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Abstract

Some Ramsey-type Theorems
By Troy John Retter

We consider three Ramsey-type problems.
Extending the concept of the Ramsey numbers, Erdds and Rogers intro-

duced the function
fs+(n) = min{max{|W|: W < V(G) and G|W] contains no K,}},

where the minimum is taken over all K;-free graphs G of order n. We establish
that for every s > 3 there exist constants ¢; and ¢y such that fs1(n) <
c1(logn)2y/n. We also prove that for all ¢t —2 > s > 4, there exists a
constant ¢ such that f;(n) < czy/n. In doing so, we give a partial answer
to a question of Erdds.

To state our second problem, we introduce some notation. For a graph S,
the h-subdivision S™ is obtained by replacing each edge with a path of
length h+1. For any graph S of maximum degree d on s > sq(h, d, {) vertices,

)20hg1+1/(h+1) edges having the

we show there exists a graph G with (logs
following Ramsey property: any coloring of the edges of G with ¢ colors yields
a monochromatic copy of the subdivided graph S™. This result complements
work of Pak regarding ‘long’ subdivisions of bounded degree.

Another question of Erdds, answered by Rodl and Rucinski, asks if for ev-
ery pair of positive integers ¢ and k, there exist a graph H having girth(H) =
k and the property that every /-coloring of the edges of H yields a monochro-
matic cycle Cy. Here, we establish that such a graph exists with at most
rOE) EOK?) vertices, where 7 = 74(Cy) is the £ color Ramsey number for the

cycle C. We also consider two closely related problems.
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Chapter 1

Introduction

1.1 Graphs

In combinatorics, a graph is a type of mathematical model consisting of two
parts: a wvertex set V and an edge set E of related pairs of vertices. Fun-
damental to computer science, network theory, and discrete mathematics,
graphs also model problems in chemistry, physics, sociology, biology, epi-
demiology, and linguistics. For example, one may consider a social network
graph in which the vertices represent people and the edges represent pairs of
acquainted individuals. Graphs can be visualized by imagining the vertices

as points in the plane and edges as line segments between related pairs.

1.2 Probabilistic Combinatorics

Over the last two-thirds of a century, probabilistic reasoning has played an
active and influential role in the development of graph theory. This area
of mathematics, known as probabilistic combinatorics, includes the study of
random graphs and algorithms. Random graphs may be equated with average
case analysis in the sense that a particular instance of a problem may often
be thought of as being generated by some underlying random process. Along

with the related study of random algorithms, this has played a significant



role in the theory of algorithmic design. Probabilistic tools, however, are
not only limited to the study of random structures and algorithms, but also
have applications to problems that themselves do not involve randomness.
Examples of major mathematical theorems in which ideas in probabilistic
combinatorics have played an important role include Szemerédi’s Theorem
(every set of integers with positive density contains arbitrarily long arithmetic
progressions), the related Green-Tao Theorem (the prime numbers contain
arbitrarily long arithmetic progressions), and a recent theorem of Keevash on
the existence of designs (resolving a famous question of Steiner from 1853).
As this relatively new area of mathematics matures, additional connections

to other areas of mathematics are likely to emerge.

1.3 Ramsey Numbers

A red/blue coloring of a graph is a partition of the edges into two classes.
For graphs H and G, we write H — G if every red/blue coloring of the edges
of H yields G as a monochromatic subgraph. The Ramsey number r(G) is
the minimum number of vertices in a graph H with the property H — G.
That is,

r(G) := min {|V(H)| L H— G},

where without loss of generality H can be assumed to be a complete graph K,
on n vertices in which all (;‘) possible edges are present. In 1930, economist
and mathematician Frank Ramsey established that r(G) < 4"%) where v(G)
denotes the number of vertices in G.

One of the first applications of the probabilistic method was a proof of
Erdés [22] from 1947 that established a lower bound for r(K). The current

best known bounds, due respectively to Spencer |71] and Conlon [15], are:

(1 _ 0(1))6_1\/58 . 25/2 < ’I“(Ks) < Sclogs/loglogs . 225’



where ¢ is a constant that does not depend on s and o(1) — 0 as s — 0.
This problem has attracted a great deal of attention, although the asymptotic
behavior of r(K) is still unknown, as the exponents in the lower and upper
bounds stated above differ by a factor of four. In particular, W.T. Gowers [40]
writes, ‘I consider this to be one of the major problems in combinatorics and
have devoted many months of my life unsuccessfully trying to solve it’.
Over the last half century, many variations of the Ramsey number prob-
lem have been considered. The development of probabilistic combinatorics
had an intimate relationship with this study, and new powerful probabilistic
methods have been developed as a result of this inquiry. Moreover, many of
the open problems in this area encapsulate fundamental gaps in our existing

knowledge of graphs.

1.4 Overview of Results

This thesis focuses on three distinct Ramsey-type problems addressed in
three corresponding chapters. Each of these chapters is self contained. In
the overview below, we provide a very brief and (relatively) nontechnical
description of the problems addressed and the significance of our results.
We defer the formal statements of our theorems and the discussion of the
relevant historical background to the introductions provided in the following
chapters.

Our next chapter concerns a generalization of the Ramsey numbers due
to Erdds and Rogers |24], which concerns the size of the largest K,-free set
necessarily present in every Kj-free graph on n vertices. In contrast, the
standard Ramsey number problem can be phrased as asking for the size of
the largest independent set necessarily present in every K-free graph on n
vertices. This generalization of Erdds and Rogers has received considerable

attention over the last 50 years, having been addressed by Bollobis and



Hind [11], Krivelevich [50,51], Alon and Krivelevich [3], Dudek and Rodl [21],
Dudek and Mubayi [18], and most recently Wolfovitz [75]. Here, we improve
upon the best known bounds for many values of s and ¢t. To do so, we provide
a random three stage probabilistic construction and make use of the Local
Lemma and theory of projective planes. This chapter is based upon joint
work with Andrzej Dudek and Vojtéch Rodl [19).

Our second chapter concerns the size-Ramsey numbers of short subdivi-
sions. Whereas the Ramsey number problem asks for the minimum number
of vertices in a graph H with the property H — G, the size-Ramsey number
problem asks for the minimum number of edges in a graph H with the prop-
erty H — (. This is one of the most basic extensions of the traditional Ram-
sey problem, and has been the topic of much research. After being introduced
by Erdés, Faudree, Rousseau, and Schelp [30] in 1978, it was subsequently
studied by Beck [6], Haxell, Kohayakawa, and Luczak [44], Friedman and
Pippenger |37], and Dellamonica [17]. See also [35L/4346,58-60], or the more
general recent survey on graph Ramsey theory [16]. One of the most signifi-
cant open problems in this area is to determine the size-Ramsey number of
graphs of bounded degree. Although some progress on the bounded-degree
problem has been made by Rodl and Szemerédi [64] and Kohayakawa, Rodl,
Schacht, and Szemerédi [49], a rather large gap between the best known up-
per and lower bounds still remains. Here, we will investigate the size-Ramsey
numbers of bounded degree graphs that have the additional property that the
set of vertices of degree greater than two induces an independent set. To do
so, we consider ‘short’ subdivisions of graphs, which are obtained by replacing
edges in a graph by paths of some fixed ‘short’ length. Pak [57] in 2002 con-
sidered the closely related problem for ‘long’ subdivisions of bounded degree,
where the length of the subdivisions is logarithmic in terms of the number
of vertices. We make use of the sparse regularity lemma, ideas from a paper

of Gerke, Kohayakawa, Rodl, and Steger [38], a hypergraph version of Hall’s



Theorem due to Aharoni and Haxel [2|, and a new embedding lemma. This
chapter is based upon joint work with Yoshiharu Kohayakawa and Vojtéch
Rodl [76].

Our third result has its roots in a problem suggested by Paul Erdds [27],
which asks if for every positive integer k, there exists a graph H having
girth(H) = k and the Ramsey property H — Cj. The existence of such
graphs was first established by Rodl and Ruciniski in [62]. We raise the
question of determining the least number of vertices such a graph may have.
Whereas the bounds implicitly following from the known constructions are
rather large, we provide a new random construction that yields much im-
proved bounds. This construction is analyzed by way of the Container
Lemma of Saxton and Thomason [67]. In this section, we also apply our tech-
nique to two other problems. The former concerns monochromatic arithmetic
progression in an arbitrarily colored set of integers and the latter hypergraphs
with larger chromatic number and girth. This chapter is based upon joint
work with Hiép Han, Vojtéch Rodl, and Mathias Schacht [42].



Chapter 2

A Function of Erd6s and Rogers

2.1 Introduction

In a graph G, a set S € V(G) is independent if G[S] does not contain a
copy of K. More generally for any integer s, a set S € V(G) can be called
s-independent if G[S] does not contain a copy of K. With this in mind,
define the s-independence number of G, denoted by as(G), to be the size of
the largest s-independent set in G. The classical Ramsey number R(¢, u) can
be defined in this language as the least integer n such that every graph of
order n contains either a copy of K; or a 2-independent set of size u. In other

words, R(t,u) is the least integer n such that
u < min{as(G) : G is a Ki-free graph of order n}.

Observe that the problem of determining the right hand side of the above
inequality, which is a function of n and ¢, is equivalent to determining the
classical Ramsey numbers.

A more general problem results by replacing the standard independence
number by the s-independence number for some 2 < s < t. Following this

approach, in 1962 Erdds and Rogers [24] introduced the function

fst(n) = min{a,(G) : G is a K;-free graph of order n}.



The lower bound k < fs:(n) means that every Ki-free graph of order n
contains a subset of k vertices with no copy of K. The upper bound f(n) <
¢ means that there exists a K;-free graph of order n such that every subset
of ¢ vertices contains a copy of Kj.

The case t = s + 1 has received considerable attention over the last 50
years, in part due to the fact that it creates a general upper bound in the sense
that for ¢’ > ¢, we clearly have fy(n) < fs:(n). The first nontrivial upper
bound for fs s11(n) was established by Erdés and Rogers [24]. This problem of
determining a better upper bound for f;;11(n) was subsequently addressed
by Bollobas and Hind [11], Krivelevich [50,/51], Alon and Krivelevich |[3],
Dudek and R6dl [21], and most recently Wolfovitz [75]. The first nontrivial
lower bound established by Bollobés and Hind [11] was later slightly improved

by Krivelevich |50]. The most recent general bounds for s > 3 were of the

| nlogn 2
Q ( W) = f57s+1(n) = O(n3) (21)

The lower bound of (2.1) was first explicitly stated by Dudek and Mubayi [18],

and was based upon their observation that the result of Krivelevich [50] could

form:

be slightly strengthened by incorporating a result of Shearer [69]. The upper
bound of (2.1) appears in [21], where it was also conjectured that for all
sufficiently large s the upper bound could be improved to show that

fs,s+1(n) = n%JrO(l)' (22)

Recently, Wolfovitz [75] showed that holds when s = 3. In this chapter,
(2.2)) is proved for every s = 3, establishing an upper bound that is tight up
to a polylogarithmic factor. Our proof builds upon the ideas in [75], [21], [51],
and [50].



Theorem 2.1. For every s = 3 there is a constant ¢ = c(s) such that

Foss1(n) < clogn)**v/n.

For the case t = s+2, it follows from a result of Sudakov |73] (see also [21]

for a simplified formula) that fs..2(n) = Q(n®), where é =2+ 725 On

the other hand, clearly f;42(n) < fss41(n). When s > 4, we establish an

improved upper bound that omits the logarithmic factor.

Theorem 2.2. For every s = 4 there is a constant ¢ = c(s) such that

fs,s+2 (n) < C\/ﬁ-

This establishes the following corollary which provides the best known bounds

on fs+(n) for t < 2s.

Corollary 2.3. For every 6 < s+ 2 < t there is a constant ¢ = c(s) such
that

fs,t(n) < fs,s+2(n) < C\/ﬁ.

When ¢ > 2s, the upper bound c(logn)Y/=ns/t+ of Krivelevich [51] re-
mains best. For all values of ¢ > s + 1, the best lower bounds follow from a
recursive formula defined by Sudakov [73}/74]. We will return to the results
concerning the general case at the end of this chapter in Section More
related results are summarized in the survey [20].

We now turn our attention towards an old question of Erdés [23], asking
if for fixed integers s + 1 < t,

lim T _ o (2.3)

nooo foi(n)

This central conjecture in the area is still wide open and asks for a rather



precise estimation of fs;(n). By a result of Sudakov [74], (2.3) holds for

(s,t) € {(2,4),(2,5),(2,6),(2,7),(2,8),(3,6)}.

Observe that Theorem [2.2| together with the lower bound of [50] (and [21])

implies that for s > 4,

nlogn
fot1,542(n) < Q( loglogn> _Q logn o’
fs,se2(n) ~ O(yv/n) loglogn | nowo

That is, (2.3) holds for all pairs (s,t) € {(4,6),(5,7),(6,8),...}.

In what follows, consider s to be an arbitrary fixed integer and n suf-

ficiently large, i.e. n = ng(s). We will show that there exists a K, q-free
graph of order n such that every subset of c(logn)*”\/n vertices contains
a copy of K and that there exists a K, o-free graph of order n such that
every subset of cy/n vertices contains a copy of K. Indeed, this establishes
Theorems [2.1|and [2.2| as stated (for all n), since the constant factors can sub-
sequently be inflated to accommodate the finitely many cases where n < ny.
For simplicity, we do not round numbers that are supposed to be integers
either up or down; this is justified since these rounding errors are negligible
to the asymptomatic calculations we will make.

In Section [2.2] we begin our construction by considering the random hy-
pergraph H which is essentially the random hypergraph obtained from the
affine plane by taking each hyperedge (line) with some uniform probability.
We then use H in Section to construct a random graph G by replacing
each hyperedge by a complete s-partite graph. In Section the proof of
Theorem considers an induced subgraph of G whereas the proof of The-
orem considers yet another random subgraph of G which is analyzed by
way of the Local Lemma.

Below we will use the standard notation to denote the neighborhood and
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degree of v € G by Ng(v) and dg(v), respectively.

2.2 The Hypergraph H

The affine plane of order ¢ is an incidence structure on a set of ¢* points and
a set of ¢ + ¢ lines such that: any two points lie on a unique line; every line
contains ¢ points; and every point lies on ¢ + 1 lines. It is well known that
affine planes exist for all prime power orders. Clearly, an incidence structure
can be viewed as a hypergraph with points corresponding to vertices and lines
corresponding to hyperedges; we will use this terminology interchangeably.
In the affine plane, call lines L and L’ parallel if L~ L' = . In the affine
plane there exist g + 1 sets of ¢ pairwise parallel lines. (For more details see,
e.g., [14].) Let (V, L) be the hypergraph obtained by removing a parallel class
of ¢ lines from the affine plane of order q. The following lemma establishes

some properties of this graph.

Lemma 2.4. For q prime, the g-uniform, q-reqular hypergraph (V,L) of

order ¢* satisfies:

(P1) Any two vertices are contained in at most one hyperedge;

2

(P2) For every A e (‘q/), HLeL:LnA+g} =2

L.
Proof. By construction, (V, L) is g-uniform, g-regular, and satisfies
Consider A = {vy,vg,...,v,}. Define d,(v;) = [{L € L: Ln{v,va,..., 0} =
{vi}}|. Hence by property [(P1)] d-(v;) = ¢ — i+ 1. We now compute

q +1 2
|{Le£:LmA+®}|>;d+(vi)><q2 )2%
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The objective of this section is to establish the existence of a certain hy-
pergraph (V, L") < (V, L) by considering a random sub-hypergraph of (V, £).

Preceding this, we introduce some terminology. For B € V, define
W=1{Le Ll :Ln A% g}, and By ={Le L |LnB|=q}.

Call S < V L'-complete if every pair of points in S is contained in some
common line in £'. Let L(z,y) denote the unique line in £ containing = and
y, provided such a line exists.

We will now distinguish 3 types of L'-dangerous subsets as depicted in
Figure The first two types have 5 vertices {v, v, v3, vy, 2} and third type
has 6 vertices {v1,vq,v3,v4,y, 2}. All 3 types of dangerous sets must be L'
complete and have 4 points {vy, v, v3,v4} in general position. Additionally

we specify:

Type 1 L'-dangerous

The points {vy, ve, v3, vy, z} are in general position.

Type 2 L'-dangerous
The point z is contained in precisely one of the 6 lines L(v;,v;) for

1 <i<j<4. Up to relabeling, say x € L(vq, v3).

Type 3 L'-dangerous
The points y and z are each contained in exactly two of the lines
L(v;,vj) for 1 <i < j < 4. Up torelabeling, say y € L(vy, v3) N L(va, v4)

and z € L(vy,v9) N L(vs, v4).

All concepts above were defined relative to the subset £ < L. Obviously we
can define the concepts L-complete, L-dangerous, L4, and Lp ., related to
the set £ analogously.

We are now ready to state the main result of this section.
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€T
xr
(%1 U1
< <
v3 / () v3 (%)
(a) Type 1 (b) Type 2

U1

v,
(c) Type 3

Figure 2.1: Types of dangerous sets.
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Lemma 2.5. Let q be a sufficiently large prime and o = (logq)*>. Then,
there exists a q-uniform hypergraph H = (V,L') of order ¢* such that:

(H1) Any two vertices are contained in at most one hyperedge;

(H2) For everyv eV, dy(v) < 2a;

(H3) |D| < 2a®q, where D is the set of L'-dangerous subsets;

(H4) For every A€ (‘q/), L) = aq/4;

(H5) For every integer 1 <y < q/16 and every B € (16‘f/q), 1L, = aq/8.

Before proving the above lemma, we state a basic form of the Chernoff
bound (as appearing in Corollary 2.3 of [45]) and state the union bound and
Markov Inequality. We let Bi(n,p) denote a binomial random variable bas n

events that each occur with probability p.

Chernoff Bound. If X ~ Bi(n,p) and 0 < & < %, then

Pr (|X ~B(X)|ze- E(X)) < 2exp {—E(%)g}

Union Bound. If E; are events, then

Pr (OEZ) < k-max{Pr(E;) : i € [k]}.

i=1

Markov Inequality. If X is a nonnegative random wvariable and a > 0,
then

E(X
Pr (X = a) < ( )
a
Proof of Lemma[2.5, Take (V, L) to be a hypergraph established by Lemma

Let H = (V, L") be a random sub-hypergraph of (V, £) where every line
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in £ is taken independently with probability

Since H is a subgraph of (V, £) any two vertices are in at most one line, so
H always satisfies We will show H fails to satisfy [(H2)| and [(H4)| with
probability at most o(1) and that H fails to satisfy with probability
at most 1. Together this implies H satisfies [(H1) with probability at
least 1 — % —0(1), establishing the existence of a hypergraph H that satisfies
[(HD}(H4)] Finally, we use a counting argument to show that any such H
necessarily satisfies

: We first show that the probability that there exists a vertex of
degree greater than 2o is o(1). Observe for fixed v € H, du(v) ~ Bi(q, §)
and E(dg(v)) = a. So by the Chernoff bound with € = 1,

Pr (dH(v) > 204) < Pr (|dH(v) —al = a) < 2exp {—%} :

Thus by the union bound the probability that there exists some v € V' with

dg(v) = 2« is at most

(log q)?
3 } = o(1).

Q- 2exp{—§} = 2exp {2logq—

(H3)} In order to show |D| > 4a®q with probability at most 3, we begin
by counting the number of L£-dangerous subsets of each type. Clearly the
number of Type 1 £-dangerous subsets is at most (q;). To count the number
of Type 2 L-dangerous subsets, first choose {v1,vq, v3,v4} then x, observing
x must lie on one of the 6 lines which each have at most ¢ vertices. Thus
there are at most (’{f) (6¢) configurations of this type. To count the number

of Type 3 L-dangerous subsets, observe the lines L(v;,v;) for 1 <i < j <6
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intersect at at most 3 points other than vy, vy, v3,v4. Hence there are at most
(‘742) (;’) subsets of this type in L.
Since L-dangerous subsets of Type 1, Type 2, and Type 3 have 10, 8, and
7 lines respectively, an £-dangerous subset of each type will be £'-dangerous
10 8 7
with respective probabilities (%) , (9> , and (%) . By the linearity of

q
expectation, we now compute

~
9
TN
R
[\]
N
OO‘Ql
S
+
N
LS
N~
~~
o
=
N
| Q
N~
[oe]
+
N
NS
N~
AN
RO QO
~_
N
| 2
N~
S

Thus, the Markov inequality yields,

1
2

Pr (ID| > 20%) < Pr (1] = 2B(P)) <

(H4)r We will now prove that the probability that there exists A € (‘;)
such that |£'y| < 9! is o(1). Begin by considering any fixed A € (‘q/) Then
by Lemma , |£A| > %, so we may fix X € L4 with | X]| = %. Let X' =
X n L. Since each line in X appears in X’ independently with probability

o X~ Bz(— <) and E(|X'[) = <!. Hence by the Chernoff bound with
1

27

41 < 20) (11 < 2) < (012 2) <2032

Consequently by the union bound, the probability that there exits some
AcV,|A]l =q, with |£;] < F is at most

E =
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2 2
q oq 2 (log ¢)*q
exp {20} < g2 2exp { - 180"
(q) eXpP)~5, q exp{ 7

91(10_%(02}

:2exp{2qlogq— 4

= o(1).

