
Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the re-
quirements for an advanced degree from Emory University, I hereby grant
to Emory University and its agents the non-exclusive license to archive,
make accessible, and display my thesis or dissertation in whole or in part in
all forms of media, now or hereafter known, including display on the world
wide web. I understand that I may select some access restrictions as part
of the online submission of this thesis or dissertation. I retain all ownership
rights to the copyright of the thesis or dissertation. I also retain the right
to use in future works (such as articles or books) all or part of this thesis or
dissertation.

Signature:

Kanwei Li Date

Cost Analysis of Joins in RDF Query Processing Using the TripleT Index

By

Kanwei Li
B.S., Emory University, 2008

Mathematics and Computer Science

James J. Lu
Advisor

Li Xiong
Committee Member

Phillip W. Hutto
Committee Member

Accepted:

Lisa A. Tedesco, Ph.D
Dean of the Graduate School

Date

Cost Analysis of Joins in RDF Query Processing Using the TripleT Index

By

Kanwei Li
B.S., Emory University, 2008

Advisor : James J. Lu, Ph.D.

An abstract of
A thesis submitted to the Faculty of the Graduate School of Emory University

in partial fulfillment of the requirements for the degree of
Master of Science

in Mathematics and Computer Science
2009

Abstract

Cost Analysis of Joins in RDF Query Processing Using the TripleT Index
By Kanwei Li

The Semantic Web movement has led to a growing popularity of RDF and
its query languages. Clearly, good query performance is important in allow-
ing information to be quickly retrieved from RDF datasets that are ever-
increasing in size. We use the TripleT indexing scheme for RDF data as
a framework to examine the cost of join operations for RDF. We analyze
strategies for efficient join processing for a variety of query patterns. For
queries that involve multiple join conditions, we introduce a model to predict
the number of I/Os required to best order the join conditions. Experimental
results validate the model using three real RDF datasets.

Cost Analysis of Joins in RDF Query Processing Using the TripleT Index

By

Kanwei Li
B.S., Emory University, 2008

Advisor : James J. Lu, Ph.D.

A thesis submitted to the Faculty of the Graduate School of Emory University
in partial fulfillment of the requirements for the degree of

Master of Science
in Mathematics and Computer Science

2009

Acknowledgements

I would like to thank Dr. James Lu for his constant guidance, patience,
and editing skills that have made the writing of this thesis both possible
and enjoyable. I would also like to my express my gratitude to Dr. George
Fletcher for introducing me to the world of RDF, and for allowing me to
build upon his wonderful TripleT index.

Dr. Phillip Hutto was the one who convinced me into switching majors
as an undergrad. Without our frequent chats, I might never have devel-
oped the great interest in Computer Science that I have today. I am also
indebted to Dr. Li Xiong, Dr. Eugene Agichtein, Dr. Ken Mandelberg, Dr.
Michelangelo Grigni, and Dr. Vaidy Sunderam, who all filled my mind with
questions and answers.

Contents

1 Introduction 1

1.1 Research Objective . 2

1.2 Prior Work . 2

2 RDF and SPARQL 4

2.1 Background on RDF . 4

2.1.1 Representation Formats 6

2.2 RDF Datasets . 7

2.3 Datasets Used in the Thesis 8

2.3.1 Dataset Statistics . 9

2.3.2 Dataset Discussion . 10

2.4 Background on SPARQL . 10

3 Indexing Techniques 13

3.1 B+ Trees . 13

i

3.2 RDF Indexing Schemes . 15

3.2.1 MAP and HexTree . 15

3.2.2 TripleT . 16

4 Join Algorithms 19

4.1 Nested-loop join . 20

4.2 Hash join . 20

4.3 Sort-Merge join . 21

4.4 Measuring Join Performance 22

4.4.1 Join CPU Performance on Synthetic Data 23

4.4.2 Join I/O and CPU Performance on Datasets 25

5 Query Optimization 27

5.1 Join Ordering . 27

5.2 Processing SPARQL Queries with TripleT 28

5.3 Discussion . 31

6 Models and Experiments for All-Variable SAPs 33

6.1 DBpedia Results . 38

6.2 Uniprot Results . 39

6.3 SP2Bench Results . 40

6.4 Variant Query Forms . 40

6.5 Discussion . 41

7 Conclusion 43

List of Figures

2.1 XML representation of RDF 6

2.2 Notation 3 representation of RDF 7

2.3 SPARQL: Return all states and their capitals 11

3.1 TripleT diagram . 17

5.1 Triples matching (a, b, ?v) ∧ (?v, c, d) 29

5.2 Joining Left and Right SAPs 30

5.3 Index lookup for each unique atom in the variable position . . 31

6.1 Join diagram . 35

7.1 SP2Bench 5b query . 45

iv

List of Tables

2.1 Subject, Predicate, Object statistics 9

2.2 Join statistics . 9

4.1 Join CPU performance . 24

4.2 Join CPU and I/O performance (CPU measured in seconds) . 25

6.1 Unique atoms per position per bucket 36

6.2 Average Subject, Predicate, Object bucket sizes 37

6.3 I/O results for DBpedia . 38

6.4 I/O results for Uniprot . 39

6.5 I/O results for SP2Bench . 40

6.6 I/O results for Variant Query Form 41

v

1

Chapter 1

Introduction

A main goal of the Semantic Web movement is to allow semantic inter-

connections between decentralized sources of data on the Web. RDF and

SPARQL are formats designed for tagging and querying data, respectively.

Up to now, not many websites have adopted Semantic Web practices such as

RDFa tagging, Friend of a Friend, and SPARQL entry points. However, the

rising popularity of online APIs and web services shows an encouraging trend

towards resource-centric entry points to data instead of having to access the

data through parsing HTML or through a browser. Recently, the British

Broadcasting Corporation (BBC) has setup online SPARQL end-points for

their TV and music databases that one can query. This adoption by a large

company is encouraging to the future of the RDF, SPARQL, and the Seman-

tic Web.

For widespread adoption and high user satisfaction of using RDF datasets,

SPARQL queries must run quickly. This means that it is important to have

2

good indexing techniques to ensure scalable performance of query processing

for RDF data. It is also important to have a query optimizer to help process

SPARQL queries that are often very long and complicated.

