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Abstract

Some Ramsey-type Theorems

By Troy John Retter

We consider three Ramsey-type problems.

Extending the concept of the Ramsey numbers, Erd®s and Rogers intro-

duced the function

fs,tpnq � mintmaxt|W | : W � V pGq and GrW s contains no Ksuu,

where the minimum is taken over allKt-free graphsG of order n. We establish

that for every s ¥ 3 there exist constants c1 and c2 such that fs,s�1pnq ¤
c1plog nqc2?n. We also prove that for all t � 2 ¥ s ¥ 4, there exists a

constant c3 such that fs,tpnq ¤ c3

?
n. In doing so, we give a partial answer

to a question of Erd®s.

To state our second problem, we introduce some notation. For a graph S,

the h-subdivision Sphq is obtained by replacing each edge with a path of

length h�1. For any graph S of maximum degree d on s ¥ s0ph, d, `q vertices,
we show there exists a graph G with plog sq20hs1�1{ph�1q edges having the

following Ramsey property: any coloring of the edges of G with ` colors yields

a monochromatic copy of the subdivided graph Sphq. This result complements

work of Pak regarding `long' subdivisions of bounded degree.

Another question of Erd®s, answered by R�odl and Ruci«ski, asks if for ev-

ery pair of positive integers ` and k, there exist a graph H having girthpHq �
k and the property that every `-coloring of the edges of H yields a monochro-

matic cycle Ck. Here, we establish that such a graph exists with at most

rOpk
2qkOpk

3q vertices, where r � r`pCkq is the ` color Ramsey number for the

cycle Ck. We also consider two closely related problems.
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Chapter 1

Introduction

1.1 Graphs

In combinatorics, a graph is a type of mathematical model consisting of two

parts: a vertex set V and an edge set E of related pairs of vertices. Fun-

damental to computer science, network theory, and discrete mathematics,

graphs also model problems in chemistry, physics, sociology, biology, epi-

demiology, and linguistics. For example, one may consider a social network

graph in which the vertices represent people and the edges represent pairs of

acquainted individuals. Graphs can be visualized by imagining the vertices

as points in the plane and edges as line segments between related pairs.

1.2 Probabilistic Combinatorics

Over the last two-thirds of a century, probabilistic reasoning has played an

active and in�uential role in the development of graph theory. This area

of mathematics, known as probabilistic combinatorics, includes the study of

random graphs and algorithms. Random graphs may be equated with average

case analysis in the sense that a particular instance of a problem may often

be thought of as being generated by some underlying random process. Along

with the related study of random algorithms, this has played a signi�cant
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role in the theory of algorithmic design. Probabilistic tools, however, are

not only limited to the study of random structures and algorithms, but also

have applications to problems that themselves do not involve randomness.

Examples of major mathematical theorems in which ideas in probabilistic

combinatorics have played an important role include Szemerédi's Theorem

(every set of integers with positive density contains arbitrarily long arithmetic

progressions), the related Green-Tao Theorem (the prime numbers contain

arbitrarily long arithmetic progressions), and a recent theorem of Keevash on

the existence of designs (resolving a famous question of Steiner from 1853).

As this relatively new area of mathematics matures, additional connections

to other areas of mathematics are likely to emerge.

1.3 Ramsey Numbers

A red/blue coloring of a graph is a partition of the edges into two classes.

For graphs H and G, we write H Ñ G if every red/blue coloring of the edges

of H yields G as a monochromatic subgraph. The Ramsey number rpGq is
the minimum number of vertices in a graph H with the property H Ñ G.

That is,

rpGq :� min
!
|V pHq| : H Ñ G

)
,

where without loss of generalityH can be assumed to be a complete graphKn

on n vertices in which all
�
n
2

�
possible edges are present. In 1930, economist

and mathematician Frank Ramsey established that rpGq ¤ 4vpGq where vpGq
denotes the number of vertices in G.

One of the �rst applications of the probabilistic method was a proof of

Erd®s [22] from 1947 that established a lower bound for rpKsq. The current
best known bounds, due respectively to Spencer [71] and Conlon [15], are:

p1� op1qqe�1
?

2s � 2s{2 ¤ rpKsq ¤ sc log s{ log log s � 22s,
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where c is a constant that does not depend on s and op1q Ñ 0 as s Ñ 8.

This problem has attracted a great deal of attention, although the asymptotic

behavior of rpKsq is still unknown, as the exponents in the lower and upper

bounds stated above di�er by a factor of four. In particular, W.T. Gowers [40]

writes, `I consider this to be one of the major problems in combinatorics and

have devoted many months of my life unsuccessfully trying to solve it'.

Over the last half century, many variations of the Ramsey number prob-

lem have been considered. The development of probabilistic combinatorics

had an intimate relationship with this study, and new powerful probabilistic

methods have been developed as a result of this inquiry. Moreover, many of

the open problems in this area encapsulate fundamental gaps in our existing

knowledge of graphs.

1.4 Overview of Results

This thesis focuses on three distinct Ramsey-type problems addressed in

three corresponding chapters. Each of these chapters is self contained. In

the overview below, we provide a very brief and (relatively) nontechnical

description of the problems addressed and the signi�cance of our results.

We defer the formal statements of our theorems and the discussion of the

relevant historical background to the introductions provided in the following

chapters.

Our next chapter concerns a generalization of the Ramsey numbers due

to Erd®s and Rogers [24], which concerns the size of the largest Ks-free set

necessarily present in every Kk-free graph on n vertices. In contrast, the

standard Ramsey number problem can be phrased as asking for the size of

the largest independent set necessarily present in every Kk-free graph on n

vertices. This generalization of Erd®s and Rogers has received considerable

attention over the last 50 years, having been addressed by Bollobás and
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Hind [11], Krivelevich [50,51], Alon and Krivelevich [3], Dudek and Rödl [21],

Dudek and Mubayi [18], and most recently Wolfovitz [75]. Here, we improve

upon the best known bounds for many values of s and t. To do so, we provide

a random three stage probabilistic construction and make use of the Local

Lemma and theory of projective planes. This chapter is based upon joint

work with Andrzej Dudek and Vojt¥ch Rödl [19].

Our second chapter concerns the size-Ramsey numbers of short subdivi-

sions. Whereas the Ramsey number problem asks for the minimum number

of vertices in a graph H with the property H Ñ G, the size-Ramsey number

problem asks for the minimum number of edges in a graph H with the prop-

erty H Ñ G. This is one of the most basic extensions of the traditional Ram-

sey problem, and has been the topic of much research. After being introduced

by Erd®s, Faudree, Rousseau, and Schelp [30] in 1978, it was subsequently

studied by Beck [6], Haxell, Kohayakawa, and �uczak [44], Friedman and

Pippenger [37], and Dellamonica [17]. See also [35,43,46,58�60], or the more

general recent survey on graph Ramsey theory [16]. One of the most signi�-

cant open problems in this area is to determine the size-Ramsey number of

graphs of bounded degree. Although some progress on the bounded-degree

problem has been made by Rödl and Szemerédi [64] and Kohayakawa, Rödl,

Schacht, and Szemerédi [49], a rather large gap between the best known up-

per and lower bounds still remains. Here, we will investigate the size-Ramsey

numbers of bounded degree graphs that have the additional property that the

set of vertices of degree greater than two induces an independent set. To do

so, we consider `short' subdivisions of graphs, which are obtained by replacing

edges in a graph by paths of some �xed `short' length. Pak [57] in 2002 con-

sidered the closely related problem for `long' subdivisions of bounded degree,

where the length of the subdivisions is logarithmic in terms of the number

of vertices. We make use of the sparse regularity lemma, ideas from a paper

of Gerke, Kohayakawa, Rödl, and Steger [38], a hypergraph version of Hall's
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Theorem due to Aharoni and Haxel [2], and a new embedding lemma. This

chapter is based upon joint work with Yoshiharu Kohayakawa and Vojt¥ch

Rödl [76].

Our third result has its roots in a problem suggested by Paul Erd®s [27],

which asks if for every positive integer k, there exists a graph H having

girthpHq � k and the Ramsey property H Ñ Ck. The existence of such

graphs was �rst established by Rödl and Ruci«ski in [62]. We raise the

question of determining the least number of vertices such a graph may have.

Whereas the bounds implicitly following from the known constructions are

rather large, we provide a new random construction that yields much im-

proved bounds. This construction is analyzed by way of the Container

Lemma of Saxton and Thomason [67]. In this section, we also apply our tech-

nique to two other problems. The former concerns monochromatic arithmetic

progression in an arbitrarily colored set of integers and the latter hypergraphs

with larger chromatic number and girth. This chapter is based upon joint

work with Hiê.p Hàn, Vojt¥ch Rödl, and Mathias Schacht [42].
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Chapter 2

A Function of Erd®s and Rogers

2.1 Introduction

In a graph G, a set S � V pGq is independent if GrSs does not contain a

copy of K2. More generally for any integer s, a set S � V pGq can be called

s-independent if GrSs does not contain a copy of Ks. With this in mind,

de�ne the s-independence number of G, denoted by αspGq, to be the size of

the largest s-independent set in G. The classical Ramsey number Rpt, uq can
be de�ned in this language as the least integer n such that every graph of

order n contains either a copy of Kt or a 2-independent set of size u. In other

words, Rpt, uq is the least integer n such that

u ¤ mintα2pGq : G is a Kt-free graph of order nu.

Observe that the problem of determining the right hand side of the above

inequality, which is a function of n and t, is equivalent to determining the

classical Ramsey numbers.

A more general problem results by replacing the standard independence

number by the s-independence number for some 2 ¤ s   t. Following this

approach, in 1962 Erd®s and Rogers [24] introduced the function

fs,tpnq � mintαspGq : G is a Kt-free graph of order nu.



7

The lower bound k ¤ fs,tpnq means that every Kt-free graph of order n

contains a subset of k vertices with no copy ofKs. The upper bound fs,tpnq  
` means that there exists a Kt-free graph of order n such that every subset

of ` vertices contains a copy of Ks.

The case t � s � 1 has received considerable attention over the last 50

years, in part due to the fact that it creates a general upper bound in the sense

that for t1 ¡ t, we clearly have fs,t1pnq ¤ fs,tpnq. The �rst nontrivial upper

bound for fs,s�1pnq was established by Erd®s and Rogers [24]. This problem of

determining a better upper bound for fs,s�1pnq was subsequently addressed

by Bollobás and Hind [11], Krivelevich [50, 51], Alon and Krivelevich [3],

Dudek and Rödl [21], and most recently Wolfovitz [75]. The �rst nontrivial

lower bound established by Bollobás and Hind [11] was later slightly improved

by Krivelevich [50]. The most recent general bounds for s ¥ 3 were of the

form:

Ω

�d
n log n

log log n

�
� fs,s�1pnq � O

�
n

2
3

�
. (2.1)

The lower bound of (2.1) was �rst explicitly stated by Dudek and Mubayi [18],

and was based upon their observation that the result of Krivelevich [50] could

be slightly strengthened by incorporating a result of Shearer [69]. The upper

bound of (2.1) appears in [21], where it was also conjectured that for all

su�ciently large s the upper bound could be improved to show that

fs,s�1pnq � n
1
2
�op1q. (2.2)

Recently, Wolfovitz [75] showed that (2.2) holds when s � 3. In this chapter,

(2.2) is proved for every s ¥ 3, establishing an upper bound that is tight up

to a polylogarithmic factor. Our proof builds upon the ideas in [75], [21], [51],

and [50].
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Theorem 2.1. For every s ¥ 3 there is a constant c � cpsq such that

fs,s�1pnq ¤ cplog nq4s2?n.

For the case t � s�2, it follows from a result of Sudakov [73] (see also [21]

for a simpli�ed formula) that fs,s�2pnq � Ωpna2q, where 1
a2
� 2 � 2

3s�4
. On

the other hand, clearly fs,s�2pnq ¤ fs,s�1pnq. When s ¥ 4, we establish an

improved upper bound that omits the logarithmic factor.

Theorem 2.2. For every s ¥ 4 there is a constant c � cpsq such that

fs,s�2pnq ¤ c
?
n.

This establishes the following corollary which provides the best known bounds

on fs,tpnq for t   2s.

Corollary 2.3. For every 6 ¤ s � 2 ¤ t there is a constant c � cpsq such
that

fs,tpnq ¤ fs,s�2pnq ¤ c
?
n.

When t ¥ 2s, the upper bound cplog nq1{ps�1qns{pt�1q of Krivelevich [51] re-

mains best. For all values of t ¡ s � 1, the best lower bounds follow from a

recursive formula de�ned by Sudakov [73, 74]. We will return to the results

concerning the general case at the end of this chapter in Section 2.5. More

related results are summarized in the survey [20].

We now turn our attention towards an old question of Erd®s [23], asking

if for �xed integers s� 1   t,

lim
nÑ8

fs�1,tpnq
fs,tpnq � 8. (2.3)

This central conjecture in the area is still wide open and asks for a rather
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precise estimation of fs,tpnq. By a result of Sudakov [74], (2.3) holds for

ps, tq P tp2, 4q, p2, 5q, p2, 6q, p2, 7q, p2, 8q, p3, 6qu.

Observe that Theorem 2.2 together with the lower bound of [50] (and [21])

implies that for s ¥ 4,

fs�1,s�2pnq
fs,s�2pnq ¥

Ω
�b

n logn
log logn

	
Op?nq � Ω

�d
log n

log log n

�
ÝÝÝÑ
nÑ8

8.

That is, (2.3) holds for all pairs ps, tq P tp4, 6q, p5, 7q, p6, 8q, . . . u.
In what follows, consider s to be an arbitrary �xed integer and n suf-

�ciently large, i.e. n ¥ n0psq. We will show that there exists a Ks�1-free

graph of order n such that every subset of cplog nq4s2?n vertices contains

a copy of Ks and that there exists a Ks�2-free graph of order n such that

every subset of c
?
n vertices contains a copy of Ks. Indeed, this establishes

Theorems 2.1 and 2.2 as stated (for all n), since the constant factors can sub-

sequently be in�ated to accommodate the �nitely many cases where n ¤ n0.

For simplicity, we do not round numbers that are supposed to be integers

either up or down; this is justi�ed since these rounding errors are negligible

to the asymptomatic calculations we will make.

In Section 2.2, we begin our construction by considering the random hy-

pergraph H which is essentially the random hypergraph obtained from the

a�ne plane by taking each hyperedge (line) with some uniform probability.

We then use H in Section 2.3 to construct a random graph G by replacing

each hyperedge by a complete s-partite graph. In Section 2.4, the proof of

Theorem 2.2 considers an induced subgraph of G whereas the proof of The-

orem 2.1 considers yet another random subgraph of G which is analyzed by

way of the Local Lemma.

Below we will use the standard notation to denote the neighborhood and
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degree of v P G by NGpvq and dGpvq, respectively.

2.2 The Hypergraph H

The a�ne plane of order q is an incidence structure on a set of q2 points and

a set of q2 � q lines such that: any two points lie on a unique line; every line

contains q points; and every point lies on q � 1 lines. It is well known that

a�ne planes exist for all prime power orders. Clearly, an incidence structure

can be viewed as a hypergraph with points corresponding to vertices and lines

corresponding to hyperedges; we will use this terminology interchangeably.

In the a�ne plane, call lines L and L1 parallel if LXL1 � H. In the a�ne

plane there exist q� 1 sets of q pairwise parallel lines. (For more details see,

e.g., [14].) Let pV,Lq be the hypergraph obtained by removing a parallel class

of q lines from the a�ne plane of order q. The following lemma establishes

some properties of this graph.

Lemma 2.4. For q prime, the q-uniform, q-regular hypergraph pV,Lq of

order q2 satis�es:

(P1) Any two vertices are contained in at most one hyperedge;

(P2) For every A P �V
q

�
, |tL P L : LX A �� Hu| ¥ q2

2
.

Proof. By construction, pV,Lq is q-uniform, q-regular, and satis�es (P1).

Consider A � tv1, v2, . . . , vqu. De�ne d�pviq � |tL P L : LXtv1, v2, . . . , viu �
tviuu|. Hence by property (P1), d�pviq ¥ q � i� 1. We now compute

|tL P L : LX A �� Hu| ¥
q̧

i�1

d�pviq ¥
�
q � 1

2



¥ q2

2
.
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The objective of this section is to establish the existence of a certain hy-

pergraph pV,L1q � pV,Lq by considering a random sub-hypergraph of pV,Lq.
Preceding this, we introduce some terminology. For B � V , de�ne

L1A � tL P L1 : LX A �� Hu, and L1B,γ � tL P L1 : |LXB| ¥ γu.

Call S � V L1-complete if every pair of points in S is contained in some

common line in L1. Let Lpx, yq denote the unique line in L containing x and

y, provided such a line exists.

We will now distinguish 3 types of L1-dangerous subsets as depicted in

Figure 2.1. The �rst two types have 5 vertices tv1, v2, v3, v4, xu and third type

has 6 vertices tv1, v2, v3, v4, y, zu. All 3 types of dangerous sets must be L1-
complete and have 4 points tv1, v2, v3, v4u in general position. Additionally

we specify:

Type 1 L1-dangerous
The points tv1, v2, v3, v4, xu are in general position.

Type 2 L1-dangerous
The point x is contained in precisely one of the 6 lines Lpvi, vjq for
1 ¤ i   j ¤ 4. Up to relabeling, say x P Lpv2, v3q.

Type 3 L1-dangerous
The points y and z are each contained in exactly two of the lines

Lpvi, vjq for 1 ¤ i   j ¤ 4. Up to relabeling, say y P Lpv1, v3qXLpv2, v4q
and z P Lpv1, v2q X Lpv3, v4q.

All concepts above were de�ned relative to the subset L1 � L. Obviously we

can de�ne the concepts L-complete, L-dangerous, LA, and LB,γ related to

the set L analogously.

We are now ready to state the main result of this section.
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(a) Type 1 (b) Type 2

(c) Type 3

Figure 2.1: Types of dangerous sets.
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Lemma 2.5. Let q be a su�ciently large prime and α � plog qq2. Then,

there exists a q-uniform hypergraph H � pV,L1q of order q2 such that:

(H1) Any two vertices are contained in at most one hyperedge;

(H2) For every v P V , dHpvq ¤ 2α;

(H3) |D| ¤ 2α8q, where D is the set of L1-dangerous subsets;

(H4) For every A P �V
q

�
, |L1A| ¥ αq{4;

(H5) For every integer 1 ¤ γ ¤ q{16 and every B P � V
16γq

�
, |L1B,γ| ¥ αq{8.

Before proving the above lemma, we state a basic form of the Cherno�

bound (as appearing in Corollary 2.3 of [45]) and state the union bound and

Markov Inequality. We let Bipn, pq denote a binomial random variable bas n

events that each occur with probability p.

Cherno� Bound. If X � Bipn, pq and 0   ε ¤ 3
2
, then

Pr
�
|X � EpXq| ¥ ε � EpXq

	
¤ 2 exp

"
�EpXqε

2

3

*
.

Union Bound. If Ei are events, then

Pr
� k¤
i�1

Ei

	
¤ k �maxtPrpEiq : i P rksu.

Markov Inequality. If X is a nonnegative random variable and a ¡ 0,

then

Pr
�
X ¥ a

	
¤ EpXq

a
.

Proof of Lemma 2.5. Take pV,Lq to be a hypergraph established by Lemma

2.4. Let H � pV,L1q be a random sub-hypergraph of pV,Lq where every line
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in L is taken independently with probability

α

q
� plog qq2

q
.

Since H is a subgraph of pV,Lq any two vertices are in at most one line, so

H always satis�es (H1). We will show H fails to satisfy (H2) and (H4) with

probability at most op1q and that H fails to satisfy (H3) with probability

at most 1
2
. Together this implies H satis�es (H1)-(H4) with probability at

least 1� 1
2
� op1q, establishing the existence of a hypergraph H that satis�es

(H1)-(H4). Finally, we use a counting argument to show that any such H

necessarily satis�es (H5).

(H2): We �rst show that the probability that there exists a vertex of

degree greater than 2α is op1q. Observe for �xed v P H, dHpvq � Bipq, α
q
q

and EpdHpvqq � α. So by the Cherno� bound with ε � 1,

Pr
�
dHpvq ¥ 2α

	
¤ Pr

�
|dHpvq � α| ¥ α

	
¤ 2 exp

!
�α

3

)
.

Thus by the union bound the probability that there exists some v P V with

dHpvq ¥ 2α is at most

q2 � 2 exp
!
�α

3

)
� 2 exp

"
2 log q � plog qq2

3

*
� op1q.

(H3): In order to show |D| ¡ 4α8q with probability at most 1
2
, we begin

by counting the number of L-dangerous subsets of each type. Clearly the

number of Type 1 L-dangerous subsets is at most
�
q2

5

�
. To count the number

of Type 2 L-dangerous subsets, �rst choose tv1, v2, v3, v4u then x, observing
x must lie on one of the 6 lines which each have at most q vertices. Thus

there are at most
�
q2

4

�p6qq con�gurations of this type. To count the number

of Type 3 L-dangerous subsets, observe the lines Lpvi, vjq for 1 ¤ i   j ¤ 6
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intersect at at most 3 points other than v1, v2, v3, v4. Hence there are at most�
q2

4

��
3
2

�
subsets of this type in L.

Since L-dangerous subsets of Type 1, Type 2, and Type 3 have 10, 8, and

7 lines respectively, an L-dangerous subset of each type will be L1-dangerous
with respective probabilities

�
α
q

	10

,
�
α
q

	8

, and
�
α
q

	7

. By the linearity of

expectation, we now compute

Ep|D|q ¤
�
q2

5



�
�
α

q


10

�
�
q2

4



p6qq �

�
α

q


8

�
�
q2

4


�
3

2



�
�
α

q


7

¤ α10 � qα8

4
� qα7

8

¤ qα8.

Thus, the Markov inequality yields,

Pr
�
|D| ¥ 2α8q

	
¤ Pr

�
|D| ¥ 2Ep|D|q

	
¤ 1

2
.

(H4): We will now prove that the probability that there exists A P �
V
q

�
such that |L1A|   αq

4
is op1q. Begin by considering any �xed A P �

V
q

�
. Then

by Lemma 2.4, |LA| ¥ q2

2
, so we may �x X � LA with |X| � q2

2
. Let X 1 �

X X L1. Since each line in X appears in X 1 independently with probability
α
q
, |X 1| � Bip q2

2
, α
q
q and Ep|X 1|q � αq

2
. Hence by the Cherno� bound with

ε � 1
2
,

Pr
�
|L1A|  

αq

4

	
¤ Pr

�
|X 1|   αq

4

	
¤ Pr

����|X 1|�αq
2

��� ¥ αq

4

	
¤ 2 exp

!
�αq

24

)
.

Consequently by the union bound, the probability that there exits some

A � V , |A| � q, with |L1A|   αq
4
is at most



16

�
q2

q



� 2 exp

!
�αq

24

)
¤ q2q � 2 exp

"
�plog qq2q

24

*
� 2 exp

"
2q log q � qplog qq2

24

*
� op1q.

(H5): Finally, we will establish the following deterministic property: If

H satis�es (H2) and (H4), then H also satis�es (H5).

