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Abstract

Non-Archimedean and Tropical Techniques in Arithmetic Geometry

By Jackson Salvatore Morrow

Let K be a number field, and let C/K be a curve of genus g ≥ 2. In 1983, Faltings

famously proved that the set C(K) of K-rational points is finite. Given this, several

questions naturally arise:

1. How does this finite quantity #C(K) varies in families of curves?

2. What is the analogous result for degree d > 1 points on C?

3. What can be said about a higher dimensional variant of Faltings result?

In this thesis, we will prove several results related to the above questions.

In joint with with J. Gunther, we prove, under a technical assumption, that for

each positive integer d > 1, there exists a number Bd such that for each g > d, a

positive proportion of odd hyperelliptic curves of genus g over Q have at most Bd

“unexpected” points of degree d. Furthermore, we may take B2 = 24 and B3 = 114.

Our other results concern the strong Green–Griffiths–Lang–Vojta conjecture, which

is the higher dimensional version of Faltings theorem (neé the Mordell conjecture).

More precisely, we prove the strong non-Archimedean Green–Griffiths–Lang–Vojta

conjecture for closed subvarieties of semi-abelian varieties and for projective surfaces

admitting a dominant morphism to an elliptic curve.
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Chapter 1

Introduction

Let K be a number field, and let C/K be a curve of genus g ≥ 2. In 1983, Faltings

[Fal83] famously proved that the set C(K) of K-rational points is finite. Given this,

several questions naturally arise:

1. How does this finite quantity #C(K) varies in families of curves?

2. What is the analogous result for degree d > 1 points on C?

3. What can be said about a higher dimensional variant of Faltings result?

In this thesis, we will prove several results related to the above questions on rational

points on varieties.

In joint with with J. Gunther, we prove, under a technical assumption, that for

each positive integer d > 1, there exists a number Bd such that for each g > d, a

positive proportion of odd hyperelliptic curves of genus g over Q have at most Bd

“unexpected” points of degree d. More precisely, our result reads as follows.

Theorem A ( [GM19]). Let d > 1 be a positive integer and suppose Assumption

3.3.7 holds.

1. If d is odd, there exists a number Bd such that for each g > d, a positive
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proportion of genus g hyperelliptic curves over Q with a rational Weierstrass

point have at most Bd points of degree d.

2. If d is even, there exists a number Bd such that for each g > d, a positive

proportion of genus g hyperelliptic curves over Q with a rational Weierstrass

point have at most Bd points of degree d not obtained by pulling back degree d
2

points of P1.

3. We may take B2 = 24 and B3 = 114.

Our other results concern the strong Green–Griffiths–Lang–Vojta conjecture, which

is the higher dimensional version of Faltings theorem (neé the Mordell conjecture).

First, we prove the strong non-Archimedean Green–Griffiths–Lang–Vojta conjecture

for closed subvarieties of semi-abelian varieties.

Theorem B ( [Mor19]). Let K be an algebraically closed complete non-Archimedean

valued field of characteristic zero. Let X be a closed subvariety of a semi-abelian

variety G over K. Let Sp(X) be the union of the subvarieties of X which are translates

of positive-dimensional closed subgroups of G. Then, X is groupless modulo Sp(X) if

and only if X is K-analytically Brody hyperbolic modulo Sp(X).

Our second result concerns the algebraic degeneracy of non-Archimedean entire

curves in projective varieties of general type admitting a dominant morphism to an

elliptic curve.

Theorem C ( [Mor20]). Let K be an algebraically closed, complete, non-Archimedean

valued field of characteristic zero. Let X/K be a projective variety of general type

dominating an elliptic curve. Then, any non-Archimedean entire curve ϕ : Gan
m,K →

Xan is algebraically degenerate.

Using the above result, we prove the strong non-Archimedean Green–Griffiths–

Lang conjecture for projective surfaces admitting a dominant morphism to an elliptic

curve.
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Theorem D ( [Mor20]). Let K be an algebraically closed, complete, non-Archimedean

valued field of characteristic zero, and let S/K be a projective surface admitting a

dominant morphism to an elliptic curve. Then, S is pseudo-groupless if and only if

S is pseudo-K-analytically Brody hyperbolic.

1.1 Organization

In Chaper 2, we recall some background on the Chabauty–Coleman method and its

generalization to dth symmetric products of curves. In Chapter 3, we describe some

results on the arithmetic and geometry of hyperelliptic Jacobians and prove The-

orem A. In Chapter 4, we give a summary of the various notions of hyperbolicity

in the complex analytic, algebraic, and non-Archimedean analytic setting and dis-

cuss the Green–Griffiths–Lang–Vojta conjectures which relate these various notions

of hyperbolicity. In Chapter 5, we state our results on the non-Archimedean Green–

Griffiths–Lang–Vojta conjectures as well as some consequences of our results. Finally,

in Chapter 6, we prove Theorem B, and in Chapter 7, we prove Theorems C and D.
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Chapter 2

Background — Rational points on

curves

Let K be a number field, and let C/K be a curve of genus g ≥ 2. In 1983, Falt-

ings [Fal83] proved that the set C(K) of K-rational points is finite. Almost forty

years earlier, Chabauty [Cha41] proved the finiteness of C(K) under the additional

assumption that the Mordell–Weil rank of the Jacobian of C is less than the genus

of C. In [Col85], Coleman used the theory of p-adic integration to make Chabauty’s

proof effective, and to this day, the Chabauty–Coleman method is one of the most

powerful tools for determining rational points on curves.

In this background section, we will recall some results on p-adic integration and

the Chabauty–Coleman method; we refer the reader to [MP12, Sik09, Par16] for a

fuller account of these techniques. We also prove some auxiliary lemmas, which are

needed in Chapter 3.

2.1 The method of Chabauty–Coleman

Fix C/Q a curve of genus g ≥ 2, and p a prime number. We make use of p-adic

integration on the Jacobian variety J of our curve. Let Cp be the completion of the
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algebraic closure of Qp. After we base change from Q to Qp, we have an integration

pairing

H0(CQp ,Ω
1)× J(Cp)→ Cp

(ω,D) 7→
∫ D

0

ω

that is Qp-linear in the left factor, and a group homomorphism in the right. The

kernel on the left is trivial, and on the right is the torsion subgroup J(Cp)tors.

Let r be the rank of J(Q) as a finitely generated abelian group (for the rest

of the paper, r will denote this rank for whatever curve is under consideration). We

identify J(Q) with its image in J(Qp) and J(Cp). Within the former, its p-adic closure

J(Q) ⊂ J(Qp) will be a finitely generated Zp-module of rank at most r. Define

ΛC :=

{
ω ∈ H0(CQp ,Ω

1)

∣∣∣∣ ∫ D

0

ω = 0 for all D ∈ J(Q)

}
.

This is a Qp-vector space of dimension at least g − r.

Suppose further that p is a prime of good reduction for our curve C. For a point

P ∈ C(Cp), let P ∈ CFp(Fp) denote its reduction at p. Then given a nonzero form

ω ∈ H0(CQp ,Ω
1), we can scale it by an element of Q×p to give a normalized form,

which we take to mean it reduces to a nonzero element ω ∈ H0(CFp ,Ω
1). For a

normalized form ω, and a point P ∈ CFp(Fp), we define n(ω, P ) to be the order of

vanishing of ω at P . As long as ΛC 6= {0}, we then define

n(ΛC , P ) = min
normalized ω∈ΛC

n(ω, P ).

By [Sto06, Theorem 6.4], the lower the rank is, the better we can control these minimal

orders of vanishing.

Theorem 2.1.1 (Stoll). Let C/Q be a curve of genus g ≥ 2, with rank r ≤ g − 1,
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and let p be a prime of good reduction. Then
∑

P∈CFp (Fp) n(ΛC , P ) ≤ 2r.

For our purposes, we need forms that achieve these minima at different points

simultaneously.

Lemma 2.1.2. Let C/Q be a curve of genus g ≥ 2, and let p be a prime of good

reduction. Let P1, . . . , Pd ∈ CFp(Fp). Suppose r ≤ g − 1 and p ≥ d. Then there exists

a normalized ω ∈ ΛC such that n(ΛC , Pi) = n(ω, Pi) for i = 1, . . . , d.

Proof. We proceed by induction on d. The base case d = 1 is immediate from the

definition of n(ΛC , P1). Suppose there is a normalized form ω′ such that n(ΛC , Pi) =

n(ω′, Pi) for i = 1, . . . , d−1. If n(ΛC , Pd) = n(ω′, Pd), we may take ω = ω′. Otherwise,

choose a normalized ω′′ such that n(ΛC , Pd) = n(ω′′, Pd). If n(ΛC , Pi) = n(ω′′, Pi) for

i = 1, . . . , d− 1, we may take ω = ω′′.

So suppose without loss of generality that n(ω′′, P1) > n(ΛC , P1). Let t2, . . . , td−1

be uniformizers at P2, . . . , Pd−1, respectively. Write both ω′ and ω′′ with respect to

each uniformizer:

ω′ = ait
ni
i dti,

ω′′ = bit
ni
i dti, for i = 2, . . . , d− 1,

where for each ai, bi ∈ Fp(CFp), the geometric function field of the reduction, we have

0 = vPi
(ai) ≤ vPi

(bi). Since p ≥ d, there exists 0 6= α ∈ Fp such that α · bi(Pi) 6=

−ai(Pi) for i = 2, . . . , d − 1. Choosing any α̃ ∈ Zp whose reduction mod p is α, we

may take ω = ω′ + α̃ω′′.

Lemma 2.1.3. Let C/Q be a curve of genus g ≥ 2, and let p be a prime of good

reduction. Let P1, . . . , Pd ∈ CFp(Fp), and suppose r ≤ g− d. Then there exist linearly

independent, normalized ω1, . . . , ωd ∈ ΛC such that n(ΛC , Pi) = n(ωj, Pi) for all i, j =

1, . . . , d.
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Proof. Take ω1 to be ω as given by Lemma 2.1.2. By the rank condition, we can

choose ω′2, . . . , ω
′
d ∈ ΛC to be normalized forms such that ω1, ω

′
2, . . . , ω

′
d are linearly

independent. Then each reduction ω1 + pω′j = ω1, so we can take ωj = ω1 + pω′j for

j = 2, . . . , d.

2.2 Symmetric power Chabauty–Coleman

Now let C/Q be a genus g curve with a marked rational point, which we denote by

∞. For any ω ∈ H0(CQp ,Ω
1), we define (locally analytic) functions

fω : C(Cp) −→ Cp

P 7−→
∫ [P−∞]

0

ω,

and more generally for d a positive integer,

F d
ω : C(Cp)× · · · × C(Cp) −→ Cp

(P1, . . . , Pd) 7−→ fω(P1) + · · ·+ fω(Pd) =

∫ [P1+···+Pd−d∞]

0

ω.

The starting point of the Chabauty–Coleman method for examining rational points is

that if ω ∈ ΛC , then for any P ∈ C(Q), we have fω(P ) = 0, because [P −∞] ∈ J(Q).

The starting point for our method, following [Sik09, Par16], is that for ω ∈ ΛC and

(P1, . . . , Pd) a d-tuple of conjugate degree d points on C, we have F d
ω(P1, . . . , Pd) = 0,

since [P1 + · · ·+ Pd − d∞] ∈ J(Q).

We wish to control these zeros. For P ∈ CFp(Fp), define the residue disk

DP =
{
Q ∈ C(Cp)

∣∣ Q = P
}
.

Let D ⊂ Cp be the open unit disk, i.e. elements with absolute value strictly less
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than 1. For P ∈ C(Qp), [Sik09, Lemma 2.3] asserts that we can always choose a

well-behaved uniformizer zP at P , which has the following key properties. First, the

function zP : DP → D is a diffeomorphism, with zP (P ) = 0. Furthermore, for a finite

extension L/Qp(P ), with uniformizing element π, we have that zP defines a bijection

between C(L) ∩DP and the π-adic disc πOL, given by Q 7→ zP (Q).

Remark 2.2.1. Let v be the valuation on Cp, normalized so that v(p) = 1. For

P,Q ∈ C(Qp) such that P = Q, let e be the ramification degree of Qp(P,Q). The

above implies that v(zP (Q)) ≥ 1
e
.

We can formally expand a normalized form ω with respect to the uniformizer zP ,

as (
∞∑
i=0

aiz
i
P

)
dzP ,

where the coefficients live in Qp(P ), and are integral (v(ai) ≥ 0 for all i). We record

a few important facts from [Sik09, Section 2] about this expansion. First, the power

series
∑∞

i=0 ait
i is convergent on D. Second, there is a connection to orders of vanish-

ing: the smallest index i for which we have v(ai) = 0 is given by i = n(ω, P ). Lastly,

for Q ∈ DP , the restriction of fω to DP is given by

fω(Q) =

∫ [P−∞]

0

ω +
∞∑
i=0

ai
i+ 1

zP (Q)i+1.

Similarly, for P1, P2 ∈ C(Qp), the restriction of F 2
ω to DP1

×DP2
is given by

F 2
ω(Q1, Q2) =

∫ [P1+P2−2∞]

0

ω +
∞∑
i=0

ai
i+ 1

zP1(Q1)i+1 +
∞∑
i=0

bi
i+ 1

zP2(Q2)i+1.

Analogous expansions of course hold for F d
ω , for arbitrary d.
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Chapter 3

Irrational points on hyperelliptic

curves

In this chapter, we describe joint work [GM19] with J. Gunther, where we prove,

under a technical assumption, that for each positive integer d > 1, there exists a

number Bd such that for each g > d, a positive proportion of odd hyperelliptic curves

of genus g over Q have at most Bd “unexpected” points of degree d. Furthermore,

we may take B2 = 24 and B3 = 114.