1.1 Research Objective

This thesis can be viewed as a continuation of the work on an RDF indexing

technique called TripleT, developed in 2008 by Fletcher and Beck [2]. Using

TripleT as the framework, the goal is to better understand the requirements

for building an effective SPARQL query optimizer. Specifically, we study

the information necessary to facilitate good join ordering. We develop a

model for predicting the number of I/Os required for a join based on TripleT

using statistics that are easily collected during the creation of the index.

Experiments are conducted to validate the model.

1.2 Prior Work

Fletcher and Beck [2] compared the characteristics and performance of TripleT

to other indexing techniques used in production software, HexTree and MAP,

and concluded that TripleT is conceptually simpler, more space efficient,

while still providing the same level of support for SPARQL queries.

3

Much literature exists on the subject of join algorithms. Mishra and Eich

[4] authored a comprehensive survey paper in 1992 on join algorithms for

relational databases. The main type of join in SPARQL is the equi-join, and

Mishra and Eich noted that the nested-loop join, hash join, and sort-merge

join were the most applicable and performant.

Stocker et al. [9] laid the groundwork for SPARQL query optimization by

defining Basic Graph Patterns (BGP) as the basic unit of SPARQL queries.

Additionally, they introduced heuristics for join ordering in the cases of hav-

ing pre-computed statistics and not having pre-computed statistics. The goal

was to try to get smaller intermediate result sets for later joins by carrying

out the most selective joins first.

Neumann and Weikum [5] introduced a SPARQL query engine called

RDF-3X, and discussed how it used a dynamic programming approach with

selectivity histograms to estimate cost of join paths.

4

Chapter 2

RDF and SPARQL

2.1 Background on RDF

RDF is a framework that describes data in the form of (subject, predicate,

object) triples. It was released as a W3C recommendation in 1999 [12] and

is currently the leading description model for the Semantic Web.

The greatest advantage of RDF lies in its simplicity of only using (subject,

predicate, object) triples for all data representation. This creates flexibility

and allows the description of both data and metadata in the same fashion.

Unlike the relational model, the RDF model is “pay-as-you-go” because a

predetermined schema is not required, and structure can be added later on

by adding new triples to define relationships present in the data. This lack

of required structure is beneficial for the World Wide Web, where there are

many participants who are not in close collaboration.

5

RDF is also a good format for ontologies as relationships can be naturally

described. For example, a predicate of one triple can be the subject of another

triple. The following example shows a relationship, normally considered as

metadata, being described in RDF: (John, friendof, Mark), (friendof, typeof,

relationship)

The flexible nature of RDF allows this to be easily described, which is

not the case in the relational model. The latter would require extra schema

complexity for metadata and may require extra tables to achieve normal

form.

RDF has also been used to store data from multiple domains into one

dataset. For example, it would be very difficult to store structured Wikipedia

content into a relational database without many tables to store different types

of data. A table to describe people would have different columns than a table

to describe cars, so different tables would have to be used. The RDF model

would be much more appropriate since a different set of predicates could be

used for each domain. The DBpedia project [1] has adopted the RDF model

and converted much of Wikipedia into an RDF dataset. RDF fits naturally

into the requirements of a decentralized Semantic Web.

6

2.1.1 Representation Formats

There are two main representation formats for RDF: XML and Notation 3.

Additionally, a subset of Notation 3 called Turtle is in development. No-

tation 3 and Turtle are designed for human-readability and are more con-

cise than XML, but require a proper parser instead of an XML parser.

What is important is that while the representation format may differ, the

data represented is the same. Figures 2.1 and 2.2 show different represen-

tations of two triples: (http://wikipedia.org/wiki/France, dc:title, France),

(http://wikipedia.org/wiki/France, dc:publisher, Wikipedia)

<rdf:RDF

xmlns:dc="http://purl.org/dc/elements/1.1/">

<rdf:Description rdf:about="http://wikipedia.org/wiki/France">

<dc:title>France</dc:title>

<dc:publisher>Wikipedia</dc:publisher>

</rdf:Description>

</rdf:RDF>

Figure 2.1: XML representation of RDF

The subject of both triples is “http://wikipedia.org/wiki/France”, and

XML conveys this by having the predicate be the parent node for both of

the predicate/object pairs. In Notation 3, this is accomplished by the nested

indentation and having a semicolon after the first triple instead of a period.

7

@prefix dc: <http://purl.org/dc/elements/1.1/>.

<http://wikipedia.org/wiki/France>

dc:title "France";

dc:publisher "Wikipedia".

Figure 2.2: Notation 3 representation of RDF

This is purely for compactness and readability; nothing would be different if

the subject were explicitly written twice.

RDF supports namespaces by allowing the declaration of prefixes. In

the example above, the “dc” prefix is defined, and “dc:title” is thus short

for “http://purl.org/dc/elements/1.1/title”. This convention allows readable

name-spacing while also reducing data size.

Additionally, RDF allows the assignment of types to atoms, such as inte-

ger, double, decimal, and boolean.

2.2 RDF Datasets

Fundamentally, an RDF dataset is a collection of RDF triples. As such, there

are many possible storage formats, but most RDF datasets are distributed

in plain-text format for universal portability.

Many projects that use RDF data use a relational database to store triples

8

by using a table with three columns: subject, predicate, and object. Triples

can then be accessed using SQL. While this method leverages current rela-

tional database technology, tabular relational stores do not fit the graph-like

nature of RDF, and thus new RDF-native stores have been developed.

As of 2009, the primary RDF-native stores available are:

1) Jena [3], an open-source Java framework that supports SPARQL

2) Sesame [7], an open-source framework in C that uses its own querying

language called SeRQL (Sesame RDF Query Language)

3) Virtuoso [11], a framework that is available in both commercial and

open-source packages, both supporting SPARQL

Additionally, a framework named RDF-3X [5] was introduced in 2008,

and the authors state that it is available on request for non-commercial use.

2.3 Datasets Used in the Thesis

It is important to perform experiments on real-world data. This thesis will

use a subset of one million triples of each of:

1) The DBpedia dataset [1], an extract of Wikipedia articles converted

into RDF triples. Semantic information, such as categories and infoboxes,

have been kept as well.