Consider arbitrary �xed 0 ¤ γ ¤ q
16

and B P �
V

16γq

�
. Let B � B1 Y

B2 Y � � � Y B16γ be a partition of B into 16γ sets of size q. Consider the

auxiliary bipartite graph Aux with bipartition tB1, B2, . . . , B16γu Y L1. Join
Bi to L P L1 if BiXL �� H. By property (H4) dAuxpBiq ¥ αq

4
for all i P r16γs,

and thus the number of edges in Aux satis�es

|epAuxq| ¥ αq

4
|tB1, B2, . . . , B16γu| � 4αqγ. (2.4)

On the other hand, clearly dAuxpLq ¤ |tB1, B2, . . . , B16γu| � 16γ for all L P L1
and by de�nition dAuxpL1q ¤ γ for all L1 P tL1zL1B,γu. Also keeping in mind

that by (H2)

|L1zL1B,γ| ¤ |L1| � °
vPV

dHpvq
q

¤ q2 2α
q
� 2αq, we compute

|epAuxq| ¤ |L1B,γ| � 16γ � |tL1zL1B,γu| � γ ¤ |L1B,γ| � 16γ � 2αq � γ. (2.5)

Comparing (2.4) and (2.5), we obtain

4αqγ ¤ |epAuxq| ¤ |L1B,γ| � 16γ � 2αqγ,

which yields |L1B,γ| ¥ αq
8
.
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2.3 The Graph G

Based upon the hypergraph H established in the previous section, we will

construct a graph G with the following properties.

Lemma 2.6. Let q be a su�ciently large prime, α � plog qq2, β � plog qq4s2,
and s ¥ 3. Then, there exists a graph G � pV,Eq of order q2 such that:

(G1) For every C P � V
16sq

�
, GrCs contains a copy of Ks;

(G2) For every U P � V
64sβq

�
, GrU s contains αβ2q

16
edge disjoint copies of Ks;

(G3) Every edge xy P E is in at most 6sα2s�2 copies of Ks�1;

(G4) If s ¥ 4, then G can be made Ks�2-free by removing 2α8q vertices.

Proof. Fix a hypergraphH � pV,L1q as established by Lemma 2.5. Construct

the random graph G as follows. For every L P L1, let χL : L Ñ rss be a

random partition of the vertices of L into s classes, where for every v P L, a
class χLpvq P rss is assigned uniformly and independently at random. Then,

let xy P E if tx, yu � L for some L P L1 and χLpxq �� χLpyq. Thus for

every L P L1, GrLs is a complete s-partite graph with vertex partition L �
χ�1
L p1q Y χ�1

L p2q Y � � � Y χ�1
L psq (where the classes need not have the same

size and the unlikely event that a class is empty is permitted). Observe that

not only are GH 1rLs and GH 1rL1s are edge disjoint for distinct L,L1 P L1, but
also that the partitions for L and L1 were determined independently.

We will show G does not satisfy (G1) and (G2) with probability at most

op1q and that G always satis�es (G3) and (G4). Hence the probability that

G satis�es properties (G1)-(G4) is at least 1 � op1q, implying the existence

of a graph G described in the lemma.

(G1): Consider any C P �
V

16sq

�
. We will bound the probability that

GrCs � Ks. By (H5) with γ � s, the set of lines L1C,s that intersect C in at

least s vertices has cardinality |L1C,s| ¥ αq
8
. For each L P L1C,s, let XL be the
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event Ks � GrL X Cs. Since |L X C| ¥ s for all L P L1C,s, PrpXLq ¤ 1 � s!
ss
.

By independence,

Pr
�
Ks R GrCs

	
¤ Pr

� £
LPL1C,s

XL

	
¤
�

1� s!

ss


|L1C,s|

¤
�

1� s!

ss


αq
8

¤ exp

"
� s!
ss
αq

8

*
.

So by the union bound, the probability that there exists a subset of 16sq

vertices in G that contains no Ks is at most

�
q2

16sq



exp

"
� s!
ss
αq

8

*
¤ q16sq exp

"
� s!
ss
αq

8

*
� exp

"
16sq log q � s!qplog qq2

8ss

*
� op1q.

(G2): For arbitrary U P � V
64sβq

�
, we will bound the probability that GrU s

does not contain αβ2q
16

edge disjoint copies of Ks. By (H5) with γ � 4sβ, we

may �x a subset ZU � L1U,4sβ of exactly αq
8
lines with the property that each

line has intersection at least 4sβ with U . We will consider the lines in ZU
that contain the complete balanced s-partite graph on 2sβ vertices, which we

denote by K2β,...,2β. De�ne Z 1
U � tL P ZU : K2β,...,2β � GrLXU su. The graph

K2β,...,2β certainly contains at least β2 edge disjoint Ks (Since we may choose

a prime β ¤ p ¤ 2β and it follows from [1] that we may then decompose

Kp,...,p into p
2 edge disjoint copies of Ks; this su�ces for our purposes, but

stronger results are know). Thus if we show |Z 1
U | ¥ αq

16
it will imply that

GrU s contains at least |Z 1
U | � β2 ¥ αβ2q

16
edge disjoint copies of Ks.

For L P ZU , let YL be the event that L R Z 1
U and �x L4sβ � LXU, |L4sβ| �

4sβ. Now YL will occur only if |χ�1
L piqXL4sβ|   2β for some i P rss. De�ning
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Xi � |χ�1
L piq X L4sβ|, observe Xi � Bip4sβ, 1

s
q and EpXiq � 4β. Cherno�'s

inequality reveals

Pr
�
Xi   2β

	
¤ Pr

�
|Xi�EpXiq| ¥ EpXiq

2

	
¤ 2 exp

"
�4β

12

*
� 2 exp

"
�β

3

*
.

By the union bound, PrpYLq ¤ Pr
��

iPspXi ¤ 2βq
	
¤ s � 2 exp

 �β
3

(
.

By independence, the probability that YL occurs for at least αq
16
� |ZU |

2
of

the lines in ZU is at most

�|ZU |
|ZU |

2


�
2s exp

"
�β

3

*
|ZU |{2
¤ 4|ZU |{2

�
2s exp

"
�β

3

*
|ZU |{2

�
�

8s exp

"
�β

3

*
αq
16

That is, we have shown |Z 1
U |   αq

16
with probability at most

�
8s exp

 �β
3

(�αq
16

for �xed U . Thus by the union bound, the probability that there exits some

U � V with |U | � 64sβq such that |Z 1
U |   αq

16
is at most

�
q2

64sβq


�
8s exp

"
�β

3

*
αq
16

¤ q64sβqp8sqαq16
�

exp

"
�β

3

*
αq
16

¤ exp

"
64sβq log q � αq

16
logp8sq � αβq

48

*
� op1q.

(G3): For any xy P E, we will show the number of copies of Ks�1 that

contain xy is at most 6sα2s�2. Let L P L1 be the unique line such that

tx, yu � L as depicted in Figure 2.2. Let N � pNHpxq X NHpyqqzL be the

set of all vertices not on L that are collinear with both x and y. Since

dHpxq, dHpyq ¤ 2α by (H2), we infer that |N | ¤ 4α2. Because Ks�1 � GrLs,
if a Ks�1 is to contain x and y it must contain at least one vertex v P N .
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L

Figure 2.2: Counting Ks�1 in G that contains a �xed edge xy by considering
lines in H.

There are at most |N | ¤ 4α2 choices for this vertex v. Once v has been

chosen, each of the remaining s � 2 vertices of the Ks�1 must lie in N or

in L X NHpvq. Since |N | � |L X NHpvq| ¤ 4α2 � 2α, the number of Ks�1

containing the edge xy is at most 4α2p4α2 � 2αqs�2 ¤ 6sα2s�2.

(G4): We will �nally show that if s ¥ 4, G can be made Ks�2 free

be removing at most 2α8q vertices. By (H3), all L1-dangerous sets can be

destroyed by removing 2α8q vertices, so it su�ces to shown that every Ks�2

in G contains a L1-dangerous subset.
Let K be any copy of Ks�2 in G. By assumption s ¥ 4, so K must have

at least 6 vertices, which clearly form a L1-complete set.

We �rst show that K contains 4 vertices in general position. Suppose

otherwise. Then there is some line L P L1 that contains 3 vertices tp1, p2, p3u
of K. Since Ks�1 � GrLs, there must exist two vertices a and b in KzL.
Observe ta, bu and any 2 vertices in tp1, p2, p3uzLpa, bq are in general position.

Now �x 4 vertices tv1, v2, v3, v4u of K that are in general position and let

u1, u2 be any two other vertices of K. Three cases are now considered. If

either u1 or u2 do not lie on any of the 6 lines Lpvi, vjq for 1 ¤ i   j ¤ 4,

then there is a L1-dangerous subset of Type 1. If either u1 or u2 lie on exactly

one line in Lpvi, vjq for 1 ¤ i   j ¤ 4, then there is a L1-dangerous subset
of Type 2. In the remaining case where both u1 and u2 each lie on at least
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2 lines in Lpvi, vjq for 1 ¤ i   j ¤ 4, then there is a L1-dangerous subset of
Type 3.

2.4 Proof of Theorems 2.1 and 2.2

Consider any su�ciently large integer n and s ¥ 3. By Bertrand's postulate,

we can �nd a prime q such that 4n ¤ q2 ¤ 16n. Fix a graph G procured by

Lemma 2.6 of order q2 and as before take

α � plog qq2 and β � plog qq4s2 .

Theorem 2.1 and Theorem 2.2 are now proved by considering di�erent sub-

graphs of G of order n.

Proof of Theorem 2.2. Consider the case where s ¥ 4. To prove the theorem,

we will show there exists a Ks�2-free induced subgraph of G of order n with

the property that every subset of order 64s
?
n contains a copy of Ks.

By (G1), every set of size 16sq in G contains Ks, so certainly every

subset of size 64s
?
n ¥ 16sq in any induced subgraph of G must also contain

a copy of Ks. Thus it will su�ce to show that there is a Ks�2-free subset

of G of order n. But by (G4), we know that there is a set R � V pGq of
size |R| � 2α8q ¤ n such that GrV zRs will be Ks�2-free. Finally since

|V zR| ¥ 4n � n ¥ n, the induced graph of G on any n vertices in V zR will

have the desired properties.

Proof of Theorem 2.1. For s ¥ 3, we will concentrate on constructing aKs�1-

free graph G1 on q2 vertices with the property that every subset of size 64sβq

vertices contains a copy of Ks. Since logp4nq ¤ 2 log n,

64sβq � 64splog qq4s2q ¤ 64splog 4nq4s24n ¤ 24s2�8plog nq4s2n,
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and so any induced subgraph of G1 of order n will also be Ks�1-free and have

the property that every set of order 24s2�8plog nq4s2n contains a copy of Ks,

exactly as desired.

Let G1 be a random subgraph of G where each edge is taken with proba-

bility
1

γ
, where γ � plog qq8.

For a set S P �
V pGq
s�1

�
that spans a copy of Ks�1 in G, let AS to be the event

that all the edges of S are in G1. Hence,
�
AS means that Ks�1 � G1. For a

set U P �V pGq
64sβq

�
let KU be a (�xed) set of

m � 1

16
αβ2q

edge disjoint copies Ks contained in U , which are known to exist by (G2).

De�ne BU to be the event that none of the m edge disjoint Ks appear in G
1.

Hence,
�
BU implies that for every U P �

V pGq
64sβq

�
one of the disjoint copies of

Ks in GrU s appears in G1. It will su�ce to show that the probability that��
AS

� X ��
BU

�
occurs is nonzero. In order to show this, we apply the

Local Lemma (see, e.g., Lemma 5.1.1 in [4]).

Lovász Local Lemma. Let E1, E2, . . . , Ek be events in an arbitrary proba-

bility space. A directed graph D on the set of vertices t1, 2, . . . , ku is called a

dependency digraph for the events E1, E2, . . . , Ek if for each i, 1 ¤ i ¤ k, the

event Ei is mutually independent of all the events tEj : pi, jq R Du. Suppose
that D is a dependency digraph for the above events and suppose there are

real numbers z1, . . . , zk such that 0 ¤ zi   1 and PrpEiq ¤ zi
±

pi,jqPDp1� zjq
for all 1 ¤ i ¤ k. Then, Pr

��k
i�1Ei

	
¡ 0.

Let D be a dependency graph that corresponds to all events AS and BU .

Observe that AS depends only on the
�
s�1

2

�
edges in S and BU depends only

on the m
�
s
2

�
edges of the Ks in KU . Also, observe that the number of events



23

of the type BU is
�

q2

64sβq

� ¤ q64sβq. Thus by (G3), a �xed event AS depends

on at most

dAA �
�
s� 1

2



6sα2s�2

other events AS1 and at most

dAB � q64sβq

events BU . Similarly, a �xed event BU depends on at most

dBA � m

�
s

2



6sα2s�2

events AS and at most

dBB � q64sβq

other events BU 1 . Let

x � 1

α2s2
and y � 1

plog qq4s2q64sβq
.

To �nish the proof, due to the Local Lemma it su�ces to show that

�
1

γ


ps�1
2 q

¤ xp1� xqdAAp1� yqdAB , (2.6)

�
1�

�
1

γ


ps2q�m

¤ yp1� xqdBAp1� yqdBB . (2.7)

First we show that (2.6) holds. Using the fact that e�2x ¤ 1 � x for x

su�ciently small (observe that xÑ 0 with q Ñ 8), a su�cient condition for

(2.6) will be �
1

γ


ps�1
2 q

¤ x e�2xdAA e�2ydAB ,
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and equivalently,�
s� 1

2



log pγq ¥ log

�
1

x



� 2xdAA � 2ydAB.

The latter immediately follows from the following three inequalities (which

can be easily veri�ed):

2s2

2s2 � 2s

�
s� 1

2



log pγq ¥ log

�
1

x



,

s

2s2 � 2s

�
s� 1

2



log pγq ¥ 2xdAA,

s

2s2 � 2s

�
s� 1

2



log pγq ¥ 2ydAB.

Similarly, using the facts that e�2y ¤ 1 � y for y su�ciently small and

that 1�
�

1
γ

	ps2q ¤ e�p 1
γ qp

s
2q
, (2.7) will be satis�ed if

e�mp 1
γ qp

s
2q ¤ y e�2xdBA e�2ydBB ,

and equivalently,

m

�
1

γ


ps2q
¥ log

�
1

y



� 2xdBA � 2ydBB.
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As before the latter will follow from the following easy to check inequalities:

1

3
m

�
1

γ


ps2q
¥ log

�
1

y



,

1

3
m

�
1

γ


ps2q
¥ 2xdBA,

1

3
m

�
1

γ


ps2q
¥ 2ydBB.

This completes the proof of Theorem 2.1.

2.5 Concluding Remarks

We close this chapter by discussing how the asymptotic behavior of fs,tpnq
changes for di�erent values of 3 ¤ s   t.

If the di�erence between s and t is �xed, we make the following observa-

tion based upon the lower bound in Sudakov [73] (and Fact 3.5 in [21]) and

Corollary 2.3.

Observation 2.7. For any ε ¡ 0 and an integer k ¥ 2 there is a constant

s0 � s0pk, εq such that for all s ¥ s0,

Ω
�
n

1
2
�ε� � fs,s�kpnq � Op?nq.

In view of this observation and Theorem 2.2 we ask the following.

Question 2.8. For any s ¥ 3, is fs,s�2pnq � op?nq?

Another interesting question results from �xing the ratio between s and

t. The following is based upon [73] and [51] respectively.
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Observation 2.9. For any ε ¡ 0 and λ ¥ 2 there is a constant s0 � s0pλ, εq
such that for all s ¥ s0,

Ω
�
n

1
2λ
�ε� � fs,tλsupnq � O

�
n

1
λ

�
.

In particular, when λ � 3, we see Ωpn1{6�εq � fs,tλsupnq � Opn1{3q.

Question 2.10. What is the asymptotic behavior of fs,tλsupnq?

Recall that Erd®s [23] asked if for �xed s � 2 ¤ t, limnÑ8
fs�1,tpnq
fs,tpnq � 8.

We ask a similar question, that if answered in the a�rmative would imply

an a�rmative answer to the question of Erd®s.

Question 2.11. For all t ¡ s ¥ 3, is limnÑ8
fs�1,t�1pnq
fs,tpnq � 8?
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Chapter 3

Size-Ramsey Numbers of Short

Subdivisions

3.1 Introduction

For graphs H and G and an integer `, we write H Ñ pGq` if every coloring

of the edges of H with ` colors contains a monochromatic copy of G. In the

two color case (` � 2), we omit the subscript and simply write H Ñ G. For a

graph G, the study of which graphs H have the property H Ñ G is a major

area of research in extremal combinatorics. One of the most well-known

questions of this nature is to determine the Ramsey number rpGq, which is

the minimum number of vertices in a graph H with the property H Ñ G.

That is,

rpGq :� min
!
|V pHq| : H Ñ G

)
,

where without loss of generality H can be assumed to be a complete graph.

A variation of this problem, introduced by Erd®s, Faudree, Rousseau, and

Schelp [30] in 1978, asks for the minimum number of edges in a graph H

with the property H Ñ G. This is the size Ramsey number of G and is often

denoted by prpGq. In other words,

prpGq :� min
!
|EpHq| : H Ñ G

)
.
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Trivially, prpGq ¤ �
rpGq

2

�
, and a simple argument, attributed to Chvátal in [30],

shows that prpKnq �
�
rpKnq

2

�
for the case when G is the complete graph. For

many sparse graphs G, as we will see, the bound prpGq ¤ �
rpGq

2

�
is far from

optimal.

One of the �rst problems investigated regarding the size Ramsey number

was to determine the behavior of the function prpPnq, where Pn is the path

on n vertices. Erd®s asked the following version of this question in [29]: Is it

true that

prpPnq{nÑ 8 and prpPnq{n2 Ñ 0?

This was answered in the negative by Beck [6], who, using probabilistic meth-

ods, proved that prpPnq ¤ 900n. This result was extended in [44], where it was

established that cycles also have linear size Ramsey numbers (in fact, it was

shown this even holds for the induced version of the size Ramsey number).

Another extension by Friedman and Pippenger [37] established the linearity

of the size Ramsey number for trees with bounded degree. More recently,

Dellamonica [17] was able to determine asymptotically the size Ramsey num-

ber of general trees, con�rming a conjecture of Beck. Other related results

include [43,46].

A signi�cant open problem is to determine the size Ramsey number of

graphs of bounded degree. Letting ∆pGq denote the maximum degree of G,

we de�ne this function of interest by

prpn, dq :� max
!prpGq : |V pGq| � n, ∆pGq ¤ d

)
.

In [7], Beck asked if prpn, dq is always linear in n for �xed d. This was settled

in the negative by Rödl and Szemerédi [64], who established that

prpn, 3q � Ωpnplog nq1{60q.
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That is, they constructed graphs G of order n and maximum degree 3 and

argued that if H is any graph with fewer than cnplog nq1{60 edges, then H

does not have the property H Ñ G. In the same paper, it was conjectured

that for all d there exists εd ¡ 0 such that

n1�εd ¤ prpn, dq ¤ n2�εd . (3.1)

The upper bound in (3.1) was subsequently proved by Kohayakawa, Rödl,

Schacht, and Szemerédi in [49]. The lower bound in (3.1), however, remains

open and closing the rather large remaining gap between the upper and

lower bounds for prpn, dq is of considerable interest. For further results on

size Ramsey numbers, see [35, 58�60], or the more general recent survey on

graph Ramsey theory [16].

Subdivisions of Graphs

For a graph S and positive integer h, the h-subdivision of S, denoted Sphq,

is the graph obtained by replacing each edge of S with a path on h internal

vertices as demonstrated in Figure 3.1 for the case h � 2. Having in mind

that the size Ramsey numbers of trees are quite well-understood and that

much regarding the size Ramsey numbers of bounded degree graphs remains

open, we believe it is of interest to determine the size Ramsey numbers of

subdivisions.

The size Ramsey number of `long' subdivisions of bounded degree, which

are subdivided graphs Sphq where h ¡ c log |Sphq| and the maximum de-

gree of S is bounded, were studied by Pak [57] in 2002. Pak conjectured

that prpSphqq is linear in terms of |Sphq| for such subdivisions and, by using

results on mixing times of random walks on expanders, proved a weaker form

of this conjecture up to a polylogarithmic factor.

Our main result relates to the size Ramsey number of `short' subdivisions
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(a) A graph S (b) The graph Sp2q

Figure 3.1: A graph and its subdivision

of bounded degree, which are subdivided graphs Sphq where h and the max-

imum degree of S are �xed and the number of vertices |V pSq| is relatively
large. To state a more general form of this result, we introduce the following

de�nition.

De�nition 3.1 (Universal Size Ramsey Number). For h, d, `, s P Z�, de�ne

the universal size Ramsey number USRph, d, `, sq to be the fewest number of

edges in a graph H that has the following universal Ramsey property:

H Ñ pSphqq` for every graph S on s vertices with maximum degree d.

Theorem 3.2. For any h, d, ` P Z�, there exists s0 such that for all s ¥ s0,

USRph, d, `, sq ¤ plog sq20hs1�1{ph�1q. (3.2)

A corollary is that for any h ¥ 1 and d ¥ 1, there exists s0 such that if S

is any graph on s ¥ s0 vertices with maximum degree d,

prpSphqq ¤ plog sq20hs1�1{ph�1q.

A short counting argument, which will be given in Section 3.6, yields the

following lower bound.
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Theorem 3.3. For all h, d, `, s P Z� with d ¥ 3,

USRph, d, `, sq ¥ USRph, d, 1, sq ¥ s1�1{ph�1q�2{dph�1q�op1q, (3.3)

where op1q Ñ 0 as sÑ 8.

That is, we obtain a bound for the number of edges in any graph H

that contains Sphq as a subgraph for every graph S of maximum degree d

on s vertices. Observe that for large d, the exponent in (3.2) is close to the

exponent in (3.3).

We will also show that the proof of Theorem 3.2 can be extended to give

the following more general theorem.

Theorem 3.4. For any h, d P Z�, there exists a constant ch,d such that

the following holds. If Q is a graph with maximum degree at most d on q

vertices with the property that every pair of vertices of degree greater than 2

are distance at least h� 1 apart, then

prpGq ¤ ch,dplog qq20hq1�1{ph�1q.

We believe that the exponent of the logarithm in both Theorems 3.2

and 3.4 could be substantially reduced, although our method does not allow

for the dependency of the exponent of the logarithm on h to be removed. For

the sake of clarity of presentation, we have opted not to make any attempt to

optimize this power. We do believe, however, that removing the dependency

on h or removing the logarithm entirely would be of interest. We also ask

the following.

Question 3.5. For every integer d, does there exist a constant cd such that

prpSphqq ¤ cdhs
1�1{ph�1q
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for every integer h and for every graph S on s vertices with maximum de-

gree d?

Notation

We use fairly standard notation in this chapter, including the following. For

a graph H and vertex subsets X1 and X2, we let EHpX1, X2q be the the

set of edges between X1 and X2 and eHpX1, X2q � |EHpX1, X2q|. When

unambiguous, we omit the subscript. Unless explicitly noted otherwise, a

subgraph need not be induced. Also, as is standard, we omit �oors and

ceilings that do not a�ect the asymptotic nature of our calculations.

