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Abstract 
Cellular Transcriptional Profiling Reveals Multiple B Cell Differentiation Branching Points in 

Mus musculus Spleen Exposed to Lipopolysaccharides (LPS) and NP-4-Hydroxy-3- 
Nitrophenylacetic (NPF) 

By 

Ranjit Pelia 

Background: Environmental exposure of toxicants has been shown to be detrimental to health. 
The humoral immune response is an integral component of pathogen recognition and 
elimination. In which, B cell production is increased and cascades into antibody secreting cells 
differentiation. These cells are one of the primary defense mechanisms of multicellular 
organisms, as they can bind, eliminate, decoy, or neutralize the pathogen. There is a paucity in 
our current understanding of immunological dynamics at a cellular level. The duality of single- 
cell RNA sequencing (scRNA-seq) and mouse immunity models have enabled researchers to 
decipher genetic, epigenetic, and transcriptomic mechanisms of action on a molecular scale. 

 
Objective: The transcriptional program driving immune responses and the 
humoral homeostasis dynamics remains elusive. We aimed to characterize transcriptional 
profiling during B-cell differentiation into antibody secreting cells (ASC) using scRNA-seq in 
order to gain deeper insight into the mechanisms of immunological regulation. 

 
Method: Using the datasets provided by the Scharer lab and published in Nature 
Communications (2020:11:3989), we employed integrated bioinformatics to assess mouse (Mus 
musculus) spleen exposed to Lipopolysaccharides (LPS), n=2, and NP-4-Hydroxy-3- 
Nitrophenylacetic (NPF), n=2, and sequenced using 10X 3-prime scRNA-seq. R packages 
Seurat, VelocytoR, and the methods described in Nature by Le Manno et al (2018) were utilized 
for quality control, cell type clustering, and differential kinetics analysis. Lastly, Python based 
ScVelo was performed on the integrated LPS and NPF samples to calculate latent time, RNA 
velocity, and gene-cell-type specific trajectories. 

 
Results: Upon sequencing, the LPS samples contained 3312 and 3164 cells and NPF samples 
contained 1893 and 3330 cells. Upon integration, LPS and NPF were clustered and annotated 
into three main groups: activated B cells, naïve B cells, and ASCs. Using the ROC for 
differential expression analysis, there were 4974 in LPS and 2037 in NPF genes specific for the 
overall subclusters: naïve B, activated B non-ASC, activated B ASC, non-ASC, and ASCs. 
Trajectory analysis reveals two distinct B-cell lineages in both LPS and NPF. Latent time 
showed ASCs to be at a terminal state where B-cells were shown to be proliferating. 

 
Conclusion: Here, we characterized the transcriptomic nature of immune cells in response to 
pathogens and the consequential differentiation lineages of B-cells. Our results demonstrate 
insights into the dynamics of immune response and may be translational in the realms of 
autoimmune illnesses, environmental detriments to health, and our global understanding of 
pathogen antagonization. 



 

Cellular Transcriptional Profiling reveals multiple B Cell Differentiation Branching Points in 
Mus musculus spleen exposed to Lipopolysaccharides (LPS) and NP-4-Hydroxy-3- 

Nitrophenylacetic (NPF) 
 
 

By 
 
 

Ranjit Pelia 
 
 

Bachelor of Science 
Emory University 

2018 
 
 

Thesis Committee Chair: Qiang Zhang, M.D, Ph.D. 
 
 
 
 
 

A thesis submitted to the Faculty of the 
Rollins School of Public Health of Emory University 

in partial fulfillment of the requirements for the degree of 
Master in Public Health 

in Global and Environmental Health 
2022 



 

 

Acknowledgements 
 

I am thankful for Emory University and Rollins School of Public Health in providing 
me with guidance, resources, and the tools to conduct research in the betterment of public 
health and global environment. Specifically, Dr. Qiang Zhang, for demonstrating confidence 
in my capabilities and allowing me the opportunity to conduct transcriptomic research. 

 
My work would not have been possible without the support of Dr. Chris Scharer and 

his team. They allowed me the privilege to use their single-cell RNAseq dataset, alongside 
sharing scripts, tutorials, and other helpful advice. Also would like to thank Yajun He for 
her advice and programming support in conducting single-cell analysis. 

 
With my deepest gratitude to Dr. Michael Caudle, Dr. Arri Eisen, Dr. Subra 

Kugathasan, Dr. Jason Matthews, and Dr. Suresh Venkateswaran for their continuous 
guidance. Special thank you to Ariadne Swichtenberg, my journey at Rollins would not have 
been possible without you. 

 



Table of Contents 

INTRODUCTION ............................................................................................................................................... 1 

METHODS ........................................................................................................................................................ 2 

10X 3’(PRIME) SCRNASEQ OF LPS AND NPF STIMULATED MUS MUSCULUS SPLEEN TISSUE: ................................. 2 

LOOM FORMATTING AND GENERATION: ........................................................................................................... 2 

QUALITY CONTROL AND BATCH EFFECTS ASSESSMENT: ..................................................................................... 2 

STATISTICAL PARAMETERS FOR INTEGRATION:.................................................................................................. 3 

RESULTS .......................................................................................................................................................... 3 

INTEGRATIVE CLUSTERING: .............................................................................................................................. 3 

CELL TYPE ANNOTATIONS: ................................................................................................................................ 3 

RNA VELOCITY AND PSEUDOTIME ANALYSIS: .................................................................................................... 3 

BRANCHING POINTS AND TRAJECTORIES: ......................................................................................................... 4 

DISCUSSION: .................................................................................................................................................... 4 