9

2) The Uniprot dataset [10] that describes proteins and provides annota-

tion data.

3) The SP2Bench [8] dataset, a recently developed dataset that tries to

emulate an authorship database, such as DBLP.

2.3.1 Dataset Statistics

To get an idea of the distribution of atoms in the datasets, the number of

unique atoms in the subject, predicate and object positions were computed

and tabulated in Table 2.1. Additionally, the number of atoms that could

possibly take part in one of the 3 possible joins between different positions

were calculated and tabulated in Table 2.2. The abbreviations S, P, and O

denote subject, predicate, and object respectively.

Dataset Uniq Subj Uniq Pred Uniq Obj

DBpedia 136108 8878 282199
Uniprot 592639 79 294676

SP2Bench 31629 61 81919

Table 2.1: Subject, Predicate, Object statistics

Dataset SP SO PO

DBpedia 0 48085 0
Uniprot 0 105560 8

SP2Bench 0 14816 0

Table 2.2: Join statistics

10

2.3.2 Dataset Discussion

DBpedia is interesting in that it has many unique predicates, while Uniprot

and SP2Bench have very few. This is because DBpedia contains multiple

domains of knowledge, and each domain uses its own set of predicates. For

example, predicates to describe people include “dbpedia:ontology/religion”,

“dbpedia:ontology/spouse” and “dbpedia:ontology/birthdate”, which would

logically only be used to describe people and not other kinds of resources.

The broad scope of DBpedia means it has more unique predicates than the

other two.

Also, it is interesting that predicates never appear as subjects and very

seldomly appear as objects. This shows that none of these datasets create

an ontology where metadata is treated as data and a hierarchy is created.

2.4 Background on SPARQL

SPARQL is the W3C-backed query language for RDF and became an official

W3C recommendation in 2008 [13]. The language is inspired by SQL and

adopts many of its keywords, such as SELECT, DISTINCT, FROM, and

WHERE. Because of RDF’s graph-like nature, additional keywords are nec-

essary, such as PREFIX, OPTIONAL, UNION, and GRAPH. An example

11

SPARQL query is shown in Figure 2.3.

SELECT ?capital ?state

WHERE {

?x city_name ?capital ;

?x capital_of ?y ;

?y state_name ?state ;

}

Figure 2.3: SPARQL: Return all states and their capitals

SPARQL queries are defined by basic graph patterns (BGPs), which are

conjunctions of simple access patterns (SAPs). An SAP is triple whose ele-

ments are any combination of atoms or variables, where variables are prefixed

by a “?”. Atoms in SAPs are called bound patterns, and variables are called

unbound patterns. An SAP selects triples that match all of its bound and

unbound patterns. A few examples:

The SAP (John, friendof, ?x) would match any triple with both subject

“John” and predicate “friendof”. It would thus match (John, friendof, Mark),

but not (John, parentof, Tim).

A BGP can have more than one SAP. For example, consider the BGP:

(John, friendof, ?x) ∧ (?x, friendof, Tim). The left SAP matches any triple

with subject “John” and with predicate “friendof”; the right SAP matches

any triple with predicate “friendof” and with object “Tim”. To compute the

12

result set of ?x, atoms that appear in both the object position of the triples

matched by the left SAP and the subject position of the triples matched by

the right SAP are selected.

If a query for the above BGP were run on the datset consisting of (John,

friendof, Mark), (John, friendof, Alex), (Mark, friendof, Tim), the result set

of ?x would be { Mark }. Semantically, the query asks, “Which friends of

John are also friends of Tim?” The query requires the use of a join on the

object position of the left SAP and subject position of the right SAP.

The major differences between SPARQL and SQL are:

1) SPARQL allows the use of variables in SAPs that match any atom in

that position. The SAP (?a, ?b, ?c) by itself would match all the triples in

the dataset.

2) There is no explicit equi-join operator in SPARQL, so the query engine

has to deduce what needs to be joined. Consider the example query in Figure

2.3. There are four distinct variables in the query, and two joins are necessary:

Subject–Subject on ?x, and Object–Subject on ?y.

In conclusion, RDF is a flexible format that makes it well suited to the

Semantic Web, and SPARQL provides a natural way to query RDF datasets.

13

Chapter 3

Indexing Techniques

Real-world SPARQL queries usually consist of multiple SAPs, and most

SAPs require lookup of atoms. Thus, before querying is performed, RDF data

should first be indexed so that the lookup of atoms for SPARQL queries can

scale to larger datasets. Most RDF datasets are designed to be read, so fast

lookup is more important in the long run than fast index creation.

3.1 B+ Trees

Much like relational databases, indexing schemes for RDF generally rely on

the B+ tree as the data structure of choice. The string representation of an

atom can be used as the key in the tree, and the triples that contain the

atom as the values.

A B+ tree is a balanced tree whose depth and width can be adjusted

by setting parameters that determine the level of branching. A deep tree

14

allows faster comparisons of keys at any level, but requires more levels to be

traversed on average. A shallow and wide tree requires more comparisons at

every level and more space per block, but there are fewer levels on average

and thus fewer I/O operations needed. The parameters should be set to best

match the filesystem and hardware.

Because datasets can potentially be gigabytes in size, it is often necessary

for the index itself to reside on disk. A B+ tree allows an index to be

stored on disk by using block-oriented storage, meaning that each individual

node, along with its pointers and/or data, are stored in blocks which can

be accessed with I/O operations. This way, data can be accessed through a

few I/O operations to go from the root of the tree to a leaf node with data.

Because I/O operations are orders of magnitude slower than main memory

accesses, the classical measure of query performance is a function of I/O

operations [2].

For the experiments performed in this thesis, all nodes and data are stored

in main memory, and I/O accesses are simulated by recording an I/O access

whenever a node in the B+ tree is visited. This way, good performance can

be achieved when conducting experiments while still measuring the correct

I/O cost.

15

3.2 RDF Indexing Schemes

The current state of the art indexing schemes for RDF are MAP and HexTree

[2]. TripleT is an indexing scheme developed by Fletcher in Beck in 2008.

While they all use B+ trees, they differ in how many trees are used and what

the leaf nodes of the trees contain.

