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Abstract

3F2-Hypergeometric Functions and Supersingular Elliptic Curves

By Sarah Christine Pitman

Here we explore elliptic curves, specifically supersingular elliptic curves, and their rela-

tionship to hypergeometric functions. We begin with some background on elliptic curves,

supersingularity, hypergeometric functions, and then use work of El-Guindy, Ono, Kaneko,

Zagier, and Monks to extend results. In recent work, Monks described the supersingular

locus of families of elliptic curves in terms of 2F1-hypergeometric functions. We “lift” his

work to the level of 3F2-hypergeometric functions by means of classical transformation laws

and a theorem of Clausen.
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1. Background: Introduction and statement of results

1.1. Elliptic curves. Elliptic curves play a major role not just in theoretical mathematics

and number theory, but also in a more concrete and practical application: cryptography.

Typically, public key cryptographic algorithms, called RSA (named for its developers) and

Diffie-Hellman, have been the methods used to protect and secure data. However in recent

decades, new techniques have been developed which are not only more secure, but also more

efficient. These new methods are based on the arithmetic of elliptic curves. The advanced

level of security and the computational efficiency of these elliptic curve cryptosystems is

almost essential in today’s world with the recent advances in the Internet and technology.

For security purposes, the National Security Agency has moved towards elliptic curve-based

cryptography, which essentially uses elliptic curves defined over finite fields with large prime

moduli. Other governments and nations throughout the world have also made this change.

In the next few years, it appears as though many vendors will be upgrading their systems

because of the added security and computational bandwidth advantages that these elliptic

curve cryptosystems offer. For instance, the RSA cryptographic method uses a key system of

size 4096 bits, while an elliptic curve key system, offering the same level of security, requires

just 313 bits. In terms of efficiency, it was measured to take 3.4 minutes to generate a

512-bit RSA key, compared to only 0.597 seconds for a 163-bit ECC-DSA (Elliptic Curve

Cryptography-Digital Signature Algorithm) key [?].

The arithmetic of elliptic curves offer ways to construct ciphers, not just for espionage,

but also for telecommunication and finance purposes. This cipher construction begins with

two arbitrary large primes (hundreds of digits), call them p and q. The product N = pq

is calculated and published. In order to encipher (encode) a message, only the value of N

is needed, but to decipher (decode) a message, the specific factors p and q are needed. In

simple terms, the larger the primes p and q chosen, the larger the product N , and the longer

it will take for a potential enemy to factor N into p and q and break the code. Factoring

a large composite number N can be tricky and take a while. It would be very inefficient

to start with small integer divisors and test all of the possibilities, so techniques have been

developed using algorithms in number theory to facilitate this.
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One of the ways to decipher codes in cryptography, is to solve what is called the Elliptic

Curve Discrete Logarithm Problem (ECDLP). One of the more efficient methods to do so

is called Lenstra’s Elliptic Curve Algorithm, which relies on elliptic curves. For general

elliptic curves, another fast way to solve such problems is using Pollard’s ρ Method, which

runs through random multiples mS + nT until a “collision”, or solution point, is found that

satisfies the conditions. The benefit of this is that it only requires a small amount of storage

space and a minimum number of steps to find such a point. The difficulty in solving such a

problem comes from the fact that for some elliptic curves, E, it is easy to solve for such S

and T , but S and T are almost always independent, while for other elliptic curves, S and T

are dependent, but are difficult to find. In Figure 1 [?] below, we see the basic outline of the

steps for solving ECDLP with regards to an elliptic curve E.

Figure 1. Solving ECDLP [?]

Lenstra’s Elliptic Curve Algorithm differs from Pollard’s method in that Pollard’s method

only works, in a practical sense, if one of the prime divisors of N satisfies

p− 1 = product of small primes to small powers.

There are many other algorithms using elliptic curves that have been tested and found to

be very useful and practical in cryptographic systems and ciphers, and much more research

has been done and many advancements made. To begin to understand this theory, we begin

with the definition of an elliptic curve.

An elliptic curve, E, is a smooth, projective curve of genus 1 with a distinguished base

point, and when defined over a field K, this point is K-rational. Therefore, we note that

not every smooth projective curve of genus 1 is an elliptic curve; it must have at least one

rational point.
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Elliptic curves are usually expressed by their Weierstrass equations, in either a short form

or a long form. The general Weierstrass equation that holds in any field is given by

(1.1) E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

where a1, a2, ..., a6 ∈ K. We define the characteristic of a field K, char(K), to be the

smallest number m such that m times the identity element of K is zero. In the cases where

char(K)6= 2, 3, we can simplify, and after some manipulation obtain a “short” form of the

Weierstrass equation. Let A,B ∈ K with 4A3+27B2 6= 0. The short form of the Weierstrass

equation is

E : y2 = x3 + Ax+B,

where the rational base point is (0, 1, 0). It is a fact that every elliptic curve over K can be

defined in this way.

1.2. Points on an elliptic curve form an Abelian group (over R, C, Fp). Take E to

be an elliptic curve over a field K defined by a given Weierstrass equation. Let P and Q be

two rational points on E. Then by Bezout’s theorem, the line PQ intersects E at a third

rational point, R. From this, we are able to generate new rational points on E.

We can define a group operation on E(K) for any elliptic curve defined over a field K

given by addition of these rational points, i.e. P +Q = R. The identity element of this group

is the point (0, 1, 0) at infinity, and the inverse of P = (x, y, z) is the point −P = (x,−y, z).

We can see that the property of commutativity follows: P + Q = Q + P , and associativity

will hold as well: P + (Q+R) = (P +Q) +R. It is also true in general that

nP = P + · · ·+ P,

where P is added together n times for any positive n, 0P = 0 and (−n)P = −nP . Thus

scalar multiplication holds in this group for any integer n.

More explicitly, let two points on E be given by P = (x1, y1, z1) and Q = (x2, y2, z2).

Define

P +Q = R = (x3, y3, z3).
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Figure 2. Chord-tangent law [?]

Note that if either P or Q is the point at infinity, (xk, yk, 0), then R is simply equal to the

other point. We can therefore assume that P and Q are structurally affine, meaning that

the linear combination or sum of the two is 1, i.e. z1 + z2 = z3 = 1.

In the case x1 6= x2, we can construct the line PQ which has slope

m =
(y2 − y1)
(x2 − x1)

,

and gives the equation, y = m(x− x1) + y1. To obtain the coordinates of R, we see that the

point −R is on the line PQ, −R = (x3, y3, 1). We substitute this point into the equation,

solve for y3, then substitute that into the Weierstrass equation for E: y23 = x33 +Ax3 +B to

obtain

0 = x33 −m2x23 + · · · .

We see that x1 and x2 will satisfy this same cubic equation. Therefore the roots of this cubic

are x1, x2, x3.

In the case x1 = x2, if y1 6= y2, then P and Q must be opposite points and R = 0. If

y1 = y2, then P = Q and R = 2P .

In Figure 3 [?], this group law for elliptic curves is illustrated.

Examining this group law, first we will look at the case of a finite field Fp. The group

E(Fp) is finite, with order p+ 1. The following is well-known:
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Figure 3. Group law [?]

Proposition 1.1. When working over a finite field, the group of points E(Fp) is either a

cyclic group or the product of two cyclic groups.