(H5); Finally, we will establish the following deterministic property: If
H satisfies (H2)[ and |(H4)| then H also satisfies

Consider arbitrary fixed 0 < v < & and B € (1(‘5;[1). Let B = By v
By U -+ U Big, be a partition of B into 167 sets of size ¢q. Consider the

auxiliary bipartite graph Auz with bipartition {Bj, Bs, ..., Big,} U L. Join

Bito Le L'if BinL # (J. By property |(H4)|d g4, (B;) = % for all i € [16+],
and thus the number of edges in Auz satisfies

(0%
le(Auz)| = Zq|{B1, Bs,.... B }| = daqn. (2.4)

On the other hand, clearly da,, (L) < |{Bi, Bs, ..., Bigy}| = 16y forall L € L'
and by definition da,.(L') < v for all L' € {L\L% _}. Also keeping in mind

that by

L0\Lh | < L] = Yoe ) < g2 = 20q, we compute

e(Aua)| < || 167 + {ENE 37 < [l - 167 + 2007, (25
Comparing (2.4) and (2.5]), we obtain
daqy < le(Auz)| < L, - 167 + 2047,

which yields [Lp | = <. ]
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2.3 The Graph G

Based upon the hypergraph H established in the previous section, we will
construct a graph G with the following properties.

Lemma 2.6. Let q be a sufficiently large prime, o = (logq)%, 5 = (log ¢)*,
and s = 3. Then, there exists a graph G = (V, E) of order ¢* such that:

(G1) For every C e (H‘)./Sq), G[C] contains a copy of Kg;

(G2) For every U € (64‘5/&1), G|U] contains %2‘1 edge disjoint copies of K,;

(G3) Ewvery edge xvy € E is in at most 6°a**~2 copies of Ky.1;
(G4) If s = 4, then G can be made K, o-free by removing 2a2q vertices.

Proof. Fix ahypergraph H = (V, L') as established by Lemma[2.5] Construct
the random graph G as follows. For every L € L) let x, : L — [s] be a
random partition of the vertices of L into s classes, where for every v e L, a
class x1(v) € [s] is assigned uniformly and independently at random. Then,
let zy € F if {z,y} < L for some L € L' and xp(z) £ xr(y). Thus for
every L € L', G[L] is a complete s-partite graph with vertex partition L =
X2 (1) U xzH2) U - U xTH(s) (where the classes need not have the same
size and the unlikely event that a class is empty is permitted). Observe that
not only are Gy/|L]| and G [L'] are edge disjoint for distinct L, L’ € L', but
also that the partitions for L and L' were determined independently.

We will show G does not satisfy |(G1)| and |(G2)| with probability at most
o(1) and that G always satisfies |(G3)| and [(G4)l Hence the probability that
G satisfies properties is at least 1 — o(1), implying the existence
of a graph G described in the lemma.

(G1)} Consider any C' € (4, ). We will bound the probability that

G[C] $ K,. By with v = s, the set of lines Ly, that intersect C' in at

least, s vertices has cardinality |Lf, | = FI. For each L € Li, , let X, be the
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event K, & G[L n C]. Since |[L " C| > s forall L e Ly, Pr(X,) <1— %

ss”

By independence,

So by the union bound, the probability that there exists a subset of 16sq

vertices in G that contains no K is at most

¢ sl aq
exp{ ———
16sq P 55 8

N

|
4190 exp {_i%}
5% 8

lq(1 2
= exp {16sqlogq — %%q)} = o(1).

(G2)} For arbitrary U € (g,.; ), we will bound the probability that G[U]

does not contain %éq edge disjoint copies of K. By |[(Hb)| with v = 453, we

may fix a subset Zy = Ly;,,5 of exactly <! lines with the property that each

line has intersection at least 4s8 with U. We will consider the lines in Z
that contain the complete balanced s-partite graph on 2s5 vertices, which we
denote by Ksg  25. Define Z[, = {L € Zy : Kop. 25 € G[LNU]}. The graph
Ksp. . op certainly contains at least % edge disjoint K, (Since we may choose
a prime § < p < 20 and it follows from [1| that we may then decompose

K, , into p? edge disjoint copies of Kj; this suffices for our purposes, but

g
16

G[U] contains at least |Z};| - 5% > %éq edge disjoint copies of Kj.
For L € Zy, let Y7, be the event that L ¢ Z]; and fix Ly € LU, |Lysg| =
4s3. Now Y7, will occur only if |x; ' (i) N Lyss| < 23 for some i € [s]. Defining

stronger results are know). Thus if we show |Z];| = %2 it will imply that
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= |x1'(i) N Lagg|, observe X; ~ Bi(4s8,1) and E(X;) = 453. Chernoff’s

mequahty reveals

Pr (Xi < 25) < Pr <|Xi—E(XZ-)| > E(2Xi)) < Qexp{ Zg} - 2€Xp{ g}

By the union bound, Pr(Yz) < Pr (UieS( 25)) 5.2 exp{
By independence, the probability that Y7, occurs for at least {¢ = |Z—2U| of

the lines in Zy is at most

|Zul/2 |Zul/2
() G 2 o ol
=0 3 3
(ol )

That is, we have shown |Z7;| < §¢ with probability at most (85 exp { g })
for fixed U. Thus by the union bound the probablhty that there exits some
U < V with |U| = 64s8q such that | Z],| < 5L is at most

q

2 16 o T6
o) (oo 51" o (o5

< exp {64sﬁq logq + ?—g log(8s) — o;_éq} =o(1).

: For any zy € E, we will show the number of copies of K ., that
contain zy is at most 6°a?*72. Let L € L' be the unique line such that
{z,y} < L as depicted in Figure Let N = (Ng(z) n Ng(y))\L be the
set of all vertices not on L that are collinear with both x and y. Since
dr(2),du(y) < 2o by [(H2)| we infer that |N| < 4a?. Because Kyy1 ¢ G[L],

if a K1 is to contain x and y it must contain at least one vertex v € N.



20

Figure 2.2: Counting K., in G that contains a fixed edge xy by considering
lines in H.

There are at most |N| < 4a? choices for this vertex v. Once v has been
chosen, each of the remaining s — 2 vertices of the K,,; must lie in N or
in L n Ng(v). Since |N| + |L n Ng(v)| < 4% + 2, the number of K,
containing the edge xy is at most 4a?(4a? + 2a)* % < 6% 2.

(G4} We will finally show that if s > 4, G can be made K., free
be removing at most 2a8q vertices. By , all £'-dangerous sets can be
destroyed by removing 2a8q vertices, so it suffices to shown that every K.,
in G contains a £'-dangerous subset.

Let K be any copy of K,.5 in G. By assumption s > 4, so K must have
at least 6 vertices, which clearly form a £'-complete set.

We first show that K contains 4 vertices in general position. Suppose
otherwise. Then there is some line L € £’ that contains 3 vertices {p1, p2, p3}
of K. Since K1 € G[L], there must exist two vertices a and b in K\L.
Observe {a, b} and any 2 vertices in {p1, p2, ps}\L(a, b) are in general position.

Now fix 4 vertices {vy, v9,v3,v4} of K that are in general position and let
uy,us be any two other vertices of K. Three cases are now considered. If
either uy or uy do not lie on any of the 6 lines L(v;,v;) for 1 < i < j < 4,
then there is a £'-dangerous subset of Type 1. If either u; or usy lie on exactly
one line in L(v;,v;) for 1 < ¢ < j < 4, then there is a £'-dangerous subset

of Type 2. In the remaining case where both u; and uy each lie on at least
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2 lines in L(v;,v;) for 1 < i < j < 4, then there is a £'-dangerous subset of
Type 3. O

2.4 Proof of Theorems and

Consider any sufficiently large integer n and s > 3. By Bertrand’s postulate,
we can find a prime ¢ such that 4n < ¢*> < 16n. Fix a graph G procured by
Lemma [2.6] of order ¢? and as before take

a=(logg)? and B =(logg)"".

Theorem [2.1] and Theorem [2.2] are now proved by considering different sub-
graphs of G of order n.

Proof of Theorem[2.2 Consider the case where s > 4. To prove the theorem,
we will show there exists a K, o-free induced subgraph of G of order n with
the property that every subset of order 64s4/n contains a copy of K.

By every set of size 16sq in G contains K, so certainly every
subset of size 64s4/n = 16sq in any induced subgraph of G must also contain
a copy of K . Thus it will suffice to show that there is a K, o-free subset
of G of order n. But by [[G4)| we know that there is a set R < V(G) of
size |R| = 20%¢ < n such that G[V\R] will be K, o-free. Finally since
[VAR| = 4n — n = n, the induced graph of G on any n vertices in V\R will
have the desired properties. O]

Proof of Theorem 2.1l For s = 3, we will concentrate on constructing a K-
free graph G’ on ¢® vertices with the property that every subset of size 6453¢

vertices contains a copy of K. Since log(4n) < 2logn,

64s0q = 64s(log q)**" ¢ < 64s(log 4n)* 4n < 2" +3(logn)**'n,
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and so any induced subgraph of G’ of order n will also be K, -free and have
the property that every set of order 24**8(logn)*"n contains a copy of Kj,
exactly as desired.
Let G’ be a random subgraph of G where each edge is taken with proba-

bility

l, where v = (log q)®.

Y
For a set S € (‘;(ﬁ)) that spans a copy of Ky, in G, let Ag to be the event
that all the edges of S are in G'. Hence, (| As means that K,,; € G'. For a

set U € ((‘si;(sgé) let Ky be a (fixed) set of

Lo
m = 1524

edge disjoint copies K, contained in U, which are known to exist by

Define By to be the event that none of the m edge disjoint K, appear in G'.

V(@)
64s8q

K in G|U] appears in G'. It will suffice to show that the probability that
(ﬂ A_S) N (ﬂB_U) occurs is nonzero. In order to show this, we apply the

Hence, ﬂB_U implies that for every U € ( ) one of the disjoint copies of

Local Lemma (see, e.g., Lemma 5.1.1 in [4]).

Lovasz Local Lemma. Let Fy, F>, ..., E; be events in an arbitrary proba-
bility space. A directed graph D on the set of vertices {1,2,...,k} is called a
dependency digraph for the events Fy, Es, ..., Ey if for eachi, 1 <1 < k, the
event E; is mutually independent of all the events {E; : (i,7) ¢ D}. Suppose
that D 1s a dependency digraph for the above events and suppose there are
real numbers z1, ..., 2, such that 0 < z; < 1 and Pr(E;) < 2 [ [ jyep(1 — 2)

for all 1 <i < k. Then, Pr (ﬂz‘:1 EZ) > (.

Let D be a dependency graph that corresponds to all events Ag and By .

Observe that Ag depends only on the (8;1) edges in S and By depends only
) edges of the K, in Ky. Also, observe that the number of events

s

on the m(2



of the type By is (

q
64s8q

on at most

1
dAA _ (S —5 )6sa2s—2

other events Ag and at most

dap = ¢

events By. Similarly, a fixed event By depends on at most

dBA =m (;) 63062372

64s8q

events Ag and at most

dpp = q
other events By/. Let

L 1
T Qog g e

L= a?sz

To finish the proof, due to the Local Lemma it suffices to show that

(2) ) ooyt = gy,

~

(SO JE———

23

y ) < ¢%P%. Thus by |(G3)} a fixed event Ag depends

(2.6)

(2.7)

First we show that (2.6) holds. Using the fact that e™* < 1 — x for z

sufficiently small (observe that x — 0 with ¢ — o), a sufficient condition for

[2.6) will be
1\ (3
(_) < xefodAA 672yd,437

y
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and equivalently,

1 1
(S —5 ) log (7) = log (E) + 2xdaa + 2ydag.

The latter immediately follows from the following three inequalities (which

1) log (7) = log (i) ,

+
2
s s+1
—( 9 )log (7) = 2zd g,
+
2

can be easily verified):

252 + 2s
S s+1
1 > 2ydap.
252 + 2s ( ) 0% (7) Jaas
Similarly, using the facts that e=2Y < 1 — y for y sufficiently small and

that 1 — (%) &) < e‘(%)(Q), (2.7) will be satisfied if

e*m(%)(g) Sye 2ripa e s

and equivalently,

0 G) 1
m<;) > log (;) + 2xdpa + 2ydpp.



25

As before the latter will follow from the following easy to check inequalities:

()7 >+=()

1\ G)
_) = QdeA )
g

u(2) Y i

g

3

W = Wl Wl
VR

This completes the proof of Theorem O

2.5 Concluding Remarks

We close this chapter by discussing how the asymptotic behavior of f;.(n)
changes for different values of 3 < s < t.
If the difference between s and ¢ is fixed, we make the following observa-

tion based upon the lower bound in Sudakov |73| (and Fact 3.5 in [21]) and
Corollary [2.3

Observation 2.7. For any ¢ > 0 and an integer k = 2 there is a constant

so = so(k, &) such that for all s = sy,
Q(n277) = fn(n) = O(V/n).
In view of this observation and Theorem [2.2] we ask the following.

Question 2.8. For any s = 3, is fss42(n) = o(y/n)?

Another interesting question results from fixing the ratio between s and

t. The following is based upon 73] and [51] respectively.
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Observation 2.9. For any e > 0 and X > 2 there is a constant sy = so(\, €)

such that for all s = sq,
Q(ni’g) = fsps)(n) = O(n§).
In particular, when A = 3, we see Q(n'/5%) = f; \,(n) = O(n'/3).

Question 2.10. What is the asymptotic behavior of fsrs(n)?

Recall that Erdés [23] asked if for fixed s +2 < ¢, limy, o 5520 = oo,

We ask a similar question, that if answered in the affirmative would imply

an affirmative answer to the question of Erddés.

Question 2.11. For all t > s > 3, is lim, ,,, L0400 — o7
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Chapter 3

Size-Ramsey Numbers of Short

Subdivisions

3.1 Introduction

For graphs H and G and an integer ¢, we write H — (G), if every coloring
of the edges of H with ¢ colors contains a monochromatic copy of GG. In the
two color case (¢ = 2), we omit the subscript and simply write H — G. For a
graph G, the study of which graphs H have the property H — G is a major
area of research in extremal combinatorics. One of the most well-known
questions of this nature is to determine the Ramsey number r(G), which is
the minimum number of vertices in a graph H with the property H — G.
That is,
r(G) := min {|V(H)| H - G},

where without loss of generality H can be assumed to be a complete graph.
A variation of this problem, introduced by Erdds, Faudree, Rousseau, and
Schelp [30] in 1978, asks for the minimum number of edges in a graph H
with the property H — G. This is the size Ramsey number of G and is often
denoted by 7(G). In other words,

#(G) := min {|E(H>| H - G}.
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Trivially, 7(G) < ("(QG )), and a simple argument, attributed to Chvatal in |30],
shows that 7(K,) = (T(I;")) for the case when G is the complete graph. For
many sparse graphs G, as we will see, the bound 7(G) < (T(2G>) is far from
optimal.

One of the first problems investigated regarding the size Ramsey number
was to determine the behavior of the function 7(P,), where P, is the path
on n vertices. Erdds asked the following version of this question in [29]: Is it

true that
r(P,)/n — o and 7(P,)/n* — 07

This was answered in the negative by Beck [6], who, using probabilistic meth-
ods, proved that 7(P,) < 900n. This result was extended in [44], where it was
established that cycles also have linear size Ramsey numbers (in fact, it was
shown this even holds for the induced version of the size Ramsey number).
Another extension by Friedman and Pippenger [37] established the linearity
of the size Ramsey number for trees with bounded degree. More recently,
Dellamonica [17] was able to determine asymptotically the size Ramsey num-
ber of general trees, confirming a conjecture of Beck. Other related results
include [43,46].

A significant open problem is to determine the size Ramsey number of
graphs of bounded degree. Letting A(G) denote the maximum degree of G,

we define this function of interest by
#(n,d) := max {?(G) V(G)| =n, AG) < d}.

In [7], Beck asked if 7(n, d) is always linear in n for fixed d. This was settled
in the negative by Rodl and Szemerédi [64], who established that

7(n,3) = Q(n(logn)Y/°).
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That is, they constructed graphs G of order n and maximum degree 3 and
argued that if H is any graph with fewer than cn(logn)% edges, then H
does not have the property H — G. In the same paper, it was conjectured
that for all d there exists ¢4 > 0 such that

n'ted < F(n, d) < n?". (3.1)

The upper bound in (3.1) was subsequently proved by Kohayakawa, Rodl,
Schacht, and Szemerédi in [49]. The lower bound in (3., however, remains
open and closing the rather large remaining gap between the upper and
lower bounds for 7(n,d) is of considerable interest. For further results on
size Ramsey numbers, see [|35,58-60|, or the more general recent survey on

graph Ramsey theory [16].

Subdivisions of Graphs

For a graph S and positive integer h, the h-subdivision of S, denoted S,
is the graph obtained by replacing each edge of S with a path on h internal
vertices as demonstrated in Figure for the case h = 2. Having in mind
that the size Ramsey numbers of trees are quite well-understood and that
much regarding the size Ramsey numbers of bounded degree graphs remains
open, we believe it is of interest to determine the size Ramsey numbers of
subdivisions.

The size Ramsey number of ‘long’ subdivisions of bounded degree, which
are subdivided graphs S™ where h > clog|S?™| and the maximum de-
gree of S is bounded, were studied by Pak [57] in 2002. Pak conjectured
that 7(S™) is linear in terms of |S™| for such subdivisions and, by using
results on mixing times of random walks on expanders, proved a weaker form
of this conjecture up to a polylogarithmic factor.

Our main result relates to the size Ramsey number of ‘short’ subdivisions
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(a) A graph S (b) The graph S

Figure 3.1: A graph and its subdivision

of bounded degree, which are subdivided graphs S where h and the max-
imum degree of S are fixed and the number of vertices |V (5)| is relatively
large. To state a more general form of this result, we introduce the following

definition.

Definition 3.1 (Universal Size Ramsey Number). For h,d,?,s € Z*, define
the universal size Ramsey number USR(h, d, (, s) to be the fewest number of

edges in a graph H that has the following universal Ramsey property:
H — (SM), for every graph S on s vertices with mazimum degree d.

Theorem 3.2. For any h,d,{ € Z™, there exists so such that for all s > s,
USR(h,d, !, s) < (log s)? st +1/(h+D) (3.2)

A corollary is that for any h > 1 and d > 1, there exists sy such that if S

is any graph on s > sg vertices with maximum degree d,
?(S(h)) < (log S)2Oh81+1/(h+1).

A short counting argument, which will be given in Section yields the

following lower bound.
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Theorem 3.3. For all h,d,l,s € Z* with d = 3,
USR(h,d,(,s) = USR(h,d, 1,s) = 't/ (htD)=2/dhil)+ol) - (3 3)

where o(1) — 0 as s — 0.

That is, we obtain a bound for the number of edges in any graph H
that contains S as a subgraph for every graph S of maximum degree d
on s vertices. Observe that for large d, the exponent in (3.2)) is close to the
exponent in (3.3)).

We will also show that the proof of Theorem [3.2| can be extended to give

the following more general theorem.

Theorem 3.4. For any h,d € Z*, there exists a constant cyq such that
the following holds. If Q) is a graph with maximum degree at most d on g
vertices with the property that every pair of vertices of degree greater than 2

are distance at least h + 1 apart, then
?(G) < Ch,d(log q)Qthl—i-l/(h—&-l)‘

We believe that the exponent of the logarithm in both Theorems |3.2
and could be substantially reduced, although our method does not allow
for the dependency of the exponent of the logarithm on h to be removed. For
the sake of clarity of presentation, we have opted not to make any attempt to
optimize this power. We do believe, however, that removing the dependency
on h or removing the logarithm entirely would be of interest. We also ask

the following.

Question 3.5. For every integer d, does there exist a constant cq such that

?(S(h)) < thsl-‘rl/(h-‘rl)



32

for every integer h and for every graph S on s wvertices with mazimum de-

gree d?

Notation

We use fairly standard notation in this chapter, including the following. For
a graph H and vertex subsets X; and X, we let Ey(X7, Xs) be the the
set of edges between X; and X, and ey (X, Xs) = |Eg(X1, X2)|. When
unambiguous, we omit the subscript. Unless explicitly noted otherwise, a
subgraph need not be induced. Also, as is standard, we omit floors and

ceilings that do not affect the asymptotic nature of our calculations.