Organization

The rest of this chapter is organized as follows. Section 3.2 introduces an

Existence Lemma (Lemma 3.12), a Coloring Lemma (Lemma 3.9), and an

Embedding Lemma (Lemma 3.14), and then establishes Theorem 3.2 based

upon these three lemmas. The proofs of these three lemmas are deferred to

Sections 3.4, 3.3, and 3.5 respectively. Section 3.6 addresses Theorem 3.3.

Section 3.7 addresses Theorem 3.4.

3.2 Proof of Theorem 3.2

The proof of Theorem 3.2 is based on an Existence Lemma (Lemma 3.12),

a Coloring Lemma (Lemma 3.9), and an Embedding Lemma (Lemma 3.14).

The Existence Lemma will establish the existence of a sparse graph G that

has several properties including being a member of a class of graphs called

IpN, pq (De�nition 3.8). The Coloring Lemma will establish that, since G P
IpN, pq, any `-coloring of the edges of G yields a monochromatic subgraph H

that is a member of a class of graphs called Hph, n, ε, qq (De�nition 3.7). For
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appropriate parameters, we will have that the graph H P Hph, n, ε, qq is also
in a class of graphs called J ph, n, δq (De�nition 3.13). For any graph S

on s vertices that has maximum degree d, the Embedding Lemma will then

establish that, since H is in J ph, n, δq, the graph Sphq can be embedded

into H. These lemmas together will be used to establish that G Ñ pSphqq`
for any graph S on s vertices with maximum degree d, as desired. The

objective of this section is to introduce the terminology required to state

these three lemmas and then to prove Theorem 3.2.

The following class describes graphs obtained from blowing up the cy-

cle Ch�1 by replacing each vertex by an independent set of size n and each

edge by an arbitrary bipartite graph. In this de�nition and elsewhere, we say

that H is a graph on
�h�1
i�1 Xi if X1, X2, . . . , Xh�1 are pairwise disjoint sets

and V pHq � �h�1
i�1 Xi. For notational convenience, we will index the sets Xi

modulo h� 1; in particular, we set Xh�2 :� X1 and X0 :� Xh�1.

De�nition 3.6. Let Hph, nq bet the set of all graphs on
�h�1
i�1 Xi such that

both the following hold:

(i) |Xi| � n for all i P rh� 1s.

(ii) EpHq � �h�1
i�1 EHpXi, Xi�1q.

The following subclass of Hph, nq describes graphs where the bipartite

graphs induced on pXi, Xi�1q have density q and uniformly distributed edges.

De�nition 3.7. Let Hph, n, ε, qq be the set of all graphs H on
�h�1
i�1 Xi that

are in Hph, nq and satisfy the following additional two properties:

(iii) epXi, Xi�1q � qn2 for all i P rh� 1s.

(iv) For any integer i P rh�1s and vertex subsets pXi � Xi and pXi�1 � Xi�1

each of size | pXi|, | pXi�1| ¥ εn,

p1� εqq| pXi|| pXi�1| ¤ ep pXi, pXi�1q ¤ p1� εqq| pXi|| pXi�1|.
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In the context of the random graphGpN, pq, the next de�nition introduces
a class of graphs having neither `dense bipartite patches' nor `large bipartite

holes'.

De�nition 3.8. Let IpN, pq be the set of N-vertex graphs G that have both

the following properties:

(i) For all disjoint sets V1, V2 � V pGq with 1 ¤ |V1| ¤ |V2| ¤ pN |V1|,

epV1, V2q ¤ p|V1||V2| � e2
?

6 �
a
pN |V1||V2|.

(ii) For all disjoint sets V1, V2 � V pGq with |V1|, |V2| ¥ NplogNq�1,

p1{2q � p|V1||V2| ¤ epV1, V2q ¤ 2 � p|V1||V2|.

The following lemma is a deterministic statement about the previous two

classes of graphs.

Lemma 3.9 (Coloring Lemma). For any ε P R� and h, ` P Z�, there exist

t, n1 P Z� such that, for all n ¥ n1,

q :� 4plog nq2n�1�1{ph�1q, N :� tn, and p :� 4`q,

every graph G P IpN, pq has the following property. Any `-coloring of the

edges of G yields disjoint vertex subsets X1, X2, . . . , Xh�1 � V pGq and a

monochromatic subgraph H on
�h�1
i�1 Xi such that H P Hph, n, ε, qq.

The Existence Lemma, which we state next, establishes that there ex-

ists a graph G on N vertices that exhibits several properties including being

in IpN, pq. Combined with the Coloring Lemma, this gives that, for appro-

priate parameters, any `-coloring of such a graph G will not only contain a

monochromatic copy of some H P Hph, n, ε, qq, but one that inherits certain
additional desirable properties which will be used to embed Sphq. We now

describe these additional properties.
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De�nition 3.10 (Path Abundance). Let H be a graph on
�h�1
i�1 Xi with

H P Hph, nq.

• For vertices u, v P X1, a transversal path between u and v is an (undi-

rected) path with endpoints u and v that has exactly h� 2 vertices and

exactly one vertex from each Xi for all i P rh� 1szt1u.

• H is p1� δ, log nq-path abundant if for at least p1� δq�n
2

�
pairs of ver-

tices tu, vu P �X1

2

�
, there are at least log n transversal paths between u

and v that are pairwise edge-disjoint.

De�nition 3.11 (Cluster-Free). Let F be a graph and L � �
V pF q

2

�
be a set

of pairs of vertices in F (that need not correspond to edges). Let V pLq ��
tu,vuPLtu, vu and Z � V pF q be a subset of vertices with Z X V pLq � H.

• An pL, Z, h, log nq-cluster is a set of paths PL such that:

� For every P P PL, the path P has exactly h� 2 vertices.

� For every path P P PL, the endpoints u and v of P are such

that tu, vu P L.
� For every P P PL, the path P does not have an internal vertex in

V pLq.
� For every tu, vu P L, exactly log n paths in PL have endpoints u

and v.

� For every pair of paths P and pP in PL, the paths P and pP are

edge-disjoint.

� For every P P PL, the path P has exactly one internal vertex in Z.

• We say that F is ph, nq-cluster free if F does not contain an pL, Z, h, log nq-
cluster for every L � �

V pF q
2

�
and Z � V pF q with |L| ¤ nplog nq�6h

and |Z| � h2|L|.



36

It follows from this de�nition that the graph obtained by taking the union

of the paths in an pL, Z, h, log nq-cluster has at most 2|L|�|Z|�|L|plog nqph�
1q vertices and exactly |L|plog nqph � 1q edges, as well as a very speci�c

structure. Also, observe that if F is ph, nq-cluster free, then any subgraph pF
of F will be ph, nq-cluster free as well.

Lemma 3.12 (Existence Lemma). For all h, ` P Z� and δ P R�, there

exists ε P R� such that, for any t P Z�, there exists n2 P Z for which the

following holds. For any n ¥ n2,

q :� 4plog nq2n�1�1{ph�1q, N :� tn, and p :� 4`q,

there exists a graph G on N vertices satisfying all of the following properties:

(i) Every vertex in G has degree at most plog nq3n1{ph�1q.

(ii) G is ph, nq-cluster free.

(iii) G P IpN, pq.

(iv) For all disjoint subsets X1, X2, . . . , Xh�1 � V pGq, every (not nec-

essarily induced) subgraphs H on
�h�1
i�1 Xi with H P Hph, n, ε, qq is

p1� δ, log nq-path abundant.

Observe that if G is any graph satisfying property (iii) in the Exis-

tence Lemma then, by the Coloring Lemma, any `-coloring of G yields a

monochromatic copy of some H P Hph, n, ε, qq. Moreover, if G also satis�es

property (iv) in the Existence Lemma, then the monochromatic copy of H

must be path abundant. Additionally, if G satis�es properties (i) and (ii)

in the Existence Lemma, then the path abundant monochromatic H must

also satisfy properties (i) and (ii) in the Existence Lemma. Such a graph H

is described by the following de�nition. Note that this de�nition has no

dependency on ε.
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De�nition 3.13. Let J ph, n, δq be the set of all graphs H on
�h�1
i�1 Xi that

are in Hph, nq and satisfy all the following:

(i) Every vertex in H has degree at most plog nq3n1{ph�1q.

(ii) H is pn, hq-cluster free.

(iii) H is p1� δ, log nq-path abundant.

Our �nal lemma establishes that every H P J ph, n, δq has the desired

universal property to slightly smaller graphs provided δ is su�ciently small.

Lemma 3.14 (Embedding Lemma). For all h, d P Z�, there exist δ P R�

and n3 P Z� such that, for all n ¥ n3, the following holds. Every graph H

on
�h�1
i�1 Xi with H P J ph, n, δq is universal to the set of graphs!

Sphq : |V pSq| � n

plog nq7h and ∆pSq ¤ d
)
.

Proof of Theorem 3.2

We will now prove our main result based upon the three lemmas we have

stated.

Proof of Theorem 3.2. Consider any h, d, ` P Z�. Recall that Lemmas 3.14,

3.12, and 3.9 are quanti�ed as follows.

L3.14 : @h, d Dδ, n3

L3.12 : @h, `, δ Dε @t Dn2

L3.9 : @h, `, ε, Dt, n1

A sequential application of Lemmas 3.14, 3.12, 3.9, and 3.12 yields

δ :� δL3.14ph, dq, n3 :� nL3.14
3 ph, dq,
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ε :� εL3.12ph, `, δq,

t :� tL3.9ph, `, εq, n1 :� nL3.9
1 ph, `, εq,

n2 :� nL3.12
2 ph, `, δ, ε, tq.

Set s0 :� maxtn1, n2, n3, e
tu and consider any s ¥ s0. Take

n :� plog sq8hs, N :� nt, q :� 4plog nq2n�1�1{ph�1q, and p :� 4`q.

Observe that n ¥ s ¥ s0. From the Existence Lemma (Lemma 3.12), we

obtain a graph G on N vertices that satis�es the properties (i)�(iv) in

the Existence Lemma. We will now show that G has the desired univer-

sal Ramsey property. That is, consider any `-coloring of the edges of G. We

will show that G contains a monochromatic copy of Sphq for every graph S

with |V pSq| � s and ∆pSq ¤ d.

Since G P IpN, pq, by the Coloring Lemma (Lemma 3.9), this coloring

of G yields disjoint vertex subsets X1, X2, . . . , Xh�1 � V pGq and a monochro-

matic subgraph H on
�h�1
i�1 Xi with H P Hph, n, ε, qq. Since G also ex-

hibits properties (i)�(iv) in the Existence Lemma, the monochromatic sub-

graph H on
�h�1
i�1 Xi must be a member of the class J ph, n, δq. By the

Embedding Lemma (Lemma 3.14), the monochromatic subgraph H is uni-

versal to the family of graphs tSphq : |V pSq| � nplog nq�7h and ∆pSq ¤ du.
Since n � plog sq8hs was chosen so that s ¤ nplog nq�7h, this gives that H is

also universal to tSphq : |V pSq| � s and ∆pSq ¤ du, as desired.
Having established that G has the desired universal Ramsey property, we

will now count the number of edges in G. Based upon the maximum degree

in G being at most plog nq3n1{ph�1q (and using log n ¤ plog sq2, 1�1{ph�1q ¤
3{2, and n ¥ 2t), the number of edges in G is at most

plog nq3n1{ph�1qN ¤ plog nq4n1�1{ph�1q

¤ pplog sq2q4pplog sq8hq3{2s1�1{ph�1q ¤ plog sq20hs1�1{ph�1q.
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This completes the proof of Theorem 3.2.

3.3 Proof of the Coloring Lemma

This section is devoted to proving Lemma 3.9. For the remainder of this

section, �x ε P R� and h, ` P Z� and set

qpnq :� 4plog nq2n�1�1{ph�1q and ppnq :� 4`q.

Wemust show there exists an integer t so that for su�ciently large n andN :�
tn, any `-coloring of any graph G P IpN, pq yields disjoint vertex subsets

X1, X2, . . . , Xh�1 � V pGq and a monochromatic subgraph H on
�h�1
i�1 Xi

with H P Hph, n, ε, qq (see De�nitions 3.8 and 3.7).

Our approach to �nding a monochromatic subgraph H P Hph, n, ε, qq will
be to �rst �nd several intermediate classes of graphs. The main idea will be

to �rst �nd a monochromatic subgraph H2 (in the class H2 de�ned below)

in which the number of vertices and edges are controlled but not yet exactly

correct. We then transition to a subgraph H1 � H2 (in the class H1 de�ned

below) in which the number of vertices is precisely as desired and the number

of edges is still controlled. Finally, we will obtain a subgraph H � H1 with

H P H in which both the number of vertices and the number of edges are

exactly as desired.

To de�ne the intermediate classes of graphs, we need the following pair

of de�nitions.

De�nition 3.15 ((η)-regular). For η P R�, the bipartite graph EpXi, Xi�1q
is pηq-regular if, for every pXi � Xi and pXi�1 � Xi�1 with | pXi| ¥ η|Xi| and
| pXi�1| ¥ η|Xi�1|,

p1� ηqepX1, Xi�1q
|Xi||Xi�1| ¤ ep pXi, pXi�1q

| pXi|| pXi�1|
¤ p1� ηqepX1, Xi�1q

|Xi||Xi�1| .
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De�nition 3.16 (Density). We say that the bipartite graph EpXi, Xi�1q has
density

di :� epXi, Xi�1q
|Xi||Xi�1| .

De�nition 3.17 (Intermediate Graph Classes).

• H2ph, n, ε2, qq: A graph H2 on
�h�1
i�1 Wi is in H2ph, n, ε2, qq if, for some

integer m satisfying 4n ¤ m ¤ n log n, all the following hold:

(i) |Wi| � m for all i P rh� 1s.
(ii) EpHq � �h�1

i�1 EHpWi,Wi�1q.
(iii) For each i P rh�1s, the bipartite graph EpWi,Wi�1q is pε2q-regular.
(iv) For each i P rh�1s, the bipartite graph EpWi,Wi�1q has density di

satisfying 2q ¤ di ¤ 8`q.

• H1ph, n, ε1, qq: A graph H1 on
�h�1
i�1 Xi is in H1ph, n, ε1, qq if all the

following hold:

(i) |Xi| � n for all i P rh� 1s.
(ii) EpHq � �h�1

i�1 EHpXi, Xi�1q.
(iii) For each i P rh�1s, the bipartite graph EpXi, Xi�1q is pε1q-regular.
(iv) For each i P rh�1s, the bipartite graph EpXi, Xi�1q has density di

satisfying p3{2qq ¤ di ¤ 12`q.

• Hph, n, ε, qq: Recall that Hph, n, ε, qq was introduced in De�nition 3.7.

It follows from this de�nition that a graph H on
�h�1
i�1 Xi is inHph, n, ε, qq

if all the following hold:

(i) |Xi| � n for all i P rh� 1s.
(ii) EpHq � �h�1

i�1 EHpXi, Xi�1q.
(iii) For each i P rh�1s, the bipartite graph EpXi, Xi�1q is pεq-regular.
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(iv) For each i P rh�1s, the bipartite graph EpXi, Xi�1q has density di
satisfying di � q.

We will now state three claims. The �rst claim (Claim 3.18) will es-

tablish that, for appropriate parameters, any `-coloring of any graph G P
IpN, pq contains a monochromatic subgraph H2 P H2ph, n, ε2, qq. The next

claim (Claim 3.19) will establish that, for appropriate parameters, any graph

H2 P H2ph, n, ε2, qq contains a subgraph H1 P H1ph, n, ε1, qq. The �nal

claim (Claim 3.20) will establish that, for appropriate parameters, any graph

H1 P H1ph, n, ε1, qq contains a subgraph in H P Hph, n, ε,qq. These claims

will then be used to prove the Coloring Lemma.

Claim 3.18. For any ε2 P R�, there exists t P Z� such that, for every su�-

ciently large integer n and N :� tn, every graph G P IpN, pq has the follow-

ing property. Any `-coloring of the edges of G yields disjoint vertex subsets

W1,W2, . . . ,Wh�1 � V pGq and a monochromatic subgraph H2 on
�h�1
i�1 Wi

with H2 P H2ph, n, ε2, qq.

Claim 3.19. For any ε1 P R�, there exist ε2 P R� such that, for every

su�ciently large integer n the following holds. Every graph H2 on
�h�1
i�1 Wi

with H2 P H2ph, n, ε2, qq contains vertex subsets Xi � Wi and a subgraph

H1 � H2 on
�h�1
i�1 Xi such that H1 P H1ph, n, ε1, qq.

Claim 3.20. For any ε P R�, there exist ε1 P R� such that, for all suf-

�ciently large n, the following holds. Every graph H1 on
�h�1
i�1 Xi with

H1 P H1ph, n, ε1, qq has a monochromatic subgraph H on
�h�1
i�1 Xi such that

H P Hph, n, ε, qq.

The proofs of Claims 3.18, 3.19, and 3.20 will be provided in Subsec-

tions 3.3.1, 3.3.2, and 3.3.3 respectively. We will now show how these claims

establish the Coloring Lemma. Recall that we have already �xed ε, h, and `

and de�ned qpnq and ppnq at the beginning of this section. Fix
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ε1 :� εC3.20
1 pεq, ε2 :� εC3.19

2 pε1q, and tC3.18 :� tpε2q.

Let n be any su�ciently large integer and de�ne N :� tn. Consider any `-

coloring of any graph G P IpN, pq. Claim 3.18 yields disjoint vertex subsets

W1,W2, . . . ,Wh�1 � V pGq and a monochromatic subgraph H2 on
�h�1
i�1 Wi

with H2 P H2ph, n, ε2, qq. Claim 3.19 gives vertex subsets Xi � Wi and a

subgraph H1 � H2 on
�h�1
i�1 Xi such that H1 P H1ph, n, ε1, qq. Claim 3.20

gives that the graph H1 on
�h�1
i�1

pXi contains a subgraph H on
�h�1
i�1 Xi with

H P Hph, n, ε, qq. This completes the proof of the Coloring Lemma.

3.3.1 Proof of Claim 3.18

Proof of Claim 3.18. Consider any ε2 P R�. We must show that there ex-

ists t P Z� such that, for every su�ciently large integer n and N :� tn, every

graph G P IpN, pq has the following property. Any `-coloring of the edges

of G yields a monochromatic subgraph in H2ph, n, ε2, qq.
Let r`pKh�1q denote the `-color Ramsey number for Kh�1, i.e. the least

integer j such that every `-coloring of the edges of the complete graph Kj

yields a monochromatic copy of Kh�1. Set

r :� r`pKh�1q, εreg :� mint1{r2, ε2{2`u, and kmin :� r.

Observe that every graph on k ¥ kmin vertices with at least p1 � εregq
�
k
2

�
edges contains a copy of Kr. Having de�ned εreg and kmin and having �xed

the integer ` at the beginning of this section, we will procure the integers

kmax, N0, and D0 from the sparse regularity lemma. Its statement requires

the following de�nition.

De�nition 3.21 ((η, ρ)-regular). We say that the bipartite graph EpXi, Xi�1q
is pη, ρq-regular if, for every pXi � Xi and pXi�1 � Xi�1 with | pXi| ¥ η|Xi|
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and | pXi�1| ¥ η|Xi�1|,�����epX1, Xi�1q
|Xi||Xi�1| �

ep pXi, pXi�1q
| pXi|| pXi�1|

����� ¤ ηρ. (3.4)

The following is a suitable variant of Szemerédi's regularity lemma for

sparse graphs [47,48] (see also [39,68]).

Fact 3.22 (Sparse Regularity Lemma). For every εreg P R� and integers

kmin, ` P Z�, there exist kmax, N0, D0 P Z� such that the following holds.

Consider any integer N ¥ N0 and real number p with pN ¥ D0, and any

set of graphs G1, G2, . . . , G` on the same vertex set rN s that each satisfy

property piq in the de�nition of IpN, pq (De�nition 3.8). Then there exists

an integer k satisfying kmin ¤ k ¤ kmax and a vertex partition rN s � V1 Y
V2 � � � Y Vk that has the following properties.

• For all i P rks, we have |Vi| � N{k.

• For at least p1�εregq
�
k
2

�
of the pairs ti, ju P �rks

2

�
, all the bipartite graphs

EG`1 pVi, Vjq, where `1 P r`s, are pεreg, pq-regular.

Having obtained kmax, N0, and D0 from the above lemma, set

t :� 4kmax.

Let n be any integer large enough so that

N � nt ¥ N0 and pN � 4tplog nq2n1{ph�1q ¥ D0.

Consider any graph G P IpN, pq and any `-coloring of G. Our goal is to

show that this arbitrary edge coloring of G yields a monochromatic subgraph

in H2ph, n, ε2, qq.
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Observe that this coloring corresponds to a partition of EpGq into sub-

graphs G1, G2, . . . , G` which each inherit property piq in the de�nition of

IpN, pq. Hence, by the Sparse Regularity Lemma, there exists an integer k

satisfying kmin ¤ k ¤ kmax and a vertex partition V pGq � V1 Y V2 � � � Y Vk

into classes of size m :� N{k such that for at least p1 � εregq
�
k
2

�
of the

pairs ti, ju P �rks
2

�
, the bipartite graph EpVi, Vjq is pεreg, pq-regular with re-

spect to every color class.

De�ne an auxiliary cluster graph on rks by joining vertex i to vertex j if

the bipartite graph EpVi, Vjq is pεreg, pq-regular with respect to every color

class. The cluster graph has k ¥ kmin vertices and at least p1�εregq
�
k
2

�
edges,

implying that the cluster graph contains a copy of Kr.

De�ne a coloring of this copy of Kr in the cluster graph with the color

set r`s as follows. Color the edge ij with color `1 P r`s if the bipartite

graph EpVi, Vjq has density at least 2q in color `1. Edges may be col-

ored with multiple colors, but every edge will receive at least one color

because condition (ii) in the de�nition of Ipn, pq guarantees that the bi-

partite graph EpVi, Vjq has density at least p1{2qp � 2`q. By the de�nition

of the Ramsey number r, this `-coloring of Kr contains a monochromatic

copy of Kh�1, and hence a monochromatic copy of the cycle Ch�1 in some

color `1. This corresponds to sets W1,W2, . . . ,Wh�1 of size m � N{k so

that, for each i P rh � 1s, the bipartite graph EG`1 pWi,Wi�1q is pεreg, pq-
regular with density di satisfying 2q ¤ di ¤ 8`q, where the upper bound

on di follows from condition (ii) in the de�nition of Ipn, pq. Observe that

m � N{k ¥ N{kmax � 4n and thatm ¤ N   n log n. To complete the proof,

we must only demonstrate that every pεreg, pq-regular graph EpWi,Wi�1q
having density di satisfying 2q ¤ di ¤ 8`q is also pε2q-regular. To this end,

consider any subsets xWi � Wi and xWi�1 � Wi�1 with |xWi|, |xWi�1| ¥ ε2m.

Since EpWi,Wi�1q is pεreg, pq-regular and |xWi|, |xWi�1| ¥ ε2m ¥ εregm, it
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follows from De�nition 3.21 that�����epW1,Wi�1q
|Wi||Wi�1| �

epxWi,xWi�1q
|xWi||xWi�1|

����� ¤ εregp.