Next we look at the case for the field of all real numbers, R, i.e. K = R. Here we have

the following analogous relationship:

Proposition 1.2. Either E(R) is isomorphic to S1, E(R) ∼= S1, where S1 denotes the circle

group, or E(R) is isomorphic to two copies of the circle group (S1 × C2), i.e.

E(R) ∼= (S1 × C2) · (S1 × C2).

Finally we investigate K = C. Here, E(C) forms a torus, and we have that

Proposition 1.3. For all N ≥ 1,

E(C)N ∼= CN × CN ,

where CN denotes a cyclic groups of order N .

1.3. My work. Elliptic curves play an important role in all areas of math. For example,

the famous Fermat’s Last Theorem depends on the deep (and recently proved) fact that all

elliptic curves are modular. This means that the L-function for E(Q) is the L-function of a

modular form given by

f =
∑

a(n)qn,
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where q = e2πiz. The L-function for an elliptic curve is defined to be the product

L(E, s) =
∏
p

(1− a(p)p−s + p1−2s)−1,

for all primes p for which

E : y2 = x3 + Ax2 +Bx+ C 6≡ 0 (mod p),

where A,B, and C are fixed, and

a(p) = p− {number of solutions over Fp to y2 = x3 + Ax2 +Bx+ C (mod p)}.

Over Fp, there are only finitely many elliptic curves, and we choose the coefficients from 0 to

p− 1. Most of these curves have the property that a(p) 6= 0. It turns out that the curves for

which a(p) = 0, up to isomorphism, are special and are called supersingular. Each elliptic

curve, up to isomorphism, is distinguished by its j-invariant, j(E) ∈ F . If E is given by

(??), then j is a rational function of the coefficients. When the characteristic of F is not 2

or 3, and E is given by the simpler Weierstrass equation,

y2 = x3 + Ax+B,∆ := 4A3 + 27B3 6= 0,

we have the expression

j(E) = 1728
4A3

4A3 + 27B3
.

In this paper, we compute polynomials whose roots are the j-values of these supersingular

elliptic curves, among the Legendre and Clausen families. In his paper [?], Monks shows

that these j-values are indeed the roots of 2F1-hypergeometric polynomials. These polyno-

mials can then be described as analogous 3F2-hypergeometric polynomials, which follow the

transformations outlined in this paper.

1.4. Hypergeometric functions. Dating back to the works of Gauss, hypergeometric func-

tions play an important role in mathematics. More recently, these complex functions and

their analogs have been studied in terms of the complex periods of elliptic curves. The pur-

pose of this paper is to further develop these sorts of connections. We begin by setting the
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notation and defining the hypergeometric functions which will be used throughout. If n is a

nonnegative integer, we recall the Pochhammer symbol (γ)n defined by

(γ)n :=


1 if n = 0,

γ(γ + 1)(γ + 2) · · · (γ + n− 1) if n ≥ 1.

The classical hypergeometric function in parameters α1, ..., αh, β1, ..., βj ∈ C is defined by

hF
cl
j

α1 α2 · · · αh

β1 · · · βj

∣∣∣∣∣∣ x
 :=

∞∑
n=0

(α1)n(α2)n(α3)n · · · (αh)n
(β1)n(β2)n · · · (βj)n

· x
n

n!
.

We are interested in the hypergeometric functions

(1.2) 2F
cl
1

a b

c

∣∣∣∣∣∣ x
 :=

∞∑
n=0

(a)n(b)n
(c)n

· x
n

n!

and

(1.3) 3F
cl
2

a b d

c e

∣∣∣∣∣∣ x
 :=

∞∑
n=0

(a)n(b)n(d)n
(c)n(e)n

· x
n

n!
,

and their truncations modulo primes p. For any odd prime p, we define these truncations by

(1.4) 2F
tr
1

a b

c

∣∣∣∣∣∣ x

p

≡

p−1
2∑

n=0

(a)n(b)n
(c)n

· x
n

n!
(mod p)

and

(1.5) 3F
tr
2

a b d

c e

∣∣∣∣∣∣ x

p

≡

p−1
2∑

n=0

(a)n(b)n(d)n
(c)n(e)n

· x
n

n!
(mod p).

Monks has studied elliptic curves and their relation to 2F
tr
1 -hypergeometric functions and

has proved that these polynomials give the supersingular loci of certain families of elliptic

curves [?]. Here we “lift” his work from 2F
tr
1 - to 3F

tr
2 -hypergeometric functions and establish

a similar result for these hypergeometric functions with additional parameters.
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Remark. We note that tr denotes the truncation of a hypergeometric series after x
p−1
2 . We

note that in [?] tr implies truncation after xp−1. We will see that the relevant polynomials

agree when reduced modulo p.

Here we consider supersingular elliptic curves in certain families. A well-known subfamily

of elliptic curves is the Legendre Family, which is denoted by

E 1
2
(λ) : y2 = x(x− 1)(x− λ)

for λ 6= 0, 1. These curves can be studied by means of the supersingular locus,

Sp, 1
2
(λ) :=

∏
λ0∈Fp

supersingularE 1
2
(λ0)

(λ− λ0).

These polynomials have coefficients in Fp. In [?], El-Guindy and Ono study other families of

elliptic curves. In his paper [?], Monks studies these families with respect to hypergeometric

functions, and he shows that their supersingular loci are given by certain 2F1-hypergeometric

functions reduced modulo p. We extend these results of Monks, El-Guindy, and Ono, to prove

the following theorem. Assume the notation above.

Theorem 1.4. The following are true:

(1) If p ≥ 5 is prime, then

Sp, 1
4
(x)2 ≡ (x+ 1)

p−1
2 · 3F tr

2

1
2

1
2

1
2

1 1

∣∣∣∣∣∣ x

x+ 1


p

(mod p).

(2) If p ≥ 5 is prime, then

Sp, 1
3
(x)2 ≡ x2·b

p
3
c · 3F tr

2

1
3

2
3

1
2

1 1

∣∣∣∣∣∣ 108x− 2916

x2


p

(mod p).
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(3) If p ≥ 5 is prime, then

Sp, 1
12

(x)2 ≡ (c−1p )2 · xb
p
6
c · 3F tr

2

1
6

5
6

1
2

1 1

∣∣∣∣∣∣ 1− 1

x


p

(mod p).

Here cp =

(
6 b p

12
c+ dp
b p
12
c

)
and dp = 0, 2, 2, 4 for p ≡ 1, 5, 7, 11 (mod 12) respec-

tively.

The proof of Theorem ?? shall rely on recent work of El-Guindy and Ono and Monks.

The following are formulas given on pages 2 and 3 of [?].

Theorem 1.5 (Monks in [?]). The following are true:

(1) If p ≥ 5 is prime,

(1.6) Sp, 1
4
(x) ≡ 2F

tr
1

1
4

3
4

1

∣∣∣∣∣∣ −x

p

(mod p).

(2) If p ≥ 5 is prime,

(1.7) Sp, 1
3
(x) ≡ xb

p
3
c · 2F tr

1

1
3

2
3

1

∣∣∣∣∣∣ 27

x


p

(mod p).

(3) For p ≡ 1, 5 (mod 12) and prime, then

(1.8) Sp, 1
12

(x) ≡ c−1p · xb
p
12
c · 2F tr

1

 1
12

5
12

1

∣∣∣∣∣∣ 1− 1

x


p

(mod p).