Organization

The rest of this chapter is organized as follows. Section introduces an
FEzistence Lemma (Lemma , a Coloring Lemma (Lemma , and an
Embedding Lemma (Lemma [3.14)), and then establishes Theorem [3.2] based
upon these three lemmas. The proofs of these three lemmas are deferred to
Sections [3.4] [3.3] and respectively. Section addresses Theorem [3.3
Section 3.7 addresses Theorem

3.2 Proof of Theorem

The proof of Theorem is based on an Ezistence Lemma (Lemma [3.12)),
a Coloring Lemma (Lemma [3.9), and an Embedding Lemma (Lemma [3.14)).
The Existence Lemma will establish the existence of a sparse graph G that
has several properties including being a member of a class of graphs called
Z(N,p) (Definition [3.8). The Coloring Lemma will establish that, since G €
Z(N,p), any (-coloring of the edges of G yields a monochromatic subgraph H
that is a member of a class of graphs called H(h,n, ¢, ¢) (Definition [3.7)). For
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appropriate parameters, we will have that the graph H € H(h,n, e, q) is also
in a class of graphs called J(h,n,d) (Definition [3.13). For any graph S
on s vertices that has maximum degree d, the Embedding Lemma will then
establish that, since H is in J(h,n,d), the graph S™ can be embedded
into . These lemmas together will be used to establish that G — (S™),
for any graph S on s vertices with maximum degree d, as desired. The
objective of this section is to introduce the terminology required to state
these three lemmas and then to prove Theorem [3.2]

The following class describes graphs obtained from blowing up the cy-
cle Cp, 1 by replacing each vertex by an independent set of size n and each
edge by an arbitrary bipartite graph. In this definition and elsewhere, we say
that H is a graph on |_|?:+11 X; if Xy, Xo, ..., X1 are pairwise disjoint sets
and V(H) = [ /"] X;. For notational convenience, we will index the sets X;
modulo h + 1; in particular, we set X;,o := X; and X := X} 4.
Definition 3.6. Let H(h,n) bet the set of all graphs on |_|§f11 X; such that
both the following hold:

(i) |X;| =n for allie [h+1].
(i) E(H) = %) En(Xi, Xip).

The following subclass of H(h,n) describes graphs where the bipartite
graphs induced on (X;, X;,1) have density ¢ and uniformly distributed edges.

Definition 3.7. Let H(h,n,e,q) be the set of all graphs H on |_|?;r11 X; that
are in H(h,n) and satisfy the following additional two properties:

(iii) e(X;, Xiy1) = qn? for all i € [h + 1].

(iv) For any integeri € [h+ 1] and vertex subsets )Z'Z < X; and )/(\'Hl < X

cach of size |X;|,| Xis1| = en,

(1 = €)q| Xil| Xis| < (X, Xiv) < (1 + €)q|Xi|[Xina]-
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In the context of the random graph G(N, p), the next definition introduces
a class of graphs having neither ‘dense bipartite patches’ nor ‘large bipartite

holes’.

Definition 3.8. Let Z(N, p) be the set of N-vertex graphs G that have both

the following properties:

(i) For all disjoint sets V1, Vo < V(G) with 1 < |V4| < |Va| < pN|V4|,
e(Vi,V2) < p[Vil[Va| + €*V6 - /pN|V[[Va].
(ii) For all disjoint sets Vi, Vo < V(G) with |Vi],|Va| = N(log N)™!,

(1/2) - plVi[|Va] < e(V1,V2) < 2 p|V1] V2.

The following lemma, is a deterministic statement about the previous two

classes of graphs.

Lemma 3.9 (Coloring Lemma). For any € € R and h,l € Z*, there exist

t,ny € Z* such that, for all n = ny,
q := 4(log n)?n =11/ (hx1), N := tn, and p = 4lq,

every graph G € Z(N,p) has the following property. Any (-coloring of the
edges of G yields disjoint vertex subsets X1, Xo,..., Xp11 < V(G) and a
monochromatic subgraph H on |_|£L:+11 X; such that H € H(h,n,¢,q).

The Existence Lemma, which we state next, establishes that there ex-
ists a graph G on N vertices that exhibits several properties including being
in Z(N, p). Combined with the Coloring Lemma, this gives that, for appro-
priate parameters, any (-coloring of such a graph G will not only contain a
monochromatic copy of some H € H(h,n, e, q), but one that inherits certain
additional desirable properties which will be used to embed S™. We now

describe these additional properties.
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Definition 3.10 (Path Abundance). Let H be a graph on |_|:.f11 X; with
H e H(h,n).

e For vertices u,v € X1, a transversal path between u and v is an (undi-
rected) path with endpoints u and v that has exactly h + 2 vertices and
exactly one vertex from each X; for all i € [h + 1]\{1}.

e H is (1—04,logn)-path abundant if for at least (1 —6)(}) pairs of ver-
tices {u,v} € ()gl), there are at least logn transversal paths between u

and v that are pairwise edge-disjoint.

Definition 3.11 (Cluster-Free). Let F' be a graph and L < (V(QF)) be a set

of pairs of vertices in F (that need not correspond to edges). Let V(L) =
Uuwjeclu, v} and Z = V(F) be a subset of vertices with Z n V(L) = &.

o An (L, Z, h,logn)-cluster is a set of paths P, such that:

— For every P € P, the path P has exactly h + 2 vertices.

— For every path P € Pr, the endpoints u and v of P are such
that {u,v} € L.

— For every P € P, the path P does not have an internal vertez in
V(L).

— For every {u,v} € L, exactly logn paths in P, have endpoints u
and v.

— For every pair of paths P and P in Pr, the paths P and P are
edge-disjoint.

— For every P € P, the path P has exactly one internal vertez in Z.

o We say that F is (h,n)-cluster free if F' does not contain an (L, Z, h,logn)-
cluster for every L < (V(zF)) and Z < V(F) with |£]| < n(logn)~5"
and |Z| = h*|L|.
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It follows from this definition that the graph obtained by taking the union
of the paths in an (£, Z, h, log n)-cluster has at most 2|L|+|Z|+|L|(logn)(h—
1) vertices and exactly |L|(logn)(h + 1) edges, as well as a very specific
structure. Also, observe that if F' is (h, n)-cluster free, then any subgraph P

of F' will be (h,n)-cluster free as well.

Lemma 3.12 (Existence Lemma). For all h,{ € Z" and 6 € R, there
exists € € R such that, for any t € Z*, there exists ny € Z for which the

following holds. For any n = nao,

q := 4(log n)?n =11/ (h+1) N := tn, and p = 4q,

there exists a graph G on N vertices satisfying all of the following properties:
(i) Every vertex in G has degree at most (logn)3nt/("*+1),
(i) G is (h,n)-cluster free.

(11i)) G € Z(N,p).

(iv) For all disjoint subsets X1, Xo,...,Xps1 < V(G), every (not nec-
essarily induced) subgraphs H on |_|Z}.Lj11 X; with H € H(h,n,e,q) is
(1 — 6, logn)-path abundant.

Observe that if G is any graph satisfying property (i) in the Exis-
tence Lemma then, by the Coloring Lemma, any /(-coloring of G yields a
monochromatic copy of some H € H(h,n,e,q). Moreover, if G also satisfies
property (iv) in the Existence Lemma, then the monochromatic copy of H
must be path abundant. Additionally, if G satisfies properties (i) and (1)
in the Existence Lemma, then the path abundant monochromatic H must
also satisfy properties (¢) and () in the Existence Lemma. Such a graph H
is described by the following definition. Note that this definition has no

dependency on .
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Definition 3.13. Let J(h,n,d) be the set of all graphs H on |_|f.f11 X; that
are in H(h,n) and satisfy all the following:

i) Every vertex in H has degree at most (log n)3nt/(h+1)
Yy g g

(i) H is (n,h)-cluster free.
(111) H is (1 — 0,logn)-path abundant.

Our final lemma establishes that every H € J(h,n,d) has the desired
universal property to slightly smaller graphs provided ¢ is sufficiently small.

Lemma 3.14 (Embedding Lemma). For all h,d € Z*, there exist 6 € Rt
and ng € 7+ such that, for all n = ns, the following holds. FEvery graph H
on |_|}?=+11 X; with H € J(h,n,d) is universal to the set of graphs

(]

{s<h> V(S| = m and A(S) < d}.

Proof of Theorem [3.2

We will now prove our main result based upon the three lemmas we have
stated.

Proof of Theorem 3.2 Consider any h,d, ¢ € Z". Recall that Lemmas
3.12], and are quantified as follows.

314: VYh,d 35,n;
3.12]: Vh, 0,0 de Vt dn,
39: Vh,( e, 3t,n

A sequential application of Lemmas [3.14] 3.9 and yields

6 :=6B(p d), ng:=niE(h q),
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e:=BL(p 0 45),
to=tBIn, 0,e), ny:=nBEIn 0 e),
Ny = ném(h,é, d,e,t).
Set s := max{ny, ny, n3, e} and consider any s = so. Take
n = (logs)®s, N:=nt, q:=4(logn)*n=*V"+10" and p:= 4.

Observe that n = s > sp. From the Existence Lemma (Lemma [3.12)), we
obtain a graph G on N vertices that satisfies the properties (i)—(iv) in
the Existence Lemma. We will now show that G has the desired univer-
sal Ramsey property. That is, consider any ¢-coloring of the edges of G. We
will show that G contains a monochromatic copy of S for every graph S
with [V (S)| = s and A(S) < d.

Since G € Z(N,p), by the Coloring Lemma (Lemma [3.9)), this coloring
of G yields disjoint vertex subsets X, Xo,..., X1 < V(G) and a monochro-
matic subgraph H on |_|§’:r11 X; with H € H(h,n,e,q). Since G also ex-
hibits properties (i)—(iv) in the Existence Lemma, the monochromatic sub-
graph H on |_|?:+11 X; must be a member of the class J(h,n,d). By the
Embedding Lemma (Lemma , the monochromatic subgraph H is uni-
versal to the family of graphs {S(™ : [V (S)| = n(logn)~™ and A(S) < d}.
Since n = (log s)®"s was chosen so that s < n(logn)~™, this gives that H is
also universal to {S™ : [V(S)| = s and A(S) < d}, as desired.

Having established that G has the desired universal Ramsey property, we
will now count the number of edges in G. Based upon the maximum degree
in G being at most (logn)>n"*+1 (and using logn < (log s)?, 1+1/(h+1) <

3/2, and n = 2'), the number of edges in G is at most

(log n)?’nl/(hH)N < (log n)4n1+1/(h+1)

< ((log 5)2)4((10g S)8h)3/281+1/(h+1) < (log s)20h81+1/(h+1).



39

This completes the proof of Theorem O

3.3 Proof of the Coloring Lemma

This section is devoted to proving Lemma For the remainder of this

section, fix e € R™ and h,/ € Z" and set
q(n) := 4(log n)?n 11/ (h+1) and p(n) = 4(q.

We must show there exists an integer ¢ so that for sufficiently large n and N :=
tn, any (-coloring of any graph G € Z(N,p) yields disjoint vertex subsets
X1, X2, ..., Xpy1 € V(G) and a monochromatic subgraph H on |_|?:+11 X;
with H € H(h,n,e,q) (see Definitions [3.8| and [3.7).

Our approach to finding a monochromatic subgraph H € H(h,n,e, q) will
be to first find several intermediate classes of graphs. The main idea will be
to first find a monochromatic subgraph Hy (in the class Hs defined below)
in which the number of vertices and edges are controlled but not yet exactly
correct. We then transition to a subgraph H; < H, (in the class #H; defined
below) in which the number of vertices is precisely as desired and the number
of edges is still controlled. Finally, we will obtain a subgraph H < H; with
H € H in which both the number of vertices and the number of edges are
exactly as desired.

To define the intermediate classes of graphs, we need the following pair

of definitions.

Definition 3.15 ((n)-regular). For n € R™, the bipartite graph E(X;, X;.1)
is (n)-regular if, for every X; < X; and )A(Hl < X1 with |)AQ| > n|X;| and
[ Xiv1] = 0| Xinal,

~

X1, X i X X1, X
(1 _77)6()(1’)( +1) < e(/\ i +1> < (1 +7])€(‘X1X +1>‘
| X || X1 ] | X || Xiaa | | X | Xiq1]
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Definition 3.16 (Density). We say that the bipartite graph E(X;, X;11) has

density
g = (X Xiv)
| Xl Xt

Definition 3.17 (Intermediate Graph Classes).
o Ho(h,n,e9,q): A graph Hy on |_|?:+11 W is in Ha(h, n, eq,q) if, for some
integer m satisfying 4n < m < nlogn, all the following hold:
(i) [W;| =m for all i€ [h+1].
(ii) E(H) = 2 Ea (Wi, Wii).
(1i1) For eachi € [h+1], the bipartite graph E(W;, Wiy1) is (e2)-regular.
(iv) For eachi € [h+1], the bipartite graph E(W;, W;11) has density d;

satisfying 2q < d; < 8(q.

o Hyi(h,n,e1,q): A graph Hy on |_|§le1 X; is in Hi(h,n,e1,q) if all the
following hold:
(i) |X;| =n for allie[h+1].
(i) E(H) = L% Eu(Xi, Xii).
(111) For each i € [h+1], the bipartite graph E(X;, X;11) is (e1)-regular.
(iv) For each i € [h+ 1], the bipartite graph E(X;, X;11) has density d;
satisfying (3/2)q < d; < 124q.

o H(h,n,e,q): Recall that H(h,n,e,q) was introduced in Definition [3.7
It follows from this definition that a graph H on |_|?:+11 X; isin H(h,n,e,q)
if all the following hold:

(i) |X;| =n for allie [h+1].
(ii) E(H) = /%) Ea(Xi, Xi).

(i1i) For each i € [h+1], the bipartite graph E(X;, X;.1) is (¢)-regular.
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(iv) For each i € |h+ 1], the bipartite graph E(X;, X;11) has density d;
satisfying d; = q.

We will now state three claims. The first claim (Claim will es-
tablish that, for appropriate parameters, any f-coloring of any graph G €
Z(N,p) contains a monochromatic subgraph Hs € Ha(h,n,e2,q). The next
claim (Claim will establish that, for appropriate parameters, any graph
Hy € Ha(h,n,eq,q) contains a subgraph H; € Hi(h,n,e1,q). The final
claim (Claim 3.20) will establish that, for appropriate parameters, any graph
Hy € Hi(h,n,e1,q) contains a subgraph in H € H(h,n,e q). These claims

will then be used to prove the Coloring Lemma.

Claim 3.18. For any c5 € R, there exists t € Z* such that, for every suffi-
ciently large integer n and N := tn, every graph G € Z(N,p) has the follow-
ing property. Any {-coloring of the edges of G yields disjoint vertex subsets
Wy, Wa, ..., Whi1 < V(G) and a monochromatic subgraph Hy on |_|?:11 W;
with Hy € Ho(h,n,€9,q).

Claim 3.19. For any , € R™, there exist o € RY such that, for every
sufficiently large integer n the following holds. FEvery graph Hs on |_|?:+11 W;
with Hy € Ha(h,n,e9,q) contains vertex subsets X; < W, and a subgraph
H, c Hy on |_|?:+11 X; such that Hy € Hqi(h,n,e1,q).

Claim 3.20. For any € € R™, there exist ¢ € RY such that, for all suf-
ficiently large n, the following holds. FEvery graph H, on |_|?:+11 X; with

Hy € Hi(h,n,e1,q) has a monochromatic subgraph H on |_|Z}:r11 X, such that
HeH(h,n,e,q).

The proofs of Claims [3.18] [3.19, and will be provided in Subsec-

tions [3.3.1} [3.3.2] and respectively. We will now show how these claims
establish the Coloring Lemma. Recall that we have already fixed ¢, h, and ¢

and defined ¢(n) and p(n) at the beginning of this section. Fix
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g1 1= B2 ), g9 1= eSBEI(g), and tBIE . — #(ey).

Let n be any sufficiently large integer and define N := tn. Consider any /-
coloring of any graph G € Z(N, p). Claim [3.1§] yields disjoint vertex subsets
Wy, Wa, ..., Wpy1 <€ V(G) and a monochromatic subgraph Hs on |_|thl W;
with Hy € Ha(h,n,e2,q). Claim [3.19 m gives vertex subsets X; < W; and a
subgraph H, < H, on |_| ' X, such that H, € Hi(h,n,e1,q). Claim
gives that the graph H; on |_| X contains a subgraph H on |_|th1 X; with
H e H(h,n,e,q). This completes the proof of the Coloring Lemma.

3.3.1 Proof of Claim

Proof of Claim[3.18 Consider any £ € RT. We must show that there ex-
ists t € Z* such that, for every sufficiently large integer n and N := tn, every
graph G € Z(N,p) has the following property. Any (-coloring of the edges
of G yields a monochromatic subgraph in Hay(h,n, 9, q).

Let r¢(Kpy1) denote the f-color Ramsey number for K1, i.e. the least
integer j such that every (-coloring of the edges of the complete graph K;

yields a monochromatic copy of Kj 1. Set
ro=7ri(Kp1), Ereg 1= min{1/r? e,/20}, and Kpnin 1= T.

Observe that every graph on k = Ky, vertices with at least (1 — g,¢,) (Z)
edges contains a copy of K,. Having defined ¢,., and £,,;, and having fixed
the integer ¢ at the beginning of this section, we will procure the integers
Emaz, No, and Dy from the sparse regularity lemma. Its statement requires

the following definition.

Definition 3.21 ((n, p)-regular). We say that the bipartite graph E(X;, X;11)
is (n, p)-reqular if, for every Xi© X; and Xio1 © Xiuy with |X| n|X;|



43
and |)A(i+1| = | X,

e(X ,XZ‘ (& XzaXz
( 1 +1) . (,\ - +1) < np. (34)

The following is a suitable variant of Szemerédi’s regularity lemma for
sparse graphs [47,48] (see also [39,68]).

Fact 3.22 (Sparse Regularity Lemma). For every ¢,., € R* and integers
Emin, 0 € 77, there exist kyaz, No, Do € ZT such that the following holds.
Consider any integer N = Ny and real number p with pN = Dy, and any
set of graphs G1,Ga, ..., Gy on the same vertex set [N] that each satisfy
property (i) in the definition of Z(N,p) (Definition [3.8). Then there exists
an integer k satisfying kpyin < k < ke and a vertex partition [N] = V1 U

Voo U Vi that has the following properties.
e For all i € [k], we have |V;| = N/k.

o For at least (1—¢€yeq) (];) of the pairs {i,j} € ([g]), all the bipartite graphs
Eq,(Vi,V;), where U € [], are (c,eq, p)-regular.

Having obtained k,,q., No, and Dy from the above lemma, set
t =4k 00-
Let n be any integer large enough so that
N=nt=N, and pN = 4t(logn)?n/"*V) > D,.

Consider any graph G € Z(N,p) and any ¢-coloring of G. Our goal is to
show that this arbitrary edge coloring of GG yields a monochromatic subgraph
in H?(ha n, &g, Q)
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Observe that this coloring corresponds to a partition of E(G) into sub-
graphs G1, Gy, ..., Gy which each inherit property (i) in the definition of
Z(N,p). Hence, by the Sparse Regularity Lemma, there exists an integer k
satisfying ki < k < kpee and a vertex partition V(G) = V3 u Vo UV
into classes of size m := N/k such that for at least (1 — ereg)(g) of the
pairs {i,j} € ([g]), the bipartite graph E(V;,V}) is (g,¢4, p)-regular with re-
spect to every color class.

Define an auxiliary cluster graph on [k] by joining vertex i to vertex j if
the bipartite graph E(V;, V) is (&,¢4, p)-regular with respect to every color
class. The cluster graph has k > k,,;, vertices and at least (1—¢,¢,) (S) edges,
implying that the cluster graph contains a copy of K.

Define a coloring of this copy of K, in the cluster graph with the color
set [¢] as follows. Color the edge ij with color ¢/ € [{] if the bipartite
graph E(V;,V;) has density at least 2¢ in color ¢. Edges may be col-
ored with multiple colors, but every edge will receive at least one color
because condition (%) in the definition of Z(n,p) guarantees that the bi-
partite graph E(V;,V;) has density at least (1/2)p = 2¢q. By the definition
of the Ramsey number r, this ¢-coloring of K, contains a monochromatic
copy of Kj,1, and hence a monochromatic copy of the cycle C},; in some
color ¢'. This corresponds to sets Wiy, Wy, ..., W1 of size m = N/k so
that, for each i € [h + 1], the bipartite graph Eg, (W, Wiy1) 1S (€reg, )-
regular with density d; satisfying 2¢ < d; < 8{q, where the upper bound
on d; follows from condition (%) in the definition of Z(n,p). Observe that
m = N/k = N /kya = 4n and that m < N < nlogn. To complete the proof,
we must only demonstrate that every (g,4, p)-regular graph E(W;, W;.4)
having density d; satisfying 2¢ < d; < 8(q is also (eq)-regular. To this end,
consider any subsets 17[\/2 c W, and ﬁ/\iﬂ < W11 with |Wi|, |Wi+1| > gom.