Furthermore, since di ¥ 2q � p{2` and εreg ¤ ε2{2`, this gives that�����epW1,Wi�1q
|Wi||Wi�1| �

epxWi,xWi�1q
|xWi||xWi�1|

����� ¤ εregp ¤ ε2

2`
p2`diq � ε2

epW1,Wi�1q
|Wi||Wi�1| ,

which implies

p1� ε2qepW1,Wi�1q
|Wi||Wi�1| ¤ epxWi,xWi�1q

|xWi||xWi�1|
¤ p1� ε2qepW1,Wi�1q

|Wi||Wi�1| .

3.3.2 Proof of Claim 3.19

Proof of Claim 3.19. Consider any ε1 P R�. We must show that there ex-

ist ε2 P R� such that, for every su�ciently large integer n, every graph

in H2ph, n, ε2, qq contains a subgraph in H1ph, n, ε1, qq.
Set β :� 1{2 and pε1 :� ε1{2. We obtain the positive real number ε2

and the constant c from the following lemma. Roughly speaking, the lemma

asserts that most induced subgraphs of a pε2q-regular bipartite graph can be

made pε1q-regular by the deletion of only a few vertices provided that ε2 ! ε1.

This basic idea of the lemma is shown in Figure 3.2.
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Figure 3.2: Given
an pε2q-regular bipartite
graph Ei � EpWi,Wi�1q,
the induced bipartite
graph EEipxWi,xWi�1q is
in G if there exists small sub-
sets ACi � xWi and B

C
i � xWi�1

such that, for Ai :� xWi�1zACi
and Bi :� xWi�1zBC

i ,
the induced bipartite
graph EEipAi, Biq is ppε1q-
regular with appropriate
density.

Fact 3.23 (Corollary 3.9 in [38]). For all 0   β   1 and pε1 ¡ 0, there

exists ε2, c ¡ 0 such that the following holds for any pε2q-regular bipartite

graph Ei � EpWi,Wi�1q with density di satisfying 2n ¥ cd�1
i .

• Let G be the set of induced subgraphs EEipxWi,xWi�1q � EpWi,Wi�1q
which have the following property: There exist Ai � xWi and Bi �xWi�1 with |Ai| ¥ p1 � pε1q|xWi| and |Bi| ¥ p1 � pε1q|xWi�1| such that

the induced bipartite graph EEipAi, Biq is ppε1q-regular with density pdi
satisfying p1� pε1qdi ¤ pdi ¤ p1� pε1qdi.

Then the number of induced subgraphs EEipxWi,xWi�1q with xWi P
�
Wi

2n

�
andxWi�1 P

�
Wi�1

2n

�
that are not in G is at most β2n

�|Wi|
2n

��|Wi�1|
2n

�
.

Having obtained ε2 and c from the above lemma, let n by any integer

large enough so that 2n ¥ cq�1. Now consider any graph H2 on
�h�1
i�1 Wi with

H2 P H2ph, n, ε2, qq. For some �xed integer m satisfying 4n ¤ m ¤ n log n,

we have that |Wi| � m for all i P rh� 1s. Recall that our aim is to show that

there exist a collection of n element subsets tXi � Wi : i P rh � 1su so that,
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for each i P rh � 1s, the induced bipartite graph EpXi, Xi�1q is pε1q-regular
with density between p3{2qq and 12`q.

To this end, we �rst consider a random selection of 2n element subsets

txWi � Wi : i P rh � 1su. By the union bound and Fact 3.23 (applied

with |Wi| � |Wi�1| � m and having β � 1{2), with probability at least

1�ph�1qp1{2q2n ¡ 0, this random selection of subsets will have the property

that, for each i P rh � 1s, the bipartite graph Ei :� EpxWi,xWi�1q is in G
(as de�ned in Fact 3.23). Hence, we may �x such a selection txWi � Wi :

i P rh � 1su of 2n element subsets such that each of the bipartite graphs

Ei � EpxWi,xWi�1q are in G. Now, for each i P rh�1s and associated bipartite

graph Ei � EpxWi,xWi�1q, we may �nd subsets Ai � xWi and Bi � xWi�1 with

|Ai|, |Bi| ¥ p1 � pε1q|2n| such that EEipAi, Biq is ppε1q-regular with density pdi
satisfying p1� pε1qdi ¤ pdi ¤ p1� pε1qdi. Thus for the set xWi, we have selected

subsets Ai � xWi and Bi�1 � xWi with respect to the bipartite graphs Ei �
EpxWi,xWi�1q and Ei�1 � EpxWi�1,xWiq respectively. For each xWi, let Xi be

any subset of Ai XBi�1 of size n.

For each i P rh � 1s, the bipartite graph EpXi, Xi�1q is pε1q-regular as
desired since:

• EpXi, Xi�1q is a subgraph of the ppε1q-regular bipartite graph EpAi, Biq.

• p1� pε1q2n ¤ |Ai| ¤ 2n and p1� pε1q2n ¤ |Bi| ¤ 2n.

• |Xi| � |Xi�1| � n.

• pε1 � ε1{2.

Also, EpXi, Xi�1q has density between p3{2qq and 12`q since:

• EpXi, Xi�1q is a subgraph of the ppε1q-regular bipartite graph EpAi, Biq
of density pdi satisfying p1� pε2q2q ¤ pdi ¤ p1� pε2q8`q.

• |Xi| ¥ pε1|Ai| and |Xi�1| ¥ pε1|Bi|.
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3.3.3 Proof of Claim 3.20

Proof of Claim 3.20. Consider any ε P R�. Take ε1 :� ε{2 and let n be

any su�ciently large integer. Consider any graph H1 on
�h�1
i�1 Xi with H1 P

H1ph, n, ε1, qq. We must show that H1 has a monochromatic subgraph H

on
�h�1
i�1 Xi with H P Hph, n, ε, qq.

For each i P rh � 1s, consider a random selection Ri � EpXi, Xi�1q of
qn2 edges. We claim that the random subgraph R :� �

iPrh�1sRi will have

the desired property R P Hph, n, ε, qq with positive probability. Indeed, this

probability can be easily bounded using the hypergometric distribution (See

Lemma 3.34), keeping in mind that p3{2qqn2 ¤ epXi, Xi�1q ¤ 12`qn2. This

establishes the existence of the desired subgraph H P Hph, n, ε, qq.

3.4 Proof of the Existence Lemma

This section of the paper proves Lemma 3.12, which asserts the existence of

a sparse graph G with certain properties. It su�ces to prove the following

lemma.

Lemma 3.24. For all constants h, ` P Z� and any constant δ P R�, there

exists a constant ε P R� such that, for any constant t P Z�,

q :� 4plog nq2n�1�1{ph�1q, N :� tn, and p :� 4`q,

an instance G of the random graph GpN, pq asymptotically almost surely has

each of the following properties:

(i) Every vertex in G has degree at most plog nq3n1{ph�1q.

(ii) G is ph, nq-cluster free (see De�nition 3.11).
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(iii) G P IpN, pq (see De�nition 3.8).

(iv) For all disjoint subsets X1, X2, . . . , Xh�1 � V pGq, every (not nec-

essarily induced) subgraphs H on
�h�1
i�1 Xi with H P Hph, n, ε, qq is

p1� δ, log nq-path abundant (see De�nitions 3.7 and 3.10).

In the statement of the previous lemma and elsewhere in this section,

we say that a number is a constant if it does not depend on n and that a

statement holds asymptotically almost surely (a.a.s.) if the probability the

statement is true approaches 1 as nÑ 8.

The �rst subsection contains Claims 3.25, 3.26, and 3.29, which respec-

tively establish that properties (i), (ii), and (iii) in Lemma 3.24 each hold

a.a.s. Notice that these properties do not depend upon ε. The second and

most substantial subsection will establish a lemma (Lemma 3.31) derived

from a result in [38]. In Subsection 3.4.3, Claim 3.42 will then use this lemma

to establish the existence of an ε for which the property (iv) in Lemma 3.24

holds a.a.s. These claims together constitute a proof of Lemma 3.24.

3.4.1 Properties (i), (ii), and (iii) in Lemma 3.24

In this subsection, we prove Claims 3.25, 3.26, and 3.29, which correspond

to properties (i), (ii), and (iii) in Lemma 3.24.

Claim 3.25. For any constants h, t, ` P Z�, let N :� tn and let p :�
4` plog nq2 n�1�1{ph�1q. Then a.a.s. the random graph GpN, pq has maximum

degree less than plog nq3n1{ph�1q.

Proof of Claim 3.25. It is a well-known fact that the random graph GpN, pq
a.a.s. has maximum degree less than 2pN for all p " plog nq{n, say. More-

over,

2pN � 2 � 4`plog nq2n�1�1{ph�1q � tn   plog nq3n1{ph�1q.
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Claim 3.26. For any constants h, t, ` P Z�, let N :� tn and let p :�
4`plog nq2n�1�11{ph�1q. Then a.a.s. the random graph GpN, pq is ph, nq-cluster
free.

Proof of Claim 3.26. Recall the de�nition of an pL, Z, h, log nq-cluster given
in De�nition 3.11. It follows that in the complete graph on N vertices,

each pL, Z, h, log nq-cluster is de�ned by:

• Specifying a size of L for L.

• Picking a set L of L pairs of vertices.

• Picking a set Z of vertices.

• For each tu, vu P L, picking a set of log n paths, each of which can be

speci�ed by:

� Picking a vertex in Z to appear in the interior of the path.

� Picking h� 1 other vertices to appear in the interior of the path.

� Ordering the h internal vertices on the path.

It follows that in GpN, pq, the expected number of pL, Z, h, log nq-clusters
for L � �rNs

2

�
and Z � rN s with |L| ¤ nplog nq�6h and |Z| � h2|L| is bounded
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above for su�ciently large n by

nplognq�6h¸
L�1

�
N2

L


�
N

h2L


�
h2L �

�
N

h� 1



� h!


plognqL
pplognqph�1qL

¤
nplognq�6h¸

L�1

N3h2L
�
hh�2LNh�1ph�1

�plognqL

¤
nplognq�6h¸

L�1

N3h2L
�
hh�2nplog nq�6hpntqh�1p4`plog nq2qh�1n�h

�plognqL

�
nplognq�6h¸

L�1

N3h2L
�
hh�2th�1p4`qh�1plog nq2�4h

�plognqL

¤
ņ

L�1

N3h2L

�
1

log n


plognqL
¤

ņ

L�1

�
pntq3h2

plog nqlogn

�L

¤ n � pntq3h2
plog nqlogn

,

which goes to 0 as nÑ 8. Because we have that the expected number of for-

bidden pL, Z, h, log nq-clusters that GpN, pq contains goes to 0, a.a.s. GpN, pq
is ph, nq-cluster free.

Before we state the next claim, we introduce a de�nition and an external

lemma that are needed in its proof.

De�nition 3.27. We say that a graph G is pp, aq-uniform if

��epV1, V2q � p|V1||V2|
�� ¤ a

a
p|V pGq||V1||V2|

for all disjoint sets V1, V2 � V pGq such that 1 ¤ |V1| ¤ |V2| ¤ p|V pGq||V1|.

Fact 3.28 (Lemma 3.8 in [44]). For every p � ppNq, 0   p ¤ 1, a.a.s. the

random graph GpN, pq is pp, e2
?

6q-uniform.

Claim 3.29. For any constants h, t, ` P Z� and N :� tn, we have that for

p :� 4`plog nq2n�1�1{ph�1q, a.a.s. the random graph GpN, pq is in IpN, pq.



52

Proof of Claim 3.29. By Fact 3.28 stated above, a.a.s. we have that

epV1, V2q ¤ p|V1||V2| � e2
?

6 �
a
pN |V1||V2|,

for all disjoint sets V1, V2 � V pGpN, pqq with 1 ¤ |V1| ¤ |V2| ¤ pN |V1|. This
is exactly the �rst condition given in the de�nition of IpN, pq. The other

condition given in the de�nition of IpN, pq states that a.a.s.

p1{2q � p|V1||V2| ¤ epV1, V2q ¤ 2 � p|V1||V2|

for all disjoint sets V1, V2 � V pGpN, pqq with |V1|, |V2| ¥ NplogNq�1. This

can easily be established by the union bound.

3.4.2 Proof of Lemma

For the remainder of this subsection, let X1, X2, . . . , Xh�1 be �xed (labeled)

sets each of size n. The follow class of describes the graphs on
�h�1
i�1 Xi that

do not have the desired path abundance property.

De�nition 3.30. Let Bph, n, ε, q, δq be the set of all graphs B on
�h�1
i�1 Xi

such that B P Hph, n, ε, qq and B is not p1� δ, log nq-path abundant.

Lemma 3.31. For any constant h P Z� and any constants δ, β P R�, there

exist constants ε, n4 P R� such that that following holds. For any n ¥ n4

and q :� 4plog nq2n�1�1{ph�1q, we have that

|Bph, n, ε, q, δq| ¤ βqn
2

�
n2

qn2


h�1

.

In Subsection 3.4.3, Lemma 3.31 will be used to establish Claim 3.42,

which states that the random graph GpN, pq a.a.s. has the property that it

does not contain any selection of disjoint vertex subsets X1, X2, . . . , Xh�1 and
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subgraph B on
�h�1
i�1 Xi with B P Bph, n, ε, q, δq. In other words, Claim 3.42

implies that a.a.s. GpN, pq has the property that for every section of disjoint

vertex subsets X1, X2, . . . , Xh�1 and subgraph H on
�h�1
i�1 Xi, the graph H

is p1 � δ, log nq-path abundant if H P Hph, n, ε, qq, which is exactly prop-

erty (iv) in Lemma 3.24. Keep in mind that although Claim 3.42 concerns

any selection of disjoint vertex subsets X1, X2, . . . , Xh�1 in GpN, pq, for the
time being in this section we are only counting the graphs in Bph, n, ε, q, δq
on already determined vertex sets X1, X2, . . . , Xh�1.

Essentially, we are trying to show that all but exponentially few graphs

on
�h�1
i�1 Xi in Hph, n, ε, qq (see De�nition 3.7) have the property that almost

all pairs of vertices in X1 are joined by log n transversal paths. The key

external lemma we will use establishes that all but exponentially few graphs

in Hph, n, pε, q{4 log nq (again see De�nition 3.7) have the property that most

pairs of vertices in X1 are connected by at least one path. This lemma will be

related to the result we are trying to prove by a double counting argument in

which a set F of 'bad families' of graphs (see De�nition 3.35) is considered.

We now introduce not only the key external lemma and a related de�nition,

but also the standard Hypergeometic Bound. This will be followed by a proof

of Lemma 3.31.

De�nition 3.32 (Path Dense). A graph H on on
�h�1
i�1 Xi with H P Hph, nq

is p1 � ηq-path dense if at least p1 � ηq�n
2

�
pairs of vertices tu, vu P �

X1

2

�
are joined by at least one transversal path (transversal paths are de�ned in

De�nition 3.10).

The next lemma is a corollary of Lemma 5.9 in [38]. (To obtain Fact 3.33

below, one sets the parameters in Lemma 5.9 as follows: ` � h � 2, β � pβ,
δ � δ{4, γ � δ{4, ν � δ{2, q � 4plog nq2n�1�1{ph�1q, m � qn2{p4 log nq and
noticing that nh�2 ! mh�1.)
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Fact 3.33. For any pβ, δ P R�, there exists pε P R� so that the following holds.

For q � 4plog nq2n�1�1{ph�1q, m :� qn2{p4 log nq, and su�ciently large n, the

total number of graphs E on
�h�1
i�1 Xi with E P Hph, n, pε,m{n2q that are

not p1� δ{2q-path dense is at most

pβm�n2

m


h�1

. (3.5)

The following is a well-known bound on the hypergeometic distribution

(see, e.g., Theorem 2.10 and Equation (2.12) in [45]).

Fact 3.34 (Hypergeometic Bound). Let Y be a set and pY be a subset of Y .

Suppose that M � Y is a subset of size m chosen at random from Y and let

the random variable X denote the number of elements in M X pY . Then
Pr

������X � m|pY |
|Y |

����� ¤ t

�
¥ 1� 2 exp

"
�2t2

|Y |
*
.

We will now prove Lemma 3.31.

Proof of Lemma 3.31. Consider any h P Z� and β, δ P R� and de�ne q :�
4plog nq2n�1�1{ph�1q. We must show that there exists an ε P R� such that for

su�ciently large n we have

|Bph, n, ε, q, δq| ¤ βqn
2

�
n2

qn2


h�1

.

Making use of Fact 3.33, setpβ :� β2

92ph�1q , pε :� εF3.33ppβ, δq, ε :� pε{2, and m :� qn2

4 logn
.

As mentioned before, the fundamental idea in our proof is to relate the

bound in Fact 3.33 to |Bph, n, ε, q, δq| by counting the number of `bad fami-

lies,' which are de�ned as follows.
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De�nition 3.35 (Bad Family). A set of graphs F � tE1, E2, . . . , E4 lognu is
called a bad family if both the following hold:

• Every E P F is a graph on
�h�1
i�1 Xi with E P Hph, n, pε,m{n2q.

• Fewer than half of the graphs E P F are p1� δ{2q-path dense.

Let F be the set of all bad families of graphs.

Proposition 3.36.

|F | ¤
�pβm�n2

m


h�1
�2 logn��

n2

m


h�1
�2 logn

.

Proof of Proposition 3.36. To verify Proposition 3.36, we use that for each F P
F , there are 2 log n graphs E P F in Hph, n, pε,m{n2q that are not p1� δ{2q-
path dense. By Fact 3.33, the number of graphs of this type is at most as

in (3.5). This readily yields the bound in Proposition 3.36.

The next de�nition refers to Hph, n, 1,m{n2q, which is the set of graphs

inHph, nq on�h�1
i�1 Xi in which all of the bipartite graph pXi, Xi�1q havem{n2

edges (i.e., the choice of ε � 1 in De�nition 3.7 imposes no uniformity re-

striction).

De�nition 3.37 (Associated Family). For each graph B P Bph, n, ε, q, δq,
we call the set of edge-disjoint graphs A � tE1, E2, . . . , E4 lognu an associated

family to B if both the following hold:

• Every E P A is a graph o on
�h�1
i�1 Xi with E P Hph, n, 1,m{n2q.

• B � �4 logn
i�1 Ei.

Since for each B P Bph, n, ε, q, δq an associated family A is obtained by

partitioning the qn2 edges in each of the h � 1 bipartite graphs into 4 log n
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classes of size m, it follows that each B is associated to�
qn2

m,m, . . . ,m


h�1

pp4 log nq!q�1

associated families. Moreover, no two distinct graphs B1, B2 P Bph, n, ε, q, δq
will yield a common associated family. The next claim gives a lower bound

for the size of F and will be proved by establishing that, for each B P
Bph, n, ε, q, δq, half of its associated families are bad families.

Proposition 3.38.

|F | ¥ |Bph, n, ε, q, δq|1
2

�
qn2

m,m, . . . ,m


h�1

pp4 log nq!q�1

Proof of Proposition 3.38. As discussed before the proposition, it su�ces to

show that at least half the associated families for any B P Bph, n, ε, q, δq
are bad families. Hence, to prove Proposition 3.38, it su�ces to show the

following two subpropositions.

Subproposition 3.39. For every B P Bph, n, ε, q, δq and every associated

family A � tE1, E2, . . . , E4 lognu, fewer than half of the graphs E P A are p1�
δ{2q-path dense.

Subproposition 3.40. For every B P Bph, n, ε, q, δq, at least half the asso-

ciated families A � tE1, E2, . . . , E4 lognu have the property that all E P A are

in Hph, n, pε,m{n2q.

Proof of Subproposition 3.39. We prove the contrapositive by arguing that

if at least 2 log n of the graphs E P A are p1 � δ{2q-path dense, then B

is p1� δ, log nq-path abundant. To this end, �x a set of 2 log n graphs E P A
that are p1� δ{2q-path dense. For each of theses graphs, �x one transversal

path for each of the p1�δ{2q�n
2

�
pairs of vertices tu, vu P �X1

2

�
that are joined
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by traversal paths. Let P be the set of paths obtained by this process, so

that

|P | � p2 log nqp1� δ{2q
�
n

2



. (3.6)

Also, observe that each pair of vertices tu, vu P �X1

2

�
is joined by at most 2 log n

paths in P . Now suppose that exactly α
�
n
2

�
pairs of vertices in

�
X1

2

�
are joined

by at least log n transversal paths in P . It follows that

|P | ¤ α

�
n

2



2 log n� p1� αq

�
n

2



log n. (3.7)

From (3.6) and (3.7),

p2 log nqp1� δ{2q
�
n

2



¤ α

�
n

2



2 log n� p1� αq

�
n

2



log n,

which implies

2� δ ¤ 2α � p1� αq,

giving that α ¥ 1�δ. This establishes that B is p1�δ, log nq-path abundant,

completing the proof of Subproposition 3.39.

Proof of Subproposition 3.40. Consider any B P Bph, n, ε, q, δq. For any pXi �
Xi and pXi�1 � Xi�1 each of size | pXi|, | pXi�1| ¥ pεn ¥ εn, by de�nition

of Bph, n, ε, q, δq we have that���eBp pXi, pXi�1q � q| pXi|| pXi�1|
��� ¤ εq| pXi|| pXi�1|,

or equivalently�����eBp pXi, pXi�1q
4 log n

� q

4 log n
| pXi|| pXi�1|

����� ¤ ε
q

4 log n
| pXi|| pXi�1|. (3.8)
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Now if M is a random subgraph on m � qn2{p4 log nq edges of the bipar-
tite graph EBpXi, Xi�1q on qn2 edges, then the hypergeometric bound stated

in Lemma 3.34 (applied with Y � EBpXi, Xi�1q and pY � EBp pXi, pXi�1q)
gives that �����eMp pXi, pXi�1q � eBp pXi, pXi�1q

4 log n

����� ¤ ε
q

4 log n
| pXi|| pXi�1| (3.9)

holds with probability at least

1� 2 exp

#
�2pεq| pXi|| pXi�1|{4 log nq2

qn2

+
¥ 1� 2 exp

"
� ε6qn2

8plog nq2
*

¥ 1� 2 exp
!
�2�1ε6n1� 1

h�1

)
.

From the triangle equality applied to (3.8) and (3.9) (and fact that ε�ε �pε), this gives����eMp pXi, pXi�1q � q

4 log n
| pXi|| pXi�1|

���� ¤ pε q

4 log n
| pXi|| pXi�1| (3.10)

with probability at least

1� 2 exp
 �2�1ε6n1�1{ph�1q( . (3.11)

Now consider a random partition of B into an associated family

A � tE1, E2, . . . , E4 lognu.

The associated familyA will have the desired property that all of the graphsE P
A are in Hph, n, pε,m{n2q � Hph, n, pε, q{p4 log nqq if inequality (3.10) is satis-

�ed for every choice of M � Ej for j P r4 log ns, every choice of i P rh � 1s,
and every choice of pXi � Xi and pXi�1 � Xi�1. It follows from (3.11) and the
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union bound that this will occur with probability at least

1� p4 log nq � ph� 1q � 2n � 2n � 2 exp
 �2�1ε6n1�1{ph�1q( ,

which tends to 1 as n Ñ 8. This establishes that a random partition of B

into an associated family A � tE1, E2, . . . , E4 lognu will have the property that
all of the graphs E P F are in Hph, n, pε,m{n2q with probability at least 1{2
for su�ciently large n. It follows that at least half of the associated families

A � tE1, E2, . . . , E4 lognu to any B P Bph, n, ε, q, δq have the property that

all of the graphs E P F are in Hph, n, pε,m{n2q, which completes the proof of

Subproposition 3.40.

