, the structural order in a glass is hard to

detect, making the origin of these correlations difficult to understand [25, 26]. There

are changes in pair correlation function g(r), but they are very gradual with change in

temperature. If relaxation involves crossing energy barriers of a fixed, temperature-

independent size ∆E, then the relaxation time would obey the Arrhenius law

τ ∼ e
∆E
T (1.1)

The change in relaxation time with temperature can be simply thought of as the

degree of difficulty in crossing an estimated energy barrier ∆E as the temperature

decreases. But in many real life cases, this Arrhenius relationship is often not followed
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and the relevant energy barrier may even decrease as a function of temperature [27].

ML based methods connect the changes in dynamical properties to structure [18].

A Support Vector Machine (SVM) was trained to distinguish rearranging particles

from non-rearranging particles. SVM tries to find the best hyperplane that sepa-

rates different classes data. The distance from the separating hyperplane which was

named softness, was found to be linearly related to the energy barrier ∆E [14]. This

is surprising as the SVM was only trained to to differentiate rearranging and non-

rearranging particles with a high accuracy. This raises a fundamental question: does

high predictive performance in classification imply that the model has learned phys-

ically meaningful quantities? Specifically, can the ’energy barriers’ inferred from the

softness be interpreted as the true thermodynamic barriers governing particle rear-

rangement, or are they simply effective parameters useful for classification? There

have been attempts to use hybrid ML-theory models to explain heterogeneity in su-

percooled liquids [28]. Thus, understanding the reliability of ML prediction of energy

in glasses is of critical importance to be able to build models based on ML predictions.

This challenge is not unique to glassy systems. More broadly, it reflects a growing

challenge in modern physics between the pursuit of causal, law-like descriptions for

complex large dimensional systems and the increasing reliance on statistical models.

Physics often tries to discover laws that govern the natural world by establishing

causal relationships. Sometimes we want to establish correlations between two large-

dimensional datasets rather than trying to find the relationship between a set of input

features to a discrete number of categories, as happens in classification tasks related to

phase transitions. When data sets have obvious symmetries and causal relationships,

we can write down explicit laws. For example, Newton’s laws explain motion based

on forces and the resultant acceleration. Similarly, Maxwell’s equations relate electric

and magnetic fields to the motion of charges and to currents. However, for many

domains in more modern physics domains, like modeling the brain, identifying explicit
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causes of phenomena or carrying out controlled experiments to establish the cause-

effect relationships is exceedingly challenging. The brain has multiple interacting

time scales [29] and lacks translational or rotational invariance [30]. Thus, we are

increasingly relying on ML approaches to try and discover statistical correlations in

such systems.

When trying to find significant signals in a single dataset, one of the simplest ML

algorithms is called Principal Component Analysis (PCA) [31]. PCA involves calcu-

lating directions (which are called principal components) which capture the maximum

variance in our data. The first principal component (which is the eigenvector cor-

responding to the largest eigenvalue) captures the maximum variance, the second

principal component the second most variance and so on. Each of the principal com-

ponents are orthogonal to each other.

To determine which principal components are truly significant, it’s crucial to un-

derstand what kind of eigenvalues arise purely due to statistical noise. Thus we

consider firstly an N -dimensional dataset which is pure noise, consisting of T points.

The data can be written as a T ×N matrix where each of the elements of the matrix

is drawn from a i.i.d. standard Gaussian in N -dimensional space. This gives us a

N -dimensional hypersphere with T data points randomly arranged in a thin shell near

the surface of the hypersphere (here N ≫ 1, hence the norm of every point is near
√
N). The distribution is isotropic and has equal variance in all directions. More

importantly, we can calculate exactly the probability distribution of eigenvalues for

the covariance matrix corresponding to the N -dimensional hypersphere because of

pure noise.

The probability distribution of eigenvalues of the covariance matrix for such pure

noise is given exactly by the Marcheko-Pastur (MP) distribution [32]. The MP dis-

tribution also allows us to understand how sampling and signal detection work. In an

N -dimensional space, in the presence of sampling noise, a signal can be detected only
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if the eigenvalue corresponding to the signal lies outside of the bulk of eigenvalues

due to noise given by MP distribution. Not having enough data points makes the

detection of a signal challenging as the noise bulk (the correlations purely because of

the sampling noise given by MP distribution) is much larger. With increasing sample

size the noise bulk reduces making a previously undetectable signal, detectable. Thus,

many problems in signal detection reduce to being able to collect enough indepen-

dent samples to be able to extract the weak signal from noise. More importantly, it

requires an understanding of what part of the covariance eigenvalue spectrum is due

to noise and which part corresponds to the signal.

Suppose there is a strong signal in one direction. The presence of this signal

deforms the hypersphere along that direction. PCA, by construction, rotates the data

so that the direction of maximum variance aligns with this signal. This is achieved by

computing the eigenvectors of the covariance matrix and selecting the one associated

with the largest eigenvalue. The result is typically one outlier eigenvalue (due to

signal), while the rest are part of the noise bulk satisfying the MP distribution.

For real world data which may have many signals, the number of such outliers

indicates how many correlations in the data are not purely due to noise. Initially,

it was observed that in certain systems like in speech recognition and hand written

digit recognition [33], most of the eigenvalues are in the noise bulk, and the few that

are not, are well separated from the bulk. A mathematical model to explain this

structure was first formalized in 2001 and is called the ‘spiked population model’

referring to the outlier eigenvalues [34]. Later for the spiked population model given

the strength of a spike relative to the noise bulk, it was shown in 2005 that one had

a spike non-detectability to detectability phase transition [35]. One adds a small

perturbation ‘a spike’ to the covariance matrix produced by noise. Depending on the

strength of the spike one sees an outlier eigenvalue. When we have the outlier we call

the spike detectable. Furthermore, if we calculate the overlap between the unit vector



8

for the spike and normalized eigenvector corresponding to the outlier eigenvalue, the

overlap is found to be a 2nd-order phase transition as a function of the spike strength.

This phase transition is called a Baik–Ben Arous–Péché (BBP) phase transition and

is valid for N → ∞ with a fixed ratio of N
T

. For finite-sized matrices, the phase

transition becomes a crossover. More importantly, the exactly solvable results gives

us a good understanding of when one can detect a signal in PCA. We can also exactly

evaluate, given the size of the outlier eigenvalue as compared to the noise bulk, how

good our reconstruction of the signal associated with the outlier eigenvalue is. The

understanding also allows us to develop methods for PCA where we can reduce the

effect of sampling noise on the signal [36, 37].

Now suppose we want to find correlations between two large dimensional data

sets (X and Y) and we assume they have a shared signal. It means increase in the

variance in the signal direction in X leads to a proportional increase in the variance

in signal direction in Y. Then given T time points, we have NX and NY dimensional

hyper-spheres for X and Y respectively. Given both have a shared signal, both the

hyperspheres will have correlated deformations.

One of the ways to detect these deformations is to do a PCA on X and Y and then

regress the eigenvectors corresponding to the largest eigenvalue onto each other. This

method is called Principal Component Regression (PCR) [38]. However, when we try

to apply PCR to a dataset with an unknown number of shared correlations, it becomes

more challenging. It is difficult to know a priori by looking at the PCA of X and Y

respectively, how many outliers are really correlated between both data sets and which

outliers from X and Y should be chosen for regression. The standard way people deal

with the problem is to have multiple different regressions for a combination of outliers

from both X and Y and select the models with the highest prediction accuracy.

Here we use example of data related to finance (where the methods to correlate two

different types of assets are widely used) to explain how PCA based methods work in
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real world datasets where we are interested in finding correlations between 2 different

data sets. In this example, we are using data about the prices of stocks in the past to

predict their future price in two different stock markets (say US and China) and trying

to find the shared signal between them. PCA based approaches are known to give

contradictory results when trying to find shared correlations between two different

stock markets, even when models have similar predictive accuracy [39, 40].This is

partly due to the presence of multiple timescales in finance [41, 42, 43, 44]. These

timescales arise from different kinds of periodicity and correlations that are part of

the financial data. There are sectoral correlations, where tech stocks like Google,

Meta, Apple have correlated price movements [45]. Similarly, because of options

expiring on the 3rd Friday of every month, there are systematic market movements

in the 3rd week of each month, as institutional investors often adjust large positions

simultaneously near expiry. These create higher-than-average realized volatility and

correlations [46, 47].

These periodic correlations affect how well PCA-based methods can detect signals.

For instance, if we start with a T ×N dataset with N > T , its rank is T . Repeating

the dataset 12 times yields a 12T ×N matrix, but the rank remains T ; hence, no new

signal becomes detectable. This means taking a lot of correlated measurements does

not help us get enough sampling to detect signal. Depending on the time scale we are

interested in (these systems have multiple timescales), some of the periodicities will

dominate. But we will have other periodicities which though not dominant introduce

correlations, thus reducing the number of independent measurements we have in our

data. This makes the detection of a weak signal very difficult because of insufficient

sampling. Because of sectoral correlations, all the stocks in a particular sector can

be coarse grained into a single effective latent feature [48, 49, 50]. This reduces the

dimensionality of the problem and allows us to learn some of the statistics with the

reduced amount of independent time points that we have available [51, 52]. Such
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models, where we represent the dynamics of our systems in terms of coarse-grained

latent features, are called structure factor models [53, 54, 55, 56]. But then depending

on the choice of latent features and how we decide to deal with the different timescales,

the interpretation of latent features and the number of latent features in our model

can vary. Thus, the choice of different principal components and the resultant latent

features can lead to subtle differences in the interpretation of the latent features

and the economic meaning of the principal component coefficient weights, leading to

contradictory conclusions when evaluated in real-world scenarios.

The problems related to PCR mean that more direct methods of obtaining cross-

correlations such as Partial Least Square (PLS) [57] are sometimes used in real world

problems. PLS uses the cross-covariance (XTY
T

) instead of the covariance (XTX
T

), as

is the case with PCA. PLS tries to find shared axes in both X-space and Y-space,

to maximize the joint variability between the two datasets. But unlike for PCA, the

calculations analogous to Marchenko Pastur distribution, which give the probability

density of eigenvalues purely from noise-noise cross-correlation still does not exist.

Because of which in the case of cross-covariance one does not know which of the

observed correlations are significant. This makes a deeper understanding of cross-

correlation based methods difficult.

In this dissertation, I use a combination of toy models, synthetic data, simulations

and exactly solvable analytical methods to answer questions relating to the limits of

of ML in high-dimensional physical systems. I summarize the key questions addressed

and the primary finding of each of the Chapters of this Dissertation below.

In Chapter 2, we study the inverse problem of using ML methods to explain the

physical properties of systems in the context of glassy materials. The complexity

of glasses makes it challenging to explain their dynamics. ML has emerged as a

promising pathway for understanding glassy dynamics by linking their structural

features to rearrangement dynamics. We would like to understand the reliability of
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SVM predictions of energy in the context of glasses. By numerical analysis of toy

models, we explore under which conditions it is possible to infer the energy barrier

to rearrangements from the distance to the separating hyperplane. We observe that

such successful inference is possible only under very restricted conditions. Typical

tests, such as the apparent Arrhenius dependence of the probability of rearrangement

on the inferred energy and the temperature, or high cross-validation accuracy, do not

guarantee success.

In Chapter 3, we extend the Marchenko Pastur result for the distribution of

eigenvalues of empirical sample covariance matrices to singular values of empirical

cross-covariances. For two large matrices X and Y with Gaussian i.i.d. entries and

dimensions T ×NX and T ×NY , respectively, we derive the probability distribution

of the singular values of XTY in different parameter regimes. Our results will help

to establish statistical significance of cross-correlations in all the parameter regimes

by giving the exact analytic solution for the distribution of singular values purely on

account of noise-noise cross-correlations in cross-covariance matrix.

In Chapter 4, we derive BBP type signal non-detectability to detectability phase

transition for cross-correlations. One can find cross-correlations by evaluating indi-

vidual PCAs and regressing them, by calculating the cross covariance and detecting

the outlier eigenvalue or by concatenating X and Y and calculating the joint covari-

ance of the concatenated quantity. We showed that we can detect a weaker signal, or

detect the same signal with a lower amount of sampling, by using joint covariance or

cross covariance instead of using two individual PCAs.

In Chapter 5, we summarize the results of previous chapters discuss how the

calculations in Chapter 3 and Chapter 4 using RMT based methods be potentially

applied to machine learning and data science.
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Chapter 2

Machine learning that predicts well

may not learn the correct physical

descriptions of glassy systems

2.1 Introduction

1In recent years, there have been a number of attempts to use Machine Learning

(ML) techniques to better understand physical phenomena [3]. One of the areas that

has shown considerable promise is the use of classification algorithms to differentiate

between different states of a physical system [5, 6, 7, 8, 9, 10, 13, 16, 17, 12, 18,

13, 19, 20, 21, 11, 14, 15, 59]. In some of these cases, ML techniques manage to

go beyond classification, extracting physically interpretable low-dimensional descrip-

tions, such as order parameters [5, 12, 11], topological invariants [60], or the energy
1This chapter presents the paper [58] “Swain, Arabind, Sean Alexander Ridout, and Ilya Ne-

menman. "Machine learning that predicts well may not learn the correct physical descriptions of
glassy systems." Physical Review Research 6, no. 3 (2024): 033091.”. The work was conducted in
collaboration with Drs. Sean Alexander Ridout and Ilya Nemenman. I performed all simulations,
conducted all analyses, and led writing of the manuscript. Dr. Nemenman conceived the model and
led the research, while Dr. Ridout contributed to discussions regarding the procedures and analy-
ses and had important inputs on the observables that were calculated. All authors participated in
writing and reviewed the final manuscript.
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barriers that determine the rate of rearrangements in a glassy liquid [13, 14, 15]. In

other words, sometimes ML methods build accurate physical models of the studied

system, even when the relevant variables describing the physics are not explicitly

in the dataset. Traditionally, finding such low-dimensional, relevant descriptions re-

quires specialized knowledge, e. g., of conservation laws. Such successes without this

specialized knowledge show the potential of ML techniques to discover new physics

with minimal guidance by scientists. However, very little is known about when an

ML method, trained to predict a certain aspect of the behavior of a physical system,

constructs an accurate physical model, rather than a purely statistical one.