Since E(W;, Wii1) is (g4, p)-regular and |I//I\/Z|, |I//I\/Z~+1| = E9M = EpegM, it
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follows from Definition that

e(WhWi-i—l) _ e(ﬁ/\iaw\i-&-l)
Wil Wisal ||| Wi

< €regp'

Furthermore, since d; > 2¢ = p/2¢ and ¢,., < £2/2¢, this gives that

e(WLM/iJrl) . €(m7m+1) <e D < 2(2€d) _ 82€(W17VI/2'+1)
(Wil Wical (W |]W, 4| (Y (Wil |Wiga]
which implies
(1— <€2)6(1/‘/17‘/Vz‘+1) - e(Wi, Wis1) <(+ 62)6(W17Wi+1)
(Wil Wil W[ Wi Wil [ Wi

3.3.2 Proof of Claim

Proof of Claim[3.19 Consider any £, € RT. We must show that there ex-
ist e € R* such that, for every sufficiently large integer n, every graph
in Ho(h,n,e9,q) contains a subgraph in Hi(h, n,e1,q).

Set 8 := 1/2 and &, := ¢;/2. We obtain the positive real number &,
and the constant ¢ from the following lemma. Roughly speaking, the lemma
asserts that most induced subgraphs of a (e3)-regular bipartite graph can be
made (g1)-regular by the deletion of only a few vertices provided that g5 « €.

This basic idea of the lemma is shown in Figure |3.2
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Figure 3.2: Given
an  (eg)-regular  bipartite
graph EZ = E(V[/i7m+1)7

the induced _ bipartite
graph  Eg,(W;,W;;1)  is
in G if there exists small sub-
sets Af < W, and Bic < Wi
such that, for A; 1= W, \AC
and Bl = WH_l\BiC,
the induced bipartite
graph EEL (AZ, Bz) is (51)-
regular  with  appropriate
density.

Fact 3.23 (Corollary 3.9 in [38]). For all 0 < 8 < 1 and & > 0, there
exists e9,¢ > 0 such that the following holds for any (e2)-reqular bipartite
graph E; = E(W;, W;,1) with density d; satisfying 2n = cd; .

e Let G be the set of induced subgraphs EEi(Wi,WiH) c EW;, Wiiq)
which have the following property: There exist A; 17[\/Z and B; <
Wi with |A;| = (1 — &)|Wi| and |Bi| = (1 — &)|Wi1| such that
the induced bipartite graph Eg,(A;, B;) is (€1)-reqular with density d;

~

satisfying (1 — &1)d; < d; < (1 +&)d;.

Then the number of induced subgraphs EEi(Wi,WiH) with Wz € (I;:;) and

~

Wi € (V‘;“) that are not in G is at most 52”(‘??) (\Wiﬂl)_

n 2n

Having obtained e5 and ¢ from the above lemma, let n by any integer
large enough so that 2n > cg~!. Now consider any graph Hs on |_|f.f11 W; with
Hy € Ha(h,n,e9,q). For some fixed integer m satisfying 4n < m < nlogn,
we have that |W;| = m for all i € [h + 1]. Recall that our aim is to show that
there exist a collection of n element subsets {X;  W; : i € [h + 1]} so that,
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for each i € |h + 1], the induced bipartite graph FE(X;, X;,1) is (¢1)-regular
with density between (3/2)q and 12/q.

To this end, we first consider a random selection of 2n element subsets
{17[\/Z c W; : i € [h+ 1]}. By the union bound and Fact m (applied
with |[W;| = [W;11] = m and having § = 1/2), with probability at least

—(h+1)(1/2)* > 0, this random selection of subsets will have the property
that, for each ¢ € [h + 1], the bipartite graph E; := E(Wi,WHI) is in G
(as defined in Fact . Hence, we may fix such a selection {WZ c W :

€ |h + 1]} of 2n element subsets such that each of the bipartite graphs
E;, = E(Wl, Wiﬂ) are in G. Now, for each i € [h+ 1] and associated bipartite
graph FE; = E(ﬁ\/z, I//I\/Z-H), we may find subsets A; < I//I\/Z and B; < Wiﬂ with
|4,],|B;| = (1 — &1)|2n| such that Ep,(A;, B;) is (£1)-regular with density d;
satisfying (1 —&1)d; < c@ < (14 &1)d;. Thus for the set Wi, we have selected
subsets A4; Wl and B;_; Wz with respect to the bipartite graphs E; =
E(W\i,ﬁ/\iﬂ) and F;,_; = E(Wi_l,wi) respectively. For each W\i, let X; be
any subset of A; N B;_1 of size n.
For each ¢ € [h + 1], the bipartite graph E(X;, X;,1) is (g1)-regular as

desired since:
e FE(X;, X;41) is asubgraph of the (€;)-regular bipartite graph F(A;, B;).
o (1—&)2n<|A;l <2nand (1—2,)2n < |By| <
o | X;| =X =n.
o 5 =¢/2.
Also, E(X;, Xi11) has density between (3/2)q and 12{q since:

e F(X;, X;+1) is a subgraph of the (£;)-regular bipartite graph E(A;, B;)
of density d; satisfying (1—25)2q < d; < (1+ &,)8¢4q.

o | X;| =& A and | X, 11| = &|Bil.
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3.3.3 Proof of Claim [3.20

Proof of Claim [3.20L Consider any ¢ € R*. Take £, := £/2 and let n be
any sufficiently large integer. Consider any graph H; on |_|?:11 X; with H, €
Hi(h,n,e1,q). We must show that H; has a monochromatic subgraph H
on |_|f.f11 X; with H € H(h,n, ¢, q).

For each i € [h + 1], consider a random selection R; < E(X;, X;1) of
qn? edges. We claim that the random subgraph R := Uie[h+1] R; will have
the desired property R € H(h,n,e,q) with positive probability. Indeed, this
probability can be easily bounded using the hypergometric distribution (See
Lemma , keeping in mind that (3/2)gn* < e(X;, X;11) < 12gn®. This
establishes the existence of the desired subgraph H € H(h, n,¢,q). ]

3.4 Proof of the Existence Lemma

This section of the paper proves Lemma which asserts the existence of
a sparse graph G with certain properties. It suffices to prove the following

lemma.

Lemma 3.24. For all constants h,{ € Z* and any constant 6 € RT, there

exists a constant € € R™ such that, for any constant t € 7™,
q := 4(log n)?n =11/ (h+1) N := tn, and p = 4lq,

an instance G of the random graph G(N,p) asymptotically almost surely has
each of the following properties:

(i) Every vertex in G has degree at most (logn)3n/("+1),

(i) G is (h,n)-cluster free (see Definition[3.11)).
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(iii) G € Z(N,p) (see Definition[3.).

w) For all disjoint subsets Xq, Xo,..., Xp1 C , every (not nec-
w) For all disjoi b X1, X X, V(G
essarily induced) subgraphs H on |_|?j11 X; with H € H(h,n,e,q) is
(1 — 6, logn)-path abundant (see Definitions and :

In the statement of the previous lemma and elsewhere in this section,
we say that a number is a constant if it does not depend on n and that a
statement holds asymptotically almost surely (a.a.s.) if the probability the
statement is true approaches 1 as n — co.

The first subsection contains Claims [3.25] [3.26] and [3.29] which respec-
tively establish that properties (¢), (i7), and (77) in Lemma each hold
a.a.s. Notice that these properties do not depend upon €. The second and
most substantial subsection will establish a lemma (Lemma derived
from a result in [38]. In Subsection [3.4.3] Claim [3.42|will then use this lemma
to establish the existence of an e for which the property (iv) in Lemma [3.24]

holds a.a.s. These claims together constitute a proof of Lemma [3.24]

3.4.1 Properties (i), (i), and (¢4) in Lemma [3.24]

In this subsection, we prove Claims [3.25] [3.26] and [3.29, which correspond
to properties (i), (i), and (#i7) in Lemma

Claim 3.25. For any constants h,t,{ € Z*, let N := tn and let p :=
40 (logn)? n= V04D Then a.a.s. the random graph G(N,p) has mazimum

degree less than (logn)>n/(h+1).

Proof of Claim [3.25 Tt is a well-known fact that the random graph G(N, p)
a.a.s. has maximum degree less than 2pN for all p » (logn)/n, say. More-

over,
2pN = 2 - 4/(log n)Qn—1+1/(h+1) ~tn < (log n)Bnl/(h-&-l)‘
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Claim 3.26. For any constants h,t,{ € Z%*, let N := tn and let p :=
40(log n)>n~ /(D) Then a.a.s. the random graph G(N,p) is (h,n)-cluster

free.

Proof of Claim [3.26] Recall the definition of an (£, Z, h,log n)-cluster given
in Definition [3.1I} It follows that in the complete graph on N vertices,
each (L, Z, h,logn)-cluster is defined by:

e Specifying a size of L for L.
e Picking a set L of L pairs of vertices.
e Picking a set Z of vertices.

e For each {u,v} € L, picking a set of logn paths, each of which can be
specified by:
— Picking a vertex in Z to appear in the interior of the path.
— Picking h — 1 other vertices to appear in the interior of the path.
— Ordering the h internal vertices on the path.

It follows that in G(NV, p), the expected number of (£, Z, h,log n)-clusters
for £ = (1) and Z = [N] with [£] < n(logn) 9" and |Z| = h?|£| is bounded
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above for sufficiently large n by

n(logn)~6k 9 (logn)L
Z N N h2L - N s p(logn)(h+1)L
2\ )\wr h-1

n(logn)—6h

< Z N3h2L (hh+2LNh_1ph+1) (logn)L
L=1
n(logn) , I
< Z N3hL (hh+2n(log n)_ﬁh(nt)h_1(4€(log n)2)h+1n_h) ogn
L=1

—6h

(log n) 6h

_ Z NB3R2L (hh+2th L(40)" (log n)> 4h)(10gn)
L=1

n logn)L n 2 L 2
< Sy (o o <3 (L) <o gl
=] logn “— log (logn)logn | =7 (logn)len’
which goes to 0 as n — oo. Because we have that the expected number of for-

bidden (L, Z, h,log n)-clusters that G(N, p) contains goes to 0, a.a.s. G(N, p)
is (h, n)-cluster free. O

Before we state the next claim, we introduce a definition and an external

lemma that are needed in its proof.

Definition 3.27. We say that a graph G is (p, a)-uniform if

[e(Vi, Va) = pIVal[Val| < an/pIV(G)[VAIV2

for all disjoint sets Vi, Vo < V(G) such that 1 < |Vi| < |Va| < plV(G)]|VA].

Fact 3.28 (Lemma 3.8 in [44]). For every p = p(N), 0 < p < 1, a.a.s. the
random graph G(N, p) is (p, e*v/6)-uniform.

Claim 3.29. For any constants h,t,{ € Z* and N := tn, we have that for
p = 4l(logn)?n YD g a.s. the random graph G(N,p) is in Z(N,p).
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Proof of Claim [3.29. By Fact stated above, a.a.s. we have that

e(Vi, Vo) < p|Vi||Va| + €2V6 - A/DN|V4||Va),

for all disjoint sets Vi, Vo < V(G(N, p)) with 1 < [V;| < |Va| < pN|V;|. This
is exactly the first condition given in the definition of Z(N,p). The other
condition given in the definition of Z(V, p) states that a.a.s.

(1/2) - pIVil[Va| < e(V1, V2) < 2 p[WA[[V2]

for all disjoint sets Vi, Vo < V(G(N,p)) with |V4],|Va] = N(log N)~'. This
can easily be established by the union bound. O

3.4.2 Proof of Lemma

For the remainder of this subsection, let Xy, Xs, ..., Xj41 be fixed (labeled)
sets each of size n. The follow class of describes the graphs on |_|£L:+11 X; that

do not have the desired path abundance property.

" h+1
Definition 3.30. Let B(h,n,¢,q,0) be the set of all graphs B on | |7, X;
such that B € H(h,n,e,q) and B is not (1 — 9,1logn)-path abundant.

Lemma 3.31. For any constant h € Z and any constants 0, 3 € R™, there
exist constants €,ny € R such that that following holds. For any n = ny
and q := 4(logn)?n =YD e have that

2\ h+1
Bh,n,2.4,6) <Bq”2(n ) |

qn?

In Subsection [3.4.3] Lemma [3.31] will be used to establish Claim [3.42]
which states that the random graph G(N,p) a.a.s. has the property that it

does not contain any selection of disjoint vertex subsets X, Xs,..., X}, and
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subgraph B on |_|?:+11 X; with B € B(h,n,e,q,6). In other words, Claim m
implies that a.a.s. G(NN, p) has the property that for every section of disjoint
vertex subsets X, Xs,..., X1 and subgraph H on |_|?:+11 X;, the graph H
is (1 — d,logn)-path abundant if H € H(h,n,e,q), which is exactly prop-
erty (iv) in Lemma Keep in mind that although Claim concerns
any selection of disjoint vertex subsets X7, Xo,..., X1 in G(N, p), for the
time being in this section we are only counting the graphs in B(h,n, ¢, q,0)
on already determined vertex sets Xy, Xo, ..., Xy 1.

Essentially, we are trying to show that all but exponentially few graphs
on |_|§L:+11 X, in H(h,n,e,q) (see Definition have the property that almost
all pairs of vertices in X, are joined by logn transversal paths. The key
external lemma we will use establishes that all but exponentially few graphs
in H(h,n, &, q/4logn) (again see Definition have the property that most
pairs of vertices in X7 are connected by at least one path. This lemma will be
related to the result we are trying to prove by a double counting argument in
which a set F of 'bad families’ of graphs (see Definition is considered.
We now introduce not only the key external lemma and a related definition,
but also the standard Hypergeometic Bound. This will be followed by a proof
of Lemma B.311

Definition 3.32 (Path Dense). A graph H on on |_|£f11 X; with H € H(h,n)

%)

is (1 — n)-path dense if at least (1 — n)(}) pairs of vertices {u,v} € (7

are joined by at least one transversal path (transversal paths are defined in

Definition .

The next lemma is a corollary of Lemma 5.9 in [38|. (To obtain Fact
below, one sets the parameters in Lemma 5.9 as follows: { = h 4+ 2, § = B,

§=06/4,yv=25/4,v=273/2 q=4(0ogn)’*n YO+ m = gn?/(4logn) and

h+2

« mhtl)

noticing that n
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Fact 3.33. For any B, 0 € R™, there exists € € R™ so that the following holds.
For q = 4(logn)?n= '+ " .= qn?/(4logn), and sufficiently large n, the
total number of graphs E on |_|?:+11 X; with E € H(h,n,g,m/n?) that are
not (1 —9/2)-path dense is at most

N n2 h+1
m : 3.5
() (3.5)
The following is a well-known bound on the hypergeometic distribution

(see, e.g., Theorem 2.10 and Equation (2.12) in [45]).

Fact 3.34 (Hypergeometic Bound). Let Y be a set and Y be a subset of Y.
Suppose that M Y 1is a subset of size m chosen at random from'Y and let

the random wvariable X denote the number of elements in M N Y. Then

m|Y| { 2t2}
Pr ——— | <t]| =21—-2exp{——+¢-
(‘ Y] ) v

We will now prove Lemma [3.31]

Proof of Lemma|[3.31. Consider any h € Z™ and 3,0 € R™ and define ¢ :=
4(log n)?n~ 11/ We must show that there exists an € € R* such that for

sufficiently large n we have

2\ h+1
W%mﬁﬂﬁﬂ<m#(n) |

qn?

Making use of Fact |3.33] set

~ 2

N ~ ~ 2
Bi= g, E=eBIBG), =82, and m:= 2.

As mentioned before, the fundamental idea in our proof is to relate the

bound in Fact to |[B(h,n,e,q,d)| by counting the number of ‘bad fami-

lies,” which are defined as follows.
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Definition 3.35 (Bad Family). A set of graphs F = {E1, Es, ..., Eqiogn} 1S
called a bad family if both the following hold:

e Fvery E € F is a graph on |_|:.f11 X; with E € H(h,n,&,m/n?).
o Fewer than half of the graphs E € F are (1 — 6/2)-path dense.

Let F be the set of all bad families of graphs.

Proposition 3.36.

~ n2 htl 2logn n2 htl 2logn
e ()
m m
Proof of Proposition [3.36. To verify Proposition we use that for each F' €
F, there are 2logn graphs E € F in H(h,n,g,m/n?) that are not (1 — §/2)-

path dense. By Fact the number of graphs of this type is at most as
in (3.5). This readily yields the bound in Proposition [3.36] O

The next definition refers to H(h,n, 1, m/n?), which is the set of graphs
in #H(h,n) on | |'7]" X, in which all of the bipartite graph (X;, X;1) have m/n?
edges (i.e., the choice of ¢ = 1 in Definition imposes no uniformity re-

striction).

Definition 3.37 (Associated Family). For each graph B € B(h,n,¢,q,0),
we call the set of edge-disjoint graphs A = {E4, Es, ..., Eqlogn} an associated
family to B if both the following hold:

e Every E € A is a graph o on | |7} X; with E € H(h,n,1,m/n?).

e B — U{Llogn Ez

1=1

Since for each B € B(h,n,e,q,0) an associated family A is obtained by
partitioning the gn? edges in each of the h 4 1 bipartite graphs into 4logn
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classes of size m, it follows that each B is associated to

(. m)hH«mogn)!)-l

m,m,...,

associated families. Moreover, no two distinct graphs By, By € B(h,n, ¢, q,0)
will yield a common associated family. The next claim gives a lower bound
for the size of F and will be proved by establishing that, for each B €

B(h,n,e,q,0), half of its associated families are bad families.
Proposition 3.38.

2

1 n h+1
\F| = |B(h,n,e.q, 5)|§( 4 m) ((4logn)!)~*

m,m,...,

Proof of Proposition[3.38. As discussed before the proposition, it suffices to
show that at least half the associated families for any B € B(h,n,¢e,q,0)
are bad families. Hence, to prove Proposition [3.38] it suffices to show the

following two subpropositions.

Subproposition 3.39. For every B € B(h,n,e,q,9) and every associated
family A = {E1, Es, ..., Eqiogn}, fewer than half of the graphs E € A are (1—
d/2)-path dense.

Subproposition 3.40. For every B € B(h,n,¢e,q,9), at least half the asso-
ciated families A = {E4, Es, ..., Eqiogn} have the property that all E € A are
in H(h,n, g m/n?).

Proof of Subproposition [3.39 We prove the contrapositive by arguing that
if at least 2logn of the graphs E € A are (1 — §/2)-path dense, then B
is (1 — d,log n)-path abundant. To this end, fix a set of 2logn graphs E € A
that are (1 — 0/2)-path dense. For each of theses graphs, fix one transversal
path for each of the (1—0/2)(}) pairs of vertices {u, v} € ()gl) that are joined
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by traversal paths. Let P be the set of paths obtained by this process, so
that

Pl = (2logn)(1 — §/2) (Z) (3.6)

Also, observe that each pair of vertices {u, v} € ();’1) is joined by at most 2log n
paths in P. Now suppose that exactly a(g) pairs of vertices in ()gl) are joined

by at least logn transversal paths in P. It follows that
P| < a(g) 2logn + (1 — «) (Z) log n. (3.7)
From and ,
(2logn)(1 — §/2) (Z) < oz(Z)Qlogn +(1-a) (Z) logn,
which implies

2—-0<2a+ (1 —a),

giving that o > 1—4. This establishes that B is (1 —d,logn)-path abundant,
completing the proof of Subproposition [3.39 O

Proof of Subproposition [3.40 Consider any B € B(h,n,¢,q,0). For any X;
X, and )A(Z-H c X1 each of size |)A(Z-|,|)A(i+1| > &én > en, by definition

of B(h,n,¢e,q,0) we have that
‘€B(Xi,Xi+1) - Q|Xi||Xi+1|‘ < eq| Xi|| Xiga)

or equivalently

63()?17)?i+1) . q
4logn 4logn

q
4logn

| Xi|| Xia]| <€ | X[ Xiga | (3.8)
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Now if M is a random subgraph on m = gn?/(4logn) edges of the bipar-
tite graph Fp(X;, X;,1) on gn? edges, then the hypergeometric bound stated
in Lemma [3.34 (applied with Y = Ep(X;, X;41) and ¥ = Eg(X;, X;11))
gives that

o v X’La)/(\vi
eM(XiaXi—i-l) - GB( +1) d

\64logn

| Xl X (3.9)

4logn

holds with probability at least

2eq| X1 X 1|/41og n)? 6gn2
- 2expd— (eq|Xi]| Xit1|/4logn) Sl oepl S
qn? 8(log n)?

>1—2exp {—2_15671“#1} .