3.2.1 MAP and HexTree

MAP is an indexing scheme that utilizes 6 indices, one for each possible

ordering of subject, predicate and object. For example, to look up (John,

friendof, ?x), one could either look in the SPO index for “John#friendof#?x”,

or the OPS index for “?x#friendof#John”, etc.

HexTree is a similar scheme that also utilizes 6 indices, one for each

possible pairing of atoms: SO, OS, SP, PS, OP, PO. For a query like (John,

friendof, ?x), (?x, friendof, Tim), the SP index is queried to obtain the result

set for the first SAP, and the PO index is queried for the second SAP. The

two result sets are then joined to get the final result.

The disadvantages of these two schemes is the loss of data locality that

results from having multiple B+ trees, and thus queries may incur extra I/O

costs of having to look in multiple indices [2].

16

3.2.2 TripleT

TripleT (diagrammed in Figure 3.1) is an indexing scheme that uses only

one B+ tree whose leaf nodes represent atoms. Each leaf node holds a pay-

load that is further split into three buckets: subject, predicate, and object.

For example, if the triple (Shakespeare, dc:author, Romeo and Juliet) were

stored into a TripleT index, there would be three leaf nodes in the B+ tree,

“Shakespeare”, “dc:author”, and “Romeo and Juliet”, each of which have a

payload. The triple would exist in the subject bucket of the “Shakespeare”

payload, in the predicate bucket of the “dc:author” payload, and finally in

the object bucket of the “Romeo and Juliet” payload. There is duplication

in this scheme, as each triple appears in three different buckets. However,

the triple can be accessed from any of its atoms through one index lookup.

Additionally, only one B+ tree is necessary to store all of the data.

Because TripleT is designed to be stored on disk, the payloads also have to

be stored on disk. Thus, the buckets themselves may be split up into separate

blocks whose size should be set to fit the filesystem. For TripleT, a traversal

of all triples in a bucket will incur an I/O cost equal to the total number of

blocks needed to store that bucket. This factor become an important when

performing experiments using TripleT.

17

Cat

B+ Tree height: 3

(Cat, has, claws)
(Cat, typeof, mammal)
(Cat, eats, mice)

(None)

(Tim, owns, Cat)
(Mouse, prey_of, Cat)
(Dog, dislikes, Cat)

Subject Bucket Predicate Bucket Object Bucket

Leaf node (has payload)

Internal node (no payload)
TripleT Diagram

Cat Payload

Figure 3.1: TripleT diagram

18

This thesis builds on an implementation of TripleT written in Python

that stores the index in main memory and simulates I/O accesses by keeping

track of I/O operations needed if the index were stored on disk. All I/O

measurements use this simulated metric. A “blockenize” function is used

to calculate the number of blocks necessary to store any particular payload

bucket.

19

Chapter 4

Join Algorithms

One of the most important and useful database operations is the join

operation. In relational databases, this means that multiple tables are joined

together based on some criteria, most often equality, resulting in a subset of

the cartesian product of the participating tables.

In SPARQL, a join occurs when the same variable exists in different SAPs.

In the example of (John, friendof, ?x), (?x, friendof, Tim), ?x exists in both

SAPs and represents an equi-join. Because these joins frequently occur in

SPARQL queries and are costly when processed naively, optimizing them can

yield large performance benefits.

Mishra’s survey paper on relational joins [4] discusses three major algo-

rithms used for equi-joins that look for equality between elements in two

different tables: the nested-loop join, hash join, and sort-merge join. These

joins can also be used for SPARQL queries. Additionally, there exists the

20

index nested-loop join that will be introduced and used in later chapters.

4.1 Nested-loop join

The nested-loop join iterates one relation over another relation in a nested

loop fashion. The I/O cost is #blocks(R1) + ∣R1∣ × #blocks(R2), where

R1 and R2 are the joining relations. This join is easy to implement and

does not require sorted relations to work. However, the complexity makes it

unattractive for joining relations with many triples.

Additionally, because triples to be joined are all contained in physical

blocks, the nested-loop join could exhibit very bad behavior of continually

looking at blocks over again in the case that the inner loop spans multiple

blocks. A simple modification that processes all of R2 for each block of R1

may improve the I/O cost to #blocks(R1) + #blocks(R1) × #blocks(R2).

This variant is also known as the block nested-loop join.

4.2 Hash join

The hash join requires the creation of a hash table for the triples of one rela-

tion, with the key being the atom and the values being the triples containing

that atom. Looking up an atom in the hash table can be achieved in amor-

21

tized O(1) time. To minimize collisions, it is better to hash the triples of the

smaller list. Since all triples in both relations have to be visited, it does not

help to hash the triples of the larger relation.

Once the hash table has been built for the smaller relation, the triples of

the larger relation are iterated and use the hash table to see if they satisfy

the join condition. Each time two triples satisfy the condition, they are both

are added to the result set.

The I/O cost for the hash join is #blocks(R1) + #blocks(R2), where R1

and R2 are the joining relations. All blocks of both relations have to be

visited, so the hash join has a very fixed I/O performance profile.

4.3 Sort-Merge join

The sort-merge join takes advantage of the merge operation, which can be

carried out on two sorted relations with #blocks(R1) + #blocks(R2) I/O

operations, where R1 and R2 are the joining relations. The requirement for

being sorted is extremely important since otherwise it would take additional

CPU time and I/Os to sort the relations. The structure of TripleT allows the

triples of each payload bucket to be sorted on one position: subject, predicate,

or object. Statistics could help determine which position would benefit most

22

for being sorted. If there are many joins on the subject position, then it is

better to have the buckets sorted on the subject position so that a merge

join can be used without additional sorting. If it is found that sort-merge

is much faster than the alternatives, then extra buckets could potentially be

created so that triples are sorted on every position, thus trading index size

for join performance.

Another interesting aspect of the sort-merge join is that unlike the nested-

loop and hash joins, not all blocks in each bucket have to always be visited.

If the merge operation gets to the end of one relation, it can then stop even

if it does not visit the rest of the other relation. Thus, while all the blocks

of one relation always have to be accessed, it is possible to skip blocks of the

other relation.