3.1 Introduction

Let K be a number field, and let C/K be a curve of genus g ≥ 2. In 1983, Faltings

[Fal83] proved that the set C(K) of K-rational points is finite. Given this, one can ask

how the finite quantity #C(K) varies in families of curves. Recently, multiple works

have considered this question, for the family of all hyperelliptic curves over Q with

a rational Weierstrass point [PS14,RT18], the family with a rational non-Weierstrass

point [SW18], and the entire family of hyperelliptic curves over Q [Bha13].

In this paper, for a hyperelliptic curve C/Q, instead of rational points we consider
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the degree d points of C, which we take to mean the set

{
P ∈ C(Q) | [Q(P ) : Q] = d

}
.

Since C is defined over Q, this set is partitioned into d-tuples of Galois-conjugate

points.

Before stating our main theorems, we consider an extended example: quadratic

points, i.e. d = 2. Because we allow the quadratic extension to vary, there are

infinitely many such points: for almost any point of P1(Q), its pre-image under the

hyperelliptic map will be a pair of conjugate quadratic points on C. We will call

these expected quadratic points. More simply, for a hyperelliptic equation y2 = f(x),

these are the quadratic points given by plugging in a rational number for x, and then

solving for y.

But there can also be unexpected quadratic points, whose x-coordinate is irrational

but whose y-coordinate is contained in the same quadratic field. For example, the

genus 4 curve defined by y2 = x9 + x3 − 1 contains infinitely many expected points,

such as (0,±i), (−1,±
√
−3), and (2,±

√
519), but also contains unexpected points

like (±i,±i), (ζ3,±1), and (−ζ3,±
√
−3), where ζ3 is a primitive third root of unity.

In general, it is no small feat to compute these points explicitly for a given curve.

Example 3.1.1. Let C/Q be the hyperelliptic curve with affine model given by

C : y2 = f(x) = x(x2 + 2)(x2 + 43)(x2 + 8x− 6).

In [Sik09, Section 6.1], Siksek determined the set of quadratic points on C. Besides

the infinitely many expected quadratic points of the form (x,±
√
f(x)), for x ∈ Q,

there are exactly 9 pairs of unexpected quadratic points on C. For example, there
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are the three pairs below:

Q1 =
{

(
√

6, 56
√

6), (−
√

6,−56
√

6)
}
,Q2 =

{
(
√
−2, 0), (−

√
−2, 0)

}
,

Q3 =

{(
−164 +

√
22094

49
,
257704352− 1648200

√
22094

823543

)
, conjugate

}
.

Example 3.1.2. The modular curve X0(29) is a genus 2 curve with affine model

y2 + (−x3 − 1)y = −x5 − 3x4 + 2x2 + 2x− 2.

In [BN15, Table 5], Bruin and Najman determined that there are exactly 4 pairs of

unexpected quadratic points on X0(29):

P1 =
(√
−1− 1, 2

√
−1 + 4

)
, P2 =

(√
−1− 1,

√
−1− 1

)
,

P3 =

(
1

4
(
√
−7 + 1),

1

16
(−11

√
−7− 7)

)
, P4 =

(
1

4
(
√
−7 + 1),

1

8
(5
√
−7 + 9)

)
,

along with their respective images under the hyperelliptic involution.

Addtional works of Ozman–Siksek [OS18] and Box [Box19] have classified the

unexpected quadratic points on the modular curves X0(N) for various values of N .

The examples above demonstrate a general phenomenon: by further work of Falt-

ings [Fal91, p. 550], we know that for any hyperelliptic curve of genus g ≥ 4, there

are only finitely many of these unexpected quadratic points. Thus, one can ask how

many there are on a typical hyperelliptic curve.

To make that question rigorous, we need a way of ordering curves. A genus g

hyperelliptic curve C over Q has a marked rational Weierstrass point ∞ if and only

if it can be given an affine model of the form

y2 = f(x) = x2g+1 + a2x
2g−1 + a3x

2g−2 + · · ·+ a2g+1, (3.1.2.1)
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with f(x) ∈ Z[x] separable, such that ∞ is not contained in this affine patch. Fur-

thermore, C has a unique such minimal equation, for which there is no prime p such

that p2i | ai for each i ≥ 2. Define the height of C to be

H(C) := max
{
|ai|1/i

}
,

where the ai’s are coefficients for the minimal equation of C.

To study this question, we use and refine work of Park [Par16], which uses tropical

intersection theory. However, the techniques of that pre-print seem to be missing a

technical hypothesis, along the lines of (†) in our Assumption 3.3.7, in order to be

valid; see Section 7.6 and Remark 3.3.6 for an explanation. This is the source of the

conditional nature of some of our results.

We can now state our first conditional theorem.

Theorem 3.1.3. Suppose Assumption 3.3.7 holds. Then for each g > 2, a positive

proportion of genus g hyperelliptic curves over Q with a rational Weierstrass point,

when ordered by height, have at most 24 quadratic points not obtained by pulling back

points of P1(Q).

More precisely, let Fg denote the set of Q-isomorphism classes of genus g hyper-

elliptic curves defined over Q, with a marked rational Weierstrass point. The above

says that if F ′g ⊂ Fg corresponds to those curves satisfying the conditions of Theorem

3.1.3, then

lim inf
X→∞

#{C ∈ F ′g | H(C) < X}
#{C ∈ Fg | H(C) < X}

> 0.

The bound of Theorem 3.1.3 does not hold for all hyperelliptic curves, as shown

by the following example, told to us by Michael Stoll.

Example 3.1.4. Let f1(x), . . . , f9(x) be distinct irreducible monic quadratic poly-

nomials with rational coefficients. Write their product as the square of a degree 9
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polynomial, plus a remainder polynomial r(x) of degree at most 8. Then y2 = −r(x)

will usually have at least 36 “unexpected” quadratic solutions.

Next we consider cubic points, i.e. degree 3 points. Unlike the case of d = 2, where

the geometry — in this case, the existence of a 2:1 map to P1 — imposes infinitely

many quadratic points, there need not be any cubic points. We prove the following

theorem on their sparsity.

Theorem 3.1.5. Suppose Assumption 3.3.7 holds. Then for each g > 3, a positive

proportion of genus g hyperelliptic curves over Q with a rational Weierstrass point,

when ordered by height, have at most 114 cubic points.

The d = 2 and d = 3 cases turn out to be prototypical, and we can now state our

main theorem concerning points of arbitrary degree d.

Theorem 3.1.6 (Theorem A). Let d > 1 be a positive integer and suppose Assump-

tion 3.3.7 holds.

1. If d is odd, there exists a number Bd such that for each g > d, a positive

proportion of genus g hyperelliptic curves over Q with a rational Weierstrass

point have at most Bd points of degree d.

2. If d is even, there exists a number Bd such that for each g > d, a positive

proportion of genus g hyperelliptic curves over Q with a rational Weierstrass

point have at most Bd points of degree d not obtained by pulling back degree d
2

points of P1.

3. We may take B2 = 24 and B3 = 114.

Remark 3.1.7.

• If d = 1, we may unconditionally take B1 = 1, by [PS14, Theorem 10.3] (in the

case g > 2) and [RT18, Theorem 1.2] (g = 2).
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• For arbitrary d, we show that Bd = (3d · (2(2d2 + 3)d + 1))d.

• The hypothesis g > d is natural: that is exactly when the symmetric product

C(d) is of general type, for a curve of genus g ≥ 2. Since a degree d point of C

gives a rational point of C(d), this is when one would expect them to be rare.

Terminology

While we do not use the term in theorem statements, we will call a point of even

degree d on a hyperelliptic curve unexpected if it does not map to a degree d/2 point

on P1. If d is odd, we call any point of degree d unexpected.

Throughout the paper, we use “asymptotically” when considering hyperelliptic

curves of fixed genus with a marked rational Weierstrass point, with increasing height

and “congruence conditions” when considering the coefficients of the minimal equa-

tion in (3.1.2.1).

3.2 Arithmetic and geometry of hyperelliptic Ja-

cobians

First, we recall results of Bhargava and Gross on the average size of 2-Selmer groups

of Jacobians of hyperelliptic curves.

Theorem 3.2.1 ( [BG13, Theorem 1.1]). When all hyperelliptic curves of fixed genus

g ≥ 1 over Q having a rational Weierstrass point are ordered by height, the average

size of the 2-Selmer groups of their Jacobians is at most 3.

Furthermore, the same result holds if one averages within a family defined by a

finite set of congruence conditions.

This gives immediate corollaries concerning the average rank of J(Q), where we

write J for the Jacobian of a curve C.



15

Corollary 3.2.2 ( [BG13, Corollary 1.2]). When all hyperelliptic curves of fixed genus

g ≥ 1 over Q having a rational Weierstrass point are ordered by height, the average

rank of the Mordell–Weil groups of their Jacobians is at most 3
2
.

Furthermore, the same result holds if one averages within a family defined by a

finite set of congruence conditions.

Corollary 3.2.3. When all hyperelliptic curves of fixed genus g ≥ 1 over Q having

a rational Weierstrass point are ordered by height, at least 25% have rank J(Q) = 0

or 1. The same holds if one averages within a congruence family.

Furthermore, either a positive proportion have rank 0, or at least 50% have rank

1.

Next, we recall a deep theorem of Faltings about rational points on subvarieties

of abelian varieties.

Theorem 3.2.4 ( [Fal94, p. 175]). Let X be a closed subvariety of an abelian variety

A, with both defined over a number field K. Then the set X(K) equals a finite union

∪Bi(K), where each Bi is a translated abelian subvariety of A contained in X.

To conclude this section, we prove that asymptotically, 100% of hyperelliptic

curves with a rational Weierstrass point over Q have finitely many unexpected de-

gree d points, as described in Theorem A.

Proposition 3.2.5. Fix g ≥ 2. Asymptotically, 100% of genus g hyperelliptic curves

over Q with a rational Weierstrass point have geometrically simple Jacobian.

Proof. Let t2, . . . , t2g+1 be indeterminates. The polynomial

F (x, t2, . . . , t2g+1) = x2g+1 + t2x
2g−1 + · · ·+ t2g+1

has Galois group S2g+1 over the field Q(t2, . . . , t2g+1). One way to see this is to note
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that its specialization at t2 = · · · = t2g−1 = 0 and t2g = t2g+1 = −1 gives x2g+1−x−1,

which has Galois group S2g+1, by [Osa87, Corollary 3] or [NV79].

By a criterion of Zarhin [Zar74, Theorem 1], the Jacobian of the hyperelliptic

curve given by y2 = f(x) is geometrically simple whenever f(x) has Galois group

Sdeg f .

Let E = Eg be the complement in A2g of the discriminant locus for equations of

the form y2 = x2g+1 + a2x
2g−1 + · · · + a2g+1. We apply a version of Hilbert irre-

ducibility (our height weights coordinates unequally, so some care must be taken);

see [Coh81, Theorem 2.1], adapted as in [Coh81, Section 5, Notes (iii)]. It implies

that asymptotically 100% of all the integer points in E , when ordered by height, give

hyperelliptic curves whose Jacobians are geometrically simple. A sieving argument

shows that a positive proportion of the integer points of E give minimal equations,

so asymptotically 100% of minimal equations give curves with geometrically simple

Jacobians.

For a curve C and a positive integer d, let C(d) denote its d-th symmetric product,

the points of which correspond to effective degree d divisors on C. Note that a

conjugate d-tuple of points on C gives a rational point of the symmetric product.

Proposition 3.2.6. Let d be a positive integer, and let g > d be an integer.

1. If d is odd, then asymptotically, 100% of genus g hyperelliptic curves over Q

with a rational Weierstrass point have finitely many degree d points.

2. If d is even, then asymptotically, 100% of genus g hyperelliptic curves over Q

with a rational Weierstrass point have finitely many degree d points not obtained

by pulling back degree d
2

points of P1.

Proof. First, note that since the map from a hyperelliptic curve C to P1 has degree

two, the image of a d-tuple of conjugate points on C is either a d-tuple of conjugate

points on P1, or possibly a d
2
-tuple of conjugate points on P1 if d is even.
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We may assume C has geometrically simple Jacobian J , by Proposition 3.2.5.

Map the symmetric product C(d) to J via the Abel–Jacobi map given by the rational

Weierstrass point, i.e. P1 + · · ·+ Pd 7→ [P1 + · · ·+ Pd − d · ∞].

Since d < g, the image Wd is a proper closed subvariety of J . Since J is geomet-

rically simple, Wd contains no translate of a positive-dimensional abelian subvariety

of J . By Theorem 3.2.4, Wd(Q) is finite.

Lastly, we can ignore the positive-dimensional fibers of C(d) → J , which cor-

respond to effective degree d divisors D on C such that D has positive rank. On a

hyperelliptic curve, any such divisor D must contain a subdivisor of the form P+ι(P ),

where P is some point of C and ι is the hyperelliptic involution, which switches points

within the same fiber [ACGH85, p. 13].

But by the first paragraph, if d is odd, no d-tuple of conjugate points can make

up such a D. If d is even, it is only possible if

D = P1 + ι(P1) + · · ·+ P d
2

+ ι(P d
2
),

which will map to a d
2
-tuple of conjugate points on P1. Thus in either case, the set

we wish to show is finite injects into the finite set Wd(Q).

Besides the correction (see p. 2 and Section 7.6), Park’s [Par16] most general re-

sults require a second technical hypothesis (loc. cit. Assumption 1.3) involving excess

analytic intersection of the zero loci of the F d
ω ’s for ω ∈ ΛC . In this section, we prove

an assertion of Park (loc. cit. p. 2) that this assumption always holds when r ≤ 1; to

ease notation and terminology, we restrict to the hyperelliptic setting.

Fix a hyperelliptic curve C/Q of genus g ≥ 3, with a rational Weierstrass point

∞, and embed C in its Jacobian J via the Abel–Jacobi map C → J given by∞. Let

p be a prime of good reduction for C. Let Wd := C + · · · + C ⊂ J be the image of

all degree d effective divisors, and let ΛC be as in Section 2.1. Define JΛC to be the
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kernel of pairing with elements of ΛC , i.e.