We will answer this question in a simplified, tractable model of the important phys-

ical problem of predicting rearrangements of glassy liquids using structural data [13,

14, 15]. Glassy liquids have heterogeneous rearrangement dynamics: in some regions

particles rearrange quickly, while others are slow. The degree of heterogeneity, as

well as length scales characterizing the range of dynamical correlations, grows as

the temperature is lowered [24, 61, 62, 63]. Despite this, the structural order in a

glass is hard to detect, making the origin of these correlations difficult to under-

stand [25, 26]. In recent years, there has been considerable progress in linking the

dynamics of glassy liquids to their structure using ML. Support Vector Machines

(SVMs) [18, 13, 14, 19, 15, 59, 64], Neural Networks [20, 65, 66, 67, 68, 69], and linear

regression [21, 70, 69] have been trained on large data sets generated through simula-

tions. Local structural features were used to predict whether a particle rearranges in

a specific time period ∆t. All of these methods were shown to predict rearrangements

with high accuracy. The classifiers could also predict rearrangements when applied

to data from previously unseen temperatures. Thus, the classifiers learn local struc-

tural predictors of dynamics that generalize across temperatures. In the linear SVM

case, the distance to the separating hyperplane, named softness S [13], has a simple

interpretation as a local energy barrier to rearrangement ∆E(S). This is because the
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probability for a particle to rearrange in some unit time ∆t given S was numerically

found to obey the Arrhenius law,

P (R|S) ∝ exp [Σ(S)−∆E(S)/T ] , (2.1)

which is precisely the probability of rearrangement for a process that requires crossing

a single energy barrier ∆E(S). In particular, Σ(S) and ∆E(S) were found to be

linear in S. Therefore, this simple linear classifier seems to have learned a physical

description of the system, without being instructed to infer it.

Recent work has begun to use this learned dynamical description as the basis for

simplified dynamical models of supercooled liquids and amorphous solids, using the

inferred ∆E(S) and Σ(S) as parameters in these models [71, 72, 73, 28]. However,

there has been no explicit study showing if the success in making predictions signifies

that the inferred physical description agrees with the true one. Understanding when

the two match is the goal of this work. Specifically, assuming that there exists an

underlying structural variable S such that Eq. (2.1) holds in a glassy liquid, we will

explore when an SVM can learn the correct variable S. We focus on SVMs [74] (and,

more specifically, linear SVMs) in our study because SVMs are interpretable, their

performance compares well to other methods for this system, and the interpretation

of statistical properties of the classifier (softness) as a physical quantity (linearly

proportional to the Arrhenius energy barrier) was made for SVMs, and not other ML

methods.

We devise a toy model where a true energy barrier, ∆E(x⃗) describes the probabil-

ity for a given configuration x⃗ to rearrange. We show numerically how the choice of

structural variables given to the SVM affects the prediction accuracy and the ability

of the trained model to predict the true energy barrier. We show that, if the SVM

is given as the input only those features that contribute linearly to ∆E(x⃗), then the
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inferred softness (distance to the separating hyperplane), indeed, predicts the true

∆E(x⃗). This is true even when the SVM is only trained to predict rearrangements,

rather than ∆E(x⃗) explicitly. However, we also show that, with a finite amount of

training data, the energy barrier estimated through the softness inferred by the SVM

can be strongly biased. Surprisingly, this is true even if the quality of prediction,

measured by common statistical tests, such as cross-validation, is high. Thus, for our

simple model, SVM does not necessarily learn the correct energy barriers, even when

it seems that it does or should. Since, in real systems, structural variables determin-

ing the energy barrier are typically unknown, one usually provides ML algorithm with

a large set of features, with only some of the features that can act as predictors of the

rearrangement probability [13]. One then hopes that the machine distinguishes the

features that directly contribute to the barrier height from those that are correlated

with them, and from those that are irrelevant for the prediction. In this scenario, we

show that the SVM becomes confused, so that its softness cannot be interpreted as the

barrier in the presence of additional features correlated with components of the true

energy function. Although the models we study are simple toy models, the fact that

SVMs can fail to infer the true energy barriers even in a simple model suggests that

their applications in real physical systems should be more carefully tested. Finally,

we demonstrate methods to diagnose these problems and to fix them by systematic

pruning of the structural features used to predict rearrangements.

2.2 Model and Simulations

We study a toy model, which still contains many of the features relevant for our

analysis. In the previous work, Ref. [13], an SVM was used to identify a linear

combination Si = S(x⃗i) =
∑n

j=1 α
jxj

i of structural features x⃗i, associated with a

specific particle i, such that the probability of rearrangement for the particle is as in
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Eq. (2.1). Specifically, in order to reproduce Eq. (2.1), we require a model where (i)

each particle i is described by n structural variables x⃗i = {x1
i , x

2
i , . . . , x

n
i }, which vary

among the particles; (ii) each particle has a rearrangement energy barrier ∆E(x⃗i),

and (iii) the probability to rearrange depends on T and ∆E(x⃗i) with a law that

tends to the Arrhenius law for low temperatures. Additionally we investigated data

from simulations from [73] and found that the distributions of the predictors and

the inferred energy were largely gaussian (see Section 2.3.4). The simplest model

with these properties is one where all n dimensions of x⃗i are drawn independently

at random, and the true energy barrier is a linear function of the n-dimensional x⃗i.

Thus, for each particle i = 1, . . . , N , we generate an n-dimensional coordinate vector

x⃗i = {x1
i , x

2
i , . . . , x

n
i } as

xj
i ∼ N (0, (σj)2) ∀ j = 1, . . . , n and i = 1, . . . , N. (2.2)

We then assume that the energy barrier to rearrangement is a linear combination of

these coordinates

∆E(x⃗i) =
n∑

j=1

αjxj
i . (2.3)

This results in a Gaussian distribution of ∆E, consistent with the Gaussian distribu-

tion of S in supercooled liquids [13].

Finally, for each configuration, we determine whether or not it rearranges by

sampling a binary random variable Ri = ±1 (where ±1 stands for presence/absence

of a rearrangement) from

P (Ri = 1 | x⃗i) =
e−β∆E(x⃗i)

1 + e−β∆E(x⃗i)
, (2.4)

which reduces to the Arrhenius form at low T while remaining below 1 at high T .

We then train a linear SVM [75] to predict Ri from x⃗i, for all i = 1, . . . , N . As is
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the common practice, for the training, we standardize all xs to have zero mean and

unit variance. Thus, drawing xj from N (0, σ2) is equivalent to drawing them from

N (0, 1) and absorbing the standard deviation into the definition of α, which is what

we do. Further, the results shown below are all evaluated at αj = 1.2. We verified

separately that this choice does not change qualitative results from Sec. 2.3.1 and

Sec. 2.3.2 (not shown, but also see Section 2.3.5 for some discussion).

After training the SVM, we define the softness Si for state x⃗i as the signed distance

to the separating hyperplane, as in previous work [13]. We then want to estimate the

probability of rearrangement P (R|S), to see if the softness defines it well. In Ref. [13],

this probability was estimated as the frequency of rearrangements in a certain small

bin of S. Instead, to remove artifacts caused by the finite bin width, we estimate

P (R|S) using a logistic regression model.

In a glass, energy barriers should be strictly positive, and the probability for a

typical particle to rearrange is tiny. To remove biases in the inference, one typically

balances the dataset used for training to have similar numbers of particles that do and

do not rearrange [13]. In our model, Eq. (2.3), we achieve this balance by explicitly

centering ∆E at zero. We checked numerically that this choice does not qualitatively

affect the ability of the SVM to correctly predict the energy (Section 2.3.5).

A large number of structural features are used to train an SVM to predict glassy

dynamics [13]. These features, however, are correlated. To observe the effect of these

correlations on the ability of the SVM to predict the correct energy, for simulations

in Sec. 2.3.3, we give as input to the SVM a 2n-dimensional coordinate vector (x⃗i, z⃗i),

where zji = (xj
i )

2
∑

j1
xj1
i , and all x’s remain uncorrelated, as before. There is noth-

ing particular about this choice of additional variables zj correlated with xj, besides

that we wanted to preserve the same symmetry under parity (even order contribu-

tions would average out for symmetric xs). Further, we wanted these spurious extra

dimensions to be non-linearly correlated with xs, modeling nonlinear correlations be-
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tween values of different radial and angular density functions in [13]. We believe

that our conclusions on the ability of the SVM to predict the correct energy will be

qualitatively the same for other choices of spurious correlated variables obeying these

conditions, and we have checked a few other cases (Section 2.3.7). We then train the

SVM to predict rearrangements from this expanded set of coordinates and evaluate

the effect of the correlated input variables on the quality of the model the SVM builds.

2.3 Results

2.3.1 Linear SVM can learn the true energy barrier in the

infinite data limit

First, we test whether or not the softness S, inferred by the SVM from a very large

sample, is a good approximation for ∆E(x⃗) from Eq. (2.3). We use N = 106 training

samples with 5×105 examples each of rearranging and non-rearranging configurations

to train the SVM. The distribution of energies in the training sample is symmetric.

We have 14 independently sampled input dimensions, with αj = 1.2 for j = 1, . . . , 10

and αj = 0 for j = 11, . . . , 14. Thus, 10 dimensions determine the energy, while

the other 4 dimensions can be seen as Gaussian noise uncorrelated with any of the

relevant input dimensions.

In Figure 2.1(a), we show the relationship between the probability for particles to

rearrange, P (R|S), and S by plotting logitP (R|S) ≡ log[P (R|S)/(1−P (R|S)]) vs. S.

P (R|S) is calculated by fitting a logistic regression that predicts whether a particle is

rearranging from its S. This plot is analogous to the logP (R|S) vs. S plots in earlier

studies [13] since in our model logitP (R|∆E) is linear in ∆E. The plot shows a

similar linear relationship between logitP (R|S) and S. When logitP (R|S) is plotted

as a function of 1/T for several values of softness (Figure 2.1b), we also see a linear

relationship between logitP (R|S) and 1/T as observed in earlier studies [13]. As in
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Figure 2.1: Relationship between softness S and ∆E(x⃗) for symmetric dis-
tribution of training energies for a large training set size, N = 106. (a)
logitP (R|S) derived from fitting the logistic curve to the probability of rearrangement
as a function of S for different temperatures T . (b) logitP (R|S, T ) vs. 1/T for 8 dif-
ferent values of softness. (c) The inferred ∆Einf(S), calculated from logitP (R|S, T ),
as a function of S. (d) 2D joint density plot and the linear fit of the true energy bar-
rier ∆E(x⃗) vs. the inferred energy barrier ∆Einf(S) (we plot the joint density instead
of the scatter for clarity of the visualisation).

the previous work [13], the slope of logitP (R|S) vs. 1/T for each softness S is used

to infer the corresponding energy barrier ∆Einf(S) in Figure 2.1c. This ∆Einf(S)

is analogous to the barrier energy ∆E(S) in the Arrhenius rate equation, Eq. 2.1.

As one can see, the inferred barrier energy, ∆Einf(S), has a linear relationship with

softness, S. Thus, our model, in this limit, reproduces the observations of previous

work [13]: the probability of rearrangement is exponential in the distance S to the
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Figure 2.2: Relationship between softness and ∆E(x⃗) for symmetric distri-
bution of training energies for a small training set size, N = 103. (a), (b),
(c) Same as in Figure 2.1. In (d) The true energy barrier ∆E(x⃗) vs the inferred
energy barrier from SVM ∆Einf(S) is plotted. Note that, to the extent that the slope
in (d) is not 1, the correct energy is not learned.

separating hyperplane, a.k.a. softness, and this distance has an interpretation as an

inferred energy barrier ∆Einf(S).

Unlike in past work, in our model, the true energy barriers are known. Thus,

we then can compare the inferred energy barrier ∆Einf(S) to the true energy barrier

∆E(x⃗) for each configuration x⃗i in the test set. We plot the inferred energy vs.

the true energy, as well as a linear regression line between the two in Figure 2.1(d).

Since the slope of the fit is ≈ 1.0, and the scatter around the linear fit is small, we

conclude that the SVM, indeed, learns the real energy barrier ∆E(x⃗) with a high
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Figure 2.3: Slope of inferred energy (a) ∆Einf(S) vs. real energy ∆E(x⃗) and the
prediction accuracy (b) for different sizes of training data as a function of the SVM
cost parameter C. The training and test data were generated at T = 0.4.

degree of accuracy. We also find that the SVM captures the real energy when trained

on unsymmetrical data where all energy barriers are positive. (Section 2.3.5).

2.3.2 Large training sets are required for SVM to learn true

energy barriers

For real-world problems, we do not have access to an infinite (extremely large) amount

of data. Thus, it is natural to ask whether inferred energies are still accurate for

smaller training sets. For this, we repeated the analysis of section 2.3.1 with varied
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training set size N = 103, . . . , 106.

As shown in Figure 2.2(a–c), when N = 103, the inference procedure still seems to

work. That is, logitP (R|S, T ) is still a linear function of S, and it still appears to be

linear in 1/T . This allows us again to infer the energy barrier ∆Einf(S), which is linear

in S. However, regressing ∆Einf(S) against the true ∆E(x⃗) shows that the inferred

energy is biased, consistently underestimating the magnitude of the true energy by

nearly 15%. Since the variance of the distribution of true energy P (∆E) is a sum of

the variance explained by S and the variance unexplained by S, the error must always

have this sign: if the energy is inferred incorrectly, the variance of the distribution

of inferred energies will be less than the variance of the distribution of true energies.

This point is discussed further in Section 2.3.3.

Figure 2.3(a) show how this underestimation depends on N . Further, Figure 2.3(b)

shows the N dependence of the classification (rearranged or not) prediction accuracy

of our fitted model on a test set, different from the training one. To verify that

fitting and prediction errors do not come from suboptimal choices during training,

in this Figure, we also change the value of the SVM training hyperparameter C,

which controls when the SVM treats data points that are labeled differently from

their neighbors as outliers vs. true data that should be fitted [74, 75]. For small N ,

regardless of C, the true energy is underestimated. For large N , the quality of the

fits improves, and the prediction accuracy as well as the error in slope become largely

insensitive to C. C controls how misclassifications are treated in a SVM. Higher the

value of C higher the penalty for misclassification though for noisy datasets this may

lead to overfitting.

In practice, the true energy is rarely known. Thus detection of the bias shown

in Figs. 2.2(d), 2.3 is nontrivial in experimental applications. Indeed, simple checks,

such as verifying the linearity of plots in Figure 2.2(a,b,c), do not reveal this error.

Further, the underestimation of the barrier magnitude is also difficult to diagnose by
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looking at the prediction accuracy, Figure 2.3(b). When the true energy is underes-

timated by 15%, the prediction accuracy is still 94% (C = 102, N = 103), which is

only 1% lower than the highest value obtained with large N . Since we do not have

any prior information about the maximum possible prediction accuracy for specific

experimental data sets, these figures suggest that, judging by the prediction accuracy

only, one can never be sure if the learned energy is a good estimate of the true one:

a seemingly high accuracy is not enough!

2.3.3 Presence of redundant features in the input data de-

grades the quality of the inference

In Ref. [13], 166 inputs were used for predicting rearrangements. However, many of

these inputs were correlated with one another. To model this, we repeat our analysis

using a higher-dimensional input vector. For this, as explained in Sec. 2.2, we train

the SVM on a 20 dimensional input. Of these input dimensions, xj
i , j = 1, . . . , 10

were independently sampled from a Gaussian distribution, and the remaining inputs

were strongly nonlinearly correlated with them. We again train an SVM on N = 106

balanced data points. The logitP (R|S) vs. S plot (Figure 2.4a), logitP (R|S, T ) vs.