4.4 Measuring Join Performance

The main performance metric for join algorithms is the number of I/O op-

erations required, since these are almost always the bottleneck and are also

platform-independent. An I/O operation is performed when accessing any

node in the B+ tree. Because the B+ tree is balanced and all payloads are

at the leaf nodes, the I/O cost for looking up any atom is always constant

23

and equal to the height of the B+ tree.

I/O operations are also necessary when traversing payload buckets that

may be stored across multiple blocks to fit all the triples. Thus, common

predicate atoms often take many blocks to store, while most subject and

object atoms are not too common and only require one block to store. This

statistic is considered in later chapters and tabulated in Table 6.2 for the

three datasets.

As discussed previously, the join algorithms usually have to visit every

block of the relations joined on at least once. The exception is the sort-

merge join, which can in some cases finish traversing one relation and thus

stop traversing the other relation. If the other relation had unvisited blocks,

then it is possible to save some I/O operations.

4.4.1 Join CPU Performance on Synthetic Data

Even though I/O performance is usually the better metric for joins, it would

be interesting to see the pure algorithmic performance of the nested-loop,

hash, and sort-merge joins, and also to see if CPU performance could poten-

tially become a bottleneck. Two random sets of triples were created, each

triple populated with a certain number of unique atoms. The atoms were

24

scattered across all positions, which would not be the case for real-world

data; for example, atoms found as predicates rarely also exist as subjects or

objects. Sorting time was included for the sort-merge join experiments, as it

cannot be guaranteed that the data will always be pre-sorted.

The three kinds of joins described in this paper were implemented in

Python. All experiments were run on a MacBook Pro 2.2 GHz with 4GB

RAM and a standard build of Python 2.6.2. The timings were taken using

Python’s timeit module which is designed to profile code.

Unique Atoms Number of Triples Nested-loop Hash Sort-merge

50 10000 39.974s 0.822s 3.187s
50 100000 2201.645s 6.035s 621.417s
500 10000 38.745s 0.164s 2.942s
500 100000 2711.327s 79.355s 638.210s

Table 4.1: Join CPU performance

The nested-loop join exhibits expected super-linear run-time behavior, as

increasing the size of the data by a factor of 10 increased run-time by a factor

of over 35. The hash join performed better than sort-merge join but did not

scale as well to larger synthetic datasets.

This experiment was also performed to ensure that the joins were correctly

implemented as the result sets of the different joins were compared at the

end and were found to be the same.

25

4.4.2 Join I/O and CPU Performance on Datasets

I/O performance is a combination of bucket traversals and index lookups.

The nature of B+ trees makes all data appear at leaf nodes, so the I/O cost

of index lookups for all atoms is the same. However, each atom will have

a different payload with three buckets of varying size, resulting in different

numbers of blocks that have to be traversed. This is how I/O performance

can differ when joining on buckets of different atoms.

To compare the I/O performances of the three different joins, queries of

the form of (a, b, ?v) ∧ (?v, c, d) were performed on the datasets, and I/O

and CPU performance were measured. Here, “a”, “b”, “c”, and “d” represent

arbitrarily picked but fixed atoms.

Nested-loop Join Hash Join Sort-merge Join

Dataset Avg I/O Avg CPU Avg I/O Avg CPU Avg I/O Avg CPU

DBpedia 2.0221 1.832e-5 2.0092 9.732e-6 2.0092 2.246e-5
Uniprot 2.0365 2.011e-5 2.0043 8.848e-6 2.0043 2.037e-5

SP2Bench 2.0503 1.163e-5 2.0503 5.545e-6 2.0503 9.971e-5

Table 4.2: Join CPU and I/O performance (CPU measured in seconds)

The CPU times were all fairly similar, because the buckets in the real

datasets contained fewer triples than the buckets used in the synthetic bench-

mark. As predicted, I/O performance of the nested-loop join was the worst

as it would often have to visit blocks that had been visited before. No I/O

26

difference was found between the hash join and sort-merge join, so the special

case where the sort-merge join could use less I/Os never occurred.

In conclusion, the hash join seems to be the equi-join of choice for our

purposes as it does not require relations to be sorted while still providing

similar CPU and I/O performance compared to the sort-merge join.

27

Chapter 5

Query Optimization

In relational databases, when multiple join conditions exist in a query,

the choice of which condition to check first may significantly affect the per-

formance of the overall query process. Similar decisions and trade-offs exist

for SPARQL queries, where each variable that is shared by a pair of SAPs

represents one join condition.

5.1 Join Ordering

Assuming two equi-join conditions, it would be more efficient to compute the

condition that produces the smaller result set first. This would minimize the

number of checks necessary to ensure the second join condition. This may

be seen in the following simple example.

Consider the BGP: (?x, a, ?y) ∧ (?y, b, ?z) ∧ (?x, c, ?z). To satisfy the

query, the initial join can be performed between any two SAPs. Assume 1000

28

atoms satisfy the join on ?x, 100 atoms satisfy the join on ?y, and 10 atoms

satisfy the join on ?z. If the left SAP and right SAP were joined on ?x first,

the resulting relation with 1000 atoms would then have to be joined with the

middle SAP. If the middle SAP and right SAP were joined on ?z first, the

resulting relation would only have 10 atoms to join with the left SAP. The

final end result for both join orderings would be the same, so performing the

join that produces the smaller result set first is usually best.

5.2 Processing SPARQL Queries with TripleT

One important difference between SPARQL joins using TripleT and tradi-

tional relational joins is that TripleT provides an index for all atoms in the

graph. Thus, any SAP with an atom can be computed efficiently through

the index.

To get a sense of what processing SPARQL queries in TripleT entails and

what kind of query paths are available, an example query will be analyzed.

We first introduce some notations and definitions:

Given a dataset G, let TG denote the TripleT index associated with G,

and let S(G), P (G), O(G) denote the set of subject, predicate, and object

atoms in G respectively. Given an atom “a”, Sa(G) represents the subject

29

bucket of the “a” payload in TG. Similarly, Pa(G) and Oa(G) correspond to

the predicate and object buckets of the “a” payload, respectively.

Consider the BGP: (a, b, ?v) ∧ (?v, c, d), where “a”, “b”, “c” and “d” are

distinct atoms. There are many practical applications for this query form,

such as, “What journal citations does resource ‘Q2P320’ cite?” This query

would match the Uniprot triples shown in Figure 5.1.