TABLES ............................................................................................................................................................ 6 

TABLE 1: NUMBER OF GENES AND CELLS FOR EACH MOUSE SPLEEN SAMPLE ...................................................... 6 

TABLE 2: PROPORTION OF MTRNA, MITOCHONDRIAL RNA PERCENTAGES PER CELL PER SAMPLE ........................ 6 

TABLE 3: PRE- AND POST-FILTERING BASED ON MTRNA PERCENTAGES .............................................................. 6 

TABLE 4: CELL CYCLE SPECIFIC ANNOTATION OF PROBABILITY BASED ON G1, G2, AND S SCORES ......................... 6 

TABLE 5: NUMBER OF CELLS PER SAMPLE, AFTER FINAL QUALITY CONTROL AND FILTERING ................................ 6 

FIGURES .......................................................................................................................................................... 7 

FIGURE 1: ANALYTICAL WORKFLOW OF LPS (N=2) AND NPF (N=2) SCRNASEQ DATASETS WITH CONSIDERATION 
FOR SAMPLE VS TOXICANT SPECIFICITY. THE DYNAMIC HOMEOSTATIC GRAPH WITH T=TIME ON THE X-AXIS 
DENOTES VARIABLE STATES OF A CELL WITH ADAPTIVE GENE EXPRESSION. ....................................................... 7 

FIGURE 2: UMI OR TOTAL NUMBER OF GENES FOR A GIVEN CELL FOR EACH SAMPLE ARE SHOWN ABOVE. LPS 1 . 8 

(A) AND LPS 2 (C) SHOWED EXTREMELY CONSISTENT VALUES. WHEREAS, NPF 1 (B) AND NPF 2 (D) WERE SLIGHTLY 
INCONSISTENT DUE TO VARYING DEGREES IN LOWER RANGES OF EXPRESSION. ................................................ 8 

FIGURE 3: THE RATIO OF UNSPLICED TO SPLICED READS ARE SHOWN FOR EACH SAMPLE, LPS 1 ~ 0.18 (A), LPS 2 ~ 
0.18 (B), NPF 1 ~ 0.22 (C), AND NPF 2 ~ 0.21 (D). THE GREEN LABELED DIGIT IS THE UNSPLICED- AND THE RED 
LABELED DIGIT IS THE SPLICED AVERAGE RANK OF CELLS WITH THE X AXIS REPRESENTING THE TOTAL UMI 
COUNTS. .......................................................................................................................................................... 8 

FIGURE 4: CELL CYCLE SCORING, COMPONENT OF SEURAT WAS USED FOR CELL CYCLE SPECIFIC SCORING FOR G1, 
G2/M, AND S PHASES FOR LPS 1 (A), LPS 2 (B), NPF 1 (C), AND NPF 2 (D). ........................................................... 9 

FIGURE 5: INTEGRATED LPS (A) AND NPF (B) SCALES OF TRANSCRIPTION RATE, SPLICING RATE, AND 
DEGRADATION RATE FOR ALL CELLS IS SHOWN. ................................................................................................ 9 

FIGURE 6: VISUALIZATION OF LPS AND NPF CLUSTERS THROUGH UMAP (A, C) AND TSNE (B, D) PERFORMED BY 
LOUVAIN ALGORITHM WITH MULTIPLE LEVEL REFINEMENT COMPRISED OF N=20 PRINCIPAL COMPONENTS 
FROM 1 TO 20. ............................................................................................................................................... 10 



FIGURE 7: PRINCIPAL COMPONENTS 1 AND 2 SHOWING ALL OF THE CELLS IN LPS (A) AND NPF (B) CLUSTERED 
BASED ON CELL TYPE ANNOTATIONS. LPS DATASET OF N=5373 CELLS SHOWED N=3312 NAÏVE B, N=1335 ACTB 
NON-ASC, N=142 ACTB ASC, N=355 ASC, AND N=228 NON-ASC. NPF DATASET OF N=4229 CELLS COMPRISED OF 
N=2304 NAÏVE B, N=339 ACTB NON-ASC N=385 ACTB ASC, , N=838 NON-ASC, AND N=363 ASC. ........................ 10 

FIGURE 8: UMAP AND TSNE SHOWING ALL OF THE CELLS IN LPS (A,C) AND NPF (B,D) CLUSTERED BASED ON CELL 
TYPE ANNOTATIONS. LPS DATASET OF N=5373 CELLS SHOWED N=3312 NAÏVE B, N=1335 ACTB NON-ASC, N=355 
ASC, N=228 NON-ASC, AND N=142 ACTB ASC. NPF DATASET OF N=4229 CELLS COMPRISED OF N=2304 NAÏVE B, 
N=838 NON ASC, N=385 ACTB ASC, N=339 ACTB NON ASC, AND N=363 ASC. .................................................... 11 

FIGURE 9: RNA VELOCITY OF LPS DATASET N=5373 CELLS CONDUCTED WITH DYNAMICAL BAYESIAN MODEL 
INFERENCES USING PRINCIPAL COMPONENTS 1 TO 20. THE LEFT IMAGE DISPLAYS THE TSNE AND RIGHT SHOWS 
UMAP OF PROBABILISTIC TRAJECTORIES. ........................................................................................................ 11 

FIGURE 10: RNA VELOCITY OF NPF DATASET N=4229 CELLS CONDUCTED WITH DYNAMICAL BAYESIAN MODEL 
INFERENCES USING PRINCIPAL COMPONENTS 1 TO 20. THE LEFT IMAGE DISPLAYS THE TSNE AND RIGHT SHOWS 
UMAP OF PROBABILISTIC TRAJECTORIES. ........................................................................................................ 12 