JΛC :=

{
D ∈ J(Cp)

∣∣∣∣ ∫ D

0

ω = 0, ∀ω ∈ ΛC

}
.

Note that JΛC is also a Cp-analytic manifold (in the sense of Bourbaki and Serre

[Ser06, Chapter III]), and in fact a p-adic Lie group. If we assume that J(Q) has rank

≤ 1, then JΛC has dimension 0 or 1 (as a manifold). The next two lemmas use the

topology on J(Cp) and C(Cp)× · · · ×C(Cp) given by their structures as Cp-analytic

manifolds, unless otherwise noted.

Lemma 3.2.7. Let 0 < d < g be integers. Assume that J is geometrically simple and

that J(Q) has rank ≤ 1. Then JΛC ∩Wd consists of isolated points.

Proof. If JΛC is 0-dimensional, then we are done since JΛC is a closed subset of J .

If JΛC is 1-dimensional, let P ∈ JΛC∩Wd. We can choose a closed neighborhood V

of P such that V ∩JΛC is diffeomorphic to a closed disk in Cp via [Ser06, Chapter III,

Section 3]. Since Wd is a closed set, V ∩ JΛC ∩ Wd is given by the vanishing of a

convergent 1-variable power series on this disk. Thus, V ∩ JΛC ∩Wd is either a finite

set of points or all of V ∩ JΛC .

But in the latter case, note that V ∩JΛC∩Wd is a translate of a closed disk centered

at the origin, which makes it a translate of an infinite subgroup of JΛC . Its Zariski

closure would then be a translate of a positive-dimensional abelian subvariety of J

contained in Wd, but this contradicts our initial assumption that J is geometrically

simple. Therefore, V ∩ JΛC ∩Wd is a finite set of points, so P is isolated.

Let

(Cd)ΛC :=
{

(P1, . . . , Pd) ∈ C(Cp)× · · · × C(Cp)
∣∣ F d

ω(P1, . . . , Pd) = 0, ∀ω ∈ ΛC

}
,

the inverse image of JΛC in Cd. For any subset S ⊂ ΛC , let (Cd)S similarly denote



19

pairs satisfying the condition for all ω ∈ S.

Lemma 3.2.8. Let 0 < d < g be integers. Assume that J is geometrically simple

and that J(Q) has rank ≤ 1. Let P = (P1, . . . , Pd) be a point of Cd(Cp) such that the

divisor P1 + · · ·+ Pd is non-special. Then P is an isolated point of (Cd)ΛC .

Proof. The set of d-tuples in Cd(Cp) which give special divisors is a closed subset.

Away from this subset, the fibers of the map Cd → Wd are finite. The result then

follows from Lemma 3.2.7 and the fact that C × · · · × C is Hausdorff in its topology

as a Cp-analytic manifold.

To conclude this section, we consider the locally affinoid structure of (Cd)ΛC .

Definition 3.2.9. For P ∈ C(Cp), zP a well-behaved uniformizer at P , and m > 0,

let

Bm(P, zP ) := {Q ∈ C(Cp) | v(zP (Q)) ≥ m} .

Since F d
ω has a convergent power series expression on the entire open polydisk

DP1
× · · · ×DPd

, on any closed sub-polydisk it will actually give an element of that

sub-polydisk’s affinoid coordinate ring, which is a Tate algebra [BGR84, Section 7.1.1].

For any choices of P1, . . . , Pd and zP1 , . . . , zPd
and m > 0, the set

(Cd)ΛC ∩ (Bm(P1, zP1)× · · · ×Bm(Pd, zPd
))

will have finitely many irreducible components as an affinoid subset of Bm(P1, zP1)×

· · · × Bm(Pd, zPd
), by [BGR84, Sect. 7.1.1, Cor. 8]. These components can be zero-

dimensional or positive-dimensional.

Lemma 3.2.10. Let C/Q be a curve of genus g ≥ 2, let d be a positive integer,

and let p be a prime of good reduction for C. Suppose C has rank r ≤ g − d. Let

P1, . . . , Pd ∈ C(Cp), let zPi
be a well-behaved uniformizer at Pi for i = 1, . . . , d, and let
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m > 0. Then we can choose ω1, . . . , ωd ∈ ΛC as in Lemma 2.1.3 such that furthermore

the zero set

(Cd){ω1,...,ωd} ∩ (Bm(P1, zP1)× · · · ×Bm(Pd, zPd
))

has the same positive-dimensional components as

(Cd)ΛC ∩ (Bm(P1, zP1)× · · · ×Bm(Pd, zPd
)).

Proof. The proof is similar to [Par16, Proposition 5.7], and proceeds by induction.

Claim: For k = 1, . . . , d, we can choose ω1, . . . , ωk as in Lemma 2.1.3 such that the

set of components of codimension at most k − 1 for

(Cd){ω1,...,ωk} ∩ (Bm(P1, zP1)× · · · ×Bm(Pd, zPd
))

and

(Cd)ΛC ∩ (Bm(P1, zP1)× · · · ×Bm(Pd, zPd
))

are the same.

Proof of Claim. The base case k = 1 is trivial. For the induction step, suppose it

holds for a given value of k, for forms ω1, . . . , ωk. Choose ωk+1 linearly independent

from ω1, . . . , ωk, and as in Lemma 2.1.2, such that

(Cd){ω1,...,ωk+1} ∩ (Bm(P1, zP1)× · · · ×Bm(Pd, zPd
))

has the minimal number of codimension k components V1, . . . , Vs for any such choice

of ωk+1.

Suppose the conclusion of the claim is false for k + 1. Then without loss of
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generality, we may assume that Vs is not a component of (Cd)ΛC ∩(Bm(P1, zP1)×· · ·×

Bm(Pd, zPd
)). Let Vs+1, . . . , Vt be any codimension k components of (Cd){ω1,...,ωk} ∩

(Bm(P1, zP1)× · · · ×Bm(Pd, zPd
)) that are distinct from each V1, . . . , Vs.

Since Vs is not a component of (Cd)ΛC ∩ (Bm(P1, zP1)×· · ·×Bm(Pd, zPd
)), we may

choose a normalized form ω′ ∈ ΛC such that Fω′ does not vanish at some point Rs

of Vs. Then for any integer n, we have that F d
ωk+1+pnω′ does not vanish identically on

Vs, since F d
ωk+1

does but F d
pnω′ = pnF d

ω′ does not.

For each i = s+ 1, . . . , t, we can choose a point Ri on Vi at which F d
ωk+1

does not

vanish. Choose n to be a sufficiently large positive integer such that v(Fpnω′(Ri)) =

n + v(Fω′(Ri)) > v(Fωk+1
(Ri)) for each i = s + 1, . . . , t. Then Fωk+1+pnω′ does not

vanish identically on any of Vs+1, . . . , Vt.

Note that ωk+1 + pnω′ has the same reduction as ωk+1, and thus the conclusion

of Lemma 2.1.3 still holds. Also, it is linearly independent from ω1, . . . , ωk, since

F d
ω1
, . . . , F d

ωk
vanish at Rs and our integration pairing is Qp-linear. But by construc-

tion, the codimension k components of (Cd){ω1,...,ωd,ωk+1+pnω′} ∩ (Bm(P1, zP1) × · · · ×

Bm(Pd, zPd
)) are contained in {V1, . . . , Vs−1}, which contradicts the minimality of

ωk+1.

The lemma is the k = d case of the claim.

3.3 Bounding the number of unexpected degree d

points

In this section, we prove the first two statements of Theorem A. We refer the reader

to Subsection 3.1 for the definition of unexpected degree d points.

Let (P1, . . . , Pd) be a conjugate d-tuple of degree d points.

Lemma 3.3.1. Let d > 1 be a positive integer, let C/Q be a hyperelliptic curve of
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genus g > d, with a rational Weierstrass point, geometrically simple Jacobian with

r ≤ 1, and let p be an odd prime of good reduction for C. Let P1, · · · , Pd ∈ C(Q) be

a conjugate d-tuple with well-behaved uniformizers zP1 , . . . , zPd
. Let (Q1, . . . , Qd) be a

d-tuple of unexpected conjugate degree d points with the same reduction as (P1, . . . , Pd)

modulo p.

Then {(Q1, . . . , Qd)} is a zero-dimensional component of

(Cd)ΛC ∩ (B 1
d2

(P1, zP1)× · · · ×B 1
d2

(Pd, zPd
)).

Proof. By Remark 2.2.1, {(Q1, . . . , Qd)} is contained in

B 1
d2

(P1, zP1)× · · · ×B 1
d2

(Pd, zPd
).

By Lemma 3.2.8, we have that {(Q1, . . . , Qd)} is a zero-dimensional component of

(Cd)ΛC ∩ (B 1
d2

(P1, zP1)× · · · ×B 1
d2

(Pd, zPd
)).

In light of Lemma 3.3.1, we work to bound the number of these zero-dimensional

components. We use the convention that v(0) = ∞. For a positive rational number

m, let Dm = {α ∈ Cp | v(α) ≥ m}, let Dd
m denote its d-fold product, and let Cp〈Dd

m〉

denote the Tate algebra of functions in its affinoid coordinate ring. The key tool we

use to control zero-dimensional components comes from Park [Par16] and builds off

results of Rabinoff [Rab12] in tropical deformation and tropical intersection theory.

Before we can state the theorem, we recall some definitions.

Definition 3.3.2. For F (t1, . . . , td) =
∑

u∈Zd
≥0
aut

u ∈ Cp〈Dd
m〉, we define the tropi-
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calization of F as

Trop(F ) := {(v(z1), . . . , v(zd)) : F (z1, . . . , zd) = 0, (z1, . . . , zd) ∈ Dd
m)},

where we take the topological closure in Rd.

Next, for a set S ⊂ Rd, let conv(S) denote its convex hull. A necessary condition

for a series to sum to 0 in a non-Archimedean field is that it has a term of minimal

valuation, and that this term is not unique. In the below definition, the relevant

(w1, . . . , wd) can thus be thought of as candidates for the coordinate-wise valuations

of zeros for the power series F , where we only look for zeros whose coordinates have

valuation at least m, and the (u1, . . . , ud) are the multi-indices of terms that could

have minimal valuation after plugging in such a zero.

Definition 3.3.3. Let m be a positive rational number, and let F (t1, . . . , td) =∑
u∈Zd

≥0
aut

u ∈ Cp〈Dd
m〉. We define the Newton polygon of F (with respect to m)

to be the set Newm(F ) ⊂ Rd given by

Newm(F ) := conv({u = (u1, . . . , ud) ∈ Zd≥0 | ∃(w1, . . . , wd) ∈ Qd with each wi ≥ m s.t.

∃u′ ∈ Zd≥0 with u 6= u′ and v(au) +
∑
i

wiui = v(au′) +
∑
i

wiu
′
i,

and ∀u′′ ∈ Zd≥0, v(au) +
∑
i

wiui ≤ v(au′′) +
∑
i

wiu
′′
i }).

A polytope is the convex hull of finitely many points of a Euclidean space. We need

to define the mixed volume of a collection of polytopes in a given Euclidean space.

For polytopes Z1, . . . , Zd ⊂ Rd and positive real numbers λ1, . . . , λd, the volume of

the scaled Minkowski sum λ1Z1 + · · ·+ λdZd = {λ1z1 + · · ·+ λdzd | zi ∈ Zi} is known

to be given by a homogeneous polynomial of degree d in the coefficients λ1, . . . , λd.

The mixed volume of the polytopes, denoted MV(Z1, . . . , Zd), is defined to be the

coefficient of λ1λ2 · · ·λd in that polynomial.
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Example 3.3.4. For a ≥ 1 and d a positive integer, let

Z1 = · · · = Zd = conv({e1, . . . , ed, ae1, . . . , aed}) ⊂ Rd,

where ei is the vector with a 1 in the i-th place and 0’s elsewhere. Then

λ1Z1 + · · ·+ λdZd = conv((λ1 + · · ·+ λd){e1, . . . , ed, ae1, . . . , aed}),

and a quick calculation gives MV(Z1, . . . , Zd) = ad − 1.

Theorem 3.3.5 ( [Par16, Theorem 4.18 & Proposition 5.7]). Let m be a positive

rational number, and let F1, . . . , Fd ∈ Cp〈Dd
m〉 be power series such that for any

i, j ∈ {1, . . . , d}, Fi has a term of the form ctNj , with c 6= 0 and N > 0.

Suppose that the tropicalization of an isolated point in the intersection of the zero

loci of the Fi is isolated in the intersection of the tropicalizations Trop(Fi). Then the

number of zero-dimensional components of the zero locus V (F1, . . . , Fd) in Dd
m∩(C×p )d

is at most MV(Newm(F1), . . . ,Newm(Fd)).

Remark 3.3.6. The condition that the tropicalization of an isolated point in the in-

tersection of the zero loci of the Fi is isolated in the intersection of the tropicalizations

does not appear in [Par16], but does appear in the previous theorem from [Rab12]

that Park uses. It seems to be necessary if one wishes to use the mixed volume

MV(Newm(F1), . . . ,Newm(Fd)) to bound the number of zero-dimensional components

of V (F1, . . . , Fd) in Dd
m ∩ (C×p )d.

If the tropicalization of an isolated point in the intersection of the zero loci of the Fi

lands in a positive-dimensional component of the intersection of their tropicalizations,

then one could hope to use work of Osserman–Rabinoff [OR11] to bound the number of

zero-dimensional components in terms of the stable tropical intersection; see [JY16] for

definitions and results concerning stable tropical intersections. However, one cannot
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use mixed volumes of Newton polygons to compute these stable intersection numbers.