@prefix uniprot: <purl.uniprot.org/>.

@prefix w3c: <www.w3.org/1999/02/22-rdf-syntax-ns>.

uniprot:uniprot/Q2P320 uniprot:core/citation uniprot.rdf#_5C0A .

uniprot.rdf#_5C0A, w3c:type, uniprot:core/Journal_Citation .

Figure 5.1: Triples matching (a, b, ?v) ∧ (?v, c, d)

This query is interesting in there are two ways to obtain its answers. One

way, shown in Figure 5.2, is to find the triples that match the atoms of the

left SAP, the triples that match the atoms of the right SAP, and then perform

a join on ?v.

To get the triples that match the left SAP, we could look at TG to obtain

Sa(G), and within those triples, select those that have predicate “b”. The

resulting set would be the triples that match the left SAP. We might first

compute Pb(G) instead, but as Table 2.1 shows, there are typically more

30

unique subject than predicate atoms. Hence, the selectivity in the subject

position is higher, and a smaller set of triples is likely to be obtained from

looking up a subject atom than a predicate atom.

1) Let Left = �pred=b(Sa(G))
2) Let Rigℎt = �pred=c(Od(G))
3) return join(Object–Subject, Left, Rigℎt)
Note: In step 3, “join” can be any of the three algorithms discussed previ-
ously, and the first parameter indicates the join condition to be checked in
Left and Rigℎt.

Figure 5.2: Joining Left and Right SAPs

Another strategy, shown in Figure 5.3, is to find all the triples that match

one SAP and then do an index lookup for each unique atom in the variable

position. This approach is also known as the index nested-loop join. If

the left SAP were chosen, then the unique atoms that appear as objects

of the triples satisfying the left SAP are determined. For each of these

atoms, an index lookup is done and the subject buckets are concatenated

to create an intermediate set of triples. Finally, a join is performed between

the intermediate set of triples and the set of triples that matched the left SAP.

This approach is usually not optimal because more than 2 index lookups are

necessary, but might be reasonable if the atoms in one SAP had large buckets

that would incur high I/O cost to scan through.

31

1) Let Left = �pred=b(Sa(G))
2) Let unique objects = {t[obj] ∣ t ∈ Left}
3) Let Rigℎt = []
4) for obj in unique objects: Rigℎt.append(Sobj(G))
5) return join(Object–Subject, Left, Rigℎt)

Figure 5.3: Index lookup for each unique atom in the variable position

5.3 Discussion

From the above discussion, the following basic query processing strategies

are clear:

1) When processing an SAP with two variables and one atom, use the

index to retrieve the bucket associated with the atom.

2) When processing an SAP with more than one atom, use the index to

retrieve the bucket of the most selective atom. This suggests maintaining a

count of the number of occurrences for each atom, which may be unfeasible

for a large dataset. A reasonable approximation, on the other hand, is to

maintain the number of unique atoms in the subject, predicate and object

positions. The higher the number, the greater the likelihood of that position

having a high selectivity.

Even when more than one join condition exists, observation #1 implies

that efficient processing is achievable as long as at least one atom exists for

each SAP. The most challenging queries are those that contain SAPs with

32

variables in each position. Indeed, such queries may require multiple index

traversals that cannot be determined apriori and may give rise to different

join ordering. Investigating these types of queries is the focus of the next

chapter.

33

Chapter 6

Models and Experiments for

All-Variable SAPs

Consider the BGP with one SAP that contains all variables: (a, ?y, ?x)

∧ (?x, ?y, ?z). The all-variable SAP would match all triples in the dataset

by itself, but the restrictions placed by the first SAP through the “a” atom

will often eliminate a large number of the triples. Assuming we first retrieve

Sa(G) for the left SAP, two reasonable paths to the answer set may be taken:

1) For each atom b in the object position of Sa(G), retrieve Sb(G) and

join with Sa(G) on the variable ?y. Concatenate the results of the joins.

2) For each atom b in the predicate position of Sa(G), retrieve Pb(G) and

join with Sa(G) on the variable ?x. Concatenate the results of the joins.

Formally, these can be expressed as:

Sa(G) ⊳⊲
∪
{Sb(G) ∣ b ∈ �obj(Sa(G))} (6.1)

34

Sa(G) ⊳⊲
∪
{Pb(G) ∣ b ∈ �pred(Sa(G))} (6.2)

To choose correctly between options #1 and #2 requires knowing:

(a) the number of unique atoms in �obj(Sa(G)) and �pred(Sa(G)), and

(b) the size of the bucket Sb(G) or Pb(G) for each b in �obj(Sa(G)) and

�pred(Sa(G)).

The first contributes to the number of I/Os required to find the relevant

buckets for the all-variable SAP, and the second contributes to the number

of I/Os required to join these buckets with Sa(G). The number of I/Os

necessary for a join path can be modeled by Equation 6.3, where � is either

St[obj](G) or Pt[pred](G) for our example.

∑

t∈Sa(G)

(ℎeigℎt(TG) + #blocks(�)) (6.3)

The actual calculation of Equation 6.3 is difficult, however, as the amount

of information that needs to be maintained for (a) and (b) can be very large.

Intuitively, an easy to maintain measure that will give a fairly accurate

indication of the preferred join path is the selectivity values for pairs of

positions, e.g. Subject–Object. This is a function of the number of atoms

that can possibly participate in any pair of positions. The higher the number,

35

Cat

(Cat, has, claws)
(Cat, typeof, mammal)
(Cat, eats, mouse)
(Cat, typeof, pet)

Subject Bucket (Cat, ?y, ?x)(Cat, ?y, ?x)

Unique predicates:
has, typeof, eats

Unique objects:
claws, mammal, mouse, pet

(Cat, has, claws)
(Dog, has, paws)
(Dog, typeof, mammal)
(Cat, typeof, mammal)

(Mouse, typeof, vermin)
(Cat, typeof, pet)
(Cat, eats, mouse)
(Mouse, eats, cheese)

(Cat, has, claws)
(Eagle, has, claws)
(Dog, typeof, mammal)
(Hair, attr_of, mammal)

(Cat, typeof, mammal)
(Cat, eats, mouse)
(Farmer, dislike, mouse)
(Human, own, pet)

(Cat, typeof, pet)
(Friendly, attr_of, pet)

Join Result
(same result for both)

Option #1:
Going through ?y

Option #2:
Going through ?x

Join Result
(same result for both)

Join Join

=

Figure 6.1: Join diagram

36

the lower its selectivity. For instance, Table 2.2 tells us that a Subject–Object

join is less selective than a Predicate–Object join since many more atoms

appear in both positions in the first pair than in the second pair.