FIGURE 11: LPS AND NPF TSNE BASED VELOCITY LENGTH (A, C) AND THE CONFIDENCE (B,D) OF THE VELOCITIES 
PER CELL GIVEN ON A PROBABILISTIC SCALE.................................................................................................... 12 

FIGURE 12: LPS AND NPF UMAP BASED VELOCITY LENGTH (A, C) AND THE CONFIDENCE (B,D) OF THE VELOCITIES 
PER CELL GIVEN ON A PROBABILISTIC SCALE. .................................................................................................. 13 

FIGURE 13: DIFFUSION PSEUDOTIME OF LPS, N=4229 CELLS OVERLAYED ONTO TSNE (A). PARTITION-BASED 
GRAPHICAL ABSTRACTION (PAGA) OF LPS TSNE (B) SHOWS BINARY LINEAGES FROM NAÏVE B TO ASC CELLS OR 
ACTIVATED B CELLS. ....................................................................................................................................... 13 

FIGURE 14: DIFFUSION PSEUDOTIME OF NPF, N=5373 CELLS OVERLAYED ONTO TSNE (A). PARTITION-BASED 
GRAPHICAL ABSTRACTION (PAGA) OF NPF TSNE (B) SHOWS BINARY LINEAGES FROM NAÏVE B TO ASC OR 
ACTIVATED B CELLS. ....................................................................................................................................... 14 

BIBLIOGRAPHY ............................................................................................................................................... 15 

 

 



 

 

1 

Introduction 
The mammalian immune system is characterized into adaptive and innate immunities. An 

integral component of the adaptive network is the humoral immune response, a dynamic system 
maintaining homeostasis and modulating controlled immune response1. The fundamental 
principles underlying biological systems reaction to external stimuli have been highlighted by the 
works of Ehrlich, Kitasato, Pasteur, von Behring, and others2. Generally, in reaction to external 
stimuli or foreign invaders, a plethora of naturally occurring antibodies, pentraxins, and other 
gene-regulatory cascades are produced3. There are three main types of B cells involved in the 
humoral immune response; naïve B (nB), activated B (actB), and antibody secreting cells 
(ASCs). Upon stimulation, B cells either naïve or memory-B, progress to become actB or 
directly differentiate into ASCs4. Although much is known about the systems immunology, the 
cellular, molecular, and transcriptomic layers remain undeciphered. 

In complex organisms, B-cell differentiation is a quintessential part of pathogen 
recognition and appropriate immunological regulation. In the context of humans, early B-cells 
are generated by the hematopoietic stem cells and depart the bone marrow, in one of its various 
forms: lymphoid progenitor cell, pro-B cell, pre-B cell, or immature B cell5. In some instances, B 
cells rapidly differentiate into ASCs. There are a multitude of factors that may affect an 
organism’s capacity, extent, and diversity of B-cell generation throughout a lifetime. Ex-vivo 
experiments using fluorescence activated cell sorting (FACS), mass cytometry, and 
computational tools, have shown putative B-lineage cell trajectories in both human and mouse 
models6. Specifically, the underlying mechanisms of molecular cellular programming taking 
place during the germinal center reaction and the consequences thereof have been thoroughly 
investigated.7 Nonetheless, there is a paucity in our understanding of pre-germinal center 
responses and the cellular reprogramming occurring to prime an immune response. 

The duality of Mus musculus models and scRNAseq technology has demonstrated 
insightful capabilities in deciphering transcriptomic signatures at a molecular, gene-by-gene, 
level. Although we may not be able to exhibit all the complexities of humoral immune responses 
through stimulation, we can use known toxicants to elicit and observe these behaviors. 
Specifically, lipopolysaccharides (LPS) and NP-4-Hydroxy-3-Nitrophenylacetic (NPF) are 
known to induce distinct cytokine releases thus signaling inflammation8. In mammals, these 
toxicants lead to a very specific pathogen-associated molecular pattern. Using scRNA-seq, the 
underlying transcriptional levels of RNAs, or genes, may be reflective of the defensive innate 
immune responses9. 

Previously, Scharer et al10 reported on B cell differentiation division kinetics, in-vivo, by 
identifying molecular trajectories of B cell fate and plasma or ASC production. They used an 
adoptive mouse model system with CTV-labeled Cd19Cre/+ Prdm1fl/fl (BcKO) or Prdm1fl/fl, as 
control, B cells from spleen region. These captured B cells were stimulated with LPS 
demonstrated consistent distributions of divisions, compared with Control B cells. To assess the 
transcriptomic nature of these cells, they were FACS isolated and sequenced with scRNAseq10. 
Here, we build upon these results by using the LPS scRNAseq dataset (n=2), in combination 
with NPF scRNAseq data (n=2) of mouse splenic tissue to characterize potential transcriptomic 
programming occurring upon B-cell activation and consequential differentiation lineages. 
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Methods 
 
10X 3’(prime) scRNAseq of LPS and NPF stimulated Mus musculus spleen tissue: 

Cells were FACS sorted from mouse spleen tissue exposed to LPS and NPF by Scharer et 
al group at Emory University School of Medicine10. Sequencing of these captured cells was 
conducted using 10X Genomics 3-prime platform with an estimated n=17,400 cells as input for 
GEM generation and library preparation11. The results were processed into Illumina BCL files to 
be mapped to the mm10 genome using CellRanger v.2.1.112. The methods were consistent for all 
n=4 samples to mitigate batch effects. 