Since we use Theorem 3.3.5 to explicitly bound the number zero-dimensional com-

ponents from Lemma 3.3.1, we include an assumption.

Assumption 3.3.7. For each g ≥ 2, more than 75% of hyperelliptic curves over Q

of genus g satisfy the following condition:

for each positive rational number m and each residue disk Dd
m, the tropicalization of an

isolated point in the intersection of F d
ωi

, where {ω1, . . . , ωd} are d linearly independent

1-forms from Lemma 3.2.10, is isolated in the intersection of the tropicalizations Trop(F d
ωi

).

(†)

Furthermore, the same holds if one averages within a family defined by a finite set of

congruence conditions.

Returning to the proof of the first two statements of Theorem A, we use Theorem

3.3.5 to bound the maximal number of zero-dimensional components mentioned in

Lemma 3.3.1.

Lemma 3.3.8. Let d > 1 be a positive integer and let C/Q be a hyperelliptic curve

of genus g > d, with a rational Weierstrass point, geometrically simple Jacobian with

r ≤ 1, good reduction at a prime p > d2 + 3, and which satisfies condition (†).

Let P1, · · · , Pd ∈ Cd(Q) be a conjugate d-tuple with well-behaved uniformizers

zP1 , . . . , zPd
. Then there are at most 3d ordered tuples of unexpected conjugate degree

d points in DP1
× · · · ×DPd

, i.e. with the same reduction as (P1, . . . , Pd) modulo p.

Proof. Using Lemmas 2.1.3 and 3.2.10, we can choose linearly independent, normal-

ized forms ω1, . . . , ωd ∈ ΛC such that n(ωi, Pj) = n(ΛC , Pj) for i, j ∈ {1, . . . , d}. By

Theorem 2.1.1, these numbers are at most 2.

Viewed as a function on Dd via zP1 , . . . , zPd
, F d

ω1
is given by

∞∑
i=0

a1,i

i+ 1
ti+1
1 + · · ·+

∞∑
i=0

ad,i
i+ 1

ti+1
d .
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For each i ∈ {1, . . . , d}, we have that v(ai,j) = 0 for some j ≤ 2. Similar statements

holds for F d
ω2
, . . . , F d

ωd
.

By a standard Newton polygon argument (cf. proof of [Sto06, Lemma 6.1 & Propo-

sition 6.3] using our assumption that p > d2 + 3) applied to each of these sums, we

see that New1/d2(F
d
ω1

),New1/d2(F
d
ω2

), . . . , and New1/d2(F
d
ωd

) are contained in the set

conv({(1, 0, . . . , 0), (3, 0, . . . , 0), (0, 1, . . . , 0), (0, 3, . . . , 0), . . . , (0, 0, . . . , 1), (0, 0, . . . , 3)}) ⊂ Rd.

By Theorem 3.3.5 and Example 3.3.4, there are at most 3d−1 zero-dimensional com-

ponents of interest away from (P1, . . . , Pd). Since (P1, . . . , Pd) could be a d-tuple of

unexpected conjugate degree d points, we have at most 3d zero-dimensional compo-

nents in Dd. We are now done by Lemmas 3.2.10 and 3.3.1.

Proof of Theorem A. Choose a prime p > d2 + 3. Among all hyperelliptic curves

of genus g with a rational Weierstrass point, those with good reduction at p are

defined by finitely many congruence conditions on their minimal equations, and thus

constitute a positive proportion of all such curves. Proposition 3.2.5 tells us that

asymptotically, 100% of curves in this subfamily have geometrically simple Jacobian,

and by Corollary 3.2.3, at least 25% of these curves also have Jacobian rank r ≤ 1.

Furthermore, under Assumption 3.3.7, a positive proportion of these curves satisfy

condition (†).

Let C be such a curve of genus g. Given a d-tuple (Q1, . . . , Qd) of conjugate

degree d points, the reduction of each Qi is certainly contained in CFp(Fpmi ) for some

1 ≤ mi ≤ d. Note that since C is an odd hyperelliptic curve with good reduction

at p, the size of CFp(Fpmi ) is less than or equal to 2pmi + 1. Crudely, there are at

most (d · (2pd + 1))d possible reductions for (Q1, . . . , Qd) modulo p. By Lemma 3.3.8,

there are at most 3d ordered tuples of unexpected conjugate degree d points with each
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reduction. Thus, we may take

Bd = (3d · (2pd + 1))d ≤ (3d · (2(2d2 + 3)d + 1))d,

by Bertrand’s postulate [Tch62, Tome I, p. 64].

3.4 Explicit bounds on the number of unexpected

quadratic points

In this section, we prove Theorem 3.1.3.

Lemma 3.4.1. Let C/Q be a hyperelliptic curve of genus g ≥ 3, with a rational

Weierstrass point, geometrically simple Jacobian with r ≤ 1, and let p be an odd

prime of good reduction for C.

Let P1, P2 ∈ C(Q) be either two rational points or a pair of conjugate quadratic

points, with well-behaved uniformizers zP1 , zP2. Let (Q1, Q2) be a pair of unexpected

conjugate quadratic points with the same reduction as (P1, P2). Then {(Q1, Q2)} is a

zero-dimensional component of (C2)ΛC ∩ (B 1
2
(P1, zP1)×B 1

2
(P2, zP2)).

Proof. The field Qp(P1, P2, Q1, Q2) is certainly contained in the compositum of the

three quadratic extensions of Qp. Since p is odd, that compositum has ramification

degree e = 2 over Qp. The result now follows from Lemma 3.3.1.

Lemma 3.4.2. Suppose p 6= 2 or 5, and
∑∞

i=0 ait
i ∈ CpJtK is a power series with

integral coefficients. If v(a0) = 0, then for f(t) =
∑∞

i=0
ai
i+1
ti+1, we have New1(f) = ∅

and New1/2(f) ⊂ [1, 3]. If v(a1) = 0 or v(a2) = 0, then New1(f),New1/2(f) ⊂ [1, 3].

Proof. We begin with the case where v(a0) = 0. Then for any w ≥ 1 and i > 0, we

have v(a0
1

) + 1 · w = w < v( ai
i+1

) + (i + 1) · w. To see this, note that the right-hand
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side is no smaller than −v(i + 1) + (i + 1)w, and v(i + 1) is strictly less than i for

i > 0 and p > 2.

For w ≥ 1
2
, things can be different: for example, suppose p = 3, v(a2) = 0, and

w = 1
2
. Then 1

2
= v(a2

3
) + 3 ·w = v(a0

1
) + 1 ·w. But past i = 2, strict inequality holds,

so we have New1/2(f) ⊂ [1, 3]. The rest of the cases proceed similarly.

Lemma 3.4.3. Let C/Q be a hyperelliptic curve of genus g ≥ 3, with a rational

Weierstrass point, geometrically simple Jacobian with r ≤ 1, good reduction at 3,

which satisfies condition (†).

Let P1, P2 ∈ C(Q) be either two rational points or a pair of conjugate quadratic

points, with P1, P2 ∈ CF3(F3). Then there are at most 8 ordered pairs (Q1, Q2) of

unexpected conjugate quadratic points in DP1
×DP2

that are not equal to (P1, P2).

Proof. Using Lemmas 2.1.3 and 3.2.10, choose linearly independent, normalized forms

ω1, ω2 ∈ ΛC such that n(ωi, Pj) = n(ΛC , Pj) for i, j ∈ {1, 2}. By Theorem 2.1.1, these

numbers are at most 2. Viewed as a function on D2 via zP1 and zP2 , F
2
ω1

is given by

∞∑
i=0

ai
i+ 1

ti+1
1 +

∞∑
i=0

bi
i+ 1

ti+1
2 .

A similar statement holds for F 2
ω2

.

By construction of ω1 (and similarly for ω2), we have v(ai) = 0 for some i ≤ 2,

and v(bj) = 0 for some j ≤ 2. Now by Lemma 3.4.2 applied to each of these two

sums, we see that both New1/2(F 2
ω1

) and New1/2(F 2
ω2

) are contained in the set

conv({(1, 0), (3, 0), (0, 1), (0, 3)}) ⊂ R2.

By Theorem 3.3.5 and Example 3.3.4, there are at most 32 − 1 = 8 zero-dimensional

components of interest away from (P1, P2). We are done by Lemmas 3.2.10 and

3.4.1.
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Lemma 3.4.4. Let C/Q be a hyperelliptic curve of genus g ≥ 3, with a rational

Weierstrass point, geometrically simple Jacobian with r ≤ 1, good reduction at 3,

which satisfies condition (†).

Let P1, P2 ∈ C(Q) be a pair of conjugate quadratic points, with P1, P2 ∈ CF3(F9) \

CF3(F3). If n(ΛC , P1) = 1, there are at most 8 pairs (Q1, Q2) of unexpected conjugate

quadratic points in DP1
×DP2

that are not equal to (P1, P2). If n(ΛC , P1) = 0, there

are no such pairs.

Proof. The proof is similar to that of Lemma 3.4.3, with two changes. First, one can

consider New1 instead of New1/2, using Remark 2.2.1 and the fact that Q3(P1, Q1) is

unramified. Second, note that since P1 and P2 reduce to (necessarily distinct) points

outside of CF3(F3), we know that P1 and P2 remain conjugate over Q3. Thus their

reductions are conjugate over F3, so we have n(ΛC , P1) = n(ΛC , P2). By Theorem

2.1.1, this common value can only be 0 or 1.

Lemma 3.4.5. For each g ≥ 3, there exists a congruence family of genus g hyperel-

liptic curves with a rational Weierstrass point, such that any curve C in the family has

good reduction at 3, and satisfies CF3(F3) = {∞} and CF3(F9) = {∞, (0,±α), (1,±α), (2,±α)},

with α ∈ (F9 \ F3).

Proof. For each g, consider the families of hyperelliptic curves whose reduction mod

3 is given by:

y2 = fg(x) = x2g+1 + 2x9 + 2 for g ≡ 1 mod 4,

y2 = fg(x) = x2g+1 + 2x15 + 2 for g ≡ 2 mod 4,

y2 = fg(x) = x2g+1 + 2x5 + 2 for g ≡ 3 mod 4,

y2 = fg(x) = x2g+1 + x3 + x+ 2 for g ≡ 0 mod 4 and g ≡ 0, 1 mod 3,

y2 = fg(x) = x2g+1 + x9 + x3 + 2 for g ≡ 0 mod 4 and g ≡ 2 mod 3.
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For g = 3, one checks directly that fg(x) represents as few squares as is possible:

f(F3) = {2}, and f(F9 \ F3) ⊂ (F9 \ F2
9). This is equivalent to the lemma’s condition

on F3- and F9-points. In general, for g ≡ 3 mod 4, note that fg(x) = x2g+1 + 2x5 + 2

defines the exact same function as x7 +2x5 +2 on F9, as xk and xk+8r define the same

function on F9 for natural numbers k, r. The same argument works for the other

values of g.

We conclude by showing that these polynomials are square-free over F3. Over any

field, the discriminant of a trinomial xn + axk + b is

(−1)
n(n−1)

2 bk−1[nn1bn1−k1 + (−1)n1+1(n− k)n1−k1kk1an1 ]d,

where d = (n, k) and n = n1d, k = k1d [Swa62, Theorem 2]. Thus for g ≡ 1, 2, 3

mod 4, the discriminant of fg in F3 is

±[(2g + 1) + (2g + 1− k)2k · 2],

with k = 1, 7, or 5, respectively. This is non-zero in F3 for any value of g.

For g ≡ 0 mod 4, we use a different method. It suffices to show fg(x) and f ′g(x)

have no common factors. If g ≡ 1 mod 3, then f ′g(x) = 1, so this is clear. If g ≡ 2

mod 3, then f ′g(x) = −x2g, and so this also is clear. Lastly if g ≡ 0 mod 3, then

f ′g(x) = x2g+1, so any common factor would divide fg(x)−xf ′g(x) = x3+2 = (x+2)3.

Thus we see fg and f ′g are coprime.

Proof of Theorem 3.1.3. For a given value of g, the family given by Proposition 3.2.5

and Lemma 3.4.5 comprises a positive proportion of all hyperelliptic curves with

a rational Weierstrass point, since the latter is defined by finitely many congruence

conditions. By Corollary 3.2.3, at least 25% of the curves in this family have rank r ≤

1; this is still a positive proportion of all the curves. Furthermore, under Assumption

3.3.7, a positive proportion of these curves satisfy condition (†).
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Let C be such a curve. Any pair of conjugate quadratic points on C that reduce

to F3-points will have to lie in D∞ ×D∞. We may choose P1 = P2 = ∞ and apply

Lemma 3.4.3 to conclude there are at most eight ordered pairs (Q1, Q2) of unexpected

conjugate quadratic points in this residue class. But since Q1 = Q2, each unordered

pair is counted twice, so there are at most four unordered pairs of such quadratic

points.

If the minimal Weierstrass model of C is y2 = f(x), note that (for some choice of

square root) the pair of expected quadratic points (i,±
√
f(i)) reduces to (i,±α) for

each i = 0, 1, 2. In D(i,α) ×D(i,−α), we may choose P1 = (i,
√
f(i)), P2 = (i,−

√
f(i)),

and apply Lemma 3.4.4. If n(ΛC , (i, α)) = 0, we conclude there are no unexpected

pairs in this residue class. If n(ΛC , (i, α)) = 1, there are at most eight.

By Theorem 2.1.1, at most one value of i = 0, 1, 2 will have n(ΛC , (i, α)) =

n(ΛC , (i,−α)) = 1, and all the others will be 0. Thus, there are at most 4 + 8 = 12

unordered pairs of unexpected conjugate quadratic points.

3.5 Explicit bounds on the number of cubic points

In this section, we prove Theorem 3.1.5.