From the triangle equality applied to (3.8) and (3.9) (and fact that e+¢ =

£), this gives

Xi, Xiv1) — Xi|| Xiz1]] < Xi||X; 3.10
(i Riin) = Sl Rel| < B Rl Rl (10
with probability at least

1 —2exp {—2"'bp! /DY (3.11)

Now consider a random partition of B into an associated family
A= {E17 E27 R 7E4logn}-

The associated family A will have the desired property that all of the graphs E €
A are in H(h,n,& m/n*) = H(h,n, &, q/(4logn)) if inequality is satis-
fied for every choice of M = E; for j € [4logn], every choice of i € [h + 1],
and every choice of )A(Z c X, and )A(Hl c X;y1. It follows from and the
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union bound that this will occur with probability at least
1— (4logn) - (h+1)-2"- 2" - 2exp {2 1ebp!+1/(+DY

which tends to 1 as n — co. This establishes that a random partition of B
into an associated family A = {E}, Es, ..., Eqio5,} will have the property that
all of the graphs E € F are in H(h,n,&, m/n?) with probability at least 1/2
for sufficiently large n. It follows that at least half of the associated families
A ={E1, Es,...,Eqogn} to any B € B(h,n,¢e,q,d) have the property that
all of the graphs E € F are in H(h,n, &, m/n?), which completes the proof of

Subproposition [3.40] ]
Hence, we have proved Proposition [3.38] ]

We now return to the proof of Lemma [3.31] recalling that we would like

to show

2\ h+1
Bh,n,2.4,5) <Bq”2(n ) |

qn?
Propositions |3.38 and which we have already established, together give
that

|B(h,n,e,q,0)|

R o\ h41\ 2logn o\ h+1\ 2logn 9 —(h+1)
< <ﬁm(” ) ) <<n > > .2( an ) (4logn)!.
m m m,m,...,m

Thus to establish Lemma [3.31] it suffices to prove the following.

Proposition 3.41.

R 2\ 4(h+1)logn 2 —(h+1) 2\ h+1
62’”1%”(") -2( an ) (4logn)! < 5@2(”2) |
m m,m,...,m qn
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Proof of Proposition [3.41. Keeping in mind that

an? — A(lognym, B — r9-20m+) @«%b,

we see that

R 2\ 4(h+1)logn 2 —(h+1)

52mlogn(n > -2< m ) - (4logn)!
m m,m,...,m

mlogn m4(h+1)logn o\ —qn?(h+1)
B2\ Zmloen sp20N ™ qn

2 4(h+1)mlogn qn?(h+1)
— g’ (E) ) (me) - (4logn)!

9m W
s [(n?e me an*(h+1)
- n2 gn®(h+1) o2 gn®(h+1)
< e (W) : (§> 2(4logn)!

2 \ ¢n?(h+1) g\ h+l
< Bqn2 n < Ban n .
qn® qn®

This completes the proof of Lemma |3.31 O

3.4.3 Property (iv) in Lemma

In this subsection, we will prove Claim which correspond to prop-
erty (iv) in Lemma [3.24]

Claim 3.42. For all constants h,{ € Z" and § € R, there exists a con-

stant € € Rt such that the following holds. For any constant t € 7+,
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q := 4(log n)?n =11/ (h+1), N := tn, and p = 4lq,

the random graph G(N,p) a.a.s. has the following property. For any selection
of disjoint subsets X1, Xo, ..., X1 € V(G), every (not necessarily induced)
subgraphs H on |_|?+11 X; with H € H(h,n,¢e,q) is (1—0,logn)-path abundant.

Proof. Consider any h,f € Z* and § € RT. Let
B = (246)="FD),

By Lemma [3.31] we may now fix
e := B3 (h, 5, 3) and ng := niB3(h, 8, B),

and without loss of generality assume that ¢ < 1/2. Now consider any
integer t € Z%.

To show that a.a.s. every subgraph H € H(h,n, e, q) appearing in G(N, p)
is (1 —0,logn)-path abundant, as we previously remarked, it suffices to show
that a.a.s. G(N,p) does not contain disjoint subsets X1, Xs,..., X1
V(G) and a subgraph B on |_|?j11 X; with B € B(h,n,e,q,0). By Lemmam7
for all n = ny, the expected total number of subgraphs B € B(h,n,¢e,q,0)
appearing in G(N, p) over all choices of subsets is bounded above by

2\ (h+1)
Jitw g (1))

qn?

((h iv 1)n

2 gn?(h+1)
< N(h—i—l)n 6qn2 en qn?(h+1)
h ' gn?(h + 1) P

BY D¢ (40q) qn®(h+1)
g(h +1) >
< 2(h+1)nlogN . (51/(h+1)64€)qn2(h+1)

n2
< 2(h+1)nlogtn . <1>(1
~ 2 Y

< 2(h+1)nlogN . (
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which tends to 0 as n — oo. Therefore the probability that G(N,p) con-
tains disjoint vertex subsets X, Xs,..., X1 < V(G) and a subgraph B
on |_|?;r11 X; with B € B(h,n,¢e,q,9) also tends to 0 as n — oo, completing
the proof of Claim O

3.5 Proof of the Embedding Lemma

In this section, we prove Lemma [3.14] which states that for certain parame-
ters every J € J(h,n,d) (see Definition is universal to the set of graphs
{S®  1V(8)| = n(logn)~™ and A(S) < d}. The proof will be divided into
two subsections, which are preceded by the following sketch of the proof.

Consider any graph J € J(h,n,d) on |_|?j11 X; and any graph S with
[V (S)| = n(logn)~™ and A(S) < d. Our aim will be to find a mapping ¢ :
V(S) — X such that each edge uv € F(S) can be paired with a transversal
path (see Definition between ¢(u) and ¢(v). Observe that if the set of
transversal paths selected are internally vertex-disjoint, this will correspond
to an embedding of the subdivided graph S into J. Roughly speaking,
this will be accomplished by first finding an embedding ¢ : V(S) — X; and
associating each edge wv € E(S) with not one associated transversal path,
but a family of many transversal paths between ¢(u) and ¢(v). This will be
done so that all the paths in all the associated families are edge-disjoint. We
then will select one path from each associated family to obtain the desired
collection of internally vertex-disjoint paths.

We will now elaborate upon this sketch. For the graph J, we say that
two vertices u,v € X are (logn)-path connected if u and v are joined by
at least logn pairwise edge-disjoint transversal paths in J. Since J is
(1 — 0,log n)-path abundant (see Definition , at least (1 —6)(3) pairs
of vertices in X; are (logn)-path connected (see Definition [3.10]). Define an
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auxiliary graph A by
V(A):=X; and FE(A):={uv:u and v are (logn)-path connected in J}.

For each uv € E(A), let 11, be a fixed set of logn pairwise edge-disjoint
transversal paths in J with endpoints v and v. We say the distinct edges
e1,e9 € E(A) are incompatible if there exist paths w,, € II., and 7, € Il,,
such that m., and 7., have an edge in common. Define the incompatibility
function f: E(A) — P(E(A)) by

f(e1) := {e2 : e; and ey are incompatible}.

Given this set-up, the proof has two steps:

e Find a graph embedding ¢: S — A such that ¢(e;) ¢ f(o(e2)) for
every ey, es € E(S).

e For each edge e € E(S), select a path my) € Iy so that for all
pairs of edges e1,e; € E(S), the paths my,) and 7y, are internally

vertex-disjoint.

The key to the first of these two steps is the following lemma. Although
stated in a general context, when we apply the lemma the function f will be

the incompatibility function defined above.

Lemma 3.43. Let d and n be positive integers. Let A be a graph such that:
(i) [V(A)] = n.
(ii) Every vertex in A has degree at least (1 — 1/6d)n.

Let S be a graph such that:

(iii) |V (S)] < n/6.
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(iv) Every vertex in S has degree at most d.

Let f : E(A) — P(E(A)) be a function that maps each edge e € E(A) to a
set of edges f(e) < E(A) such that:

(v) |f(e)] <n/63d* for all e € E(A).
(vi) e1 € f(ea) if and only if es € f(eq).
(vii) e & f(e) for all e € E(A).

Then there is an embedding ¢: S — A such that
O(E(S)) n f(o(E(S))) = &, (3.12)

where f(H(E(S))) := Ueeg(msy f(€)-

To select a system of internally vertex-disjoint paths 7y € Il for the
edges e € S, we will make use of J being (h, n)-cluster free, that for distinct
edges e1,e3 € S the families my(,) and 7y, consist of pairwise edge-disjoint

paths, and the following result of Aharoni and Haxell.

Fact 3.44 ( [2|). Let X be a finite set and let 1:[1, . ,ﬁm c ()}f) be families
of h-subsets of X. Suppose that, for every non-empty L < [m], there are
more than h(|L| — 1) pairwise disjoint h-sets in | J,; [I,. Then there exist
Tye.., T with 7; € P for every i € [m] such that 7, n7; = & for every
distinct 1,5 € [m]. We call {7; : i € [m]} a system of disjoint representatives
for {I1; : i € [m]}.

The remaining part of this section is divided into two subsections. The

first subsection contains a proof of Lemma |3.43| and the second subsection
contains a proof of Lemma based upon Lemma [3.43| and Fact
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3.5.1 Proof of Lemma

Proof. Let n, d, A, S, and f be as in the statement of Lemma To prove
the lemma, we introduce some terminology and then present an embedding

algorithm.

Definition 3.45 (Dangerous Vertex).
o We call edges e; and es in E(A) incompatible if e; € f(es).

o We call a pair of incident edges xy,yz € E(A) that are incompatible
a useless P3. We call y the center vertex of the useless Py and the

pair x, z the end vertices of the useless Ps.

V(A)
2

the end vertices of at least n/6 (g) useless Ps.

o We call a pair of vertices {u,v} € ( ) a dangerous pair if u,v are

o We call a verter v e V(A) a dangerous vertex if it is in at least n/6d>

dangerous pairs.

We now work to obtain an upper bound for the number of dangerous
vertices in A. Recalling that each edge is incompatible with at most n/63d*

other edges, the number of useless Pj is at most

n mn < n3
6304 \2) ~ 2163g4"

It follows that the number of dangerous pairs of vertices is at most

ns 6(3) n?
NG S e

Finally, the number of dangerous vertices is at most

n?  6d*> n
20— < 3.13
2262d2 n 12 ( )
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Set Jy to be the set of dangerous vertices in A.

Definition 3.46 (Guilty Vertex). Suppose S” is an induced subgraph of S, A’
is an induced subgraph of A, and ¢ is an embedding of the graph S’ into A’.

o We call e € E(A’) a forbidden edge if e € f(¢/'(E(S"))).

o We will call a verter v € ¢'(V(S")) guilty by association, or sim-

ply guilty, if v is incident to at least n/6d forbidden edges.

That is, a forbidden edge in A is incompatible with an edge that has
already been used in the embedding, and a vertex is guilty by association if

it is incident to too many forbidden edges.

Definition 3.47 (Safe and Legal Embeddings). Suppose S’ is an induced
subgraph of S, the graph A’ is an induced subgraph of the graph A, and ¢' is
an embedding of the graph S’ into the graph A’.

o We say that the embedding ¢' is legal if ¢'(E(S")) n f(¢'(E(S")) = &.

o We say vertices sy, 89 in S are Ps-connected if sqv,so0 € E(S) for

some v e V(S).

o We say that the embedding ¢’ is safe if none of the pairs {¢'(s1), ¢'(s2)}
of vertices in A is dangerous for vertices si,s, € V(S') that are Ps-

connected in S.

That is, an embedding is legal if it has not used any pair of incom-
patible edges, and an embedding is safe if for each s € S and any pair of
vertices si, sy € N(s), the embedding ¢’ has not mapped s; and s, onto a
dangerous pair of vertices.

Before formally stating our embedding algorithm, we present the main
idea, which is as follows. We keep a set J of ‘jailed’ vertices. We initially

send all the dangerous vertices to jail. We then construct a legal and safe
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partial embedding ¢’ of an induced subgraph S’ < S into A\J by sequen-
tially embedding vertices. As edges are added to the embedding, however,
the number of forbidden edges may increase and already embedded vertices
may become guilty by association. This is problematic because guilty ver-
tices may prevent the embedding from being extended in a legal manner
later. To resolve this, whenever guilty vertices appear in A’, we send them to
jail and remove them from the embedding. (Therefore, the domain S’ of the
partial embedding ¢’ may decrease in size as the algorithm progresses.) We
will show that not too many vertices end up in jail and that when no guilty
vertices are present, a legal and safe embedding can always be augmented to

form a larger legal and safe embedding.

Algorithm: Initially take
S =, J = Jy, A = A\J,

and set ¢': S — A’ to be the empty function. As we proceed through the
algorithm, we will update these sets and this function.

STEP 1: If there exists a vertex v € ¢'(V(S’)) that is guilty in the
current embedding, replace J by J U {v}, replace S’ by S"\{¢'~!(v)}, update
the function ¢' by removing the pair (¢'~*(v),v), update A’ to A\J, and
repeat STEP 1. Otherwise, go to STEP 2.

STEP 2: Arbitrarily pick a vertex s € V(S)\V(S’) and extend ¢’ to s by
mapping s to some vertex v € V(A )\¢(V (S")) so that the new embedding
is both legal and safe. Also, replace S’ by S’ U {s} and add (s,v) to ¢
If S’ = S, terminate the algorithm; otherwise, go to STEP 1.

We make the following observations about this algorithm:

e Once a vertex is placed into J, it will always remain in J.
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e The set of dangerous pairs and the set of dangerous vertices are both

fixed from the beginning and do not change.

e Extending an embedding by adding a new vertex (and up to d edges)
may make a vertex v € ¢'(V(5")) guilty.

o At the start of STEP 2, there are no guilty vertices and the current
embedding is both legal and safe.

It remains to show that STEP 2 is always possible and that the algorithm
will successfully terminate. This will be accomplished by the following two

facts.

Proposition 3.48. The size of the set J will never reach n/6.

Proof of Proposition[3.48. Towards contradiction, consider the first moment
in the execution of the algorithm at which |J| = n/6. Let B be the set of
edges that were forbidden at any point in time up to this stopping point.
That is, B is the set of edges that appeared in f(¢'(E(S’)) for any partial
embedding ¢’ the algorithm considered over its run time. We will reach a
contradiction by considering the size of B.

To obtain an upper bound for the size of B, notice that whenever a vertex
was added to the embedding, up to d edges were added to the embedding as
well, and thus at most d - n/(63d*) forbidden edges were added to B for each

vertex embedded. Since the number of vertices added to the embedding is

at most
n o n n
J| = |J S|l< =+ =< -,
=1l + IS < T+ % < %
it follows that )
n n n
Bl<g d m5 < Gx (3.14)

We now obtain a lower bound for the size of B. Notice that each guilty

vertex that was added to J was incident to at least n/6d forbidden edges
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in A’. Moreover, since vertices in J remain in J, this set of n/6d forbidden
edges will never again appear in A’. This gives
2

n n n n n
Bl = (|J| - =z -5 = 1
Bl = (1= 10l) - 5 (6 12) 6d  72d (3.15)

Equalities (3.14) and (3.15)) yield the contradiction

n? n?
— < |B| < —,
72d 1B 63d3
completing the proof of Proposition [3.48 O

Proposition 3.49. STEP 2 is always possible.

Proof of Proposition[3.49. Arbitrarily pick a vertex s € V(S)\V(5') to ex-
tend the embedding to. We must find a vertex v € A’ so that extending ¢’
to include the pair (s,v) will produce an embedding that is both legal and
safe. We will now list six cases in which such a vertex v € A will not produce
an embedding that is both legal and safe. Cases 1, 2, and 3 correspond to
the map not being an embedding into A’; Case 4 corresponds to the em-
bedding using an edge incompatible with an edge already used (and thus
not being legal); Case 5 corresponds to the embedding using two new edges
that are incompatible with each other (and thus not being legal); and Case 6

corresponds to the embedding not being safe.
1. The vertex v belongs to ¢'(S").
2. The vertex v belongs to J.
3. For some s’ € S" with ss’ € E(S), the edge ¢(s')v is not in E(A).

4. For some s € S’ with ss’ € E(S) and ¢ € E(S’), the edge ¢(s)v is
in f(e(e)) -
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5. For some s1, 55 € S’ with ssq, sso € E(S), the edges ¢(s1)v and ¢(s2)v

are incompatible.

6. For some s’ € S’ that is Ps-connected in S to s, the pair {¢/(s), v} is

dangerous.

Observe that if none of (1)—(6) holds, then extending ¢ to include (s, v)
will produce an embedding that is both legal and safe.

The number of vertices in A in Cases 1 and 2 is at most

n n _2n
Sl+l<(3-1)+2<= -1
Sl+1l< (5-1) + 5 <2
To count the number of vertices in A in Case 3, observe that s has at most d
neighbors in S’. Hence, there are at most d choices for s’. Also, from hy-
pothesis each s’ is not adjacent to at most n/6d vertices. Hence, the number

of vertices in Case 3 at most

n

d-— < —.
6d 6

Similarly, to count the number of vertices in A in Case 4, again recall that s

has at most d neighbors in S’. Also for each such neighbor ', it follows from

the fact that ¢'(s') is not guilty by association that ¢(s’) is incident to at

most n/6d forbidden edges. Hence, the total number of vertices in Case 4 is

at most
n n

d - 6d_- 6
To count the number of vertices in A in Case 5, observe that there are are
at most (;l) choices for s; and s, and for any choice of s, s, since the
embedding is safe, there are at most n/6(g) vertices v that are part of a

useless P; with ¢'(s1) and ¢'(sy). Hence the total number of vertices in
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Case 5 is at most
(d) n n
P <
2 6(2) 6

Finally, to count the number of vertices that are in Case 6, observe that
in the graph S, the vertex s is distance two away from at most d? other
vertices. Since each of the images of these vertices is not dangerous, the
images are each in at most n/6d*> dangerous pairs. Hence, the total number

of vertices v € A that are in Case 6 is at most

;. m 7
d 6d2 6

In conclusion, there must be at least

2
P (L B
6 6

vertices v € A such that the map obtained by extending ¢’ to include (s,v)

will produce both a legal and safe embedding. This completes the proof of

Proposition [3.49] O
This concludes the proof of Lemma [3.43] O

3.5.2 Proof of Lemma

Consider any pair of positive integers h and d. We will make use of the

following simple fact.

Fact 3.50. For every v > 0 there exist 0 > 0 and ng such that for every
integer n = ng the following holds. If A is a graph on n vertices with at least
(1—10)(3) edges, then there exists a subgraph A with |V(A)] = (1 —v)n and

with minimum degree at most (1 — v)|V(A)].

With v := 1/6d, choose ¢ and ng in accordance with the previous fact.
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Choose n3 = ng so that the second inequality in below is satisfied for
all n = nz. Now consider any n > ng, any J € J(h,n,d), and any graph S
with [V (9)| = n(logn)~™ and A(S) < d. We must show that S® < J.

As at the beginning of Section [3.5] define the auxiliary graph A by

V(A):=X; and FE(A):={uv:u and v are (logn)-path connected in J}.

Let A be a subgraph of A on n vertices such that n = n/2 and every vertex
in A has degree at least (1 — 1/6d)A, guaranteed by Fact [3.50] Also, for

each uv € E(ﬁ), let I1,, be a fixed set of logn transversal paths between u
and v in J that are pairwise edge-disjoint. As before, we say that a pair of
distinct edges eq, e € E(A) are incompatible if there exist paths 7, € Il

and T, € Il., such that 7., and 7., have an edge in common and define
f(e1) := {e2 : e; and e are incompatable}.

We will use Lemma m to embed S into A. With the set-up above,
all the hypotheses other than (v) in Lemma are clearly satisfied. To
verify (v), observe that, since J has maximum degree (logn)3n'/("*1) the

number of transversal paths any edge e € F(J) can be in is at most
((log n)3nl/(h+1))h < (logn)3rnt/(+D), (3.16)

Moreover, since for every e € E(A) the family TI. has exactly logn edge-
disjoint paths,

n/2

f(e) < (logn) - (h + 1) - (log n)*hph/th+1) < B’

(3.17)

where the second inequality follows from n > n3. Thus, by Lemma [3.43
there exists an embedding ¢ of S into A such that the image of E(S) under ¢
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contains no pair of incompatible edges.

Finally, to select a system of internally pairwise vertex-disjoint paths from
the families {II,) : e € £(S)}, the result of Aharoni and Haxell (Fact
will be used. Take X := U?;l X;, and set

I, = {V(r) " X : 7 eIl},

so that each element in ﬁe is a set of vertices in X that corresponds to the
interior of a path in II,. Thus a system of disjoint representatives for the set
of families {ﬁ¢(e) . e € F(S)} corresponds to an embedding of S™) into .J.
Clearly,

{Tlye : e € B(S)}| = |E(S)| < dn(logn)™" < n(logn)™. (3.18)

We claim that the hypothesis of Fact holds. Towards contradiction,
assume that there exists a set £ of L < n(logn) ¢ edges in ¢(E(S)) < A such
that there are at most h(L — 1) pairwise disjoint h-sets in | J,., I,. Let I be
a maximum set of pairwise disjoint h-sets in ., ﬁl. Let Z be the vertices
in I'. Observe

|Z| < (L —1)-h < h2L.