 
Loom Formatting and Generation: 

The output files from CellRanger were converted into Loom files, to analyze 
transcriptomic changes by comparing spliced and unspliced reads of genes. This was performed 
by using Velocyto13 in Linux. The original script was provided by Yajun He and was modified to 
incorporate the NPF samples, alongside the LPS samples. The sequenced and aligned FAST-Q 
files were analyzed for further quality control. Our generalized analytical framework is shown in 
Figure 1. 

 
Quality Control and Batch Effects Assessment: 

We used R v.3.7.1 and Python v.3.1 to assess the number of reads sequenced and aligned 
and the abundance of those gene transcripts to confer biological plausibility. The standard Seurat 
(v.3.2.2) quality control pipeline was optimized and conducted for each sample individually14. 
Upon sequencing and prior to quality control, there were n=3407, 3336, 1941, and 3394 cells 
with n=12892, 12722, 11754, and 12865 genes being expressed with a minimum average of n=1 
for LPS 1, LPS 2, NPF 1, and NPF 2, respectively (Table 1). The samples showed consistent 
levels of gene for a given cell (Figure 2). To consider any cells that may be undergoing apoptosis 
or serving as possible confounders, we filtered out cells with mitochondrial (mtRNA) 
percentages of 25% or higher (Table 2). This resulted in our filtered dataset of n=3312, 3164, 
1893, and 3330 cells for LPS 1, LPS 2, NPF 1, and NPF 2, respectively (Table 3). 

In dealing with 3-prime 10X scRNAseq datasets, it is vital to consider the spliced and 
unspliced assays or RNA gene expression generated by CellRanger, as only one may be chosen 
for downstream analysis. Previous literature suggests this ratio of unspliced to spliced to be 
roughly 20%13. We used an optimized version of DropletUtils15 to assess the quality of our 
transcriptomic data. Our datasets showed LPS 1 ~ 0.18 (Figure 3a), LPS 2 ~ 0.18 (Figure 3b), 
NPF 1 ~ 0.22 (Figure 3c), and NPF 2 ~ 0.21 (Figure 3d) thus representing a well-captured cohort 
to be processed further. The datasets were then normalized using log normalization, scaled with 
scale factor set to 10,000, and then the natural log was taken to perform principal component 
analysis (PCA). Each sample has its unique gene expression signature; therefore, a set of 
principal components (PCs) need to be chosen for each sample that capture its true biological 
transcriptome before integration. Cell cycle genes may influence these principal components and 
sway away from our genes of interest, i.e., immunologically related ones. Cell Cycle Scoring, a 
feature of Seurat was used for cell cycle specific assessments, based on pre-defined lists of genes 
for each state14. We assessed for G1, G2/M, and S cell cycle states for each sample (Table 4). 
There were consistent proportions of G1 and G2/M for both LPS 1 (Figure 4a), LPS 2 (Figure 
4b), NPF 1 (Figure 4c), and NPF 2 (Figure 4d). 
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Statistical Parameters for Integration: 

To consolidate our datasets, the two LPS samples were integrated into one LPS and the 
two NPF samples were also integrated into one NPF. We did not combine all four samples into 
one as the quality control showed varying degrees of transcription rate and UMI ranks for LPS to 
be starkly different to NPF, thus this may lead to potential confounders or biological 
misinterpretation. SCTransform16 algorithms were used for both LPS and NPF with specific 
parameters. For LPS, we integrated LPS 1 (n=2795 cells) and LPS 2 (n=2384 cells) using 
dimensions 1 to 20, canonical correlation analysis (CCA) for neighbors’ identification, and 
reliability-aware network modelling (RANN) for final anchoring. Clustering of the anchored 
dataset was performed by Louvain algorithm with multilevel refinement17. Likewise, NPF 1 
(n=1459 cells) and NPF 2 (n=2171 cells) were anchored with CCA and RANN using dimensions 
1 to 20. 

 
Results 

Integrative Clustering: Clustering was performed on the integrated LPS and NPF Seurat 
objects which contained combined cells of n=5026, n=3630, respectively. Using PCs 1 to 20, 
we visualized cell clustering with UMAP and TSNE showing n=12 clusters for LPS (Figure 6a, 
b) and n=11 clusters for NPF (Figure 6c, d). These showed the capability of cells to be assigned 
to similar topological groups denoting similar types, quantities, and varieties of mRNAs. 

 
Cell Type Annotations: Scharer et al., provided markers for commonly known cell types; naïve 
B, activated B, and ASCs. Acknowledging that most of this data has been annotated previously 
by Scharer et al., we sequestered the n=12 clusters in LPS and n=11 clusters in NPF into 5 main 
groups: Naïve B, Activated B Non-ASC Destined, Activated B ASC Destined, Antibody 
Secreting Cells, and Non-ASC Cells. The genes: Ebfl1 (+), Pax5 (+), Cd19 (+), Zbtb32 (~+), and 
Ezh2 (-) were denoted for Naïve B cells. For activated B non-ASC positive gene expression of 
Sell (+), Ezh2 (~+), Zbtb32 (+), and Tbx21 (+) were tested. Whereas, for activated B ASC 
categorization Srm (+), Ezh2 (+), Irf4(+), Batf (+), Zbtb32 (+), Tbx21 (~+), and Sell (~ -/ ~+) 
were used. Advanced and non-advanced antibody secreting cells were grouped due to positive 
expression of Sdc1 (+), Srm (+), Ezh2 (+), Xbp1 (+), Jchain (+) and negative expression of Pax5 
(-), Sell (-), and Spib (-). Lastly, non-antibody secreting cells (non-ASC) were grouped based on 
four positive markers Sell (+), Zbtb32 (+), Ezh2 (+), and Tbx21 (+). 
Using these markers, our annotated LPS dataset showed n=3312 naïve B, n=1335 ActB Non- 
ASC, n=355 Asc, n=228 Non-ASC, and n=142 ActB ASC. PC1 and PC2 (Figure 7a) showed 
separation by annotated cell types thus providing confidence in variance-driven biology 
clustering (Figure 7a). Likewise, PC 1 vs PC2 showed cell type clustering of NPF dataset 
n=4229 cells comprised of n=2304 naïve B, n=838 Non-ASC, n=385 ActB ASC, n=339 ActB 
Non ASC, and n=363 ASC (Figure 7b). The proportions of cell types were consistent amongst 
both LPS and NPF with naïve B having the greatest proportion and ASC have the least. Both the 
TSNE and UMAP showed ASC to be topologically farthest from all the other cells thus 
representing gene variance differences for LPS (Figure 8a,c) and NPF (Figure 8b,d). 