1/T plot (Figure 2.4b) and the inferred energy ∆Einf(S) vs softness plot (Figure 2.4c)

again are linear, as in Figure 2.1 and the previous work [13]. However, plotting the

inferred energy ∆Einf(S) vs. the true energy barrier ∆E(x⃗) for each configuration

and producing a linear fit between them, cf. Figure 2.4d, we see that the magnitude

of the inferred energy is underestimated compared to the true energy even for very

large N (cf. Figure 2.5). Looking at the optimal hyperplane learned by the SVM,

we observe that the hyperplane contains contributions from the input variables that

do not contribute to the true energy (not shown). One would not be aware of this

problem from Figure 2.4(a-c) alone. We remind the reader that the true energy

needed to produce Figure 2.4(d) is typically unknown.
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Figure 2.4: Relationship between softness and ∆E(x⃗) for a symmetric dis-
tribution of training energies and with spurious, correlated input terms.
Same plotting convention are used as in Figs. 2.1. In (d) the true energy barrier
∆E(x⃗) vs the inferred energy barrier from SVM ∆Einf(S) is plotted. The error to
the fit is given by the purple semi transparent spread on both sides of the fit on a
2D density plot. Note that, to the extent that the slope in (d) is not 1, the correct
energy is not learned. Also the deviation between the fit and the 2D density plot at
the edges shows that even though a linear fit was used to fit the energy and softness
and it fit has a high r2 value the underlying function one is trying to fit is not really
linear in S.
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Figure 2.5: (a) Slope of the inferred energy, ∆Einf(S), vs. the true energy, ∆E(x⃗),
and (b) the prediction accuracy for the model with spurious correlated inputs. Same
plotting conventions as in Figure 2.3.
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To design a method for identifying the bias from data, we note again that the

variance of the true energy barrier distribution is a sum of the variance explained

by S (i. e., the variance of ⟨∆E⟩(S) over the distribution of S) and the variance

conditional on S (i. e., the part of the energy barrier not captured by S). Thus, if we

can find a different set of coordinates that allows the SVM to learn a different S that

is closer to the true energy, this improvement should manifest as an increase in the

variance of the distribution of inferred energies, Var[∆Einf ]. Our approach is then to

reduce dimensionality of the input space, aiming to remove the correlated dimensions

and increase the accuracy of the model at the same time. A particular version of this

approach is known in the SVM literature as Recursive Feature Elimination (RFE) [76]

procedure. RFE has been used in earlier work on predicting rearrangements [77, 78]

for pruning the dimensionality of SVM inputs. Assuming that all input dimensions are

normalized to the same variance, RFE works by removing the input dimension with

the smallest magnitude contribution to the separating hyperplane. One then refits

the SVM and continues the process iteratively. Figure 2.6a shows the variance of the

inferred energy as a function of the number of inputs kept by the RFE procedure.

The peak in var[∆Einf ] clearly matches the true number of dimensions that contribute

to the energy in our model. Figure 2.6b shows a corresponding (but broader) peak in

the prediction accuracy as well. These analyses bode well for using RFE for pruning

the input data and resulting in a more accurate inference of the energy barrier in real

world problems.

2.3.4 The inferred energy and predictors in real glass simula-

tions can be approximated by gaussian

We looked at the distribution of each of the 266 dimensions used to train the SVM

in for the Kob-Anderson model supercooled liquid [73]. All the dimensions looked

unimodal. We calculated the kurtosis of all the dimensions, which measures how
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Figure 2.6: Plot of variance of ∆Einf and the prediction accuracy as a function of
number of coordinates kept. The variance of the distribution of ∆Einf is more sensitive
for detecting relevant dimensions. The variance of inferred energy at the peak matches
well with the variance of the distribution of true energy (12 in our units).
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Figure 2.7: Relationship between softness and ∆E(x⃗) for positive energy
barriers and a balanced dataset. To balance our dataset, we choose 50% of
samples where rearrangement was observed, and 50% where it was not. Plotting
conventions are the same as in Figure 2.1. Note that the correct energy is learned
(slope of 0.996), and the spread in the 2D density plot is minimal.

heavy tailed or light tailed a distribution is compared to a Gaussian distribution,

which has kurtosis 0. 73% of the dimensions had a kurtosis in the range of (-0.3, 0.3)

and 92% of dimensions had a kurtosis in the range of (-2,2). The values of kurtosis

cutoffs acceptable for normality vary widely from ±2 to ±6 [79, 80, 81, 82, 83], and

thus the true structural features have roughly Gaussian distributions.
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2.3.5 Qualitative results remain unchanged when trained on

data with non-centered distribution of energy barriers

Recall, as explained in the main text, that in the true system all energy barriers are

positive. However, in the main text, we chose energy barriers to be symmetric around

zero for simplicity. Figure 2.7 is the analogue of Figure 2.1, but now evaluated for

a model where almost all energy barriers are positive. We balance the training set,

similarly to Ref. [13], so that the number of rearranging and non-rearranging particles

is the same.

We draw each of the dimensions from a Gaussian distribution with unit variance

centered at zero. We have 10 independently sampled input dimensions, with α = 0.4

for j = 1, . . . , 10. Further, we add a constant to the energy so that the mean of the

distribution is two standard deviation away from zero, and thus the energy is almost

always positive. We use N = 3×105 training samples with 1.5×105 examples each of

rearranging and non-rearranging configurations to train the SVM. As seen in figure

2.7, the results for the probability of rearrangement and the inferred energy remain

qualitatively unchanged from Figure 2.1 in the Main text. In particular, the correct

energy barriers are learned.

Just as in the case with a centered ∆E distribution, with a non-centered ∆E

distribution, the energy is not learned correctly at small training sample sizes. We

generated a non-centered ∆E distribution as above, and generated training sets of

different sizes, balancing them as above. As can be seen from a Figure 2.8 , these

observations are qualitatively the same as in the centered case.

We also note that giving each variable xj a nonzero mean µj has no effect except

producing a nonzero mean ∆E, and is thus expected to be covered by the above

checks. To see this, write xj = µj + yj, where yj has mean zero. We then have
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Figure 2.8: (a) Slope of the inferred energy, ∆Einf(S), vs. the true energy, ∆E(x⃗),
and (b) the prediction accuracy for the model with non centered ∆E distribution.
Same plotting conventions as in Figure 2.3.

∆E =
∑
j

αjµj +
∑
j

αkyj. (2.5)

Thus, the only effect of giving xj nonzero mean is to add a constant
∑

αjµj to

∆E. Further, note that even in this case where µj ̸= 0, changing the sign of αj

only changes the mean ∆E: it has no effect on
∑

αjyj, since the distribution of y

is symmetric around 0. Thus, qualitative results such as the above, which hold both

when the mean ∆E is 0 and when it is positive, are expected to still hold when some

of the αj are negative.

2.3.6 Effect of missing features

In any realistic system, some of the features needed to express ∆E will be missing.

Here we confirm that this prevents the correct energy from being learned. We use N =

106 training samples with 5× 105 examples each of rearranging and non-rearranging

configurations to train the SVM. The distribution of energies in the training sample
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Figure 2.9: Relationship between softness and ∆E(x⃗) for symmetric distri-
bution of training energies for a large training set size, N = 106, with one
of the relevant feature missing. (a), (b), (c) Same as in Figure 2.1. In (d),
the true energy barrier ∆E(x⃗) vs the inferred energy barrier from SVM ∆Einf(S) is
plotted. Note that, to the extent that the slope in (d) is not 1, the correct energy is
not learned.

is symmetric. We use 10 independently sampled input dimensions, with αj = 1.2 for

j = 1, . . . , 10, to determine the energy. Out of the 10 dimensions we train the SVM

only with the first 9 dimensions and drop the last dimension. In this case, one ends

up underestimating the variance of the true energy as can be seen from Figure 2.9

2.3.7 Effect of different choices of correlated features

As our model of correlated features in Section 2.3.3, we have chosen to add nonlinear

functions of the “correct” input features to the input. Here we check that the results
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of Section 2.3.3 generalize to other choices of correlated input features. In particular,

we test two other options. Firstly, we consider addition of variables that, rather than

being nonlinear functions of the “correct” input features, are simply linearly corre-

lated with them. Secondly, we consider a set of input features that are nonlinearly

correlated, but are not “redundant”, in the sense that, in principle, all of them are

required to express the true energy through a linear function. In both cases, we find

that the results of Section 2.3.3 remain qualitatively unchanged.

2.3.8 Effect of redundant linear feature

We use N = 106 training samples with 5 × 105 examples each of rearranging and

non-rearranging configurations to train the SVM. The distribution of energies in the

training sample is symmetric. We have 10 independently sampled input dimensions,

with αj = 1.2 for j = 1, . . . , 10. Thus, 10 dimensions determine the energy. We train

the SVM on a 12 dimensional input which consists of all the 10 dimensions and 1

extra copies each of j = 1, 2. This gives two extra, redundant features which are

linear in the relevant coordinates. In this case, the SVM again underestimates the

variance of the true energy, as can be seen from Figure 2.10.

2.3.9 Effect of non-redundant and non-linear correlated fea-

tures

We use N = 106 training samples with 5 × 105 examples each of rearranging and

non-rearranging configurations to train the SVM. The distribution of energies in the

training sample is symmetric. We have 10 independently sampled input dimensions,

with αj = 1.2 for j = 1, . . . , 10. Thus, 10 dimensions determine the energy. Instead

of giving the SVM x1 . . . x10 as input features, we use the 14 input features
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Figure 2.10: Relationship between softness and ∆E(x⃗) for symmetric dis-
tribution of training energies for a large training set size, N = 106, with
additional linear features. (a), (b), (c) Same as in Figure 2.1. In (d), the true
energy barrier ∆E(x⃗) vs the inferred energy barrier from SVM ∆Einf(S) is plotted.
Note that, to the extent that the slope in (d) is not 1, the correct energy is not
learned.
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x1+(x5)3, x2+(x6)3, x3+(x7)3, x4+(x8)3, x5, x6, . . . , x10, (x5)3, (x6)3, (x7)3, (x8)3.

(2.6)

(There is nothing particular about these features, and we believe that other combi-

nations of powers of predictors would deliver a similar point.) It should be possible

for the SVM to learn a linear combination of these features that would cancel out the

cubic terms and infer the true energy. Nonetheless, we observed that the SVM does

not learn the correct energy, Figure 2.11. Thus, the presence of non-linearities as well

as redundant features affects the ability of SVM to predict the correct energy.

2.4 Discussion

We have shown that, in our toy model, one can always use a linear SVM to predict

rearrangements with a high accuracy, though the amount of data needed for this

might be larger than what typical experiments would allow in realistic cases. However,

even if the inference seems successful, the inferred energy barrier matches the true

energy only in specific cases. Crucially, by observing a high prediction accuracy or

high quality linear relationship between softness, log rearrangement probability, and

1/T , one cannot conclude that the correct energy has been learned. The problem

becomes severe—even in our simple model—when the input data has extra features,

potentially nonlinearly correlated with true variables describing the model. Realistic

systems, e. g. glasses, are likely to have different types of correlations between their

input features than those we have considered here. Nonetheless, our results suggest

a need to carefully scrutinize the use of ML methods, and specifically SVMs, for

inference of energy barriers in glasses.

For our model, we have demonstrated a method to diagnose and fix this prob-

lem: recursive feature elimination (RFE) can be used to remove “confusing” input

features. By tracking the variance of the inferred energy barriers or of logP (R|S),
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Figure 2.11: Relationship between softness and ∆E(x⃗) for a symmetric dis-
tribution of training energies and with spurious, correlated input terms.
Same plotting convention are used as in Figs. 2.1. In (d), the true energy barrier
∆E(x⃗) vs the inferred energy barrier from SVM ∆Einf(S) is plotted. The fit error
is illustrated by the purple semi transparent spread on both sides of the fit on the
2D density plot. Note that, to the extent that the slope in (d) is not 1, the correct
energy is not learned. Also the deviation between the fit and the 2D density plot at
the edges shows that, even though a linear fit was used to fit the energy and softness,
and the fit had a high r2 value, the underlying function we are trying to fit here is
not linear in S.
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which is maximal when the true barriers are learned, improvements in the inference

of the barriers can be detected, even though the true barriers are unknown and the

prediction accuracy may change little. RFE is particularly natural in our problem

because there is a clear division between important and unnecessary input dimen-

sions. For other systems, RFE may not be the best method for adjusting the set of

input features. For example, Section 2.3.9 shows an example of a set of correlated

features where no smaller set is sufficient to express the energy, and thus RFE cannot

recover the true energy. As another example, if the input features are a discretiza-

tion of the pair correlation function g(r), it may be more natural to coarsen this

discretization, or to change the choice of basis functions, than to eliminate specific in-

put features. However, our criterion for comparing different choices of input features

is general would still stand: features that produce a larger variance in the inferred

energy barriers should be closer to predicting the true barriers. We expect it to be

true in general that the choice of features for the inference will affect whether or not

the true energy is learned, so that different possible choices should be compared using

this criterion. The need to make such comparisons between different choices of input

features and other hyperparameters, rather than only focusing on achieving the best

possible prediction accuracy, is one of the main conclusions of our work.

In our simple model, the probability of particle rearrangement is purely a function

of energy. However, when SVMs are used to predict rearrangements in real systems,

the probability is a function of energy as well as of an entropic prefactor, both of

which are found to depend on S [13], see Eq. (2.1). In addition, there are other

complications not present in our toy model, such as ambiguity in the identification

of rearrangements. We expect such complications to only strengthen our conclusion

that a good prediction accuracy does not guarantee that the ML model learns the

true values of the energy barriers.

It may seem surprising that the addition of extra coordinates degrades the pre-
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diction accuracy and the quality of inference of ∆Einf . Conventional wisdom is that

such overcomplete representation should improve SVM accuracy by creating a higher-

dimensional embedding space, in which the data become linearly separable [75]. It

is possible that the failure of this intuition in our case comes from the probabilistic

nature of rearrangements: for any x⃗, there are both rearranging and non-rearranging

examples, at least in the N → ∞ limit. Thus, the data are fundamentally not

separable, irrespective of the space in which we embed them.

The process of adding more correlated coordinates explicitly to our input is similar

to using some nonlinear kernel on the original data. SVM kernels allow us to create

high dimensional embeddings that are nonlinear functions of the input coordinates

without having to explicitly evaluate the embedding, and these embeddings are often

even infinite-dimensional. Thus, our results seem to imply that using a kernel may

also prevent the true energy barriers from being learned.

In our work, we have focused specifically on linear SVMs, rather than other ML

methods, because this is the only method, which has been used in the past to explicitly

deduce the underlying energy barriers from the inferred statistical model. However,

note that we have chosen the true energy function to be expressible by a linear

SVM. Further, note that more complex ML methods are generally thought to behave

similarly to kernel methods [84, 85]. Thus we expect that our results are not caused

by the simplicity of linear SVMs, and they will generalize to other ML approaches to

the problem of learning energy barriers in glassy systems.