Hence, we have proved Proposition 3.38.

We now return to the proof of Lemma 3.31, recalling that we would like

to show

|Bph, n, ε, q, δq| ¤ βqn
2

�
n2

qn2


h�1

.

Propositions 3.38 and 3.36, which we have already established, together give

that

|Bph, n, ε, q, δq|

¤
�pβm�n2

m


h�1
�2 logn��

n2

m


h�1
�2 logn

� 2
�

qn2

m,m, . . . ,m


�ph�1q
p4 log nq!.

Thus to establish Lemma 3.31, it su�ces to prove the following.

Proposition 3.41.

pβ2m logn

�
n2

m


4ph�1q logn

� 2
�

qn2

m,m, . . . ,m


�ph�1q
p4 log nq! ¤ βqn

2

�
n2

qn2


h�1

.
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Proof of Proposition 3.41. Keeping in mind that

qn2 � 4plog nqm, pβ � β29�2ph�1q,
�
a

b



¤ pea

b
qb,

�
a

b, b, . . . , b



¥
� a
be

	a
, and

�a
b

	b
¤
�
a

b



,

we see that

pβ2m logn

�
n2

m


4ph�1q logn

� 2
�

qn2

m,m, . . . ,m


�ph�1q
� p4 log nq!

¤
�

β2

92ph�1q


2m logn�
n2e

m


m4ph�1q logn

� 2
�
qn2

me


�qn2ph�1q
� p4 log nq!

� βqn
2

�
n2e

9m


4ph�1qm logn

� 2
�
me

qn2


qn2ph�1q
� p4 log nq!

� 2βqn
2

�
n2e

9m
� me
qn2


qn2ph�1q
� p4 log nq!

¤ βqn
2

�
n2

qn2


qn2ph�1q
�
�
e2

9


qn2ph�1q
2p4 log nq!

¤ βqn
2

�
n2

qn2


qn2ph�1q
¤ βqn

2

�
n2

qn2


h�1

.

This completes the proof of Lemma 3.31.

3.4.3 Property (iv) in Lemma 3.24

In this subsection, we will prove Claim 3.42, which correspond to prop-

erty (iv) in Lemma 3.24.

Claim 3.42. For all constants h, ` P Z� and δ P R�, there exists a con-

stant ε P R� such that the following holds. For any constant t P Z�,
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q :� 4plog nq2n�1�1{ph�1q, N :� tn, and p :� 4`q,

the random graph GpN, pq a.a.s. has the following property. For any selection
of disjoint subsets X1, X2, . . . , Xh�1 � V pGq, every (not necessarily induced)

subgraphs H on
�h�1
i�1 Xi with H P Hph, n, ε, qq is p1�δ, log nq-path abundant.

Proof. Consider any h, ` P Z� and δ P R�. Let

β :� p24`q�ph�1q.

By Lemma 3.31, we may now �x

ε :� εL3.31ph, δ, βq and n4 :� nL3.31
4 ph, δ, βq,

and without loss of generality assume that ε   1{2. Now consider any

integer t P Z�.

To show that a.a.s. every subgraph H P Hph, n, ε, qq appearing in GpN, pq
is p1� δ, log nq-path abundant, as we previously remarked, it su�ces to show

that a.a.s. GpN, pq does not contain disjoint subsets X1, X2, . . . , Xh�1 �
V pGq and a subgraph B on

�h�1
i�1 Xi with B P Bph, n, ε, q, δq. By Lemma 3.31,

for all n ¥ n4, the expected total number of subgraphs B P Bph, n, ε, q, δq
appearing in GpN, pq over all choices of subsets is bounded above by

�
N

ph� 1qn


pph� 1qnq! � βqn2

�
n2

qn2


ph�1q
� pqn2ph�1q

¤ N ph�1qn � βqn2

�
en2

qn2ph� 1q

qn2ph�1q

pqn
2ph�1q

¤ 2ph�1qn logN �
�
β1{ph�1qep4`qq
qph� 1q


qn2ph�1q

¤ 2ph�1qn logN � �β1{ph�1qe4`
�qn2ph�1q

¤ 2ph�1qn log tn �
�

1

2


qn2

,
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which tends to 0 as n Ñ 8. Therefore the probability that GpN, pq con-
tains disjoint vertex subsets X1, X2, . . . , Xh�1 � V pGq and a subgraph B

on
�h�1
i�1 Xi with B P Bph, n, ε, q, δq also tends to 0 as n Ñ 8, completing

the proof of Claim 3.26.

3.5 Proof of the Embedding Lemma

In this section, we prove Lemma 3.14, which states that for certain parame-

ters every J P J ph, n, δq (see De�nition 3.13) is universal to the set of graphs

tSphq : |V pSq| � nplog nq�7h and ∆pSq ¤ du. The proof will be divided into

two subsections, which are preceded by the following sketch of the proof.

Consider any graph J P J ph, n, δq on �h�1
i�1 Xi and any graph S with

|V pSq| � nplog nq�7h and ∆pSq ¤ d. Our aim will be to �nd a mapping φ :

V pSq Ñ X1 such that each edge uv P EpSq can be paired with a transversal

path (see De�nition 3.10) between φpuq and φpvq. Observe that if the set of
transversal paths selected are internally vertex-disjoint, this will correspond

to an embedding of the subdivided graph Sphq into J . Roughly speaking,

this will be accomplished by �rst �nding an embedding φ : V pSq Ñ X1 and

associating each edge uv P EpSq with not one associated transversal path,

but a family of many transversal paths between φpuq and φpvq. This will be
done so that all the paths in all the associated families are edge-disjoint. We

then will select one path from each associated family to obtain the desired

collection of internally vertex-disjoint paths.

We will now elaborate upon this sketch. For the graph J , we say that

two vertices u, v P X1 are plog nq-path connected if u and v are joined by

at least log n pairwise edge-disjoint transversal paths in J . Since J is

p1 � δ, log nq-path abundant (see De�nition 3.10), at least p1 � δq�n
2

�
pairs

of vertices in X1 are plog nq-path connected (see De�nition 3.10). De�ne an



63

auxiliary graph A by

V pAq :� X1 and EpAq :� tuv : u and v are plog nq-path connected in Ju.

For each uv P EpAq, let Πuv be a �xed set of log n pairwise edge-disjoint

transversal paths in J with endpoints u and v. We say the distinct edges

e1, e2 P EpAq are incompatible if there exist paths πe1 P Πe1 and πe2 P Πe2

such that πe1 and πe2 have an edge in common. De�ne the incompatibility

function f : EpAq Ñ PpEpAqq by

fpe1q :� te2 : e1 and e2 are incompatibleu.

Given this set-up, the proof has two steps:

• Find a graph embedding φ : S Ñ A such that φpe1q R fpφpe2qq for

every e1, e2 P EpSq.

• For each edge e P EpSq, select a path πφpeq P Πφpeq so that for all

pairs of edges e1, e2 P EpSq, the paths πφpe1q and πφpe2q are internally

vertex-disjoint.

The key to the �rst of these two steps is the following lemma. Although

stated in a general context, when we apply the lemma the function f will be

the incompatibility function de�ned above.

Lemma 3.43. Let d and n be positive integers. Let A be a graph such that:

(i) |V pAq| � n.

(ii) Every vertex in A has degree at least p1� 1{6dqn.

Let S be a graph such that:

(iii) |V pSq| ¤ n{6.
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(iv) Every vertex in S has degree at most d.

Let f : EpAq Ñ PpEpAqq be a function that maps each edge e P EpAq to a

set of edges fpeq � EpAq such that:

(v) |fpeq| ¤ n{63d4 for all e P EpAq.

(vi) e1 P fpe2q if and only if e2 P fpe1q.

(vii) e R fpeq for all e P EpAq.

Then there is an embedding φ : S Ñ A such that

φpEpSqq X fpφpEpSqqq � H, (3.12)

where fpφpEpSqqq :� �
ePφpEpSqq fpeq.

To select a system of internally vertex-disjoint paths πφpeq P Πφpeq for the

edges e P S, we will make use of J being ph, nq-cluster free, that for distinct
edges e1, e2 P S the families πφpe1q and πφpe2q consist of pairwise edge-disjoint

paths, and the following result of Aharoni and Haxell.

Fact 3.44 ( [2]). Let X be a �nite set and let pΠ1, . . . , pΠm � �
X
h

�
be families

of h-subsets of X. Suppose that, for every non-empty L � rms, there are

more than hp|L| � 1q pairwise disjoint h-sets in
�
lPL pΠl. Then there existpπ1, . . . , pπm with pπi P pΠi for every i P rms such that pπi X pπj � H for every

distinct i, j P rms. We call tpπi : i P rmsu a system of disjoint representatives

for tpΠi : i P rmsu.

The remaining part of this section is divided into two subsections. The

�rst subsection contains a proof of Lemma 3.43 and the second subsection

contains a proof of Lemma 3.14 based upon Lemma 3.43 and Fact 3.44.
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3.5.1 Proof of Lemma 3.43

Proof. Let n, d, A, S, and f be as in the statement of Lemma 3.43. To prove

the lemma, we introduce some terminology and then present an embedding

algorithm.

De�nition 3.45 (Dangerous Vertex).

• We call edges e1 and e2 in EpAq incompatible if e1 P fpe2q.

• We call a pair of incident edges xy, yz P EpAq that are incompatible

a useless P3. We call y the center vertex of the useless P3 and the

pair x, z the end vertices of the useless P3.

• We call a pair of vertices tu, vu P �
V pAq

2

�
a dangerous pair if u, v are

the end vertices of at least n{6�d
2

�
useless P3.

• We call a vertex v P V pAq a dangerous vertex if it is in at least n{6d2

dangerous pairs.

We now work to obtain an upper bound for the number of dangerous

vertices in A. Recalling that each edge is incompatible with at most n{63d4

other edges, the number of useless P3 is at most

n

63d4
�
�
n

2



¤ n3

2163d4
.

It follows that the number of dangerous pairs of vertices is at most

n3

2163d4
� 6

�
d
2

�
n

¤ n2

2262d2
.

Finally, the number of dangerous vertices is at most

2 � n2

2262d2
� 6d2

n
¤ n

12
. (3.13)
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Set J0 to be the set of dangerous vertices in A.

De�nition 3.46 (Guilty Vertex). Suppose S 1 is an induced subgraph of S, A1

is an induced subgraph of A, and φ1 is an embedding of the graph S 1 into A1.

• We call e P EpA1q a forbidden edge if e P fpφ1pEpS 1qqq.

• We will call a vertex v P φ1pV pS 1qq guilty by association, or sim-

ply guilty, if v is incident to at least n{6d forbidden edges.

That is, a forbidden edge in A is incompatible with an edge that has

already been used in the embedding, and a vertex is guilty by association if

it is incident to too many forbidden edges.

De�nition 3.47 (Safe and Legal Embeddings). Suppose S 1 is an induced

subgraph of S, the graph A1 is an induced subgraph of the graph A, and φ1 is

an embedding of the graph S 1 into the graph A1.

• We say that the embedding φ1 is legal if φ1pEpS 1qq X fpφ1pEpS 1qq � H.

• We say vertices s1, s2 in S are P3-connected if s1v, s2v P EpSq for

some v P V pSq.

• We say that the embedding φ1 is safe if none of the pairs tφ1ps1q, φ1ps2qu
of vertices in A is dangerous for vertices s1, s2 P V pS 1q that are P3-

connected in S.

That is, an embedding is legal if it has not used any pair of incom-

patible edges, and an embedding is safe if for each s P S and any pair of

vertices s1, s2 P Npsq, the embedding φ1 has not mapped s1 and s2 onto a

dangerous pair of vertices.

Before formally stating our embedding algorithm, we present the main

idea, which is as follows. We keep a set J of `jailed' vertices. We initially

send all the dangerous vertices to jail. We then construct a legal and safe
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partial embedding φ1 of an induced subgraph S 1 � S into AzJ by sequen-

tially embedding vertices. As edges are added to the embedding, however,

the number of forbidden edges may increase and already embedded vertices

may become guilty by association. This is problematic because guilty ver-

tices may prevent the embedding from being extended in a legal manner

later. To resolve this, whenever guilty vertices appear in A1, we send them to

jail and remove them from the embedding. (Therefore, the domain S 1 of the

partial embedding φ1 may decrease in size as the algorithm progresses.) We

will show that not too many vertices end up in jail and that when no guilty

vertices are present, a legal and safe embedding can always be augmented to

form a larger legal and safe embedding.

Algorithm: Initially take

S 1 :� H, J :� J0, A1 :� AzJ,
and set φ1 : S 1 Ñ A1 to be the empty function. As we proceed through the

algorithm, we will update these sets and this function.

STEP 1 : If there exists a vertex v P φ1pV pS 1qq that is guilty in the

current embedding, replace J by J Y tvu, replace S 1 by S 1ztφ1�1pvqu, update
the function φ1 by removing the pair pφ1�1pvq, vq, update A1 to AzJ , and
repeat STEP 1. Otherwise, go to STEP 2.

STEP 2 : Arbitrarily pick a vertex s P V pSqzV pS 1q and extend φ1 to s by

mapping s to some vertex v P V pA1qzφpV pS 1qq so that the new embedding

is both legal and safe. Also, replace S 1 by S 1 Y tsu and add ps, vq to φ1.
If S 1 � S, terminate the algorithm; otherwise, go to STEP 1.

We make the following observations about this algorithm:

• Once a vertex is placed into J , it will always remain in J .
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• The set of dangerous pairs and the set of dangerous vertices are both

�xed from the beginning and do not change.

• Extending an embedding by adding a new vertex (and up to d edges)

may make a vertex v P φ1pV pS 1qq guilty.

• At the start of STEP 2, there are no guilty vertices and the current

embedding is both legal and safe.

It remains to show that STEP 2 is always possible and that the algorithm

will successfully terminate. This will be accomplished by the following two

facts.

Proposition 3.48. The size of the set J will never reach n{6.

Proof of Proposition 3.48. Towards contradiction, consider the �rst moment

in the execution of the algorithm at which |J | � n{6. Let B be the set of

edges that were forbidden at any point in time up to this stopping point.

That is, B is the set of edges that appeared in fpφ1pEpS 1qq for any partial

embedding φ1 the algorithm considered over its run time. We will reach a

contradiction by considering the size of B.

To obtain an upper bound for the size of B, notice that whenever a vertex

was added to the embedding, up to d edges were added to the embedding as

well, and thus at most d � n{p63d4q forbidden edges were added to B for each

vertex embedded. Since the number of vertices added to the embedding is

at most

|J | � |J0| � |S| ¤ n

6
� n

6
¤ n

3
,

it follows that

|B| ¤ n

3
� d � n

63d4
¤ n2

63d3
. (3.14)

We now obtain a lower bound for the size of B. Notice that each guilty

vertex that was added to J was incident to at least n{6d forbidden edges
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in A1. Moreover, since vertices in J remain in J , this set of n{6d forbidden

edges will never again appear in A1. This gives

|B| ¥ p|J | � |J0|q � n
6d

¥
�n

6
� n

12

	
� n

6d
� n2

72d
. (3.15)

Equalities (3.14) and (3.15) yield the contradiction

n2

72d
¤ |B| ¤ n2

63d3
,

completing the proof of Proposition 3.48.

Proposition 3.49. STEP 2 is always possible.

Proof of Proposition 3.49. Arbitrarily pick a vertex s P V pSqzV pS 1q to ex-

tend the embedding to. We must �nd a vertex v P A1 so that extending φ1

to include the pair ps, vq will produce an embedding that is both legal and

safe. We will now list six cases in which such a vertex v P A will not produce

an embedding that is both legal and safe. Cases 1, 2, and 3 correspond to

the map not being an embedding into A1; Case 4 corresponds to the em-

bedding using an edge incompatible with an edge already used (and thus

not being legal); Case 5 corresponds to the embedding using two new edges

that are incompatible with each other (and thus not being legal); and Case 6

corresponds to the embedding not being safe.

1. The vertex v belongs to φ1pS 1q.

2. The vertex v belongs to J .

3. For some s1 P S 1 with ss1 P EpSq, the edge φps1qv is not in EpAq.

4. For some s1 P S 1 with ss1 P EpSq and e1 P EpS 1q, the edge φps1qv is

in fpφpe1qq .
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5. For some s1, s2 P S 1 with ss1, ss2 P EpSq, the edges φps1qv and φps2qv
are incompatible.

6. For some s1 P S 1 that is P3-connected in S to s, the pair tφ1ps1q, vu is
dangerous.

Observe that if none of (1)�(6) holds, then extending φ to include ps, vq
will produce an embedding that is both legal and safe.

The number of vertices in A in Cases 1 and 2 is at most

|S| � |J | ¤
�n

6
� 1

	
� n

6
¤ 2n

6
� 1.

To count the number of vertices in A in Case 3, observe that s has at most d

neighbors in S 1. Hence, there are at most d choices for s1. Also, from hy-

pothesis each s1 is not adjacent to at most n{6d vertices. Hence, the number
of vertices in Case 3 at most

d � n
6d

¤ n

6
.

Similarly, to count the number of vertices in A in Case 4, again recall that s

has at most d neighbors in S 1. Also for each such neighbor s1, it follows from

the fact that φ1ps1q is not guilty by association that φps1q is incident to at

most n{6d forbidden edges. Hence, the total number of vertices in Case 4 is

at most

d � n
6d

� n

6
.

To count the number of vertices in A in Case 5, observe that there are are

at most
�
d
2

�
choices for s1 and s2, and for any choice of s1, s2, since the

embedding is safe, there are at most n{6�d
2

�
vertices v that are part of a

useless P3 with φ1ps1q and φ1ps2q. Hence the total number of vertices in
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Case 5 is at most �
d

2



� n

6
�
d
2

� ¤ n

6
.

Finally, to count the number of vertices that are in Case 6, observe that

in the graph S, the vertex s is distance two away from at most d2 other

vertices. Since each of the images of these vertices is not dangerous, the

images are each in at most n{6d2 dangerous pairs. Hence, the total number

of vertices v P A that are in Case 6 is at most

d2 � n

6d2
� n

6
.

In conclusion, there must be at least

n�
�

2n

6
� 1



� 4 � n

6
¥ 1

vertices v P A such that the map obtained by extending φ1 to include ps, vq
will produce both a legal and safe embedding. This completes the proof of

Proposition 3.49.

This concludes the proof of Lemma 3.43.

3.5.2 Proof of Lemma 3.14

Consider any pair of positive integers h and d. We will make use of the

following simple fact.

Fact 3.50. For every ν ¡ 0 there exist δ ¡ 0 and n6 such that for every

integer n ¥ n6 the following holds. If A is a graph on n vertices with at least

p1� δq�n
2

�
edges, then there exists a subgraph pA with |V p pAq| ¥ p1� νqn and

with minimum degree at most p1� νq|V p pAq|.
With ν :� 1{6d, choose δ and n6 in accordance with the previous fact.
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Choose n3 ¥ n6 so that the second inequality in (3.17) below is satis�ed for

all n ¥ n3. Now consider any n ¥ n3, any J P J ph, n, δq, and any graph S

with |V pSq| � nplog nq�7h and ∆pSq ¤ d. We must show that Sphq � J .

As at the beginning of Section 3.5, de�ne the auxiliary graph A by

V pAq :� X1 and EpAq :� tuv : u and v are plog nq-path connected in Ju.

Let pA be a subgraph of A on pn vertices such that pn ¥ n{2 and every vertex

in pA has degree at least p1 � 1{6dqpn, guaranteed by Fact 3.50. Also, for

each uv P Ep pAq, let Πuv be a �xed set of log n transversal paths between u

and v in J that are pairwise edge-disjoint. As before, we say that a pair of

distinct edges e1, e2 P EpAq are incompatible if there exist paths πe1 P Πe1

and πe2 P Πe2 such that πe1 and πe2 have an edge in common and de�ne

fpe1q :� te2 : e1 and e2 are incompatableu.

We will use Lemma 3.43 to embed S into pA. With the set-up above,

all the hypotheses other than (v) in Lemma 3.43 are clearly satis�ed. To

verify (v), observe that, since J has maximum degree plog nq3n1{ph�1q, the

number of transversal paths any edge e P EpJq can be in is at most

�plog nq3n1{ph�1q�h ¤ plog nq3hnh{ph�1q. (3.16)

Moreover, since for every e P EpAq the family Πe has exactly log n edge-

disjoint paths,

fpeq ¤ plog nq � ph� 1q � plog nq3hnh{ph�1q   n{2
63d4

, (3.17)

where the second inequality follows from n ¥ n3. Thus, by Lemma 3.43,

there exists an embedding φ of S into pA such that the image of EpSq under φ
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contains no pair of incompatible edges.

Finally, to select a system of internally pairwise vertex-disjoint paths from

the families tΠφpeq : e P EpSqu, the result of Aharoni and Haxell (Fact 3.44)

will be used. Take X :� �h�1
i�2 Xi, and set

pΠe :� tV pπq XX : π P Πeu,

so that each element in pΠe is a set of vertices in X that corresponds to the

interior of a path in Πe. Thus a system of disjoint representatives for the set

of families tpΠφpeq : e P EpSqu corresponds to an embedding of Sphq into J .

Clearly,

|tpΠφpeq : e P EpSqu| � |EpSq| ¤ dnplog nq�7 ¤ nplog nq�6. (3.18)

We claim that the hypothesis of Fact 3.44 holds. Towards contradiction,

assume that there exists a set L of L ¤ nplog nq�6 edges in φpEpSqq � A such

that there are at most hpL� 1q pairwise disjoint h-sets in �
lPL pΠl. Let Γ be

a maximum set of pairwise disjoint h-sets in
�
lPL pΠl. Let Z be the vertices

in Γ. Observe

|Z| ¤ hpL� 1q � h ¤ h2L.

However, one may check that
�
lPL Πl is an pL, Z, h, log nq-cluster of paths

in the graph J . This contradicts the fact that J is ph, nq-cluster free (prop-
erty (iv) in De�nition 3.13). This contradiction establishes that the hypoth-

esis of the Aharoni�Haxell theorem holds, and therefore the set of families

tpΠφpeq : e P EpSqu has a set of disjoint representatives, yielding an embedding

of Sphq into J . This completes the proof of Lemma 3.14.



74

3.6 Proof of Theorem 3.3

For brevity, we shall refer to graphs on n vertices that have maximum degree

at most d as pn, dq-graphs. In this section, we show that if H is a graph

that contains a copy of Sphq for every pn, dq-graph S, then H has at least

n1�1{ph�1q�2{dph�1q�op1q edges. Hence, for �xed integers h ¥ 1 and d ¥ 2,

USRph, d, 1, nq ¥ n1�1{ph�1q�2{dph�1q�op1q,

which is the statement in Theorem 3.3.

The proof is based upon the following external lemma.

Fact 3.51 ( [10], Corollary II.4.17, p. 52). Let d ¥ 2 be a �xed integer and

suppose that dn is even. The number Ldpnq of d-regular graphs on n labeled

vertices satis�es

Ldpnq � p1� op1qq
?