 
RNA Velocity and Pseudotime Analysis: Using a principled probabilistic model, accompanied 
with Bayesian inferences, variation in temporal dimensions may be calculated with static data, 
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deemed pseudotime18. Our parameters for both LPS and NPF were consistent for conducting 
RNA velocity analysis using ScVelo19 with PCs 1 to 20 and a Dynamical Inference model. Here, 
for a given gene, the differentiation rate of unspliced to spliced ratios is used for calculating 
differential kinetics per cell. The trajectories implied the cells in LPS to be migrating from Naïve 
B to two different lineages (Figure 9a, b). Similarly, we also observed the NPF cells, with 
increased resolution due to more defined topological patterns, to be probabilistically 
differentiating from Naïve B to binary differentiation points (Figure 10a, b). As expected, we 
observe the same lineage differentiation patterns of Naïve B cells becoming A) directly antibody 
secreting cells, B) activated B ASC destined, or C) activated B non-ASC destined. 

 
Branching Points and Trajectories: To further understand the Bayesian inference-based 
RNA velocity modeling of LPS and NPF, we examined the velocity vector’s length and 
statistical confidence. The length of the velocity vectors represents speed or rate of 
differentiation. The confidence is calculated using correlations of a given cell to nearby cells 
by comparing velocities. Interestingly, we observe cell type specific color mapping of both 
length and confidence in the TSNE LPS (Figure 11a, c) and TSNE NPF (Figure 11 b, d). This 
is further conveyed onto the UMAP for LPS (Figure 12a, c) and NPF (Figure 12b, d), which 
often is performed in conjunction to observe any discrepancies. We observed ASCs to have 
the highest confidence and length, implying rapid differentiation rate, in both LPS and NPF. 
Naïve B cells were the most diffusive and activated B ASC and non-ASC were in between 
ASC and Naïve, reflective of known biology. 

Lastly, we tested our analysis on a holistic perspective by conducting partition-based 
graph abstraction (PAGA) trajectory analysis using the consolidated, annotated, LPS and NPF 
datasets20. PAGA incorporates diffusion pseudotime (DPT) into its trajectory mapping. DPT is a 
reconstruction of the developmental differential of cells through diffusion-like random walks21. 
Using principal components 1 to 20, we observed antibody secreting cells and activated B cells 
with ASC destiny to exemplify the highest pseudotime in LPS (Figure 13a) and NPF (Figure 
14a). One of the stark differences observed between LPS and NPF was in the PAGA model 
having greater decoherence or chaotic nature in NPF. The LPS nodes show a clear, distinct, 
transition of either A) naïve B cells becoming activated B and then into antibody secreting cells 
or B) naïve B cells becoming activated B non-ASC destined (Figure 13b). Contrast to this 
simplification, the NPF PAGA trajectory nodes showed more lineages (Figure 14b). In which 
activated B cells are proliferating into A) activated B ASC destined, B) activated B to non-ASC 
destined, or C) activated B directly to ASC (Figure 14b). These discrepancies between LPS and 
NPF are more likely attributable to quality control and batch effects than biology due to a stark 
decrease in both quantity of cells captured and the transcriptomic sparsity of the genes within 
those cells. 

 
Discussion: The advancements of technology, coupled with bioinformatics, have allowed 
geneticists and biologists to be able to test, previously questioned or experimentally limited, 
hypothesis. scRNA-seq and mouse models are invaluable in their utility to model and represent 
holistic dynamics of gene expression, specifically mRNAs. Protein level fluctuations have been 
well documented in their utility of determining cell fate, timing, and the resulting cell type 
specificity during varying hallmarks of development22-24. scRNAseq is an important tool for the 
currently occurring paradigm shift of genetic to epigenetic mechanisms of action in the realms of 
medicine, public health, and exposome detriments of environmental-human interactions25. In our 
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results, we characterized the usages of mammalian model systems to examine immunological 
consequences to toxicants, through LPS and NPF. Considering the paucity of lack toxicological- 
based scRNAseq datasets, our Mus musculus scRNAseq from Scharer et al was tested for B-cell 
lineage differentiation with an additional NPF dataset. 

Any dataset comprised of sufficient power will contain dense, sparse, connected, 
disconnected, and ambiguous mathematical constructs, which form complex topology. The 
limitations of scRNAseq, RNA velocity, and differential kinetics are quintessential when 
interpreting the biological plausibility of any sequencing data, results, or inferences20. RNA 
velocity and PAGA, these graphical abstractions are based on topological mapping thus not 
directed by supervised biology. This assumes that gene expression data may be connected due to 
its generation across cells consistently thus will present with some measurable manifolds. It’s 
important to consider the underlying biology plausibility as these systems are dynamically 
adaptive. For example, B-cells are known to be highly proliferative so our results may be 
reflective of inherent biology more so than B-cell lineage differentiation. 