Lemma 3.5.1. Suppose
∑∞

i=0 ait
i ∈ C3JtK is a power series with integral coeffi-

cients. If v(a0) = 0, v(a1) = 0, or v(a2) = 0, then for f(t) =
∑∞

i=0
ai
i+1
ti+1, we

have New1/3(f) ⊂ [1, 3].

Proof. We proceed as in Lemma 3.4.2. If v(a0) = 0, then for w ≥ 1/3 and i > 2, we

have that v(a0
1

) + 1 · w = w < v( ai
i+1

) + (i + 1) · w. Recall that the right-hand side

is no smaller than −v(i + 1) + (i + 1)w, and so it suffices to prove that for i > 2,

w < −v(i+1)+(i+1)w. A short induction argument on i using the non-Archimedean

properties of v and taking w = 1/3 yields the desired result. The remaining cases

follow in a similar fashion.
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Lemma 3.5.2. Let C/Q be a hyperelliptic curve of genus g ≥ 4, with a rational

Weierstrass point, geometrically simple Jacobian with r ≤ 1, good reduction at 3,

which satisfies condition (†).

Let P1, P2, P3 ∈ C(Q) be three rational points. Then there are at most 26 ordered

triples (Q1, Q2, Q3) of conjugate cubic points in DP1
×DP2

×DP3
.

Proof. As in Lemma 3.4.3, we use Lemmas 2.1.3 and 3.2.10 to choose linearly in-

dependent, normalized forms ω1, ω2, ω3 ∈ ΛC such that n(ωi, Pj) = n(ΛC , Pj) for

i, j ∈ {1, 2, 3}. By Theorem 2.1.1, these numbers are at most 2. Viewed as a function

on D3 via zP1 , zP2 , and zP3 , F
3
ω1

is given by

∞∑
i=0

ai
i+ 1

ti+1
1 +

∞∑
i=0

bi
i+ 1

ti+1
2 +

∞∑
i=0

ci
i+ 1

ti+1
3 .

A similar statement holds for F 3
ω2

and F 3
ω3

.

By construction of ω1 (and similarly for ω2 and ω3), we have v(ai) = 0 for some

i ≤ 2, v(bj) = 0 for some j ≤ 2, and v(ck) = 0 for some k ≤ 2. Now by Lemma

3.5.1 applied to each of these three sums, we see that New1/3(F 3
ω1

), New1/3(F 3
ω2

), and

New1/3(F 3
ω3

) are contained in the set

conv({(1, 0, 0), (3, 0, 0), (0, 1, 0, ), (0, 3, 0), (0, 0, 1), (0, 0, 3)}) ⊂ R3.

By Theorem 3.3.5 and Example 3.3.4, there are at most 33− 1 = 26 zero-dimensional

components of interest. We are done by Lemmas 3.2.10 and 3.3.1.

Lemma 3.5.3. Let C/Q be a hyperelliptic curve of genus g ≥ 4, with a rational

Weierstrass point, geometrically simple Jacobian with r ≤ 1, good reduction at 3,

which satisfies condition (†).

Let P1, P2 ∈ C(Q) be conjugate quadratic points, with P1, P2 ∈ CF3(F9) \ CF3(F3),

and P3 ∈ C(Q) a rational point. If n(ΛC , P1) = 1, there are at most 26 ordered triples
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(Q1, Q2, Q3) of conjugate cubic points in DP1
× DP2

× DP3
. If n(ΛC , P1) = 0, there

are no such triples.

Proof. In the first two coordinates, we can consider New1 using Remark 2.2.1 and the

fact that Q3(P1, Q1) is unramified, whereas we have to consider New1/3 in the last

coordinate. We also have that n(ΛC , P1) = n(ΛC , P2). Theorem 2.1.1 asserts that

n(ΛC , P1) + n(ΛC , P2) + n(ΛC , P3) ≤ 2, so we have two cases. If n(ΛC , P1) = 0, then

there are no ordered triples by first statement of Lemma 3.4.2. If n(ΛC , P1) = 1, then

the result follows from the second statement of Lemma 3.4.2, Lemma 3.5.1, and the

same computation as in Lemma 3.5.2.

Lemma 3.5.4. Let C/Q be a hyperelliptic curve of genus g ≥ 4, with a rational

Weierstrass point, geometrically simple Jacobian with r ≤ 1, good reduction at 3,

which satisfies condition (†).

Let P1, P2, P3 ∈ C(Q) be three conjugate cubic points, with P1, P2, P3 ∈ CF3(F27) \

CF3(F3). Then there are no ordered triples (Q1, Q2, Q3) of conjugate cubic points in

DP1
×DP2

×DP3
not equal to (P1, P2, P3).

Proof. The proof is similar to that of Lemma 3.5.2 with two changes. First, one can

consider New1 instead of New1/3 in all the coordinates, again using Remark 2.2.1

and the fact that Q3(P1, Q1) is unramified. Second, note that since P1, P2, and P3

reduce to (necessarily distinct) points outside of CF3(F3), we know that P1, P2, and

P3 remain conjugate over Q3. Thus their reductions are conjugate over F3, so we have

n(ΛC , P1) = n(ΛC , P2) = n(ΛC , P3). By Theorem 2.1.1, this common value can only

be 0, and then the result follows from Lemma 3.4.2.

Proof of Theorem 3.1.5. For a given value of g, the family given by Proposition 3.2.5

and Lemma 3.4.5 comprises a positive proportion of all hyperelliptic curves with

a rational Weierstrass point, since the latter is defined by finitely many congruence

conditions. By Corollary 3.2.3, at least 25% of the curves in this family have rank r ≤
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1; this is still a positive proportion of all the curves. Furthermore, under Assumption

3.3.7, a positive proportion of these curves satisfy condition (†).

Let C be such a curve. Any triple of conjugate cubic points on C that reduce to

F3-points will have to lie in D∞×D∞×D∞. We may choose P1 = P2 = P3 =∞ and

apply Lemma 3.5.2 to conclude there are at most 26 ordered triples (Q1, Q2, Q3) of

conjugate cubic points in this residue class. But since Q1 = Q2 = Q3, each unordered

triple is overcounted by a factor of 6, so there are at most b26/6c = 4 unordered

triples of such cubic points.

If the minimal Weierstrass model of C is y2 = f(x), note that (for some choice

of square root) the pair of quadratic points (i,±
√
f(i)) reduces to (i,±α) for each

i = 0, 1, 2. Any triple of conjugate cubic points on C where two of the points reduce

to (F9 \ F3)-points will have to lie in D(i,α) × D(i,−α) × D∞ for some i. In D(i,α) ×

D(i,−α) × D∞, we may choose P1 = (i,
√
f(i)), P2 = (i,−

√
f(i)), and P3 = ∞ and

apply Lemma 3.5.3 with the values n(ΛC , (i, α)), n(ΛC , (i,−α)), and n(ΛC ,∞) to

count ordered triples.

The last case is when a triple of conjugate cubic points on C reduces to (necessarily

distinct) (F27 \ F3)-points. In this setting, Lemma 3.5.4 asserts that there are no

triples in this residue class away from their centers. Since C is hyperelliptic and has

good reduction at 3, any unordered triple of conjugate cubic points (over F3) will

have to lie over an unordered triple of cubic points of P1
F3

, of which there are only

((33 + 1)− (3 + 1))/3 = 8.

Using Theorem 2.1.1, we get the worst bound on the number of 0-dimensional

components in all residue classes by assuming that for some i = 0, 1, 2, n(ΛC , (i, α)) =

n(ΛC , (i,−α)) = 1, and all the others will be 0. To conclude, there are at most

4 + 26 + 8 = 38
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unordered triples of conjugate cubic points.
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Chapter 4

Background — Hyperbolicity

In this chapter, we recall definitions and results on varieties of general type and hy-

perbolicity in the complex analytic, algebraic, and non-Archimedean analytic setting,

and we conclude by stating the conjectures of Green–Griffiths–Lang–Vojta.

For a more detailed account of these definitions and conjectures, we highly rec-

ommend Javanpeykar’s survey [Jav20].

4.1 Varieties of general type

To begin, we recall some basic notions of varieties of general type.

A variety X over K is of general type if the dimension of X equals the Kodaira

dimension of X (or equivalently, the dimension of X equals the transcendence degree

of the fraction field of the canonical ring minus one). It is well-known that being of

general type descends along finite surjective morphism and that a variety of general

type cannot be a group variety. We summarize these properties in the following

lemma, which will be used later.

Lemma 4.1.1. Let X be a projective variety of general type over K, and let Y → X

denote a finite surjective morphism. Then Y is not a group variety.
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4.2 Hyperbolicity in complex analytic setting

We start with the classical notion of Brody hyperbolicity for complex varieties.

Definition 4.2.1. A complex-analytic space X is Brody hyperbolic if every holomor-

phic map C→ X is constant (i.e., if X does not admit an entire curve). A variety X

over C is Brody hyperbolic if the complex analytification X(C) is Brody hyperbolic.

Classical results in complex analysis lead to the following classification of Brody

hyperbolic projective curves.

Theorem 4.2.2 (Liouville, Riemann, Schwarz, Picard). Let X/C be a smooth pro-

jective connected curve. Then X is Brody hyperbolic if and only if the genus of X is

greater than 1.

Remark 4.2.3. It is implicit in Theorem 4.2.2 that an elliptic curve is not Brody

hyperbolic. More generally, an abelian variety of dimension g over C is not Brody

hyperbolic as its associated complex-analytic space is uniformized by Cg by Riemann’s

uniformization theorem. We note that A even admits a dense entire curve, so it should

be considered to be as far as possible from being Brody hyperbolic.

We now turn to the notion of Kobayashi hyperbolicity for complex varieties. In [?],

Kobayashi defined an intrinsic pseudo-metric on a connected complex manifold X; a

pseudo-metric d is a non-negative real valued function d satisfying the conditions of

a metric except that d(x, y) can equal zero for x 6= y.

Definition 4.2.4. Given two points x, y ∈ X, a chain of holomorphic disks connecting

x to y consists of the following data: points x = x0, x1, . . . , xk−1, xk = y of X, points

a1, . . . , ak, b1, . . . , bk of the open unit disk D, and holomorphic mappings f1, . . . , fk

of D into X such that fi(ai) = xi=1 and fi(bi) = xi for i = 1, . . . , k. The length of a
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chain of holomorphic disks connecting x to y is

k∑
i=1

ρ(ai, bi),

where ρ(·, ·) is the Poincaré metric on D.

Definition 4.2.5. For a connected complex manifold X, the Kobayashi pseudo-

metric dX(x, y) is the infimum of the length over all chains of holomorphic disks

connecting x to y. If dX is a metric on X, we say that X is Kobayashi hyperbolic.

Example 4.2.6. The Kobayashi pseudo-metric on C is identically zero. It suffices

to show that dC(0, 1) = 0. To do so, consider the function given by multiplication by

r on the unit disc. As r → ∞, the hyperbolic distance between 0 and 1/r tends to

0. The intuitive reason why the Kobayashi pseudo-metric on C is identically zero is

because we can make arbitrarily small dilations of the unit disk in C.

The Kobayashi pseudo-metric plays an important role in characterizing complex

manifolds as illustrated by the two theorems.

Theorem 4.2.7 ( [Bar72]). If X is Kobayashi hyperbolic, then dX defines the complex

topology of X.

Theorem 4.2.8 ( [Bro78]). If X is compact, then X is Kobayashi hyperbolic if and

only if X is Brody hyperbolic.

We now introduce the “pseudo-fications” of these notions.

Definition 4.2.9. Let X/C be a variety and let ∆ be a closed subset of X. We say

that X is Brody hyperbolic modulo ∆ if every holomorphic non-constant morphism

C→ X(C) factors over ∆(C).

Definition 4.2.10. A variety X over C is pseudo-Brody hyperbolic if there is a proper

closed subset ∆ ( X such that X is Brody hyperbolic modulo ∆.
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Remark 4.2.11.

• The notion of pseudo-Brody hyperbolicity is a birational invariant.

• A variety is Brody hyperbolic if and only if it is Brody hyperbolic modulo ∅.

Definition 4.2.12. Let X/C be a variety and let ∆ be a closed subset of X. We

say that X is Kobayashi hyperbolic modulo ∆ if, for every x 6= y ∈ X(C) \∆(C), the

Kobayashi pseud-metric dX(x, y) is positive.

Definition 4.2.13. A variety X over C is pseudo-Kobayashi hyperbolic if there is a

proper closed subset ∆ ( X such that X is Kobayashi hyperbolic modulo ∆.

Remark 4.2.14.

• The notion of pseudo-Kobayashi hyperbolicity is a birational invariant.

• The notion of pseudo-Kobayashi hyperbolicity remains quite mysterious. In-

deed, it is not known whether a pseudo-Brody hyperbolic projective variety

X/C is pseudo-Kobayashi hyperbolic.

4.3 Hyperbolicity in the algebraic setting

Now, we recall definitions and results concerning notions of hyperbolicity in the al-

gebraic setting. We will follow [JK19,JX19].

Definition 4.3.1 ( [JK19, Definition 2.1]). A finite type scheme X over K is groupless

(over K) if, for every finite type connected group scheme G over K, every morphism

of K-schemes G→ X is constant.

When X/K is proper, one can use Chevalley’s theorem [Con02] on finite type

connected algebraic groups over K to show that being groupless can be tested on

abelian varieties.
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Lemma 4.3.2 ( [JK19, Lemma 2.4 & Lemma 2.5]). Let X/K be a proper variety.

Then X is groupless over K if and only if for every abelian variety A/K, every

morphism A→ X is constant.

We conclude our discussion on hyperbolicity in the algebraic setting by recalling

a more general notion of groupless introduced by Javanpeykar–Xie [JX19] following

ideas of Vojta [Voj15].