(4) For p ≡ 7, 11 (mod 12) and prime, then

(1.9) Sp, 1
12

(x) ≡ c−1p · xb
p
12
c · 2F tr

1

 7
12

11
12

1

∣∣∣∣∣∣ 1− 1

x


p

(mod p),

where cp =

(
6 b p

12
c+ dp
b p
12
c

)
and dp = 0, 2, 2, 4 for p ≡ 1, 5, 7, 11 (mod 12) respectively.

Remark. We note that (??) is a direct result of El-Guindy and Ono and is therefore not

technically part of Monks’ theorem in [?].
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Squaring these supersingular loci obtained by Monks in terms of the 2F
tr
1 -hypergeometric

functions, we obtain congruent 3F
tr
2 -hypergeometric representations in Theorem ??.

2. Supersingular elliptic curves

In this section we define supersingularity of elliptic curves and delve deeper into the theory

examining works of Kaneko, Zagier, and Monks.

2.1. Supersingular elliptic curves. Let p be an odd prime and let Fp be a field of char-

acteristic p. As stated before, an elliptic curve E/F is said to be supersingular if it has no

p-torsion over Fp. In other words, there is no element of order p in the group E(Fp). This

condition is dependent only on the j-invariant of E. There are only finitely many isomor-

phism classes of supersingular elliptic curves in Fp, which Kaneko and Zagier [?] determine

using the theory of modular forms.

First we recall the statement and proof for deciding whether or not a given curve over a

finite field Fq, q = pr, p odd, is supersingular or not.

Proposition 2.1. Let E be the elliptic curve over Fq defined by the equation y2 = f(x), (f ∈

Fq[x] of degree 3), and ap the coefficient of xp−1 in f(x)(p−1)/2. Then |E(Fq)| ≡ 1−NFq/Fpap

(mod p).

Corollary 2.2. E is supersingular if and only if ap = 0.

Proof. The number of solutions for x ∈ Fq where y2 = f(x) is 1 + f(x)(q−1)/2. When we also

include the point at infinity, we find that

|E(Fq)| = 1 +
∑
x∈Fq

(1 + f(x)
q−1
2 )

in Fq. We know that the sum over x ∈ Fq of xt is -1 for t = q − 1 and is 0 for all other t in

0 ≤ t ≤ 3(q − 1)/2, we have

|E(Fq)| = 1− aq
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in Fq, where aq represents the coefficient of xq−1 in f(x)
q−1
2 (note. aq will belong to both Fp

and Fq). From the expansion of f(x)
q−1
2 , we have

f(x)
q−1
2 = f(x)

p−1
2

(1+p+···+pr−1) = f(x)
p−1
2 f (p)(xp)

p−1
2 · · · f (pr−1)(xp

r−1

)
p−1
2 ,

where f (pt) is precisely the polynomial that is obtained from f after raising all of its coeffi-

cients to the power pt. We now can see that aq = a
(1+p+···+pr−1)
p = NFq/Fp(ap), which proves

the proposition. For the corollary, we note that if ap = 0, then |E(Fqn)| ≡ 1 ≡ 0 (mod p)

for all n, meaning E has no p-torsion over Fp. If ap 6= 0, then |E(Fqn)| ≡ 1 − (NFq/Fpap)
n

will be divisible by p for any n that is divisible by |NFq/Fp(ap)| modulo p, and thus E(Fp)

does contain p-torsion. �

2.2. Supersingular locus over Fp. In their paper [?], Kaneko and Zagier look at Ek, the

normalized Eisenstein series of weight k, specifically in the case where k = p− 1 for a prime

p ≥ 5. They describe the modular forms Ek of weight k = p − 1 corresponding to the

polynomial in j, multiplied by jδ(j − 1728)ε, and show that these reduce modulo p to the

supersingular polynomial. Part of Theorem 1 in [?] states that:

Theorem 2.3. For k = p − 1, where p ≥ 5 is prime and f represents any of the modular

forms (in our case Ek), then the coefficients of the associated polynomial f̃ are p-integral

and

ssp(j) ≡ ±jδ(j − 1728)εf̃(j) (mod p).

The explicit proof of this theorem is outlined in their paper, and after basic substitution

we describe our specific case as

ssp(j) ≡ ±jδ(j − 1728)εẼp−1(j) (mod p).

2.3. Work of Monks. Here we consider supersingular elliptic curves in certain families.

We recall the Legendre Family of elliptic curves is the Legendre Family, denoted by

E 1
2
(λ) : y2 = x(x− 1)(x− λ)
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for λ 6= 0, 1, which can be studied by means of the supersingular locus

Sp, 1
2
(λ) :=

∏
λ0∈Fp

supersingularE 1
2
(λ0)

(λ− λ0).

These polynomials have coefficients in Fp.

In [?], El-Guindy and Ono study the family of elliptic curves defined by

(2.1) E 1
4
(λ) : y2 = (x− 1)(x2 + λ).

We also consider the following families of elliptic curves:

(2.2) E 1
3
(λ) : y2 + λyx+ λ2y = x3

(2.3) E 1
12

(λ) : y2 = 4x3 − 27λx− 27λ.

For i ∈ {1
4
, 1
3
, 1
12
} and all primes p ≥ 5, we let

(2.4) Sp,i(λ) :=
∏
λ0∈Fp

supersingularEi(λ0)

(λ− λ0).

For ease of reference, we again give the formulas on pages 2 and 3 of [?].

Theorem 2.4 (Monks in [?]). The following are true:

(1) If p ≥ 5 is prime,

(2.5) Sp, 1
4
(x) ≡ 2F

tr
1

1
4

3
4

1

∣∣∣∣∣∣ −x

p

(mod p).

(2) If p ≥ 5 is prime,

(2.6) Sp, 1
3
(x) ≡ xb

p
3
c · 2F tr

1

1
3

2
3

1

∣∣∣∣∣∣ 27

x


p

(mod p).
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(3) For p ≡ 1, 5 (mod 12) and prime, then

(2.7) Sp, 1
12

(x) ≡ c−1p · xb
p
12
c · 2F tr

1

 1
12

5
12

1

∣∣∣∣∣∣ 1− 1

x


p

(mod p).

(4) For p ≡ 7, 11 (mod 12) and prime, then

(2.8) Sp, 1
12

(x) ≡ c−1p · xb
p
12
c · 2F tr

1

 7
12

11
12

1

∣∣∣∣∣∣ 1− 1

x


p

(mod p),

where cp =

(
6 b p

12
c+ dp
b p
12
c

)
and dp = 0, 2, 2, 4 for p ≡ 1, 5, 7, 11 (mod 12) respectively.

By squaring these supersingular loci in terms of the 2F
tr
1 -hypergeometric functions, we

obtain congruent 3F
tr
2 -hypergeometric representations in Theorem ??.

3. Outline of proof of Theorem and tools

Now we recall our main theorem:

Theorem 3.1. The following are true:

(1) If p ≥ 5 is prime, then

Sp, 1
4
(x)2 ≡ (x+ 1)

p−1
2 · 3F tr

2

1
2

1
2

1
2

1 1

∣∣∣∣∣∣ x

x+ 1


p

(mod p).