We do not consider this measure in our study since it does not provide

particularly useful information for joins on the same position. Instead, we

propose a different approximation based on the following:

(a’) The average number of unique subject, predicate, and object atoms

per subject, predicate and object bucket respectively.

(b’) The average number of blocks per subject, predicate and object

bucket.

These two statistics for the three datasets we use are shown in Tables 6.1

and 6.2 respectively.

Subject Bucket Predicate Bucket Object Bucket

Dataset Uniq
Pred

Uniq
Obj

Uniq
Subj

Uniq
Obj

Uniq
Subj

Uniq
Pred

DBpedia 4.72 5.77 72.39 44.43 2.79 1.40
Uniprot 1.47 1.69 11003 3859 3.39 1.03

SP2Bench 4.99 5.14 2585 1361 1.99 1.01

Table 6.1: Unique atoms per position per bucket

That (a’) and (b’) approximate (a) and (b), respectively, is clear. Using

these statistics, we can estimate the number of I/Os necessary for both op-

tions #1 and #2, and we obtain new formulae for estimating I/Os for options

37

Dataset Avg #blocks(S(G)) Avg #blocks(P (G)) Avg #blocks(S(G))

DBpedia 1.03 2.94 1.04
Uniprot 1.00 159.35 1.02

SP2Bench 1.00 66.90 1.02

Table 6.2: Average Subject, Predicate, Object bucket sizes

#1 and #2 in Equations 6.4 and 6.5 respectively.

Notation: Let A,B ∈ {subj, pred, obj}. We denote
BAa
(G) as the average

number of unique B-atoms for each A-atom in G, and �A(G) as the average

number of blocks for A in G. For instance,
objsubja
(G) is the average number

of unique objects for each subject atom “a”.

objsubja
(G)× �subj(G) (6.4)

predsubja
(G)× �pred(G) (6.5)

The hypothesis is that by using the two statistics described above, we

can predict the join path that uses less I/Os. The following six queries

will be used in our experiments to validate this hypothesis. Note that the

underscores represent a variable which does not participate in the join.

Q1. (a, ?y, ?x) ∧ (?x, ?y,)

Q2. (a, ?y, ?x) ∧ (, ?y, ?x)

38

Q3. (?x, a, ?y) ∧ (?x, , ?y)

Q4. (?x, a, ?y) ∧ (?y, , ?x)

Q5. (?x, ?y, a) ∧ (?x, ?y,)

Q6. (?x, ?y, a) ∧ (, ?y, ?x)

For each query, the predicted number of I/Os required to go through ?x

and I/Os required to go through ?y were calculated using our model. The pre-

dicted difference was also calculated as (predicted ?x IOs− predicted ?y IOs).

500 queries were run for Q1, Q2, Q5 and Q6, and 100 queries were run for

Q3 and Q4 as the latter had less than 100 unique joins for that type of query.

The values of the actual difference between the amount of I/Os going through

?x requires and the amount of I/Os going through ?y requires was recorded

along with the number of “victories” for each variable.

6.1 DBpedia Results

Pred. ?x Pred. ?y Pred Diff. Act. Diff. ?x better ?y better Tie

Q1 29.72 69.38 -39.66 -1448 497 3 0
Q2 30.00 69.38 -39.38 -1218 461 30 9
Q3 372.81 231.04 141.77 -169 48 16 36
Q4 376.43 228.81 147.62 87 18 54 28
Q5 14.37 69.38 -55.01 -567 447 18 35
Q6 14.51 69.38 -54.87 -500 479 12 9

Table 6.3: I/O results for DBpedia

39

The results for DBpedia generally fit the expected outcomes, except for

Q3 where ?y was predicted to do better but ?x did better instead.

What is interesting to note is that the actual difference values were usually

larger than what was calculated from our model based on averages. Also, the

margins of victories in Q3 and Q4 were very close, which suggests that the

model might not be good for predicting I/O performance for these queries

on DBpedia without further tweaking.

6.2 Uniprot Results

Pred. ?x Pred. ?y Pred. Diff. Act. Diff. ?x better ?y better Ties

Q1 8.45 1168.65 -1160 -1699 500 0 0
Q2 8.62 1168.65 -1160 -1620 497 3 0
Q3 55020 19681 35339 62989 22 77 1
Q4 56120 19295 36825 43731 21 75 4
Q5 16.95 1168.65 -1152 -489 496 3 1
Q6 17.29 1168.65 -1151 -491 497 2 1

Table 6.4: I/O results for Uniprot

The Uniprot results correctly predicted the better join path for all queries,

usually by a large margin.

40

Pred. ?x Pred. ?y Pred. Diff. Act. Diff. ?x better ?y better Ties

Q1 25.70 1669 -1643 -2174 500 0 0
Q2 26.21 1669 -1643 -1854 500 0 0
Q3 12925 6941 5984 7960 4 80 16
Q4 13183 6805 6378 8890 1 93 6
Q5 9.95 1669 -1659 -380 499 1 0
Q6 10.15 1669 -1659 -391 499 0 1

Table 6.5: I/O results for SP2Bench

6.3 SP2Bench Results

Finally, the SP2Bench results show similar numbers to Uniprot, and the

statistics correctly predicted the better path for each query by a large margin.

6.4 Variant Query Forms

The models introduced can also be used for variant query forms that involve

three SAPs.

For example, consider the BGP: (a, ?y,) ∧ (, ?y, ?x) ∧ (b, , ?x). While

the form now has three SAPs and two atoms, the join plans available and

number of I/Os necessary are actually very similar to those for our previous

example BGP of (a, ?y, ?x) ∧ (?x, ?y, ?z). The only difference is that after

joining one SAP to the middle SAP, another join has to be done with the

remaining SAP. Our models should be able to use the same method to predict

41

queries of this form.