However, one may check that | J,..II; is an (£, Z, h,log n)-cluster of paths
in the graph J. This contradicts the fact that J is (h,n)-cluster free (prop-
erty (iv) in Definition [3.13). This contradiction establishes that the hypoth-
esis of the Aharoni-Haxell theorem holds, and therefore the set of families
{ﬁ¢(e) e € E(S)} has a set of disjoint representatives, yielding an embedding
of S™ into J. This completes the proof of Lemma m
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3.6 Proof of Theorem 3.3

For brevity, we shall refer to graphs on n vertices that have maximum degree
at most d as (n,d)-graphs. In this section, we show that if H is a graph
that contains a copy of S™ for every (n,d)-graph S, then H has at least

nl+1/(h+1)=2/d(h+1)+0(1) edges. Hence, for fixed integers h > 1 and d > 2,
USR(h,d,1,n) = p! M/ (htD=2/dh+)+o(),

which is the statement in Theorem B3l

The proof is based upon the following external lemma.

Fact 3.51 ( [10], Corollary 11.4.17, p. 52). Let d = 2 be a fized integer and
suppose that dn is even. The number Lq(n) of d-regular graphs on n labeled
vertices satisfies
\f —(d?—-1)/ d*? dn/2
La(n) = (1 + o(1))v2e g )
Proof of Theorem 3.5 Let L<y4(n) be the number of labeled (n,d)-graphs

(recall that (n,d)-graphs have maximum degree at most d). Fact [3.51] gives
that, for any fixed d > 2,

Lgd(n) > 2(d/2+o(1))nlogn. (319)

We now let Ugy4(n) be the number of unlabeled (n,d)-graphs, and let Ug;) (n)
be the number of unlabeled h-subdivisions of such graphs.
We claim that
UY) (n) = 2@/2-1+e(D)nlogn (3.20)
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Indeed, first observe that, from (3.19)), we have

i . 2(d/2+o(1))nlogn > i . 2(d/2+o(1))nlogn > 2(d/271+0(1))nlogn.

Usaln) = n! nn

Second, observe that if two distinct unlabeled (n,d)-graphs S; and S, both
have each edge subdivided A times, then the resulting graphs SYL) and Sgh)
are distinct unlabeled graphs. Together, these observations establish .

To complete the proof of Theorem we use the fact that if H is a
graph on m edges that contains a copy of every unlabeled h-subdivision of

(n, d)-graphs, then it must be the case that

nd(h+1)/2
(]

m) > Ug;)(n) > 2(d/271+o(1))n10gn. (321)
i=0

If m < nd(h + 1), then the left hand side of (3.2I) is at most 2m4(A+1),
which yields a contradiction to the inequality in (3.21)). We therefore suppose
that m > nd(h + 1). Then, using that every binomial coefficient in (3.21)) is

at most (nd(hm+1)/2) and that (7) < (en/a)", we have
nd(h+1)/2 nd(h+1)/2
m 1 em
<-ndh+1) | ————= . 3.22
; (2) gndih 1) (nd(h+1)/2) (3.22)

From equations (3.21]) and (3.22)), we have

€em

1
gndlh+1)- (nd(h 1)

or, equivalently,

nd(h+1)/2
) > 2(d/271+o(1))nlogn’

(m) nd(h+1)/2 > 2(d/2_1+0(1))n log n
n

This implies that
m > 9(1/(h+1)=2/((h+1)d)+o(1)) logn
n

?
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giving the desired bound of

m > 1/ (h+1)=2/((h+1)d)+o(1)

3.7 Proof Sketch of Theorem

To prove Theorem we must show that for any integers h and d, there
exists a constant ¢ 4 such that the following holds. If @) is a graph of max-
imum degree at most d on ¢ vertices with the property that every pair of
vertices of degree greater than 2 are distance at least h + 1 apart, then
7(G) < epa(log q)zohqlﬂ/(hﬂ)'

To accomplish this, we first define the ‘super subdivision’ of a graph. We
then show that for any graph @ as in Theorem [3.4] there exists a graph S
such that the super subdivision of S contains () as a subgraph. It will then
suffice to demonstrate how our main Theorem concerning subdivisions

can be extended to super subdivisions.

Definition 3.52 (Super Subdivision S®)). Give a graph S and integers h
and d, we define the super subdivision S™ of S to be the graph obtained by
replacing each edge wv in S by a system of d(h + 1) paths from u to v, of
which ezactly d paths have length k for each k€ {h+ 1,h +2,...,2h + 1}.

Proposition 3.53. Let Q be any graph with |V(Q)| = q and A(Q) < d with
the property that every two vertices of degree greater than 2 are distance at
least h+1 apart. Then there exists a graph S with |V (S)| < ¢ and A(S) < d
such that Q < S™),

Proof of Proposition[3.53, For vertices z1,z2 € Q, let distg(x1,22) be the
minimum number of edges in a path with endpoints x; and x,. Let X be a

maximal subset of vertices in () that satisfies both of the following properties:
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o All vertices of degree greater than 2 are contained in X.
o All pairs of vertices 1, x5 € X satisty distg(z1,z2) > h.

Now construct a graph S by taking V(.S) = X and joining vertices x1, 25 €
S if distg(z1,x2) < 2h 4+ 2. It follows that A(S) < A(Q) and that @ <
S, O

In view of Proposition to establish Theorem [3.4) it suffices to estab-

lish the following lemma.

Lemma 3.54. For any h,d € 7", there exists a constant cpq such that for
every graph S with |V (S)| = s and A(S) < d,

7/:(5(*)) < Ch,d(10g8)20h31+1/(h+1).

To prove Lemma [3.54] we consider another way of obtaining the super
subdivision S*) from the graph S. Begin by fixing a proper edge coloring
X : E(S) — [d + 1] which exists since §(S) < d. For integers i € [d + 1],
je[d),and ke {h+1,h+2,...,2h + 1}, let M, ;) := x *(4); it follows that
M, ;= M, for all j,j € |d] and k, k"€ {h+1,h+2,...,2h + 1}. Define

the multiset of matchings
M:={Mp:ield+1], jeld], ke {h+1,h+2,...,2h + 1}}.

We construct S®) on V(S) by the following procedure. For every M, ;) € M
and every xy € M, j, add a path of length £ between x and y. Consequently,
for any xy € F(S), there are d paths of length k between x and y for each k €
{h+1,h+2,...,2h + 1}. It follows that the resulting graph is the super
subdivision S of S.

Since the full proof is notationally cumbersome, we first demonstrate

the main ideas in the context of two propositions that allows for simpler
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notation. These propositions consider the simpler case where the set M of

multiple matchings is replaced by a pair of matchings.

Definition 3.55 (S(MuMzkvk2)y ' Let S be a graph and My, My = E(S) be
not necessarily disjoint matchings with My v My = E(S). Let ky and ko be
integers. Define SMuM2kuk2) 1o pe the graph on V(S) obtained by adding
a path of length ki between x and y for every edge xy € My, and a path of
length ko between x and y for every edge xy € My. (Since My and My need
not be disjoint, some edges in E(S) may be replaced by two paths.)

Proposition 3.56. For any h € Z*, there exists a constant ¢, such that if S
is a graph with |V (S)| = s and M, and My are matchings such that My oMy =
E(S), then

A(S(M1,M2,h+1,h+2))

= )20 g11/(h+1),

< ep(log s

Proof of Proposition[3.56, We will make three claims that are similar to the
Coloring Lemma, Existence Lemma, and Embedding Lemma used in the
proof of Theorem [3.2] Before stating the first of these claims, we introduce

a couple definitions. The second of which is demonstrated in Figure [3.3

Definition 3.57 (Chi1p42). Let Cryrnyo be the graph on 2h + 2 vertices

obtained from the cycle Cpiq with cyclically ordered vertices x1, 23, ..., 2} 4
and a copy of the cycle Chio with cyclically ordered vertices a3, a3, ..., 237,

and association x, 1= xi = x3.

Definition 3.58 (Incomplete Blowup of Cj,i1 442). A incomplete blowup H
j
of n vertices and each edge by a (not necessarily complete) bipartite graph.

Also, define H' := H|Uaepnsn Xy ] and H? := H[Unepni2 Xal-

of Ch11.h+2 @5 obtained by replacing each vertex x' with a independent set X;

Recall that in the proof of Theorem [3.2] the class H(h, n, ¢, q) was the set
of incomplete blowups of Cj,; in which the bipartite graph had exactly gn?
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X

O
Q. 0O %
O O O

X2
X3 X2 !
Figure 3.3: An incomplete blowup of Cj41 42 for h = 3.

edges and were (g, ¢)-regular (as in Definition [3.21)). We now define an anal-

ogous concept.

Definition 3.59. Let H*(h,n, e, q) be the set of all graphs that are incomplete
blowup of Chi1pre where every edge in Chiipi1 corresponds to an (g,q)-

reqular bipartite graph with exactly qn® edges.
The next claim is analogous to the Coloring Lemma.

Claim 3.60. For any e € R and h,{ € Z*, there exist t,n, € Z such that

for alln = nq,
q := 4(log n)?n =11/ 1) N :=tn, and p = 4lq,

every graph G € Z(N,p) has the following property. Any (-coloring of the
edges of G yields a monochromatic subgraph H € H*(h,n,e,q).

Proof of Claim[3.60, In the proof of the Coloring Lemma (Lemma [3.9), we
defined a cluster graph that had vertices corresponding to the vertex classes
obtained from an application of the Regularity Lemma and edges correspond-
ing to pairs that exhibited regularity. The edges of the cluster graph were /(-

colored by the majority color in the corresponding partition. We previously
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argued that the cluster graph contained a monochromatic clique of size h+ 1,
and hence a copy of C},;1). By taking ¢ sufficiently larger and an appropriate
modification of the parameters in the proof, we can instead find a monochro-
matic clique of size 2h + 2, and hence a copy of Cj4144+2. This will yield a

monochromatic H € H*(h,n, ¢, q). O

Our next claim will be analogous to the Existence Lemma. To state it,
we first need a modified notion of path abundance.
Definition 3.61 (Transversal Paths for H*). Let H be a partial blowup
of C(h+1,h+2-

e For a pair of vertices u,v € X{, a transversal path between u and v

in H' is the same as described in Definition |3.10,

o For a pair of vertices u € X and v € X} ,, a transversal path be-
tween u and v in H? is a path P of length h+ 1 with exactly one vertex
in X? for each i€ [h+ 2].

Definition 3.62 (Path Abundance for H*). Let H be a partial blowup
of Chi1pta. We say that the graph H is (1 — 6,logn)-path abundant if
both of the following hold:

o The graph H' is path abundant (as defined in Definition .

o The graph H?* has the property that for at least (1 — 6)n® pairs of ver-
tices u € X{ and v € X}, there are at least logn transversal paths

between u and v that are pairwise edge-disjoint (as defined in Defini-
tion m

We now state the next claim that is analogous to the Existence Lemma.

Claim 3.63. For all h,l € 7 and 6 € R, there exists ¢ € Rt such that for
any t € Z there exists ny € Z such that the following holds. For any n = ns

and
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q := 4(log n)?n =11/ 1) N := tn, and p = 4lq,

there exists a graph G on N wvertices satisfying all of the following properties:
(i) Every vertex in G has degree at most (logn)3n/("+1),
(i) G is (h,n)-cluster free.

(11i)) G € Z(N,p).

(iv) Every (not necessarily induced) subgraph H € H*(h,n,e,q) of G is
(1 — 6, logn)-path abundant.

Proof of Claim [5.65 Properties (i)-(iii) are the same as in the Existence
Lemma and the modified notion of path abundance in Property (iv) is proved

analogously. O

After stating one more definition, we state a claim analogous to the Em-

bedding Lemma.
Definition 3.64. Let J*(h,n,0) be the set of all graphs J that are partial
blowups of Chi1,n42 such that

(i) Every vertex in J has degree at most (logn)>n'/(+1),

(ii) J is (n,h)-cluster free (as defined in Definition :

(iii) J is (1 — &,logn)-path abundant (as defined in Definition [3.63).

(iv) There is a matching of size (1 — 0)n between Xj ., and X7.

As in the proof of Theorem [3.2] the Coloring Lemma and Existence
Lemma together yield a monochromatic H € J*(h,n,J). Note that the ad-
ditional Property (iv) follows from the fact that H € H*(h,n, e, q) and hence
the bipartite graph of H induced between X7 , and X7 is (e, p)-regular. The

next claim in analogous to the Embedding Lemma.
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Claim 3.65. For all h € Z™, there exist 6 € Rt and nz € Z* such that for
all n = ng the following holds. FEvery graph H € J*(h,n,d) is universal to
the set of graphs

QML Mo h+1,h4+2) . |1/ (G)[ = n }

{ V()] (logn)™

Proof of Claim [3.65 The proof of this claim follows the lines of the argument
used to establish the Embedding Lemma where S was embedded into J €
J(h,n,0). Recall that the main steps in this argument were:

e Considering an auxiliary graph A with vertex set X; where vertices x,y €
X were joined if z and y were path connected (i.e. if there was a set I1,,,,

of log n edge-disjoint transversal paths between x and y).

e Defining an incompatibility function f : E(A) — P(E(A)) where each

edge was incomparable with certain other edges.
e Finding an embedding ¢ of S into A such that f(¢(S)) N ¢(S) = &.

e Showing that for every edge zy € ¢(S), a path m,, € Il,, could be
selected so that the set of paths selected {m,, : zy € ¢(S)} were pairwise
internally disjoint. This corresponded to embedding S™ into J.

The proof of Claim [3.65]is similar, so we only mention where it differs. We
begin by fixing a matching I' between X7, and X; of size at least (1 — d)n.
For a vertex v € X1, denote the vertex it is matched to in X7, under T by 0.
Now fix an ordering vy, vs, ..., v, of the vertices in X;. Given this setup, we

introduce the following definition.

Definition 3.66. (Path Linked) For i < j, the vertices v;,v; € X; are path
linked in H? (see Deﬁnition if v; and V; are path connected (i.e. if there

exists a set 11;; of logn edge-disjoint transversal paths between v; and ;).
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If v; is not incident to an edge in T, then v; is not defined and v; and v; are

not path linked. The concept is illustrated in Figure|5./).

Figure 3.4: Vertices v;,v; € X7 are path linked in H? if there are many
edge-disjoint paths between v; and ;.

Observe that since most pairs of vertices v; € X; and v; € X7, , are path
connected, most pairs of vertices v;, v; € X are path linked. Now, for all path
linked pairs v; € X; and v; € X, fix a set H?j of log n edge-disjoint transversal
paths between v; and 0; in H?. Also, as in the original proof, fix a set Hilj
of edge-disjoint transversal paths in H! for all path linked pairs v; € X,
and v; € X;. The proof now continues to follow the lines of the argument

used to establish the Embedding Lemma with the following modifications:

e Define A by joining two vertices if and only if they are path connected
in H' and path linked in H2. Observe that, as before, AUX will be an

‘almost complete’ graph.

e Define the edges v;v; and v,y in A to be incompatible if either of the

following to conditions are met:
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— There exists paths m;; € IIj; and 7y € II}; such that m;; and 7y
have an edge in common. (This is the same notion of incompati-

bility as used in the proof of the Embedding Lemma.)

— There exists paths 7;; € II; and 7, € II}; such that m; and my

have an edge in common.

e As before, we find an embedding ¢ of S into A such that f(4(S5)) N
¢(S) = . This is possible since S has bounded degree, the graph A is
almost complete, and each edge is still incompatible with at most o(n)

other edges.

e Finally, for each edge xy € ¢(M), we select a path m,, € IIZ, of
length h+1 so that the sets of paths chosen {m,, : zy € ¢(M)} are pair-
wise vertex-disjoint. Appending the appropriate matching edge in I to
each path gives a desired set of paths of length h+ 2 in H?. The paths
of length h + 1 are found in H' in the same manner as in our previous

proof.

This completes the proof of Claim [3.65] ]

We have now proved three claims analogous to the Coloring Lemma,
Existence Lemma, and Embedding Lemma. The proof of Proposition [3.56]
now follows the lines of the proof of Theorem

O

Our second proposition describes how the situation changes if the edges

in the matching M are divided one additional time.

Proposition 3.67. For any h € Z™, there exists a constant ¢, such that for
every graph S with |V(S)| = s satisfies

A(S(M1,M2,h+1,h+3))

7 )20 g14+1/(h+1)

< cp(logs
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Proof of Proposition[3.67. The proof of this proposition differs from the pre-
vious proof as follows. In place of Cj.q 12, we take Cjiq 43 where the
vertices are labeled z1,z3,..., 2}, and 23,23, ..., 27, 4 with 2y := 2] = 23,
We also require that ‘almost perfect matchings’ exist in both of the bipartite
graphs (Xj,;, Xj_,) and (Xj,, X7).

We now begin the embedding process by fixing two such perfect match-
ings. These matchings together yield a collection of disjoint paths on three
vertices that cover almost all vertices in X7 ; u X7, U X7. For a ver-
tex v € X; which is covered by one of these paths of length two, define the
vertex 0 € X7, to be the corresponding vertex it is joined to in X7 under

the fixed collection of P3. The remaining part of the proof is analogous to
the proof of Claim [3.65] O

Having demonstrated the main idea of Lemma [3.54] in Propositions
and we now briefly remark on how the proof of Lemma differs.

Proof of Lemma[3.54 In Propositions and the two matchings were
accommodated by replacing Chi1 by Chi1pi2 and Chyqpyes respectively.
Here, we will ‘append’ a cycle of length k for each of the matchings M, ;. €
M. More formally, let C, be the graph obtained by by following process.
Take d(d+1) disjoint cycles of each of the lengths k € {h+1,h+2,...,2h+1},
for a total of d(d+1)(h+1) cycles. From these cycles, C, results by identifying
one common vertex from all the cycles.

Propositions and has already demonstrated the main ideas
involved embedding matchings in two cycles simultaneously. These ideas
easily generalize to d(d + 1)(h + 1) matchings associated to finite lengths of
at least h + 1. O
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Chapter 4

Ramsey numbers involving large

girth graphs and hypergraphs

4.1 Introduction

Recall that for a positive integer ¢ and graphs H and G, we write H — (G),
if every (-coloring of the edges of H yields a monochromatic copy of G.
If H— (G)y, we say that H is Ramsey for G for ¢ colors. Ramsey’s theorem
establishes that, for every graph GG and every positive integer ¢, there exists
a graph H such that H — (G),. In this chapter, we consider three Ramsey-
type problems that pertain to cycles in graphs and hypergraphs.

4.1.1 Cycles in Graphs

The first of these results has its roots in a problem suggested by Paul Erddés,
which asks if for every pair of positive integers ¢ and k, there exists a graph H
having girth(H) = k and the Ramsey property H — (Cy)s. (Erdés explic-
itly stated a weaker form of this problem in [27].) The existence of such
graphs was first established in [62], and the following theorem addresses the

associated numerical problem.
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Theorem 4.1. Let r = r,(Cy) denote the least integer m such that K, —
(Ck)e- Then for all integers k = 4 and { = 2, there exists a graph H satisfying

girth(H) =k, H — (Ch)e, and |V(H)| < 0% 108,

In Theorem the exponential dependency of |V (H)| on k is unavoid-
able. This follows from the observation that a minimal graph H with the
desired properties must have minimum degree greater than ¢ and girth at
least k. Also, note that r,(Cy) is known to be polynomial in ¢ for fixed even k,
and for fixed odd k, satisfies the exponential relation ¢! < ry(Cy) < 58 for
some positive constants ¢; and ¢y (see, e.g., [31]). This leads to the following

corollary.

Corollary 4.2. For every integer k = 3, there exist constants ¢, and co such
that for every integer £ = 2, there exists a graph H such that girth(H) = k
and H — (Cy)¢, which satisfies |V (H)| < £ if k is even and |V (H)| < ¢
if k s odd.

In Section we will further expand upon Theorem In particular,

we prove a lower bound and give a simpler proof for the cases k = 4 and k = 6.

4.1.2 Arithmetic Progressions

For a subset S < N and integers £ > 3 and ¢ > 2, we write S — (AP;),
if every /-coloring of the integers in S yields a monochromatic arithmetic
progression of length k. Van der Waerden’s Theorem establishes that for
all k = 3 and ¢ > 2, there exists some integer N such that [N] — (APy)y,
where [N] = {1,2,..., N}. Many generalizations of this well-known theorem
have been considered. One generalization suggested by Erdés [28], asks if
for all £ > 3 and ¢ > 2, there exists an AP, i-free set S < N that has
the Ramsey property S — (APy),, where a set is AP, -free if it does not
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contain an arithmetic progression of length k£ + 1. This was answered inde-
pendently by Spencer |[72] and by Nesettil and Rodl [54]. Moreover, Graham
and Negetfil [41] showed that there exist arbitrarily large APy -free sets S
that have the property S — (AP;), and are minimal in the sense that, for
every s € S, the subset S” = S\{s} does not have the property 5" — (AP),.