Our results may have implications for many systems beyond supercooled liquids,

for which the underlying “physics” must be learned from an ML model trained on

the data. Indeed, we have shown that, even given a powerful ML model that can

express the true underlying physics, an arbitrarily large amount of training data, and

a good prediction accuracy, the model may fail to learn a correct physical description

even in a relatively simple scenario. We suspect that, in real world applications, this
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problem will become even more severe. One must then use independent methods—

going beyond prediction accuracy—to evaluate the model quality.
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Chapter 3

Distribution of singular values in

large sample cross-covariance

matrices

3.1 Introduction

1 Many data-science applications require detecting correlations between two variables

X and Y of dimensions NX and NY , respectively, with NX , NY ≫ 1. When these

variables are sampled T times, with T ∼ NX , NY , sampling fluctuations can produce

spurious correlations, even when X and Y are truly uncorrelated. Characterizing

these sampling-induced correlations is essential before isolating genuine signals in

real datasets.

Marchenko and Pastur famously analyzed similar correlations in sample self-
1This Chapter presents the paper [86] “Swain, Arabind, Sean Alexander Ridout, and Ilya Ne-

menman. "Distribution of singular values in large sample cross-covariance matrices." arXiv preprint
arXiv:2502.05254 (2025).” The work was conducted in collaboration with Drs. Sean Alexander Rid-
out and Ilya Nemenman. I performed all simulations, conducted all analyses, and led writing of
the manuscript. Dr. Nemenman conceived the model and led the project, while Dr. Ridout con-
tributed to discussions regarding the calculations, procedures and analyses. All authors participated
in writing and reviewed the final manuscript, currently in review in Phys. Rev. E.
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covariance matrices [32], deriving their eigenvalue distribution using now-classic meth-

ods of Random Matrix Theory (RMT) [87]. For T > NX , NY , later work generalized

these results to cross-correlations of whitened variables (linearly transform the data

so that all the resulting variables have zero mean, are uncorrelated such that their

covariance matrix becomes an identity matrix) [88, 89, 90]. However, to our knowl-

edge, no comparable results exist for the unwhitened cross-covariance between X and

Y and arbitrary relations between T , NX , and NY , though some related results have

been calculated [91, 92, 93].

In this paper, we derive the eigenvalue spectra of unwhitened cross-covariance

matrices for uncorrelated Gaussian i.i.d. data and arbitrary relations among T , NX ,

and NY . We hope that these can then be used to distinguish signal from sampling

noise in data science applications. For example, we hope to use these methods to un-

derstand noise-noise correlations between neural recordings (let’s consider it to be Y)

and motor recordings (let’s consider it to be X). The motor recordings are generally

well sampled as compared to the neural recordings and this would correspond to the

case NY > T > NX .

3.2 Model and methods

We consider T samples of random variables X and Y combined into matrices X and

Y, with dimensions T×NX and T×NY , respectively. The entries of X and Y are i.i.d.

Gaussian random variables with zero mean and variances σ2
X and σ2

Y respectively,

Xtµ ∼ N (0, σ2
X) , Ytν ∼ N (0, σ2

Y ) , (3.1)

t = 1, . . . , T, µ = 1, . . . , NX , ν = 1, . . . , NY , (3.2)

so that the measured correlations in X and Y vanish asymptotically, as NX/T,NY /T →

0.
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We define normalized matrices as

X̃ =
X

σX

, Ỹ =
Y

σY

. (3.3)

For T ≫ 1, each column in these matrices has variance of nearly one. Note that, in

typical applications, σX and σY would be estimated from samples as well, and the

estimates might be different from their true value. Here we disregard this distinction,

as in [91], arguing that sampling fluctuations in estimating scalar parameters are

negligible compared to sampling effects on the infinitely many singular values.

The normalized empirical cross-covariance matrix (NECCM) C is then

C =
1

T
ỸT X̃, (3.4)

which has dimensions NY × NX . If NX ̸= NY , this matrix is not square, but it

obviously has the same nonzero singular values as its transpose. Without loss of

generality, in all calculations, we take NX ≤ NY .

We want to calculate the distribution of these singular values. To utilize RMT

methods, most of which only work for square symmetric matrices, we focus instead

on eigenvalues of

CTC =
1

T 2
X̃T ỸỸT X̃. (3.5)

The nonzero eigenvalues of CTC, which we denote as λ, are the same as nonzero

eigenvalues of CCT , and their distribution is related to the distribution of nonzero

singular values of C, denoted as γ, via

ρC(γ) = 2
√
λρCTC(λ), γ =

√
λ. (3.6)

The distribution further contains a delta function at zero, corresponding to the zero

eigenvalues of CTC when NX ≤ NY .
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To explore the problem in different regimes, we define:

pX ≡ T/NX , pY ≡ T/NY , pX ≡ 1/qX , pY ≡ 1/qY . (3.7)

Eigenvalue density. We compute the eigenvalue density of the square of the

NECCM, Eq. (3.5), by computing its Stieltjes transform, as is the standard approach

[87]. The Stieltjes transform of a matrix A is defined as

gA,N(z) = N−1Tr(zI−A)−1, (3.8)

where z is a complex number. We denote the large-N limit of gA,N by gA [87]. The

eigenvalue density is obtained from the Sokhotski–Plemelj formula

ρA(λ) =
1

π
lim
η→0+

ℑgA(z = λ− iη) , (3.9)

where ℑ denotes the imaginary part. We use a series of relatively common random

matrix operations to obtain the Stieltjes transform of the square of NECCM, in the

limit where NX , NY , T → ∞ with pX and pY held fixed. These steps are outlined in

the Section 3.5.

As the imaginary part of the Stieltjes transform gives us the eigenvalue density

of the square of the NECCM, evaluating the discriminant involved in solving an

algebraic equation for the Stieltjes transform (see Section) gives the boundaries of

the range, in which the eigenvalue density is nonzero. These boundaries are denoted

by λ±. The corresponding values for nonzero singular values of NECCM are denoted

by γ±. Analytical expression for these boundaries for the cross-covariance spectrum

of pure uncorrelated noise are one of the central results of this chapter.

Numerical simulations. We confirm our results by simulating the model, Eq. (3.1),

numerically. Although the eigenvalue density is expected to be self-averaging, and
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thus our calculations for ρ(γ) will be exact for SVD of an individual matrix for suffi-

ciently large T , making T very large substantially increases the computational costs.

Thus, we simulate matrices with T = 1000, and more precisely test our predictions

by averaging over 500 independent realizations.

3.3 Equation for Stieltjes transform and singular value

density bounds

We calculate the density of eigenvalues of the square of NECCM in 3 cases, covering

all possible relationships between T,NX , NY : (1) T > NX , NY , (2) NY ≥ T ≥ NX ,

and (3) T < NX , NY . For analyzing these different cases, we note that the square

of the NECCM can be written as an NX ×NX matrix 1
T 2 X̃

T ỸỸT X̃ or an NY ×NY

matrix 1
T 2 Ỹ

T X̃X̃T Ỹ. Both of these matrices will have the same nonzero eigenvalues.

Similarly, the T×T matrix H = 1
T 2 X̃X̃T ỸỸT will have the same nonzero eigenvalues.

While nonzero eigenvalues of all of these matrices are the same, the total number

of eigenvalues is different. For example, the Stiltjes transform h of H gives the density

for T eigenvalues of the T × T matrix, of which only min(T,NX) are nonzero. The

total number of eigenvalues in CTC and CCT is NX and NY , respectively. Thus,

the eigenvalue densities of the three matrices are not the same. To relate densities to

each other, we need to subtract the δ functions at zero, and then rescale the densities

of nonzero eigenvalues to one in all three cases.

With this, we write the finite size Stieltjes transform of CTC:

gCTC,NX
(z) =

1

NX

(
T

1

T

T∑
µ=1

1

z − λµ

+
NX − T

z

)
(3.10)

=
1

NX

(
T hT (z) +

NX − T

z

)
(3.11)

= pXhT (z) + (1− pX) δ(z), (3.12)
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where λµ are the T eigenvalues of CTC and hT (z) ≡ gH,T (z). A similar expression,

with NX and NY swapped, holds for CCT . Eq. 3.10 has 2 terms. The first term is

the contributions of the T non zero eigenvalues to the Stieltjes transform defined in

Eq. 3.8. The second term is NX − T delta functions. We get one delta function as

a contribution of each of the zero eigen values to the Stieltjes transform defined by

Eq. 3.8 and we have NX −T zero eigenvalues. h in Eq. 3.12 is the Stieltjes transform

of only for the T × T matrix which we can calculate from the RMT and g is the

Stieltjes transform of the NX ×NX we are interested in calculating.

An RMT calculation (Section 3.5) then shows that the Stieltjes transform h of H

satisfies a cubic equation

ah3 + bh2 + ch+ d = 0, (3.13)

where

a = z2pXpY , (3.14)

b = z (pY (1− pX) + pX(1− pY )) , (3.15)

c = ((1− pX)(1− pY )− zpXpY ) , (3.16)

d = pXpY . (3.17)

Thus, solving Eq. (3.13), and then using Eq. (3.12), gives the eigenvalue density of

CTC, which can be used to compute the density of the nonzero singular values of the

cross-covariance using Eq. (3.6).

3.3.1 Spectrum of empirical cross covariance matrix when T <

NX , NY

The cubic polynomial given by Eq. (3.13) can be solved, numerically or analytically,

for the imaginary part of h at any parameter values. Taking its imaginary part then
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Figure 3.1: Distribution of nonzero eigenvalues scaled by a factor √
pXpY for T <

NX , NY for T < NX , NY . (a) pX = pY = 0.5, (b) pX = pY = 0.01, (c) pX = 0.5,
pY = 0.01, and (d) pX = 0.01, pY = 0.05. The blue bars are the histogram of the
simulated data. The magenta curve is computed from the numerical solution of the
exact cubic equation for the Stiltjes transform. The black dotted lines show edges
of the nonzero part of the density in simplifying limits, evaluated analytically. Here,
T = 1000, and the the numerical simulation for spectrum consists of 500 independent
model realizations.
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gives us the density of nonzero eigenvalues.

Here, we solve the equation numerically (which we refer to as the “semi-analytic”

solution, since it solves numerically the analytical expression, Eq. (3.13)), and study

the spectrum for a variety of parameter regimes. The spectrum has compact support,

showing a single band of eigenvalues with upper and lower edges. The edges can be

calculated by finding the condition under which the the discriminant of the cubic

equation, Eq. (3.13), becomes zero. To get easily interpretable formulas for the edges

λ± (and hence γ±), we take various simplifying limits where the discriminant equation

for the cubic polynomial is exactly solvable.

For the case where pX = pY (same-size data matrices), the bounds for the nonzero

singular value density then become

γ± =

√
8p2X + 20p3X − p4X ± p

5/2
X (8 + pX)3/2

8p4X
. (3.18)

Assuming pX = pY → 0 (so that we are in the severely undersampled regime, where

the number of samples is much smaller than the number of dimensions in X and Y ),

the edge values become

γ± ≈ 1

pX
(1±

√
2pX). (3.19)

For the case where pY = ϵpX , where ϵ → 0, but pX = O(1) < 1 the bounds are

γ± ≈

√
1 + pX ± 2

√
pX

ϵp2X
. (3.20)

Finally, for pY = αpX , where pX → 0 and α < 1 (both X and Y are extremely

undersampled, but unequal in size), the bounds are

γ± ≈ 1±
√
pY + pX√
pY pX

. (3.21)
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We see that, in all of these limits, the center of the singular value distribution

is approximately the geometric mean of the inverse aspect ratios,
√

1
pXpY

=
√
qXqY .

This sets the typical scale of sampling noise singular values at a given sample size T .

The noise eigenvalues of X̃T X̃/T and ỸT Ỹ/T individually scale like qx and qy [32].

Thus, this scaling is plausible if each eigendirection is poorly-sampled enough that

they can be found to correlate with each other by chance.

Figure 3.1 compares our analytical results to numerical simulations for the density

of singular values γ of C. We scale the singular values by the scale factor
√

1
pXpY

.

We see that the semi-analytic solution for the density is in excellent agreement with

our numerical results. Further, we see that the analytical solutions for the bounds,

in appropriate limits, also agree well with simulations.

The simulations and the semi-analytic solutions also agree for other parameter

values where simple analytic bounds for the edges could not be evaluated exactly (see

Section 3.5).

3.3.2 Spectrum of empirical cross covariance matrix when NY ≥

T ≥ NX

Solving for the roots of the cubic polynomial in Eq. (3.13) and taking its imaginary

part again gives us the density of nonzero eigenvalues.

In this case, we can evaluate the edges of the spectrum exactly in the limit pY =

ϵpX , where ϵ → 0, and pX = O(1) ≥ 1. In this case, the bounds are

γ± =

√
1 + pX ± 2

√
pX

ϵp2X
. (3.22)

This limit is the same as in the case when T ≤ NX , NY and NX ≪ NY . Though the

rank of the matrix is now NX instead of T (in the case when T ≤ NX , NY ).

Figure 3.2 shows that the semi-analytic solution for the density, and the analytic
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Figure 3.2: Distribution of nonzero eigenvalues for NY ≥ T ≥ NX , specifically,
pX = 2, pY = 0.01. Plotting conventions are the same as in Fig. 3.1. Here, again,
T = 1000, and the numerical simulation for spectrum consists of 500 independent
model realizations.
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solution for the edges, match our numerical simulations in this case as well.

The tail which lie outside of the analytic equation to the right of the density plot in

Fig 3.2 follows the Tracy-Widom distribution [94]. This is because all the outliers are

because of the largest eigenvalue, and the largest eigenvalue of a product of Wishart

matrices follows Tracy-Widom distribution as well.

3.3.3 Spectrum of empirical cross covariance matrix for T >

NX , NY

Solving for the roots of the cubic polynomial, Eq. (3.13), and taking its imaginary

part again gives us the density of nonzero eigenvalues. We then obtain simplified

formulas for γ± in limiting cases.

For the case where pX = pY , the discriminant of the cubic equation for h is a

5th-order polynomial with three zero solutions and two nonzero solutions, given by

z± =
8p2X+20p3X−p4X±p

5/2
X (8+pX)3/2

8p4X
. Now because z− < 0 and the squares of singular

values are always positive, the upper bound of the non-zero density is z+ but the

lower bound is 0. Thus the bounds for the nonzero eigenvalue density are

γ+ =

√
8p2X + 20p3X − p4X + p

5/2
X (8 + pX)3/2

8p4X
, γ− = 0. (3.23)

In the limit pX ≫ 1 (extremely good sampling), this simplifies to γ+ ≈
√

3
2pX

=
√

3qX
2

.

Thus, in this limit the scaling of the edges agrees with those for the cross-correlations

of whitened variables evaluated in Ref. [88], where γ+ = 2
√
qX , and γ− = 0. Note,

however, that the exact value of the upper edge is different for the whitened cross-

correlation matrices, because the self-covariances used for whitening also fluctuate.