(2) If p ≥ 5 is prime, then

Sp, 1
3
(x)2 ≡ x2·b

p
3
c · 3F tr

2

1
3

2
3

1
2

1 1

∣∣∣∣∣∣ 108x− 2916

x2


p

(mod p).

(3) If p ≥ 5 is prime, then

Sp, 1
12

(x)2 ≡ (c−1p )2 · xb
p
6
c · 3F tr

2

1
6

5
6

1
2

1 1

∣∣∣∣∣∣ 1− 1

x


p

(mod p).

Here cp =

(
6 b p

12
c+ dp
b p
12
c

)
and dp = 0, 2, 2, 4 for p ≡ 1, 5, 7, 11 (mod 12) respectively.
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3.1. Statement of Clausen’s Theorem and Transformation Laws. Our main tools for

establishing these congruences are a theorem of Clausen and two classical 2F1 transformation

laws. We make use of the a theorem of Clausen [?] which gives the following equality of

hypergeometric polynomials:

(3.1) 3F
cl
2

2α 2β α + β

2α + 2β α + β + 1
2

∣∣∣∣∣∣ x
 = 2F

cl
1

α β

α + β + 1
2

∣∣∣∣∣∣ x
2

.

We also use two transformation laws in our proof so that we can apply (??) to the hyper-

geometric functions. The first is given by Bailey in [?] which states that

(3.2) 2F
cl
1

a b

c

∣∣∣∣∣∣ x
 = (1− x)−a · 2F cl

1

a c− b

c

∣∣∣∣∣∣ x

x− 1

 .

The second is from Vidunas given in [?]. We have that

(3.3) 2F
cl
1

a b

a+b+1
2

∣∣∣∣∣∣ x
 = 2F

cl
1

a
2

b
2

a+b+1
2

∣∣∣∣∣∣ 4x(1− x)

 .

3.2. Elementary Reduction modulo p. Here we briefly outline the reduction modulo p

that we will use, showing how it works in the proof of the second case of Theorem ??. By

definition (??) we have that

3F
tr
2

1
3

2
3

1
2

1 1

∣∣∣∣∣∣ 108x− 2916

x2


p

≡

p−1
2∑

n=0

(1
3
)n(2

3
)n(1

2
)n

(n!)3
· (108x− 2916)n

x2n
(mod p).

For n > bp
3
c, any p will appear in the numerator of the expansion for (1

3
)n, (2

3
)n, or (1

2
)n, so

all of these terms will be congruent to 0 modulo p and will vanish, so we can simplify to

(3.4) 3F
tr
2

1
3

2
3

1
2

1 1

∣∣∣∣∣∣ 108x− 2916

x2


p

≡
b p
3
c∑

n=0

(1
3
)n(2

3
)n(1

2
)n

(n!)3
· (108x− 2916)n

x2n
(mod p).
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Similarly by (??) we have that

3F
tr
2

1
6

5
6

1
2

1 1

∣∣∣∣∣∣ 1− 1

x


p

≡

p−1
2∑

n=0

(1
6
)n(5

6
)n(1

2
)n

(n!)3
·
(

1− 1

x

)n
(mod p).

For any n > bp
6
c, p ≡ 1, 5 (mod 6) will appear in the numerator of the expansion, causing

all of these sequential terms to be congruent to 0 modulo p and vanish to give

(3.5) 3F
tr
2

1
6

5
6

1
2

1 1

∣∣∣∣∣∣ 1− 1

x


p

≡
b p
6
c∑

n=0

(1
6
)n(5

6
)n(1

2
)n

(n!)3
·
(

1− 1

x

)n
(mod p).

4. Proof of Theorem ??

To prove Theorem ??, we show the first part using the results of El-Guindy and Ono in [?].

Then we calculate the equivalent statements for the remaining cases. We use classical 2F
cl
1

transformation laws to obtain the necessary forms to use Clausen’s theorem, given in (??),

and “lift” the 2F
tr
1 -hypergeometric functions of Monks to equivalent 3F

tr
2 representations.

First we require the following descriptions of 2F
tr
1 -hypergeometric functions:

Lemma 4.1. The following are true:

(1) If p ≥ 5 is an odd prime, then

2F
tr
1

1
4

3
4

1

∣∣∣∣∣∣ −x
2

p

≡ (x+ 1)
p−1
2 · 3F tr

2

1
2

1
2

1
2

1 1

∣∣∣∣∣∣ x

x+ 1


p

(mod p).

(2) If p ≥ 5 is an odd prime, then

2F
tr
1

1
3

2
3

1

∣∣∣∣∣∣ 27

x

2

p

≡ 3F
tr
2

1
3

2
3

1
2

1 1

∣∣∣∣∣∣ 108x− 2916

x2


p

(mod p).

(3) For p ≡ 1, 5 (mod 12), then

2F
tr
1

 1
12

5
12

1

∣∣∣∣∣∣ 1− 1

x

2

p

≡ 3F
tr
2

1
6

5
6

1
2

1 1

∣∣∣∣∣∣ 1− 1

x


p

(mod p).
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(4) For p ≡ 7, 11 (mod 12), then

2F
tr
1

 7
12

11
12

1

∣∣∣∣∣∣ 1− 1

x

2

p

≡ x · 3F tr
2

1
6

5
6

1
2

1 1

∣∣∣∣∣∣ 1− 1

x


p

(mod p).

Proof. For the proof of (1), we observe that

2F
cl
1

1
4

3
4

1

∣∣∣∣∣∣ −x


is not of the form

2F
cl
1

α β

α + β + 1
2

∣∣∣∣∣∣ x
 .

Therefore we must apply a transformation law for 2F1-hypergeometric functions in order to

use Clausen’s theorem. Classically, we have the transformation of Bailey [?]

2F
cl
1

a b

c

∣∣∣∣∣∣ x
 = (1− x)−a · 2F cl

1

a c− b

c

∣∣∣∣∣∣ x

x− 1

 .

We use this to alter

2F
cl
1

1
4

3
4

1

∣∣∣∣∣∣ −x
 ,

so that we can then apply Clausen’s Theorem and obtain a 3F2-hypergeometric series. We

let a = 1
4
, b = 1

4
, c = 1, and

x

x− 1
= −x, and obtain

(x+ 1)−
1
4 · 2F cl

1

1
4

1
4

1

∣∣∣∣∣∣ x

x+ 1

 .

We have transformed

2F
cl
1

1
4

3
4

1

∣∣∣∣∣∣ −x


into

(x+ 1)−
1
4 · 2F cl

1

1
4

1
4

1

∣∣∣∣∣∣ x

x+ 1

 .
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This hypergeometric function is now of the correct form to apply Clausen’s Theorem, so we

let α = 1
4
, β = 1

4
, α + β + 1

2
= 1, and x =

x

x+ 1
. Therefore we have

2F
cl
1

1
4

1
4

1

∣∣∣∣∣∣ x

x+ 1

2

= 3F
cl
2

1
2

1
2

1
2

1 1

∣∣∣∣∣∣ x

x+ 1

 .

Our transformation is used as follows:

2F
cl
1

1
4

3
4

1

∣∣∣∣∣∣ −x
 = (x+ 1)−

1
4 · 2F cl

1

1
4

1
4

1

∣∣∣∣∣∣ x

x+ 1

 .