Furthermore, one may want to restrict the structure of the arithmetic
progressions of length k£ in a set S < N, but keep the Ramsey property.
That is, consider the system of copies of arithmetic progressions of length &

9 )) on the vertex set S with

in S, which is the k-uniform hypergraph (.S, (APk

s
AP,

progressions of length k. For a simpler notation, it will be convenient to iden-

edge set ( ) consisting of the k£ element subsets of S that form arithmetic
tify this hypergraph just by its edge set. Moreover, we denote its chromatic
number simply by X(Afjk) instead of X((Afjk)) and suppress the outer pair of
parenthesis for other numerical hypergraph parameters as well.

Observe that S — (APy), if and only if the chromatic number satis-
fies X(Af)k) > (. Hence, van der Waerden’s Theorem establishes that for
fixed k, the X(Elvjl) — o0 as NN tends to infinity. In view of the result of
Erdés and Hajnal [32], which establishes the existence of hypergraphs hav-
ing both large chromatic number and large girth, it is naturally to ask the
following. Does for all k, g = 3 and ¢ > 2 exist a set S < N so that the

hypergraph ( Afgk) satisfies both properties

(P1) X(Afgk) > /{,
(P2) girth(,},) = g7

As usual we say a k-uniform hypergraph has girth at least g if, for any integer
h with 2 < h < g, any subset of h edges span at least (kK — 1)h + 1 vertices.
In particular, girth ( Ai,k) > 3 implies that no two arithmetic progressions can
intersect in more than one point, which implies that S is AP, -free. The
existence of sets S < N satisfying properties and was established
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in [61] (see also [62]) and our next result gives an upper bounds for the size

of the smallest such set S.

Theorem 4.3. Let w = wy(k) denote the least integer N such that [N] —
(APy)e. Then for all integers k, g = 3, and { = 2, there exists a set S < N
such that

X(Aik) > 67 glrth (Aik) 2 9, and |S| < k400]€2(k‘+g)w400k(k+g)g8k‘g.

To illustrate the result, consider the special case k = 3 for fixed g > 3. A
result of Sanders [65] (see also [9]) implies that w,(3) < exp (¢'7°()), where
the error term o(1) — 0 as ¢ — oo. Hence, our result yields the existence
of a set S of size at most exp (¢7°()) such that the properties S — (APs),
and ( A‘jjg) > g both hold. Tt follows that the added girth condition does not

essentially increase the best known upper bound in this case.

4.1.3 Cliques in Graphs

Another well-known problem of Erdés and Hajnal [33]| asked if, for every
pair of positive integers k and ¢, there exists a Kj,i-free graph H such
that H — (K})e. The case £ = 2 was confirmed by Folkman [36] and Nesetfil
and Rodl [53] resolved the general case £ > 2. Subsequently, Erdds [27] asked
about a strengthened form of this result, namely the existence of a graph H
with H — (K}), in which no two copies of K}, share more than one edge,
which was established in [55] (see also [56] for a generalization from cliques
K}, to arbitrary graphs). .

As in the context of van der Waerden’s theorem in Section we
may consider the structure of the cliques in H in more detail, that is, we
consider the system of copies of Ky in H, which is the (];) -uniform hypergraph
(E(H),(})) having vertex set E(H) and hyperedges corresponding to the

Ky,
edge sets of copies of K in H. As above we identify this hypergraph by
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its edge set (Z) and denote by X(Ilfk) and girth(é) its chromatic number
and its girth. Again the statement H — (K}), is equivalent to X(;Ié) > [
and that any two copies of K in H share at most one edge is equivalent
to girth (I?k) > 3. We give a new proof of the result from [55] that leads to a

new upper bound on the size of the smallest such H.

Theorem 4.4. Let r := ry(k) denote the least integer m such that K,, —
(Ky)e. Then for all integers k, g = 3, and { > 2, there exists a graph H such
that

X(E]g)) >/, girth(E]g)) >g, and |V(H)| < k2K 8K

By reversing the dependency between g and |V (H)|, we obtain the fol-

lowing corollary.

Corollary 4.5. For all integers k = 3 and { > 2, there exist ¢ > 0 and

ng such that, for every integer n = ng, there exists a graph H on n vertices

satisfying both H — (K}), and girth([?k) > cy/logn.

It can be shown that any graph H on n vertices satisfying H — (Kj),
must also satisfy girth(é) = O(logn), due to the minimum degree condition

required by X(}i) > /.

4.1.4 Organization

The proofs of Theorems [4.1], and rely on random constructions
and the container method obtained independently by Balogh, Morris, and
Samotij [5] and Saxton and Thomason [66]. Also, we incorporate some ideas
from [52] |63]. For the numerical aspects the container result from [66] seemed
to be better suited and we state it in Section [4.2] The details of the proofs
of Theorems [4.1], and [4.4] are given in Sections .4 and [4.5] respec-

tively. Section contains some concluding remarks related to mostly to
Theorem
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4.2 Hypergraph Containers

The proofs of Theorems and [4.4] are based upon a lemma of Saxton
and Thomason. Roughly speaking, this lemma states that, if some numerical
conditions are satisfied for a hypergraph H, then there there exists a relatively
‘small’ set € whose elements (called ‘containers’) are ‘almost’ independent
sets of vertices, which together have the property that each independent set
of vertices in the hypergraph H is a subset of one of the containers in €.

We now introduce some definitions and notation necessary for the precise
formulation of this lemma. For a hypergraph #, let e(#) denote the number
of edges in H and d denote the average degree of a vertex in H ie. d =
k-e(H)/|V(H)|. For aset S < V(H), define the degree of S by d(S) := {E :
E e E(H) and E 2 S}|. Also, for each v € V(H, define

dj(v) := max {d(S) S € (V(].H)) and v € S}, and

dj = ﬁ Dvev (V).

Container Lemma (follows from [66|). Let H be a h-uniform hypergraph
on the vertex set [N] and 7,e € RY with 7 < 1. If

6-n-26) & g
. <e<1/2, 4.1
d ;2 9(2") i1 / (41)

then there exists a collection € < P(|N]) of ‘containers’ such that all of the
following hold.

i) For every independent set I < V(H), there exists some C € € with
C2l.

ii) For every C € €, the number of edges in the container satisfies e(C) <
e-e(H).
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iii) The number of containers satisfies |€| < exp (1000h(h!)3 -log (1/¢)- N -
™ -10g (1/7)).

Proof. This lemma can be deduced from Corollary 2.7 in [66]. The explicit
choice of the constant ¢ appearing in Corollary 2.7, which the statement of
Corollary 2.7 guarantees only to exist, is taken to be ¢ := 1000h(h!)?; it was
observed in Section 2.1 of [63| that this choice of ¢ follows from the proof of
Corollary 2.7 by noting that

288(h!)2h Ine
<— " (1+———— ) <1000h(R))>.
°S (/o) ( +11(1(1—1/%!)) (7h)

Additionally, our hypothesis on ¢ is equivalent to the hypothesis on ¢
as stated in Corollary 2.7, which can easily been seen by writing out the
definition of the ‘co-degree’ function in Corollary 2.7 and our definition of d;.
We have also omitted the hypothesis that 7 < 1/(144h!*h) since, for 1 > 7 >
1/(144h!?h), the conclusion follows vacuously from taking € to be the set of
all independent sets. [

4.3 Proof of Theorem

The objective of this section is to prove Theorem [4.1] That is, we will show
that there exists a graph H with girth(H) = k and the Ramsey property H —
(Cy)¢ that has at most ri°% k%% vertices, where r = r4(C}) is the (-color

Ramsey number for Cj.

Proof. Consider any integers k > 4 and ¢ > 2 and set
n— 240k2r40k2k10k37 ¢, = 912,.101.3k+2 log n,

PR G CONC)
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Let G ~ G(n,p) be a random instance of the graph obtained from K,
(the complete graph on vertex set [n]) by selecting each edge independently
with probability p. Theorem will be an immediate consequence of the

following three claims.
Claim 4.6. IP’(G — (Ok)g> =>1—exp(—=2"'r2p(})).

Claim 4.7. P(girth(G) > k:) > exp (—ck1n).
Claim 4.8. exp (—clgfln) — exp (—2*17‘*2}9(75)) > 0.

Indeed, in view of Claim the probability that G has girth at least k
is greater than the probability G does not have the Ramsey property G —
(Ck)e- Hence, verifying these three claims will establish that there exists
a graph having girth £ that is Ramsey for C} for l-colors that has n =
Q40K?  A0K? 10K A0K* LAOK® yortices as desired. The first claim, which we now

address, is the crux of our proof.

Proof of Claim[{.6l Consider H = (E(C[,i")), which is the the system of all

copies of Cy in K,. It follows that H is a k-uniform hypergraph on (;L)
vertices having (}7)(k — 1)!/2 edges. Set

1
20(;)(k — 1)1

k

o= Sy 6y —(=2)/(-1) e

In order to apply the Container Lemma to the deterministic hypergraph H,

we note that 0 < ¢ < 1/2 and 7 < 1, which follows directly from the def-
initions of ¢ and 7. We will now work to verify the remaining hypothe-
sis (4.1)) of the Container Lemma. Observe that, for all j < k, we have d; =
(2:818) (k— (5 + 1))! < n* 7% this is because a set S of j edges in K, is
contained in the most cycles of length £ when S forms a path in K. Also,
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observe that d = (}_2)(k —2)! > (n/2)"2. Tt follows that,

Z (/)
- Zm'ﬂl
<2“-(k—2)-n—1T

. 2k_2(k — 2) ok
RV I V'

&I'—

(4.2)

Now observe that d; < 1; this is because any k edges in K, are contained

in at most one cycle C. Hence,

2(3) . q, _ 2() .1
d-203) k1 T (o2 o(F) L pea
22k—3 22k—3

- - . (4.3)

nk—2rk-1 76k—6

Also, making use of the fact that the Ramsey number r = r,(C},) satisfies
both r > ¢ and r > k (a fact we will utilize through this section), we have
that

el
LALLP SN %(D (k — 1)1 < %, (4.4)

3

Using equations (4.2), (4.3), and (4.4), we now verify equation (4.1) in

the Container Lemma;
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6-k!-2(5)zk: d; ro(a) E g

. < -
d-e o o('3") ri—1 d = 2(’2") i1

k _
w2y 1) Z
h d2(k71)7-k 1 d “ o

92 2k—3 2k:

< 7,,3]{: TGk 5 + ,r. 2( ) W
92k 3k2k:2 4k T3k2k2

< 1.

< + < +
= p3k—6 nl/k T 43k—6 nl/k

Having verified the hypotheses of the Container LLemma, we obtain a
set € € P(E(K,)) of containers such that every independent set in H is
contained in some container, each container has at most ¢|E(H)| = ¢(}) (k —

1)!/2 hyperedges, and

€] < exp (1000 k- (kD? - log (1/¢) - (Z) -7 -log (1/7-))
< exp (210 k- k3. 2kr - (2) O~ (k=2)/(k=1) -logn)

285271 () own

— exp <2r3p(2>> < exp <Tlr2p <g)) . (4.5)

Now let B be the set of all (‘bad’) subgraphs of K,, that are not Ramsey
for Cy for ¢ colors. Our goal is to show P(G € B) < exp (=2 'r ?p(})).

For each B € B, fix an edge coloring x5 : E(B) — [¢] such that each color
class does not induce a monochromatic Cj. For each i € [¢], the set x7'(i) is
not only a set of edges in K, that does not induce a cycle Cy, but also corre-

sponds to an independent set of vertices in H, and thus x'(z) is contained
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in some container C; € V(H). With this in mind, associate each B € B to
some (C1,Cy,...,Cp) € € so that, for all i € [¢], we have x5'(i) S C;. Also,
for each each B € B, define the associated set D := V(H)\|J_, C; of edges
in K,. Observe that E(B) n D = & as E(B) < | J\_, C.

Let D be the set of all sets D arising this way by considering each B €
B. Thus, it is the case that, for every graph B € B, there exists some
associated D € D such that E(B) n D = (.

Consequently, by the union bound and fact that |D| < |€[*, we have

P(GeB)<P<3DeD:E(G)mD=@)

< || max {P(E(G) n D = @) : De D}, (4.6)

We will work to deduce that P(E(G) n D = ) is small for all D € D as
a consequence of the fact that the number of elements in D that E(G) must

avoid is large.

Subclaim 4.9. For every D € D, at least half of the r-elements sets R € ([Z])
have the property that E(K,|R])nD + &, where K,,|R] is the complete graph
on R.

Proof of Subclaim[{.9. Fix some B € B and associated (C;,Ca,...,C;) € €*
that gave rise to D. To prove the claim, assume to the contrary that at least
half of the r-element sets R € ([:f]) have the property that K,[R] n D =
. For each of these sets R, it follows that E(K,[R]) = (J;qCi- This
corresponds to an ¢-coloring of the edges of K,,[ R] and, by the definition of the
Ramsey number r = r,(C}), this coloring yields a monochromatic Cj. That
is, we have argued that half of the r-element sets R € ([Z]) contain a cycle C}, €
K,[R] such that E(C}) < C; for some i, i.e. the set of edges E(C}) is a edge
in the hypergraph H[C;]. On the other hand, by the Container Lemma, we
know that each container C; contains at most e| E(H)| = (}) (k—1)!/2 edges.
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We thus have:

1/2)(" kE—1)! 1/4)(7
M < ‘{Ck : E(Cy) < C; for some i € [f]}‘ <" ( ) = W )(k),

(k) k)2 (%)
where the lower bound was computed using the fact that for each cycle C, we
have that F(Cy) ¢ E(K,[R]) for at most at most (:‘:'g) subsets R € ([:f]). A
contradiction to the above inequality follows from the combinatorial identity

that (7) (i) = (i) (25)- =
By Subclaim and the fact that an edge is contained in at most (:‘:;)
sets in ([:f]), for all D € D, we have

D] 2 (1(/;);()7) = 2% > 72 <”>

Hence,
P(E(G)nD=g)<0-p "6 <e ), (4.7)

From substituting (4.7)) and (4.5)) into (4.6)), it follows that

fess) <on (Efe) - 2a()) <o (2)

This completes the proof of Claim
O

Proof of Claim[{.7]. To find a lower bound for the probability that G(n,p)
has girth at least k, we will use the standard FKG inequality as appearing
in Corollary 2.13 of [45]. For this purpose, define S to be the set of all
cycles of length less than k in K,. For each S € S and graph G c K,,

let Xg(G) be the indicator function with Xg(G) = 1 if S appears in G
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and Xg(G) = 0 otherwise. Thus, X(G) := Yo s Xs(G) counts the number of
cycles of length less than k appearing in G. Moreover, since each function Xg
is an increasing function of the space of all graphs on n vertices (i.e. if G cG
then Xg(G") < Xs(G)), by Corollary 2.13 of [45] (which follows directly from
the FKG inequality), we obtain that for G ~ G(n, p) we have P(X(G) = 0) >
exp (—E(X(G))/(1 — p)). We now compute

s(xe) -3 ()50 <5 %

<(k-3) 2(p < )t = e,

(k—1)

which gives

(X(@))

P(girth(G) > k) = ]P(X(G) = O) > exp (—E 1 ) > exp (—cf 'n),

completing the proof of Claim [4.7]
[l

Proof of Claim[£.8 To show that exp (—27'r7?p(3)) < exp (—ci™'n), it suf-
fices to show that nch /(2717 2p(})) < 1, which we now verify.

k-1 2 k=2, 2
ne, B 2r Qon

= <
2*17“*219(;) nl/(k=1) (721) = nl/(k—l)
237,2212k—247,10k—20k3k:2—4k—4 (log n)k

= 940k 40k - 10k2 <L

232k2

]

Having proved Claims [4.6][4.7 and this completes the proof of Theo-

rem (.11
O
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4.4 Proof of Theorem

In this section, we prove Theorem by establishing that, for all inte-
gers k = 3, £ = 2, and g > 2, there exists a set S < N of size at most
J;A00K> (k-+9),400k(k+9) 08k9 gych that the hypergraph ( A‘jjk) has chromatic num-
ber greater than ¢ and girth at least g, where the van der Waerden num-
ber w = wy(k) is the least integer N such that [N] — (APy),.

Proof. Consider any three integers k = 3, ¢ = 2, and g = 2. Let w := w(k)
be the least integer N such that [N] — (APy),. Set

2 (o
n = KA00K (k+g),, 400k(k+g) o 8kg.

g cp = w?k** log n,

—1/(k— _ - - pn
p = cn VD = ¢ k=21, t= A (4.8)
Let [n], denote the random set obtained by choosing each element of [n] =
{1,2,...,n} independently with probability p. (Since c’;_l < n, we have that
p = cpn_l/(k_l) < 1 and is a valid choice for a probability.) We make three
claims about the random hypergraph (K‘I]JZ) The first claim asserts that (Klll’z)
will have chromatic number greater than ¢ even after the deletion of any set

of ¢ vertices.

Claim 4.10. With probability at least 1 — 2 exp(—pn/288w), the hypergraph
(%]DZ) has the following strong Ramsey property: if T < [n], is any subset
of t elements, then X([TQQT) > /.

The next claim asserts that it is likely that (E@i) can, by deleting some

set of t vertices, be made to have girth at least g.

Claim 4.11. The probability that (ZLI]DZ) has fewer than t cycles of length less
that g is greater than 1/2.
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The following claim compares the probabilities in the previous two claims.
Claim 4.12. 1 — 2exp(—pn/288w) — 1/2 > 0.

Together, these claims establish that, with positive probability, the ran-
dom hypergraph (Kﬂi) will have the property that there exists a set T of ¢
vertices so that the hypergraph ([’QPP}CT) has girth at least g and X([TQ%Y) > /.
Thus, these claims together establish the existence of a graph as in Theo-
rem[d.3] We remark that, although such a object will likely have around pn—t
vertices (not n vertices), this improvement is negligible. We begin by prov-
ing Claim which is the heart of our proof. The proofs of Claims 4.11
and will be given subsequently.

Proof of Claim[{.10, We first consider the hypergraph H := (Ej]k) and apply

the Container Lemma to this deterministic hypergraph with

c = w*5, ¢ = (2k2+4kk+3w5)1/(k71)’ and = C‘rnfl/(kfl).

Note that 7 < 1 and € < 1/2. To verify the remaining assumption (4.1)
of the Container Lemma for H, we make a couple of observations about the
average degree d and the parameter d;, which is defined in the statement of

the Container Lemma. First,

e(H) = nfl {Z:” > Q—Z; (4.9)

i=1

here we count the number of arithmetic progressions of length & in [n] by
summing over the position of the first element in the progression and the
above inequality holds for all £ < n/6. Second, d > n/3, which follows
from (4.9) and H being a k-uniform hypergraph. Also, in H the parameter d;
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(as defined in the statement of the Container Lemma) satisfies

k k?
dj <dp < (2> < E; (410)

the second inequality above follows from the fact that an arithmetic pro-
gression containing the elements u,v € [n] is determined by specifying the
positions of u and v in the progression.

We now verify the remaining hypothesis of the Container Lemma.
Recalling that d = n/3 and d; < k?/2, we have

> i d 6-kk-2’“2ik2/2
= o(’3") ri-1 S w n/3 =7
gkk+22k2 k
Z j 1
7j=2
24k +20k% )5 1
< i
n Th—
2k2+4kk+3w5 .

k—1
Cr

Having verified the assumptions of the Container Lemma, we obtain a
set € < P([n]) of containers such that every independent set (i.e. APj-free

set) is contained in some container, each container has at most ¢|E(H)| <
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5(;) hyperedges, and

€] < exp (1000 - k(k!)* -log (1/€) - n - 7 - log (1/7))
< exp (210 R 23w n T log n)
_ PR 9p 9, ske1 T108T
—exp<29—w€2 wlk +T)
290/ w25 |25k
pn

< : 4.11

P (288w€) (4-11)

Let B denote the family of all sets B < [n] with the property that there
exists a subset T' < B of size t such that (B\T) - (AP;), i.e. there exists
an (-coloring of B\T that does not yield a monochromatic AP,. Hence B is
the set of all (‘bad’) subset of [n] that do not have the desired strong Ramsey
property. We will work to bound P([n], € B) from above.

To this end, consider any B € B. By the definition of B, there exists a
set T with |T'| = ¢ and a partition B\T = I, U --- U [, with the property
that each I; contains no AP,. Moreover, each [; is an independent set in H,
so there exists an (-tuple of containers (Cy,C,...,Cs) € € such that I; = C;
for all i € []. Letting D := [n]\U[yCi, observe that |B n D| < [T
since B\T = I, U ---u I, € DY. Hence, we can define a function from B to
the set

D= {D : D = [n]\ U C; for some (Cy,Cs,...,Co) € QE},
1€[{]
with the property that, for any associated pair (B, D) € (B, D), we have |Bn
D|<t.