In terms of public health, our work helps build on mammalian and multi-cell organism 
immunological modulations as a consequence of toxicant exposure. Multiple studies have 
examined neurological burdens of disease by environmental toxicants, but fewer studies have 
investigated the role of spleen, wheelhouse of immune cell production26,27. We propose that our 
results showing varying lineages of B-cell differentiation into either non-ASC or ASC destinies 
may reflect the potential of single-cell RNAseq to test toxicant biomonitoring. In which, 
environmental, occupational or lifestyle toxicants are modeled to be used by public health 
experts, policy makers, and to predict illness risk and incidence28. 

In conclusion, our analysis characterizes the transcriptomic nature of immune cells in 
response to a toxicant and the consequential differentiation lineages of B-cells. Our results 
demonstrate insights into the dynamics of immune response pruning and may be translational in 
the realms of autoimmune illnesses, environmental detriments to health, and our global 
understanding of pathogen antagonization.
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Tables 
Table 1: Number of genes and cells for each mouse spleen sample 
 

Sample Cells Features Counts 
Spliced 
median 

Features 
Spliced 
median 

Counts 
Unspliced 

median 

Features 
Unspliced 

median 
LPS 1 3407 12892 7557 1989 1859 1005 
LPS 2 3336 12722 6784 1880 1713 944 
NPF 1 1941 11754 4796 1580 1526 892 
NPF 2 3394 12865 4522 1509 1470 863 

 
 
Table 2: Proportion of mtRNA, mitochondrial RNA percentages per cell per sample 
 

Sample Minimum 1st Quartile Median Mean 3rd Quartile Maximum 
LPS 1 0 0.01258 0.01553 0.03816 0.02054 0.92157 
LPS 2 0 0.01286 0.01615 0.03373 0.02126 0.90833 
NPF 1 0 0.01563 0.02048 0.04095 0.02748 0.87273 
NPF 2 0 0.01414 0.01963 0.03612 0.02616 0.94792 

 
Table 3: Pre- and Post-filtering based on mtRNA percentages 
 

Sample Cells (pre QC) mtRNA > 25% Cells (post QC) 
LPS 1 3407 95 3312 
LPS 2 3336 62 3164 
NPF 1 1941 48 1893 
NPF 2 3394 64 3330 

 
 
Table 4: Cell Cycle specific annotation of probability based on G1, G2, and S scores 
 

Sample Cells Features G1 G2 S 
LPS 1 3312 12892 1971 615 726 
LPS 2 3164 12722 1880 621 561 
NPF 1 1893 11754 1368 248 277 
NPF 2 3330 12865 2220 609 501 

 
 
Table 5: Number of Cells per sample, after final quality control and filtering 
 

Sample Cells 
LPS 1 2642 
LPS 2 2384 

NPF 1 1459 
NPF 2 2171 
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Figure 1: Analytical workflow of LPS (n=2) and NPF (n=2) scRNAseq datasets with 
consideration for sample vs toxicant specificity. The dynamic homeostatic graph with t=time on 
the x-axis denotes variable states of a cell with adaptive gene expression. 
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c 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: UMI or total number of genes for a given cell for each sample are shown above. LPS 1 
(a) and LPS 2 (c) showed extremely consistent values. Whereas, NPF 1 (b) and NPF 2 (d) were 
slightly inconsistent due to varying degrees in lower ranges of expression. 
 

a b 
 
 
 
 
 
 
 
 
 

c d 
 
 
 
 
 
 
 
 
 
 
Figure 3: The ratio of unspliced to spliced reads are shown for each sample, LPS 1 ~ 0.18 (a), 
LPS 2 ~ 0.18 (b), NPF 1 ~ 0.22 (c), and NPF 2 ~ 0.21 (d). The green labeled digit is the 
unspliced- and the red labeled digit is the spliced average rank of cells with the x axis 
representing the total UMI counts. 
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Figure 4: Cell Cycle Scoring, component of Seurat was used for cell cycle specific scoring for G1, 
G2/M, and S phases for LPS 1 (a), LPS 2 (b), NPF 1 (c), and NPF 2 (d). 
 
 

a LPS 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Integrated LPS (a) and NPF (b) scales of transcription rate, splicing rate, and 
degradation rate for all cells is shown. 
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c 
 
 
 
 
 
 
 
 
 
 
Figure 6: Visualization of LPS and NPF clusters through UMAP (a, c) and TSNE (b, d) 
performed by Louvain algorithm with multiple level refinement comprised of n=20 principal 
components from 1 to 20. 
 
 

a b 

Figure 7: Principal components 1 and 2 showing all of the cells in LPS (a) and NPF (b) clustered 
based on cell type annotations. LPS dataset of n=5373 cells showed n=3312 naïve B, n=1335 
ActB Non-Asc, n=142 ActB Asc, n=355 Asc, and n=228 Non-Asc. NPF dataset of n=4229 cells 
comprised of n=2304 naïve B, n=339 ActB Non-Asc n=385 ActB Asc, , n=838 Non-Asc, and 
n=363 Asc. 
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Figure 8: UMAP and TSNE showing all of the cells in LPS (a,c) and NPF (b,d) clustered based 
on cell type annotations. LPS dataset of n=5373 cells showed n=3312 naïve B, n=1335 ActB 
Non-Asc, n=355 Asc, n=228 Non-Asc, and n=142 ActB Asc. NPF dataset of n=4229 cells 
comprised of n=2304 naïve B, n=838 Non Asc, n=385 ActB Asc, n=339 ActB Non Asc, and 
n=363 Asc. 
 