Figure 3.3 shows that these limiting formulas for the edges, and the semi-analytic

solution for the spectrum match numerical simulations.
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Figure 3.3: Distribution of nonzero eigenvalues for T > NX , NY , specifically pX =
pY = 1.25. Plotting conventions are the same as in Fig. 3.1. Here, again, T = 1000,
and numerical simulation for spectrum consists of 500 independent model realizations.

3.4 Discussion

We have used random matrix theory to calculate the density of singular values of

normalized cross-correlation matrices. Further, in simplifying limits, we were able to

obtain simple, exact formulas for the edges of the spectrum.

In all cases, the scale of the non-zero singular values is given roughly by 1/
√
pXpY =

√
NXNY /T . Thus, the noise, unsurprisingly, decreases as more samples are collected,

relative to the dimensions of the two observed variables. More surprisingly, however,

this calculation in fact suggests that the cross-covariance can sometimes be used to

detect a signal which is not detectable from either the covariance of X or that of Y

alone, as recently observed numerically [95].

To see this, consider a naïve protocol for establish a correlation between high-

dimensional X and Y : we first search for a low-dimensional signal in X (e.g., using

principle component analysis), then search for a low-dimensional signal in Y , and

finally correlate the low-dimensional signals. The edges of the empirical covariance



51

spectra of X and Y are of order 1/pX and 1/pY , respectively. Thus, a shared signal

which has O(1) magnitude in both X and Y will correspond to an outlier eigenvalue

outside of the spectrum, and hence can be detected if T > NX , NY . But if NY >

T > NX (one variable is well sampled, and one variable is poorly sampled), the signal

in Y cannot be detected. Since the noise spectrum of C depends on the geometric

mean √
pXpY , however, the same signal may be detectable in C, if X is sampled well

enough to “make up for” the poor sampling of Y . Making this rough analysis precise

requires a full calculation of the spectrum of a model with both a signal and noise,

which we will present in a future work.

These results also suggest that a sufficiently strong signal can be detected even if

T < NX , NY .

In the limit T ≫ NX , NY , where the covariances of X and Y are both well

sampled, the edges of the spectrum have the same scaling with aspect ratio (sample

size) as those for the whitened cross-correlation matrix [88]. Thus, in this extremely

well sampled limit, the cross-corelation and cross-covariance matrices can both be

used to detect a signal. However, the prefactor of this scaling is smaller for the

cross-covariance matrix, indicating that whitening using the inverse of the empirically

sampled self-covariance matrices introduces additional noise in the spectrum. Further,

for sparse data, the cross-correlation cannot be evaluated—even if only one of the

two variables is undersampled, where our results suggest that a signal may still be

detectable in the cross-covariance. Together, these results suggest that in many cases

the cross-covariance may be the most effective tool for detecting the shared signal in

a pair of high-dimensional observations.
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3.5 Calculating the spectrum of the empirical cross-

covariance matrix

Here we calculate the spectrum of the NX×NX normalized empirical cross-covariance

matrix CTC, given by Eq. (3.4). Given NX , NY , T ≫ 1, this spectrum can be

evaluated using random matrix theory. Parts of this calculation, can be mapped onto

previous calculations [91, 92, 93] by reinterpreting the meaning of various various.

However, for completeness, we present a full, self-contained calculation here.

The nonzero eigenvalues of the NECCM CTC are the same as those of the matrix

H =
1

σ2
Xσ

2
Y T

2

(
XXT

) (
YYT

)
(3.24)

=
NXNY

T 2
WXTWY T (3.25)

=
1

pXpY
WXTWY T . (3.26)

Here WX and WY are normalized Wishart matrices, given by

WY =
1

Tσ2
Y

YTY , (3.27)

and similar for X. Crucially, WX and WY are free matrices (the appropriate gener-

alization of independence to noncommuting objects, such as matrices).

The spectrum of H, ρH, can be evaluated from its Stiltjes transform,

h(z) ≡ hH(z) ≡ lim
T→∞

1

T
Tr(zI−H)−1, (3.28)

using the formula

ρH(λ) =
1

π
lim
η→0+

ℑh(z = λ− iη) , (3.29)
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To evaluate this Stiltjes transform, we must introduce the T and S transforms,

which are useful for evaluating the Stiltjes transform of products of random matri-

ces [87]. Their properties used in further calculations are summarized below.

The T transform of a matrix A is defined as

TA(z) = zgA(z)− 1. (3.30)

The T transform, in turn, is used to define the S transform:

SA(t) =
t+ 1

tT −1
A (t)

. (3.31)

For free matrices A and B, the S-transform of a product is multiplicative:

SAB(t) = SA(t)SB(t) . (3.32)

Furthermore, for a scalar a,

SaA(t) = a−1SA(t) . (3.33)

To derive the Stieltjes transform of H, we first evaluate its S transform. Using

Eq. (3.32) and Eq. (3.33), we write

SH(t) = S
(

1

pXpY
WXTWY T

)
(3.34)

= pXpY SW
XT

SW
Y T

. (3.35)

The S-transform of a Wishart matrix is well known [87]:

SW
XT

=
1

1 + pXt
. (3.36)
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Now, plugging in the relevant terms for SW
XT

and SW
Y T

in Eq. (3.34) using

Eq. (3.36), we obtain:

SH(t) =
pX

1 + pXt

pY
1 + pY t

. (3.37)

To calculate the spectral density of the matrix of interest we replace the S-transform in

Eq. (3.37) with the corresponding T -transform by using the relationship in Eq. (3.31):

T −1
H (t) =

t+ 1(1 + pXt)(1 + pY t)

tpXpY
. (3.38)

We now solve the equation for the functional inverse, T −1(T (z)) = z, using the

definition of the T -transform, Eq. (3.30). This gives a cubic equation for the Stieltjes

transform:

h3z2pXpY + h2z (pY (1− pX) + pX(1− pY )) +h ((1− pX)(1− pY )− zpXpY ) + pXpY = 0

(3.39)

The imaginary part of the roots of the cubic equation give us the density of

eigenvalues. The edges of the band [λ−, λ+], for which the density is nonzero, are

obtained from the zeros of the discriminant of the cubic equation. Thus Eq. 3.39 is

of the form

ah3 + bh2 + ch+ d = 0, (3.40)

the discriminant is

D = b2c2 − 4ac3 − 4b3d− 27a2d2 + 18abcd, (3.41)
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where:

a = z2pXpY , (3.42)

b = z (pY (1− pX) + pX(1− pY )) , (3.43)

c = ((1− pX)(1− pY )− zpXpY ) , (3.44)

d = pXpY . (3.45)

The density ρ(λ) and the edges λ± must then be transformed into the density of

singular values ρ(γ) and the edges γ±. For this, to get the spectrum of the nonzero

part of the SVD of C, we use:

ρA(z) = 2zρA2(z2), (3.46)

and the edges obey γ± =
√

λ±.

3.5.1 Spectrum of the empirical cross covariance matrix for

T < NX , NY

Simplified solutions for pX = pY

For pX = pY , the cubic equation for the Stieltjes transform, Eq. (3.39), reduces to:

h3z2pX
2 + h2z (pX(1− pX) + pX(1− pX)) (3.47)

+ h
(
(1− pX)(1− pX)− zpX

2
)
+ p2X = 0 , (3.48)

and the discriminant (Eq. 3.41) simplifies to

D = (4p4X − 12p5X + 12p6X − 4p7X)z
3 (3.49)

+ (−8p6X − 20p7X + p8X)z
4 + 4p8Xz

5. (3.50)
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Solving Eq. (3.50) for zeros we find that there are three zeros at z = 0 and two

zeroes at λ±. In between these values, the discriminant is negative and thus the

solution for h has a nonzero imaginary part, giving a nonzero density of eigenvalues.

We obtain:

λ± =
8p2X + 20p3X − p4X ± p

5/2
X (8 + pX)

3/2

8p4X
. (3.51)

For pX → 0, Eq. (3.51) reduces to

λ± =
1

p2X
± 2

√
2

p
3/2
X

. (3.52)

The singular values of C have nonzero density between γ±, where γ± =
√
λ±.

Thus, for small pX ,

γ± =

√
1

p2X
± 2

√
2

p
3/2
X

=
1

pX

√
1± 2

√
2
√
pX (3.53)

≈ 1

pX
(1±

√
2pX). (3.54)

Simplified solutions for pX < 1, pY ≪ pX

For pY = ϵpX under the condition ϵ → 0, the cubic equation for the Stieltjes transform

Eq. (3.39) reduces to:

ϵh3z2p2X + h2zpX (ϵ(1− pX) + (1− ϵpX)) (3.55)

+ h
(
(1− pX)(1− ϵpX)− zϵp2X

)
+ ϵp2X = 0 . (3.56)

The discriminant of Eq. (3.55) is calculated using Eq. (3.41). We then organize this

discriminant as a polynomial in z, giving

D = 4z5ϵ4p8X + z4(ϵ2p6X + ϵ3(−10p6X − 10p7X)
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+ ϵ4(p6X − 10p7X + p8X)) + z3(ϵ(−2p4X − 2p5X)

+ ϵ2(8p4X − 4p5X + 8p6X) + ϵ3(−2p4X − 4p5X − 4p6X − 2p7X)

+ ϵ4(−2p5X + 8p6X − 2p7X)) + z2(p2X − 2p3X + p4X

+ ϵ(−2p2X + 2p3X + 2p4X − 2p5X)

+ ϵ2(p2X + 2p3X − 6p4X + 2p5X + p6X)

+ ϵ3(−2p3X + 2p4X + 2p5X − 2p6X) + ϵ4(p4X − 2p5X + p6X)). (3.57)

Each term is of the form fn(ϵ)z
n. As ϵ → 0, we may expand each fn(ϵ) to the

lowest nontrivial order in ϵ. Collecting the lowest-order terms for each power of z,

the discriminant in Eq. (3.57) reduces to:

D ≈ z2
[
p2X(1− pX)

2 − 2(p4X + p5X)ϵz + p6Xϵ
2z2 + 4p8Xϵ

4z3
]
. (3.58)

We seek positive roots z±(ϵ) of the right-hand group of terms (the equation has a

single negative root, but since the eigenvalues of H are positive by construction, this

corresponds to a spurious root of the equation for h). This requires cancellation of

at least two terms. That is, at least two terms of opposite signs must be of the same

order in ϵ. We see that this can only happen if z ∼ ϵ−1 or z ∼ ϵ−3/2. In both of these

possible cases, the final term is subleading and can be neglected. Thus, in this limit,

we seek the roots of

D ≈ (p2X − 2p3X + p4X)z
2 − 2(p4X + p5X)z

3ϵ+ z4p6Xϵ
2. (3.59)

We solve Eq. (3.59) for zeros. The 4th-order equation has four zeroes. Two of the

zeros are z = 0, and the other two, λ±, are

λ± =
1 + pX ± 2

√
pX

ϵp2X
(3.60)
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≈
1 + pX ± 2

√
pX

pXpY
. (3.61)

Thus the density of eigenvalues for for SVD of C will be nonzero between γ± =
√

λ±,

such that

γ± ≈

√
1 + pX ± 2

√
pX

pXpY
. (3.62)

Simplified solutions for pX , pY ≪ 1

For pY = αpX under the condition pX → 0 and α < 1, the cubic equation for the

Stieltjes transform Eq. (3.39) reduces to:

αh3z2p2X + h2zpX (α + 1) + h
(
1− zαp2X

)
+ αp2X = 0 . (3.63)

The discriminant of Eq. (3.63) is calculated using Eq. (3.41). Written as a poly-

nomial in z, it is

D = 4z5α4p8X + z4(α2p6X − 10α3p6X + α4p6X − 18α3p7X

− 18α4p7X − 27α4p8X) + z3(−2αp4X + 8α2p4X − 2α3p4X

− 4αp5X + 6α2p5X + 6α3p5X − 4α4p5X)

+ z2(p2X − 2αp2X + α2p2X). (3.64)

As pX → 0, the contribution of higher-order terms for each power of z to the final

solution will be negligible. Collecting the lowest order terms in pX for each power of

z, the discriminant in Eq. (3.64) reduces to

D = 4z5α4p8X + z4(α2p6X − 10α3p6X + α4p6X)

+ z3(−2αp4X + 8α2p4X − 2α3p4X)+
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z2(p2X − 2αp2X + α2p2X). (3.65)

We solve Eq. (3.65) for zeros. The 5th-order equation has 5 zeroes (counting their

multiplicities). Two of the zeroes are at z = 0, one is at z = −(1−α)2

4α2p2X
< 0. Thus, the

other two are λ±. Taking the condition D < 0, we find that nonzero density requires

λ ∈ [λ−, λ+]. In particular, we find the solution

λ± =
1± 2

√
pX(1 + α)

αp2X
. (3.66)

The nonzero density of eigenvalues for SVD of C will be between γ± =
√
λ±:

γ± =
√
λ± =

√
1± 2

√
pX(1 + α)

αp2X
(3.67)

=

√
1± 2

√
pX + pY

pY pX
(3.68)

≈ 1±
√
pY + pX√
pY pX

. (3.69)

3.5.2 Spectrum of the empirical cross covariance matrix when

T > NX , NY

Simplified solutions for pX = pY

For pX = pY , the discriminant takes the same form as in the case T < NX , NY

(Eq. 3.50). That is,

D = (4p4X − 12p5X + 12p6X − 4p7X)z
3

+ (−8p6X + 20p7X + p8X)z
4 + 4p8Xz

5. (3.70)
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In this case, however, the identities of the roots that determine λ± are different from

the case T < NX , NY . Specifically, Eq. (3.70) has three zeros at z = 0 and one zero

each at z− =
8p2X+20p3X−p4X−p

5/2
X (8+pX)3/2

8p4X
and z+ =

8p2X+20p3X−p4X+p
5/2
X (8+pX)3/2

8p4X
. The root

z− < 0, and the squares of the singular values are always non-negative. Thus the

lower edge is λ− = 0, and λ+ = z+ =
8p2X+20p3X−p4X+p

5/2
X (8+pX)3/2

8p4X
. Thus the upper edge

of the SVD spectrum is γ+ =
√
λ+. For pX ≫ 1,

λ+ ≈ −1

8
+

(
(8 + pX)

3/2

8p
3/2
X

)
(3.71)

≈ 3

2pX
. (3.72)

Thus,

γ+ =

√
3

2pX
. (3.73)
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Chapter 4

Statistical properties of spiked joint

covariance and cross covariance

matrices

4.1 Introduction

1Recent experiments measure increasingly large numbers of variables simultaneously,

giving rise to extraordinarily large datasets. Examples include recordings from pop-

ulations of neurons [96, 97], movies of animal postures [98, 99], ‘omics datasets

[100, 101], collective behavior [102], particle positions in soft matter systems [13],

ecological data [103], etc. In many of these cases, one wants to understand the rela-

tionship between two high-dimensional variables—e.g., neural activity and behavior,

or gene expression and cellular phenotypes. Such correlations are inferred from the

singular value decomposition of the cross covariance matrix. In order to determine
1The work in this chapter was conducted in collaboration with Drs. Sean Alexander Ridout

and Ilya Nemenman. I performed all simulations, conducted all analyses, and led writing of the
manuscript. Dr. Nemenman conceived the model and led the project, while Dr. Ridout contributed
to discussions regarding the calculations, procedures and analyses. All authors participated in
writing and reviewed the chapter which will become the final manuscript.
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whether a given singular value corresponds to a true signal or merely to sampling

noise, we must first understand the singular value spectra produced by uncorrelated

data due to finite-sampling effects (see previous Chapter), and how these sampling

effects affect the detectability of signals. Random Matrix Theory (RMT) provides an

interpretable framework that allows us to do this.