We square both sides to obtain

2F
cl
1

1
4

3
4

1

∣∣∣∣∣∣ −x
2

= (x+ 1)−
1
2 · 2F cl

1

1
4

1
4

1

∣∣∣∣∣∣ x

x+ 1

2

,

and after substitution we have

(4.1) 2F
cl
1

1
4

3
4

1

∣∣∣∣∣∣ −x
2

= (x+ 1)−
1
2 · 3F cl

2

1
2

1
2

1
2

1 1

∣∣∣∣∣∣ x

x+ 1

 ,

which is what we want. By definition (??) when we expand the infinite hypergeometric series

on the left hand side of this equation, we obtain

2F
cl
1

1
4

3
4

1

∣∣∣∣∣∣ −x
2

=

(
∞∑
N=0

(1
4
)N(3

4
)N

(N !)2
· (−x)N

)2

,

and when we expand the right hand side by definition (??) we get

3F
cl
2

1
2

1
2

1
2

1 1

∣∣∣∣∣∣ x

x+ 1

 =
∞∑
N=0

(1
2
)N(1

2
)N(1

2
)N

(N !)3
·
(

x

x+ 1

)N
.

By (??) we have that these two infinite series expansions are equal, so

(4.2)

(
∞∑
N=0

(1
4
)N(3

4
)N

(N !)2
· (−x)N

)2

=
∞∑
N=0

(1
2
)N(1

2
)N(1

2
)N

(N !)3
·
(

x

x+ 1

)N
.
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This means that the coefficients for each x−N are equal in both series expansions, given by

a(N) and b(N), respectively. More precisely, by squaring we have

a(N) =
N∑
n=0

(1
4
)n(3

4
)n

(n!)2
·

(1
4
)N−n(3

4
)N−n

((N − n)!)2
,

and by the Binomial Theorem

b(N) =
N∑

n=dN
2
e

(1
2
)n(1

2
)n(1

2
)n

(n!)3
· (−1)N−n.

We note that for b(N) only dN
2
e ≤ n ≤ N will actually contribute to each coefficient value.

When we truncate these series in (??) at N = p − 1 (i.e. truncate at x1−p), all of the

coefficients will still be equal. The truncation of the series can be explicitly expressed by

p−1∑
N=0

N∑
n=0

(1
4
)n(3

4
)n

(n!)2
·

(1
4
)N−n(3

4
)N−n

((N − n)!)2
· xN(4.3)

=

p−1∑
N=0

N∑
n=dN

2
e

(1
2
)n(1

2
)n(1

2
)n

(n!)3
· (−1)N−n · xN .

We observe that since N , and consequently n, will never exceed p−1, all of these coefficients

are p-integral since p does not appear in any of the denominators. Therefore we can take

both sides of (??) modulo p. In fact, we know that a lot of terms will vanish modulo p

because p will appear as a factor in the numerators of the coefficient expansions of these

series given by a(N) and b(N), making them congruent to 0. More specifically, this is the

case for p−1
2
< N ≤ p− 1 and n ≥ p−1

2
. We can write these simplified congruences as

(4.4)

p−1∑
N=0

N∑
n=0

(1
4
)n(3

4
)n

(n!)2
·

(1
4
)N−n(3

4
)N−n

((N − n)!)2
≡

 p−1
2∑

N=0

(1
4
)N(3

4
)N

(N !)2

2

(mod p)
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and

p−1∑
N=0

N∑
n=dN

2
e

(1
2
)n(1

2
)n(1

2
)n

(n!)3
· (−1)N−n

≡

p−1
2∑

N=0

(1
2
)N(1

2
)N(1

2
)N

(N !)3
· (−1)N (mod p).(4.5)

Finally we see that the right hand sides of (??) and (??) are congruent modulo p to the

definitions of the truncated forms of the squares of the 2F1- and 3F2-hypergeometric functions,

respectively, given by:

2F
tr
1

1
4

3
4

1

∣∣∣∣∣∣ −x
2

p

≡

 p−1
2∑

N=0

(1
4
)N(3

4
)N

(N !)2
· (x)N

2

(mod p)

and

3F
tr
2

1
2

1
2

1
2

1 1

∣∣∣∣∣∣ x

x+ 1


p

≡

p−1
2∑

N=0

(1
2
)N(1

2
)N(1

2
)N

(N !)3
·
(

x

x+ 1

)N
(mod p).

It follows that

2F
tr
1

1
4

3
4

1

∣∣∣∣∣∣ −x
2

p

≡ (x+ 1)
p−1
2 · 3F tr

2

1
2

1
2

1
2

1 1

∣∣∣∣∣∣ x

x+ 1


p

(mod p),

which completes the proof.

For the proof of (2), we apply the transformation law for 2F1-hypergeometric functions

given by (??) where a = 1
3
, b = 2

3
, and x =

27

x
, and see that

2F
cl
1

1
3

2
3

1

∣∣∣∣∣∣ 27

x

 = 2F
cl
1

1
6

1
3

1

∣∣∣∣∣∣ 108x− 2916

x2

 .
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We then square both sides of this equation and apply Clausen’s theorem in (??) to the right

hand expression with α = 1
6
, β = 1

3
, and x =

108x− 2916

x2
to obtain

2F
cl
1

1
3

2
3

1

∣∣∣∣∣∣ 27

x

2

= 2F
cl
1

1
6

1
3

1

∣∣∣∣∣∣ 108x− 2916

x2

2

(4.6)

= 3F
cl
2

1
3

2
3

1
2

1 1

∣∣∣∣∣∣ 108x− 2916

x2

 .

By definition (??) when we expand the infinite hypergeometric series on the left hand side

of this equation, we obtain

2F
cl
1

1
3

2
3

1

∣∣∣∣∣∣ 27

x

2

=

(
∞∑
N=0

(1
3
)N(2

3
)N

(N !)2
·
(

27

x

)N)2

,

and when we expand the right hand side by definition (??) we get

3F
cl
2

1
3

2
3

1
2

1 1

∣∣∣∣∣∣ 108x− 2916

x2

 =
∞∑
N=0

(1
3
)N(2

3
)N(1

2
)N

(N !)3
·
(

108x− 2916

x2

)N
.

By (??) we have that these two infinite series expansions are equal

(4.7)

(
∞∑
N=0

(1
3
)N(2

3
)N

(N !)2
·
(

27

x

)N)2

=
∞∑
N=0

(1
3
)N(2

3
)N(1

2
)N

(N !)3
·
(

108x− 2916

x2

)N
.

This means that the coefficients for each x−N are equal in both series expansions, given by

a(N) and b(N), respectively. More precisely, by squaring we have

a(N) =
N∑
n=0

(1
3
)n(2

3
)n

(n!)2
·

(1
3
)N−n(2

3
)N−n

((N − n)!)2
· 27N ,

and by the Binomial Theorem

b(N) =
N∑

n=dN
2
e

(1
3
)n(2

3
)n(1

2
)n

(n!)3
·
(

n

2n−N

)
(108)2n−N(−2916)N−n.
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We note that for b(N) only dN
2
e ≤ n ≤ N will actually contribute to each coefficient value.