 
 
 
 
 
 

Figure 9: RNA velocity of LPS dataset n=5373 cells conducted with Dynamical Bayesian model 
inferences using principal components 1 to 20. The left image displays the TSNE and right 
shows UMAP of probabilistic trajectories. 
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Figure 10: RNA velocity of NPF dataset n=4229 cells conducted with Dynamical Bayesian 
model inferences using principal components 1 to 20. The left image displays the TSNE and 
right shows UMAP of probabilistic trajectories. 
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Figure 11: LPS and NPF TSNE based velocity length (a, c) and the confidence (b,d) of the 
velocities per cell given on a probabilistic scale. 
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a b 
 
 
 
 
 
 
 
 
 
 
 

c d 
 
 
 
 
 
 
 
 
 
 
 
Figure 12: LPS and NPF UMAP based velocity length (a, c) and the confidence (b,d) of the 
velocities per cell given on a probabilistic scale. 
 
 
 

a 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 13: Diffusion pseudotime of LPS, n=4229 cells overlayed onto TSNE (a). Partition-based 
graphical abstraction (PAGA) of LPS TSNE (b) shows binary lineages from Naïve B to ASC 
cells or Activated B Cells. 
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Figure 14: Diffusion pseudotime of NPF, n=5373 cells overlayed onto TSNE (a). Partition-based 
graphical abstraction (PAGA) of NPF TSNE (b) shows binary lineages from Naïve B to ASC or 
Activated B Cells. 

  



 

 

15 

Bibliography 
 

1. Maloney, B.E., Perera, K.D., Saunders, D.R.D., Shadipeni, N. & Fleming, S.D. 
Interactions of viruses and the humoral innate immune response. Clin Immunol 212, 
108351 (2020). 

2. Silverstein, A.M. & Bialasiewicz, A.A. History of immunology. A history of theories of 
acquired immunity. Cell Immunol 51, 151-67 (1980). 

3. Shishido, S.N., Varahan, S., Yuan, K., Li, X. & Fleming, S.D. Humoral innate immune 
response and disease. Clin Immunol 144, 142-58 (2012). 

4. Cancro, M.P. & Tomayko, M.M. Memory B cells and plasma cells: The differentiative 
continuum of humoral immunity. Immunol Rev 303, 72-82 (2021). 

5. Jaitin, D.A. et al. Massively parallel single-cell RNA-seq for marker-free decomposition 
of tissues into cell types. Science 343, 776-9 (2014). 

6. Bendall, S.C. et al. Single-cell trajectory detection uncovers progression and regulatory 
coordination in human B cell development. Cell 157, 714-25 (2014). 

7. De Silva, N.S. & Klein, U. Dynamics of B cells in germinal centres. Nat Rev Immunol 
15, 137-48 (2015). 

8. Singh, A.K. & Jiang, Y. Lipopolysaccharide (LPS) induced activation of the immune 
system in control rats and rats chronically exposed to a low level of the 
organothiophosphate insecticide, acephate. Toxicol Ind Health 19, 93-108 (2003). 

9. Matsuura, M. Structural Modifications of Bacterial Lipopolysaccharide that Facilitate 
Gram-Negative Bacteria Evasion of Host Innate Immunity. Front Immunol 4, 109 (2013). 

10. Scharer, C.D. et al. Antibody-secreting cell destiny emerges during the initial stages of 
B-cell activation. Nat Commun 11, 3989 (2020). 

11. Zheng, G.X. et al. Massively parallel digital transcriptional profiling of single cells. Nat 
Commun 8, 14049 (2017). 

12. Satpathy, A.T. et al. Massively parallel single-cell chromatin landscapes of human 
immune cell development and intratumoral T cell exhaustion. Nat Biotechnol 37, 925- 
936 (2019). 

13. La Manno, G. et al. RNA velocity of single cells. Nature 560, 494-498 (2018). 
14. Stuart, T. et al. Comprehensive Integration of Single-Cell Data. Cell 177, 1888-1902 e21 

(2019). 
15. Lun, A.T.L. et al. EmptyDrops: distinguishing cells from empty droplets in droplet-based 

single-cell RNA sequencing data. Genome Biol 20, 63 (2019). 
16. Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA- 

seq data using regularized negative binomial regression. Genome Biol 20, 296 (2019). 
17. Traag, V.A., Waltman, L. & van Eck, N.J. From Louvain to Leiden: guaranteeing well- 

connected communities. Sci Rep 9, 5233 (2019). 
18. Reid, J.E. & Wernisch, L. Pseudotime estimation: deconfounding single cell time series. 

Bioinformatics 32, 2973-80 (2016). 
19. Bergen, V., Lange, M., Peidli, S., Wolf, F.A. & Theis, F.J. Generalizing RNA velocity to 

transient cell states through dynamical modeling. Nat Biotechnol 38, 1408-1414 (2020). 
20. Wolf, F.A. et al. PAGA: graph abstraction reconciles clustering with trajectory inference 

through a topology preserving map of single cells. Genome Biol 20, 59 (2019). 
21. Haghverdi, L., Buttner, M., Wolf, F.A., Buettner, F. & Theis, F.J. Diffusion pseudotime 

robustly reconstructs lineage branching. Nat Methods 13, 845-8 (2016). 