Data will be modeled as T independent samples of the state of the system, specified

through NX ≫ 1 variables xi, i = 1 . . . NX , and NY ≫ 1 variables yi, i = 1 . . . NY .

Thus, the data comprise two matrices X and Y with dimensionality T × NX and

T × NY , respectively. RMT has previously been used to study finite-sampling in-

duced correlations within X or Y separately and for calculating the conditions on

the strength and the structure of the signal that would allow the signal to be distin-

guishable from the spurious correlations emerging due to sampling fluctuations. Such

calculations were made for different models, including the latent features model [91],

and the ‘spiked covariance matrices’ model [104, 105, 106, 107]. The former is a gener-

ative model, which specifies the distribution of data as coming from a combination of

signal and noise. The latter assumes that the sample covariance matrices, e.g. XTX,

have a low-dimensional signal contribution, a ‘spike’, without providing a generative

model for how the said spike appears.

Similar RMT-based analyses for cross covariance, which would analyze when a

shared signal between X and Y can be detected from the two data matrices together,

are largely missing. Some attempts have been made to study the detectability of a

signal in the cross covariance by considering a concatenation of X and Y matrices into

a single matrix Z [108, 109]. Then the cross covariance estimation is a sub-problem

of covariance estimation of Z, so that much of the previous work on covariance within

individual data modalities applies. However, to use these methods, one must make

strong assumptions about the structure of the covariance matrix like both X and Y

having the same covariance for the pure noise-noise covariance, so that the methods
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have only limited applications. A complementary approach is to whiten the variables

X and Y, so that there are no within-modality correlations remaining, and all corre-

lations thus represent the cross-correlations between the two data types [88, 89, 90].

These approaches are powerful if T > {NX , NY }, so that whitening is possible. How-

ever, understanding the limits of detectability of shared signals in datasets remains

rudimentary in the opposite regime of a small number of samples.

In the context of spiked models, where a signal perturbation is added directly

to the otherwise sampling-noise induced covariance matrix, the Johnstone model de-

serves special attention [34]. It was found that the largest eigenvalue undergoes a

phase transition [35] (the BBP phase transition) as the spike strength is varied. As

the spike strength increases, there is a critical threshold where the top eigenvector of

the sample covariance matrix starts to align with the spike added to the covariance

matrix as a perturbation. If the strength of the spike is smaller than the critical value,

then the largest eigenvalue of the spiked sample covariance matrix will be the largest

eigenvalue of the bulk eigenvalue spectrum (and hence is not an outlier), and the cor-

responding sample eigenvector will be delocalized (or be effectively random). If the

strength of the spike is larger than the critical value, then the associated eigenvalue

will jump out of the bulk eigenvalue spectrum induced by the sampling noise, and the

outlier sample eigenvector will have a nonzero overlap with the spike (signal). Similar

results have been derived for different structures of distribution of bulk covariance,

as well as for a multiplicative spike [110, 111, 112, 113, 114]. However, currently no

models exist to understand the effect of additive perturbations in cross-correlation

matrices.

Here, we define a model that can be used to study (i) the effect of an additive spike

on individual covariances of X and Y with different strengths of spikes associated with

X and Y, (ii) the effect of this spike on the eigenspectrum of Z = (X,Y), and finally

(iii) the effect of the same spike on the spectrum of the cross covariance XTY. We
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calculate analytically the critical spike strength to detect an outlier eigenvalue in all

three cases and calculate the overlap of the largest eigenvectors with the true signal

vector.

We show that, for certain parameter values, a shared signal that cannot be de-

tected using in the eigenvalue spectrum of either X or Y can be detected as an outlier

in the eigenvalue spectrum of the concatenated data Z covariance, ZTZ, or as an out-

lier in the singular value spectrum of the cross covariance XTY. We further analyze

under which conditions outliers are easier to detect in the spectra of ZTZ or of XTY.

4.2 Model and methods

We are interested in understanding the ability of different methods to detect a shared

signal between two large dimensional datasets as an outlier from the bulk of finite

sampling-induced correlations. For this, we first set up spiked covariance matrix

models for all of these cases, as is a standard approach in the literature, so that

the corresponding covariance matrices have a deterministic low-rank additive con-

tribution [34, 35], in addition to the sampling-induced structure. These spikes are

constructed to be equivalent, representing the same signal in each case. We then

compare the limits of detectability of these low-rank spikes along all models.

We represent data as matrices, X and Y, with dimensions T ×NX and T ×NY ,

respectively. To study correlations due to sampling only, we assume that the entries of

X and Y are uncorrelated Gaussian random variables with zero mean and variances

σ2
X and σ2

Y , respectively.

Xtµ ∼ N (0, σ2
X) , Ytν ∼ N (0, σ2

Y ) , (4.1)

t = 1, . . . , T, µ = 1, . . . , NX , ν = 1, . . . , NY . (4.2)

In what follows, we will often assume σ2
X = σ2

Y = 1 for simplicity, but this does not
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result in the loss of generality as each of the variables can be normalized easily by its

empirical variance.

We additionally define Z as the concatenation (X,Y).

Z = (X,Y) . (4.3)

The dimensionality of Z is then T × (NX +NY ).

We consider a spike—a low-rank perturbation—in the concatenated covariance,

which points in the direction û in X and v̂ in Y . The vectors (û and v̂) are 1×NX

and 1 × NY dimensional random (but quenched) unit vectors, respectively. The

magnitude of the spike is a and b in the X and Y spaces, respectively. We further

define c2 = a2+ b2, so that the direction of the joint spike in the Z space corresponds

to ẑ =
(
a
c
û, b

c
v̂
)
, and the spike’s magnitude is c. With this choice of variables, the

vector ẑ vector is a random unit vector with dimensionality 1 × (NX + NY ). The

spiked covariance model for the ZTZ data is given by

HZTZ =
ZTZ

T
+
(
a2 + b2

)
ẑT ẑ. (4.4)

The first term in r. h. s. of Eq. (4.4 ) can be written in a block form as

ZTZ

T
=

XTX
T

XTY
T

YTX
T

YTY
T

.

 (4.5)

In other words, this term consists of the square X and Y self-covariance matrices, as

well as their rectangular cross covariance.

A similar block-form of the second term, the spike, in Eq. (4.4) is:

(
a2 + b2

)
ẑT ẑ =

a2ûT û abûT v̂

abv̂T û b2v̂T v̂

 . (4.6)
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Combining these expressions, we write:

HZTZ =
ZTZ

T
+
(
a2 + b2

)
ẑT ẑ =

XTX
T

+ a2ûT û XTY
T

+ abûT v̂

YTX
T

+ abv̂T û YTY
T

+ b2v̂T v̂

 . (4.7)

This shows that the block form of the spiked covariance matrix model consists of

spikes (of different magnitudes) added to the self- and cross covariance terms. This

now allows us to compare the different spiked models against each other on equal

footing, as subproblems of Eq. (4.7). Specifically, we define the following models for

comparison.

The spiked covariance model for X:

HXTX =
XTX

T
+ a2ûT û. (4.8)

The spiked covariance model for Y:

HYTY =
YTY

T
+ b2v̂T v̂. (4.9)

.

The spiked cross covariance model:

HXTY =
XTY

T
+ abûT v̂. (4.10)

The results for Eq. 4.8 and Eq. 4.9 have been calculated earlier [110, 87]. To explore

the problem in different regimes, we define the following parameters, which measure

the aspect ratios of different parts of the data matrix:

qX ≡ NX/T, qY ≡ NY /T, pX ≡ 1/qX , pY ≡ 1/qY . (4.11)
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In general, small qs at large T mean that the data are relatively well-samped, and

small ps signal the opposite.

4.3 Results

For the spiked covariance models for X and Y, defined in Eq. (4.8) and Eq. (4.9),

respectively, the conditions on a and b to observe an outlier away from the bulk

spectrum due to noise are well known [35]. These are evaluated by plugging in the

value of the right most edge λ+ of the noise bulk of the perturbed matrix M into its

Stieltjes transform [87], i.e.,

a2crit =
1

gM(λ+)
(4.12)

The i.i.d. Gaussian matrices XTX and XTX we consider are the well-studied

Wishart matrices. The Stieltjes transform of a Wishart matrix obtained from T

samples of an N -dimensional variable is [32]

g(z) =
z − 1 + q −

√
z − λ+

√
z − λ−

2πqx
. (4.13)

Here q = N
T

, λ± = (1 ± √
q)2. λ+ is the rightmost edge of the noise bulk and λ− is

the left most edge of the bulk. The minimum value of the additive perturbation due

to the spike for the signal to be detectable is 1
g(λ+)

=
√
q(1 +

√
q).

Thus, for a spiked covariance matrix for X, detecting an outlier requires

a2 ≥ √
qX (1 +

√
qX) . (4.14)

Similarly, for Y, the condition for observability of an outlier eigenvalue is

b2 ≥ √
qY (1 +

√
qY ). (4.15)
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Thus, to be able to detect a shared signal between X and Y via correlating the eigen-

vectors corresponding to the spikes in the individual variables, both of the conditions,

Eqs. (4.15, 4.15) must be satisfied simultaneously.

4.3.1 Spiked joint covariance model

The joint covariance spiked model is defined in Eq. (4.4). As entries of both X and

Y have the same variance (assumed to be 1), the entries of the matrix Z produced

by concatenating X and Y will have the same variance as well. This means that Z is

a T × (NX +NY ) dimensional Wishart matrix with a variance parameter of 1, and ẑ

vector is a unit vector with dimensionality 1× (NX +NY ). Thus, the spectrum of the

joint covariance is caluclated in the same way as for the individual variables, similar

to the previous section. Conditions for detectability of an additive perturbation are

also similarly calculated, resulting in:

c2 = a2 + b2 ≥
√
qX + qY

(
1 +

√
qX + qY

)
. (4.16)

Further, if λjoint
max is the largest eigenvalue for the joint covariance matrix, and zjointmax

is the eigenvector associated with it, then the “joint overlap”, or the dot product

between zjointmax and the original spike ẑ, can be derived from well-known results using

the R transform of the Wishart matrix [32]:

∥zjointmax · ẑ∥ =

√
1−

(
1

(a2 + b2)2

)
R′
(

1

(a2 + b2)

)
(4.17)

The R-transform of a random matrix A is

RA(z) = BA(z)− 1/z , (4.18)
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Figure 4.1: Overlap-∥zjointmax · ẑ∥ in the joint covariance. Analytic solution for the
joint overlap is represented by magenta line and the simulation by green triangles.
X-joint overlap is the overlap between the X components of the spike and the largest
eigenvector of the covariance matrix and is represented by green squares. Similarly,
Y joint overlap is represented by green circles. Finally, the blue circles correspond
to the the overlap in marginal Y covariance direction. For the simulations, T = 100,
NX = 100, NY = 2 × 103. b = 2.5 and is fixed. We change the value of a and plot
the overlaps. Once the value of a crosses the BBP bound (dotted line), the joint
overlap goes up. More importantly as the joint overlap increases, the Y and the X
joint overlaps also increase from zero, unlike the marginal Y overlap.

where the B-transform is the functional inverse of the Stieltjes transform

BA[gA] = z. (4.19)

R′
A(z) is the derivative of the R-transform of a random matrix A.

Simplifying Eq. (4.17) gives us

∥zjointmax · ẑ∥ =


√
1− qX+qY

(a2+b2−qX+qY )2
if a2 + b2 ≥

√
qX + qY (1 +

√
qX + qY ),

0 if a2 + b2 <
√
qX + qY (1 +

√
qX + qY ).

(4.20)
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This overlap takes a nonzero value when the spike magnitude c =
√
a2 + b2 is above

the threshold in Eq. (4.16).

We now need to verify if detection of the outlier eigenvalue in Z guarantees that

both marginal outlier directions û and v̂ are correctly identified. To answer this, we

compute numerically the X component of zjointmax and normalize its magnitude to 1. We

denote this normalized X component by
(
zjointmax

)
X

, and we calculate its dot product

with û. We call the quantity ∥
(
zjointmax

)
X
· û∥ the X-joint overlap, and we similarly

define the Y -joint overlap.

In Fig. 4.1, we compare these overlaps in numerical simulations of a specific

case, where NX > NY > T . This is precisely the undersampled regime, where

little analytical understanding exists. Yet, this regime is especially relevant for mod-

ern experimental datasets. We hold the Y signal strength b fixed, choosing it to

be below the BPP transition threshold for the detectability of the spike in Y it-

self, Eq. (4.15). We vary the X signal strength a. We see that the joint overlap

(green triangles) agrees well with the analytic prediction, Eq. (4.20) (magenta curve).

Specifically, we start to reliably detect the signal (i. e., obtain a nonzero overlap)

when a2 + b2 >
√
qX + qY (1 +

√
qX + qY ), and the simulations match the analytics,

although finite-size effects produce nonzero overlap even below the nominal detection

threshold. The exact position of the new detection threshold can be calculated ex-

actly using the Tracy-Widom distribution [94]. The fluctuations because of finite size

effects scale as T−2/3 if the ratios of qX and qY are kept fixed. The joint X and Y

overlaps both rise from zero at the same value of a as well. Note that, even though Y -

joint overlap becomes nonzero when the threshold is crossed, the Y -marginal overlap

(that is, the overlap of the eigenvector corresponding to the largest eigenvalue of the

Y self-covariance, blue circles) remains zero as a increases. This shows that the joint

covariance allows us to detect signal that is not detectable using individual variables

alone.
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Next we generalize these results and calculate the phase diagram for detectability

of the spike (defined as a nonzero overlap between the largest singular vector(s) with

both the X and the Y components of the spike, û, v̂) for different values of a and

b (Fig. 4.2) using Eqs. (4.14, 4.15, 4.16) This phase diagram shows three possible

regimes. When both the X and the Y components of the spike signal are weak (white

area), correct identification of the spike is impossible from the marginal covariance

matrices. Over a wide region where only one of a or b is large (green), both X and

Y signals can be identified using the joint covariance ZTZ. Yet, one of them and,

in some cases, even both of them cannot be identified using the marginal covariance

matrices. Finally, when both a and b are large enough (blue and green hatching),

both individual spiked covariance matrices (blue) and joint covariance (green) can

identify both components of the spike vector.