When we truncate these series in (??) at N = p − 1 (i.e. truncate at x1−p), all of the

coefficients will still be equal. The truncation of the series can be explicitly expressed by

p−1∑
N=0

N∑
n=0

(1
3
)n(2

3
)n

(n!)2
·

(1
3
)N−n(2

3
)N−n

((N − n)!)2
· 27N · x−N

=

p−1∑
N=0

N∑
n=dN

2
e

(1
3
)n(2

3
)n(1

2
)n

(n!)3
·
(

n

2n−N

)
(108)2n−N(−2916)N−n · x−N .(4.8)

We observe that since N , and consequently n, will never exceed p−1, all of these coefficients

are p-integral since p does not appear in any of the denominators. Therefore we can take

both sides of (??) modulo p. In fact, we know that a lot of terms will vanish modulo p

because p will appear as a factor in the numerators of the coefficient expansions of these

series given by a(N) and b(N), making them congruent to 0. More specifically, this is the

case for p−1
2
< N ≤ p− 1 and n ≥ p−1

2
. We can write these simplified congruences as

(4.9)

p−1∑
N=0

N∑
n=0

(1
3
)n(2

3
)n

(n!)2
·

(1
3
)N−n(2

3
)N−n

((N − n)!)2
·
(

27

x

)N
≡

 p−1
2∑

N=0

(1
3
)N(2

3
)N

(N !)2
·
(

27

x

)N2

(mod p)

and

p−1∑
N=0

N∑
n=dN

2
e

(1
3
)n(2

3
)n(1

2
)n

(n!)3
·
(

n

2n−N

)
(108)2n−N(−2916)N−n · x−N

≡

p−1
2∑

N=0

(1
3
)N(2

3
)N(1

2
)N

(N !)3
·
(

108x− 2916

x2

)N
(mod p).(4.10)

Finally we see that the right hand sides of (??) and (??) are congruent modulo p to the

definitions of the truncated forms of the squares of the 2F1- and 3F2-hypergeometric functions,

respectively, given by:

2F
tr
1

1
3

2
3

1

∣∣∣∣∣∣ 27

x

2

p

≡

 p−1
2∑

N=0

(1
3
)N(2

3
)N

(N !)2
·
(

27

x

)N2

(mod p)
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and

3F
tr
2

1
3

2
3

1
2

1 1

∣∣∣∣∣∣ 108x− 2916

x2


p

≡

p−1
2∑

N=0

(1
3
)N(2

3
)N(1

2
)N

(N !)3
·
(

108x− 2916

x2

)N
(mod p).

It follows that

2F
tr
1

1
3

2
3

1

∣∣∣∣∣∣ 27

x

2

p

≡ 3F
tr
2

1
3

2
3

1
2

1 1

∣∣∣∣∣∣ 108x− 2916

x2


p

(mod p),

which completes the proof.

For the proof of (3), we observe that

2F
cl
1

 1
12

5
12

1

∣∣∣∣∣∣ 1− 1

x


is of the form

2F
cl
1

α β

α + β + 1
2

∣∣∣∣∣∣ x
 .

We apply Clausen’s Theorem directly, and we let α = 1
12

, β = 5
12

, α + β + 1
2

= 1, and

x = 1− 1
x
. Therefore we have

(4.11) 2F
cl
1

 1
12

5
12

1

∣∣∣∣∣∣ 1− 1

x

2

= 3F
cl
2

1
6

5
6

1
2

1 1

∣∣∣∣∣∣ 1− 1

x

 .

By definition (??) when we expand the infinite hypergeometric series on the left hand side

of the equation, we obtain

2F
cl
1

 1
12

5
12

1

∣∣∣∣∣∣ 1− 1

x

2

=

(
∞∑
N=0

( 1
12

)N( 5
12

)N

(N !)2
·
(

1− 1

x

)N)2

,

and when we expand the right hand side by definition (??) we get

3F
cl
2

1
6

5
6

1
2

1 1

∣∣∣∣∣∣ 1− 1

x

 =
∞∑
N=0

(1
6
)N(5

6
)N(1

2
)N

(N !)3
·
(

1− 1

x

)N
.
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By (??) we have that these two infinite series expansions are equal, so

(4.12)

(
∞∑
N=0

( 1
12

)N( 5
12

)N

(N !)2
·
(

1− 1

x

)N)2

=
∞∑
N=0

(1
6
)N(5

6
)N(1

2
)N

(N !)3
·
(

1− 1

x

)N
.

This means that the coefficients for each x−N are equal in both series expansions, given by

a(N) and b(N), respectively. More precisely, by squaring we have

a(N) =
N∑
n=0

( 1
12

)n( 5
12

)n

(n!)2
·

( 1
12

)N−n( 5
12

)N−n

((N − n)!)2
·
(
N

n

)
· (−1)N−n,

and by the Binomial Theorem

b(N) =
N∑
n=0

(1
6
)n(5

6
)n(1

2
)n

(n!)3
·
(
N

n

)
· (−1)N−n.

We note that for b(N) only dN
2
e ≤ n ≤ N will actually contribute to each coefficient value.

When we truncate these series in (??) at N = p − 1 (i.e. truncate at x1−p), all of the

coefficients will still be equal. The truncation of the series can be explicitly expressed by

p−1∑
N=0

N∑
n=0

( 1
12

)n( 5
12

)n

(n!)2
·

( 1
12

)N−n( 5
12

)N−n

((N − n)!)2
·
(
N

n

)
· (−1)N−n · xN

=

p−1∑
N=0

N∑
n=dN

2
e

(1
6
)n(5

6
)n(1

2
)n

(n!)3
· (−1)N−n ·

(
N

n

)
· (−1)N−n · xN .(4.13)

We observe that since N , and consequently n, will never exceed p−1, all of these coefficients

are p-integral since p does not appear in any of the denominators. Therefore we can take

both sides of (??) modulo p. In fact, we know that a lot of terms will vanish modulo p

because p will appear as a factor in the numerators of the coefficient expansions of these

series given by a(N) and b(N), making them congruent to 0. More specifically, this is the

case for p−1
2
< N ≤ p− 1 and n ≥ p−1

2
. We can write these simplified congruences as

(4.14)

p−1∑
N=0

N∑
n=0

( 1
12

)n( 5
12

)n

(n!)2
·

( 1
12

)N−n( 5
12

)N−n

((N − n)!)2
≡

 p−1
2∑

N=0

( 1
12

)N( 5
12

)N

(N !)2

2

(mod p)
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and

p−1∑
N=0

N∑
n=dN

2
e

(1
6
)n(5

6
)n(1

2
)n

(n!)3
·
(
N

n

)
· (−1)N−n

≡

p−1
2∑

N=0

(1
6
)N(5

6
)N(1

2
)N

(N !)3
·
(
N

n

)
· (−1)N (mod p).(4.15)

Finally we see that the right hand sides of (??) and (??) are congruent modulo p to the

definitions of the truncated forms of the squares of the 2F1- and 3F2-hypergeometric functions,

respectively, given by:

2F
tr
1

 1
12

5
12

1

∣∣∣∣∣∣ 1− 1

x

2

p

≡

 p−1
2∑

N=0

( 1
12

)N( 5
12

)N

(N !)2
· (x)N

2

(mod p)

and

3F
tr
2

1
6

5
6

1
2

1 1

∣∣∣∣∣∣ 1− 1

x


p

≡

p−1
2∑

N=0

(1
6
)N(5

6
)N(1

2
)N

(N !)3
·
(

1− 1

x

)N
(mod p).