 

 

16 

22. Bhattacharya, S. et al. A bistable switch underlying B-cell differentiation 
and its disruption by the environmental contaminant 2,3,7,8-
tetrachlorodibenzo-p-dioxin. Toxicol Sci 115, 51-65 (2010). 

23. Chen, K.C., Wang, T.Y., Tseng, H.H., Huang, C.Y. & Kao, C.Y. A stochastic 
differential equation model for quantifying transcriptional regulatory network in 
Saccharomyces cerevisiae. Bioinformatics 21, 2883-90 (2005). 

24. Zhang, Q. et al. All-or-none suppression of B cell terminal differentiation by 
environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Appl 
Pharmacol 268, 17-26 (2013). 

25. Zhang, Q. et al. Embracing Systems Toxicology at Single-Cell Resolution. Curr 
Opin Toxicol 16, 49-57 (2019). 

26. Nancharaiah, Y.V., Rajadurai, M. & Venugopalan, V.P. Single cell level 
microalgal ecotoxicity assessment by confocal microscopy and digital image 
analysis. Environ Sci Technol 41, 2617-21 (2007). 

27. Sun, R. et al. Toxicity in hematopoietic stem cells from bone marrow and 
peripheral blood in mice after benzene exposure: Single-cell transcriptome 
sequencing analysis. Ecotoxicol Environ Saf 207, 111490 (2021). 

28. Anderson, D., Dhawan, A. & Laubenthal, J. The Comet Assay in Human Biomonitoring. 
Methods Mol Biol 20 


	Abstract
	Acknowledgements
	dd46b470-f3db-4973-bbc4-82baf7d19733.pdf
	Methods
	10X 3’(prime) scRNAseq of LPS and NPF stimulated Mus musculus spleen tissue:
	Loom Formatting and Generation:
	Quality Control and Batch Effects Assessment:
	Statistical Parameters for Integration:
	Results
	Tables
	Table 1: Number of genes and cells for each mouse spleen sample
	Table 2: Proportion of mtRNA, mitochondrial RNA percentages per cell per sample
	Table 3: Pre- and Post-filtering based on mtRNA percentages
	Table 4: Cell Cycle specific annotation of probability based on G1, G2, and S scores
	Table 5: Number of Cells per sample, after final quality control and filtering
	Figures
	Figure 1: Analytical workflow of LPS (n=2) and NPF (n=2) scRNAseq datasets with consideration for sample vs toxicant specificity. The dynamic homeostatic graph with t=time on the x-axis denotes variable states of a cell with adaptive gene expression.
	Figure 2: UMI or total number of genes for a given cell for each sample are shown above. LPS 1
	(a) and LPS 2 (c) showed extremely consistent values. Whereas, NPF 1 (b) and NPF 2 (d) were slightly inconsistent due to varying degrees in lower ranges of expression.
	Figure 3: The ratio of unspliced to spliced reads are shown for each sample, LPS 1 ~ 0.18 (a), LPS 2 ~ 0.18 (b), NPF 1 ~ 0.22 (c), and NPF 2 ~ 0.21 (d). The green labeled digit is the unspliced- and the red labeled digit is the spliced average rank of...
	Figure 4: Cell Cycle Scoring, component of Seurat was used for cell cycle specific scoring for G1, G2/M, and S phases for LPS 1 (a), LPS 2 (b), NPF 1 (c), and NPF 2 (d).
	Figure 5: Integrated LPS (a) and NPF (b) scales of transcription rate, splicing rate, and degradation rate for all cells is shown.
	Figure 6: Visualization of LPS and NPF clusters through UMAP (a, c) and TSNE (b, d) performed by Louvain algorithm with multiple level refinement comprised of n=20 principal components from 1 to 20.
	Figure 7: Principal components 1 and 2 showing all of the cells in LPS (a) and NPF (b) clustered based on cell type annotations. LPS dataset of n=5373 cells showed n=3312 naïve B, n=1335 ActB Non-Asc, n=142 ActB Asc, n=355 Asc, and n=228 Non-Asc. NPF ...
	Figure 8: UMAP and TSNE showing all of the cells in LPS (a,c) and NPF (b,d) clustered based on cell type annotations. LPS dataset of n=5373 cells showed n=3312 naïve B, n=1335 ActB Non-Asc, n=355 Asc, n=228 Non-Asc, and n=142 ActB Asc. NPF dataset of ...
	Figure 9: RNA velocity of LPS dataset n=5373 cells conducted with Dynamical Bayesian model inferences using principal components 1 to 20. The left image displays the TSNE and right shows UMAP of probabilistic trajectories.
	Figure 10: RNA velocity of NPF dataset n=4229 cells conducted with Dynamical Bayesian model inferences using principal components 1 to 20. The left image displays the TSNE and right shows UMAP of probabilistic trajectories.
	Figure 11: LPS and NPF TSNE based velocity length (a, c) and the confidence (b,d) of the velocities per cell given on a probabilistic scale.
	Figure 12: LPS and NPF UMAP based velocity length (a, c) and the confidence (b,d) of the velocities per cell given on a probabilistic scale.
	Figure 13: Diffusion pseudotime of LPS, n=4229 cells overlayed onto TSNE (a). Partition-based graphical abstraction (PAGA) of LPS TSNE (b) shows binary lineages from Naïve B to ASC cells or Activated B Cells.
	Figure 14: Diffusion pseudotime of NPF, n=5373 cells overlayed onto TSNE (a). Partition-based graphical abstraction (PAGA) of NPF TSNE (b) shows binary lineages from Naïve B to ASC or Activated B Cells.
	Bibliography