We use the following two queries for experiments:

Q7. (?x, a,) ∧ (?x, , ?y) ∧ (, b, ?y) — similar to Q3

Q8. (?x, a,) ∧ (?y, , ?x) ∧ (, b, ?y) — similar to Q4

Pred. Diff. Act. Diff. ?x better ?y better Ties

DBPedia Q7 142 -316 60 33 7
DBPedia Q8 148 117 35 58 7
Uniprot Q7 19681 37046 37 63 0
Uniprot Q8 19295 61670 23 76 1

SP2Bench Q7 6941 9435 31 69 0

SP2Bench Q8 6805 8801 41 58 1

Table 6.6: I/O results for Variant Query Form

The results shown in Table 6.6 indicate that while the margins of victory

are not as great, the models still correctly predict the best path the majority

of the time. Q7 for DBpedia gives an unexpected result similar to Q3. The

overall result shows that the models are not only useful for queries with only

two SAPs, but also for variant query forms that have at least one all-variable

SAP.

6.5 Discussion

It is clear that the models accurately predict most of the queries correctly. In

the case of the unexpected result for DBpedia, it is likely that the statistics

42

for the object and subject positions in DBpedia were very similar, which

would make the calculated expected I/Os similar as well. Table 6.1 shows

that for DBpedia, the average number of unique objects per subject bucket

was 5.77, and the average number of unique subjects per object bucket was

2.79. Additionally, the average bucket sizes for both positions were similar.

The corresponding statistics for SP2Bench were 5.14 and 1.99 respectively,

and the same query was correctly predicted. The limitation of our model is

for queries that utilize statistics that have close values.

Note that although the predicted differences and actual differences often

varied greatly, the models still predicted the correct outcome.

43

Chapter 7

Conclusion

We implemented the nested-loop, hash, and sort-merge joins. Synthetic

benchmarks found that the nested-loop join predictably performed much

worse than the other two in terms of CPU performance. The hash join was

about an order of magnitude faster than the sort-merge join when the latter

had to sort the lists. Benchmarks performed on real datasets showed much

smaller differences in CPU performance as there were much fewer triples con-

sidered for the joins. In terms of I/O performance, the nested-loop join was

about 10% worse than the hash join and sort-merge join, which performed

equally.

We analyzed different kinds of SAP patterns found in SPARQL queries

to better understand how to develop a query processing algorithm using

Fletcher and Beck’s TripleT index. To process an SAP with at least one

atom, an index lookup should be performed to obtain the bucket of the atom

44

in the most selective position. To handle all-variable SAPs, we introduced

a model to estimate I/O, apriori, and conducted experiments to verify our

model, which was found to be correct in nearly all cases. The technique is

attractive in that it only requires the maintaining of a few statistics that can

be calculated very efficiently during the index creation process.

For future work, an implementation of TripleT that stores the index on

disk instead of in-memory is necessary to obtain a more accurate picture

of performance. Doing so would allow accurate timing measurements to be

taken instead of having to look at CPU time and I/O accesses separately,

and having to guess at the relationship between the two metrics.

For query optimization, the obvious next step is to experiment with larger

datasets using a variety of queries and eventually develop a query optimizer

that can process more complicated SPARQL queries. For example, consider

the SP2Bench benchmark 5b query [8] shown in Figure 7.1. The BGP form

of this query is:

(?v, a, b) ∧ (?v, c, ?x) ∧ (?y, a, d) ∧ (?y, c, ?x) ∧ (?x, e,)

It was reported that all current SPARQL engines performed poorly on

this query [6]. A query with this many variables should greatly benefit from

having good join ordering.

45

/*

* Return the names of all persons that occur as author

* of at least one inproceeding and at least one article

* (same as (Q5a)).

*/

SELECT DISTINCT ?person ?name

WHERE {

?article rdf:type bench:Article .

?article dc:creator ?person .

?inproc rdf:type bench:Inproceedings .

?inproc dc:creator ?person .

?person foaf:name ?name

}

Figure 7.1: SP2Bench 5b query

Additional future work for TripleT will be to investigate compression

schemes to reduce the size of the index. Development of a working imple-

mentation that can answer basic SPARQL queries would be useful so that

existing benchmarks like SP2Bench [8] could be used to compare TripleT

with other implementations.

Bibliography

[1] DBpedia. The DBpedia Knowledge Base. http://wiki.dbpedia.org/

About, Accessed July 2009.

[2] Fletcher, G. H. L., and Beck, P. W. Scalable indexing of RDF

graphs for efficient join processing. In Proceedings of CIKM (2009),

ACM.

[3] Jena. Jena a Semantic Web framework for Java. http://jena.

sourceforge.net/, Accessed July 2009.

[4] Mishra, P., and Eich, M. H. Join processing in relational databases.

ACM Comput. Surv. 24, 1 (1992), 63–113.

[5] Neumann, T., and Weikum, G. RDF-3X: a RISC-style engine for

RDF. PVLDB 1, 1 (2008), 647–659.

46

47

[6] Schmidt, M., Hornung, T., Lausen, G., and Pinkel, C.

SP2Bench: A SPARQL performance benchmark. In ICDE (2009),

pp. 222–233.

[7] Sesame. RDF schema querying and storage. www.openrdf.org/, Ac-

cessed July 2009.

[8] SP2Bench. The SP2Bench SPARQL performance benchmark. http:

//dbis.informatik.uni-freiburg.de/index.php?project=SP2B,

Accessed July 2009.

[9] Stocker, M., Seaborne, A., Bernstein, A., Kiefer, C., and

Reynolds, D. SPARQL basic graph pattern optimization using selec-

tivity estimation. In WWW (2008), pp. 595–604.

[10] UniProt. The UniProt Knowledgebase. http://www.uniprot.org/

help/uniprotkb, Accessed July 2009.

[11] Virtuoso. Virtuoso RDF. http://www.openlinksw.com/dataspace/

dav/wiki/Main/VOSRDF, Accessed July 2009.

[12] W3C. RDF primer. http://www.w3.org/TR/rdf-primer/, Accessed

July 2009.

48

[13] W3C. SPARQL query language for RDF. http://www.w3.org/TR/

sparql/, Accessed July 2009.