2e�pd
2�1q{4

�
dd{2

ed{2d!


n

ndn{2.

Proof of Theorem 3.3. Let L¤dpnq be the number of labeled pn, dq-graphs
(recall that pn, dq-graphs have maximum degree at most d). Fact 3.51 gives

that, for any �xed d ¥ 2,

L¤dpnq ¥ 2pd{2�op1qqn logn. (3.19)

We now let U¤dpnq be the number of unlabeled pn, dq-graphs, and let U
phq
¤d pnq

be the number of unlabeled h-subdivisions of such graphs.

We claim that

U
phq
¤d pnq ¥ 2pd{2�1�op1qqn logn. (3.20)
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Indeed, �rst observe that, from (3.19), we have

U¤dpnq ¥ 1

n!
� 2pd{2�op1qqn logn ¥ 1

nn
� 2pd{2�op1qqn logn ¥ 2pd{2�1�op1qqn logn.

Second, observe that if two distinct unlabeled pn, dq-graphs S1 and S2 both

have each edge subdivided h times, then the resulting graphs S
phq
1 and S

phq
2

are distinct unlabeled graphs. Together, these observations establish (3.20).

To complete the proof of Theorem 3.3, we use the fact that if H is a

graph on m edges that contains a copy of every unlabeled h-subdivision of

pn, dq-graphs, then it must be the case that

ndph�1q{2¸
i�0

�
m

i



¥ U

phq
¤d pnq ¥ 2pd{2�1�op1qqn logn. (3.21)

If m ¤ ndph � 1q, then the left hand side of (3.21) is at most 2ndph�1q,

which yields a contradiction to the inequality in (3.21). We therefore suppose

that m ¥ ndph� 1q. Then, using that every binomial coe�cient in (3.21) is

at most
�

m
ndph�1q{2

�
and that

�
n
a

� ¤ pen{aqn, we have

ndph�1q{2¸
i�0

�
m

i



¤ 1

2
ndph� 1q �

�
em

ndph� 1q{2

ndph�1q{2

. (3.22)

From equations (3.21) and (3.22), we have

1

2
ndph� 1q �

�
em

ndph� 1q{2

ndph�1q{2

¥ 2pd{2�1�op1qqn logn,

or, equivalently, �m
n

	ndph�1q{2
¥ 2pd{2�1�op1qqn logn.

This implies that
m

n
¥ 2p1{ph�1q�2{pph�1qdq�op1qq logn,
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giving the desired bound of

m ¥ n1�1{ph�1q�2{pph�1qdq�op1q.

3.7 Proof Sketch of Theorem 3.4

To prove Theorem 3.4, we must show that for any integers h and d, there

exists a constant ch,d such that the following holds. If Q is a graph of max-

imum degree at most d on q vertices with the property that every pair of

vertices of degree greater than 2 are distance at least h � 1 apart, thenprpGq ¤ ch,dplog qq20hq1�1{ph�1q.

To accomplish this, we �rst de�ne the `super subdivision' of a graph. We

then show that for any graph Q as in Theorem 3.4, there exists a graph S

such that the super subdivision of S contains Q as a subgraph. It will then

su�ce to demonstrate how our main Theorem 3.2 concerning subdivisions

can be extended to super subdivisions.

De�nition 3.52 (Super Subdivision Sp�q). Give a graph S and integers h

and d, we de�ne the super subdivision Sp�q of S to be the graph obtained by

replacing each edge uv in S by a system of dph � 1q paths from u to v, of

which exactly d paths have length k for each k P th� 1, h� 2, . . . , 2h� 1u.
Proposition 3.53. Let Q be any graph with |V pQq| � q and ∆pQq ¤ d with

the property that every two vertices of degree greater than 2 are distance at

least h� 1 apart. Then there exists a graph S with |V pSq| ¤ q and ∆pSq ¤ d

such that Q � Sp�q.

Proof of Proposition 3.53. For vertices x1, x2 P Q, let distQpx1, x2q be the

minimum number of edges in a path with endpoints x1 and x2. Let X be a

maximal subset of vertices in Q that satis�es both of the following properties:
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• All vertices of degree greater than 2 are contained in X.

• All pairs of vertices x1, x2 P X satisfy distQpx1, x2q ¡ h.

Now construct a graph S by taking V pSq � X and joining vertices x1, x2 P
S if distQpx1, x2q   2h � 2. It follows that ∆pSq ¤ ∆pQq and that Q �
Sph�q.

In view of Proposition 3.53, to establish Theorem 3.4 it su�ces to estab-

lish the following lemma.

Lemma 3.54. For any h, d P Z�, there exists a constant ch,d such that for

every graph S with |V pSq| � s and ∆pSq ¤ d,

prpSp�qq ¤ ch,dplog sq20hs1�1{ph�1q.

To prove Lemma 3.54, we consider another way of obtaining the super

subdivision Sp�q from the graph S. Begin by �xing a proper edge coloring

χ : EpSq Ñ rd � 1s which exists since δpSq ¤ d. For integers i P rd � 1s,
j P rds, and k P th� 1, h� 2, . . . , 2h� 1u, let Mi,j,k :� χ�1piq; it follows that
Mi,j,k �Mi,j1,k1 for all j, j

1 P rds and k, k1 P th� 1, h� 2, . . . , 2h� 1u. De�ne
the multiset of matchings

M :�  
Mi,j,k : i P rd� 1s, j P rds, k P th� 1, h� 2, . . . , 2h� 1u(.

We construct Sp�q on V pSq by the following procedure. For every Mi,j,k PM
and every xy PMi,j,k, add a path of length k between x and y. Consequently,

for any xy P EpSq, there are d paths of length k between x and y for each k P
th � 1, h � 2, . . . , 2h � 1u. It follows that the resulting graph is the super

subdivision Sp�q of S.

Since the full proof is notationally cumbersome, we �rst demonstrate

the main ideas in the context of two propositions that allows for simpler
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notation. These propositions consider the simpler case where the set M of

multiple matchings is replaced by a pair of matchings.

De�nition 3.55 (SpM1,M2,k1,k2q). Let S be a graph and M1,M2 � EpSq be
not necessarily disjoint matchings with M1 YM2 � EpSq. Let k1 and k2 be

integers. De�ne SpM1,M2,k1,k2q to be the graph on V pSq obtained by adding

a path of length k1 between x and y for every edge xy P M1 and a path of

length k2 between x and y for every edge xy P M2. (Since M1 and M2 need

not be disjoint, some edges in EpSq may be replaced by two paths.)

Proposition 3.56. For any h P Z�, there exists a constant ch such that if S

is a graph with |V pSq| � s andM1 andM2 are matchings such thatM1YM2 �
EpSq, then prpSpM1,M2,h�1,h�2qq ¤ chplog sq20hs1�1{ph�1q.

Proof of Proposition 3.56. We will make three claims that are similar to the

Coloring Lemma, Existence Lemma, and Embedding Lemma used in the

proof of Theorem 3.2. Before stating the �rst of these claims, we introduce

a couple de�nitions. The second of which is demonstrated in Figure 3.3.

De�nition 3.57 (Ch�1,h�2). Let Ch�1,h�2 be the graph on 2h � 2 vertices

obtained from the cycle Ch�1 with cyclically ordered vertices x1
1, x

1
2, . . . , x

1
h�1

and a copy of the cycle Ch�2 with cyclically ordered vertices x2
1, x

2
2, . . . , x

2
h�2

and association x1 :� x1
1 � x2

1.

De�nition 3.58 (Incomplete Blowup of Ch�1,h�2). A incomplete blowup H

of Ch�1,h�2 is obtained by replacing each vertex xij with a independent set X i
j

of n vertices and each edge by a (not necessarily complete) bipartite graph.

Also, de�ne H1 :� HrYαPrh�1sX1
αs and H2 :� HrYαPrh�2sX1

αs.
Recall that in the proof of Theorem 3.2 the class Hph, n, ε, qq was the set

of incomplete blowups of Ch�1 in which the bipartite graph had exactly qn2



79

Figure 3.3: An incomplete blowup of Ch�1,h�2 for h � 3.

edges and were pε, qq-regular (as in De�nition 3.21). We now de�ne an anal-

ogous concept.

De�nition 3.59. Let H�ph, n, ε, qq be the set of all graphs that are incomplete

blowup of Ch�1,h�2 where every edge in Ch�1,h�1 corresponds to an pε, qq-
regular bipartite graph with exactly qn2 edges.

The next claim is analogous to the Coloring Lemma.

Claim 3.60. For any ε P R� and h, ` P Z�, there exist t, n1 P Z� such that

for all n ¥ n1,

q :� 4plog nq2n�1�1{ph�1q, N :� tn, and p :� 4`q,

every graph G P IpN, pq has the following property. Any `-coloring of the

edges of G yields a monochromatic subgraph H P H�ph, n, ε, qq.

Proof of Claim 3.60. In the proof of the Coloring Lemma (Lemma 3.9), we

de�ned a cluster graph that had vertices corresponding to the vertex classes

obtained from an application of the Regularity Lemma and edges correspond-

ing to pairs that exhibited regularity. The edges of the cluster graph were `-

colored by the majority color in the corresponding partition. We previously
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argued that the cluster graph contained a monochromatic clique of size h�1,

and hence a copy of Ch�1). By taking t su�ciently larger and an appropriate

modi�cation of the parameters in the proof, we can instead �nd a monochro-

matic clique of size 2h � 2, and hence a copy of Ch�1,h�2. This will yield a

monochromatic H P H�ph, n, ε, qq.

Our next claim will be analogous to the Existence Lemma. To state it,

we �rst need a modi�ed notion of path abundance.

De�nition 3.61 (Transversal Paths for H�). Let H be a partial blowup

of Ch�1,h�2.

• For a pair of vertices u, v P X1
1 , a transversal path between u and v

in H1 is the same as described in De�nition 3.10.

• For a pair of vertices u P X2
1 and v P X2

h�2, a transversal path be-

tween u and v in H2 is a path P of length h�1 with exactly one vertex

in X2
i for each i P rh� 2s.

De�nition 3.62 (Path Abundance for H�). Let H be a partial blowup

of Ch�1,h�2. We say that the graph H is p1 � δ, log nq-path abundant if

both of the following hold:

• The graph H1 is path abundant (as de�ned in De�nition 3.10).

• The graph H2 has the property that for at least p1� δqn2 pairs of ver-

tices u P X2
1 and v P X2

h�2, there are at least log n transversal paths

between u and v that are pairwise edge-disjoint (as de�ned in De�ni-

tion 3.61).

We now state the next claim that is analogous to the Existence Lemma.

Claim 3.63. For all h, ` P Z� and δ P R�, there exists ε P R� such that for

any t P Z� there exists n2 P Z such that the following holds. For any n ¥ n2

and
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q :� 4plog nq2n�1�1{ph�1q, N :� tn, and p :� 4`q,

there exists a graph G on N vertices satisfying all of the following properties:

(i) Every vertex in G has degree at most plog nq3n1{ph�1q.

(ii) G is ph, nq-cluster free.

(iii) G P IpN, pq.

(iv) Every (not necessarily induced) subgraph H P H�ph, n, ε, qq of G is

p1� δ, log nq-path abundant.

Proof of Claim 3.63. Properties piq-piiiq are the same as in the Existence

Lemma and the modi�ed notion of path abundance in Property pivq is proved
analogously.

After stating one more de�nition, we state a claim analogous to the Em-

bedding Lemma.

De�nition 3.64. Let J �ph, n, δq be the set of all graphs J that are partial

blowups of Ch�1,h�2 such that

(i) Every vertex in J has degree at most plog nq3n1{ph�1q.

(ii) J is pn, hq-cluster free (as de�ned in De�nition 3.11).

(iii) J is p1� δ, log nq-path abundant (as de�ned in De�nition 3.62).

(iv) There is a matching of size p1� δqn between X2
h�2 and X2

1 .

As in the proof of Theorem 3.2, the Coloring Lemma and Existence

Lemma together yield a monochromatic H P J �ph, n, δq. Note that the ad-
ditional Property pivq follows from the fact that H P H�ph, n, ε, qq and hence

the bipartite graph of H induced between X2
h�2 and X

2
1 is pε, pq-regular. The

next claim in analogous to the Embedding Lemma.
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Claim 3.65. For all h P Z�, there exist δ P R� and n3 P Z� such that for

all n ¥ n3 the following holds. Every graph H P J �ph, n, δq is universal to
the set of graphs !

SpM1,M2,h�1,h�2q : |V pSq| � n

plog nq7h
)
.

Proof of Claim 3.65. The proof of this claim follows the lines of the argument

used to establish the Embedding Lemma where Sphq was embedded into J P
J ph, n, δq. Recall that the main steps in this argument were:

• Considering an auxiliary graphA with vertex setX1 where vertices x, y P
X1 were joined if x and y were path connected (i.e. if there was a set Πxy

of log n edge-disjoint transversal paths between x and y).

• De�ning an incompatibility function f : EpAq Ñ PpEpAqq where each
edge was incomparable with certain other edges.

• Finding an embedding φ of S into A such that fpφpSqq X φpSq � H.

• Showing that for every edge xy P φpSq, a path πxy P Πxy could be

selected so that the set of paths selected tπxy : xy P φpSqu were pairwise
internally disjoint. This corresponded to embedding Sphq into J .

The proof of Claim 3.65 is similar, so we only mention where it di�ers. We

begin by �xing a matching Γ between X2
h�2 and X1 of size at least p1� δqn.

For a vertex v P X1, denote the vertex it is matched to in X2
h�2 under Γ by pv.

Now �x an ordering v1, v2, . . . , vn of the vertices in X1. Given this setup, we

introduce the following de�nition.

De�nition 3.66. (Path Linked) For i   j, the vertices vi, vj P X1 are path

linked in H2 (see De�nition 3.58) if vi and pvj are path connected (i.e. if there
exists a set Πij of log n edge-disjoint transversal paths between vi and pvj).
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If vj is not incident to an edge in Γ, then pvj is not de�ned and vi and vj are

not path linked. The concept is illustrated in Figure 3.4.

Figure 3.4: Vertices vi, vj P X2
1 are path linked in H2 if there are many

edge-disjoint paths between vi and pvj.
Observe that since most pairs of vertices vi P X1 and pvj P X2

h�2 are path

connected, most pairs of vertices vi, vj P X1 are path linked. Now, for all path

linked pairs vi P X1 and vj P X1, �x a set Π2
ij of log n edge-disjoint transversal

paths between vi and pvj in H2. Also, as in the original proof, �x a set Π1
ij

of edge-disjoint transversal paths in H1 for all path linked pairs vi P X1

and vj P X1. The proof now continues to follow the lines of the argument

used to establish the Embedding Lemma with the following modi�cations:

• De�ne A by joining two vertices if and only if they are path connected

in H1 and path linked in H2. Observe that, as before, AUX will be an

`almost complete' graph.

• De�ne the edges vivj and vkvl in A to be incompatible if either of the

following to conditions are met:
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� There exists paths πij P Π1
ij and πkl P Π1

kl such that πij and πkl

have an edge in common. (This is the same notion of incompati-

bility as used in the proof of the Embedding Lemma.)

� There exists paths πij P Π2
ij and πkl P Π2

kl such that πij and πkl

have an edge in common.

• As before, we �nd an embedding φ of S into A such that fpφpSqq X
φpSq � H. This is possible since S has bounded degree, the graph A is

almost complete, and each edge is still incompatible with at most opnq
other edges.

• Finally, for each edge xy P φpMq, we select a path πxy P Π2
xy of

length h�1 so that the sets of paths chosen tπxy : xy P φpMqu are pair-
wise vertex-disjoint. Appending the appropriate matching edge in Γ to

each path gives a desired set of paths of length h� 2 in H2. The paths

of length h� 1 are found in H1 in the same manner as in our previous

proof.

This completes the proof of Claim 3.65.

We have now proved three claims analogous to the Coloring Lemma,

Existence Lemma, and Embedding Lemma. The proof of Proposition 3.56

now follows the lines of the proof of Theorem 3.2.

Our second proposition describes how the situation changes if the edges

in the matching M are divided one additional time.

Proposition 3.67. For any h P Z�, there exists a constant ch such that for

every graph S with |V pSq| � s satis�es

prpSpM1,M2,h�1,h�3qq ¤ chplog sq20hs1�1{ph�1q.
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Proof of Proposition 3.67. The proof of this proposition di�ers from the pre-

vious proof as follows. In place of Ch�1,h�2, we take Ch�1,h�3 where the

vertices are labeled x1
1, x

1
2, . . . , x

1
h�1 and x2

1, x
2
2, . . . , x

2
h�3 with x1 :� x1

1 � x2
1.

We also require that `almost perfect matchings' exist in both of the bipartite

graphs pX2
h�1, X

2
h�2q and pX2

h�2, X
2
1 q.

We now begin the embedding process by �xing two such perfect match-

ings. These matchings together yield a collection of disjoint paths on three

vertices that cover almost all vertices in X2
h�1 Y X2

h�2 Y X2
1 . For a ver-

tex v P X1 which is covered by one of these paths of length two, de�ne the

vertex pv P X2
h�1 to be the corresponding vertex it is joined to in X2

1 under

the �xed collection of P3. The remaining part of the proof is analogous to

the proof of Claim 3.65.

Having demonstrated the main idea of Lemma 3.54 in Propositions 3.56

and 3.67, we now brie�y remark on how the proof of Lemma 3.54 di�ers.

Proof of Lemma 3.54. In Propositions 3.56 and 3.67, the two matchings were

accommodated by replacing Ch�1 by Ch�1,h�2 and Ch�1,h�3 respectively.

Here, we will `append' a cycle of length k for each of the matchings Mi,j,k P
M. More formally, let C� be the graph obtained by by following process.

Take dpd�1q disjoint cycles of each of the lengths k P th�1, h�2, . . . , 2h�1u,
for a total of dpd�1qph�1q cycles. From these cycles, C� results by identifying

one common vertex from all the cycles.

Propositions 3.56 and 3.67 has already demonstrated the main ideas

involved embedding matchings in two cycles simultaneously. These ideas

easily generalize to dpd� 1qph� 1q matchings associated to �nite lengths of

at least h� 1.
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Chapter 4

Ramsey numbers involving large

girth graphs and hypergraphs

4.1 Introduction

Recall that for a positive integer ` and graphs H and G, we write H Ñ pGq`
if every `-coloring of the edges of H yields a monochromatic copy of G.

If H Ñ pGq`, we say that H is Ramsey for G for ` colors. Ramsey's theorem

establishes that, for every graph G and every positive integer `, there exists

a graph H such that H Ñ pGq`. In this chapter, we consider three Ramsey-

type problems that pertain to cycles in graphs and hypergraphs.

4.1.1 Cycles in Graphs

The �rst of these results has its roots in a problem suggested by Paul Erd®s,

which asks if for every pair of positive integers ` and k, there exists a graph H

having girthpHq � k and the Ramsey property H Ñ pCkq`. (Erd®s explic-

itly stated a weaker form of this problem in [27].) The existence of such

graphs was �rst established in [62], and the following theorem addresses the

associated numerical problem.
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Theorem 4.1. Let r � r`pCkq denote the least integer m such that Km Ñ
pCkq`. Then for all integers k ¥ 4 and ` ¥ 2, there exists a graph H satisfying

girthpHq � k, H Ñ pCkq`, and |V pHq| ¤ r40k2k40k3.

In Theorem 4.1, the exponential dependency of |V pHq| on k is unavoid-

able. This follows from the observation that a minimal graph H with the

desired properties must have minimum degree greater than ` and girth at

least k. Also, note that r`pCkq is known to be polynomial in ` for �xed even k,

and for �xed odd k, satis�es the exponential relation c`1 ¤ r`pCkq ¤ c` log `
2 for

some positive constants c1 and c2 (see, e.g., [31]). This leads to the following

corollary.

Corollary 4.2. For every integer k ¥ 3, there exist constants c1 and c2 such

that for every integer ` ¥ 2, there exists a graph H such that girthpHq � k

and H Ñ pCkq`, which satis�es |V pHq| ¤ `c1 if k is even and |V pHq| ¤ c` log `
2

if k is odd.

In Section 4.6, we will further expand upon Theorem 4.1. In particular,

we prove a lower bound and give a simpler proof for the cases k � 4 and k � 6.

4.1.2 Arithmetic Progressions

For a subset S � N and integers k ¥ 3 and ` ¥ 2, we write S Ñ pAPkq`
if every `-coloring of the integers in S yields a monochromatic arithmetic

progression of length k. Van der Waerden's Theorem establishes that for

all k ¥ 3 and ` ¥ 2, there exists some integer N such that rN s Ñ pAPkq`,
where rN s � t1, 2, . . . , Nu. Many generalizations of this well-known theorem

have been considered. One generalization suggested by Erd®s [28], asks if

for all k ¥ 3 and ` ¥ 2, there exists an APk�1-free set S � N that has

the Ramsey property S Ñ pAPkq`, where a set is APk�1-free if it does not
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contain an arithmetic progression of length k � 1. This was answered inde-

pendently by Spencer [72] and by Ne²et°il and Rödl [54]. Moreover, Graham

and Ne²et°il [41] showed that there exist arbitrarily large APk�1-free sets S

that have the property S Ñ pAPkq` and are minimal in the sense that, for

every s P S, the subset S 1 � Sztsu does not have the property S 1 Ñ pAPkq`.
Furthermore, one may want to restrict the structure of the arithmetic

progressions of length k in a set S � N, but keep the Ramsey property.

That is, consider the system of copies of arithmetic progressions of length k

in S, which is the k-uniform hypergraph pS, � S
APk

�q on the vertex set S with

edge set
�
S
APk

�
consisting of the k element subsets of S that form arithmetic

progressions of length k. For a simpler notation, it will be convenient to iden-

tify this hypergraph just by its edge set. Moreover, we denote its chromatic

number simply by χ
�
S
APk

�
instead of χp� S

APk

�q and suppress the outer pair of

parenthesis for other numerical hypergraph parameters as well.

Observe that S Ñ pAPkq` if and only if the chromatic number satis-

�es χ
�
S
APk

� ¡ `. Hence, van der Waerden's Theorem establishes that for

�xed k, the χ
� rNs
APk

� Ñ 8 as N tends to in�nity. In view of the result of

Erd®s and Hajnal [32], which establishes the existence of hypergraphs hav-

ing both large chromatic number and large girth, it is naturally to ask the

following. Does for all k, g ¥ 3 and ` ¥ 2 exist a set S � N so that the

hypergraph
�
S
APk

�
satis�es both properties

(P1) χ
�
S
APk

� ¡ `,

(P2) girth
�
S
APk

� ¥ g ?

As usual we say a k-uniform hypergraph has girth at least g if, for any integer

h with 2 ¤ h   g, any subset of h edges span at least pk � 1qh � 1 vertices.

In particular, girth
�
S
APk

� ¥ 3 implies that no two arithmetic progressions can

intersect in more than one point, which implies that S is APk�1-free. The

existence of sets S � N satisfying properties (P1) and (P2) was established
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in [61] (see also [62]) and our next result gives an upper bounds for the size

of the smallest such set S.

Theorem 4.3. Let w � w`pkq denote the least integer N such that rN s Ñ
pAPkq`. Then for all integers k, g ¥ 3, and ` ¥ 2, there exists a set S � N
such that

χ
�
S
APk

� ¡ `, girth
�
S
APk

� ¥ g, and |S| ¤ k400k2pk�gqw400kpk�gqg8kg.