Importantly, detection of a spike is always easier in the joint covariance than in

individual marginal covariances. In some cases, the difference is dramatic, so that

existence of a strong signal component in, say, X makes detecting a weak signal in

Y possible. Mathematically, this is because the constraint for a spike resulting in an

outlier in the joint covariance, a2 + b2 ≥
√
qX + qY (1 +

√
qX + qY ), is automatically

satisfied if both a2 ≥ √
qX(1 +

√
qX) and b2 ≥ √

qY (1 +
√
qY ) (the constraints for

signal detection in the individual covariances). It is, however, a weaker constraint,

and it can be satisfied when only one (or even none) of the marginal constraints

are satisfied. This matches the intuition that the cross-covariance component of the

concatenated covariance matrix provides information about the spike in addition to

the self-covariance components, and this additional information can only improve the

spike detection.
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Figure 4.2: Phase diagram for signal detection in the joint covariance and
marginal covariances. Solid green represents the region where a spike results in a
detectable outlier in the joint covariance matrix. In the region with alternate blue
and green hatching is the region where outliers emerge in both methods. For the
white region in the plot, none of the methods are able to detect a signal. For this
plot qX = 1, qY = 20.
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4.3.2 Spiked cross covariance model

We will take advantage of existing results for a rectangular matrix with a spike [107,

115, 116] in order to compute the conditions for detection of a signal in the cross

covariance matrix. We will begin by reviewing these known results.

First, we define a spiked rectangular matrix model as

X̃1 = X1 + θûT
1 v̂1. (4.21)

Here X1 is a T×NX dimensional matrix, whose entries are Gaussian random variables

with zero mean and variance σ2
X , and û1 is a 1×T dimensional unit vector. Similarly

v̂1 is a 1 × NX dimensional unit vector. We focus on defining the value of θcrit, for

which there is a singular value outlier in the spectrum of X̃. There are two types

of outliers, depending on whether the outlier appears below the noise bulk (smaller

than the the left edge of the noise bulk) or above the noise bulk (larger than its right

edge). Here we are only interested in the second kind of outliers. To detect one, we

evaluate the D transform for the noise matrix X1 [115], which can be written as

DX1(z) = zgX1XT
1
(z2)zgXT

1 X1
(z2). (4.22)

Here, in turn, gX1XT
1

is the Stieltjes transform of X1X
T
1 . Similarly gXT

1 X1
is the

Stieltjes-transform of XT
1X1. Let λ+ be the rightmost edge of the sampling noise

bulk for singular values of X1. Then θcrit is determined by the equation

DX1(λ+) =
1

θ2crit
. (4.23)

For any value of θ > θcrit, there exists a λ1 that satisfies:

DX1(λ1) =
1

θ2
, (4.24)
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and this λ1(θ) will be the outlier singular value that we expect to correspond to the

spike of the magnitude θ. Letting DX1 denote the inverse D transform, the largest

eigenvalue of X̃ is then

λ1 =

 λ+ if θ < θcrit,

DX1(
1
θ2
) if θ ≥ θcrit.

(4.25)

Further, the overlaps of the left and right singular vectors ûλ1 and v̂λ1 corresponding to

the largest eigenvalue λ1 with the corresponding elements of the spike using Eq. (4.25)

are written as

∥û1 · ûλ1∥2 =

 0 if θ < θcrit,
2λ1gX1X

T
1
(λ2

1)

θ2D′
X1

(λ1)
if θ ≥ θcrit,

(4.26)

∥v̂1 · v̂λ1∥2 =

 0 if θ < θcrit,
2λ1gXT

1 X1
(λ2

1)

θ2D′
X1

(λ1)
if θ ≥ θcrit.

(4.27)

With this background, we can now analyze detectability of a spike in the cross-

covariance matrix by replacing X1 in Eq. (4.21) with XTY, and the spike abûTv̂ as

in Eq. (4.10). To evaluate detectability of a spike along the lines described above, we

now need to evaluate the D transform of XTY, which, in turn requires its Stieltjes

transform. The latter, as well as the rightmost edge of the noise spectrum of XTY

have been evaluated in [86], see also Chapter 3 (3.39). The most general analytical

solution is hard to obtain, so we resort to a few special cases.

Simplified solutions for qX ≪ qY

From Eq. (4.22), when the rectangular matrix is X1, the D transform is a product of

Stieltjes transforms for X1
TX1 and X1X1

T . The rectangular matrix here is XTY.

Hence the D transform will be function of the product of Stieltjes transforms for

XTYYTX and the Stieltjes transform for YTXXTY. Using the formula for Stieltjes
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transform for XTYYTX from Eq. (3.12), we derive the D transform for the model

as

DXTY (z) = zgXTY Y TX(z
2)zgY TXXTY (z

2) (4.28)

=

(
pXzg(z

2) +
1− pX

z

)(
pY zg(z

2) +
1− pY

z

)
(4.29)

Here the terms proportional to 1/z in both parentheses come because the matrices

X and Y themselves have zero singular values. From [86] (see also Eq. (3.13)) we

know that the Stieltjes transform g(z) satisfies the equation:

ag3 + bg2 + cg+ d = 0, (4.30)

where

a = z2pXpY , (4.31)

b = z (pY (1− pX) + pX(1− pY )) , (4.32)

c = ((1− pX)(1− pY )− zpXpY ) , (4.33)

d = pXpY . (4.34)

To obtain simplified analytic results, we consider the case pY = ϵpX , with ϵ ≪ 1.

In this case,

ϵ(g(z))3z2p2X + (g(z))2zpX (ϵ(1− pX) + (1− ϵpX))

+ g(z)
(
(1− pX)(1− ϵpX)− zϵp2X

)
+ ϵp2X = 0 . (4.35)

We need to solve this for zg(z2). For this, substituting z2 for z, we get for g(z2):

ϵ(g(z2))
3
z4p2X + (g(z2))

2
z2pX (ϵ(1− pX) + (1− ϵpX))
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+ g(z2)
(
(1− pX)(1− ϵpX)− z2ϵp2X

)
+ ϵp2X = 0 . (4.36)

Now after multiplying by z and then collecting terms with zg(z2) = f(z), we get:

ϵf(z)3z2p2X + f(z)2zpX (ϵ(1− pX) + (1− ϵpX))

+ f(z)
(
(1− pX)(1− ϵpX)− z2ϵp2X

)
+ zϵp2X = 0. (4.37)

In order to get the threshold for ab such that there is an outlier, we first solve for

f(λ+) where λ+ is the right most edge of the noise bulk, calculated in Ref. [86] as

γ+ ≈

√
1 + pX + 2

√
pX

pXpY
. (4.38)

This gives

f(λ+) =
−1 +

√
1 + 8ϵ

√
pX + 8ϵpX

2
√
ϵ(1 +

√
pX)

(4.39)

Now, substituting the value of f(λ+) in DXTY (z) and replacing all z with λ+ in

Eq. (4.29) results in

DXTY (λ+) =

(
pXf(λ+) +

1− pX
λ+

)(
pY f(λ+) +

1− pY
λ+

)
(4.40)

The condition, Eq. (4.25), to have an outlier transforms in this case into

ab ≥

√
1

DXTY (λ+)
, (4.41)

which evaluates to:

ab ≥
√
(1 +

√
qY qX)

√
qY . (4.42)

Barring λ+, for other values of z, DXTY (z) was computed by solving the equation

for f (given in Eq. (4.37)) numerically and substituting this value in the DXTY (z).
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Figure 4.3: Overlap for cross covariance. (zcrossmax )X and (zcrossmax )Y are the left and
right singular vectors, respectively, associated with the largest singular value. The
quantity ∥(zcrossmax )X · û∥ is the X-cross overlap, denoted with red squares and the semi-
analytic solution for it is represented by solid magenta line. Similarly, ∥(zcrossmax )Y · v̂∥
is the Y -cross overlap, denoted with red circles and the semi analytic solution for it is
denoted by magenta dotted line. For comparison, we also show the marginal Y -overlap
(blue circles), similar to Fig. 4.1. The dashed black line represents the analytically
calculated BBP transition value for the cross overlap. Crucially, the cross overlap is
much larger than the marginal one. Thus the cross-covariance is better at detecting
the spike than the individual covariance matrices. For all these points, T = 100,
NX = 100, NY = 2× 103 and b = 2.5. b remains fixed, and overlaps are plotted as a
function of a.
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Let (zcrossmax )X and (zcrossmax )Y be the left and right singular vectors respectively associ-

ated with the largest singular value. We call ∥(zcrossmax )X · û∥ the X-cross overlap. Given

that 1
a2b2

= DXTY (λ1), this overlap can be computed “semi analytically”. That is, we

solve the cubic equation for f numerically and plug it into the analytical expression

∥(zcrossmax )X · û∥ =


0 if ab <

√
1

D
XT Y

(λ+)
,

−2
(
pX f(λ1)+

1−pX
λ1

)
a2b2D′

XT Y
(λ1)

if ab ≥
√

1
D

XT Y
(λ+)

.
(4.43)

Similarly, ∥(zcrossmax )Y · v̂∥ is the Y -cross overlap, and its value can be obtained semi-

analytically by plugging the numerical solution for f into

∥(zcrossmax )Y · v̂∥ =


0 if ab <

√
1

D
XT Y

(λ+)

−2
(
pY f(λ1)+

1−pY
λ1

)
a2b2D′

X
XT Y

(λ1)
if ab ≥

√
1

D
XT Y

(λ+)

(4.44)

In Fig. 4.3, we compare these semi-analytical cross-overlaps to the empirical cross-

overlaps in simulated data. We also compare them to marginal overlaps, similar to

the analysis in the previous Section. The agreement between the theory and the

simulations is excellent, showing a BBP-like detectability transition. Further, for

these parameter values, it is clear that the cross-covariance matrix detects the spike

a lot before both marginal covariance matrices do.

We formalize this superiority of the cross-covariance matrix by exploring the phase

diagram of the signal detectability as a function of the marginal spike magnitudes,

a and b, normalized such that the marginal covariances detect the spikes at exactly

1.0 on both axes, Fig. 4.4. We observe that the cross covariance is always better

at detecting the spike than the individual marginal covariances in the undersampled

regime, i. e., when either qX ≫ 1 or qY ≫ 1. As for the concatenated covariance, it

seems to be possible to use the signal strength in the smaller-dimension component

X, where it is stronger, to make an effectively weaker signal in the larger dimensional
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Figure 4.4: Phase diagram spike detectability for cross covariance and
marginal covariances. The solid red region, given by Eq. (4.42), is where cross
covariance is able to detect the outlier with a nonzero overlap with both the X and
the Y components of the spike. Blue region is where the self-covariance of X and
Y are both able to detect their marginal spike contributions, thus having informa-
tion about the entire spike. Thus the region with alternating blue and red hatch is
the region where both approaches have nonzero overlaps with the spike (though the
magnitudes of the overlaps can be different). Crucially, cross-covariance may detect
the spike when the marginal covariances cannot, but not the other way around. The
white solid region is the region where neither the cross-covariance nor the marginal
will be able to detect the signal. For this plot qX = 1, qY = 20.
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Figure 4.5: Comparison between joint and cross overlaps. The red circles
represent the Y -cross overlap. The green circles represent the Y -joint overlap. The
blue circles represent the Y -marginal overlap. For all these points, T = 100, NX =
100, NY = 2 × 103 and b = 2.5. b remains fixed, a is varied and the overlaps are
plotted as a function of a. Solid and dashed black lines represent the analytically
calculated BBP transition values for the Y -cross overlap and the Y -joint overlap,
respectively.

component Y visible, even if it would nondetectable alone. Further, for some param-

eter combinations, the two signals can be detectable from the cross-covariance when

neither will result in an outlier in the marginal covariances.

4.3.3 Comparison between cross covariance and joint covari-

ance

In Fig. 4.5, we compare the overlaps for Y observed for different methods as a function

of changing a for a fixed b. For the illustrated parameters, the value of b is small,

and the marginal covariance of Y should have no outlier and thus no overlap with the

spike. This is, indeed, the case. Crucially, the cross overlap is stronger than the joint
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Figure 4.6: Phase diagram spike detectability for cross covariance and joint
covariance. The solid red region, given by Eq. (4.42), is where cross covariance
is able to detect the outlier with a nonzero overlap with both the X and the Y
components of the spike. Spotted green region is where the joint covariance of X and
Y is able to detect the outlier spike with a nonzero overlap with both the X and the
Y components of the spike. Thus the region with alternating green and red hatch
is the region where both approaches have nonzero overlaps with the spike (though
the magnitudes of the overlaps can be different). The white solid region is the region
where neither the cross-covariance nor the joint covariance will be able to detect the
signal. For this plot qX = 1, qY = 30. The dotted line labeled as sim parameters gives
us the values of signal strength for X (labeled as a) and values of signal strength for
Y (labeled as b) used for generating the plot Fig. 4.5
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one. This is because the example in the figure is in the limited area of the phase spaces

of Figs. 4.2, 4.4, where an outlier in the cross-covariance is expected to be easier to

detect than in the joint covariance. That such region exists is surprising. Indeed,

the cross-covariance matrix is only a subset of the joint covariance one. Naively, one

would expect that, by adding more data, one should make spike detection easier, so

that the joint covariance approach should never be inferior. An intuitive explanation

for the phenomenon is still waiting to be found.

4.4 Discussion

In this study we created a set of spike models for joint covariance, cross-covariance and

individual marginal covariances that allow us to understand when a low-dimensional

signal can be detected despite sampling noise. Our model allows us to directly com-

pare emergence of outliers in the spectra of the joint (concatenated) covariance, cross-

covariance, and individual marginal covariances. We note that an outlier always

emerges in the joint or cross covariance matrices for a weaker spike strength com-

pared to individual marginal covariances. Thus, statistical methods exploiting cross

covariance or joint covariance matrices are more data efficient, in that they should be

able to detect a weaker signal or to detect a signal with fewer samples compared to

individual marginal covariances.

While joint and cross covariances detect weaker signals than marginal covariances,

neither is superior to the other, and both have their own strengths and weaknesses.

Joint covariance can detect an outlier even if the spike is extremely small in one of

the two datasets being concatenated into the joint matrix. This is not the case for

the cross-covariance, for which the critical signal strength is given by the product

of the spikes ab for a given T,NX , NY . It thus fails to detect an outlier spike if the

spike is extremely small in one of the two datasets. Yet, there are parameter regions
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where cross-covariance approach is the obly one that works, and also regions where

both cross- and joint methods work, but the overlap produced by the cross-covariance

method is stronger. Understanding how this translates to practical statistical meth-

ods, and how would one know which of the two methods should be used in which

situations is the next step in this research direction.
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Chapter 5

Discussion

The key insights gained from the dissertation are as follows.

• In Chapter 2, I showed that when trying to learn the activation energy of

rearrangements in glassy systems, prediction accuracy fails to capture if the

energy function has been learned accurately. Similarly, a high quality linear

relationship between softness, logarithm of the rearrangement probability, and

1/T , cannot be used to conclude that the energy was learned correctly as well.

Further, the ability to correctly predict the energy depended heavily on the

features used to train the classifiers (SVMs in this case). Tracking the variance

of the inferred energy across different choices of input features performed better

than cross-validation accuracy in selecting the best possible set of input features

to train the SVM.