Definition 4.3.3 ( [JX19, Definition 3.1]). Let X/K be a variety and let ∆ ⊂ X be a

closed subscheme. X is groupless modulo ∆ (over K) if, for every finite type connected

group scheme G/K and every dense open subscheme U ⊂ G with codim(G \U) ≥ 2,

every non-constant morphism U → X factors over ∆.

Definition 4.3.4 ( [JX19, Definition 3.2]). We say that X is pseudo-groupless (over

K) if there exists a proper closed subscheme ∆ ⊂ X such that X is groupless modulo

∆.

Remark 4.3.5. The reader might wonder why one considers “big” open subschemes

U ⊂ G in Definition 4.3.3. The reason is that Vojta [Voj15, Section 4] proved that for

A/C an abelian variety and U ⊂ A a dense open subscheme with codim(A \ U) ≥ 2,

U is not Brody hyperbolic, and in fact, U admits a Zariski dense holomorphic curve.

As such, one should think of “big” open subschemes of group schemes as being as far

from hyperbolic as possible.

Remark 4.3.6 ( [JX19, Remark 3.3]). Let X be a proper variety over K and let

∆ ⊂ X be a closed subscheme. By the valuative criterion for properness, X is

groupless modulo ∆ if and only if for every finite type, connected group scheme

G over K and every dense open subscheme U ⊂ G, every non-constant morphism

U → X factors over ∆.

Remark 4.3.7 ( [JX19, Remark 3.4]). Let X be a proper variety over K which does

not contain any rational curves and let ∆ ⊂ X be a closed subscheme. Then X is
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groupless modulo ∆ if and only if for every finite type connected group scheme G/K,

every non-constant morphism factors over ∆. This follows because every finite type

connected group scheme G over a field of characteristic zero is smooth [Sta15, Lemma

047N] and since any morphism from a “big” open U ⊂ G to X will uniquely extend

to a morphism G→ X by Remark 4.3.6 and [Deb01, Corollary 1.44].

Furthermore, a proper variety is groupless if and only if it is groupless modulo the

emptyset.

Conjecture 4.5.2 posits that being pseudo-groupless is equivalent to being of gen-

eral type. Since being of general type is a birational invariant and descends along

finite étale morhpisms, we need to know that being pseudo-groupless also satisfies

these properties for this conjecture to have any hope of being true.

Lemma 4.3.8 ( [JX19, Lemmas 3.8 & Lemma 3.9]). Let X and Y be proper varieties,

and assume that X is birational to Y . Then, X is pseudo-groupless over K if and

only if Y is pseduo-groupless over K.

Remark 4.3.9 ( [Jav20, Remark 6.7]). The notion of groupless is not a birational

invariant. Indeed, for C/K a projective curve of genus ≥ 2, the surface C × C is

groupless, but the blow-up S of C×C at a point is not because it contains a rational

curve in the exceptional locus of the blow-up S → C × C. Thus, S is groupless

modulo this exceptional locus, and hence S is pseudo-groupless.

Lemma 4.3.10 ( [Jav20, Lemma 6.5]). Let f : X → Y be a finite étale morphism

of proper varieties over K. Then X is pseudo-groupless over K if and only if Y is

pseudo-groupless over K.

Another very important property of pseudo-grouopless is that for a proper variety,

one can test for it on “big” open subsets of abelian varieties.

Proposition 4.3.11 ( [JX19, Corollary 3.17]). If X/K is a proper variety and ∆ is a

closed subscheme of X, then X is groupless modulo ∆ if and only if for every abelian
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variety A/K and every dense open subscheme U ⊂ A with codim(A \ U) ≥ 2, every

non-constant morphism of varieties U → X factors over ∆.

4.4 Hyperbolicity in the non-Archimedean analytic

setting

We now discuss non-Archimedean notions of hyperbolicity following [JV18,Mor19].

Definition 4.4.1 ( [JV18, Definition 2.3, Lemma 2.14, Lemma 2.15]). A variety X

over K is K-analytically Brody hyperbolic if

• every analytic morphism Gan
m,K → Xan is constant, and

• for every abelian variety A over K, every morphism A→ X is constant.

In [Mor19], we provided a definition of pseudo-K-analytically Brody hyperbolic.

Definition 4.4.2 ( [Mor19, Definition 2.2]). Let X be a variety over K and let ∆ ⊂ X

be a proper closed subscheme. Then X is K-analytically Brody hyperbolic modulo ∆

if

• every non-constant analytic morphism Gan
m,K → Xan factors over ∆an, and

• for every abelian variety A over K and every dense open subset U ⊂ A with

codim(A \ U) ≥ 2, every non-constant morphism U → X of schemes factors

over ∆.

Definition 4.4.3 ( [Mor19, Definition 2.5]). We say that X is pseudo-K-analytically

Brody hyperbolic if there exists some proper closed subscheme ∆ ⊂ X such that X is

K-analytically Brody hyperbolic modulo ∆.

Remark 4.4.4. It is not hard to see that a proper scheme X over K is K-analytically

Brody hyperbolic if and only if X is K-analytically Brody hyperbolic modulo the



43

emptyset. Indeed, if X is K-analytically Brody hyperbolic and proper, then X does

not contain rational curves.

Remark 4.4.5. By Proposition 4.3.11, we have that a proper variety X/K is K-

analytically Brody hyperbolic modulo ∆ if and only if every non-constant analytic

morphism Gan
m,K → Xan factors over ∆an and X is groupless modulo ∆ over K.

Remark 4.4.6. Let A/K be an abelian variety and letG/K be a semi-abelian variety.

By [Moc12, Lemma A.2], for every dense open subset U ⊂ A with codim(A \U) ≥ 2,

we have that any morphism U → G extends uniquely to a morphism A→ G. Using

this result, we immediately have that a closed subscheme X of a semi-abelian variety

G is K-analytically Brody hyperbolic if and only if X is K-analytically Brody modulo

∅.

As with pseudo-groupless, we can prove that pseudo-K-analytically Brody hyper-

bolicity is a birational invariant and descends along finite étale morphisms.

Lemma 4.4.7. Let X and Y be proper varieties, and assume that X is birational to

Y . Then, X is pseudo-K-analytically Brody hyperbolic if and only if Y is pseduo-K-

analytically Brody hyperbolic.

Proof. The proof follows mutatis mutandis from [JX19, Lemmas 3.8 & 3.9].

Lemma 4.4.8. Let f : X → Y be a finite étale morphism of proper varieties over

K. Then X is pseudo-K-analytically Brody hyperbolic over K if and only if Y is

pseudo-K-analytically Brody hyperbolic.

Proof. Using Remark 4.4.5 and Lemma 4.3.10, it suffices to consider analytic mor-

phisms of tori. In this setting, the result follows from the arguments of [JV18, Propo-

sition 2.13].

We also recall that Conjecture 4.5.2 is true for projective curves.
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Theorem 4.4.9 ( [Che94, Theorem 3.6]). Let C/K be a connected, projective curve.

Then, the following are equivalent:

• C is of general type,

• C is pseudo-groupless,

• C is pseudo-K-analytically Brody hyperbolic.

We now introduce the notions of non-Archimedean entire curves and algebraic

degeneracy.

Definition 4.4.10. For a K-analytic space X , an analytic morphism

ϕ : Gan
m,K →X

is called non-Archimedean entire curve in X .

Remark 4.4.11. In the complex analytic setting, the exponential and logarithm

maps provide an isomorphism between C and C×, and so Brody hyperbolicity could

equivalently be defined by the non-existence of non-constant morphisms from C× into

a complex analytic manifold. However, in the non-Archimedean setting, the exponen-

tial map is not convergent everywhere, and so we do not have such an isomorphism; in

fact, by [Che94, Proposition 3.3], every analytic map from A1,an
K → Gan

m,K is constant.

As a result, testing hyperbolicity on analytic morphisms from A1,an
K or Gan

m,K can yield

different results. For example, a result of Cherry (loc. cit. Theorem 3.5) states that

for an abelian variety A/K, every analytic map A1,an
K → Aan is constant.

However, there can exist non-constant analytic morphisms Gan
m,K → Aan if A

does not have good reduction over OK . The reason for this is that analytic tori

appear in the non-Archimedean uniformization of abelian varieties [BL84, Theorem

8.8]. Moreover, Definition 4.4.10 appears to be the “correct” one as it aligns with our
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desideratum and gives insight into the K-analytic Brody hyperbolicity of a K-analytic

space.

Definition 4.4.12. A variety X/K is algebraically degenerate if, for every non-

Archimedean entire curve ϕ : Gan
m,K → Xan, there exists a proper closed subscheme

Yϕ ⊂ X, which depends on ϕ, such that ϕ(Gan
m,K) ⊂ Yϕ.

Remark 4.4.13. When X is proper, being algebraically degenerate is equivalent to

the non-existence of a Zariski dense non-Archimedean entire curve. Indeed, if a non-

Archimedean entire curve is not Zariski dense, then its Zariski closure is a proper

closed subscheme of X by Berkovich analytic GAGA [Ber90, Corollary 3.4.13].

4.5 The conjectures of Green–Griffiths–Lang–Vojta

To conclude this section, we state the weak and strong forms of the Green–Griffiths–

Lang–Vojta conjecture for varieties as well as their non-Archimedean versions [Jav20].

First, we state the weak Green–Griffiths–Lang–Vojta conjecture

Conjecture 4.5.1 (Weak Green–Griffiths–Lang). Let K be an algebraically closed

field of characteristic zero, and let X/K be a quasi-projective variety. Then the fol-

lowing statements are equivalent:

1. X is groupless over K,

2. Every integral subvariety of X is of log-general type,

3. If K = C, then X is Brody hyperbolic,

4. If K is a complete, non-Archimedean valued field, then X is K-analytically

Brody hyperbolic.
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Conjecture 4.5.2 (Strong Green–Griffiths–Lang–Vojta). Let K be an algebraically

closed field of characteristic zero, and let X/K be a quasi-projective variety. Then

the following statements are equivalent:

1. X is pseudo-groupless over K,

2. X is of log-general type;

3. If K = C, then X is pseudo-Brody hyperbolic,

4. If K is a complete, non-Archimedean valued field, then X is pseudo-K-analytically

Brody hyperbolic.

Remark 4.5.3. We show that the equivalence (1)⇔(4) in Conjecture 4.5.2 implies

(1)⇔(4) in Conjecture 4.5.1. Assume that X is groupless, so in particular, X is

pseudo-groupless. By Conjecture 4.5.2, we have that X is K-analytically Brody

hyperbolic modulo some proper closed subset ∆ ⊂ X. Now, since X is groupless,

it follows that ∆ is groupless. Repeating the above argument, we see that ∆ is K-

analytically Brody hyperbolic, and hence we can conclude that X is K-analytically

Brody hyperbolic.
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Chapter 5

Statement of results on the strong

non-Archimedean

Green–Griffiths–Lang–Vojta

conjecture

In this short chapter, we will state our results concerning the non-Archimedean

Green–Griffiths–Lang–Vojta conjecture.

Our first result is the non-archimedean analogue of results of Abramovich, Falt-

ings, Kawamata, Noguchi, Ueno, Vojta [Abr94, Fal91, Fal94, Kaw80, Nog98, Uen73,

Voj96].

Theorem 5.0.1 (Theorem B). Let K be an algebraically closed complete non-Archimedean

valued field of characteristic zero. Let X be a closed subvariety of a semi-abelian va-

riety G over K. Let Sp(X) be the union of the subvarieties of X which are translates

of positive-dimensional closed subgroups of G. Then, X is groupless modulo Sp(X) if

and only if X is K-analytically Brody hyperbolic modulo Sp(X).

A direct consequence of Theorem B is the following characterization of groupless
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closed subvarieties of a semi-abelian variety.

Corollary 5.0.2 ( [Mor19, Corollary B]). Let K be an algebraically closed complete

non-archimedean valued field of characteristic zero, and let X be a closed subvariety

of a semi-abelian variety G over K. Then, X is groupless if and only if X is K-

analytically Brody hyperbolic.

Our second result concerns the algebraic degeneracy of non-Archimedean entire

curves in projective varieties of general type admitting a dominant morphism to an

elliptic curve.

Theorem 5.0.3 (Theorem C). Let K be an algebraically closed, complete, non-

Archimedean valued field of characteristic zero. Let X/K be a projective variety of

general type dominating an elliptic curve. Then, any non-Archimedean entire curve

ϕ : Gan
m,K → Xan is algebraically degenerate (Definition 4.4.12).

Using Theorem C, we prove (2)⇔(3) in Conjecture 4.5.2 for projective surfaces

admitting a dominant morphism to an elliptic curve.

Theorem 5.0.4 (Theorem D). Let K be an algebraically closed, complete, non-

Archimedean valued field of characteristic zero, and let S/K be a projective surface

admitting a dominant morphism to an elliptic curve. Then, S is pseudo-groupless if

and only if S is pseudo-K-analytically Brody hyperbolic.

As an immediate corollary of Theorem D, we characterize projective groupless

surfaces admitting a dominant morphism to an elliptic curve, and hence prove Con-

jecture 4.5.1 for such projective surfaces.

Corollary 5.0.5 ( [Mor20, Corollary C]). Let K be an algebraically closed, complete,

non-Archimedean valued field of characteristic zero, and let S/K be a projective sur-

face admitting a dominant morphism to an elliptic curve. Then, S is groupless over

K if and only if S is K-analytically Brody hyperbolic.
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Chapter 6

The non-Archimedean

Green–Griffiths–Lang–Vojta for

closed subvarieties of a

semi-abelian variety

In this chapter, we describe our results from [Mor19] on the-Archimedean Green–

Griffiths–Lang–Vojta for closed subvarieties of a semi-abelian variety.

6.1 Introduction

Our starting point is the following theorem, which is the culmination of results in

[Fal91, Fal94, Abr94, Voj96, Nog98]. The definitions of the notions appearing in the

following theorem are stated in [Lan87, p. 78] and [Jav20, Definitions 7.1, 8.1].