To illustrate the result, consider the special case k � 3 for �xed g ¥ 3. A

result of Sanders [65] (see also [9]) implies that w`p3q ¤ exp
�
`1�op1q�, where

the error term op1q Ñ 0 as ` Ñ 8. Hence, our result yields the existence

of a set S of size at most exp
�
`1�op1q� such that the properties S Ñ pAP3q`

and
�
S
AP3

� ¥ g both hold. It follows that the added girth condition does not

essentially increase the best known upper bound in this case.

4.1.3 Cliques in Graphs

Another well-known problem of Erd®s and Hajnal [33] asked if, for every

pair of positive integers k and `, there exists a Kk�1-free graph H such

that H Ñ pKkq`. The case ` � 2 was con�rmed by Folkman [36] and Ne²et°il

and Rödl [53] resolved the general case ` ¡ 2. Subsequently, Erd®s [27] asked

about a strengthened form of this result, namely the existence of a graph H

with H Ñ pKkq` in which no two copies of Kk share more than one edge,

which was established in [55] (see also [56] for a generalization from cliques

Kk to arbitrary graphs). .

As in the context of van der Waerden's theorem in Section 4.1.2, we

may consider the structure of the cliques in H in more detail, that is, we

consider the system of copies ofKk inH, which is the
�
k
2

�
-uniform hypergraph

pEpHq, �H
Kk

�q having vertex set EpHq and hyperedges corresponding to the

edge sets of copies of Kk in H. As above we identify this hypergraph by
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its edge set
�
H
Kk

�
and denote by χ

�
H
Kk

�
and girth

�
H
Kk

�
its chromatic number

and its girth. Again the statement H Ñ pKkq` is equivalent to χ
�
H
Kk

� ¡ `

and that any two copies of Kk in H share at most one edge is equivalent

to girth
�
H
Kk

� ¥ 3. We give a new proof of the result from [55] that leads to a

new upper bound on the size of the smallest such H.

Theorem 4.4. Let r :� r`pkq denote the least integer m such that Km Ñ
pKkq`. Then for all integers k, g ¥ 3, and ` ¥ 2, there exists a graph H such

that

χ
�
EpHq
Kk

� ¡ `, girth
�
EpHq
Kk

� ¥ g, and |V pHq| ¤ k210k4g2r8k2g.

By reversing the dependency between g and |V pHq|, we obtain the fol-

lowing corollary.

Corollary 4.5. For all integers k ¥ 3 and ` ¥ 2, there exist c ¡ 0 and

n0 such that, for every integer n ¥ n0, there exists a graph H on n vertices

satisfying both H Ñ pKkq` and girth
�
H
Kk

� ¥ c
?

log n.

It can be shown that any graph H on n vertices satisfying H Ñ pKkq`
must also satisfy girth

�
H
Kk

� � Oplog nq, due to the minimum degree condition

required by χ
�
H
Kk

� ¡ `.

4.1.4 Organization

The proofs of Theorems 4.1, 4.3, and 4.4 rely on random constructions

and the container method obtained independently by Balogh, Morris, and

Samotij [5] and Saxton and Thomason [66]. Also, we incorporate some ideas

from [52] [63]. For the numerical aspects the container result from [66] seemed

to be better suited and we state it in Section 4.2. The details of the proofs

of Theorems 4.1, 4.3, and 4.4 are given in Sections 4.3, 4.4, and 4.5, respec-

tively. Section 4.6 contains some concluding remarks related to mostly to

Theorem 4.1.
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4.2 Hypergraph Containers

The proofs of Theorems 4.1, 4.3, and 4.4 are based upon a lemma of Saxton

and Thomason. Roughly speaking, this lemma states that, if some numerical

conditions are satis�ed for a hypergraphH, then there there exists a relatively
`small' set C whose elements (called `containers') are `almost' independent

sets of vertices, which together have the property that each independent set

of vertices in the hypergraph H is a subset of one of the containers in C.

We now introduce some de�nitions and notation necessary for the precise

formulation of this lemma. For a hypergraph H, let epHq denote the number
of edges in H and d denote the average degree of a vertex in H i.e. d �
k � epHq{|V pHq|. For a set S � V pHq, de�ne the degree of S by dpSq :� |tE :

E P EpHq and E � Su|. Also, for each v P V pH, de�ne

djpvq :� max
!
dpSq : S P �V pHq

j

�
and v P S

)
, and

dj :� 1
|V pHq|

°
vPV djpvq.

Container Lemma (follows from [66]). Let H be a h-uniform hypergraph

on the vertex set rN s and τ, ε P R� with τ   1. If

6 � h! � 2ph2q
d

ḩ

j�2

dj

2pj�1
2 qτ j�1

¤ ε   1{2, (4.1)

then there exists a collection C � PprN sq of `containers' such that all of the

following hold.

i) For every independent set I � V pHq, there exists some C P C with

C � I.

ii) For every C P C, the number of edges in the container satis�es epCq ¤
ε � epHq.
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iii) The number of containers satis�es |C| ¤ exp
�

1000hph!q3 � log p1{εq �N �
τ � log p1{τq

	
.

Proof. This lemma can be deduced from Corollary 2.7 in [66]. The explicit

choice of the constant c appearing in Corollary 2.7, which the statement of

Corollary 2.7 guarantees only to exist, is taken to be c :� 1000hph!q3; it was
observed in Section 2.1 of [63] that this choice of c follows from the proof of

Corollary 2.7 by noting that

c ¤ 288ph!q2h
lnp1{εq

�
1� ln ε

ln p1� 1{2h!q


¤ 1000hph!q3.

Additionally, our hypothesis on ε is equivalent to the hypothesis on ε

as stated in Corollary 2.7, which can easily been seen by writing out the

de�nition of the `co-degree' function in Corollary 2.7 and our de�nition of dj.

We have also omitted the hypothesis that τ ¤ 1{p144h!2hq since, for 1 ¡ τ ¡
1{p144h!2hq, the conclusion follows vacuously from taking C to be the set of

all independent sets.

4.3 Proof of Theorem 4.1

The objective of this section is to prove Theorem 4.1. That is, we will show

that there exists a graphH with girthpHq � k and the Ramsey propertyH Ñ
pCkq` that has at most r40k2k40k3 vertices, where r � r`pCkq is the `-color

Ramsey number for Ck.

Proof. Consider any integers k ¥ 4 and ` ¥ 2 and set

n :� 240k2r40k2k10k3 , cp :� 212r10k3k�2 log n,

p :� cpn
�1�1{pk�1q � cpn

�pk�2q{pk�1q.
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Let G � Gpn, pq be a random instance of the graph obtained from Kn

(the complete graph on vertex set rns) by selecting each edge independently

with probability p. Theorem 4.1 will be an immediate consequence of the

following three claims.

Claim 4.6. P
�
GÑ pCkq`

	
¥ 1� exp

��2�1r�2p
�
n
2

��
.

Claim 4.7. P
�

girthpGq ¥ k
	
¥ exp

��ck�1
p n

�
.

Claim 4.8. exp
��ck�1

p n
�� exp

��2�1r�2p
�
n
2

�� ¡ 0.

Indeed, in view of Claim 4.8, the probability that G has girth at least k

is greater than the probability G does not have the Ramsey property G Ñ
pCkq`. Hence, verifying these three claims will establish that there exists

a graph having girth k that is Ramsey for Ck for `-colors that has n �
240k2r40k2k10k3 ¤ r40k2k40k3 vertices as desired. The �rst claim, which we now

address, is the crux of our proof.

Proof of Claim 4.6. Consider H � �
EpKnq
Ck

�
, which is the the system of all

copies of Ck in Kn. It follows that H is a k-uniform hypergraph on
�
n
2

�
vertices having

�
n
k

�pk � 1q!{2 edges. Set

τ :� r6n�1�1{pk�1q � r6n�pk�2q{pk�1q, ε :� 1

2`
�
r
k

�pk � 1q! .

In order to apply the Container Lemma to the deterministic hypergraphH,
we note that 0 ¤ ε ¤ 1{2 and τ ¤ 1, which follows directly from the def-

initions of ε and τ . We will now work to verify the remaining hypothe-

sis (4.1) of the Container Lemma. Observe that, for all j   k, we have dj ��
n�pj�1q
k�pj�1q

�pk � pj � 1qq! ¤ nk�j�1; this is because a set S of j edges in Kn is

contained in the most cycles of length k when S forms a path in Kn. Also,
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observe that d � �
n�2
k�2

�pk � 2q! ¥ pn{2qk�2. It follows that,

1

d

k�1̧

j�2

dj

2pj�1
2 qτ j�1

¤ 1

pn{2qk�2

k�1̧

j�2

nk�j�1

τ j�1

� 2k�2
k�1̧

j�2

1

pnτqj�1

¤ 2k�2 � pk � 2q � 1

nτ

� 2k�2pk � 2q
r6n1{pk�1q ¤ 2k

n1{k . (4.2)

Now observe that dk ¤ 1; this is because any k edges in Kn are contained

in at most one cycle Ck. Hence,

2pk2q � dk
d � 2pk�1

2 q � τ k�1
¤ 2pk2q � 1
pn{2qk�2 � 2pk�1

2 q � τ k�1

� 22k�3

nk�2τ k�1
� 22k�3

r6k�6
. (4.3)

Also, making use of the fact that the Ramsey number r � r`pCkq satis�es
both r ¡ ` and r ¡ k (a fact we will utilize through this section), we have

that

6 � k!

ε
� 6 � k! � 2`

�
r

k



pk � 1q! ¤ r3k. (4.4)

Using equations (4.2), (4.3), and (4.4), we now verify equation (4.1) in

the Container Lemma:
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6 � k! � 2pk2q
d � ε

ķ

j�2

dj

2pj�1
2 qτ j�1

¤ r3k2pk2q
d

ķ

j�2

dj

2pj�1
2 qτ j�1

¤ r3k � 2pk2qdk
d2pk�1

2 qτ k�1
� r3k2pk2q � 1

d

k�1̧

j�2

dj

2pj�1
2 qτ j�1

¤ r3k � 22k�3

r6k�6
� r3k2pk2q � 2k

n1{k

¤ 22k

r3k�6
� r3k2k

2

n1{k ¤ 4k

43k�6
� r3k2k

2

n1{k   1.

Having veri�ed the hypotheses of the Container Lemma, we obtain a

set C � PpEpKnqq of containers such that every independent set in H is

contained in some container, each container has at most ε|EpHq| � ε
�
n
k

�pk�
1q!{2 hyperedges, and

|C| ¤ exp

�
1000 � k � pk!q3 � log p1{εq �

�
n

2



� τ � log p1{τq



¤ exp

�
210 � k � k3k � 2kr �

�
n

2



� r6n�pk�2q{pk�1q � log n



� exp

�
211k3k�2r7

�
n

2



pp{cpq log n



� exp

�
1

2r3
p

�
n

2




¤ exp

�
1

2`r2
p

�
n

2




. (4.5)

Now let B be the set of all (`bad') subgraphs of Kn that are not Ramsey

for Ck for ` colors. Our goal is to show PpG P Bq ¤ exp
��2�1r�2p

�
n
2

��
.

For each B P B, �x an edge coloring χB : EpBq Ñ r`s such that each color

class does not induce a monochromatic Ck. For each i P r`s, the set χ�1piq is
not only a set of edges in Kn that does not induce a cycle Ck, but also corre-

sponds to an independent set of vertices in H, and thus χ�1piq is contained
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in some container Ci � V pHq. With this in mind, associate each B P B to

some pC1, C2, . . . , C`q P C` so that, for all i P r`s, we have χ�1
B piq � Ci. Also,

for each each B P B, de�ne the associated set D :� V pHqz�`
i�1 Ci of edges

in Kn. Observe that EpBq XD � H as EpBq � �`
i�1 Ci.

Let D be the set of all sets D arising this way by considering each B P
B. Thus, it is the case that, for every graph B P B, there exists some

associated D P D such that EpBq XD � H.

Consequently, by the union bound and fact that |D| ¤ |C|`, we have

PpG P Bq ¤ P
�
D D P D : EpGq XD � H

	
¤ |C|` max

!
PpEpGq XD � Hq : D P D

)
. (4.6)

We will work to deduce that PpEpGq XD � Hq is small for all D P D as

a consequence of the fact that the number of elements in D that EpGq must
avoid is large.

Subclaim 4.9. For every D P D, at least half of the r-elements sets R P �rns
r

�
have the property that EpKnrRsqXD �� H, where KnrRs is the complete graph

on R.

Proof of Subclaim 4.9. Fix some B P B and associated pC1, C2, . . . , C`q P C`

that gave rise to D. To prove the claim, assume to the contrary that at least

half of the r-element sets R P �rns
r

�
have the property that KnrRs X D �

H. For each of these sets R, it follows that EpKnrRsq �
�
iPr`s Ci. This

corresponds to an `-coloring of the edges ofKnrRs and, by the de�nition of the
Ramsey number r � r`pCkq, this coloring yields a monochromatic Ck. That

is, we have argued that half of the r-element setsR P �rns
r

�
contain a cycle Ck P

KnrRs such that EpCkq � Ci for some i, i.e. the set of edges EpCkq is a edge

in the hypergraph HrCis. On the other hand, by the Container Lemma, we

know that each container Ci contains at most ε|EpHq| � ε
�
n
k

�pk�1q!{2 edges.
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We thus have:

p1{2q�n
r

��
n�k
r�k

� ¤
���!Ck : EpCkq � Ci for some i P r`s

)��� ¤ `ε

�
n

k


pk � 1q!
2

� p1{4q�n
k

��
r
k

� ,

where the lower bound was computed using the fact that for each cycle Ck, we

have that EpCkq � EpKnrRsq for at most at most
�
n�k
r�k

�
subsets R P �rns

r

�
. A

contradiction to the above inequality follows from the combinatorial identity

that
�
n
r

��
r
k

� � �
n
k

��
n�k
r�k

�
.

By Subclaim 4.9 and the fact that an edge is contained in at most
�
n�2
r�2

�
sets in

�rns
r

�
, for all D P D, we have

|D| ¥ p1{2q�n
r

��
n�2
r�2

� �
�
n
2

�
2
�
r
2

� ¥ r�2

�
n

2



.

Hence,

P
�
EpGq XD � H

	
¤ p1� pqr�2pn2q ¤ e�r

�2ppn2q. (4.7)

From substituting (4.7) and (4.5) into (4.6), it follows that

P
�
G P B

	
¤ exp

�
1

2r2
p

�
n

2



� 1

r2
p

�
n

2




¤ exp

�
� 1

2r2
p

�
n

2




.

This completes the proof of Claim 4.6.

Proof of Claim 4.7. To �nd a lower bound for the probability that Gpn, pq
has girth at least k, we will use the standard FKG inequality as appearing

in Corollary 2.13 of [45]. For this purpose, de�ne S to be the set of all

cycles of length less than k in Kn. For each S P S and graph G̃ � Kn,

let XSpG̃q be the indicator function with XSpG̃q � 1 if S appears in G̃
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andXSpG̃q � 0 otherwise. Thus,XpG̃q :� °
SPS XSpG̃q counts the number of

cycles of length less than k appearing in G̃. Moreover, since each function XS

is an increasing function of the space of all graphs on n vertices (i.e. if G̃1 � G̃

then XSpG̃1q ¤ XSpG̃q), by Corollary 2.13 of [45] (which follows directly from

the FKG inequality), we obtain that for G � Gpn, pq we have PpXpGq � 0q ¥
exp p�EpXpGqq{p1� pqq. We now compute

E
�
XpGq

	
�

k�1̧

j�3

�
n

j


pj � 1q!
2

pj ¤
k�1̧

j�3

ppnqj
2j

¤ pk � 3q ppnq
k�1

2pk � 1q ¤ ppnqk�1 � ck�1
p n,

which gives

P
�
girthpGq ¥ k

	
� P

�
XpGq � 0

	
¥ exp

�
�EpXpGqq

1� p



¥ exp

��ck�1
p n

�
,

completing the proof of Claim 4.7.

Proof of Claim 4.8. To show that exp
��2�1r�2p

�
n
2

��   exp
��ck�1

p n
�
, it suf-

�ces to show that nck�1
p {p2�1r�2p

�
n
2

�q   1, which we now verify.

nck�1
p

2�1r�2p
�
n
2

� � 2r2ck�2
p n2

n1{pk�1q�n
2

� ¤ 23r2ck�2
p

n1{pk�1q

� 23r2212k�24r10k�20k3k2�4k�4plog nqk
240kr40kk10k2

  1.

Having proved Claims 4.6,4.7, and 4.8, this completes the proof of Theo-

rem 4.1.
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4.4 Proof of Theorem 4.3

In this section, we prove Theorem 4.3 by establishing that, for all inte-

gers k ¥ 3, ` ¥ 2, and g ¥ 2, there exists a set S � N of size at most

k400k2pk�gqw400kpk�gqg8kg such that the hypergraph
�
S
APk

�
has chromatic num-

ber greater than ` and girth at least g, where the van der Waerden num-

ber w � w`pkq is the least integer N such that rN s Ñ pAPkq`.

Proof. Consider any three integers k ¥ 3, ` ¥ 2, and g ¥ 2. Let w :� w`pkq
be the least integer N such that rN s Ñ pAPkq`. Set

n :� k400k2pk�gqw400kpk�gqg8kg, cp :� w25k25k log n,

p :� cpn
�1{pk�1q � cpn

�1�pk�2q{pk�1q, t � pn

24w
. (4.8)

Let rnsp denote the random set obtained by choosing each element of rns �
t1, 2, . . . , nu independently with probability p. (Since ck�1

p   n, we have that

p � cpn
�1{pk�1q   1 and is a valid choice for a probability.) We make three

claims about the random hypergraph
�rnsp
APk

�
. The �rst claim asserts that

�rnsp
APk

�
will have chromatic number greater than ` even after the deletion of any set

of t vertices.

Claim 4.10. With probability at least 1� 2 expp�pn{288wq, the hypergraph�rnsp
APk

�
has the following strong Ramsey property: if T � rnsp is any subset

of t elements, then χ
�rnspzT
APk

� ¡ `.

The next claim asserts that it is likely that
�rnsp
APk

�
can, by deleting some

set of t vertices, be made to have girth at least g.

Claim 4.11. The probability that
�rnsp
APk

�
has fewer than t cycles of length less

that g is greater than 1{2.
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The following claim compares the probabilities in the previous two claims.

Claim 4.12. 1� 2 expp�pn{288wq � 1{2 ¡ 0.

Together, these claims establish that, with positive probability, the ran-

dom hypergraph
�rnsp
APk

�
will have the property that there exists a set T of t

vertices so that the hypergraph
�rnspzT
APk

�
has girth at least g and χ

�rnspzT
APk

� ¡ `.

Thus, these claims together establish the existence of a graph as in Theo-

rem 4.3. We remark that, although such a object will likely have around pn�t
vertices (not n vertices), this improvement is negligible. We begin by prov-

ing Claim 4.10 which is the heart of our proof. The proofs of Claims 4.11

and 4.12 will be given subsequently.

Proof of Claim 4.10. We �rst consider the hypergraph H :� � rns
APk

�
and apply

the Container Lemma to this deterministic hypergraph with

ε � w�5, cτ � p2k2�4kk�3w5q1{pk�1q, and τ � cτn
�1{pk�1q.

Note that τ   1 and ε   1{2. To verify the remaining assumption (4.1)

of the Container Lemma for H, we make a couple of observations about the

average degree d and the parameter dj, which is de�ned in the statement of

the Container Lemma. First,

epHq �
n�k�1¸
i�1

Z
n� i

k � 1

^
¥ n2

3k
; (4.9)

here we count the number of arithmetic progressions of length k in rns by
summing over the position of the �rst element in the progression and the

above inequality holds for all k ¤ n{6. Second, d ¥ n{3, which follows

from (4.9) and H being a k-uniform hypergraph. Also, in H the parameter dj
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(as de�ned in the statement of the Container Lemma) satis�es

dj ¤ d2 ¤
�
k

2



¤ k2

2
; (4.10)

the second inequality above follows from the fact that an arithmetic pro-

gression containing the elements u, v P rns is determined by specifying the

positions of u and v in the progression.

We now verify the remaining hypothesis (4.1) of the Container Lemma.

Recalling that d ¥ n{3 and dj ¤ k2{2, we have

6 � k! � 2pk2q
ε � d

ķ

j�2

dj

2pj�1
2 qτ j�1

¤ 6 � kk � 2k2
w�5 � n{3

ķ

j�2

k2{2
τ j�1

� 9kk�22k
2
w5

n

ķ

j�2

1

τ j�1

¤ 24kk�22k
2
w5

n
� k � 1

τ k�1

� 2k
2�4kk�3w5

ck�1
τ

� 1.

Having veri�ed the assumptions of the Container Lemma, we obtain a

set C � Pprnsq of containers such that every independent set (i.e. APk-free

set) is contained in some container, each container has at most ε|EpHq| ¤
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ε
�
n
2

�
hyperedges, and

|C| ¤ exp
�
1000 � kpk!q3 � log p1{εq � n � τ � log p1{τq�

¤ exp
�
210 � k3k�1 � 23w � n � τ � log n

�
� exp

�
pn

29w`
� 222w2`k3k�1 � τ log n

p



� exp

�
pn

29w`
� 222w2`k3k�1 � p2

k2�4kk�3w5q1{pk�1q

w25k25k

�
¤ exp

� pn

288w`

	
. (4.11)

Let B denote the family of all sets B � rns with the property that there

exists a subset T � B of size t such that pBzT q Û pAPkq` i.e. there exists

an `-coloring of BzT that does not yield a monochromatic APk. Hence B is

the set of all (`bad') subset of rns that do not have the desired strong Ramsey

property. We will work to bound Pprnsp P Bq from above.

To this end, consider any B P B. By the de�nition of B, there exists a

set T with |T | � t and a partition BzT � I1 Y � � � Y I` with the property

that each Ii contains no APk. Moreover, each Ii is an independent set in H,
so there exists an `-tuple of containers pC1, C2, . . . , C`q P C` such that Ii � Ci
for all i P r`s. Letting D :� rnsz�iPr`s Ci, observe that |B X D| ¤ |T |
since BzT � I1 Y � � � Y I` � DC . Hence, we can de�ne a function from B to

the set

D �
!
D : D � rnsz

¤
iPr`s
Ci for some pC1, C2, . . . , C`q P C`

)
,

with the property that, for any associated pair pB,Dq P pB,Dq, we have |BX
D| ¤ t.

From this we infer that if rnsp P B, then there exists some D P D such
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that |rnsp XD| ¤ t. Using the union bound this yields:

P
�
rnsp P B

	
¤ P

�
D D P D : |rnsp XD| ¤ t

	
¤ |C|` �max

!
P
�
|rnsp XD| ¤ t

	
: D P D

)
. (4.12)

To show the above probability is small, we will work to show that |D| is
large for every D P D. Let Pw be the set of all arithmetic progressions in rns
of length w.

Subclaim 4.13. For every D P D, half of the elements P P Pw contain an

element from D.