It follows that

2F
tr
1

 1
12

5
12

1

∣∣∣∣∣∣ 1− 1

x

2

p

≡ 3F
tr
2

1
6

5
6

1
2

1 1

∣∣∣∣∣∣ 1− 1

x


p

(mod p),

which completes the proof.

Finally in the proof of (4), we note that

2F
cl
1

 7
12

11
12

1

∣∣∣∣∣∣ 1− 1

x


is not of the form

2F
cl
1

α β

α + β + 1
2

∣∣∣∣∣∣ x
 .

Therefore we must apply a transformation law for 2F1-hypergeometric functions. We use

[??] so that we can apply Clausen’s Theorem to obtain a 3F2-hypergeometric series. We now
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let a = 7
12

, b = 11
12

, c = 1, and x = 1− 1
x
, and obtain

(
1

x

)− 7
12

· 2F cl
1

 7
12

1
12

1

∣∣∣∣∣∣ 1− 1

x

 ,

which is equivalent to (
1

x

)− 7
12

· 2F cl
1

 1
12

7
12

1

∣∣∣∣∣∣ 1− 1

x

 .

We apply the same transformation again with a = 1
12

, b = 7
12

, c = 1, and x = 1 − 1
x
, and

obtain

(x)−
1
12 · 2F cl

1

 1
12

5
12

1

∣∣∣∣∣∣ 1− 1

x

 .

Putting this together, we have transformed

2F
cl
1

 7
12

11
12

1

∣∣∣∣∣∣ 1− 1

x


into (

1

x

)− 7
12

· (x)−
1
12 · 2F cl

1

 1
12

5
12

1

∣∣∣∣∣∣ 1− 1

x

 .

This is now of the correct form to apply Clausen’s Theorem, so we let α = 1
12

, β = 5
12

,

α + β + 1
2

= 1, and x = 1− 1
x
. Therefore we have

2F
cl
1

 1
12

5
12

1

∣∣∣∣∣∣ 1− 1

x

2

= 3F
cl
2

1
6

5
6

1
2

1 1

∣∣∣∣∣∣ 1− 1

x

 .

Our transformation is used as follows:

2F
cl
1

 7
12

11
12

1

∣∣∣∣∣∣ 1− 1

x

 =

(
1

x

)− 7
12

· (x)−
1
12 · 2F cl

1

 1
12

5
12

1

∣∣∣∣∣∣ 1− 1

x

 .

We square both sides to obtain

2F
cl
1

 7
12

11
12

1

∣∣∣∣∣∣ 1− 1

x

2

=

(
1

x

)− 14
12

· (x)−
1
6 · 2F cl

1

 1
12

5
12

1

∣∣∣∣∣∣ 1− 1

x

2

,
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and after substitution we have

2F
cl
1

 7
12

11
12

1

∣∣∣∣∣∣ 1− 1

x

2

=

(
1

x

)− 7
6

· (x)−
1
6 · 3F cl

2

1
6

5
6

1
2

1 1

∣∣∣∣∣∣ 1− 1

x

 ,

which simplifies to

(4.16) 2F
cl
1

 7
12

11
12

1

∣∣∣∣∣∣ 1− 1

x

2

= x · 3F cl
2

1
6

5
6

1
2

1 1

∣∣∣∣∣∣ 1− 1

x

 ,

which is what we want.

By definition (??) when we expand the infinite hypergeometric series on the left hand side

of the equation, we obtain

(4.17) 2F
cl
1

 7
12

11
12

1

∣∣∣∣∣∣ 1− 1

x

2

=

(
∞∑
N=0

( 7
12

)N(11
12

)N

(N !)2
·
(

1− 1

x

)N)2

,

and when we expand the right hand side by definition (??) we get

3F
cl
2

1
6

5
6

1
2

1 1

∣∣∣∣∣∣ 1− 1

x

 =
∞∑
N=0

(1
6
)N(5

6
)N(1

2
)N

(N !)3
· x ·

(
1− 1

x

)N
.

By (??) we have that these two infinite series expansions are equal, so(
∞∑
N=0

( 7
12

)N(11
12

)N

(N !)2
·
(

1− 1

x

)N)2

=
∞∑
N=0

(1
6
)N(5

6
)N(1

2
)N

(N !)3
· x ·

(
1− 1

x

)N
.

This means that the coefficients for each x−N are equal in both series expansions, given by

a(N) and b(N), respectively. More precisely, by squaring we have

a(N) =
N∑
n=0

( 7
12

)n(11
12

)n

(n!)2
·

( 7
12

)N−n(11
12

)N−n

((N − n)!)2
·
(
N

n

)
· (−1)N−n,

and by the Binomial Theorem

b(N) =
N∑
n=0

(1
6
)n(5

6
)n(1

2
)n

(n!)3
·
(
N

n

)
· (−1)N−n.
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We note that for b(N) only dN
2
e ≤ n ≤ N will actually contribute to each coefficient value.

When we truncate these series in (??) at N = p − 1 (i.e. truncate at x1−p), all of the

coefficients will still be equal. The truncation of the series can be explicitly expressed by

p−1∑
N=0

N∑
n=0

( 7
12

)n(11
12

)n

(n!)2
·

( 7
12

)N−n(11
12

)N−n

((N − n)!)2
·
(
N

n

)
· (−1)N−n · xN

=

p−1∑
N=0

N∑
n=dN

2
e

(1
6
)n(5

6
)n(1

2
)n

(n!)3
· (−1)N−n · ·

(
N

n

)
· (−1)N−n · xN .(4.18)

We observe that since N , and consequently n, will never exceed p−1, all of these coefficients

are p-integral since p does not appear in any of the denominators. Therefore we can take

both sides of (??) modulo p. In fact, we know that a lot of terms will vanish modulo p

because p will appear as a factor in the numerators of the coefficient expansions of these

series given by a(N) and b(N), making them congruent to 0. More specifically, this is the

case for p−1
2
< N ≤ p− 1 and n ≥ p−1

2
. We can write these simplified congruences as

(4.19)

p−1∑
N=0

N∑
n=0

( 7
12

)n(11
12

)n

(n!)2
·

( 7
12

)N−n(11
12

)N−n

((N − n)!)2
≡

 p−1
2∑

N=0

( 7
12

)N(11
12

)N

(N !)2

2

(mod p)

and

p−1∑
N=0

N∑
n=dN

2
e

(1
6
)n(5

6
)n(1

2
)n

(n!)3
·
(
N

n

)
· (−1)N−n

≡

p−1
2∑

N=0

(1
6
)N(5

6
)N(1

2
)N

(N !)3
·
(
N

n

)
(−1)N (mod p).(4.20)

Finally we see that the right hand sides of (??) and (??) are congruent modulo p to the

definitions of the truncated forms of the squares of the 2F1- and 3F2-hypergeometric functions,

respectively, given by:

2F
tr
1

 7
12

11
12

1

∣∣∣∣∣∣ 1− 1

x

2

p

≡

 p−1
2∑

N=0

( 7
12

)N(11
12

)N

(N !)2
· (x)N

2

(mod p)
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and

3F
tr
2

1
6

5
6

1
2

1 1

∣∣∣∣∣∣ 1− 1

x


p

≡

p−1
2∑

N=0

(1
6
)N(5

6
)N(1

2
)N

(N !)3
·
(

1− 1

x

)N
(mod p).