Theorem 6.1.1 (Abramovich, Faltings, Kawamata, Noguchi, Ueno, Vojta). Let X

be a closed subvariety of a semi-abelian variety G over C. Let Sp(X) be the union of

the subvarieties of X which are translates of positive-dimensional closed subgroups of
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G. Then the following statements hold.

1. The subset Sp(X) is Zariski closed in X.

2. The variety X is of log-general type if and only if Sp(X) 6= X.

3. The variety X is arithmetically hyperbolic modulo Sp(X).

4. The variety X is Brody hyperbolic modulo Sp(X).

Our main result is the non-Archimedean analogue of the statements (2), (3), and

(4) in Theorem 6.1.1.

Theorem 6.1.2 (Theorem B). Let K be an algebraically closed complete non-Archimedean

valued field of characteristic zero. Let X be a closed subvariety of a semi-abelian va-

riety G over K. Let Sp(X) be the union of the subvarieties of X which are translates

of positive-dimensional closed subgroups of G. Then, X is groupless modulo Sp(X) if

and only if X is K-analytically Brody hyperbolic modulo Sp(X).

A direct consequence of Theorem B is the following characterization of groupless

closed subvarieties of a semi-abelian variety.

Corollary 6.1.3. Let K be an algebraically closed complete non-Archimedean valued

field of characteristic zero, and let X be a closed subvariety of a semi-abelian variety

G over K. Then, X is groupless if and only if X is K-analytically Brody hyperbolic.

6.2 Non-Archimedean entire curves in semi-abelian

varieties

Let G be a semi-abelian variety over K. Since G is semi-abelian, there is a split torus

T1 ⊂ G, an abelian variety A over K, and a short exact sequence of commutative

group schemes

0→ T1 → G→ A→ 0.
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Our goal is to prove that, if φ : Gan
m → Gan is a morphism, then the Zariski closure

of its image is the translate of the analytification of an algebraic subgroup of G; see

Proposition 6.2.5 for a precise statement.

We start by recalling that line bundles on analytifications of tori are trivial.

Lemma 6.2.1. Let X be a separated, good, strictly K-analytic space, and let X0

denote the associated rigid analytic space. Then Pic(X) ∼= Pic(X0).

Proof. This follows from [Ber93, Corollary 1.3.5] and the bottom of loc. cit. p. 37.

Lemma 6.2.2. If L is a line bundle on a split torus Gr,an
m,K, then L is trivial.

Proof. Since the Berkovich analytification of Gr
m,K is a separated, good, strictly K-

analytic space, our result follows from [FvdP04, Theorem 6.3.3.(2)] and Lemma 6.2.1.

Lemma 6.2.3. Let φ : Gan
m → Gan be a morphism, and let φ̃ : Gan

m → G̃ be a lift of

this morphism to the universal cover G̃ of Gan. Then, the image φ̃(Gan
m ) is contained

inside a split torus T an of G̃.

Proof. Let Ã be the universal covering of Aan. By [BL84, Uniformization Theorem

8.8], there is a semi-abelian variety H over K with Ã ∼= Han, an abelian variety B over

K with good reduction over OK , a split torus T2 ⊂ H, and a short exact sequence of

commutative group schemes

0→ T2 → H → B → 0.

Let G̃ be the universal covering space of Gan. Note that there is a structure of a

commutative Berkovich analytic group on G̃ which makes G̃ → Gan into a homo-

morphism. By the universal property of universal covering spaces, the surjective

homomorphism Gan → Aan lifts uniquely to a homomorphism G̃→ Han.
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The image of Gan
m → G̃ → Han is contained in T an

2 . Indeed, the morphism

Gan
m → Han → Ban is constant, since Ban has good reduction [Che94, Theorem 3.2],

and so the image of Gan
m in Han lands inside its torus T an

2 (up to translation).

Since T an
1 is simply-connected [Ber90, Section 6.3], the subgroup T an

1 ⊂ Gan lifts

to a subgroup T an
1 ⊂ G̃. Note that the homomorphism T an

1 → Han factors over T an
2 ,

and that the morphism T an
1 → T an

2 is algebraic [Che94, Proposition 3.4], i.e., the

analytification of some morphism T1 → T2. Let T3 be the image of this morphism,

which is again a split torus.

Let F be the inverse image of T an
3 ⊂ Han in G̃. Note that F is a closed subgroup

of G̃ and that the kernel of the homomorphism F → T an
3 equals T an

1 . Thus, there is

a short exact sequence of rigid analytic groups

0→ T an
1 → F → T an

3 → 0.

By Lemma 6.2.2, the above sequence splits, and so F is the analytification of a split

torus T . This shows that the image φ̃(Gan
m ) is contained inside the split torus T an, as

required.

Lemma 6.2.4. Let φ : Gan
m → Gan be a morphism. Suppose that the image of Gan

m →

Gan → Aan is Zariski dense. Then, the image of φ is Zariski dense in Gan.

Proof. Lemma 6.2.3 asserts that φ(Gan
m ) is an analytic subgroup F ′ of Gan, as it is

the composition of group homomorphisms φ̃ and the uniformization map, which is

an analytic group homomorphism. Since Gan
m → Gan → Aan is Zariski dense, F ′

dominates Aan, and this analytic group homomorphism has kernel T an
1 . Moreover, we

have the following morphism of short exact sequences of analytic groups:

0→ T an
1 F ′ Aan 0

0→ T an
1 Gan Aan 0.

f
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By Berkovich analytic GAGA [Ber90, Corollary 3.4.10], Pic(Aan) is in bijective cor-

respondence with Pic(A), which implies that F ′ is in fact an algebraic subgroup of

Gan. Moreover, the short five lemma tells us that the morphism f must be an iso-

morphism.

Proposition 6.2.5. Let φ : Gan
m → Gan be a morphism. Then, the Zariski closure of

φ(Gan
m ) in Gan is the analytification of the translate of of an algebraic subgroup of G.

Proof. Let ψ : Gan
m → Aan be the composition of φ and the surjective homomorphism

Gan → Aan. By Lemma 6.2.3, the image φ(Gan
m ) is an analytic subgroup of Gan.

Therefore, the image ψ(Gan
m ) is an analytic subgroup of Aan. Thus, the Zariski closure

of the image of ψ is an abelian subvariety Ean of Aan (see [Che94, Proof of Theorem

3.6]).

Now, let F be the preimage of E inside G, and note that F is a semi-abelian variety

(as it is a closed subgroup of G). Clearly, the image of the morphism φ : Gan
m → Gan

is contained in F an. Now, by construction, the image of the composed morphism

Gan
m → F an → Ean is Zariski dense in E. Therefore, by Lemma 6.2.4, the image of

Gan
m in F an is the analytification of the translate of an algebraic subgroup of F . In

particular, it is the analytification of the translate of an algebraic subgroup of G.

The following example shows that the image of an algebraic group under an ana-

lytic homomorphism is not necessarily an algebraic subgroup.

Example 6.2.6. Let E/K be an elliptic curve with multiplicative reduction and let

φ : Gan
m,K → Ean be the universal covering of Ean. Consider the semi-abelian variety

G = Gm,K ×E. Let Gan
m,K → Gan

m,K ×Ean be the morphism defined by z 7→ (z, φ(z)).

The image of this morphism is not an algebraic subgroup of Gan. However, its Zariski

closure equals Gan.

To end this section, we prove Theorem B.
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Proof of Theorem B. Proposition 6.2.5 tells us that the Zariski closure of every ana-

lytic morphism Gan
m → Xan ⊂ Gan is contained in Sp(X)an. To conclude the proof, it

suffices to show that for every abelian variety A over K and every dense open subset

U ⊂ A with codim(A\U) ≥ 2, we have that every non-constant morphism U → X of

schemes factors over Sp(X). By Remark 4.4.6, every morphism U → X ⊂ G extends

to a morphism A → X ⊂ G. Now, by [Iit76, Theorem 2], any morphism between

semi-abelian varieties is the composition of a group homomorphism and a translation,

so that the image of A→ X ⊂ G factors over Sp(X), as desired.
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Chapter 7

The non-Archimedean

Green–Griffiths–Lang for

projective surfaces dominating an

elliptic curve

In this chapter, we will prove our results from [Mor20]. and on the non-Archimedean

Green–Griffiths–Lang for projective surfaces dominating an elliptic curve.

7.1 Introduction

The works of Dethloff–Yu [DL07], Noguchi–Winkelmann–Yamanoi [NWY07,NWY13],

and Winkelmann [Win11] proved a weak variant of Green-Griffiths–Lang conjecture

when the irregularity q(X) of a complex variety X is equal to the dimension. In

particular, they show that for a smooth projective variety X/C of general type with

q(X) = dimX, every complex entire curve f : C → X(C) is algebraically degener-

ate. To the author’s knowledge, there does not appear to be any literature on this
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conjecture when q(X) < dimX.

Our first result concerns the algebraic degeneracy of non-Archimedean entire

curves in projective varieties of general type admitting a dominant morphism to an

elliptic curve, which are varieties with irregularity less than their dimension.

Theorem 7.1.1. Let K be an algebraically closed, complete, non-Archimedean valued

field of characteristic zero. Let X/K be a projective variety of general type dominat-

ing an elliptic curve. Then, any non-Archimedean entire curve ϕ : Gan
m,K → Xan is

algebraically degenerate.

Using the above result, we prove the strong non-Archimedean Green–Griffiths–

Lang conjecture for projective surfaces admitting a dominant morphism to an elliptic

curve.

Theorem 7.1.2. Let K be an algebraically closed, complete, non-Archimedean valued

field of characteristic zero, and let S/K be a projective surface admitting a dominant

morphism to an elliptic curve. Then, S is pseudo-groupless if and only if S is pseudo-

K-analytically Brody hyperbolic.

7.2 Related results

We now describe results related to the Green–Griffiths–Lang conjecture for surfaces.

In the complex analytic setting, the works of Bogomolov [Bog77] and McQuillan

[McQ98] proved the classical Green–Griffiths–Lang conjecture for projective surfaces

S/C of general type with enough 2-jets (e.g., when 13c2
1(S) > 9c2(S)). As mentioned

above, previous results on the classical Green–Griffiths–Lang conjecture focused on

varieties where the irregularity was greater than or equal to the dimension. Moreover,

our results are complementary to these as we focus on varieties with irregularity

strictly less than the dimension.
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In the algebraic setting, Javanpeykar–Xie [JX19, Lemma 3.23] proved that pro-

jective integral pseudo-groupless surfaces are of general type. Combining their result

with Theorem D, the remaining case of Conjecture 4.5.2 for surfaces of irregularity

one is (1) ⇒ (2).

In the non-Archimedean analytic setting, Cherry [Che94, Theorem 3.6] proved

Conjecture 4.5.2 for closed subvarieties of an abelian variety, and hence for proper

surfaces of irregularity greater than two. His proof follows from the uniformization

theorem of Bosch–Lütkebohmert [BL84, Theorem 8.8] and the study of analytic maps

from tori into semi-abelian varieties. Combining Cherry’s results with Theorem D,

the remaining cases of (2)⇔(3) in Conjecture 4.5.2 for irregular surfaces are those

surfaces with irregularity two.

7.3 Surfaces of general type of irregularity one

We now discuss the extensive work on determining projective surfaces of general type

with irregularity one. Note that such surfaces satisfy the conditions of Theorem D.

Let X/K be a (minimal) surface of general type. If the geometric genus of X is

zero, then we have that the irregularity of X is zero since the Euler characteristic

χ(OX) is positive . Moreover, minimal surfaces of general type with pg(X) = q(X) =

1 are the irregular surfaces with the lowest geometric genus. It is well-known that

for any minimal, irregular surface X/K of general type, Debarre’s inequality K2
X ≥

2pg(X) holds [Deb82], and on the other hand, the Miyaoka–Yau inequality [Miy77,

Yau77,Yau78] yields K2
X ≤ 9χ(OX). This tells us that if pg(X) = q(X) = 1, we have

2 ≤ K2
X ≤ 9.

Many authors have tried to classify the minimal surfaces of general type with

pg(X) = q(X) = 1 with prescribedK2
X as above. Surfaces with pg(X) = q(X) = 1 and

K2
X = 2 were classified by [Cat81], and the works of [CC91,CC93] dealt with theK2

X =
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3 case. For higher values of K2
X , there are some sporadic examples (cf. [Cat99,Pol05,

Pol06, Pol08, CP09, Pol09, MP10]). The latter results of Polizzi focus on classifying

minimal surfaces of general type which are isogenous to a product of curves. In

another direction, Takahashi [Tak98] showed that for all values pg(X) ≥ 2, there

exists a minimal algebraic surface of general type with K2
X = 3pg(X) and q(X) = 1.

7.4 Semi-coverings

To conclude this preliminary section, we recall the notion of semi-covering from work

of Brazas [Bra12].

Definition 7.4.1 ( [Bra12, Definition 3.1]). A semi-covering is a local homeomor-

phism with continuous lifting of paths and homotopies.

By [Bra12, Remark 3.6], one can check that a covering is in fact a semi-covering,

so this notion generalizes the notion of covering. Unlike coverings, path-connected

semi-coverings satisfy a very useful “two out of three” property.

Proposition 7.4.2 ( [Bra12, Lemma 3.4 & Corollary 3.5]). Let p : X → Y , q : Y → Z

and r = q ◦ p be maps of path-connected spaces. If two of p, q, r are semi-coverings,

then so is the third.

A covering space of a path-connected, locally path-connected topological group

is a topological group, and the exact same argument proves the analogous result for

semi-coverings.

Lemma 7.4.3. Let G be a path-connected, locally path-connected topological group.

Let p : H → G be a semi-covering. Then H is also a topological group and p is a

group homomorphism.

To conclude the preliminary section, we recall that the structure of a K-analytic
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space can be lifted along a semi-coverings, and more generally local homeomorphisms.