From this we infer that if [n], € B, then there exists some D € D such
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that |[n], n D| < t. Using the union bound this yields:

]P’([n]p e B) < IP’(H DeD:|[n], nD| < t)

< |¢|f-max{1@(|[n]pmz>| <t) :DeD}. (4.12)

To show the above probability is small, we will work to show that |D] is
large for every D € D. Let P, be the set of all arithmetic progressions in [n]

of length w.

Subclaim 4.13. For every D € D, half of the elements P € P, contain an

element from D.

Proof of Subclaim[{.13 Consider any fixed D € D. Towards contradiction,
suppose it is not the case that half of the elements P € P,, contain an element
from D, i.e. there are |P,|/2 progressions P € P, such that P n D = (.
By the definition of D, there must exist (C1,Ca,...,Cs) € € so that D =
[n]\ Uie[é] C;. For any P € P, with P n D = (&, we have P c | [ C;. By
the definition of the van der Waerden number w = wy(k) = | P|, this implies

there exists i € [¢] and AP, < P n C;. Hence, |P,|/2 progressions P € P,

i€

have the property that for some i € [¢], the set P n C; contains an AP;.

Furthermore, any AP, is contained in at most (12”) progressions of length w
(corollary of (4.10)). It follows that

DleC) = Pul/2

ey (4.13)
b (%)

Now, observe that [P,| = n?/3w (having w < n/6, this is analogous to (4.9)).
Also, observe that (g) > e(H) because an arithmetic progression is defined by
choosing its first two elements. From these two observations, inequality (4.13])

gives
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ey P2 O 00

i€[f] 2

which contradicts property (ii) of the Container Lemma that states e(C;) <
e -e(H) for every C; € €. O

Resuming the proof of Claim we will use Subclaim which we
have just proved, to establish that |D| is large for every D € D. To this
end, note that each element in v € [n] is contained in at most 2n arithmetic
progression of length w (there are at most w choices for which element of
the AP, intersects v and at most n/(w — 1) choices for the distance between
consecutive elements in the AP,). Thus, Subclaim and give that,
for every D € D,

D] > Pul/2 (n*/3w)/2 _ n (4.14)

2n 2n 12w

Having achieved our goal of establishing that | D| is large for every D € D,
we are now ready to prove P(|[n], n D| < t) is small for every D € D. To do
this, we use a form of Chernoff’s Inequality (see e.g. Corollary 2.3 in |45])
which states that for a binomially distributed random variable X ~ Bi(n,p)
we have that

P(X <E(X)/2) < 2exp (—E(X)/12).

In our application, the random variable we consider is [n], n D. From the in-
equality (4.14), we have that E(|[n], n D|) = np/12w = 2¢t. Thus, Chernoff’s
Inequality gives that

p(ln], n D] <1) <2-exp(—f—;) —2ep (- L) (1)
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By the inequalities (4.11)) and (4.15)), inequality (4.12)) becomes:

n n pn
P([n)y e B) < exp (557 ) 200 (~1p50) < 20 (—g-)
7y € P\ 2ssw/) 2P\ 4w P\ 7288w

completing the proof of Claim [4.10] O

Proof of Claim[{.11] Define a 2-cycle to be a two edges e, e5 such that |e; N
es] > 1. For j > 2, define a j-cycle to be a cyclical sequence of j edges
e1, ez, ...,e; where the intersection of two consecutive edges is exactly 1, the
intersection of any two nonconsecutive edges is empty, and the intersection
points for each pair of consecutive edges is unique. It follows that, for j > 2,
a j-cycle has precisely j edges, j vertices of degree 2, and j(k —2) vertices of
degree 1. Recalling that a k-uniform hypergraph has girth at least g if any
subset of h edges (2 < h < g) span at least (k — 1)h + 1 vertices, we see that
a hypergraph has girth at least ¢ if and only if it does not contain a cycle of
length less than g.

Let the random variable X; denote the number of j-cycles appearing
in the random hypergraph (KLI]{) Because a 2-cycle consists of two edges
intersecting in at least two points and and two points are contained in at
most (k) edges (by (4.10)), the number of 2-cycles in H is at most () (k)2

2 2
Moreover, each two cycle contains at least k£ + 1 points. This gives

n kal 2,4 k1 4 k1 (k=3)/(k—1

Using this, we now bound E(X3) < ¢/4. In the following calculation, we

will make use of the fact that (logn)*¥ < n'/?* since n > 210%°.
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E(XQ) k4ck+1n(k_3)/(k_1) 96wk,4ck

<% _ P

t/4 ent=2/(=1) )96 pl/(k=1)
_ 96wk (w*k?* log n)k

nl/k
_ 9611)]{?4 (w25k25k)k
= nl/2k
06 25k+1 k,25k2+44

(4.16)

< <
= k200k(k+g)w200(k+g)g4g =

Before we count the number of j-cycles for j > 2, we first demonstrate

that by our choice of parameters (logn)* < n'/ i.e.
nMR9 > 100k,100 02 > 4000k wg? = logn. (4.17)

Now to count the number of j-cycles for j > 2, observe that each j-cycle
can be defined by choosing the j elements of degree 2, cyclically ordering
the these elements, and choosing an edge containing each pair of consecutive

elements. This gives that the number of j-cycles formed by AP, in H is at
most (?) (7 — 1)!(’;)] < nk¥p—1i. Hence, we can compute (using (£.17)))
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that

E(X;) < — Y nik¥ptk-bi
np o

4 96w 4=
t
g—1
P
np =
< 96w
= pk=2)/(k=1)
29 -k
- 96wgk=dc,?
= nl/2
96wgk29 . w25kgk25k2g(log n)kg
S ni/2
96wgk:29 . w2ka |25kg
= nl/4
96wgk?9 - w25k J.25k%g
- f;100K2 (k+9) 4y 100k(k+9) g 2kg < L (4.18)

ca - k290k9
g-k7c,

Thus, by (4.16) and (4.18) the expected number of cycles in (K‘I]Dz) of length
less than g is less than t/2. By Markov’s inequality this implies that (ELI]DZ)

will have more than ¢ cycles of length length g with probability at most 1/2.

This proves Claim
O

Proof of Claim [{.12 We must prove that exp{—pn/288w} < 1/2. This read-
ily follows from the fact that

pn = pk=2/E=1) > 12 5 988w,

This completes the proof of Theorem O
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4.5 Proof of Theorem

In this section, we establish that for all integers ¢ > 2, g > 2, and k£ > 3,
there exists a graph H on at most k2""%'9°r2°¥*9 vertices such that (]i) has

chromatic number greater than ¢ and girth at least g, where r := r,(Kj).

Proof. Set

~2/(k+1)_

n
1074 ,.2 9812 P
n = k2 k*g 7”2 k g7 t= (2) Cpi= 25\/10gn10gk7,16

92 , Di=Cpn

Let G ~ G(n,p) be a random instance of the graph on [n] obtained by
taking each edge of the complete graph on [n] independently with probabil-

ity p.

Claim 4.14. With probability at least 1/2, we have that (E[((f)) can be made
to have girth g by deleting at most t edges.

Claim 4.15. With probability at least 1 — 2 exp (—p(g)/(247“2)) , the hyper-
graph (EI((?) has the following strong Ramsey property: If T < E(G) is any

subset of size t, then X(E(gz\T) > /(.

Claim 4.16. 1 — 2exp (—p(})/(24r?)) — 1/2 > 0.

Together, the above claims establish that, with positive probability, the
random graph G will be such that ( gk) will simultaneously have the proper-
ties in both claims. Hence, such a graph exists. From this graph, ¢ edges can
be removed to obtain a graph that has the desired properties of Theorem 4.4

It thus remains only to verify the three claims.

Proof of Claim[{.1]] Recall that a 2-cycle is a pair of edges €1, es such that
legneg| > 1 and for j > 2 a j-cycle is a cyclical sequence of j edges ey, s, ..., €;

where the intersection of two consecutive edges is exactly one i.e. |e;ne; 1| =
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1 (addition mod j), the intersection of any two nonconsecutive edges is empty,
and the intersection points for each pair of consecutive edges is unique.

Define X; to be the number of j-cycles in the system of copies of K}
in G(n,p). We first work to bound X,. If k = 3, we trivially have E(X3) = 0.
Otherwise for k£ > 4, a 2-cycle corresponds to two copies of K that intersect
in more than two edges, and thus in more than two vertices. Furthermore,
we see that two copies of K that intersect in ¢ vertices together span ex-
actly 2k — ¢ vertices and 2(’2“) — (;) edges. With this in mind, the following
bounds E(X5) < t/4 in (Gggf’)):

k-1

EX) _ 8 pixy) < 3205 p2kei25-0)
t/4 p(3) L
k—1 .
_ 32T2n2k—2p2(§)71 Z n(ﬂ_zi—ki)/(kﬂ)C;(Q)
i=3
< 32T2n2k—2p2(’;)71 k- max {n(i2—2i—k‘i)/(k‘+1)}
3<i<k—1

< 32T2n2k’2p2(§)_1 . 33R)/(k+1)

2 k2—k—1 k2
B 32kr e o <1
nk=3)/(k+1)  p1/5 =

We now will bound Z?;; X;. For j > 2, a j-cycle in (E?g) consists of a
cyclically ordered set of j copies of K}, such that each two consecutive copies
intersect in exactly one edge of K,. Thus, a j-cycle corresponds to a set of
Ky’s in K, that span exactly kj — 27 vertices in K,, and (’;)j — 7 edges in K.
From this, we see that, for 2 < j < g, we have

kie2i (k) o (k=2) (k)il J ((’;)_1)j
E(X;) < n™ ¥ pl)l77 = (pF=%pla =¢p :

J
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Using this, we establish Z?;; E(X;) <t/4:

g—1 . .
2j=3 E(X;) < 87;2 g- C](j(é)fl)g
t/4 p(2)
k2
< 327‘2901()(’5)—1)9 < Cp_g <1
pn? n

Thus, we have shown Z?;; E(X;) < t/4+t/4 =t/2. By Markov’s In-
equality, this gives that, with probability at least 1/2, the hypergraph (G%”))
contains fewer than ¢ cycles of length less than g. This concludes the proof

of Claim [4.14]
O

Proof of Claim [{.15 We will apply the Container Lemma to the hypergraph
H= (Ilg’;), as was done in [63].

Let

and r= 24\/10gn7,10/kn72/(k+1).

4 2
n > fA00K! A0k .=

With the choice of n, € and 7 one can show that the condition of
the Container Lemma is satisfied; we will not explicitly show this here, as
this exact statement is verified in the recent paper [63] of R6dl, Rucinski,
and Schacht. Specifically, our parameters are the same as in equations (11)
and (12) in [63] and n > k007404 "t6 which Claim 10 in [63] establishes that
the equation holds. Hence, we obtain a set of containers € ¢ P(E(K,))
such that all of the following hold:

i) for every independent set I < V(H), there exists some C € € with
C2l,

ii) for every C€ €, e(C) < e-e(H), and
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iil) |€] < exp{l-1000- (%) - ((5))?*-log(1/e) - (z) - 7 - log(1/7)}.

To further bound |€|, observe that

(12000)(%)((£))* < (12000) - K2 - (k2/2)!)* - (K2/2)!
k*?

k2/2
<37k KA K

<K R ER < KPR R < (282))

<37 kK% kP

and thus

€ < exp{€-1000 - (%) - (%)))* - log(1/e) - (z) - 7 - log(1/7)}

< exp {f. (sz)! -log(1/e) - ()7 10%(1/7)} '
Additionally,
0 (2522)! log(1/2) - () - 7 - log(1/7) < ]29%2

which has been verified in [63] (see the line after equation (18) on page 12).

Thus, we obtain

2472

€] < exp (p@)) . (4.19)

Having applied the Container Lemma, now consider the family B of all
graphs B < K, with the property that there exists a subgraph T' < B of
size p(3)/2r* = t such that (B\T) - (Kj) i.e. there exists an (-coloring
of the edges of the graph B\T that does not contain a monochromatic Kj.
Hence B is the set of all (‘bad’) graphs on n vertices that do not have the
desired strong Ramsey property. We will work to bound P(G(n,p) € B) from
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above.

To this end, consider any B € B. By the definition of B, there exists a
set T with |T'| = ¢ and a partition B\T = I; U --- U [, with the property
that each I; contains no K. Moreover, each I; is an independent set in H
so there exists an ¢-tuple of containers (Cy,Co,...,Cy) € ¢! such that I, < C;
for all i € [¢]. Letting D := [n]\{JgqCi, observe that [B n D| < [T
since B\T = I, U ---u I, € D. Hence we can define a function from B to
the set

D= {D D = [n]\ | G for some (C1,Ca,....Co) € ef},
i€[f]

with the property that for any associated pair (B, D) € (B, D) we have |B n
D|<t.

Since we know that for every B € B there exists some D € D such
that |B n D| < t, it follows that if G(n,p) € B, it must be the case that for

some D € D, we have |G(n,p) n D| < t. By the union bound we obtain:

P(G(n,p) € B) < IP’(EI DeD:|G(n,p) nD| < t)

< €|’ - max {]P’(|G(n,p) AD|<t):De D}. (4.20)

To show the above probability is small, we show that |D| is large for

every D € D.

Subclaim 4.17. For every graph D € D there are at least %(:) sets R < [n]
with |R| = r such that the induced graph D[R] contains an edge.

Proof of Subclaim[{.17. Consider any fixed D € D and (C;,Co,...,C;) € €*
with D = [n]\U,eqCi- Towards contradiction, suppose there are more
than (")/2 sets R < [n] with |R| =7 and D n K, [R] = &.

For any R < [n] with |R| = r and D n K,[R] = &, we have R
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Uiejq Ci- By the definition of the Ramsey number r = r¢(K}), this implies
there exists i € [{] so that K < R n C;. Further, as each K} is contained in
at most (Z:k) sets R < [n] with |R| = r, it follows that

1/2)(¢) — @/2)) n
e(C; o = " > le
Z‘ez[l;] = (?:k) (k) g (k)

which is contradiction to the second property of the Container Lemma. [J

In order to use Subclaim to establish that |D| is large for every D € D,
note that each edge e € D is contained in at most (:fj) sets of size r. Hence,

for every D € D,

(1/2() _ 1
D] > 0 >r2(2). (4.21)

Having achieved our goal of establishing that | D| is large for every D € D,
we are now ready to prove P(|[n], n D| < t) is small for every D € D.
To do this, we use a form of Chernoff’s inequality (see e.g. Corollary 2.3
in [45]) which states that for a binomially distributed random variable X ~
Bi(n,p), we have that IP’(X < ]E(X)/Q) < 2exp (—@). Having estab-
lished E(|[n], n D]) = & (%) = 2t in (d.21)), this yields
2t

P(|G(n,p)mD|<t> <2-exp(—ﬁ) =2-exp(—%>. (4.22)

Hence, by (4.19) and (4.22)), equation (4.20) becomes:

IP’(G(mp) € B) < exp (%) - 2exp (—%) < 2exp (—%) ,

completing the proof of Claim O]

Proof of Claim[[.16 To establish that 1 — 2exp (—p(3)/(24r?)) — 1/2 > 0,
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observe that

p(Z) > cp > 16 > 2. 2472

This completes the proof of Theorem O

4.6 Concluding Remarks

In view of Theorem we consider the following function for given integers
(=2and k>=4let

folk) = mz’n{|V(H)|: girth(H) = k and H — (ck)g}.

Theorem [4.1| established that f(k) < r4%° k4% where r := r,(C}). In view
of the known upper bounds on r,(C},) for even and odd k, this establishes the
upper bounds in Theorems and stated below. These two theorems

also provide complementary lower bounds.

Theorem 4.18. There exist positive constants c; and co such that for all k >
2 and l = 2,

exp (clklog £> < fo(2k) < exp (cg(kQ log ¢ + k*log k))

For fixed k > 2 Theorem shows that f,(2k) is polynomial in /.

Proof. We will first show that f,(2k) < exp (02(k2 log £+ k% log k)). In [26] it
was announced and in [13] it was proved that, for every integer k > 2, there
exists a constant ¢ such that every graph on n vertices with at least cn!'+/*

edges contains a copy of the cycle Cy,. This implies that, if n is such
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that (5)/¢ = cn'** that is, n = c/*/(*=1 then every edge coloring of K,

with £ colors will have a monochromatic cycle Cs,. Hence
ro(Cop) < D), (4.23)

The upper bound f;(2k) < exp (cg(k2 logl + k*log k’)) now follows from

substituting (4.23) into Theorem

We now turn our attention towards the lower bound in Theorem [£.I8
For any k > 2 and ¢ > 2 consider any graph H with girth(H) = 2k and
the property H — (Cy)e. Let H ¢ H be edge minimal subgraph such
that H — (Cy)e. Clearly the minimum degree of H must be at least ¢ and
H must have girth at least 2k. Since any graph with girth 2k and minimum
degree ¢ must have at least 237 (¢ — 1)" = /¥~ vertices the lower bound

for fy(2k) follows. O
The following theorem establishes similar results for the odd case.

Theorem 4.19. There exist positive constants ¢y and co such that, for all k =
1and (=2,

exp <c1k€> < fo(2k + 1) < exp (c2k2 (f log ¢ + klog k:))

For fixed k > 2 it follows that e**) < f,(2k + 1) < 9(¢1o8?),

Proof. We first show that fo(2k + 1) < exp (02k2 (mogé + klog k;)) As
established in [12],

2k < 1e(Copsr) < (0 +2)!- (2K + 1). (4.24)

The upper bound for f,(2k + 1) follows from substituting the upper bound

in (4.24) into Theorem [4.1]
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To establish that f,(2k + 1) = exp (clk;é) for any £ > 1 and ¢ > 2, as
before we begin by considering any graph H with girth(H) = 2k + 1 and
the property H — (Cory1)e- Note that y(H) > 2¢, since otherwise the edges
of H could be decomposed into ¢ bipartite graphs, resulting in an ¢-coloring
of E(H) with no monochromatic odd cycle. Moreover, since Y(H) > 2,
there must be a subgraph H < H with minimum degree at least 2¢. Since H
has at least girth 2k + 1 and minimum degree 2¢, the number of vertices in

H must be at least 1 + 2¢ 3F 712 — 1)F = 2¢ vertices for some ¢ > 0. [

For three special cases of k, we are able to deduce better bounds for f,(2k)

using well known extremal constructions of graphs with girth 6, 8, and 12,

respectively.

Theorem 4.20. We have f,(6) = O((%), fu(8) = O((*?), and f,(12) =
O(£39).

Before proving Theorem we first introduce some notation and state
an observation upon which the proof is based. Let ex(n;Cj) denote the
maximum number of edges in an n vertex graph that does not contain a

cycle of length k. Similarly, let ex(n; Cs, Cy, ..., Ck_1) denote the maximum
number of edges in a graph with girth k.

Fact 4.21. If ex(n; Cs,Cy, ..., Cop 1) > L-ex(n; Cs,Cy, ..., Coy), then fo(2k) <

n.

Indeed, by definition of the extremal function there exists a graph G on n
vertices with girth 2k that has ex(n; Cs, Cy, ..., Cor_1) edges. Clearly, every

(-coloring of G yields a monochromatic subgraph with at least
ex(n; Cg, 04, RN Cgk_l)/g > ex(n; Cg, 04, RN Cgk)

edges, which must contain a monochromatic Cy; since the monochromatic

subgraph still has girth at least 2k.
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Proof of Theorem [4.20} To make use of this fact to prove Theorem we
use the result of Erdgs and Simonovits from [34] that for every positive

integer k, we have
ex(n; Cs,Cy, ..., Copy1) = O(n'+*).
Since any graph contains a bipartite subgraph with half of its edges we have

ex(n; C3,Cy, C5,Cs, . .., Cop) < ex(n; Cy, Cs, . . ., Co)
< 2. ex(n; Cg, 04, 05, C@, ey Cgk+1)
= O(n'*V/ky (4.25)

Erdés and Simonovits conjectured in [34] that for every positive integer k > 2,
ex(n; 03, 04, ey ng,l) = Q(nlJrl/(kil)). (426)

This has been observed for k = 3 by Klein (see |25]|) and follows for k = 4
by the work of Singleton [70], and for k = 6 by work of Benson [8]. For k €

{3,4, 6}, inequalities (4.25)) and (4.26]) give that

ex(n; Cs,Cy, ..., Copq) = Q(n1+1/(k—1)))
> (- O(n1+1/k) =(-ex(n;C3,Cy,...,Cy),

holds provided that

n>= C/gk(kfl) 7

for some sufficiently large constant ¢’. Consequently, Fact yields f,(2k) <
n = Q=) for k € {3,4,6} and the theorem follows. O

We remark that establishing (4.26)) for all k, implies f,(2k) = O(¢**=1)

for all £ by the same argument.
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