It follows that

2F
tr
1

 7
12

11
12

1

∣∣∣∣∣∣ 1− 1

x

2

p

≡ x · 3F tr
2

1
6

5
6

1
2

1 1

∣∣∣∣∣∣ 1− 1

x


p

(mod p),

which completes the proof. �

4.1. Proof of Theorem ??. Now we are ready to prove the main theorem.

For the proof of (1), we begin with Lemma ?? (1) which gives

(x+ 1)
p−1
2 · 3F tr

2

1
2

1
2

1
2

1 1

∣∣∣∣∣∣ x

x+ 1


p

≡ 2F
tr
1

1
4

3
4

1

∣∣∣∣∣∣ −x
2

p

(mod p).

Substituting the left hand side of the above congruence into the square of (??), we obtain

the congruence for the square of the supersingular locus, Sp, 1
4
(x)2, for the family of elliptic

curves given by E 1
4
(λ).

For the proof of (2), we begin with Lemma ?? (2) which gives

3F
tr
2

1
3

2
3

1
2

1 1

∣∣∣∣∣∣ 108x− 2916

x2


p

≡ 2F
tr
1

1
3

2
3

1

∣∣∣∣∣∣ 27

x

2

p

(mod p).

Substituting the left hand side of the above congruence into the square of (??), we obtain

the congruence for the square of the supersingular locus, Sp, 1
3
(x)2, for the family of elliptic

curves given by E 1
3
(λ).

The remaining cases use the congruences of the supersingular locus given by Monks. The

2F
tr
1 -hypergeometric functions in (??), (??), and (??) are squared. Squaring (??) we obtain

Sp, 1
3
(x)2 ≡ x2·b

p
3
c · 2F tr

1

1
3

2
3

1

∣∣∣∣∣∣ 27

x

2

p

(mod p).
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After substitution, we have

2F
cl
1

1
3

2
3

1

∣∣∣∣∣∣ 27

x

2

= 3F
cl
2

1
3

2
3

1
2

1 1

∣∣∣∣∣∣ 108x− 2916

x2

 ,

which is an analog of Theorem 2.1 in [?]. We note that neither side of this equation is a

polynomial, so in order to obtain the congruence to the square of the supersingular locus, we

must multiply the truncated forms of these hypergeometric functions by x2b
p
3
c. Then using

the congruence in (2) of Lemma ??, we have our result:

Sp, 1
3
(x)2 ≡ x2·b

p
3
c · 3F tr

2

1
3

2
3

1
2

1 1

∣∣∣∣∣∣ 108x− 2916

x2


p

(mod p).

The third hypergeometric function given by

2F
cl
1

 1
12

5
12

1

∣∣∣∣∣∣ 1− 1

x


gives the analog of Theorem 2.1 in [?],

2F
cl
1

 1
12

5
12

1

∣∣∣∣∣∣ 1− 1

x

2

= 3F
cl
2

1
6

5
6

1
2

1 1

∣∣∣∣∣∣ 1− 1

x

 ,

In the third case after squaring (??), we obtain

Sp, 1
12

(x)2 ≡ (c−1p )2 · x2·b
p
12
c · 2F tr

1

 1
12

5
12

1

∣∣∣∣∣∣ 1− 1

x

2

p

(mod p).

Then we use our congruence given in (3) of Lemma ?? and substitute the 3F2-hypergeometric

function to give

Sp, 1
12

(x)2 ≡ (c−1p )2 · xb
p
6
c · 3F tr

2

1
6

5
6

1
2

1 1

∣∣∣∣∣∣ 1− 1

x


p

(mod p).
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We see in (3) and (4) of Lemma ?? for p ≡ 1, 5 (mod 6), the squared 2F
tr
1 -hypergeometric

functions are congruent apart from the x in (4). We combine these cases and alter the

exponent of x to satisfy both which then gives our results.

5. Examples

Example. Here we consider E 1
12

(x) when p = 13. By Monks’ theorem, we know that there is

just one supersingular elliptic curve for E 1
12

(x). It turns out that E 1
12

(3) is that supersingular

elliptic curve. To see this we note that E 1
12

(3) over F13 has 13 points including the point at

infinity. By Monks, this implies that

S13, 1
12

(x) ≡ (x− 3) ≡ (x+ 10) (mod 13).

We square this to obtain

S13, 1
12

(x)2 ≡ (x+ 10)2 ≡ (x2 + 20x+ 100) ≡ x2 + 7x+ 9 (mod 13).

Using Theorem ?? we calculate

(c−113 )2 · xb
13
6
c · 3F tr

2

1
6

5
6

1
2

1 1

∣∣∣∣∣∣ 1− 1

x


13

(mod 13)

which gives (c−113 )2 ≡ 1
10

(mod 13) and xb
13
6
c = x2. Substituting these values into our expres-

sion gives

1

10
· x2 ·

(
10 +

5

x
+

12

x2

)
≡ x2 +

1

2
x+

6

5
≡ x2 + 7x+ 9 (mod 13).

This polynomial can be factored modulo 13 as

x2 + 7x+ 9 ≡ (x+ 10)2 (mod 13)

which is what we found after directly squaring S13, 1
12

(x).

Example. We consider E 1
12

(x) when p = 59. By Monks’ theorem, we know that there are

four supersingular elliptic curves for E 1
12

(x). Those supersingular elliptic curves are found to
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be E 1
12

(32), E 1
12

(35), E 1
12

(24) and E 1
12

(22). To see this we note that E 1
12

(x) for x = 32, 35, 24

and 22 over F59 have 59 points including the point at infinity. By Monks, this implies that

S59, 1
12

(x) ≡ (x− 32)(x− 35)(x− 24)(x− 22)

≡ (x+ 27)(x+ 24)(x+ 35)(x+ 37) (mod 59).

After squaring this directly, we obtain

(5.1) S59, 1
12

(x)2 ≡ (x+ 27)2(x+ 24)2(x+ 35)2(x+ 37)2 (mod 59).

Next using Theorem ?? (3) we calculate

(c−159 )2 · xb
59
6
c · 3F tr

2

1
6

5
6

1
2

1 1

∣∣∣∣∣∣ 1− 1

x


59

(mod 59).

For p = 59, we have (c−159 )2 = 15 and xb
59
6
c = x9, so we obtain

15 · x9 ·
(

4

x
+

40

x2
+

3

x3
+

16

x4
+

38

x5
+

56

x6
+

16

x7
+

28

x8
+

36

x9

)
≡ x8 + 10x7 + 45x6 + 4x5 + 39x4 + 14x3 + 4x2 + 7x+ 9 (mod 59).

This polynomial of degree 8 can be factored as

(x+ 27)2(x+ 24)2(x+ 35)2(x+ 37)2 (mod 59)

which is congruent modulo 59 to S59, 1
12

(x)2 as given in (??).

References

[1] W. Bailey, Generalized hypergeometric series, Cambridge Univ. Press, Cambridge, 1998.

[2] A. El-Guindy and K. Ono, Hasse invariants for the Clausen elliptic curves, Ramanujan Journal.

31 (2013), 3-13.
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