The proof of Lemma 7.4.4 is identical to [For81, Chapter I, Theorem 4.6].

Lemma 7.4.4. Let X be a K-analytic space, let Y be a Hausdorff topological space,

and let p : Y →X be a local homeomorphism. Then there exists a unique K-analytic

space structure on Y such that p is analytic.

We combine Lemmas 7.4.3 and 7.4.4 into the following useful corollary.

Corollary 7.4.5. Let G be a K-analytic group, let H be a Hausdorff topological

space, and let p : H → G be a semi-covering. Then there exists a unique K-analytic

group structure on H such that p is an analytic group homomorphism.

7.5 Non-Archimedean entire curves in projective

varieties of general type dominating an elliptic

curve

In this section, we will prove Theorem C. Let X/K be a projective variety of general

type, let E/K be an elliptic curve, let a : X → E be a dominant morphism, and let

ϕ : Gan
m,K → Xan be a non-Archimedean entire curve. By Remark 4.4.13, it suffices

to prove that there does not exist a non-Archimedean entire curve, which is Zariski

dense. We also note that we can and do assume that X has dimension ≥ 2, as

Theorem C is true when X is a curve by Theorem 4.4.9.

If E has good reduction over OK , then our result follows immediately.

Lemma 7.5.1. With the notation as above, suppose that E has good reduction over

OK. Then ϕ cannot be Zariski dense.

Proof. The composed morphism aan◦ϕ : Gan
m,K → Ean is constant by [Che94, Theorem

3.2], and hence the image of ϕ is contained in a fiber F of a, which has dimension
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≤ 1. Furthermore, the Zariski closure of F will be of dimension ≤ 1, and hence our

claim follows.

For the remainder of the section, we will assume that E has multiplicative reduc-

tion over OK and suppose to the contrary that ϕ : Gan
m,K → Xan is Zariski dense.

We will prove (Proposition 7.5.5) that such a ϕ will factor as Gan
m,K → Gan → Xan

where Gan is the analytification of a connected algebraic group and Gan → Xan is an

algebraic, finite, surjective morphism. The result will then follow from Lemma 4.1.1.

The condition that E/K has multiplicative reduction allows us to import tech-

niques from algebraic topology. In particular, Ean is topologically uniformized by

Gan
m,K , and hence, as a K-analytic space, Ean is isomorphic to Gan

m,K/q
Z for some

q ∈ K with 0 < |q| < 1. Since Gan
m,K is simply connected [Ber90, Section 6.3], the

morphisms ϕ and aan ◦ ϕ uniquely lift to the topological universal cover of Xan and

of Ean. To summarize the situation, we have the following diagram:

Gan
m,K X̃ Gan

m,K

Xan Ean,

ϕ̃

ϕ

ã

πX πE

aan

where πX : X̃ → Xan and πE : Gan
m,K → Ean are the universal covering morphisms.

A result of Cherry [Che94, Proposition 3.4] tells us that the morphism ã◦ϕ̃ : Gan
m,K →

X̃ → Gan
m,K is algebraic (i.e., ã ◦ ϕ̃ : z 7→ czd for some c ∈ K, d ∈ Z). As aan is dom-

inant [Ber90, Proposition 3.4.7] and ϕ is assumed to be Zariski dense, we have that

aan ◦ ϕ is Zariski dense, and hence we know that c 6= 0 and d 6= 0. Moreover, after

translation and post-composition with the automorphism z 7→ z−1, we may and do

assume that ã ◦ ϕ̃ : z 7→ zd where d ∈ Z>0.

We can further reduce to the case where d = 1 as follows. A result of Tate

[Tat95, p. 325] states that the endomorphism z 7→ zd on Gan
m,K uniquely induces
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a morphism of smooth, proper, connected, commutative, 1-dimensional K-analytic

groups ψ : Gan
m,K/(q

1/d)Z → Gan
m,K/q

Z, which is in fact an isogeny [Tat95, p. 325,

Theorem], whence a finite étale morphism. By Berkovich analytic GAGA [Ber90,

Corollary 3.4.13], we have that Gan
m,K/(q

1/d)Z is algebraic (i.e., there exists an elliptic

curve E ′/K such that E
′ an ∼= Gan

m,K/(q
1/d)Z). Moreover, we can enhance the above

diagram to

Gan
m,K X̃ Gan

m,K

E
′ an Xan Ean

πE′

ϕ̃

ϕ

ã

πX πE

ψ

aan

where ψ : E
′ an → Ean is finite étale.

Consider the following fibered product X , which exists as a K-analytic space.

X Xan

E
′ an Ean

ψ′

a′ aan

ψ

We claim that the K-analytic space X is algebraic. As finite étale morphisms

are stable under base change [And03, Remarks 1.2.4(iv)], we have that the morphism

ψ′ : X → Xan is finite étale, and by Berkovich analytic GAGA [Ber90, Corollary

3.4.13], X is algebraic, so there exists a proper scheme of finite type X ′ such that

X ∼= X
′ an.

Using this, we identify X with X
′ an. The commutativity of the above diagram

says that there exists a unique morphism ϕ′ : Gan
m,K → X

′ an, and note that the mor-

phism ã′ ◦ ϕ̃′ : Gan
m,K → X̃ ′ → Gan

m,K is the identity map. Moreover, the morphism ϕ̃′

is injective and ã′ is surjective. To summarize, we have reduced the proof of Theorem

C to the setting in Figure 7.1.

In the next two lemmas, we show that the Zariski closure of ϕ′(Gan
m,K) is the
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X̃ ′ Gan
m,K

X
′ an E

′ an

ã′

πX′

ϕ̃′

πE′
ϕ′

a′

Figure 7.1: The case where d = 1

analytification of a closed, connected, algebraic group contained in X
′ an.

Lemma 7.5.2. The morphism ϕ′ : Gan
m,K → ϕ′(Gan

m,K) is a semi-covering. Further-

more, ϕ′(Gan
m,K) is path-connected and locally path-connected.

Proof. To begin, we claim that ϕ̃′(Gan
m,K) is homeomorphic to Gan

m,K . Since Gan
m,K

is locally compact and X̃ ′ is Hausdorff, the injection ϕ̃′ is a local homeomorphism,

and hence ϕ̃′ : Gan
m,K → ϕ̃′(Gan

m,K) is a bijective, local homeomorphism, which is a

homeomorphism.

Note that πX′|ϕ̃′(Gan
m,K) : ϕ̃′(Gan

m,K) → ϕ′(Gan
m,K) is a covering map which fits into

the following commutative diagram:

ϕ̃′(Gan
m,K) Gan

m,K

ϕ′(Gan
m,K) E

′ an

πX′ |ϕ̃′(Gan
m,K

) πE′

a′

Therefore, we have that ϕ′ : Gan
m,K → ϕ′(Gan

m,K) is the composition of a homeomor-

phism with a covering map, which is a semi-covering by Proposition 7.4.2.

To conclude, we have that ϕ′(Gan
m,K) is path-connected because the continuous

image of a connected space is connected and a connected K-analytic space is path-

connected [Ber90, Theorem 3.2.1]. Furthermore, since ϕ′ is a local homeomorphism,

we have that ϕ′(Gan
m,K) is locally path-connected.

Lemma 7.5.3. The Zariski closure of the image ϕ′(Gan
m,K) is the analytification of a

closed, connected algebraic group in X ′.
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Proof. By Lemma 7.5.2 and Proposition 7.4.2, we have that a′ : ϕ′(Gan
m,K) → E

′ an

is a semi-covering because πE′ is a covering map and E
′ an is path-connected and

locally path-connected. Moreover, we have that the image ϕ′(Gan
m,K) is a K-analytic

group subvariety of X
′ an by Corollary 7.4.5. Now, a lemma of Lang [Lan87, p. 84]

tells us that the Zariski closure ϕ′(Gan
m,K) of ϕ′(Gan

m,K) is a closed K-analytic group in

X
′ an. Since X

′ an is projective, Berkovich analytic GAGA [Ber90, Corollary 3.4.13]

tells us that ϕ′(Gan
m,K) is the analytification of a closed, connected algebraic group G

of X ′.

Using Lemma 7.5.3, we identify the Zariski closure of the image ϕ′(Gan
m,K) in X

′ an

with Gan.

Lemma 7.5.4. The composed morphism Gan ⊂ X
′ an → Xan is finite and surjective.

Furthermore, the morphism Gan → Xan is algebraic (i.e., the morphism Gan → Xan

is the analytification of a finite, surjective morphism G→ X of K-schemes).

Proof. By Lemma 7.5.3, the morphism Gan ⊂ X
′ an is a closed embedding, and hence

the composed morphism Gan ⊂ X
′ an → Xan is finite. To prove surjectivity, note that

the image of the composed morphism Gan ⊂ X
′ an → Xan is closed. Since the image

of Gan in Xan contains the image ϕ(Gan
m,K) and ϕ is Zariski dense by assumption, we

have that the composed morphism Gan ⊂ X
′ an → Xan is surjective. In the second

statement, the algebraicity and finiteness of the morphism follows from Berkovich

analytic GAGA [Ber90, Corollary 3.4.13] and the surjectivity follows from [Ber90,

Proposition 3.4.6].

We can combine the above lemmas into the following result.

Proposition 7.5.5. Let K be an algebraically closed, complete, non-Archimedean val-

ued field of characteristic zero. Let X/K be a projective variety admitting a dominant

morphism to an elliptic curve.
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A Zariski dense, analytic morphism Gan
m,K → Xan factors as

Gan
m,K → Gan → Xan

where Gan is the analytification of a connected algebraic group and Gan → Xan is

a finite surjective morphism. Moreover, the finite, surjective morphism Gan → Xan

algebraizes (i.e., there exists a finite, surjective morphism of K-schemes G→ X).

Proof. This result is a combination of Lemmas 7.5.1, 7.5.2, 7.5.3, and 7.5.4.

Proof of Theorem C. By Remark 4.4.5, it suffices to prove that there does not exist

a Zariski dense, non-Archimedean entire curve in Xan. By Lemma 7.5.1, we may

assume that E/K has multiplicative reduction over OK . Proposition 7.5.5 tells us

that if there exists a Zariski dense, analytic morphism Gan
m,K → Xan, then X admits

a finite cover by a connected algebraic group. However, this contradicts Lemma 4.1.1

as X is of general type. Therefore, we conclude that there cannot exist a Zariski

dense, entire non-Archimedean curve in Xan.

7.6 Non-Archimedean entire curves in projective

surfaces dominating an elliptic curve

In this section, we will prove Theorem D. In particular, we will prove that for S/K a

projective surface admitting a dominant morphism to an elliptic curve and for every

proper closed ∆ ( S, S is groupless modulo ∆ if and only if S is K-analytically

Brody hyperbolic modulo ∆.

We will use the following results in our proof.

Proposition 7.6.1. Let S/K be a projective surface admitting a domiant morphism

to an elliptic curve E/K with good reduction over OK, and let ∆ ( S be a proper
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closed subscheme. If S is groupless modulo ∆, then S is K-analytically Brody hyper-

bolic modulo ∆.

Proof. To show that S is K-analytically Brody hyperbolic modulo ∆, it suffices to

prove that the image of any non-constant analytic morphism ϕ : Gan
m,K → San factors

through ∆an by Remark 4.4.5. Note that as E has good reduction over OK , the

composed morphism Gan
m,K → Ean is constant [Che94, Theorem 3.2]. Therefore, the

morphism Gan
m,K → San factors through fibre F an of San → Ean. Since F is a fibre

of X → E, it follows that dimF ≤ 1. As ϕ is non-constant and a has connected

fibers [LP12, p. 352], we have that dimF 6= 0.

Now, the Zariski closure ϕ(Gan
m,K) of the image of ϕ is a connected, closed, 1-

dimensional K-analytic subvariety of San, and by Berkovich analytic GAGA [Ber90,

Corollary 3.4.13], we have that ϕ(Gan
m,K) is a connected, projective curve (i.e., ϕ(Gan

m,K)

is isomorphic to Zan for a connected, projective curve Z ⊂ S). Since the morphism

ϕ : Gan
m,K → Zan is dominant, we see that Z is not birational to curve of general type

by Theorem 4.4.9, and therefore, Z is a rational curve or birational to an elliptic

curve. As S is groupless modulo ∆, this tells us that the image of ϕ : Gan
m,K → San

factors through ∆an, as desired.

Lemma 7.6.2. Let S/K be a projective surface, and let ∆ ( S be a proper closed sub-

scheme. Suppose that S is groupless modulo ∆. If an analytic morphism ϕ : Gan
m,K →

San is not Zariski dense, then ϕ(Gan
m,K) is contained in ∆an.

Proof. This follows from the latter part of the proof of Proposition 7.6.1.

We are now in a position to prove Theorem D and Corollary 5.0.5.

Proof of Theorem D.

(⇐). This direction follows from Proposition 4.3.11 and Definition 4.4.2.
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(⇒). Let ∆ ( S be a proper closed subscheme, and suppose that S is groupless

modulo ∆. By Remark 4.4.5, we are reduced to show that any non-constant analytic

morphism Gan
m,K → San factors through ∆an. By Proposition 7.6.1 and Lemma 7.6.2,

we know this is true when E/K has good reduction over OK or if the morphism ϕ

is not Zariski dense, and so it suffices to prove that when E/K has multiplicative

reduction over OK , the analytic morphism ϕ : Gan
m,K → Xan cannot be Zariski dense.

As a projective integral pseudo-groupless surface is of general type [JX19, Lemma

3.23], Theorem C asserts that ϕ cannot be Zariski dense, and therefore S is K-

analytically Brody hyperbolic modulo ∆.

Proof of Corollary 5.0.5. This follows from Theorem D and Remarks 4.3.7, 4.4.4, and

4.4.5.
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