Proof of Subclaim 4.13. Consider any �xed D P D. Towards contradiction,

suppose it is not the case that half of the elements P P Pw contain an element

from D, i.e. there are |Pw|{2 progressions P P Pw such that P XD � H.

By the de�nition of D, there must exist pC1, C2, . . . , C`q P C` so that D �
rnsz�iPr`s Ci. For any P P Pw with P XD � H, we have P � �

iPr`s Ci. By
the de�nition of the van der Waerden number w � w`pkq � |P |, this implies

there exists i P r`s and APk � P X Ci. Hence, |Pw|{2 progressions P P Pw
have the property that for some i P r`s, the set P X Ci contains an APk.

Furthermore, any APk is contained in at most
�
w
2

�
progressions of length w

(corollary of (4.10)). It follows that

¸
iPr`s

epCiq ¥ |Pw|{2�
w
2

� . (4.13)

Now, observe that |Pw| ¥ n2{3w (having w ¤ n{6, this is analogous to (4.9)).
Also, observe that

�
n
2

� ¥ epHq because an arithmetic progression is de�ned by

choosing its �rst two elements. From these two observations, inequality (4.13)

gives
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¸
iPr`s

epCiq ¥ |Pw|{2�
w
2

� ¡ pn2{3wq{2
w2{2 ¥ n2

3w2
¥ epHq

3w3
¥ `ε � epHq,

which contradicts property piiq of the Container Lemma that states epCiq ¤
ε � epHq for every Ci P C.

Resuming the proof of Claim 4.10, we will use Subclaim 4.13, which we

have just proved, to establish that |D| is large for every D P D. To this

end, note that each element in v P rns is contained in at most 2n arithmetic

progression of length w (there are at most w choices for which element of

the APw intersects v and at most n{pw� 1q choices for the distance between
consecutive elements in the APw). Thus, Subclaim 4.13 and (4.9) give that,

for every D P D,

|D| ¥ |Pw|{2
2n

¥ pn2{3wq{2
2n

� n

12w
. (4.14)

Having achieved our goal of establishing that |D| is large for every D P D,
we are now ready to prove Pp|rnsp XD| ¤ tq is small for every D P D. To do

this, we use a form of Cherno�'s Inequality (see e.g. Corollary 2.3 in [45])

which states that for a binomially distributed random variable X � Bipn, pq
we have that

PpX ¤ EpXq{2q ¤ 2 exp p�EpXq{12q .

In our application, the random variable we consider is rnspXD. From the in-

equality (4.14), we have that Ep|rnspXD|q ¥ np{12w � 2t. Thus, Cherno�'s

Inequality gives that

P
�
|rnsp XD| ¤ t

	
¤ 2 � exp

�
� 2t

12

	
� 2 � exp

�
� pn

144w

	
. (4.15)
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By the inequalities (4.11) and (4.15), inequality (4.12) becomes:

P
�
rnsp P B

	
¤ exp

� pn

288w

	
� 2 exp

�
� pn

144w

	
¤ 2 exp

�
� pn

288w

	
,

completing the proof of Claim 4.10.

Proof of Claim 4.11. De�ne a 2-cycle to be a two edges e1, e2 such that |e1X
e2| ¡ 1. For j ¡ 2, de�ne a j-cycle to be a cyclical sequence of j edges

e1, e2, . . . , ej where the intersection of two consecutive edges is exactly 1, the

intersection of any two nonconsecutive edges is empty, and the intersection

points for each pair of consecutive edges is unique. It follows that, for j ¥ 2,

a j-cycle has precisely j edges, j vertices of degree 2, and jpk� 2q vertices of
degree 1. Recalling that a k-uniform hypergraph has girth at least g if any

subset of h edges (2 ¤ h   g) span at least pk� 1qh� 1 vertices, we see that

a hypergraph has girth at least g if and only if it does not contain a cycle of

length less than g.

Let the random variable Xj denote the number of j-cycles appearing

in the random hypergraph
�rnsp
APk

�
. Because a 2-cycle consists of two edges

intersecting in at least two points and and two points are contained in at

most
�
k
2

�
edges (by (4.10)), the number of 2-cycles in H is at most

�
n
2

��
k
2

�2
.

Moreover, each two cycle contains at least k � 1 points. This gives

EpX2q ¤
�
n

2


�
k

2


2

pk�1 ¤ n2k4pk�1 � k4ck�1
p npk�3q{pk�1q.

Using this, we now bound EpX2q ¤ t{4. In the following calculation, we

will make use of the fact that plog nqk ¤ n1{2k since n ¡ 210k3 .
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EpX2q
t{4 ¤ k4ck�1

p npk�3q{pk�1q

cpnpk�2q{pk�1q{96w
� 96wk4ckp

n1{pk�1q

¤ 96wk4pw25k25k log nqk
n1{k

¤ 96wk4pw25k25kqk
n1{2k

¤ 96w25k�1k25k2�44

k200kpk�gqw200pk�gqg4g
¤ 1. (4.16)

Before we count the number of j-cycles for j ¡ 2, we �rst demonstrate

that by our choice of parameters plog nqkg ¤ n1{4 i.e.

n1{4kg ¥ k100kw100g2 ¥ 4000k4wg2 ¥ log n. (4.17)

Now to count the number of j-cycles for j ¡ 2, observe that each j-cycle

can be de�ned by choosing the j elements of degree 2, cyclically ordering

the these elements, and choosing an edge containing each pair of consecutive

elements. This gives that the number of j-cycles formed by APk in H is at

most
�
n
j

�pj � 1q!�k
2

�j ¤ njk2jppk�1qj. Hence, we can compute (using (4.17))
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that

4

t
�
g�1̧

j�2

EpXjq ¤ 96w

np

g�1̧

j�2

njk2jppk�1qj

� 96w

np

g�1̧

j�2

k2jcpk�1qj
p

¤ 96w

npk�2q{pk�1q � g � k2gckgp

¤ 96wgk2gckgp
n1{2

¤ 96wgk2g � w25kgk25k2gplog nqkg
n1{2

¤ 96wgk2g � w25kgk25k2g

n1{4

� 96wgk2g � w25kgk25k2g

k100k2pk�gqw100kpk�gqg2kg
¤ 1. (4.18)

Thus, by (4.16) and (4.18) the expected number of cycles in
�rnsp
APk

�
of length

less than g is less than t{2. By Markov's inequality this implies that
�rnsp
APk

�
will have more than t cycles of length length g with probability at most 1{2.
This proves Claim 4.11.

Proof of Claim 4.12. We must prove that expt�pn{288wu   1{2. This read-
ily follows from the fact that

pn ¥ npk�2q{pk�1q ¥ n1{2 ¡ 288w.

This completes the proof of Theorem 4.3
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4.5 Proof of Theorem 4.4

In this section, we establish that for all integers ` ¥ 2, g ¥ 2, and k ¥ 3,

there exists a graph H on at most k210k4g2r28k2g vertices such that
�
H
Kk

�
has

chromatic number greater than ` and girth at least g, where r :� r`pKkq.

Proof. Set

n :� k210k4g2r28k2g, t :� p
�
n
2

�
2r2

, cp :� 25
?

logn log kr16, p :� cpn
�2{pk�1q.

Let G � Gpn, pq be a random instance of the graph on rns obtained by

taking each edge of the complete graph on rns independently with probabil-

ity p.

Claim 4.14. With probability at least 1{2, we have that
�
EpGq
Kk

�
can be made

to have girth g by deleting at most t edges.

Claim 4.15. With probability at least 1 � 2 exp
��p�n

2

�{p24r2q� , the hyper-

graph
�
EpGq
Kk

�
has the following strong Ramsey property: If T � EpGq is any

subset of size t, then χ
�
EpGqzT
Kk

� ¡ `.

Claim 4.16. 1� 2 exp
��p�n

2

�{p24r2q�� 1{2 ¡ 0.

Together, the above claims establish that, with positive probability, the

random graph G will be such that
�
G
Kk

�
will simultaneously have the proper-

ties in both claims. Hence, such a graph exists. From this graph, t edges can

be removed to obtain a graph that has the desired properties of Theorem 4.4.

It thus remains only to verify the three claims.

Proof of Claim 4.14. Recall that a 2-cycle is a pair of edges e1, e2 such that

|e1Xe2| ¡ 1 and for j ¡ 2 a j-cycle is a cyclical sequence of j edges e1, e2, . . . , ej

where the intersection of two consecutive edges is exactly one i.e. |eiXei�1| �
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1 (addition mod j), the intersection of any two nonconsecutive edges is empty,

and the intersection points for each pair of consecutive edges is unique.

De�ne Xj to be the number of j-cycles in the system of copies of Kk

in Gpn, pq. We �rst work to bound X2. If k � 3, we trivially have EpX2q � 0.

Otherwise for k ¥ 4, a 2-cycle corresponds to two copies of Kk that intersect

in more than two edges, and thus in more than two vertices. Furthermore,

we see that two copies of Kk that intersect in i vertices together span ex-

actly 2k � i vertices and 2
�
k
2

�� �
i
2

�
edges. With this in mind, the following

bounds EpX2q ¤ t{4 in
�
Gpn,pq
Kk

�
:

EpX2q
t{4 � 8r2

p
�
n
2

� � EpX2q ¤ 32r2

pn2
�
k�1̧

i�3

n2k�ip2pk2q�pi2q

� 32r2n2k�2p2pk2q�1
k�1̧

i�3

npi
2�2i�kiq{pk�1qc

�pi2q
p

¤ 32r2n2k�2p2pk2q�1 � k � max
3¤i¤k�1

!
npi

2�2i�kiq{pk�1q
)

¤ 32r2n2k�2p2pk2q�1 � k � np3�3kq{pk�1q

� 32kr2ck
2�k�1
p

npk�3q{pk�1q ¤ ck
2

p

n1{5 ¤ 1.

We now will bound
°g�1
j�3 Xj. For j ¡ 2, a j-cycle in

�rns
Kk

�
consists of a

cyclically ordered set of j copies of Kk such that each two consecutive copies

intersect in exactly one edge of Kn. Thus, a j-cycle corresponds to a set of

Kk's in Kn that span exactly kj�2j vertices in Kn and
�
k
2

�
j � j edges in Kn.

From this, we see that, for 2   j   g, we have

EpXjq ¤ nkj�2jppk2qj�j �
�
npk�2qppk2q�1

	j
� c

ppk2q�1qj
p .
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Using this, we establish
°g�1
j�3 EpXjq ¤ t{4:

°g�1
j�3 EpXjq
t{4 ¤ 8r2

p
�
n
2

� � g � cppk2q�1qg
p

¤ 32r2g

pn2
c
ppk2q�1qg
p ¤ ck

2g
p

n
¤ 1.

Thus, we have shown
°g�1
j�2 EpXjq ¤ t{4 � t{4 � t{2. By Markov's In-

equality, this gives that, with probability at least 1{2, the hypergraph �
Gpn,pq
Kk

�
contains fewer than t cycles of length less than g. This concludes the proof

of Claim 4.14.

Proof of Claim 4.15. We will apply the Container Lemma to the hypergraph

H � �
Kn
Kk

�
, as was done in [63].

Let

n ¥ k400k4r40k2 , ε � 1

2`
�
r
k

� and τ � 24
?

lognr10{kn�2{pk�1q.

With the choice of n, ε and τ one can show that the condition (4.1) of

the Container Lemma is satis�ed; we will not explicitly show this here, as

this exact statement is veri�ed in the recent paper [63] of Rödl, Ruci«ski,

and Schacht. Speci�cally, our parameters are the same as in equations p11q
and p12q in [63] and n ¥ k400k4r40k2 , to which Claim 10 in [63] establishes that

the equation (4.1) holds. Hence, we obtain a set of containers C � PpEpKnqq
such that all of the following hold:

i) for every independent set I � V pHq, there exists some C P C with

C � I,

ii) for every C P C, epCq ¤ ε � epHq, and
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iii) |C| ¤ expt` � 1000 � pk2q � ppk2q!q3 � logp1{εq � pn2q � τ � logp1{τqu.

To further bound |C|, observe that

p12000qpk2qppk2q!q3 ¤ p12000q � k2 � �pk2{2q!�2 � pk2{2q!

¤ 39 � k2 � k2! � k
k2

2k2{2

¤ 37 � k2 � k2! � kk2

¤ kk
2�2 � k2 � k2! � kk2 ¤ k2k2 � k2! ¤ p2k2q!

and thus

|C|` ¤ expt` � 1000 � pk2q � ppk2q!q3 � logp1{εq � pn2q � τ � logp1{τqu

¤ exp

"
` � p2k

2q!
12

� logp1{εq � pn2q � τ � logp1{τq
*
.

Additionally,

` � p2k
2q!

12
� logp1{εq � pn2q � τ � logp1{τq ¤ p

�
n
2

�
24r2

,

which has been veri�ed in [63] (see the line after equation (18) on page 12).

Thus, we obtain

|C|` ¤ exp

�
p
�
n
2

�
24r2

�
. (4.19)

Having applied the Container Lemma, now consider the family B of all

graphs B � Kn with the property that there exists a subgraph T � B of

size p
�
n
2

�{2r2 � t such that pBzT q Û pKkq` i.e. there exists an `-coloring

of the edges of the graph BzT that does not contain a monochromatic Kk.

Hence B is the set of all (`bad') graphs on n vertices that do not have the

desired strong Ramsey property. We will work to bound P pGpn, pq P Bq from
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above.

To this end, consider any B P B. By the de�nition of B, there exists a

set T with |T | � t and a partition BzT � I1 Y � � � Y I` with the property

that each Ii contains no Kk. Moreover, each Ii is an independent set in H
so there exists an `-tuple of containers pC1, C2, . . . , C`q P C` such that Ii � Ci
for all i P r`s. Letting D :� rnsz�iPr`s Ci, observe that |B X D| ¤ |T |
since BzT � I1 Y � � � Y I` � DC . Hence we can de�ne a function from B to

the set

D �
!
D : D � rnsz

¤
iPr`s
Ci for some pC1, C2, . . . , C`q P C`

)
,

with the property that for any associated pair pB,Dq P pB,Dq we have |B X
D| ¤ t.

Since we know that for every B P B there exists some D P D such

that |B XD| ¤ t, it follows that if Gpn, pq P B, it must be the case that for
some D P D, we have |Gpn, pq XD| ¤ t. By the union bound we obtain:

P
�
Gpn, pq P B

	
¤ P

�
D D P D : |Gpn, pq XD| ¤ t

	
¤ |C|` �max

!
Pp|Gpn, pq XD| ¤ tq : D P D

)
. (4.20)

To show the above probability is small, we show that |D| is large for

every D P D.
Subclaim 4.17. For every graph D P D there are at least 1

2

�
n
r

�
sets R � rns

with |R| � r such that the induced graph DrRs contains an edge.

Proof of Subclaim 4.17. Consider any �xed D P D and pC1, C2, . . . , C`q P C`

with D � rnsz�iPr`s Ci. Towards contradiction, suppose there are more

than
�
n
r

�{2 sets R � rns with |R| � r and D XKnrRs � H.

For any R � rns with |R| � r and D X KnrRs � H, we have R �
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�
iPr`s Ci. By the de�nition of the Ramsey number r � r`pKkq, this implies

there exists i P r`s so that Kk � R X Ci. Further, as each Kk is contained in

at most
�
n�k
r�k

�
sets R � rns with |R| � r, it follows that

¸
iPr`s

epCiq ¡
p1{2q�n

r

��
n�k
r�k

� � p1{2q�n
k

��
r
k

� ¥ `ε

�
n

k




which is contradiction to the second property of the Container Lemma.

In order to use Subclaim 4.17 to establish that |D| is large for everyD P D,
note that each edge e P D is contained in at most

�
n�2
r�2

�
sets of size r. Hence,

for every D P D,

|D| ¥ p1{2q�n
r

��
r
2

� ¡ 1

r2

�
n

2



. (4.21)

Having achieved our goal of establishing that |D| is large for every D P D,
we are now ready to prove Pp|rnsp X D| ¤ tq is small for every D P D.
To do this, we use a form of Cherno�'s inequality (see e.g. Corollary 2.3

in [45]) which states that for a binomially distributed random variable X �
Bipn, pq, we have that P

�
X ¤ EpXq{2

	
¤ 2 exp

�
�EpXq

12

	
. Having estab-

lished Ep|rnsp XD|q ¥ p
r2

�
n
2

� � 2t in (4.21), this yields

P
�
|Gpn, pq XD| ¤ t

	
¤ 2 � exp

�
� 2t

12

	
� 2 � exp

�
� p

�
n
2

�
12r2

	
. (4.22)

Hence, by (4.19) and (4.22), equation (4.20) becomes:

P
�
Gpn, pq P B

	
¤ exp

� pn

24r2

	
� 2 exp

�
�p

�
n
2

�
12r2

�
¤ 2 exp

�
�p

�
n
2

�
24r2

�
,

completing the proof of Claim 4.15.

Proof of Claim 4.16. To establish that 1 � 2 exp
��p�n

2

�{p24r2q� � 1{2 ¡ 0,



114

observe that

p

�
n

2



¡ cp ¡ r16 ¡ 2 � 24r2.

This completes the proof of Theorem 4.4

4.6 Concluding Remarks

In view of Theorem 4.1 we consider the following function for given integers

` ¥ 2 and k ¥ 4 let

f`pkq :� min
!
|V pHq| : girthpHq � k and H Ñ pCkq`

)
.

Theorem 4.1 established that f`pkq ¤ r40k2k40k3 , where r :� r`pCkq. In view

of the known upper bounds on r`pCkq for even and odd k, this establishes the

upper bounds in Theorems 4.18 and 4.19 stated below. These two theorems

also provide complementary lower bounds.

Theorem 4.18. There exist positive constants c1 and c2 such that for all k ¥
2 and ` ¥ 2,

exp
�
c1k log `

	
¤ f`p2kq ¤ exp

�
c2pk2 log `� k3 log kq

	
.

For �xed k ¥ 2 Theorem 4.18 shows that f`p2kq is polynomial in `.

Proof. We will �rst show that f`p2kq ¤ exp
�
c2pk2 log `�k3 log kq

	
. In [26] it

was announced and in [13] it was proved that, for every integer k ¥ 2, there

exists a constant c such that every graph on n vertices with at least cn1�1{k

edges contains a copy of the cycle C2k. This implies that, if n is such
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that
�
n
2

�{` ¥ cn1�1{k, that is, n ¥ c`k{pk�1q, then every edge coloring of Kn

with ` colors will have a monochromatic cycle C2k. Hence

r`pC2kq ¤ c`k{pk�1q. (4.23)

The upper bound f`p2kq ¤ exp
�
c2pk2 log ` � k3 log kq

	
now follows from

substituting (4.23) into Theorem 4.1.

We now turn our attention towards the lower bound in Theorem 4.18.

For any k ¥ 2 and ` ¥ 2 consider any graph H with girthpHq � 2k and

the property H Ñ pC2kq`. Let H̃ � H be edge minimal subgraph such

that H̃ Ñ pC2kq`. Clearly the minimum degree of H̃ must be at least ` and

H̃ must have girth at least 2k. Since any graph with girth 2k and minimum

degree ` must have at least 2
°k�1
i�0 p` � 1qi ¥ c`k�1 vertices the lower bound

for f`p2kq follows.

The following theorem establishes similar results for the odd case.

Theorem 4.19. There exist positive constants c1 and c2 such that, for all k ¥
1 and ` ¥ 2,

exp
�
c1k`

	
¤ f`p2k � 1q ¤ exp

�
c2k

2
�
` log `� k log k

		
.

For �xed k ¥ 2 it follows that eΩp`q ¤ f`p2k � 1q ¤ eOp` log `q.

Proof. We �rst show that f`p2k � 1q ¤ exp
�
c2k

2
�
` log ` � k log k

		
. As

established in [12],

2`k ¤ r`pC2k�1q ¤ p`� 2q! � p2k � 1q. (4.24)

The upper bound for f`p2k � 1q follows from substituting the upper bound

in (4.24) into Theorem 4.1.
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To establish that f`p2k � 1q ¥ exp
�
c1k`

	
for any k ¥ 1 and ` ¥ 2, as

before we begin by considering any graph H with girthpHq � 2k � 1 and

the property H Ñ pC2k�1q`. Note that χpHq ¡ 2`, since otherwise the edges

of H could be decomposed into ` bipartite graphs, resulting in an `-coloring

of EpHq with no monochromatic odd cycle. Moreover, since χpHq ¡ 2`,

there must be a subgraph H̃ � H with minimum degree at least 2`. Since H̃

has at least girth 2k � 1 and minimum degree 2`, the number of vertices in

H̃ must be at least 1� 2`
°k�1
i�1 p2` � 1qi ¥ 2c`k vertices for some c ¡ 0.

For three special cases of k, we are able to deduce better bounds for f`p2kq
using well known extremal constructions of graphs with girth 6, 8, and 12,

respectively.

Theorem 4.20. We have f`p6q � Op`6q, f`p8q � Op`12q, and f`p12q �
Op`30q.

Before proving Theorem 4.20, we �rst introduce some notation and state

an observation upon which the proof is based. Let expn;Ckq denote the

maximum number of edges in an n vertex graph that does not contain a

cycle of length k. Similarly, let expn;C3, C4, . . . , Ck�1q denote the maximum

number of edges in a graph with girth k.

Fact 4.21. If expn;C3, C4, . . . , C2k�1q ¡ `�expn;C3, C4, . . . , C2kq, then f`p2kq ¤
n.

Indeed, by de�nition of the extremal function there exists a graph G on n

vertices with girth 2k that has expn;C3, C4, . . . , C2k�1q edges. Clearly, every
`-coloring of G yields a monochromatic subgraph with at least

expn;C3, C4, . . . , C2k�1q{` ¡ expn;C3, C4, . . . , C2kq

edges, which must contain a monochromatic C2k since the monochromatic

subgraph still has girth at least 2k.
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Proof of Theorem 4.20. To make use of this fact to prove Theorem 4.20, we

use the result of Erd®s and Simonovits from [34] that for every positive

integer k, we have

expn;C3, C4, . . . , C2k�1q � Opn1�1{kq .

Since any graph contains a bipartite subgraph with half of its edges we have

expn;C3, C4, C5, C6, . . . , C2kq ¤ expn;C4, C6, . . . , C2kq
¤ 2 � expn;C3, C4, C5, C6, . . . , C2k�1q
� Opn1�1{kq . (4.25)

Erd®s and Simonovits conjectured in [34] that for every positive integer k ¥ 2,

expn;C3, C4, . . . , C2k�1q � Ωpn1�1{pk�1qq. (4.26)

This has been observed for k � 3 by Klein (see [25]) and follows for k � 4

by the work of Singleton [70], and for k � 6 by work of Benson [8]. For k P
t3, 4, 6u, inequalities (4.25) and (4.26) give that

expn;C3, C4, . . . , C2k�1q � Ωpn1�1{pk�1qqq
¡ ` �Opn1�1{kq � ` � expn;C3, C4, . . . , C2kq,

holds provided that

n ¥ c1`kpk�1q ,

for some su�ciently large constant c1. Consequently, Fact 4.21 yields f`p2kq ¤
n � Ωp`kpk�1qq for k P t3, 4, 6u and the theorem follows.

We remark that establishing (4.26) for all k, implies f`p2kq � Op`kpk�1qq
for all k by the same argument.
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