• In Chapter 3, I evaluated the exact solution for the singular value spectrum of

finite sampling-induced noise-noise cross-covariance between two datasets. This

parallels classical results for the spectrum of sampling-induced self-covariance.

• In Chapter 4, I developed a spiked model for cross-covariance and joint-covariance,

similar to classic spiked covariance matrix model for more traditional random
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matrix data [34]. For these spike models, I derived and verified numerically the

solution for the minimum spike amplitude for the spike to result in an outlier

in the singular value spectrum, and hence be detectable. Using this result, I

showed that, for reconstructing a shared rank one spike in two datasets X and

Y , it is always better to calculate a joint covariance or the cross-covariance

rather than try to calculate individual covariances of the variables.

These results open new research directions, which I will discuss here. For these

directions, I will restrict myself to the latter part of the dissertation and will focus

the potential applications of Random Matrix theory (RMT) methods in data science

and machine learning.

5.1 Generative model with a shared signal

Instead of evaluating the spiked covariance matrix model, as in Chapter 4, an al-

ternative approach could be to build generative models for shared features in two

high-dimensional datasets. The simplest such model has one shared feature between

X and Y, and has the form

X̂ =
X+ aPû

σ̂X

, (5.1)

Ŷ =
Y + bPv̂

σ̂Y

. (5.2)

Here, X and Y are the two uncorrelated, Gaussian i.i.d. datasets as elswhere in this

dissertation; a and b are constants the strength of the contributions of the shared

signal to each of the variables, and P is a matrix of dimensions T × 1, representing

samples of a latent variable driving this signal. We take entries of this matrix to

be Gaussian random variables with zero mean and unit variance. Further, û and v̂

are 1 × NX and 1 × NY dimensional unit vectors, giving the (fixed) projections of
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the shared signal onto X and Y . Then σ̂2
X = σ2

X + a2

T
and σ̂2

Y = σ2
U + b2

T
. In this

calculation T → ∞, so σ2
X = σ̂2

X and σ2
Y = σ̂2

Y . That is, the existence of the shared

signal does not change the variance of the observables variables much.

For X̂ given by Eq. (5.1), we can calculate its empirical covariance matrix:

HXTX =
1

T
X̂

T
X̂ (5.3)

=
1

Tσ2
X

(X+ aPû)T (X+ aPû) (5.4)

=
1

Tσ2
X

(
XTX+XT (aPû) + (aPû)TX+ a2(Pû)T (Pû)

)
. (5.5)

This is not the same as the spiked model, Eq. (4.8), because of the two terms linear in

P. Analyzing Eq. (5.5) in full generality is hard because terms linear and quadratic

in P are not mutually free. Thus, an interesting research question is under which

conditions the linear terms in Eq. (5.5) can be neglected. Since these terms are

symmetric, preliminary numerical simulations and analysis in Ref. [91] show that

such regimes exist. If we are able to identify them, and we assume, with no loss of

generality, that σ2
x = σ2

P = 1. Then, Eq. (5.5) reduces to

HXTX ≈ XTX

T
+

σ2
P

σ2
X

a2ûTû (5.6)

≈ XTX

T
+ a2ûTû, (5.7)

which is the same as the more traditional spiked covariance matrix model. In other

words, the question here would be to either solve for the spectrum of the generative

model, or to investigate under which conditions it reduced to the spiked model, where

calculations are easier.

Just like we can define a generative model that corresponds to the spiked covari-

ance model, we can define generative models for spiked joint and cross-covariance

matrices. Indeed, let us define Ẑ given by the concatenation of (X̂, Ŷ). We now have
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Ẑ that is a T × (NX +NY ) dimensional matrix

Ẑ =

(
X+ aPû

σX

,
Y + bPv̂

σY

)
(5.8)

Assuming σ2
X = σ2

Y without any loss of generality, and calculating the covariance of

Z, we would get

HZTZ =
1

T
ẐT Ẑ (5.9)

=
1

Tσ2
X

(
ZTZ+ ZT (cPẑ) + (cPẑ)TZ+ c2(Pẑ)T (Pẑ)

)
. (5.10)

Here c2 = a2+ b2 and ẑ =
(
a
c
û, b

c
v̂
)
. The second and third terms in Eq. (5.10) are the

extra terms that we do not find in Eq. (4.4), and both the terms are symmetric. It has

been shown earlier that, for latent feature models, where the rank of P ≪ NX ;NY ;T ,

the second and third terms can be ignored [91] under various conditions. Though the

cross terms do contribute to the final results, they do not qualitatively change either

the overlap or the value of the outlier eigenvalue. Instead, these terms linear in P shift

both the outlier eigenvalue and the overlap up (that is, make detection of the outlier

easier) because of the additional signal-correlated contributions. Here, the rank of P

is one, and we know from simulations that, for such rank one perturbation, the terms

linear in P cannot be ignored, in general, if quantitative result are desired. Thus, as

above, an interesting future research problem is to identify when these linear terms

can be neglected quantitatively.

Finally, we may also try to define a generative model for the cross-covariance

matrix of uncorrelated data with one shared signal:

HXTY =
1

T
X̂

T
Ŷ (5.11)

=
1

TσXσY

(X+ aPû)T (Y + bPv̂) (5.12)
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=
1

TσXσY

(
XTY +XT (bPv̂) + (aPû)TY + ab(Pû)T (Pv̂)

)
(5.13)

Unlike in Eq. (5.5) and Eq. (5.10), the second and third terms in Eq. (5.13) are no

longer symmetric, which makes it much harder to find conditions when they can be

neglected. Indeed, even in our preliminary simulations (not shown), dropping these

non-symmetric cross terms has had a significant impact on the edge of the bulk of

the sampling-induced eigenvalues, and hence on the detectability of the signal.

It is not surprising that the generative latent feature models are not exactly equal

to spiked models. For example, if one studies spiked covariance models, one can

detect not only outliers that are larger than the right edge of the noise bulk, but also

outliers that are smaller than the left edge of the bulk. That is, very large and very

small spikes are detectable. Conceptually, this should not possible for latent features,

generative models. Indeed, for very small values of signal strength, it is the linear

terms, which are cross terms between the noise X and the signal Pû, that contribute

to the covariance and make it impossible to detect left outliers. Once that happens,

we can no longer do the analysis using simple RMT methods since the four terms

contributing to the covariance are no longer free (rotationally invariant with respect

to each other). We can only neglect the second and third term if we are trying to find

an outlier eigenvalue that is larger than the largest eigenvalue in the bulk [91]. But

when can this be done for non-symmetric cross terms is unclear. Understanding the

non-symmetric case is important because, unlike in the symmetric case, where the

RMT-based predictions of overlap and the largest eigenvalue are relatively accurate,

this accuracy degrades in the case of non-symmetric cross terms, sometimes resulting

in qualitatively different results.

To get intuition for how to treat the non-symmetric case, I propose to study two

different generative models, where the degree of nonsymmetry can be tuned. First

such model would start with the same matrix X, but with two different strengths of
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latent signal in the two terms contributing to the covariance:

H1 =
1

Tσ2
X

(X+ aPû)T (X+ bPû) (5.14)

=
1

Tσ2
X

(
XTX+XT (bPû) + (aPû)TX+ ab(Pû)T (Pû)

)
. (5.15)

One can make, for example, a small and b large, which would change the relative

contribution of different terms to the covariance, and match asymptotics for different

regimes of a and b.

Another possibly useful generative model is would have two distinct matrices with

the same signal strength:

H2 =
1

TσXσY

(X+ aPû)T (Y + aPv̂) (5.16)

=
1

TσXσY

(
XTY +XT (aPv̂) + (aPû)TY + a2(Pû)T (Pv̂)

)
. (5.17)

If û and v̂ are sufficiently distinct, different terns in Eq. (5.17) will become free,

making analysis easier. One then can hope to analytically continue to the same (or,

at least, partially overlapping û and v̂.

Understanding how to treat non-symmetric cross terms in Eq. (5.15) and Eq. (5.17)

will help us in understanding how to treat these terms in general. My current hypoth-

esis, based on preliminary simulations, is that the spiked models give the worst-case

performance. The latent feature model have larger outlier eigenvalues, as well higher

overlap as compared to pure spike models—all because of contribution of the cross

terms. This problem has to be mostly studied using simulations as, once the cross

terms start contributing, the problem is no longer analytically tractable with common

methods.
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5.2 Increasing the signal rank

Once we understand how to deal with cross terms in the generative models, the next

natural extension is to allow the P matrix to have a rank m ≫ 1. This allows for

richer generative models. Such models would be written as

X̄ = X+PQX , (5.18)

Ȳ = Y +PQY (5.19)

Now the matrix P is the shared signal matrix between X and Y. It has dimensions

T ×m. The matrices QX and QY are the projection of the signal matrix P into the

spaces of X and Y, respectively, and they have dimensions m × NX and m × NY .

Thus m latent features get randomly sampled T times (matrix P), and each of the

NX and NY measured variables in X and Y , respectively, is a quenched random

linear combination of the latent features (QX and QY ). We assume m ≤ T,NX , NY

throughout this work, so that the rank of the signal matrices PQX and PQY is equal

to m, and the features can be estimated from the samples.

The entries of P, QX and QY are Gaussian random variables with zero mean and

variances σ2
P , σ2

QX
, and σ2

QY
, respectively:

Ptµ ∼ N (0, σ2
P ), (5.20)

t = 1, . . . , T, µ = 1, . . . ,m. (5.21)

and

QXµn1
∼ N (0, σ2

QX
) , QY µn2

∼ N (0, σ2
QY

) , (5.22)

µ = 1, . . . ,m, n1 = 1, . . . , NX , n2 = 1, . . . , NY . (5.23)
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We make this Gaussian choice for analytic tractability; in applications to real

data, the means and variances of the entries may need to be matched to those of

the measured variables. There may be instances where a Gaussian distribution may

not be the best approximation for specific data. Finally, the elements of the noise

matrices X and Y are also i.i.d. Gaussian random variables with variance σX and

σY , respectively. So every observation in X and Y has a variance of σX and σY

respectively.

We would like to calculate the spectrum of this latent feature model using RMT-

based methods. These, however, require a square matrix. Thus, to be able to use

these methods, we would first need to square the cross-covariance matrix, resulting

in the object of interest:

H =
1

T 2σ2
Xσ

2
Y

X̄T ȲȲT X̄ (5.24)

It is easy to see that H has contributions from 16 terms. Of these, 14 are cross

terms with all their associated challenges. We calculated the Stieltjes transform and

the spectrum of the first of these terms, 1
T 2σ2

Xσ2
Y
XTYYTX, in [86]. While not reported

here, I have also calculated the spectrum and various transforms of second of the

sixteen terms, 1
T 2σ2

Xσ2
Y
(PQX)

T (PQY ) (PQY )
T (PQX). Solving for these quantities

involved solving a 6th order polynomial equation for the Stieltjes transform. The

solution for this equation can give us the lowest order approximation of number of

shared latent features that can be identified for a given signal to noise ratio, before the

signal cannot no longer be separated from noise bulk. However, this involves ignoring

the remaining 14 cross-terms to make the results analytically tractable, and it is

unclear when such an approximation would be valid. Exploring this is an interesting

future research direction.
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5.3 General generative model: shared and private

variance

A more general linear latent feature model would involve, along with shared latent

features between X and Y, additional low-dimensional structure in X and Y that is

not shared between the variables (is private). This model was first introduced and

analyzed numerically in Ref. [95]. For this model, the data matrices are given by:

X̄ = X+UXVX +PQX, (5.25)

Ȳ = X+UYVY +PQY. (5.26)

Evaluating the spectrum of the cross-covariance in this model would include contribu-

tions from 81 terms. Of these, 78 are cross-terms, each non-symmetric, which makes

the calculations—or the understanding of when they can be safely ignored—especially

challenging. If just one of the 78 terms cannot be ignored, traditional RMT methods

would no longer be applicable.

An intriguing possibility is that, when the number of contributions is so large, some

form of self-averaging among the terms may start happening. Numerical simulations

can answer if such complicated expressions combining many random matrices again

result in some simple, possibly universal, spectra.

5.4 Deep learning and random matrices

Another area of broad interest is analyzing deep learning using tools from RMT.

For example, to understand the dynamics of training of neural networks, one often

analyzes the geometric structure of the loss surface — the value of the loss (the

optimization objective of the network), averaged over the data as a function of the

network weights. Then training NNs involves finding minima of the loss surface in the
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weight space. The loss suface is typically investigated through the second order Taylor

expansion of the loss, called the Hessian. Assuming independent and identically dis-

tributed Gaussian inputs and network path independence, a multi-layer ReLU neural

network’s loss was shown to be equivalent to that of a spin-glass model [117], and its

Hessian spectrum was shown to be given by a Gaussian Orthogonal Ensemble [118]

(GOE). GOE is a standard model in RMT, which gives the celebrated Wigner’s semi

circle law for the eigenvalue spectrum. Because of this correspondence, RMT-based

methods have been used to understand the learning dynamics in deep neural networks

by studying the Hessian [119]. The calculations assume that dimensionality of each

subsequent layer in a deep network is strictly decreasing. This assumption helps be-

cause, under this condition, a spike in the input layer is preserved through successive

rounds of projections. However, in real-world problems, the subsequent layers of deep

learning aren’t necessarily decreasing. So evaluating the general case for the effect

of random projection (where the projection space can be of a larger dimensionality

than the original spike), and understanding if the spike survives sequential projection

is an important, unsolved problem. Understanding this would allows one to follow

how data with a single spike (that is, data with an embedded signal) changes as it

goes from one layer of the neural network to the next. The critical challenge in these

calculations will again be dealing with the cross terms. This is because such analysis

will be equivalent to solving the latent feature cross covariance model, Eq. (5.13),

with the a or b signifying the latent feature strength in subsequent layers.

Other attempts to use RMT methods to understand deep learning involve using

the Marachenko-Pastur distributions to explain the structure of features in Large

Language Models (LLM) and to understand which layers in them are important for

learning [120]. It is known that outliers from the pure noise in the spectra of weights

for deep networks are a crucial feature of well-trained models [121]. Thus, it may

be interesting to analyze the distribution of trained individual key (K), query (Q)
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and value (V ) matrices in transformer neural network architectures and search for

deviation from a random initialization for the trained models. The layers where the

Key, Query or Value matrices have a singular value spectra matching the scaling

of the Marchenko-Pastur distribution can be considered as not changing much with

training, and thus not storing any learned features. One can also calculate and check

how random the attention matrix QKT is by comparing it with the spectrum of XY T ,

for which we now have an exact solution. The exact calculation for cross-covariance

allows us to extend similar analysis to more complex cases like latent attention in

more modern models, such as Deepseek [122]. In such latent attention, the attention

matrix is written as K1K2Q1Q2. We have the exact calculation for spectra of terms of

this form, allowing us to understand how nonrandom attention is after initialization

and training.
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